xref: /kernel/linux/linux-5.10/sound/core/pcm_lib.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Digital Audio (PCM) abstract layer
4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 *                   Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47	struct snd_pcm_runtime *runtime = substream->runtime;
48	snd_pcm_uframes_t frames, ofs, transfer;
49	int err;
50
51	if (runtime->silence_size < runtime->boundary) {
52		snd_pcm_sframes_t noise_dist, n;
53		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54		if (runtime->silence_start != appl_ptr) {
55			n = appl_ptr - runtime->silence_start;
56			if (n < 0)
57				n += runtime->boundary;
58			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59				runtime->silence_filled -= n;
60			else
61				runtime->silence_filled = 0;
62			runtime->silence_start = appl_ptr;
63		}
64		if (runtime->silence_filled >= runtime->buffer_size)
65			return;
66		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68			return;
69		frames = runtime->silence_threshold - noise_dist;
70		if (frames > runtime->silence_size)
71			frames = runtime->silence_size;
72	} else {
73		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
74			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75			if (avail > runtime->buffer_size)
76				avail = runtime->buffer_size;
77			runtime->silence_filled = avail > 0 ? avail : 0;
78			runtime->silence_start = (runtime->status->hw_ptr +
79						  runtime->silence_filled) %
80						 runtime->boundary;
81		} else {
82			ofs = runtime->status->hw_ptr;
83			frames = new_hw_ptr - ofs;
84			if ((snd_pcm_sframes_t)frames < 0)
85				frames += runtime->boundary;
86			runtime->silence_filled -= frames;
87			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88				runtime->silence_filled = 0;
89				runtime->silence_start = new_hw_ptr;
90			} else {
91				runtime->silence_start = ofs;
92			}
93		}
94		frames = runtime->buffer_size - runtime->silence_filled;
95	}
96	if (snd_BUG_ON(frames > runtime->buffer_size))
97		return;
98	if (frames == 0)
99		return;
100	ofs = runtime->silence_start % runtime->buffer_size;
101	while (frames > 0) {
102		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103		err = fill_silence_frames(substream, ofs, transfer);
104		snd_BUG_ON(err < 0);
105		runtime->silence_filled += transfer;
106		frames -= transfer;
107		ofs = 0;
108	}
109}
110
111#ifdef CONFIG_SND_DEBUG
112void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113			   char *name, size_t len)
114{
115	snprintf(name, len, "pcmC%dD%d%c:%d",
116		 substream->pcm->card->number,
117		 substream->pcm->device,
118		 substream->stream ? 'c' : 'p',
119		 substream->number);
120}
121EXPORT_SYMBOL(snd_pcm_debug_name);
122#endif
123
124#define XRUN_DEBUG_BASIC	(1<<0)
125#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
126#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
127
128#ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130#define xrun_debug(substream, mask) \
131			((substream)->pstr->xrun_debug & (mask))
132#else
133#define xrun_debug(substream, mask)	0
134#endif
135
136#define dump_stack_on_xrun(substream) do {			\
137		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
138			dump_stack();				\
139	} while (0)
140
141/* call with stream lock held */
142void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143{
144	struct snd_pcm_runtime *runtime = substream->runtime;
145
146	trace_xrun(substream);
147	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
148		struct timespec64 tstamp;
149
150		snd_pcm_gettime(runtime, &tstamp);
151		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
152		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
153	}
154	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
155	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
156		char name[16];
157		snd_pcm_debug_name(substream, name, sizeof(name));
158		pcm_warn(substream->pcm, "XRUN: %s\n", name);
159		dump_stack_on_xrun(substream);
160	}
161}
162
163#ifdef CONFIG_SND_PCM_XRUN_DEBUG
164#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
165	do {								\
166		trace_hw_ptr_error(substream, reason);	\
167		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
168			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
169					   (in_interrupt) ? 'Q' : 'P', ##args);	\
170			dump_stack_on_xrun(substream);			\
171		}							\
172	} while (0)
173
174#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
175
176#define hw_ptr_error(substream, fmt, args...) do { } while (0)
177
178#endif
179
180int snd_pcm_update_state(struct snd_pcm_substream *substream,
181			 struct snd_pcm_runtime *runtime)
182{
183	snd_pcm_uframes_t avail;
184
185	avail = snd_pcm_avail(substream);
186	if (avail > runtime->avail_max)
187		runtime->avail_max = avail;
188	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
189		if (avail >= runtime->buffer_size) {
190			snd_pcm_drain_done(substream);
191			return -EPIPE;
192		}
193	} else {
194		if (avail >= runtime->stop_threshold) {
195			__snd_pcm_xrun(substream);
196			return -EPIPE;
197		}
198	}
199	if (runtime->twake) {
200		if (avail >= runtime->twake)
201			wake_up(&runtime->tsleep);
202	} else if (avail >= runtime->control->avail_min)
203		wake_up(&runtime->sleep);
204	return 0;
205}
206
207static void update_audio_tstamp(struct snd_pcm_substream *substream,
208				struct timespec64 *curr_tstamp,
209				struct timespec64 *audio_tstamp)
210{
211	struct snd_pcm_runtime *runtime = substream->runtime;
212	u64 audio_frames, audio_nsecs;
213	struct timespec64 driver_tstamp;
214
215	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
216		return;
217
218	if (!(substream->ops->get_time_info) ||
219		(runtime->audio_tstamp_report.actual_type ==
220			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
221
222		/*
223		 * provide audio timestamp derived from pointer position
224		 * add delay only if requested
225		 */
226
227		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
228
229		if (runtime->audio_tstamp_config.report_delay) {
230			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
231				audio_frames -=  runtime->delay;
232			else
233				audio_frames +=  runtime->delay;
234		}
235		audio_nsecs = div_u64(audio_frames * 1000000000LL,
236				runtime->rate);
237		*audio_tstamp = ns_to_timespec64(audio_nsecs);
238	}
239
240	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
241	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
242		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
243		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
244		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
245		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
246	}
247
248
249	/*
250	 * re-take a driver timestamp to let apps detect if the reference tstamp
251	 * read by low-level hardware was provided with a delay
252	 */
253	snd_pcm_gettime(substream->runtime, &driver_tstamp);
254	runtime->driver_tstamp = driver_tstamp;
255}
256
257static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
258				  unsigned int in_interrupt)
259{
260	struct snd_pcm_runtime *runtime = substream->runtime;
261	snd_pcm_uframes_t pos;
262	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
263	snd_pcm_sframes_t hdelta, delta;
264	unsigned long jdelta;
265	unsigned long curr_jiffies;
266	struct timespec64 curr_tstamp;
267	struct timespec64 audio_tstamp;
268	int crossed_boundary = 0;
269
270	old_hw_ptr = runtime->status->hw_ptr;
271
272	/*
273	 * group pointer, time and jiffies reads to allow for more
274	 * accurate correlations/corrections.
275	 * The values are stored at the end of this routine after
276	 * corrections for hw_ptr position
277	 */
278	pos = substream->ops->pointer(substream);
279	curr_jiffies = jiffies;
280	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
281		if ((substream->ops->get_time_info) &&
282			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
283			substream->ops->get_time_info(substream, &curr_tstamp,
284						&audio_tstamp,
285						&runtime->audio_tstamp_config,
286						&runtime->audio_tstamp_report);
287
288			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
289			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
290				snd_pcm_gettime(runtime, &curr_tstamp);
291		} else
292			snd_pcm_gettime(runtime, &curr_tstamp);
293	}
294
295	if (pos == SNDRV_PCM_POS_XRUN) {
296		__snd_pcm_xrun(substream);
297		return -EPIPE;
298	}
299	if (pos >= runtime->buffer_size) {
300		if (printk_ratelimit()) {
301			char name[16];
302			snd_pcm_debug_name(substream, name, sizeof(name));
303			pcm_err(substream->pcm,
304				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
305				name, pos, runtime->buffer_size,
306				runtime->period_size);
307		}
308		pos = 0;
309	}
310	pos -= pos % runtime->min_align;
311	trace_hwptr(substream, pos, in_interrupt);
312	hw_base = runtime->hw_ptr_base;
313	new_hw_ptr = hw_base + pos;
314	if (in_interrupt) {
315		/* we know that one period was processed */
316		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
317		delta = runtime->hw_ptr_interrupt + runtime->period_size;
318		if (delta > new_hw_ptr) {
319			/* check for double acknowledged interrupts */
320			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
321			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
322				hw_base += runtime->buffer_size;
323				if (hw_base >= runtime->boundary) {
324					hw_base = 0;
325					crossed_boundary++;
326				}
327				new_hw_ptr = hw_base + pos;
328				goto __delta;
329			}
330		}
331	}
332	/* new_hw_ptr might be lower than old_hw_ptr in case when */
333	/* pointer crosses the end of the ring buffer */
334	if (new_hw_ptr < old_hw_ptr) {
335		hw_base += runtime->buffer_size;
336		if (hw_base >= runtime->boundary) {
337			hw_base = 0;
338			crossed_boundary++;
339		}
340		new_hw_ptr = hw_base + pos;
341	}
342      __delta:
343	delta = new_hw_ptr - old_hw_ptr;
344	if (delta < 0)
345		delta += runtime->boundary;
346
347	if (runtime->no_period_wakeup) {
348		snd_pcm_sframes_t xrun_threshold;
349		/*
350		 * Without regular period interrupts, we have to check
351		 * the elapsed time to detect xruns.
352		 */
353		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
354		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
355			goto no_delta_check;
356		hdelta = jdelta - delta * HZ / runtime->rate;
357		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
358		while (hdelta > xrun_threshold) {
359			delta += runtime->buffer_size;
360			hw_base += runtime->buffer_size;
361			if (hw_base >= runtime->boundary) {
362				hw_base = 0;
363				crossed_boundary++;
364			}
365			new_hw_ptr = hw_base + pos;
366			hdelta -= runtime->hw_ptr_buffer_jiffies;
367		}
368		goto no_delta_check;
369	}
370
371	/* something must be really wrong */
372	if (delta >= runtime->buffer_size + runtime->period_size) {
373		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
374			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
375			     substream->stream, (long)pos,
376			     (long)new_hw_ptr, (long)old_hw_ptr);
377		return 0;
378	}
379
380	/* Do jiffies check only in xrun_debug mode */
381	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
382		goto no_jiffies_check;
383
384	/* Skip the jiffies check for hardwares with BATCH flag.
385	 * Such hardware usually just increases the position at each IRQ,
386	 * thus it can't give any strange position.
387	 */
388	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
389		goto no_jiffies_check;
390	hdelta = delta;
391	if (hdelta < runtime->delay)
392		goto no_jiffies_check;
393	hdelta -= runtime->delay;
394	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
395	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
396		delta = jdelta /
397			(((runtime->period_size * HZ) / runtime->rate)
398								+ HZ/100);
399		/* move new_hw_ptr according jiffies not pos variable */
400		new_hw_ptr = old_hw_ptr;
401		hw_base = delta;
402		/* use loop to avoid checks for delta overflows */
403		/* the delta value is small or zero in most cases */
404		while (delta > 0) {
405			new_hw_ptr += runtime->period_size;
406			if (new_hw_ptr >= runtime->boundary) {
407				new_hw_ptr -= runtime->boundary;
408				crossed_boundary--;
409			}
410			delta--;
411		}
412		/* align hw_base to buffer_size */
413		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
414			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
415			     (long)pos, (long)hdelta,
416			     (long)runtime->period_size, jdelta,
417			     ((hdelta * HZ) / runtime->rate), hw_base,
418			     (unsigned long)old_hw_ptr,
419			     (unsigned long)new_hw_ptr);
420		/* reset values to proper state */
421		delta = 0;
422		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
423	}
424 no_jiffies_check:
425	if (delta > runtime->period_size + runtime->period_size / 2) {
426		hw_ptr_error(substream, in_interrupt,
427			     "Lost interrupts?",
428			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
429			     substream->stream, (long)delta,
430			     (long)new_hw_ptr,
431			     (long)old_hw_ptr);
432	}
433
434 no_delta_check:
435	if (runtime->status->hw_ptr == new_hw_ptr) {
436		runtime->hw_ptr_jiffies = curr_jiffies;
437		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
438		return 0;
439	}
440
441	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
442	    runtime->silence_size > 0)
443		snd_pcm_playback_silence(substream, new_hw_ptr);
444
445	if (in_interrupt) {
446		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
447		if (delta < 0)
448			delta += runtime->boundary;
449		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
450		runtime->hw_ptr_interrupt += delta;
451		if (runtime->hw_ptr_interrupt >= runtime->boundary)
452			runtime->hw_ptr_interrupt -= runtime->boundary;
453	}
454	runtime->hw_ptr_base = hw_base;
455	runtime->status->hw_ptr = new_hw_ptr;
456	runtime->hw_ptr_jiffies = curr_jiffies;
457	if (crossed_boundary) {
458		snd_BUG_ON(crossed_boundary != 1);
459		runtime->hw_ptr_wrap += runtime->boundary;
460	}
461
462	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
463
464	return snd_pcm_update_state(substream, runtime);
465}
466
467/* CAUTION: call it with irq disabled */
468int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
469{
470	return snd_pcm_update_hw_ptr0(substream, 0);
471}
472
473/**
474 * snd_pcm_set_ops - set the PCM operators
475 * @pcm: the pcm instance
476 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
477 * @ops: the operator table
478 *
479 * Sets the given PCM operators to the pcm instance.
480 */
481void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
482		     const struct snd_pcm_ops *ops)
483{
484	struct snd_pcm_str *stream = &pcm->streams[direction];
485	struct snd_pcm_substream *substream;
486
487	for (substream = stream->substream; substream != NULL; substream = substream->next)
488		substream->ops = ops;
489}
490EXPORT_SYMBOL(snd_pcm_set_ops);
491
492/**
493 * snd_pcm_set_sync - set the PCM sync id
494 * @substream: the pcm substream
495 *
496 * Sets the PCM sync identifier for the card.
497 */
498void snd_pcm_set_sync(struct snd_pcm_substream *substream)
499{
500	struct snd_pcm_runtime *runtime = substream->runtime;
501
502	runtime->sync.id32[0] = substream->pcm->card->number;
503	runtime->sync.id32[1] = -1;
504	runtime->sync.id32[2] = -1;
505	runtime->sync.id32[3] = -1;
506}
507EXPORT_SYMBOL(snd_pcm_set_sync);
508
509/*
510 *  Standard ioctl routine
511 */
512
513static inline unsigned int div32(unsigned int a, unsigned int b,
514				 unsigned int *r)
515{
516	if (b == 0) {
517		*r = 0;
518		return UINT_MAX;
519	}
520	*r = a % b;
521	return a / b;
522}
523
524static inline unsigned int div_down(unsigned int a, unsigned int b)
525{
526	if (b == 0)
527		return UINT_MAX;
528	return a / b;
529}
530
531static inline unsigned int div_up(unsigned int a, unsigned int b)
532{
533	unsigned int r;
534	unsigned int q;
535	if (b == 0)
536		return UINT_MAX;
537	q = div32(a, b, &r);
538	if (r)
539		++q;
540	return q;
541}
542
543static inline unsigned int mul(unsigned int a, unsigned int b)
544{
545	if (a == 0)
546		return 0;
547	if (div_down(UINT_MAX, a) < b)
548		return UINT_MAX;
549	return a * b;
550}
551
552static inline unsigned int muldiv32(unsigned int a, unsigned int b,
553				    unsigned int c, unsigned int *r)
554{
555	u_int64_t n = (u_int64_t) a * b;
556	if (c == 0) {
557		*r = 0;
558		return UINT_MAX;
559	}
560	n = div_u64_rem(n, c, r);
561	if (n >= UINT_MAX) {
562		*r = 0;
563		return UINT_MAX;
564	}
565	return n;
566}
567
568/**
569 * snd_interval_refine - refine the interval value of configurator
570 * @i: the interval value to refine
571 * @v: the interval value to refer to
572 *
573 * Refines the interval value with the reference value.
574 * The interval is changed to the range satisfying both intervals.
575 * The interval status (min, max, integer, etc.) are evaluated.
576 *
577 * Return: Positive if the value is changed, zero if it's not changed, or a
578 * negative error code.
579 */
580int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
581{
582	int changed = 0;
583	if (snd_BUG_ON(snd_interval_empty(i)))
584		return -EINVAL;
585	if (i->min < v->min) {
586		i->min = v->min;
587		i->openmin = v->openmin;
588		changed = 1;
589	} else if (i->min == v->min && !i->openmin && v->openmin) {
590		i->openmin = 1;
591		changed = 1;
592	}
593	if (i->max > v->max) {
594		i->max = v->max;
595		i->openmax = v->openmax;
596		changed = 1;
597	} else if (i->max == v->max && !i->openmax && v->openmax) {
598		i->openmax = 1;
599		changed = 1;
600	}
601	if (!i->integer && v->integer) {
602		i->integer = 1;
603		changed = 1;
604	}
605	if (i->integer) {
606		if (i->openmin) {
607			i->min++;
608			i->openmin = 0;
609		}
610		if (i->openmax) {
611			i->max--;
612			i->openmax = 0;
613		}
614	} else if (!i->openmin && !i->openmax && i->min == i->max)
615		i->integer = 1;
616	if (snd_interval_checkempty(i)) {
617		snd_interval_none(i);
618		return -EINVAL;
619	}
620	return changed;
621}
622EXPORT_SYMBOL(snd_interval_refine);
623
624static int snd_interval_refine_first(struct snd_interval *i)
625{
626	const unsigned int last_max = i->max;
627
628	if (snd_BUG_ON(snd_interval_empty(i)))
629		return -EINVAL;
630	if (snd_interval_single(i))
631		return 0;
632	i->max = i->min;
633	if (i->openmin)
634		i->max++;
635	/* only exclude max value if also excluded before refine */
636	i->openmax = (i->openmax && i->max >= last_max);
637	return 1;
638}
639
640static int snd_interval_refine_last(struct snd_interval *i)
641{
642	const unsigned int last_min = i->min;
643
644	if (snd_BUG_ON(snd_interval_empty(i)))
645		return -EINVAL;
646	if (snd_interval_single(i))
647		return 0;
648	i->min = i->max;
649	if (i->openmax)
650		i->min--;
651	/* only exclude min value if also excluded before refine */
652	i->openmin = (i->openmin && i->min <= last_min);
653	return 1;
654}
655
656void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
657{
658	if (a->empty || b->empty) {
659		snd_interval_none(c);
660		return;
661	}
662	c->empty = 0;
663	c->min = mul(a->min, b->min);
664	c->openmin = (a->openmin || b->openmin);
665	c->max = mul(a->max,  b->max);
666	c->openmax = (a->openmax || b->openmax);
667	c->integer = (a->integer && b->integer);
668}
669
670/**
671 * snd_interval_div - refine the interval value with division
672 * @a: dividend
673 * @b: divisor
674 * @c: quotient
675 *
676 * c = a / b
677 *
678 * Returns non-zero if the value is changed, zero if not changed.
679 */
680void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
681{
682	unsigned int r;
683	if (a->empty || b->empty) {
684		snd_interval_none(c);
685		return;
686	}
687	c->empty = 0;
688	c->min = div32(a->min, b->max, &r);
689	c->openmin = (r || a->openmin || b->openmax);
690	if (b->min > 0) {
691		c->max = div32(a->max, b->min, &r);
692		if (r) {
693			c->max++;
694			c->openmax = 1;
695		} else
696			c->openmax = (a->openmax || b->openmin);
697	} else {
698		c->max = UINT_MAX;
699		c->openmax = 0;
700	}
701	c->integer = 0;
702}
703
704/**
705 * snd_interval_muldivk - refine the interval value
706 * @a: dividend 1
707 * @b: dividend 2
708 * @k: divisor (as integer)
709 * @c: result
710  *
711 * c = a * b / k
712 *
713 * Returns non-zero if the value is changed, zero if not changed.
714 */
715void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
716		      unsigned int k, struct snd_interval *c)
717{
718	unsigned int r;
719	if (a->empty || b->empty) {
720		snd_interval_none(c);
721		return;
722	}
723	c->empty = 0;
724	c->min = muldiv32(a->min, b->min, k, &r);
725	c->openmin = (r || a->openmin || b->openmin);
726	c->max = muldiv32(a->max, b->max, k, &r);
727	if (r) {
728		c->max++;
729		c->openmax = 1;
730	} else
731		c->openmax = (a->openmax || b->openmax);
732	c->integer = 0;
733}
734
735/**
736 * snd_interval_mulkdiv - refine the interval value
737 * @a: dividend 1
738 * @k: dividend 2 (as integer)
739 * @b: divisor
740 * @c: result
741 *
742 * c = a * k / b
743 *
744 * Returns non-zero if the value is changed, zero if not changed.
745 */
746void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
747		      const struct snd_interval *b, struct snd_interval *c)
748{
749	unsigned int r;
750	if (a->empty || b->empty) {
751		snd_interval_none(c);
752		return;
753	}
754	c->empty = 0;
755	c->min = muldiv32(a->min, k, b->max, &r);
756	c->openmin = (r || a->openmin || b->openmax);
757	if (b->min > 0) {
758		c->max = muldiv32(a->max, k, b->min, &r);
759		if (r) {
760			c->max++;
761			c->openmax = 1;
762		} else
763			c->openmax = (a->openmax || b->openmin);
764	} else {
765		c->max = UINT_MAX;
766		c->openmax = 0;
767	}
768	c->integer = 0;
769}
770
771/* ---- */
772
773
774/**
775 * snd_interval_ratnum - refine the interval value
776 * @i: interval to refine
777 * @rats_count: number of ratnum_t
778 * @rats: ratnum_t array
779 * @nump: pointer to store the resultant numerator
780 * @denp: pointer to store the resultant denominator
781 *
782 * Return: Positive if the value is changed, zero if it's not changed, or a
783 * negative error code.
784 */
785int snd_interval_ratnum(struct snd_interval *i,
786			unsigned int rats_count, const struct snd_ratnum *rats,
787			unsigned int *nump, unsigned int *denp)
788{
789	unsigned int best_num, best_den;
790	int best_diff;
791	unsigned int k;
792	struct snd_interval t;
793	int err;
794	unsigned int result_num, result_den;
795	int result_diff;
796
797	best_num = best_den = best_diff = 0;
798	for (k = 0; k < rats_count; ++k) {
799		unsigned int num = rats[k].num;
800		unsigned int den;
801		unsigned int q = i->min;
802		int diff;
803		if (q == 0)
804			q = 1;
805		den = div_up(num, q);
806		if (den < rats[k].den_min)
807			continue;
808		if (den > rats[k].den_max)
809			den = rats[k].den_max;
810		else {
811			unsigned int r;
812			r = (den - rats[k].den_min) % rats[k].den_step;
813			if (r != 0)
814				den -= r;
815		}
816		diff = num - q * den;
817		if (diff < 0)
818			diff = -diff;
819		if (best_num == 0 ||
820		    diff * best_den < best_diff * den) {
821			best_diff = diff;
822			best_den = den;
823			best_num = num;
824		}
825	}
826	if (best_den == 0) {
827		i->empty = 1;
828		return -EINVAL;
829	}
830	t.min = div_down(best_num, best_den);
831	t.openmin = !!(best_num % best_den);
832
833	result_num = best_num;
834	result_diff = best_diff;
835	result_den = best_den;
836	best_num = best_den = best_diff = 0;
837	for (k = 0; k < rats_count; ++k) {
838		unsigned int num = rats[k].num;
839		unsigned int den;
840		unsigned int q = i->max;
841		int diff;
842		if (q == 0) {
843			i->empty = 1;
844			return -EINVAL;
845		}
846		den = div_down(num, q);
847		if (den > rats[k].den_max)
848			continue;
849		if (den < rats[k].den_min)
850			den = rats[k].den_min;
851		else {
852			unsigned int r;
853			r = (den - rats[k].den_min) % rats[k].den_step;
854			if (r != 0)
855				den += rats[k].den_step - r;
856		}
857		diff = q * den - num;
858		if (diff < 0)
859			diff = -diff;
860		if (best_num == 0 ||
861		    diff * best_den < best_diff * den) {
862			best_diff = diff;
863			best_den = den;
864			best_num = num;
865		}
866	}
867	if (best_den == 0) {
868		i->empty = 1;
869		return -EINVAL;
870	}
871	t.max = div_up(best_num, best_den);
872	t.openmax = !!(best_num % best_den);
873	t.integer = 0;
874	err = snd_interval_refine(i, &t);
875	if (err < 0)
876		return err;
877
878	if (snd_interval_single(i)) {
879		if (best_diff * result_den < result_diff * best_den) {
880			result_num = best_num;
881			result_den = best_den;
882		}
883		if (nump)
884			*nump = result_num;
885		if (denp)
886			*denp = result_den;
887	}
888	return err;
889}
890EXPORT_SYMBOL(snd_interval_ratnum);
891
892/**
893 * snd_interval_ratden - refine the interval value
894 * @i: interval to refine
895 * @rats_count: number of struct ratden
896 * @rats: struct ratden array
897 * @nump: pointer to store the resultant numerator
898 * @denp: pointer to store the resultant denominator
899 *
900 * Return: Positive if the value is changed, zero if it's not changed, or a
901 * negative error code.
902 */
903static int snd_interval_ratden(struct snd_interval *i,
904			       unsigned int rats_count,
905			       const struct snd_ratden *rats,
906			       unsigned int *nump, unsigned int *denp)
907{
908	unsigned int best_num, best_diff, best_den;
909	unsigned int k;
910	struct snd_interval t;
911	int err;
912
913	best_num = best_den = best_diff = 0;
914	for (k = 0; k < rats_count; ++k) {
915		unsigned int num;
916		unsigned int den = rats[k].den;
917		unsigned int q = i->min;
918		int diff;
919		num = mul(q, den);
920		if (num > rats[k].num_max)
921			continue;
922		if (num < rats[k].num_min)
923			num = rats[k].num_max;
924		else {
925			unsigned int r;
926			r = (num - rats[k].num_min) % rats[k].num_step;
927			if (r != 0)
928				num += rats[k].num_step - r;
929		}
930		diff = num - q * den;
931		if (best_num == 0 ||
932		    diff * best_den < best_diff * den) {
933			best_diff = diff;
934			best_den = den;
935			best_num = num;
936		}
937	}
938	if (best_den == 0) {
939		i->empty = 1;
940		return -EINVAL;
941	}
942	t.min = div_down(best_num, best_den);
943	t.openmin = !!(best_num % best_den);
944
945	best_num = best_den = best_diff = 0;
946	for (k = 0; k < rats_count; ++k) {
947		unsigned int num;
948		unsigned int den = rats[k].den;
949		unsigned int q = i->max;
950		int diff;
951		num = mul(q, den);
952		if (num < rats[k].num_min)
953			continue;
954		if (num > rats[k].num_max)
955			num = rats[k].num_max;
956		else {
957			unsigned int r;
958			r = (num - rats[k].num_min) % rats[k].num_step;
959			if (r != 0)
960				num -= r;
961		}
962		diff = q * den - num;
963		if (best_num == 0 ||
964		    diff * best_den < best_diff * den) {
965			best_diff = diff;
966			best_den = den;
967			best_num = num;
968		}
969	}
970	if (best_den == 0) {
971		i->empty = 1;
972		return -EINVAL;
973	}
974	t.max = div_up(best_num, best_den);
975	t.openmax = !!(best_num % best_den);
976	t.integer = 0;
977	err = snd_interval_refine(i, &t);
978	if (err < 0)
979		return err;
980
981	if (snd_interval_single(i)) {
982		if (nump)
983			*nump = best_num;
984		if (denp)
985			*denp = best_den;
986	}
987	return err;
988}
989
990/**
991 * snd_interval_list - refine the interval value from the list
992 * @i: the interval value to refine
993 * @count: the number of elements in the list
994 * @list: the value list
995 * @mask: the bit-mask to evaluate
996 *
997 * Refines the interval value from the list.
998 * When mask is non-zero, only the elements corresponding to bit 1 are
999 * evaluated.
1000 *
1001 * Return: Positive if the value is changed, zero if it's not changed, or a
1002 * negative error code.
1003 */
1004int snd_interval_list(struct snd_interval *i, unsigned int count,
1005		      const unsigned int *list, unsigned int mask)
1006{
1007        unsigned int k;
1008	struct snd_interval list_range;
1009
1010	if (!count) {
1011		i->empty = 1;
1012		return -EINVAL;
1013	}
1014	snd_interval_any(&list_range);
1015	list_range.min = UINT_MAX;
1016	list_range.max = 0;
1017        for (k = 0; k < count; k++) {
1018		if (mask && !(mask & (1 << k)))
1019			continue;
1020		if (!snd_interval_test(i, list[k]))
1021			continue;
1022		list_range.min = min(list_range.min, list[k]);
1023		list_range.max = max(list_range.max, list[k]);
1024        }
1025	return snd_interval_refine(i, &list_range);
1026}
1027EXPORT_SYMBOL(snd_interval_list);
1028
1029/**
1030 * snd_interval_ranges - refine the interval value from the list of ranges
1031 * @i: the interval value to refine
1032 * @count: the number of elements in the list of ranges
1033 * @ranges: the ranges list
1034 * @mask: the bit-mask to evaluate
1035 *
1036 * Refines the interval value from the list of ranges.
1037 * When mask is non-zero, only the elements corresponding to bit 1 are
1038 * evaluated.
1039 *
1040 * Return: Positive if the value is changed, zero if it's not changed, or a
1041 * negative error code.
1042 */
1043int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1044			const struct snd_interval *ranges, unsigned int mask)
1045{
1046	unsigned int k;
1047	struct snd_interval range_union;
1048	struct snd_interval range;
1049
1050	if (!count) {
1051		snd_interval_none(i);
1052		return -EINVAL;
1053	}
1054	snd_interval_any(&range_union);
1055	range_union.min = UINT_MAX;
1056	range_union.max = 0;
1057	for (k = 0; k < count; k++) {
1058		if (mask && !(mask & (1 << k)))
1059			continue;
1060		snd_interval_copy(&range, &ranges[k]);
1061		if (snd_interval_refine(&range, i) < 0)
1062			continue;
1063		if (snd_interval_empty(&range))
1064			continue;
1065
1066		if (range.min < range_union.min) {
1067			range_union.min = range.min;
1068			range_union.openmin = 1;
1069		}
1070		if (range.min == range_union.min && !range.openmin)
1071			range_union.openmin = 0;
1072		if (range.max > range_union.max) {
1073			range_union.max = range.max;
1074			range_union.openmax = 1;
1075		}
1076		if (range.max == range_union.max && !range.openmax)
1077			range_union.openmax = 0;
1078	}
1079	return snd_interval_refine(i, &range_union);
1080}
1081EXPORT_SYMBOL(snd_interval_ranges);
1082
1083static int snd_interval_step(struct snd_interval *i, unsigned int step)
1084{
1085	unsigned int n;
1086	int changed = 0;
1087	n = i->min % step;
1088	if (n != 0 || i->openmin) {
1089		i->min += step - n;
1090		i->openmin = 0;
1091		changed = 1;
1092	}
1093	n = i->max % step;
1094	if (n != 0 || i->openmax) {
1095		i->max -= n;
1096		i->openmax = 0;
1097		changed = 1;
1098	}
1099	if (snd_interval_checkempty(i)) {
1100		i->empty = 1;
1101		return -EINVAL;
1102	}
1103	return changed;
1104}
1105
1106/* Info constraints helpers */
1107
1108/**
1109 * snd_pcm_hw_rule_add - add the hw-constraint rule
1110 * @runtime: the pcm runtime instance
1111 * @cond: condition bits
1112 * @var: the variable to evaluate
1113 * @func: the evaluation function
1114 * @private: the private data pointer passed to function
1115 * @dep: the dependent variables
1116 *
1117 * Return: Zero if successful, or a negative error code on failure.
1118 */
1119int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1120			int var,
1121			snd_pcm_hw_rule_func_t func, void *private,
1122			int dep, ...)
1123{
1124	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125	struct snd_pcm_hw_rule *c;
1126	unsigned int k;
1127	va_list args;
1128	va_start(args, dep);
1129	if (constrs->rules_num >= constrs->rules_all) {
1130		struct snd_pcm_hw_rule *new;
1131		unsigned int new_rules = constrs->rules_all + 16;
1132		new = krealloc(constrs->rules, new_rules * sizeof(*c),
1133			       GFP_KERNEL);
1134		if (!new) {
1135			va_end(args);
1136			return -ENOMEM;
1137		}
1138		constrs->rules = new;
1139		constrs->rules_all = new_rules;
1140	}
1141	c = &constrs->rules[constrs->rules_num];
1142	c->cond = cond;
1143	c->func = func;
1144	c->var = var;
1145	c->private = private;
1146	k = 0;
1147	while (1) {
1148		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1149			va_end(args);
1150			return -EINVAL;
1151		}
1152		c->deps[k++] = dep;
1153		if (dep < 0)
1154			break;
1155		dep = va_arg(args, int);
1156	}
1157	constrs->rules_num++;
1158	va_end(args);
1159	return 0;
1160}
1161EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1162
1163/**
1164 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1165 * @runtime: PCM runtime instance
1166 * @var: hw_params variable to apply the mask
1167 * @mask: the bitmap mask
1168 *
1169 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1170 *
1171 * Return: Zero if successful, or a negative error code on failure.
1172 */
1173int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1174			       u_int32_t mask)
1175{
1176	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1177	struct snd_mask *maskp = constrs_mask(constrs, var);
1178	*maskp->bits &= mask;
1179	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1180	if (*maskp->bits == 0)
1181		return -EINVAL;
1182	return 0;
1183}
1184
1185/**
1186 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1187 * @runtime: PCM runtime instance
1188 * @var: hw_params variable to apply the mask
1189 * @mask: the 64bit bitmap mask
1190 *
1191 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1192 *
1193 * Return: Zero if successful, or a negative error code on failure.
1194 */
1195int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1196				 u_int64_t mask)
1197{
1198	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1199	struct snd_mask *maskp = constrs_mask(constrs, var);
1200	maskp->bits[0] &= (u_int32_t)mask;
1201	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1202	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1203	if (! maskp->bits[0] && ! maskp->bits[1])
1204		return -EINVAL;
1205	return 0;
1206}
1207EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1208
1209/**
1210 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the integer constraint
1213 *
1214 * Apply the constraint of integer to an interval parameter.
1215 *
1216 * Return: Positive if the value is changed, zero if it's not changed, or a
1217 * negative error code.
1218 */
1219int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1220{
1221	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1222	return snd_interval_setinteger(constrs_interval(constrs, var));
1223}
1224EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1225
1226/**
1227 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1228 * @runtime: PCM runtime instance
1229 * @var: hw_params variable to apply the range
1230 * @min: the minimal value
1231 * @max: the maximal value
1232 *
1233 * Apply the min/max range constraint to an interval parameter.
1234 *
1235 * Return: Positive if the value is changed, zero if it's not changed, or a
1236 * negative error code.
1237 */
1238int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1239				 unsigned int min, unsigned int max)
1240{
1241	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1242	struct snd_interval t;
1243	t.min = min;
1244	t.max = max;
1245	t.openmin = t.openmax = 0;
1246	t.integer = 0;
1247	return snd_interval_refine(constrs_interval(constrs, var), &t);
1248}
1249EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1250
1251static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1252				struct snd_pcm_hw_rule *rule)
1253{
1254	struct snd_pcm_hw_constraint_list *list = rule->private;
1255	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1256}
1257
1258
1259/**
1260 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1261 * @runtime: PCM runtime instance
1262 * @cond: condition bits
1263 * @var: hw_params variable to apply the list constraint
1264 * @l: list
1265 *
1266 * Apply the list of constraints to an interval parameter.
1267 *
1268 * Return: Zero if successful, or a negative error code on failure.
1269 */
1270int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1271			       unsigned int cond,
1272			       snd_pcm_hw_param_t var,
1273			       const struct snd_pcm_hw_constraint_list *l)
1274{
1275	return snd_pcm_hw_rule_add(runtime, cond, var,
1276				   snd_pcm_hw_rule_list, (void *)l,
1277				   var, -1);
1278}
1279EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1280
1281static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1282				  struct snd_pcm_hw_rule *rule)
1283{
1284	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1285	return snd_interval_ranges(hw_param_interval(params, rule->var),
1286				   r->count, r->ranges, r->mask);
1287}
1288
1289
1290/**
1291 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1292 * @runtime: PCM runtime instance
1293 * @cond: condition bits
1294 * @var: hw_params variable to apply the list of range constraints
1295 * @r: ranges
1296 *
1297 * Apply the list of range constraints to an interval parameter.
1298 *
1299 * Return: Zero if successful, or a negative error code on failure.
1300 */
1301int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1302				 unsigned int cond,
1303				 snd_pcm_hw_param_t var,
1304				 const struct snd_pcm_hw_constraint_ranges *r)
1305{
1306	return snd_pcm_hw_rule_add(runtime, cond, var,
1307				   snd_pcm_hw_rule_ranges, (void *)r,
1308				   var, -1);
1309}
1310EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1311
1312static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1313				   struct snd_pcm_hw_rule *rule)
1314{
1315	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1316	unsigned int num = 0, den = 0;
1317	int err;
1318	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1319				  r->nrats, r->rats, &num, &den);
1320	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1321		params->rate_num = num;
1322		params->rate_den = den;
1323	}
1324	return err;
1325}
1326
1327/**
1328 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1329 * @runtime: PCM runtime instance
1330 * @cond: condition bits
1331 * @var: hw_params variable to apply the ratnums constraint
1332 * @r: struct snd_ratnums constriants
1333 *
1334 * Return: Zero if successful, or a negative error code on failure.
1335 */
1336int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1337				  unsigned int cond,
1338				  snd_pcm_hw_param_t var,
1339				  const struct snd_pcm_hw_constraint_ratnums *r)
1340{
1341	return snd_pcm_hw_rule_add(runtime, cond, var,
1342				   snd_pcm_hw_rule_ratnums, (void *)r,
1343				   var, -1);
1344}
1345EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1346
1347static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1348				   struct snd_pcm_hw_rule *rule)
1349{
1350	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1351	unsigned int num = 0, den = 0;
1352	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1353				  r->nrats, r->rats, &num, &den);
1354	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1355		params->rate_num = num;
1356		params->rate_den = den;
1357	}
1358	return err;
1359}
1360
1361/**
1362 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1363 * @runtime: PCM runtime instance
1364 * @cond: condition bits
1365 * @var: hw_params variable to apply the ratdens constraint
1366 * @r: struct snd_ratdens constriants
1367 *
1368 * Return: Zero if successful, or a negative error code on failure.
1369 */
1370int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1371				  unsigned int cond,
1372				  snd_pcm_hw_param_t var,
1373				  const struct snd_pcm_hw_constraint_ratdens *r)
1374{
1375	return snd_pcm_hw_rule_add(runtime, cond, var,
1376				   snd_pcm_hw_rule_ratdens, (void *)r,
1377				   var, -1);
1378}
1379EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1380
1381static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1382				  struct snd_pcm_hw_rule *rule)
1383{
1384	unsigned int l = (unsigned long) rule->private;
1385	int width = l & 0xffff;
1386	unsigned int msbits = l >> 16;
1387	const struct snd_interval *i =
1388		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1389
1390	if (!snd_interval_single(i))
1391		return 0;
1392
1393	if ((snd_interval_value(i) == width) ||
1394	    (width == 0 && snd_interval_value(i) > msbits))
1395		params->msbits = min_not_zero(params->msbits, msbits);
1396
1397	return 0;
1398}
1399
1400/**
1401 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @width: sample bits width
1405 * @msbits: msbits width
1406 *
1407 * This constraint will set the number of most significant bits (msbits) if a
1408 * sample format with the specified width has been select. If width is set to 0
1409 * the msbits will be set for any sample format with a width larger than the
1410 * specified msbits.
1411 *
1412 * Return: Zero if successful, or a negative error code on failure.
1413 */
1414int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1415				 unsigned int cond,
1416				 unsigned int width,
1417				 unsigned int msbits)
1418{
1419	unsigned long l = (msbits << 16) | width;
1420	return snd_pcm_hw_rule_add(runtime, cond, -1,
1421				    snd_pcm_hw_rule_msbits,
1422				    (void*) l,
1423				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1424}
1425EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1426
1427static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428				struct snd_pcm_hw_rule *rule)
1429{
1430	unsigned long step = (unsigned long) rule->private;
1431	return snd_interval_step(hw_param_interval(params, rule->var), step);
1432}
1433
1434/**
1435 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436 * @runtime: PCM runtime instance
1437 * @cond: condition bits
1438 * @var: hw_params variable to apply the step constraint
1439 * @step: step size
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1444			       unsigned int cond,
1445			       snd_pcm_hw_param_t var,
1446			       unsigned long step)
1447{
1448	return snd_pcm_hw_rule_add(runtime, cond, var,
1449				   snd_pcm_hw_rule_step, (void *) step,
1450				   var, -1);
1451}
1452EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455{
1456	static const unsigned int pow2_sizes[] = {
1457		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461	};
1462	return snd_interval_list(hw_param_interval(params, rule->var),
1463				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464}
1465
1466/**
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475			       unsigned int cond,
1476			       snd_pcm_hw_param_t var)
1477{
1478	return snd_pcm_hw_rule_add(runtime, cond, var,
1479				   snd_pcm_hw_rule_pow2, NULL,
1480				   var, -1);
1481}
1482EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1483
1484static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1485					   struct snd_pcm_hw_rule *rule)
1486{
1487	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1488	struct snd_interval *rate;
1489
1490	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1491	return snd_interval_list(rate, 1, &base_rate, 0);
1492}
1493
1494/**
1495 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1496 * @runtime: PCM runtime instance
1497 * @base_rate: the rate at which the hardware does not resample
1498 *
1499 * Return: Zero if successful, or a negative error code on failure.
1500 */
1501int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1502			       unsigned int base_rate)
1503{
1504	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1505				   SNDRV_PCM_HW_PARAM_RATE,
1506				   snd_pcm_hw_rule_noresample_func,
1507				   (void *)(uintptr_t)base_rate,
1508				   SNDRV_PCM_HW_PARAM_RATE, -1);
1509}
1510EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1511
1512static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1513				  snd_pcm_hw_param_t var)
1514{
1515	if (hw_is_mask(var)) {
1516		snd_mask_any(hw_param_mask(params, var));
1517		params->cmask |= 1 << var;
1518		params->rmask |= 1 << var;
1519		return;
1520	}
1521	if (hw_is_interval(var)) {
1522		snd_interval_any(hw_param_interval(params, var));
1523		params->cmask |= 1 << var;
1524		params->rmask |= 1 << var;
1525		return;
1526	}
1527	snd_BUG();
1528}
1529
1530void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1531{
1532	unsigned int k;
1533	memset(params, 0, sizeof(*params));
1534	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1535		_snd_pcm_hw_param_any(params, k);
1536	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1537		_snd_pcm_hw_param_any(params, k);
1538	params->info = ~0U;
1539}
1540EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1541
1542/**
1543 * snd_pcm_hw_param_value - return @params field @var value
1544 * @params: the hw_params instance
1545 * @var: parameter to retrieve
1546 * @dir: pointer to the direction (-1,0,1) or %NULL
1547 *
1548 * Return: The value for field @var if it's fixed in configuration space
1549 * defined by @params. -%EINVAL otherwise.
1550 */
1551int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1552			   snd_pcm_hw_param_t var, int *dir)
1553{
1554	if (hw_is_mask(var)) {
1555		const struct snd_mask *mask = hw_param_mask_c(params, var);
1556		if (!snd_mask_single(mask))
1557			return -EINVAL;
1558		if (dir)
1559			*dir = 0;
1560		return snd_mask_value(mask);
1561	}
1562	if (hw_is_interval(var)) {
1563		const struct snd_interval *i = hw_param_interval_c(params, var);
1564		if (!snd_interval_single(i))
1565			return -EINVAL;
1566		if (dir)
1567			*dir = i->openmin;
1568		return snd_interval_value(i);
1569	}
1570	return -EINVAL;
1571}
1572EXPORT_SYMBOL(snd_pcm_hw_param_value);
1573
1574void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1575				snd_pcm_hw_param_t var)
1576{
1577	if (hw_is_mask(var)) {
1578		snd_mask_none(hw_param_mask(params, var));
1579		params->cmask |= 1 << var;
1580		params->rmask |= 1 << var;
1581	} else if (hw_is_interval(var)) {
1582		snd_interval_none(hw_param_interval(params, var));
1583		params->cmask |= 1 << var;
1584		params->rmask |= 1 << var;
1585	} else {
1586		snd_BUG();
1587	}
1588}
1589EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1590
1591static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1592				   snd_pcm_hw_param_t var)
1593{
1594	int changed;
1595	if (hw_is_mask(var))
1596		changed = snd_mask_refine_first(hw_param_mask(params, var));
1597	else if (hw_is_interval(var))
1598		changed = snd_interval_refine_first(hw_param_interval(params, var));
1599	else
1600		return -EINVAL;
1601	if (changed > 0) {
1602		params->cmask |= 1 << var;
1603		params->rmask |= 1 << var;
1604	}
1605	return changed;
1606}
1607
1608
1609/**
1610 * snd_pcm_hw_param_first - refine config space and return minimum value
1611 * @pcm: PCM instance
1612 * @params: the hw_params instance
1613 * @var: parameter to retrieve
1614 * @dir: pointer to the direction (-1,0,1) or %NULL
1615 *
1616 * Inside configuration space defined by @params remove from @var all
1617 * values > minimum. Reduce configuration space accordingly.
1618 *
1619 * Return: The minimum, or a negative error code on failure.
1620 */
1621int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1622			   struct snd_pcm_hw_params *params,
1623			   snd_pcm_hw_param_t var, int *dir)
1624{
1625	int changed = _snd_pcm_hw_param_first(params, var);
1626	if (changed < 0)
1627		return changed;
1628	if (params->rmask) {
1629		int err = snd_pcm_hw_refine(pcm, params);
1630		if (err < 0)
1631			return err;
1632	}
1633	return snd_pcm_hw_param_value(params, var, dir);
1634}
1635EXPORT_SYMBOL(snd_pcm_hw_param_first);
1636
1637static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1638				  snd_pcm_hw_param_t var)
1639{
1640	int changed;
1641	if (hw_is_mask(var))
1642		changed = snd_mask_refine_last(hw_param_mask(params, var));
1643	else if (hw_is_interval(var))
1644		changed = snd_interval_refine_last(hw_param_interval(params, var));
1645	else
1646		return -EINVAL;
1647	if (changed > 0) {
1648		params->cmask |= 1 << var;
1649		params->rmask |= 1 << var;
1650	}
1651	return changed;
1652}
1653
1654
1655/**
1656 * snd_pcm_hw_param_last - refine config space and return maximum value
1657 * @pcm: PCM instance
1658 * @params: the hw_params instance
1659 * @var: parameter to retrieve
1660 * @dir: pointer to the direction (-1,0,1) or %NULL
1661 *
1662 * Inside configuration space defined by @params remove from @var all
1663 * values < maximum. Reduce configuration space accordingly.
1664 *
1665 * Return: The maximum, or a negative error code on failure.
1666 */
1667int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1668			  struct snd_pcm_hw_params *params,
1669			  snd_pcm_hw_param_t var, int *dir)
1670{
1671	int changed = _snd_pcm_hw_param_last(params, var);
1672	if (changed < 0)
1673		return changed;
1674	if (params->rmask) {
1675		int err = snd_pcm_hw_refine(pcm, params);
1676		if (err < 0)
1677			return err;
1678	}
1679	return snd_pcm_hw_param_value(params, var, dir);
1680}
1681EXPORT_SYMBOL(snd_pcm_hw_param_last);
1682
1683static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1684				   void *arg)
1685{
1686	struct snd_pcm_runtime *runtime = substream->runtime;
1687	unsigned long flags;
1688	snd_pcm_stream_lock_irqsave(substream, flags);
1689	if (snd_pcm_running(substream) &&
1690	    snd_pcm_update_hw_ptr(substream) >= 0)
1691		runtime->status->hw_ptr %= runtime->buffer_size;
1692	else {
1693		runtime->status->hw_ptr = 0;
1694		runtime->hw_ptr_wrap = 0;
1695	}
1696	snd_pcm_stream_unlock_irqrestore(substream, flags);
1697	return 0;
1698}
1699
1700static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1701					  void *arg)
1702{
1703	struct snd_pcm_channel_info *info = arg;
1704	struct snd_pcm_runtime *runtime = substream->runtime;
1705	int width;
1706	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1707		info->offset = -1;
1708		return 0;
1709	}
1710	width = snd_pcm_format_physical_width(runtime->format);
1711	if (width < 0)
1712		return width;
1713	info->offset = 0;
1714	switch (runtime->access) {
1715	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1716	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1717		info->first = info->channel * width;
1718		info->step = runtime->channels * width;
1719		break;
1720	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1721	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1722	{
1723		size_t size = runtime->dma_bytes / runtime->channels;
1724		info->first = info->channel * size * 8;
1725		info->step = width;
1726		break;
1727	}
1728	default:
1729		snd_BUG();
1730		break;
1731	}
1732	return 0;
1733}
1734
1735static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1736				       void *arg)
1737{
1738	struct snd_pcm_hw_params *params = arg;
1739	snd_pcm_format_t format;
1740	int channels;
1741	ssize_t frame_size;
1742
1743	params->fifo_size = substream->runtime->hw.fifo_size;
1744	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1745		format = params_format(params);
1746		channels = params_channels(params);
1747		frame_size = snd_pcm_format_size(format, channels);
1748		if (frame_size > 0)
1749			params->fifo_size /= frame_size;
1750	}
1751	return 0;
1752}
1753
1754/**
1755 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1756 * @substream: the pcm substream instance
1757 * @cmd: ioctl command
1758 * @arg: ioctl argument
1759 *
1760 * Processes the generic ioctl commands for PCM.
1761 * Can be passed as the ioctl callback for PCM ops.
1762 *
1763 * Return: Zero if successful, or a negative error code on failure.
1764 */
1765int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1766		      unsigned int cmd, void *arg)
1767{
1768	switch (cmd) {
1769	case SNDRV_PCM_IOCTL1_RESET:
1770		return snd_pcm_lib_ioctl_reset(substream, arg);
1771	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1772		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1773	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1774		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1775	}
1776	return -ENXIO;
1777}
1778EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1779
1780/**
1781 * snd_pcm_period_elapsed - update the pcm status for the next period
1782 * @substream: the pcm substream instance
1783 *
1784 * This function is called from the interrupt handler when the
1785 * PCM has processed the period size.  It will update the current
1786 * pointer, wake up sleepers, etc.
1787 *
1788 * Even if more than one periods have elapsed since the last call, you
1789 * have to call this only once.
1790 */
1791void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1792{
1793	struct snd_pcm_runtime *runtime;
1794	unsigned long flags;
1795
1796	if (snd_BUG_ON(!substream))
1797		return;
1798
1799	snd_pcm_stream_lock_irqsave(substream, flags);
1800	if (PCM_RUNTIME_CHECK(substream))
1801		goto _unlock;
1802	runtime = substream->runtime;
1803
1804	if (!snd_pcm_running(substream) ||
1805	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1806		goto _end;
1807
1808#ifdef CONFIG_SND_PCM_TIMER
1809	if (substream->timer_running)
1810		snd_timer_interrupt(substream->timer, 1);
1811#endif
1812 _end:
1813	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1814 _unlock:
1815	snd_pcm_stream_unlock_irqrestore(substream, flags);
1816}
1817EXPORT_SYMBOL(snd_pcm_period_elapsed);
1818
1819/*
1820 * Wait until avail_min data becomes available
1821 * Returns a negative error code if any error occurs during operation.
1822 * The available space is stored on availp.  When err = 0 and avail = 0
1823 * on the capture stream, it indicates the stream is in DRAINING state.
1824 */
1825static int wait_for_avail(struct snd_pcm_substream *substream,
1826			      snd_pcm_uframes_t *availp)
1827{
1828	struct snd_pcm_runtime *runtime = substream->runtime;
1829	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1830	wait_queue_entry_t wait;
1831	int err = 0;
1832	snd_pcm_uframes_t avail = 0;
1833	long wait_time, tout;
1834
1835	init_waitqueue_entry(&wait, current);
1836	set_current_state(TASK_INTERRUPTIBLE);
1837	add_wait_queue(&runtime->tsleep, &wait);
1838
1839	if (runtime->no_period_wakeup)
1840		wait_time = MAX_SCHEDULE_TIMEOUT;
1841	else {
1842		/* use wait time from substream if available */
1843		if (substream->wait_time) {
1844			wait_time = substream->wait_time;
1845		} else {
1846			wait_time = 10;
1847
1848			if (runtime->rate) {
1849				long t = runtime->period_size * 2 /
1850					 runtime->rate;
1851				wait_time = max(t, wait_time);
1852			}
1853			wait_time = msecs_to_jiffies(wait_time * 1000);
1854		}
1855	}
1856
1857	for (;;) {
1858		if (signal_pending(current)) {
1859			err = -ERESTARTSYS;
1860			break;
1861		}
1862
1863		/*
1864		 * We need to check if space became available already
1865		 * (and thus the wakeup happened already) first to close
1866		 * the race of space already having become available.
1867		 * This check must happen after been added to the waitqueue
1868		 * and having current state be INTERRUPTIBLE.
1869		 */
1870		avail = snd_pcm_avail(substream);
1871		if (avail >= runtime->twake)
1872			break;
1873		snd_pcm_stream_unlock_irq(substream);
1874
1875		tout = schedule_timeout(wait_time);
1876
1877		snd_pcm_stream_lock_irq(substream);
1878		set_current_state(TASK_INTERRUPTIBLE);
1879		switch (runtime->status->state) {
1880		case SNDRV_PCM_STATE_SUSPENDED:
1881			err = -ESTRPIPE;
1882			goto _endloop;
1883		case SNDRV_PCM_STATE_XRUN:
1884			err = -EPIPE;
1885			goto _endloop;
1886		case SNDRV_PCM_STATE_DRAINING:
1887			if (is_playback)
1888				err = -EPIPE;
1889			else
1890				avail = 0; /* indicate draining */
1891			goto _endloop;
1892		case SNDRV_PCM_STATE_OPEN:
1893		case SNDRV_PCM_STATE_SETUP:
1894		case SNDRV_PCM_STATE_DISCONNECTED:
1895			err = -EBADFD;
1896			goto _endloop;
1897		case SNDRV_PCM_STATE_PAUSED:
1898			continue;
1899		}
1900		if (!tout) {
1901			pcm_dbg(substream->pcm,
1902				"%s write error (DMA or IRQ trouble?)\n",
1903				is_playback ? "playback" : "capture");
1904			err = -EIO;
1905			break;
1906		}
1907	}
1908 _endloop:
1909	set_current_state(TASK_RUNNING);
1910	remove_wait_queue(&runtime->tsleep, &wait);
1911	*availp = avail;
1912	return err;
1913}
1914
1915typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1916			      int channel, unsigned long hwoff,
1917			      void *buf, unsigned long bytes);
1918
1919typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1920			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1921
1922/* calculate the target DMA-buffer position to be written/read */
1923static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1924			   int channel, unsigned long hwoff)
1925{
1926	return runtime->dma_area + hwoff +
1927		channel * (runtime->dma_bytes / runtime->channels);
1928}
1929
1930/* default copy_user ops for write; used for both interleaved and non- modes */
1931static int default_write_copy(struct snd_pcm_substream *substream,
1932			      int channel, unsigned long hwoff,
1933			      void *buf, unsigned long bytes)
1934{
1935	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1936			   (void __user *)buf, bytes))
1937		return -EFAULT;
1938	return 0;
1939}
1940
1941/* default copy_kernel ops for write */
1942static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1943				     int channel, unsigned long hwoff,
1944				     void *buf, unsigned long bytes)
1945{
1946	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1947	return 0;
1948}
1949
1950/* fill silence instead of copy data; called as a transfer helper
1951 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1952 * a NULL buffer is passed
1953 */
1954static int fill_silence(struct snd_pcm_substream *substream, int channel,
1955			unsigned long hwoff, void *buf, unsigned long bytes)
1956{
1957	struct snd_pcm_runtime *runtime = substream->runtime;
1958
1959	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1960		return 0;
1961	if (substream->ops->fill_silence)
1962		return substream->ops->fill_silence(substream, channel,
1963						    hwoff, bytes);
1964
1965	snd_pcm_format_set_silence(runtime->format,
1966				   get_dma_ptr(runtime, channel, hwoff),
1967				   bytes_to_samples(runtime, bytes));
1968	return 0;
1969}
1970
1971/* default copy_user ops for read; used for both interleaved and non- modes */
1972static int default_read_copy(struct snd_pcm_substream *substream,
1973			     int channel, unsigned long hwoff,
1974			     void *buf, unsigned long bytes)
1975{
1976	if (copy_to_user((void __user *)buf,
1977			 get_dma_ptr(substream->runtime, channel, hwoff),
1978			 bytes))
1979		return -EFAULT;
1980	return 0;
1981}
1982
1983/* default copy_kernel ops for read */
1984static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1985				    int channel, unsigned long hwoff,
1986				    void *buf, unsigned long bytes)
1987{
1988	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1989	return 0;
1990}
1991
1992/* call transfer function with the converted pointers and sizes;
1993 * for interleaved mode, it's one shot for all samples
1994 */
1995static int interleaved_copy(struct snd_pcm_substream *substream,
1996			    snd_pcm_uframes_t hwoff, void *data,
1997			    snd_pcm_uframes_t off,
1998			    snd_pcm_uframes_t frames,
1999			    pcm_transfer_f transfer)
2000{
2001	struct snd_pcm_runtime *runtime = substream->runtime;
2002
2003	/* convert to bytes */
2004	hwoff = frames_to_bytes(runtime, hwoff);
2005	off = frames_to_bytes(runtime, off);
2006	frames = frames_to_bytes(runtime, frames);
2007	return transfer(substream, 0, hwoff, data + off, frames);
2008}
2009
2010/* call transfer function with the converted pointers and sizes for each
2011 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2012 */
2013static int noninterleaved_copy(struct snd_pcm_substream *substream,
2014			       snd_pcm_uframes_t hwoff, void *data,
2015			       snd_pcm_uframes_t off,
2016			       snd_pcm_uframes_t frames,
2017			       pcm_transfer_f transfer)
2018{
2019	struct snd_pcm_runtime *runtime = substream->runtime;
2020	int channels = runtime->channels;
2021	void **bufs = data;
2022	int c, err;
2023
2024	/* convert to bytes; note that it's not frames_to_bytes() here.
2025	 * in non-interleaved mode, we copy for each channel, thus
2026	 * each copy is n_samples bytes x channels = whole frames.
2027	 */
2028	off = samples_to_bytes(runtime, off);
2029	frames = samples_to_bytes(runtime, frames);
2030	hwoff = samples_to_bytes(runtime, hwoff);
2031	for (c = 0; c < channels; ++c, ++bufs) {
2032		if (!data || !*bufs)
2033			err = fill_silence(substream, c, hwoff, NULL, frames);
2034		else
2035			err = transfer(substream, c, hwoff, *bufs + off,
2036				       frames);
2037		if (err < 0)
2038			return err;
2039	}
2040	return 0;
2041}
2042
2043/* fill silence on the given buffer position;
2044 * called from snd_pcm_playback_silence()
2045 */
2046static int fill_silence_frames(struct snd_pcm_substream *substream,
2047			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2048{
2049	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2050	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2051		return interleaved_copy(substream, off, NULL, 0, frames,
2052					fill_silence);
2053	else
2054		return noninterleaved_copy(substream, off, NULL, 0, frames,
2055					   fill_silence);
2056}
2057
2058/* sanity-check for read/write methods */
2059static int pcm_sanity_check(struct snd_pcm_substream *substream)
2060{
2061	struct snd_pcm_runtime *runtime;
2062	if (PCM_RUNTIME_CHECK(substream))
2063		return -ENXIO;
2064	runtime = substream->runtime;
2065	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2066		return -EINVAL;
2067	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2068		return -EBADFD;
2069	return 0;
2070}
2071
2072static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2073{
2074	switch (runtime->status->state) {
2075	case SNDRV_PCM_STATE_PREPARED:
2076	case SNDRV_PCM_STATE_RUNNING:
2077	case SNDRV_PCM_STATE_PAUSED:
2078		return 0;
2079	case SNDRV_PCM_STATE_XRUN:
2080		return -EPIPE;
2081	case SNDRV_PCM_STATE_SUSPENDED:
2082		return -ESTRPIPE;
2083	default:
2084		return -EBADFD;
2085	}
2086}
2087
2088/* update to the given appl_ptr and call ack callback if needed;
2089 * when an error is returned, take back to the original value
2090 */
2091int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2092			   snd_pcm_uframes_t appl_ptr)
2093{
2094	struct snd_pcm_runtime *runtime = substream->runtime;
2095	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2096	int ret;
2097
2098	if (old_appl_ptr == appl_ptr)
2099		return 0;
2100
2101	runtime->control->appl_ptr = appl_ptr;
2102	if (substream->ops->ack) {
2103		ret = substream->ops->ack(substream);
2104		if (ret < 0) {
2105			runtime->control->appl_ptr = old_appl_ptr;
2106			return ret;
2107		}
2108	}
2109
2110	trace_applptr(substream, old_appl_ptr, appl_ptr);
2111
2112	return 0;
2113}
2114
2115/* the common loop for read/write data */
2116snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2117				     void *data, bool interleaved,
2118				     snd_pcm_uframes_t size, bool in_kernel)
2119{
2120	struct snd_pcm_runtime *runtime = substream->runtime;
2121	snd_pcm_uframes_t xfer = 0;
2122	snd_pcm_uframes_t offset = 0;
2123	snd_pcm_uframes_t avail;
2124	pcm_copy_f writer;
2125	pcm_transfer_f transfer;
2126	bool nonblock;
2127	bool is_playback;
2128	int err;
2129
2130	err = pcm_sanity_check(substream);
2131	if (err < 0)
2132		return err;
2133
2134	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2135	if (interleaved) {
2136		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2137		    runtime->channels > 1)
2138			return -EINVAL;
2139		writer = interleaved_copy;
2140	} else {
2141		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2142			return -EINVAL;
2143		writer = noninterleaved_copy;
2144	}
2145
2146	if (!data) {
2147		if (is_playback)
2148			transfer = fill_silence;
2149		else
2150			return -EINVAL;
2151	} else if (in_kernel) {
2152		if (substream->ops->copy_kernel)
2153			transfer = substream->ops->copy_kernel;
2154		else
2155			transfer = is_playback ?
2156				default_write_copy_kernel : default_read_copy_kernel;
2157	} else {
2158		if (substream->ops->copy_user)
2159			transfer = (pcm_transfer_f)substream->ops->copy_user;
2160		else
2161			transfer = is_playback ?
2162				default_write_copy : default_read_copy;
2163	}
2164
2165	if (size == 0)
2166		return 0;
2167
2168	nonblock = !!(substream->f_flags & O_NONBLOCK);
2169
2170	snd_pcm_stream_lock_irq(substream);
2171	err = pcm_accessible_state(runtime);
2172	if (err < 0)
2173		goto _end_unlock;
2174
2175	runtime->twake = runtime->control->avail_min ? : 1;
2176	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2177		snd_pcm_update_hw_ptr(substream);
2178
2179	/*
2180	 * If size < start_threshold, wait indefinitely. Another
2181	 * thread may start capture
2182	 */
2183	if (!is_playback &&
2184	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2185	    size >= runtime->start_threshold) {
2186		err = snd_pcm_start(substream);
2187		if (err < 0)
2188			goto _end_unlock;
2189	}
2190
2191	avail = snd_pcm_avail(substream);
2192
2193	while (size > 0) {
2194		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2195		snd_pcm_uframes_t cont;
2196		if (!avail) {
2197			if (!is_playback &&
2198			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2199				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2200				goto _end_unlock;
2201			}
2202			if (nonblock) {
2203				err = -EAGAIN;
2204				goto _end_unlock;
2205			}
2206			runtime->twake = min_t(snd_pcm_uframes_t, size,
2207					runtime->control->avail_min ? : 1);
2208			err = wait_for_avail(substream, &avail);
2209			if (err < 0)
2210				goto _end_unlock;
2211			if (!avail)
2212				continue; /* draining */
2213		}
2214		frames = size > avail ? avail : size;
2215		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2216		appl_ofs = appl_ptr % runtime->buffer_size;
2217		cont = runtime->buffer_size - appl_ofs;
2218		if (frames > cont)
2219			frames = cont;
2220		if (snd_BUG_ON(!frames)) {
2221			err = -EINVAL;
2222			goto _end_unlock;
2223		}
2224		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2225			err = -EBUSY;
2226			goto _end_unlock;
2227		}
2228		snd_pcm_stream_unlock_irq(substream);
2229		err = writer(substream, appl_ofs, data, offset, frames,
2230			     transfer);
2231		snd_pcm_stream_lock_irq(substream);
2232		atomic_dec(&runtime->buffer_accessing);
2233		if (err < 0)
2234			goto _end_unlock;
2235		err = pcm_accessible_state(runtime);
2236		if (err < 0)
2237			goto _end_unlock;
2238		appl_ptr += frames;
2239		if (appl_ptr >= runtime->boundary)
2240			appl_ptr -= runtime->boundary;
2241		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2242		if (err < 0)
2243			goto _end_unlock;
2244
2245		offset += frames;
2246		size -= frames;
2247		xfer += frames;
2248		avail -= frames;
2249		if (is_playback &&
2250		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2251		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2252			err = snd_pcm_start(substream);
2253			if (err < 0)
2254				goto _end_unlock;
2255		}
2256	}
2257 _end_unlock:
2258	runtime->twake = 0;
2259	if (xfer > 0 && err >= 0)
2260		snd_pcm_update_state(substream, runtime);
2261	snd_pcm_stream_unlock_irq(substream);
2262	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2263}
2264EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2265
2266/*
2267 * standard channel mapping helpers
2268 */
2269
2270/* default channel maps for multi-channel playbacks, up to 8 channels */
2271const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2272	{ .channels = 1,
2273	  .map = { SNDRV_CHMAP_MONO } },
2274	{ .channels = 2,
2275	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2276	{ .channels = 4,
2277	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2278		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2279	{ .channels = 6,
2280	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2281		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2282		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2283	{ .channels = 8,
2284	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2285		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2286		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2287		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2288	{ }
2289};
2290EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2291
2292/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2293const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2294	{ .channels = 1,
2295	  .map = { SNDRV_CHMAP_MONO } },
2296	{ .channels = 2,
2297	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2298	{ .channels = 4,
2299	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2300		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2301	{ .channels = 6,
2302	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2303		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2304		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2305	{ .channels = 8,
2306	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2307		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2308		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2309		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2310	{ }
2311};
2312EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2313
2314static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2315{
2316	if (ch > info->max_channels)
2317		return false;
2318	return !info->channel_mask || (info->channel_mask & (1U << ch));
2319}
2320
2321static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2322			      struct snd_ctl_elem_info *uinfo)
2323{
2324	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325
2326	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2327	uinfo->count = info->max_channels;
2328	uinfo->value.integer.min = 0;
2329	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2330	return 0;
2331}
2332
2333/* get callback for channel map ctl element
2334 * stores the channel position firstly matching with the current channels
2335 */
2336static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2337			     struct snd_ctl_elem_value *ucontrol)
2338{
2339	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2340	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2341	struct snd_pcm_substream *substream;
2342	const struct snd_pcm_chmap_elem *map;
2343
2344	if (!info->chmap)
2345		return -EINVAL;
2346	substream = snd_pcm_chmap_substream(info, idx);
2347	if (!substream)
2348		return -ENODEV;
2349	memset(ucontrol->value.integer.value, 0,
2350	       sizeof(long) * info->max_channels);
2351	if (!substream->runtime)
2352		return 0; /* no channels set */
2353	for (map = info->chmap; map->channels; map++) {
2354		int i;
2355		if (map->channels == substream->runtime->channels &&
2356		    valid_chmap_channels(info, map->channels)) {
2357			for (i = 0; i < map->channels; i++)
2358				ucontrol->value.integer.value[i] = map->map[i];
2359			return 0;
2360		}
2361	}
2362	return -EINVAL;
2363}
2364
2365/* tlv callback for channel map ctl element
2366 * expands the pre-defined channel maps in a form of TLV
2367 */
2368static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2369			     unsigned int size, unsigned int __user *tlv)
2370{
2371	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2372	const struct snd_pcm_chmap_elem *map;
2373	unsigned int __user *dst;
2374	int c, count = 0;
2375
2376	if (!info->chmap)
2377		return -EINVAL;
2378	if (size < 8)
2379		return -ENOMEM;
2380	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2381		return -EFAULT;
2382	size -= 8;
2383	dst = tlv + 2;
2384	for (map = info->chmap; map->channels; map++) {
2385		int chs_bytes = map->channels * 4;
2386		if (!valid_chmap_channels(info, map->channels))
2387			continue;
2388		if (size < 8)
2389			return -ENOMEM;
2390		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2391		    put_user(chs_bytes, dst + 1))
2392			return -EFAULT;
2393		dst += 2;
2394		size -= 8;
2395		count += 8;
2396		if (size < chs_bytes)
2397			return -ENOMEM;
2398		size -= chs_bytes;
2399		count += chs_bytes;
2400		for (c = 0; c < map->channels; c++) {
2401			if (put_user(map->map[c], dst))
2402				return -EFAULT;
2403			dst++;
2404		}
2405	}
2406	if (put_user(count, tlv + 1))
2407		return -EFAULT;
2408	return 0;
2409}
2410
2411static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2412{
2413	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2414	info->pcm->streams[info->stream].chmap_kctl = NULL;
2415	kfree(info);
2416}
2417
2418/**
2419 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2420 * @pcm: the assigned PCM instance
2421 * @stream: stream direction
2422 * @chmap: channel map elements (for query)
2423 * @max_channels: the max number of channels for the stream
2424 * @private_value: the value passed to each kcontrol's private_value field
2425 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2426 *
2427 * Create channel-mapping control elements assigned to the given PCM stream(s).
2428 * Return: Zero if successful, or a negative error value.
2429 */
2430int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2431			   const struct snd_pcm_chmap_elem *chmap,
2432			   int max_channels,
2433			   unsigned long private_value,
2434			   struct snd_pcm_chmap **info_ret)
2435{
2436	struct snd_pcm_chmap *info;
2437	struct snd_kcontrol_new knew = {
2438		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2439		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2440			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2441			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2442		.info = pcm_chmap_ctl_info,
2443		.get = pcm_chmap_ctl_get,
2444		.tlv.c = pcm_chmap_ctl_tlv,
2445	};
2446	int err;
2447
2448	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2449		return -EBUSY;
2450	info = kzalloc(sizeof(*info), GFP_KERNEL);
2451	if (!info)
2452		return -ENOMEM;
2453	info->pcm = pcm;
2454	info->stream = stream;
2455	info->chmap = chmap;
2456	info->max_channels = max_channels;
2457	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2458		knew.name = "Playback Channel Map";
2459	else
2460		knew.name = "Capture Channel Map";
2461	knew.device = pcm->device;
2462	knew.count = pcm->streams[stream].substream_count;
2463	knew.private_value = private_value;
2464	info->kctl = snd_ctl_new1(&knew, info);
2465	if (!info->kctl) {
2466		kfree(info);
2467		return -ENOMEM;
2468	}
2469	info->kctl->private_free = pcm_chmap_ctl_private_free;
2470	err = snd_ctl_add(pcm->card, info->kctl);
2471	if (err < 0)
2472		return err;
2473	pcm->streams[stream].chmap_kctl = info->kctl;
2474	if (info_ret)
2475		*info_ret = info;
2476	return 0;
2477}
2478EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2479