1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 *	     James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 *	Support for enhanced MLS infrastructure.
11 *	Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 *	Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 *      Added support for NetLabel
20 *      Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 *  Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 *  Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 *  Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40#include <linux/kernel.h>
41#include <linux/slab.h>
42#include <linux/string.h>
43#include <linux/spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/errno.h>
46#include <linux/in.h>
47#include <linux/sched.h>
48#include <linux/audit.h>
49#include <linux/vmalloc.h>
50#include <net/netlabel.h>
51
52#include "flask.h"
53#include "avc.h"
54#include "avc_ss.h"
55#include "security.h"
56#include "context.h"
57#include "policydb.h"
58#include "sidtab.h"
59#include "services.h"
60#include "conditional.h"
61#include "mls.h"
62#include "objsec.h"
63#include "netlabel.h"
64#include "xfrm.h"
65#include "ebitmap.h"
66#include "audit.h"
67#include "policycap_names.h"
68
69struct convert_context_args {
70	struct selinux_state *state;
71	struct policydb *oldp;
72	struct policydb *newp;
73};
74
75struct selinux_policy_convert_data {
76	struct convert_context_args args;
77	struct sidtab_convert_params sidtab_params;
78};
79
80/* Forward declaration. */
81static int context_struct_to_string(struct policydb *policydb,
82				    struct context *context,
83				    char **scontext,
84				    u32 *scontext_len);
85
86static int sidtab_entry_to_string(struct policydb *policydb,
87				  struct sidtab *sidtab,
88				  struct sidtab_entry *entry,
89				  char **scontext,
90				  u32 *scontext_len);
91
92static void context_struct_compute_av(struct policydb *policydb,
93				      struct context *scontext,
94				      struct context *tcontext,
95				      u16 tclass,
96				      struct av_decision *avd,
97				      struct extended_perms *xperms);
98
99static int selinux_set_mapping(struct policydb *pol,
100			       struct security_class_mapping *map,
101			       struct selinux_map *out_map)
102{
103	u16 i, j;
104	unsigned k;
105	bool print_unknown_handle = false;
106
107	/* Find number of classes in the input mapping */
108	if (!map)
109		return -EINVAL;
110	i = 0;
111	while (map[i].name)
112		i++;
113
114	/* Allocate space for the class records, plus one for class zero */
115	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
116	if (!out_map->mapping)
117		return -ENOMEM;
118
119	/* Store the raw class and permission values */
120	j = 0;
121	while (map[j].name) {
122		struct security_class_mapping *p_in = map + (j++);
123		struct selinux_mapping *p_out = out_map->mapping + j;
124
125		/* An empty class string skips ahead */
126		if (!strcmp(p_in->name, "")) {
127			p_out->num_perms = 0;
128			continue;
129		}
130
131		p_out->value = string_to_security_class(pol, p_in->name);
132		if (!p_out->value) {
133			pr_info("SELinux:  Class %s not defined in policy.\n",
134			       p_in->name);
135			if (pol->reject_unknown)
136				goto err;
137			p_out->num_perms = 0;
138			print_unknown_handle = true;
139			continue;
140		}
141
142		k = 0;
143		while (p_in->perms[k]) {
144			/* An empty permission string skips ahead */
145			if (!*p_in->perms[k]) {
146				k++;
147				continue;
148			}
149			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
150							    p_in->perms[k]);
151			if (!p_out->perms[k]) {
152				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
153				       p_in->perms[k], p_in->name);
154				if (pol->reject_unknown)
155					goto err;
156				print_unknown_handle = true;
157			}
158
159			k++;
160		}
161		p_out->num_perms = k;
162	}
163
164	if (print_unknown_handle)
165		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
166		       pol->allow_unknown ? "allowed" : "denied");
167
168	out_map->size = i;
169	return 0;
170err:
171	kfree(out_map->mapping);
172	out_map->mapping = NULL;
173	return -EINVAL;
174}
175
176/*
177 * Get real, policy values from mapped values
178 */
179
180static u16 unmap_class(struct selinux_map *map, u16 tclass)
181{
182	if (tclass < map->size)
183		return map->mapping[tclass].value;
184
185	return tclass;
186}
187
188/*
189 * Get kernel value for class from its policy value
190 */
191static u16 map_class(struct selinux_map *map, u16 pol_value)
192{
193	u16 i;
194
195	for (i = 1; i < map->size; i++) {
196		if (map->mapping[i].value == pol_value)
197			return i;
198	}
199
200	return SECCLASS_NULL;
201}
202
203static void map_decision(struct selinux_map *map,
204			 u16 tclass, struct av_decision *avd,
205			 int allow_unknown)
206{
207	if (tclass < map->size) {
208		struct selinux_mapping *mapping = &map->mapping[tclass];
209		unsigned int i, n = mapping->num_perms;
210		u32 result;
211
212		for (i = 0, result = 0; i < n; i++) {
213			if (avd->allowed & mapping->perms[i])
214				result |= 1<<i;
215			if (allow_unknown && !mapping->perms[i])
216				result |= 1<<i;
217		}
218		avd->allowed = result;
219
220		for (i = 0, result = 0; i < n; i++)
221			if (avd->auditallow & mapping->perms[i])
222				result |= 1<<i;
223		avd->auditallow = result;
224
225		for (i = 0, result = 0; i < n; i++) {
226			if (avd->auditdeny & mapping->perms[i])
227				result |= 1<<i;
228			if (!allow_unknown && !mapping->perms[i])
229				result |= 1<<i;
230		}
231		/*
232		 * In case the kernel has a bug and requests a permission
233		 * between num_perms and the maximum permission number, we
234		 * should audit that denial
235		 */
236		for (; i < (sizeof(u32)*8); i++)
237			result |= 1<<i;
238		avd->auditdeny = result;
239	}
240}
241
242int security_mls_enabled(struct selinux_state *state)
243{
244	int mls_enabled;
245	struct selinux_policy *policy;
246
247	if (!selinux_initialized(state))
248		return 0;
249
250	rcu_read_lock();
251	policy = rcu_dereference(state->policy);
252	mls_enabled = policy->policydb.mls_enabled;
253	rcu_read_unlock();
254	return mls_enabled;
255}
256
257/*
258 * Return the boolean value of a constraint expression
259 * when it is applied to the specified source and target
260 * security contexts.
261 *
262 * xcontext is a special beast...  It is used by the validatetrans rules
263 * only.  For these rules, scontext is the context before the transition,
264 * tcontext is the context after the transition, and xcontext is the context
265 * of the process performing the transition.  All other callers of
266 * constraint_expr_eval should pass in NULL for xcontext.
267 */
268static int constraint_expr_eval(struct policydb *policydb,
269				struct context *scontext,
270				struct context *tcontext,
271				struct context *xcontext,
272				struct constraint_expr *cexpr)
273{
274	u32 val1, val2;
275	struct context *c;
276	struct role_datum *r1, *r2;
277	struct mls_level *l1, *l2;
278	struct constraint_expr *e;
279	int s[CEXPR_MAXDEPTH];
280	int sp = -1;
281
282	for (e = cexpr; e; e = e->next) {
283		switch (e->expr_type) {
284		case CEXPR_NOT:
285			BUG_ON(sp < 0);
286			s[sp] = !s[sp];
287			break;
288		case CEXPR_AND:
289			BUG_ON(sp < 1);
290			sp--;
291			s[sp] &= s[sp + 1];
292			break;
293		case CEXPR_OR:
294			BUG_ON(sp < 1);
295			sp--;
296			s[sp] |= s[sp + 1];
297			break;
298		case CEXPR_ATTR:
299			if (sp == (CEXPR_MAXDEPTH - 1))
300				return 0;
301			switch (e->attr) {
302			case CEXPR_USER:
303				val1 = scontext->user;
304				val2 = tcontext->user;
305				break;
306			case CEXPR_TYPE:
307				val1 = scontext->type;
308				val2 = tcontext->type;
309				break;
310			case CEXPR_ROLE:
311				val1 = scontext->role;
312				val2 = tcontext->role;
313				r1 = policydb->role_val_to_struct[val1 - 1];
314				r2 = policydb->role_val_to_struct[val2 - 1];
315				switch (e->op) {
316				case CEXPR_DOM:
317					s[++sp] = ebitmap_get_bit(&r1->dominates,
318								  val2 - 1);
319					continue;
320				case CEXPR_DOMBY:
321					s[++sp] = ebitmap_get_bit(&r2->dominates,
322								  val1 - 1);
323					continue;
324				case CEXPR_INCOMP:
325					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
326								    val2 - 1) &&
327						   !ebitmap_get_bit(&r2->dominates,
328								    val1 - 1));
329					continue;
330				default:
331					break;
332				}
333				break;
334			case CEXPR_L1L2:
335				l1 = &(scontext->range.level[0]);
336				l2 = &(tcontext->range.level[0]);
337				goto mls_ops;
338			case CEXPR_L1H2:
339				l1 = &(scontext->range.level[0]);
340				l2 = &(tcontext->range.level[1]);
341				goto mls_ops;
342			case CEXPR_H1L2:
343				l1 = &(scontext->range.level[1]);
344				l2 = &(tcontext->range.level[0]);
345				goto mls_ops;
346			case CEXPR_H1H2:
347				l1 = &(scontext->range.level[1]);
348				l2 = &(tcontext->range.level[1]);
349				goto mls_ops;
350			case CEXPR_L1H1:
351				l1 = &(scontext->range.level[0]);
352				l2 = &(scontext->range.level[1]);
353				goto mls_ops;
354			case CEXPR_L2H2:
355				l1 = &(tcontext->range.level[0]);
356				l2 = &(tcontext->range.level[1]);
357				goto mls_ops;
358mls_ops:
359			switch (e->op) {
360			case CEXPR_EQ:
361				s[++sp] = mls_level_eq(l1, l2);
362				continue;
363			case CEXPR_NEQ:
364				s[++sp] = !mls_level_eq(l1, l2);
365				continue;
366			case CEXPR_DOM:
367				s[++sp] = mls_level_dom(l1, l2);
368				continue;
369			case CEXPR_DOMBY:
370				s[++sp] = mls_level_dom(l2, l1);
371				continue;
372			case CEXPR_INCOMP:
373				s[++sp] = mls_level_incomp(l2, l1);
374				continue;
375			default:
376				BUG();
377				return 0;
378			}
379			break;
380			default:
381				BUG();
382				return 0;
383			}
384
385			switch (e->op) {
386			case CEXPR_EQ:
387				s[++sp] = (val1 == val2);
388				break;
389			case CEXPR_NEQ:
390				s[++sp] = (val1 != val2);
391				break;
392			default:
393				BUG();
394				return 0;
395			}
396			break;
397		case CEXPR_NAMES:
398			if (sp == (CEXPR_MAXDEPTH-1))
399				return 0;
400			c = scontext;
401			if (e->attr & CEXPR_TARGET)
402				c = tcontext;
403			else if (e->attr & CEXPR_XTARGET) {
404				c = xcontext;
405				if (!c) {
406					BUG();
407					return 0;
408				}
409			}
410			if (e->attr & CEXPR_USER)
411				val1 = c->user;
412			else if (e->attr & CEXPR_ROLE)
413				val1 = c->role;
414			else if (e->attr & CEXPR_TYPE)
415				val1 = c->type;
416			else {
417				BUG();
418				return 0;
419			}
420
421			switch (e->op) {
422			case CEXPR_EQ:
423				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
424				break;
425			case CEXPR_NEQ:
426				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
427				break;
428			default:
429				BUG();
430				return 0;
431			}
432			break;
433		default:
434			BUG();
435			return 0;
436		}
437	}
438
439	BUG_ON(sp != 0);
440	return s[0];
441}
442
443/*
444 * security_dump_masked_av - dumps masked permissions during
445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
446 */
447static int dump_masked_av_helper(void *k, void *d, void *args)
448{
449	struct perm_datum *pdatum = d;
450	char **permission_names = args;
451
452	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
453
454	permission_names[pdatum->value - 1] = (char *)k;
455
456	return 0;
457}
458
459static void security_dump_masked_av(struct policydb *policydb,
460				    struct context *scontext,
461				    struct context *tcontext,
462				    u16 tclass,
463				    u32 permissions,
464				    const char *reason)
465{
466	struct common_datum *common_dat;
467	struct class_datum *tclass_dat;
468	struct audit_buffer *ab;
469	char *tclass_name;
470	char *scontext_name = NULL;
471	char *tcontext_name = NULL;
472	char *permission_names[32];
473	int index;
474	u32 length;
475	bool need_comma = false;
476
477	if (!permissions)
478		return;
479
480	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
481	tclass_dat = policydb->class_val_to_struct[tclass - 1];
482	common_dat = tclass_dat->comdatum;
483
484	/* init permission_names */
485	if (common_dat &&
486	    hashtab_map(&common_dat->permissions.table,
487			dump_masked_av_helper, permission_names) < 0)
488		goto out;
489
490	if (hashtab_map(&tclass_dat->permissions.table,
491			dump_masked_av_helper, permission_names) < 0)
492		goto out;
493
494	/* get scontext/tcontext in text form */
495	if (context_struct_to_string(policydb, scontext,
496				     &scontext_name, &length) < 0)
497		goto out;
498
499	if (context_struct_to_string(policydb, tcontext,
500				     &tcontext_name, &length) < 0)
501		goto out;
502
503	/* audit a message */
504	ab = audit_log_start(audit_context(),
505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
506	if (!ab)
507		goto out;
508
509	audit_log_format(ab, "op=security_compute_av reason=%s "
510			 "scontext=%s tcontext=%s tclass=%s perms=",
511			 reason, scontext_name, tcontext_name, tclass_name);
512
513	for (index = 0; index < 32; index++) {
514		u32 mask = (1 << index);
515
516		if ((mask & permissions) == 0)
517			continue;
518
519		audit_log_format(ab, "%s%s",
520				 need_comma ? "," : "",
521				 permission_names[index]
522				 ? permission_names[index] : "????");
523		need_comma = true;
524	}
525	audit_log_end(ab);
526out:
527	/* release scontext/tcontext */
528	kfree(tcontext_name);
529	kfree(scontext_name);
530
531	return;
532}
533
534/*
535 * security_boundary_permission - drops violated permissions
536 * on boundary constraint.
537 */
538static void type_attribute_bounds_av(struct policydb *policydb,
539				     struct context *scontext,
540				     struct context *tcontext,
541				     u16 tclass,
542				     struct av_decision *avd)
543{
544	struct context lo_scontext;
545	struct context lo_tcontext, *tcontextp = tcontext;
546	struct av_decision lo_avd;
547	struct type_datum *source;
548	struct type_datum *target;
549	u32 masked = 0;
550
551	source = policydb->type_val_to_struct[scontext->type - 1];
552	BUG_ON(!source);
553
554	if (!source->bounds)
555		return;
556
557	target = policydb->type_val_to_struct[tcontext->type - 1];
558	BUG_ON(!target);
559
560	memset(&lo_avd, 0, sizeof(lo_avd));
561
562	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563	lo_scontext.type = source->bounds;
564
565	if (target->bounds) {
566		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567		lo_tcontext.type = target->bounds;
568		tcontextp = &lo_tcontext;
569	}
570
571	context_struct_compute_av(policydb, &lo_scontext,
572				  tcontextp,
573				  tclass,
574				  &lo_avd,
575				  NULL);
576
577	masked = ~lo_avd.allowed & avd->allowed;
578
579	if (likely(!masked))
580		return;		/* no masked permission */
581
582	/* mask violated permissions */
583	avd->allowed &= ~masked;
584
585	/* audit masked permissions */
586	security_dump_masked_av(policydb, scontext, tcontext,
587				tclass, masked, "bounds");
588}
589
590/*
591 * flag which drivers have permissions
592 * only looking for ioctl based extended permssions
593 */
594void services_compute_xperms_drivers(
595		struct extended_perms *xperms,
596		struct avtab_node *node)
597{
598	unsigned int i;
599
600	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
601		/* if one or more driver has all permissions allowed */
602		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
603			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
604	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
605		/* if allowing permissions within a driver */
606		security_xperm_set(xperms->drivers.p,
607					node->datum.u.xperms->driver);
608	}
609
610	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
611	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
612		xperms->len = 1;
613}
614
615/*
616 * Compute access vectors and extended permissions based on a context
617 * structure pair for the permissions in a particular class.
618 */
619static void context_struct_compute_av(struct policydb *policydb,
620				      struct context *scontext,
621				      struct context *tcontext,
622				      u16 tclass,
623				      struct av_decision *avd,
624				      struct extended_perms *xperms)
625{
626	struct constraint_node *constraint;
627	struct role_allow *ra;
628	struct avtab_key avkey;
629	struct avtab_node *node;
630	struct class_datum *tclass_datum;
631	struct ebitmap *sattr, *tattr;
632	struct ebitmap_node *snode, *tnode;
633	unsigned int i, j;
634
635	avd->allowed = 0;
636	avd->auditallow = 0;
637	avd->auditdeny = 0xffffffff;
638	if (xperms) {
639		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640		xperms->len = 0;
641	}
642
643	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644		if (printk_ratelimit())
645			pr_warn("SELinux:  Invalid class %hu\n", tclass);
646		return;
647	}
648
649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650
651	/*
652	 * If a specific type enforcement rule was defined for
653	 * this permission check, then use it.
654	 */
655	avkey.target_class = tclass;
656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659	ebitmap_for_each_positive_bit(sattr, snode, i) {
660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661			avkey.source_type = i + 1;
662			avkey.target_type = j + 1;
663			for (node = avtab_search_node(&policydb->te_avtab,
664						      &avkey);
665			     node;
666			     node = avtab_search_node_next(node, avkey.specified)) {
667				if (node->key.specified == AVTAB_ALLOWED)
668					avd->allowed |= node->datum.u.data;
669				else if (node->key.specified == AVTAB_AUDITALLOW)
670					avd->auditallow |= node->datum.u.data;
671				else if (node->key.specified == AVTAB_AUDITDENY)
672					avd->auditdeny &= node->datum.u.data;
673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674					services_compute_xperms_drivers(xperms, node);
675			}
676
677			/* Check conditional av table for additional permissions */
678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679					avd, xperms);
680
681		}
682	}
683
684	/*
685	 * Remove any permissions prohibited by a constraint (this includes
686	 * the MLS policy).
687	 */
688	constraint = tclass_datum->constraints;
689	while (constraint) {
690		if ((constraint->permissions & (avd->allowed)) &&
691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692					  constraint->expr)) {
693			avd->allowed &= ~(constraint->permissions);
694		}
695		constraint = constraint->next;
696	}
697
698	/*
699	 * If checking process transition permission and the
700	 * role is changing, then check the (current_role, new_role)
701	 * pair.
702	 */
703	if (tclass == policydb->process_class &&
704	    (avd->allowed & policydb->process_trans_perms) &&
705	    scontext->role != tcontext->role) {
706		for (ra = policydb->role_allow; ra; ra = ra->next) {
707			if (scontext->role == ra->role &&
708			    tcontext->role == ra->new_role)
709				break;
710		}
711		if (!ra)
712			avd->allowed &= ~policydb->process_trans_perms;
713	}
714
715	/*
716	 * If the given source and target types have boundary
717	 * constraint, lazy checks have to mask any violated
718	 * permission and notice it to userspace via audit.
719	 */
720	type_attribute_bounds_av(policydb, scontext, tcontext,
721				 tclass, avd);
722}
723
724static int security_validtrans_handle_fail(struct selinux_state *state,
725					struct selinux_policy *policy,
726					struct sidtab_entry *oentry,
727					struct sidtab_entry *nentry,
728					struct sidtab_entry *tentry,
729					u16 tclass)
730{
731	struct policydb *p = &policy->policydb;
732	struct sidtab *sidtab = policy->sidtab;
733	char *o = NULL, *n = NULL, *t = NULL;
734	u32 olen, nlen, tlen;
735
736	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737		goto out;
738	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739		goto out;
740	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741		goto out;
742	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743		  "op=security_validate_transition seresult=denied"
744		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746out:
747	kfree(o);
748	kfree(n);
749	kfree(t);
750
751	if (!enforcing_enabled(state))
752		return 0;
753	return -EPERM;
754}
755
756static int security_compute_validatetrans(struct selinux_state *state,
757					  u32 oldsid, u32 newsid, u32 tasksid,
758					  u16 orig_tclass, bool user)
759{
760	struct selinux_policy *policy;
761	struct policydb *policydb;
762	struct sidtab *sidtab;
763	struct sidtab_entry *oentry;
764	struct sidtab_entry *nentry;
765	struct sidtab_entry *tentry;
766	struct class_datum *tclass_datum;
767	struct constraint_node *constraint;
768	u16 tclass;
769	int rc = 0;
770
771
772	if (!selinux_initialized(state))
773		return 0;
774
775	rcu_read_lock();
776
777	policy = rcu_dereference(state->policy);
778	policydb = &policy->policydb;
779	sidtab = policy->sidtab;
780
781	if (!user)
782		tclass = unmap_class(&policy->map, orig_tclass);
783	else
784		tclass = orig_tclass;
785
786	if (!tclass || tclass > policydb->p_classes.nprim) {
787		rc = -EINVAL;
788		goto out;
789	}
790	tclass_datum = policydb->class_val_to_struct[tclass - 1];
791
792	oentry = sidtab_search_entry(sidtab, oldsid);
793	if (!oentry) {
794		pr_err("SELinux: %s:  unrecognized SID %d\n",
795			__func__, oldsid);
796		rc = -EINVAL;
797		goto out;
798	}
799
800	nentry = sidtab_search_entry(sidtab, newsid);
801	if (!nentry) {
802		pr_err("SELinux: %s:  unrecognized SID %d\n",
803			__func__, newsid);
804		rc = -EINVAL;
805		goto out;
806	}
807
808	tentry = sidtab_search_entry(sidtab, tasksid);
809	if (!tentry) {
810		pr_err("SELinux: %s:  unrecognized SID %d\n",
811			__func__, tasksid);
812		rc = -EINVAL;
813		goto out;
814	}
815
816	constraint = tclass_datum->validatetrans;
817	while (constraint) {
818		if (!constraint_expr_eval(policydb, &oentry->context,
819					  &nentry->context, &tentry->context,
820					  constraint->expr)) {
821			if (user)
822				rc = -EPERM;
823			else
824				rc = security_validtrans_handle_fail(state,
825								policy,
826								oentry,
827								nentry,
828								tentry,
829								tclass);
830			goto out;
831		}
832		constraint = constraint->next;
833	}
834
835out:
836	rcu_read_unlock();
837	return rc;
838}
839
840int security_validate_transition_user(struct selinux_state *state,
841				      u32 oldsid, u32 newsid, u32 tasksid,
842				      u16 tclass)
843{
844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845					      tclass, true);
846}
847
848int security_validate_transition(struct selinux_state *state,
849				 u32 oldsid, u32 newsid, u32 tasksid,
850				 u16 orig_tclass)
851{
852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853					      orig_tclass, false);
854}
855
856/*
857 * security_bounded_transition - check whether the given
858 * transition is directed to bounded, or not.
859 * It returns 0, if @newsid is bounded by @oldsid.
860 * Otherwise, it returns error code.
861 *
862 * @oldsid : current security identifier
863 * @newsid : destinated security identifier
864 */
865int security_bounded_transition(struct selinux_state *state,
866				u32 old_sid, u32 new_sid)
867{
868	struct selinux_policy *policy;
869	struct policydb *policydb;
870	struct sidtab *sidtab;
871	struct sidtab_entry *old_entry, *new_entry;
872	struct type_datum *type;
873	int index;
874	int rc;
875
876	if (!selinux_initialized(state))
877		return 0;
878
879	rcu_read_lock();
880	policy = rcu_dereference(state->policy);
881	policydb = &policy->policydb;
882	sidtab = policy->sidtab;
883
884	rc = -EINVAL;
885	old_entry = sidtab_search_entry(sidtab, old_sid);
886	if (!old_entry) {
887		pr_err("SELinux: %s: unrecognized SID %u\n",
888		       __func__, old_sid);
889		goto out;
890	}
891
892	rc = -EINVAL;
893	new_entry = sidtab_search_entry(sidtab, new_sid);
894	if (!new_entry) {
895		pr_err("SELinux: %s: unrecognized SID %u\n",
896		       __func__, new_sid);
897		goto out;
898	}
899
900	rc = 0;
901	/* type/domain unchanged */
902	if (old_entry->context.type == new_entry->context.type)
903		goto out;
904
905	index = new_entry->context.type;
906	while (true) {
907		type = policydb->type_val_to_struct[index - 1];
908		BUG_ON(!type);
909
910		/* not bounded anymore */
911		rc = -EPERM;
912		if (!type->bounds)
913			break;
914
915		/* @newsid is bounded by @oldsid */
916		rc = 0;
917		if (type->bounds == old_entry->context.type)
918			break;
919
920		index = type->bounds;
921	}
922
923	if (rc) {
924		char *old_name = NULL;
925		char *new_name = NULL;
926		u32 length;
927
928		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
929					    &old_name, &length) &&
930		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
931					    &new_name, &length)) {
932			audit_log(audit_context(),
933				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
934				  "op=security_bounded_transition "
935				  "seresult=denied "
936				  "oldcontext=%s newcontext=%s",
937				  old_name, new_name);
938		}
939		kfree(new_name);
940		kfree(old_name);
941	}
942out:
943	rcu_read_unlock();
944
945	return rc;
946}
947
948static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
949{
950	avd->allowed = 0;
951	avd->auditallow = 0;
952	avd->auditdeny = 0xffffffff;
953	if (policy)
954		avd->seqno = policy->latest_granting;
955	else
956		avd->seqno = 0;
957	avd->flags = 0;
958}
959
960void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
961					struct avtab_node *node)
962{
963	unsigned int i;
964
965	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
966		if (xpermd->driver != node->datum.u.xperms->driver)
967			return;
968	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
969		if (!security_xperm_test(node->datum.u.xperms->perms.p,
970					xpermd->driver))
971			return;
972	} else {
973		BUG();
974	}
975
976	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
977		xpermd->used |= XPERMS_ALLOWED;
978		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
979			memset(xpermd->allowed->p, 0xff,
980					sizeof(xpermd->allowed->p));
981		}
982		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
983			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
984				xpermd->allowed->p[i] |=
985					node->datum.u.xperms->perms.p[i];
986		}
987	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
988		xpermd->used |= XPERMS_AUDITALLOW;
989		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
990			memset(xpermd->auditallow->p, 0xff,
991					sizeof(xpermd->auditallow->p));
992		}
993		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
994			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
995				xpermd->auditallow->p[i] |=
996					node->datum.u.xperms->perms.p[i];
997		}
998	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
999		xpermd->used |= XPERMS_DONTAUDIT;
1000		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1001			memset(xpermd->dontaudit->p, 0xff,
1002					sizeof(xpermd->dontaudit->p));
1003		}
1004		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1005			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1006				xpermd->dontaudit->p[i] |=
1007					node->datum.u.xperms->perms.p[i];
1008		}
1009	} else {
1010		BUG();
1011	}
1012}
1013
1014void security_compute_xperms_decision(struct selinux_state *state,
1015				      u32 ssid,
1016				      u32 tsid,
1017				      u16 orig_tclass,
1018				      u8 driver,
1019				      struct extended_perms_decision *xpermd)
1020{
1021	struct selinux_policy *policy;
1022	struct policydb *policydb;
1023	struct sidtab *sidtab;
1024	u16 tclass;
1025	struct context *scontext, *tcontext;
1026	struct avtab_key avkey;
1027	struct avtab_node *node;
1028	struct ebitmap *sattr, *tattr;
1029	struct ebitmap_node *snode, *tnode;
1030	unsigned int i, j;
1031
1032	xpermd->driver = driver;
1033	xpermd->used = 0;
1034	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1035	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1036	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1037
1038	rcu_read_lock();
1039	if (!selinux_initialized(state))
1040		goto allow;
1041
1042	policy = rcu_dereference(state->policy);
1043	policydb = &policy->policydb;
1044	sidtab = policy->sidtab;
1045
1046	scontext = sidtab_search(sidtab, ssid);
1047	if (!scontext) {
1048		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049		       __func__, ssid);
1050		goto out;
1051	}
1052
1053	tcontext = sidtab_search(sidtab, tsid);
1054	if (!tcontext) {
1055		pr_err("SELinux: %s:  unrecognized SID %d\n",
1056		       __func__, tsid);
1057		goto out;
1058	}
1059
1060	tclass = unmap_class(&policy->map, orig_tclass);
1061	if (unlikely(orig_tclass && !tclass)) {
1062		if (policydb->allow_unknown)
1063			goto allow;
1064		goto out;
1065	}
1066
1067
1068	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1069		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1070		goto out;
1071	}
1072
1073	avkey.target_class = tclass;
1074	avkey.specified = AVTAB_XPERMS;
1075	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1076	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1077	ebitmap_for_each_positive_bit(sattr, snode, i) {
1078		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1079			avkey.source_type = i + 1;
1080			avkey.target_type = j + 1;
1081			for (node = avtab_search_node(&policydb->te_avtab,
1082						      &avkey);
1083			     node;
1084			     node = avtab_search_node_next(node, avkey.specified))
1085				services_compute_xperms_decision(xpermd, node);
1086
1087			cond_compute_xperms(&policydb->te_cond_avtab,
1088						&avkey, xpermd);
1089		}
1090	}
1091out:
1092	rcu_read_unlock();
1093	return;
1094allow:
1095	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1096	goto out;
1097}
1098
1099/**
1100 * security_compute_av - Compute access vector decisions.
1101 * @ssid: source security identifier
1102 * @tsid: target security identifier
1103 * @tclass: target security class
1104 * @avd: access vector decisions
1105 * @xperms: extended permissions
1106 *
1107 * Compute a set of access vector decisions based on the
1108 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1109 */
1110void security_compute_av(struct selinux_state *state,
1111			 u32 ssid,
1112			 u32 tsid,
1113			 u16 orig_tclass,
1114			 struct av_decision *avd,
1115			 struct extended_perms *xperms)
1116{
1117	struct selinux_policy *policy;
1118	struct policydb *policydb;
1119	struct sidtab *sidtab;
1120	u16 tclass;
1121	struct context *scontext = NULL, *tcontext = NULL;
1122
1123	rcu_read_lock();
1124	policy = rcu_dereference(state->policy);
1125	avd_init(policy, avd);
1126	xperms->len = 0;
1127	if (!selinux_initialized(state))
1128		goto allow;
1129
1130	policydb = &policy->policydb;
1131	sidtab = policy->sidtab;
1132
1133	scontext = sidtab_search(sidtab, ssid);
1134	if (!scontext) {
1135		pr_err("SELinux: %s:  unrecognized SID %d\n",
1136		       __func__, ssid);
1137		goto out;
1138	}
1139
1140	/* permissive domain? */
1141	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1142		avd->flags |= AVD_FLAGS_PERMISSIVE;
1143
1144	tcontext = sidtab_search(sidtab, tsid);
1145	if (!tcontext) {
1146		pr_err("SELinux: %s:  unrecognized SID %d\n",
1147		       __func__, tsid);
1148		goto out;
1149	}
1150
1151	tclass = unmap_class(&policy->map, orig_tclass);
1152	if (unlikely(orig_tclass && !tclass)) {
1153		if (policydb->allow_unknown)
1154			goto allow;
1155		goto out;
1156	}
1157	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1158				  xperms);
1159	map_decision(&policy->map, orig_tclass, avd,
1160		     policydb->allow_unknown);
1161out:
1162	rcu_read_unlock();
1163	return;
1164allow:
1165	avd->allowed = 0xffffffff;
1166	goto out;
1167}
1168
1169void security_compute_av_user(struct selinux_state *state,
1170			      u32 ssid,
1171			      u32 tsid,
1172			      u16 tclass,
1173			      struct av_decision *avd)
1174{
1175	struct selinux_policy *policy;
1176	struct policydb *policydb;
1177	struct sidtab *sidtab;
1178	struct context *scontext = NULL, *tcontext = NULL;
1179
1180	rcu_read_lock();
1181	policy = rcu_dereference(state->policy);
1182	avd_init(policy, avd);
1183	if (!selinux_initialized(state))
1184		goto allow;
1185
1186	policydb = &policy->policydb;
1187	sidtab = policy->sidtab;
1188
1189	scontext = sidtab_search(sidtab, ssid);
1190	if (!scontext) {
1191		pr_err("SELinux: %s:  unrecognized SID %d\n",
1192		       __func__, ssid);
1193		goto out;
1194	}
1195
1196	/* permissive domain? */
1197	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1198		avd->flags |= AVD_FLAGS_PERMISSIVE;
1199
1200	tcontext = sidtab_search(sidtab, tsid);
1201	if (!tcontext) {
1202		pr_err("SELinux: %s:  unrecognized SID %d\n",
1203		       __func__, tsid);
1204		goto out;
1205	}
1206
1207	if (unlikely(!tclass)) {
1208		if (policydb->allow_unknown)
1209			goto allow;
1210		goto out;
1211	}
1212
1213	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1214				  NULL);
1215 out:
1216	rcu_read_unlock();
1217	return;
1218allow:
1219	avd->allowed = 0xffffffff;
1220	goto out;
1221}
1222
1223/*
1224 * Write the security context string representation of
1225 * the context structure `context' into a dynamically
1226 * allocated string of the correct size.  Set `*scontext'
1227 * to point to this string and set `*scontext_len' to
1228 * the length of the string.
1229 */
1230static int context_struct_to_string(struct policydb *p,
1231				    struct context *context,
1232				    char **scontext, u32 *scontext_len)
1233{
1234	char *scontextp;
1235
1236	if (scontext)
1237		*scontext = NULL;
1238	*scontext_len = 0;
1239
1240	if (context->len) {
1241		*scontext_len = context->len;
1242		if (scontext) {
1243			*scontext = kstrdup(context->str, GFP_ATOMIC);
1244			if (!(*scontext))
1245				return -ENOMEM;
1246		}
1247		return 0;
1248	}
1249
1250	/* Compute the size of the context. */
1251	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1252	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1253	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1254	*scontext_len += mls_compute_context_len(p, context);
1255
1256	if (!scontext)
1257		return 0;
1258
1259	/* Allocate space for the context; caller must free this space. */
1260	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1261	if (!scontextp)
1262		return -ENOMEM;
1263	*scontext = scontextp;
1264
1265	/*
1266	 * Copy the user name, role name and type name into the context.
1267	 */
1268	scontextp += sprintf(scontextp, "%s:%s:%s",
1269		sym_name(p, SYM_USERS, context->user - 1),
1270		sym_name(p, SYM_ROLES, context->role - 1),
1271		sym_name(p, SYM_TYPES, context->type - 1));
1272
1273	mls_sid_to_context(p, context, &scontextp);
1274
1275	*scontextp = 0;
1276
1277	return 0;
1278}
1279
1280static int sidtab_entry_to_string(struct policydb *p,
1281				  struct sidtab *sidtab,
1282				  struct sidtab_entry *entry,
1283				  char **scontext, u32 *scontext_len)
1284{
1285	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1286
1287	if (rc != -ENOENT)
1288		return rc;
1289
1290	rc = context_struct_to_string(p, &entry->context, scontext,
1291				      scontext_len);
1292	if (!rc && scontext)
1293		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1294	return rc;
1295}
1296
1297#include "initial_sid_to_string.h"
1298
1299int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1300{
1301	struct selinux_policy *policy;
1302	int rc;
1303
1304	if (!selinux_initialized(state)) {
1305		pr_err("SELinux: %s:  called before initial load_policy\n",
1306		       __func__);
1307		return -EINVAL;
1308	}
1309
1310	rcu_read_lock();
1311	policy = rcu_dereference(state->policy);
1312	rc = sidtab_hash_stats(policy->sidtab, page);
1313	rcu_read_unlock();
1314
1315	return rc;
1316}
1317
1318const char *security_get_initial_sid_context(u32 sid)
1319{
1320	if (unlikely(sid > SECINITSID_NUM))
1321		return NULL;
1322	return initial_sid_to_string[sid];
1323}
1324
1325static int security_sid_to_context_core(struct selinux_state *state,
1326					u32 sid, char **scontext,
1327					u32 *scontext_len, int force,
1328					int only_invalid)
1329{
1330	struct selinux_policy *policy;
1331	struct policydb *policydb;
1332	struct sidtab *sidtab;
1333	struct sidtab_entry *entry;
1334	int rc = 0;
1335
1336	if (scontext)
1337		*scontext = NULL;
1338	*scontext_len  = 0;
1339
1340	if (!selinux_initialized(state)) {
1341		if (sid <= SECINITSID_NUM) {
1342			char *scontextp;
1343			const char *s = initial_sid_to_string[sid];
1344
1345			if (!s)
1346				return -EINVAL;
1347			*scontext_len = strlen(s) + 1;
1348			if (!scontext)
1349				return 0;
1350			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1351			if (!scontextp)
1352				return -ENOMEM;
1353			*scontext = scontextp;
1354			return 0;
1355		}
1356		pr_err("SELinux: %s:  called before initial "
1357		       "load_policy on unknown SID %d\n", __func__, sid);
1358		return -EINVAL;
1359	}
1360	rcu_read_lock();
1361	policy = rcu_dereference(state->policy);
1362	policydb = &policy->policydb;
1363	sidtab = policy->sidtab;
1364
1365	if (force)
1366		entry = sidtab_search_entry_force(sidtab, sid);
1367	else
1368		entry = sidtab_search_entry(sidtab, sid);
1369	if (!entry) {
1370		pr_err("SELinux: %s:  unrecognized SID %d\n",
1371			__func__, sid);
1372		rc = -EINVAL;
1373		goto out_unlock;
1374	}
1375	if (only_invalid && !entry->context.len)
1376		goto out_unlock;
1377
1378	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1379				    scontext_len);
1380
1381out_unlock:
1382	rcu_read_unlock();
1383	return rc;
1384
1385}
1386
1387/**
1388 * security_sid_to_context - Obtain a context for a given SID.
1389 * @sid: security identifier, SID
1390 * @scontext: security context
1391 * @scontext_len: length in bytes
1392 *
1393 * Write the string representation of the context associated with @sid
1394 * into a dynamically allocated string of the correct size.  Set @scontext
1395 * to point to this string and set @scontext_len to the length of the string.
1396 */
1397int security_sid_to_context(struct selinux_state *state,
1398			    u32 sid, char **scontext, u32 *scontext_len)
1399{
1400	return security_sid_to_context_core(state, sid, scontext,
1401					    scontext_len, 0, 0);
1402}
1403
1404int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1405				  char **scontext, u32 *scontext_len)
1406{
1407	return security_sid_to_context_core(state, sid, scontext,
1408					    scontext_len, 1, 0);
1409}
1410
1411/**
1412 * security_sid_to_context_inval - Obtain a context for a given SID if it
1413 *                                 is invalid.
1414 * @sid: security identifier, SID
1415 * @scontext: security context
1416 * @scontext_len: length in bytes
1417 *
1418 * Write the string representation of the context associated with @sid
1419 * into a dynamically allocated string of the correct size, but only if the
1420 * context is invalid in the current policy.  Set @scontext to point to
1421 * this string (or NULL if the context is valid) and set @scontext_len to
1422 * the length of the string (or 0 if the context is valid).
1423 */
1424int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1425				  char **scontext, u32 *scontext_len)
1426{
1427	return security_sid_to_context_core(state, sid, scontext,
1428					    scontext_len, 1, 1);
1429}
1430
1431/*
1432 * Caveat:  Mutates scontext.
1433 */
1434static int string_to_context_struct(struct policydb *pol,
1435				    struct sidtab *sidtabp,
1436				    char *scontext,
1437				    struct context *ctx,
1438				    u32 def_sid)
1439{
1440	struct role_datum *role;
1441	struct type_datum *typdatum;
1442	struct user_datum *usrdatum;
1443	char *scontextp, *p, oldc;
1444	int rc = 0;
1445
1446	context_init(ctx);
1447
1448	/* Parse the security context. */
1449
1450	rc = -EINVAL;
1451	scontextp = (char *) scontext;
1452
1453	/* Extract the user. */
1454	p = scontextp;
1455	while (*p && *p != ':')
1456		p++;
1457
1458	if (*p == 0)
1459		goto out;
1460
1461	*p++ = 0;
1462
1463	usrdatum = symtab_search(&pol->p_users, scontextp);
1464	if (!usrdatum)
1465		goto out;
1466
1467	ctx->user = usrdatum->value;
1468
1469	/* Extract role. */
1470	scontextp = p;
1471	while (*p && *p != ':')
1472		p++;
1473
1474	if (*p == 0)
1475		goto out;
1476
1477	*p++ = 0;
1478
1479	role = symtab_search(&pol->p_roles, scontextp);
1480	if (!role)
1481		goto out;
1482	ctx->role = role->value;
1483
1484	/* Extract type. */
1485	scontextp = p;
1486	while (*p && *p != ':')
1487		p++;
1488	oldc = *p;
1489	*p++ = 0;
1490
1491	typdatum = symtab_search(&pol->p_types, scontextp);
1492	if (!typdatum || typdatum->attribute)
1493		goto out;
1494
1495	ctx->type = typdatum->value;
1496
1497	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1498	if (rc)
1499		goto out;
1500
1501	/* Check the validity of the new context. */
1502	rc = -EINVAL;
1503	if (!policydb_context_isvalid(pol, ctx))
1504		goto out;
1505	rc = 0;
1506out:
1507	if (rc)
1508		context_destroy(ctx);
1509	return rc;
1510}
1511
1512static int security_context_to_sid_core(struct selinux_state *state,
1513					const char *scontext, u32 scontext_len,
1514					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1515					int force)
1516{
1517	struct selinux_policy *policy;
1518	struct policydb *policydb;
1519	struct sidtab *sidtab;
1520	char *scontext2, *str = NULL;
1521	struct context context;
1522	int rc = 0;
1523
1524	/* An empty security context is never valid. */
1525	if (!scontext_len)
1526		return -EINVAL;
1527
1528	/* Copy the string to allow changes and ensure a NUL terminator */
1529	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1530	if (!scontext2)
1531		return -ENOMEM;
1532
1533	if (!selinux_initialized(state)) {
1534		int i;
1535
1536		for (i = 1; i < SECINITSID_NUM; i++) {
1537			const char *s = initial_sid_to_string[i];
1538
1539			if (s && !strcmp(s, scontext2)) {
1540				*sid = i;
1541				goto out;
1542			}
1543		}
1544		*sid = SECINITSID_KERNEL;
1545		goto out;
1546	}
1547	*sid = SECSID_NULL;
1548
1549	if (force) {
1550		/* Save another copy for storing in uninterpreted form */
1551		rc = -ENOMEM;
1552		str = kstrdup(scontext2, gfp_flags);
1553		if (!str)
1554			goto out;
1555	}
1556retry:
1557	rcu_read_lock();
1558	policy = rcu_dereference(state->policy);
1559	policydb = &policy->policydb;
1560	sidtab = policy->sidtab;
1561	rc = string_to_context_struct(policydb, sidtab, scontext2,
1562				      &context, def_sid);
1563	if (rc == -EINVAL && force) {
1564		context.str = str;
1565		context.len = strlen(str) + 1;
1566		str = NULL;
1567	} else if (rc)
1568		goto out_unlock;
1569	rc = sidtab_context_to_sid(sidtab, &context, sid);
1570	if (rc == -ESTALE) {
1571		rcu_read_unlock();
1572		if (context.str) {
1573			str = context.str;
1574			context.str = NULL;
1575		}
1576		context_destroy(&context);
1577		goto retry;
1578	}
1579	context_destroy(&context);
1580out_unlock:
1581	rcu_read_unlock();
1582out:
1583	kfree(scontext2);
1584	kfree(str);
1585	return rc;
1586}
1587
1588/**
1589 * security_context_to_sid - Obtain a SID for a given security context.
1590 * @scontext: security context
1591 * @scontext_len: length in bytes
1592 * @sid: security identifier, SID
1593 * @gfp: context for the allocation
1594 *
1595 * Obtains a SID associated with the security context that
1596 * has the string representation specified by @scontext.
1597 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1598 * memory is available, or 0 on success.
1599 */
1600int security_context_to_sid(struct selinux_state *state,
1601			    const char *scontext, u32 scontext_len, u32 *sid,
1602			    gfp_t gfp)
1603{
1604	return security_context_to_sid_core(state, scontext, scontext_len,
1605					    sid, SECSID_NULL, gfp, 0);
1606}
1607
1608int security_context_str_to_sid(struct selinux_state *state,
1609				const char *scontext, u32 *sid, gfp_t gfp)
1610{
1611	return security_context_to_sid(state, scontext, strlen(scontext),
1612				       sid, gfp);
1613}
1614
1615/**
1616 * security_context_to_sid_default - Obtain a SID for a given security context,
1617 * falling back to specified default if needed.
1618 *
1619 * @scontext: security context
1620 * @scontext_len: length in bytes
1621 * @sid: security identifier, SID
1622 * @def_sid: default SID to assign on error
1623 *
1624 * Obtains a SID associated with the security context that
1625 * has the string representation specified by @scontext.
1626 * The default SID is passed to the MLS layer to be used to allow
1627 * kernel labeling of the MLS field if the MLS field is not present
1628 * (for upgrading to MLS without full relabel).
1629 * Implicitly forces adding of the context even if it cannot be mapped yet.
1630 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1631 * memory is available, or 0 on success.
1632 */
1633int security_context_to_sid_default(struct selinux_state *state,
1634				    const char *scontext, u32 scontext_len,
1635				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1636{
1637	return security_context_to_sid_core(state, scontext, scontext_len,
1638					    sid, def_sid, gfp_flags, 1);
1639}
1640
1641int security_context_to_sid_force(struct selinux_state *state,
1642				  const char *scontext, u32 scontext_len,
1643				  u32 *sid)
1644{
1645	return security_context_to_sid_core(state, scontext, scontext_len,
1646					    sid, SECSID_NULL, GFP_KERNEL, 1);
1647}
1648
1649static int compute_sid_handle_invalid_context(
1650	struct selinux_state *state,
1651	struct selinux_policy *policy,
1652	struct sidtab_entry *sentry,
1653	struct sidtab_entry *tentry,
1654	u16 tclass,
1655	struct context *newcontext)
1656{
1657	struct policydb *policydb = &policy->policydb;
1658	struct sidtab *sidtab = policy->sidtab;
1659	char *s = NULL, *t = NULL, *n = NULL;
1660	u32 slen, tlen, nlen;
1661	struct audit_buffer *ab;
1662
1663	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1664		goto out;
1665	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1666		goto out;
1667	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1668		goto out;
1669	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1670	audit_log_format(ab,
1671			 "op=security_compute_sid invalid_context=");
1672	/* no need to record the NUL with untrusted strings */
1673	audit_log_n_untrustedstring(ab, n, nlen - 1);
1674	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1675			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1676	audit_log_end(ab);
1677out:
1678	kfree(s);
1679	kfree(t);
1680	kfree(n);
1681	if (!enforcing_enabled(state))
1682		return 0;
1683	return -EACCES;
1684}
1685
1686static void filename_compute_type(struct policydb *policydb,
1687				  struct context *newcontext,
1688				  u32 stype, u32 ttype, u16 tclass,
1689				  const char *objname)
1690{
1691	struct filename_trans_key ft;
1692	struct filename_trans_datum *datum;
1693
1694	/*
1695	 * Most filename trans rules are going to live in specific directories
1696	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1697	 * if the ttype does not contain any rules.
1698	 */
1699	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1700		return;
1701
1702	ft.ttype = ttype;
1703	ft.tclass = tclass;
1704	ft.name = objname;
1705
1706	datum = policydb_filenametr_search(policydb, &ft);
1707	while (datum) {
1708		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1709			newcontext->type = datum->otype;
1710			return;
1711		}
1712		datum = datum->next;
1713	}
1714}
1715
1716static int security_compute_sid(struct selinux_state *state,
1717				u32 ssid,
1718				u32 tsid,
1719				u16 orig_tclass,
1720				u32 specified,
1721				const char *objname,
1722				u32 *out_sid,
1723				bool kern)
1724{
1725	struct selinux_policy *policy;
1726	struct policydb *policydb;
1727	struct sidtab *sidtab;
1728	struct class_datum *cladatum;
1729	struct context *scontext, *tcontext, newcontext;
1730	struct sidtab_entry *sentry, *tentry;
1731	struct avtab_key avkey;
1732	struct avtab_datum *avdatum;
1733	struct avtab_node *node;
1734	u16 tclass;
1735	int rc = 0;
1736	bool sock;
1737
1738	if (!selinux_initialized(state)) {
1739		switch (orig_tclass) {
1740		case SECCLASS_PROCESS: /* kernel value */
1741			*out_sid = ssid;
1742			break;
1743		default:
1744			*out_sid = tsid;
1745			break;
1746		}
1747		goto out;
1748	}
1749
1750retry:
1751	cladatum = NULL;
1752	context_init(&newcontext);
1753
1754	rcu_read_lock();
1755
1756	policy = rcu_dereference(state->policy);
1757
1758	if (kern) {
1759		tclass = unmap_class(&policy->map, orig_tclass);
1760		sock = security_is_socket_class(orig_tclass);
1761	} else {
1762		tclass = orig_tclass;
1763		sock = security_is_socket_class(map_class(&policy->map,
1764							  tclass));
1765	}
1766
1767	policydb = &policy->policydb;
1768	sidtab = policy->sidtab;
1769
1770	sentry = sidtab_search_entry(sidtab, ssid);
1771	if (!sentry) {
1772		pr_err("SELinux: %s:  unrecognized SID %d\n",
1773		       __func__, ssid);
1774		rc = -EINVAL;
1775		goto out_unlock;
1776	}
1777	tentry = sidtab_search_entry(sidtab, tsid);
1778	if (!tentry) {
1779		pr_err("SELinux: %s:  unrecognized SID %d\n",
1780		       __func__, tsid);
1781		rc = -EINVAL;
1782		goto out_unlock;
1783	}
1784
1785	scontext = &sentry->context;
1786	tcontext = &tentry->context;
1787
1788	if (tclass && tclass <= policydb->p_classes.nprim)
1789		cladatum = policydb->class_val_to_struct[tclass - 1];
1790
1791	/* Set the user identity. */
1792	switch (specified) {
1793	case AVTAB_TRANSITION:
1794	case AVTAB_CHANGE:
1795		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1796			newcontext.user = tcontext->user;
1797		} else {
1798			/* notice this gets both DEFAULT_SOURCE and unset */
1799			/* Use the process user identity. */
1800			newcontext.user = scontext->user;
1801		}
1802		break;
1803	case AVTAB_MEMBER:
1804		/* Use the related object owner. */
1805		newcontext.user = tcontext->user;
1806		break;
1807	}
1808
1809	/* Set the role to default values. */
1810	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1811		newcontext.role = scontext->role;
1812	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1813		newcontext.role = tcontext->role;
1814	} else {
1815		if ((tclass == policydb->process_class) || sock)
1816			newcontext.role = scontext->role;
1817		else
1818			newcontext.role = OBJECT_R_VAL;
1819	}
1820
1821	/* Set the type to default values. */
1822	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1823		newcontext.type = scontext->type;
1824	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1825		newcontext.type = tcontext->type;
1826	} else {
1827		if ((tclass == policydb->process_class) || sock) {
1828			/* Use the type of process. */
1829			newcontext.type = scontext->type;
1830		} else {
1831			/* Use the type of the related object. */
1832			newcontext.type = tcontext->type;
1833		}
1834	}
1835
1836	/* Look for a type transition/member/change rule. */
1837	avkey.source_type = scontext->type;
1838	avkey.target_type = tcontext->type;
1839	avkey.target_class = tclass;
1840	avkey.specified = specified;
1841	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1842
1843	/* If no permanent rule, also check for enabled conditional rules */
1844	if (!avdatum) {
1845		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1846		for (; node; node = avtab_search_node_next(node, specified)) {
1847			if (node->key.specified & AVTAB_ENABLED) {
1848				avdatum = &node->datum;
1849				break;
1850			}
1851		}
1852	}
1853
1854	if (avdatum) {
1855		/* Use the type from the type transition/member/change rule. */
1856		newcontext.type = avdatum->u.data;
1857	}
1858
1859	/* if we have a objname this is a file trans check so check those rules */
1860	if (objname)
1861		filename_compute_type(policydb, &newcontext, scontext->type,
1862				      tcontext->type, tclass, objname);
1863
1864	/* Check for class-specific changes. */
1865	if (specified & AVTAB_TRANSITION) {
1866		/* Look for a role transition rule. */
1867		struct role_trans_datum *rtd;
1868		struct role_trans_key rtk = {
1869			.role = scontext->role,
1870			.type = tcontext->type,
1871			.tclass = tclass,
1872		};
1873
1874		rtd = policydb_roletr_search(policydb, &rtk);
1875		if (rtd)
1876			newcontext.role = rtd->new_role;
1877	}
1878
1879	/* Set the MLS attributes.
1880	   This is done last because it may allocate memory. */
1881	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1882			     &newcontext, sock);
1883	if (rc)
1884		goto out_unlock;
1885
1886	/* Check the validity of the context. */
1887	if (!policydb_context_isvalid(policydb, &newcontext)) {
1888		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1889							tentry, tclass,
1890							&newcontext);
1891		if (rc)
1892			goto out_unlock;
1893	}
1894	/* Obtain the sid for the context. */
1895	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1896	if (rc == -ESTALE) {
1897		rcu_read_unlock();
1898		context_destroy(&newcontext);
1899		goto retry;
1900	}
1901out_unlock:
1902	rcu_read_unlock();
1903	context_destroy(&newcontext);
1904out:
1905	return rc;
1906}
1907
1908/**
1909 * security_transition_sid - Compute the SID for a new subject/object.
1910 * @ssid: source security identifier
1911 * @tsid: target security identifier
1912 * @tclass: target security class
1913 * @out_sid: security identifier for new subject/object
1914 *
1915 * Compute a SID to use for labeling a new subject or object in the
1916 * class @tclass based on a SID pair (@ssid, @tsid).
1917 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1918 * if insufficient memory is available, or %0 if the new SID was
1919 * computed successfully.
1920 */
1921int security_transition_sid(struct selinux_state *state,
1922			    u32 ssid, u32 tsid, u16 tclass,
1923			    const struct qstr *qstr, u32 *out_sid)
1924{
1925	return security_compute_sid(state, ssid, tsid, tclass,
1926				    AVTAB_TRANSITION,
1927				    qstr ? qstr->name : NULL, out_sid, true);
1928}
1929
1930int security_transition_sid_user(struct selinux_state *state,
1931				 u32 ssid, u32 tsid, u16 tclass,
1932				 const char *objname, u32 *out_sid)
1933{
1934	return security_compute_sid(state, ssid, tsid, tclass,
1935				    AVTAB_TRANSITION,
1936				    objname, out_sid, false);
1937}
1938
1939/**
1940 * security_member_sid - Compute the SID for member selection.
1941 * @ssid: source security identifier
1942 * @tsid: target security identifier
1943 * @tclass: target security class
1944 * @out_sid: security identifier for selected member
1945 *
1946 * Compute a SID to use when selecting a member of a polyinstantiated
1947 * object of class @tclass based on a SID pair (@ssid, @tsid).
1948 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1949 * if insufficient memory is available, or %0 if the SID was
1950 * computed successfully.
1951 */
1952int security_member_sid(struct selinux_state *state,
1953			u32 ssid,
1954			u32 tsid,
1955			u16 tclass,
1956			u32 *out_sid)
1957{
1958	return security_compute_sid(state, ssid, tsid, tclass,
1959				    AVTAB_MEMBER, NULL,
1960				    out_sid, false);
1961}
1962
1963/**
1964 * security_change_sid - Compute the SID for object relabeling.
1965 * @ssid: source security identifier
1966 * @tsid: target security identifier
1967 * @tclass: target security class
1968 * @out_sid: security identifier for selected member
1969 *
1970 * Compute a SID to use for relabeling an object of class @tclass
1971 * based on a SID pair (@ssid, @tsid).
1972 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1973 * if insufficient memory is available, or %0 if the SID was
1974 * computed successfully.
1975 */
1976int security_change_sid(struct selinux_state *state,
1977			u32 ssid,
1978			u32 tsid,
1979			u16 tclass,
1980			u32 *out_sid)
1981{
1982	return security_compute_sid(state,
1983				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1984				    out_sid, false);
1985}
1986
1987static inline int convert_context_handle_invalid_context(
1988	struct selinux_state *state,
1989	struct policydb *policydb,
1990	struct context *context)
1991{
1992	char *s;
1993	u32 len;
1994
1995	if (enforcing_enabled(state))
1996		return -EINVAL;
1997
1998	if (!context_struct_to_string(policydb, context, &s, &len)) {
1999		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2000			s);
2001		kfree(s);
2002	}
2003	return 0;
2004}
2005
2006/*
2007 * Convert the values in the security context
2008 * structure `oldc' from the values specified
2009 * in the policy `p->oldp' to the values specified
2010 * in the policy `p->newp', storing the new context
2011 * in `newc'.  Verify that the context is valid
2012 * under the new policy.
2013 */
2014static int convert_context(struct context *oldc, struct context *newc, void *p,
2015			   gfp_t gfp_flags)
2016{
2017	struct convert_context_args *args;
2018	struct ocontext *oc;
2019	struct role_datum *role;
2020	struct type_datum *typdatum;
2021	struct user_datum *usrdatum;
2022	char *s;
2023	u32 len;
2024	int rc;
2025
2026	args = p;
2027
2028	if (oldc->str) {
2029		s = kstrdup(oldc->str, gfp_flags);
2030		if (!s)
2031			return -ENOMEM;
2032
2033		rc = string_to_context_struct(args->newp, NULL, s,
2034					      newc, SECSID_NULL);
2035		if (rc == -EINVAL) {
2036			/*
2037			 * Retain string representation for later mapping.
2038			 *
2039			 * IMPORTANT: We need to copy the contents of oldc->str
2040			 * back into s again because string_to_context_struct()
2041			 * may have garbled it.
2042			 */
2043			memcpy(s, oldc->str, oldc->len);
2044			context_init(newc);
2045			newc->str = s;
2046			newc->len = oldc->len;
2047			return 0;
2048		}
2049		kfree(s);
2050		if (rc) {
2051			/* Other error condition, e.g. ENOMEM. */
2052			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2053			       oldc->str, -rc);
2054			return rc;
2055		}
2056		pr_info("SELinux:  Context %s became valid (mapped).\n",
2057			oldc->str);
2058		return 0;
2059	}
2060
2061	context_init(newc);
2062
2063	/* Convert the user. */
2064	rc = -EINVAL;
2065	usrdatum = symtab_search(&args->newp->p_users,
2066				 sym_name(args->oldp,
2067					  SYM_USERS, oldc->user - 1));
2068	if (!usrdatum)
2069		goto bad;
2070	newc->user = usrdatum->value;
2071
2072	/* Convert the role. */
2073	rc = -EINVAL;
2074	role = symtab_search(&args->newp->p_roles,
2075			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2076	if (!role)
2077		goto bad;
2078	newc->role = role->value;
2079
2080	/* Convert the type. */
2081	rc = -EINVAL;
2082	typdatum = symtab_search(&args->newp->p_types,
2083				 sym_name(args->oldp,
2084					  SYM_TYPES, oldc->type - 1));
2085	if (!typdatum)
2086		goto bad;
2087	newc->type = typdatum->value;
2088
2089	/* Convert the MLS fields if dealing with MLS policies */
2090	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2091		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2092		if (rc)
2093			goto bad;
2094	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2095		/*
2096		 * Switching between non-MLS and MLS policy:
2097		 * ensure that the MLS fields of the context for all
2098		 * existing entries in the sidtab are filled in with a
2099		 * suitable default value, likely taken from one of the
2100		 * initial SIDs.
2101		 */
2102		oc = args->newp->ocontexts[OCON_ISID];
2103		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2104			oc = oc->next;
2105		rc = -EINVAL;
2106		if (!oc) {
2107			pr_err("SELinux:  unable to look up"
2108				" the initial SIDs list\n");
2109			goto bad;
2110		}
2111		rc = mls_range_set(newc, &oc->context[0].range);
2112		if (rc)
2113			goto bad;
2114	}
2115
2116	/* Check the validity of the new context. */
2117	if (!policydb_context_isvalid(args->newp, newc)) {
2118		rc = convert_context_handle_invalid_context(args->state,
2119							args->oldp,
2120							oldc);
2121		if (rc)
2122			goto bad;
2123	}
2124
2125	return 0;
2126bad:
2127	/* Map old representation to string and save it. */
2128	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2129	if (rc)
2130		return rc;
2131	context_destroy(newc);
2132	newc->str = s;
2133	newc->len = len;
2134	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2135		newc->str);
2136	return 0;
2137}
2138
2139static void security_load_policycaps(struct selinux_state *state,
2140				struct selinux_policy *policy)
2141{
2142	struct policydb *p;
2143	unsigned int i;
2144	struct ebitmap_node *node;
2145
2146	p = &policy->policydb;
2147
2148	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2149		WRITE_ONCE(state->policycap[i],
2150			ebitmap_get_bit(&p->policycaps, i));
2151
2152	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2153		pr_info("SELinux:  policy capability %s=%d\n",
2154			selinux_policycap_names[i],
2155			ebitmap_get_bit(&p->policycaps, i));
2156
2157	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2158		if (i >= ARRAY_SIZE(selinux_policycap_names))
2159			pr_info("SELinux:  unknown policy capability %u\n",
2160				i);
2161	}
2162}
2163
2164static int security_preserve_bools(struct selinux_policy *oldpolicy,
2165				struct selinux_policy *newpolicy);
2166
2167static void selinux_policy_free(struct selinux_policy *policy)
2168{
2169	if (!policy)
2170		return;
2171
2172	sidtab_destroy(policy->sidtab);
2173	kfree(policy->map.mapping);
2174	policydb_destroy(&policy->policydb);
2175	kfree(policy->sidtab);
2176	kfree(policy);
2177}
2178
2179static void selinux_policy_cond_free(struct selinux_policy *policy)
2180{
2181	cond_policydb_destroy_dup(&policy->policydb);
2182	kfree(policy);
2183}
2184
2185void selinux_policy_cancel(struct selinux_state *state,
2186			   struct selinux_load_state *load_state)
2187{
2188	struct selinux_policy *oldpolicy;
2189
2190	oldpolicy = rcu_dereference_protected(state->policy,
2191					lockdep_is_held(&state->policy_mutex));
2192
2193	sidtab_cancel_convert(oldpolicy->sidtab);
2194	selinux_policy_free(load_state->policy);
2195	kfree(load_state->convert_data);
2196}
2197
2198static void selinux_notify_policy_change(struct selinux_state *state,
2199					u32 seqno)
2200{
2201	/* Flush external caches and notify userspace of policy load */
2202	avc_ss_reset(state->avc, seqno);
2203	selnl_notify_policyload(seqno);
2204	selinux_status_update_policyload(state, seqno);
2205	selinux_netlbl_cache_invalidate();
2206	selinux_xfrm_notify_policyload();
2207}
2208
2209void selinux_policy_commit(struct selinux_state *state,
2210			   struct selinux_load_state *load_state)
2211{
2212	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2213	unsigned long flags;
2214	u32 seqno;
2215
2216	oldpolicy = rcu_dereference_protected(state->policy,
2217					lockdep_is_held(&state->policy_mutex));
2218
2219	/* If switching between different policy types, log MLS status */
2220	if (oldpolicy) {
2221		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2222			pr_info("SELinux: Disabling MLS support...\n");
2223		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2224			pr_info("SELinux: Enabling MLS support...\n");
2225	}
2226
2227	/* Set latest granting seqno for new policy. */
2228	if (oldpolicy)
2229		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2230	else
2231		newpolicy->latest_granting = 1;
2232	seqno = newpolicy->latest_granting;
2233
2234	/* Install the new policy. */
2235	if (oldpolicy) {
2236		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2237		rcu_assign_pointer(state->policy, newpolicy);
2238		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2239	} else {
2240		rcu_assign_pointer(state->policy, newpolicy);
2241	}
2242
2243	/* Load the policycaps from the new policy */
2244	security_load_policycaps(state, newpolicy);
2245
2246	if (!selinux_initialized(state)) {
2247		/*
2248		 * After first policy load, the security server is
2249		 * marked as initialized and ready to handle requests and
2250		 * any objects created prior to policy load are then labeled.
2251		 */
2252		selinux_mark_initialized(state);
2253		selinux_complete_init();
2254	}
2255
2256	/* Free the old policy */
2257	synchronize_rcu();
2258	selinux_policy_free(oldpolicy);
2259	kfree(load_state->convert_data);
2260
2261	/* Notify others of the policy change */
2262	selinux_notify_policy_change(state, seqno);
2263}
2264
2265/**
2266 * security_load_policy - Load a security policy configuration.
2267 * @data: binary policy data
2268 * @len: length of data in bytes
2269 *
2270 * Load a new set of security policy configuration data,
2271 * validate it and convert the SID table as necessary.
2272 * This function will flush the access vector cache after
2273 * loading the new policy.
2274 */
2275int security_load_policy(struct selinux_state *state, void *data, size_t len,
2276			 struct selinux_load_state *load_state)
2277{
2278	struct selinux_policy *newpolicy, *oldpolicy;
2279	struct selinux_policy_convert_data *convert_data;
2280	int rc = 0;
2281	struct policy_file file = { data, len }, *fp = &file;
2282
2283	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2284	if (!newpolicy)
2285		return -ENOMEM;
2286
2287	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2288	if (!newpolicy->sidtab) {
2289		rc = -ENOMEM;
2290		goto err_policy;
2291	}
2292
2293	rc = policydb_read(&newpolicy->policydb, fp);
2294	if (rc)
2295		goto err_sidtab;
2296
2297	newpolicy->policydb.len = len;
2298	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2299				&newpolicy->map);
2300	if (rc)
2301		goto err_policydb;
2302
2303	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2304	if (rc) {
2305		pr_err("SELinux:  unable to load the initial SIDs\n");
2306		goto err_mapping;
2307	}
2308
2309	if (!selinux_initialized(state)) {
2310		/* First policy load, so no need to preserve state from old policy */
2311		load_state->policy = newpolicy;
2312		load_state->convert_data = NULL;
2313		return 0;
2314	}
2315
2316	oldpolicy = rcu_dereference_protected(state->policy,
2317					lockdep_is_held(&state->policy_mutex));
2318
2319	/* Preserve active boolean values from the old policy */
2320	rc = security_preserve_bools(oldpolicy, newpolicy);
2321	if (rc) {
2322		pr_err("SELinux:  unable to preserve booleans\n");
2323		goto err_free_isids;
2324	}
2325
2326	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2327	if (!convert_data) {
2328		rc = -ENOMEM;
2329		goto err_free_isids;
2330	}
2331
2332	/*
2333	 * Convert the internal representations of contexts
2334	 * in the new SID table.
2335	 */
2336	convert_data->args.state = state;
2337	convert_data->args.oldp = &oldpolicy->policydb;
2338	convert_data->args.newp = &newpolicy->policydb;
2339
2340	convert_data->sidtab_params.func = convert_context;
2341	convert_data->sidtab_params.args = &convert_data->args;
2342	convert_data->sidtab_params.target = newpolicy->sidtab;
2343
2344	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2345	if (rc) {
2346		pr_err("SELinux:  unable to convert the internal"
2347			" representation of contexts in the new SID"
2348			" table\n");
2349		goto err_free_convert_data;
2350	}
2351
2352	load_state->policy = newpolicy;
2353	load_state->convert_data = convert_data;
2354	return 0;
2355
2356err_free_convert_data:
2357	kfree(convert_data);
2358err_free_isids:
2359	sidtab_destroy(newpolicy->sidtab);
2360err_mapping:
2361	kfree(newpolicy->map.mapping);
2362err_policydb:
2363	policydb_destroy(&newpolicy->policydb);
2364err_sidtab:
2365	kfree(newpolicy->sidtab);
2366err_policy:
2367	kfree(newpolicy);
2368
2369	return rc;
2370}
2371
2372/**
2373 * ocontext_to_sid - Helper to safely get sid for an ocontext
2374 * @sidtab: SID table
2375 * @c: ocontext structure
2376 * @index: index of the context entry (0 or 1)
2377 * @out_sid: pointer to the resulting SID value
2378 *
2379 * For all ocontexts except OCON_ISID the SID fields are populated
2380 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2381 * operation, this helper must be used to do that safely.
2382 *
2383 * WARNING: This function may return -ESTALE, indicating that the caller
2384 * must retry the operation after re-acquiring the policy pointer!
2385 */
2386static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2387			   size_t index, u32 *out_sid)
2388{
2389	int rc;
2390	u32 sid;
2391
2392	/* Ensure the associated sidtab entry is visible to this thread. */
2393	sid = smp_load_acquire(&c->sid[index]);
2394	if (!sid) {
2395		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2396		if (rc)
2397			return rc;
2398
2399		/*
2400		 * Ensure the new sidtab entry is visible to other threads
2401		 * when they see the SID.
2402		 */
2403		smp_store_release(&c->sid[index], sid);
2404	}
2405	*out_sid = sid;
2406	return 0;
2407}
2408
2409/**
2410 * security_port_sid - Obtain the SID for a port.
2411 * @protocol: protocol number
2412 * @port: port number
2413 * @out_sid: security identifier
2414 */
2415int security_port_sid(struct selinux_state *state,
2416		      u8 protocol, u16 port, u32 *out_sid)
2417{
2418	struct selinux_policy *policy;
2419	struct policydb *policydb;
2420	struct sidtab *sidtab;
2421	struct ocontext *c;
2422	int rc;
2423
2424	if (!selinux_initialized(state)) {
2425		*out_sid = SECINITSID_PORT;
2426		return 0;
2427	}
2428
2429retry:
2430	rc = 0;
2431	rcu_read_lock();
2432	policy = rcu_dereference(state->policy);
2433	policydb = &policy->policydb;
2434	sidtab = policy->sidtab;
2435
2436	c = policydb->ocontexts[OCON_PORT];
2437	while (c) {
2438		if (c->u.port.protocol == protocol &&
2439		    c->u.port.low_port <= port &&
2440		    c->u.port.high_port >= port)
2441			break;
2442		c = c->next;
2443	}
2444
2445	if (c) {
2446		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2447		if (rc == -ESTALE) {
2448			rcu_read_unlock();
2449			goto retry;
2450		}
2451		if (rc)
2452			goto out;
2453	} else {
2454		*out_sid = SECINITSID_PORT;
2455	}
2456
2457out:
2458	rcu_read_unlock();
2459	return rc;
2460}
2461
2462/**
2463 * security_pkey_sid - Obtain the SID for a pkey.
2464 * @subnet_prefix: Subnet Prefix
2465 * @pkey_num: pkey number
2466 * @out_sid: security identifier
2467 */
2468int security_ib_pkey_sid(struct selinux_state *state,
2469			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2470{
2471	struct selinux_policy *policy;
2472	struct policydb *policydb;
2473	struct sidtab *sidtab;
2474	struct ocontext *c;
2475	int rc;
2476
2477	if (!selinux_initialized(state)) {
2478		*out_sid = SECINITSID_UNLABELED;
2479		return 0;
2480	}
2481
2482retry:
2483	rc = 0;
2484	rcu_read_lock();
2485	policy = rcu_dereference(state->policy);
2486	policydb = &policy->policydb;
2487	sidtab = policy->sidtab;
2488
2489	c = policydb->ocontexts[OCON_IBPKEY];
2490	while (c) {
2491		if (c->u.ibpkey.low_pkey <= pkey_num &&
2492		    c->u.ibpkey.high_pkey >= pkey_num &&
2493		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2494			break;
2495
2496		c = c->next;
2497	}
2498
2499	if (c) {
2500		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2501		if (rc == -ESTALE) {
2502			rcu_read_unlock();
2503			goto retry;
2504		}
2505		if (rc)
2506			goto out;
2507	} else
2508		*out_sid = SECINITSID_UNLABELED;
2509
2510out:
2511	rcu_read_unlock();
2512	return rc;
2513}
2514
2515/**
2516 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2517 * @dev_name: device name
2518 * @port: port number
2519 * @out_sid: security identifier
2520 */
2521int security_ib_endport_sid(struct selinux_state *state,
2522			    const char *dev_name, u8 port_num, u32 *out_sid)
2523{
2524	struct selinux_policy *policy;
2525	struct policydb *policydb;
2526	struct sidtab *sidtab;
2527	struct ocontext *c;
2528	int rc;
2529
2530	if (!selinux_initialized(state)) {
2531		*out_sid = SECINITSID_UNLABELED;
2532		return 0;
2533	}
2534
2535retry:
2536	rc = 0;
2537	rcu_read_lock();
2538	policy = rcu_dereference(state->policy);
2539	policydb = &policy->policydb;
2540	sidtab = policy->sidtab;
2541
2542	c = policydb->ocontexts[OCON_IBENDPORT];
2543	while (c) {
2544		if (c->u.ibendport.port == port_num &&
2545		    !strncmp(c->u.ibendport.dev_name,
2546			     dev_name,
2547			     IB_DEVICE_NAME_MAX))
2548			break;
2549
2550		c = c->next;
2551	}
2552
2553	if (c) {
2554		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2555		if (rc == -ESTALE) {
2556			rcu_read_unlock();
2557			goto retry;
2558		}
2559		if (rc)
2560			goto out;
2561	} else
2562		*out_sid = SECINITSID_UNLABELED;
2563
2564out:
2565	rcu_read_unlock();
2566	return rc;
2567}
2568
2569/**
2570 * security_netif_sid - Obtain the SID for a network interface.
2571 * @name: interface name
2572 * @if_sid: interface SID
2573 */
2574int security_netif_sid(struct selinux_state *state,
2575		       char *name, u32 *if_sid)
2576{
2577	struct selinux_policy *policy;
2578	struct policydb *policydb;
2579	struct sidtab *sidtab;
2580	int rc;
2581	struct ocontext *c;
2582
2583	if (!selinux_initialized(state)) {
2584		*if_sid = SECINITSID_NETIF;
2585		return 0;
2586	}
2587
2588retry:
2589	rc = 0;
2590	rcu_read_lock();
2591	policy = rcu_dereference(state->policy);
2592	policydb = &policy->policydb;
2593	sidtab = policy->sidtab;
2594
2595	c = policydb->ocontexts[OCON_NETIF];
2596	while (c) {
2597		if (strcmp(name, c->u.name) == 0)
2598			break;
2599		c = c->next;
2600	}
2601
2602	if (c) {
2603		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2604		if (rc == -ESTALE) {
2605			rcu_read_unlock();
2606			goto retry;
2607		}
2608		if (rc)
2609			goto out;
2610	} else
2611		*if_sid = SECINITSID_NETIF;
2612
2613out:
2614	rcu_read_unlock();
2615	return rc;
2616}
2617
2618static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2619{
2620	int i, fail = 0;
2621
2622	for (i = 0; i < 4; i++)
2623		if (addr[i] != (input[i] & mask[i])) {
2624			fail = 1;
2625			break;
2626		}
2627
2628	return !fail;
2629}
2630
2631/**
2632 * security_node_sid - Obtain the SID for a node (host).
2633 * @domain: communication domain aka address family
2634 * @addrp: address
2635 * @addrlen: address length in bytes
2636 * @out_sid: security identifier
2637 */
2638int security_node_sid(struct selinux_state *state,
2639		      u16 domain,
2640		      void *addrp,
2641		      u32 addrlen,
2642		      u32 *out_sid)
2643{
2644	struct selinux_policy *policy;
2645	struct policydb *policydb;
2646	struct sidtab *sidtab;
2647	int rc;
2648	struct ocontext *c;
2649
2650	if (!selinux_initialized(state)) {
2651		*out_sid = SECINITSID_NODE;
2652		return 0;
2653	}
2654
2655retry:
2656	rcu_read_lock();
2657	policy = rcu_dereference(state->policy);
2658	policydb = &policy->policydb;
2659	sidtab = policy->sidtab;
2660
2661	switch (domain) {
2662	case AF_INET: {
2663		u32 addr;
2664
2665		rc = -EINVAL;
2666		if (addrlen != sizeof(u32))
2667			goto out;
2668
2669		addr = *((u32 *)addrp);
2670
2671		c = policydb->ocontexts[OCON_NODE];
2672		while (c) {
2673			if (c->u.node.addr == (addr & c->u.node.mask))
2674				break;
2675			c = c->next;
2676		}
2677		break;
2678	}
2679
2680	case AF_INET6:
2681		rc = -EINVAL;
2682		if (addrlen != sizeof(u64) * 2)
2683			goto out;
2684		c = policydb->ocontexts[OCON_NODE6];
2685		while (c) {
2686			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2687						c->u.node6.mask))
2688				break;
2689			c = c->next;
2690		}
2691		break;
2692
2693	default:
2694		rc = 0;
2695		*out_sid = SECINITSID_NODE;
2696		goto out;
2697	}
2698
2699	if (c) {
2700		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2701		if (rc == -ESTALE) {
2702			rcu_read_unlock();
2703			goto retry;
2704		}
2705		if (rc)
2706			goto out;
2707	} else {
2708		*out_sid = SECINITSID_NODE;
2709	}
2710
2711	rc = 0;
2712out:
2713	rcu_read_unlock();
2714	return rc;
2715}
2716
2717#define SIDS_NEL 25
2718
2719/**
2720 * security_get_user_sids - Obtain reachable SIDs for a user.
2721 * @fromsid: starting SID
2722 * @username: username
2723 * @sids: array of reachable SIDs for user
2724 * @nel: number of elements in @sids
2725 *
2726 * Generate the set of SIDs for legal security contexts
2727 * for a given user that can be reached by @fromsid.
2728 * Set *@sids to point to a dynamically allocated
2729 * array containing the set of SIDs.  Set *@nel to the
2730 * number of elements in the array.
2731 */
2732
2733int security_get_user_sids(struct selinux_state *state,
2734			   u32 fromsid,
2735			   char *username,
2736			   u32 **sids,
2737			   u32 *nel)
2738{
2739	struct selinux_policy *policy;
2740	struct policydb *policydb;
2741	struct sidtab *sidtab;
2742	struct context *fromcon, usercon;
2743	u32 *mysids = NULL, *mysids2, sid;
2744	u32 i, j, mynel, maxnel = SIDS_NEL;
2745	struct user_datum *user;
2746	struct role_datum *role;
2747	struct ebitmap_node *rnode, *tnode;
2748	int rc;
2749
2750	*sids = NULL;
2751	*nel = 0;
2752
2753	if (!selinux_initialized(state))
2754		return 0;
2755
2756	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2757	if (!mysids)
2758		return -ENOMEM;
2759
2760retry:
2761	mynel = 0;
2762	rcu_read_lock();
2763	policy = rcu_dereference(state->policy);
2764	policydb = &policy->policydb;
2765	sidtab = policy->sidtab;
2766
2767	context_init(&usercon);
2768
2769	rc = -EINVAL;
2770	fromcon = sidtab_search(sidtab, fromsid);
2771	if (!fromcon)
2772		goto out_unlock;
2773
2774	rc = -EINVAL;
2775	user = symtab_search(&policydb->p_users, username);
2776	if (!user)
2777		goto out_unlock;
2778
2779	usercon.user = user->value;
2780
2781	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2782		role = policydb->role_val_to_struct[i];
2783		usercon.role = i + 1;
2784		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2785			usercon.type = j + 1;
2786
2787			if (mls_setup_user_range(policydb, fromcon, user,
2788						 &usercon))
2789				continue;
2790
2791			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2792			if (rc == -ESTALE) {
2793				rcu_read_unlock();
2794				goto retry;
2795			}
2796			if (rc)
2797				goto out_unlock;
2798			if (mynel < maxnel) {
2799				mysids[mynel++] = sid;
2800			} else {
2801				rc = -ENOMEM;
2802				maxnel += SIDS_NEL;
2803				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2804				if (!mysids2)
2805					goto out_unlock;
2806				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2807				kfree(mysids);
2808				mysids = mysids2;
2809				mysids[mynel++] = sid;
2810			}
2811		}
2812	}
2813	rc = 0;
2814out_unlock:
2815	rcu_read_unlock();
2816	if (rc || !mynel) {
2817		kfree(mysids);
2818		return rc;
2819	}
2820
2821	rc = -ENOMEM;
2822	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2823	if (!mysids2) {
2824		kfree(mysids);
2825		return rc;
2826	}
2827	for (i = 0, j = 0; i < mynel; i++) {
2828		struct av_decision dummy_avd;
2829		rc = avc_has_perm_noaudit(state,
2830					  fromsid, mysids[i],
2831					  SECCLASS_PROCESS, /* kernel value */
2832					  PROCESS__TRANSITION, AVC_STRICT,
2833					  &dummy_avd);
2834		if (!rc)
2835			mysids2[j++] = mysids[i];
2836		cond_resched();
2837	}
2838	kfree(mysids);
2839	*sids = mysids2;
2840	*nel = j;
2841	return 0;
2842}
2843
2844/**
2845 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2846 * @fstype: filesystem type
2847 * @path: path from root of mount
2848 * @sclass: file security class
2849 * @sid: SID for path
2850 *
2851 * Obtain a SID to use for a file in a filesystem that
2852 * cannot support xattr or use a fixed labeling behavior like
2853 * transition SIDs or task SIDs.
2854 *
2855 * WARNING: This function may return -ESTALE, indicating that the caller
2856 * must retry the operation after re-acquiring the policy pointer!
2857 */
2858static inline int __security_genfs_sid(struct selinux_policy *policy,
2859				       const char *fstype,
2860				       char *path,
2861				       u16 orig_sclass,
2862				       u32 *sid)
2863{
2864	struct policydb *policydb = &policy->policydb;
2865	struct sidtab *sidtab = policy->sidtab;
2866	int len;
2867	u16 sclass;
2868	struct genfs *genfs;
2869	struct ocontext *c;
2870	int cmp = 0;
2871
2872	while (path[0] == '/' && path[1] == '/')
2873		path++;
2874
2875	sclass = unmap_class(&policy->map, orig_sclass);
2876	*sid = SECINITSID_UNLABELED;
2877
2878	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2879		cmp = strcmp(fstype, genfs->fstype);
2880		if (cmp <= 0)
2881			break;
2882	}
2883
2884	if (!genfs || cmp)
2885		return -ENOENT;
2886
2887	for (c = genfs->head; c; c = c->next) {
2888		len = strlen(c->u.name);
2889		if ((!c->v.sclass || sclass == c->v.sclass) &&
2890		    (strncmp(c->u.name, path, len) == 0))
2891			break;
2892	}
2893
2894	if (!c)
2895		return -ENOENT;
2896
2897	return ocontext_to_sid(sidtab, c, 0, sid);
2898}
2899
2900/**
2901 * security_genfs_sid - Obtain a SID for a file in a filesystem
2902 * @fstype: filesystem type
2903 * @path: path from root of mount
2904 * @sclass: file security class
2905 * @sid: SID for path
2906 *
2907 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2908 * it afterward.
2909 */
2910int security_genfs_sid(struct selinux_state *state,
2911		       const char *fstype,
2912		       char *path,
2913		       u16 orig_sclass,
2914		       u32 *sid)
2915{
2916	struct selinux_policy *policy;
2917	int retval;
2918
2919	if (!selinux_initialized(state)) {
2920		*sid = SECINITSID_UNLABELED;
2921		return 0;
2922	}
2923
2924	do {
2925		rcu_read_lock();
2926		policy = rcu_dereference(state->policy);
2927		retval = __security_genfs_sid(policy, fstype, path,
2928					      orig_sclass, sid);
2929		rcu_read_unlock();
2930	} while (retval == -ESTALE);
2931	return retval;
2932}
2933
2934int selinux_policy_genfs_sid(struct selinux_policy *policy,
2935			const char *fstype,
2936			char *path,
2937			u16 orig_sclass,
2938			u32 *sid)
2939{
2940	/* no lock required, policy is not yet accessible by other threads */
2941	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2942}
2943
2944/**
2945 * security_fs_use - Determine how to handle labeling for a filesystem.
2946 * @sb: superblock in question
2947 */
2948int security_fs_use(struct selinux_state *state, struct super_block *sb)
2949{
2950	struct selinux_policy *policy;
2951	struct policydb *policydb;
2952	struct sidtab *sidtab;
2953	int rc;
2954	struct ocontext *c;
2955	struct superblock_security_struct *sbsec = sb->s_security;
2956	const char *fstype = sb->s_type->name;
2957
2958	if (!selinux_initialized(state)) {
2959		sbsec->behavior = SECURITY_FS_USE_NONE;
2960		sbsec->sid = SECINITSID_UNLABELED;
2961		return 0;
2962	}
2963
2964retry:
2965	rc = 0;
2966	rcu_read_lock();
2967	policy = rcu_dereference(state->policy);
2968	policydb = &policy->policydb;
2969	sidtab = policy->sidtab;
2970
2971	c = policydb->ocontexts[OCON_FSUSE];
2972	while (c) {
2973		if (strcmp(fstype, c->u.name) == 0)
2974			break;
2975		c = c->next;
2976	}
2977
2978	if (c) {
2979		sbsec->behavior = c->v.behavior;
2980		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2981		if (rc == -ESTALE) {
2982			rcu_read_unlock();
2983			goto retry;
2984		}
2985		if (rc)
2986			goto out;
2987	} else {
2988		rc = __security_genfs_sid(policy, fstype, "/",
2989					SECCLASS_DIR, &sbsec->sid);
2990		if (rc == -ESTALE) {
2991			rcu_read_unlock();
2992			goto retry;
2993		}
2994		if (rc) {
2995			sbsec->behavior = SECURITY_FS_USE_NONE;
2996			rc = 0;
2997		} else {
2998			sbsec->behavior = SECURITY_FS_USE_GENFS;
2999		}
3000	}
3001
3002out:
3003	rcu_read_unlock();
3004	return rc;
3005}
3006
3007int security_get_bools(struct selinux_policy *policy,
3008		       u32 *len, char ***names, int **values)
3009{
3010	struct policydb *policydb;
3011	u32 i;
3012	int rc;
3013
3014	policydb = &policy->policydb;
3015
3016	*names = NULL;
3017	*values = NULL;
3018
3019	rc = 0;
3020	*len = policydb->p_bools.nprim;
3021	if (!*len)
3022		goto out;
3023
3024	rc = -ENOMEM;
3025	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3026	if (!*names)
3027		goto err;
3028
3029	rc = -ENOMEM;
3030	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3031	if (!*values)
3032		goto err;
3033
3034	for (i = 0; i < *len; i++) {
3035		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3036
3037		rc = -ENOMEM;
3038		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3039				      GFP_ATOMIC);
3040		if (!(*names)[i])
3041			goto err;
3042	}
3043	rc = 0;
3044out:
3045	return rc;
3046err:
3047	if (*names) {
3048		for (i = 0; i < *len; i++)
3049			kfree((*names)[i]);
3050		kfree(*names);
3051	}
3052	kfree(*values);
3053	*len = 0;
3054	*names = NULL;
3055	*values = NULL;
3056	goto out;
3057}
3058
3059
3060int security_set_bools(struct selinux_state *state, u32 len, int *values)
3061{
3062	struct selinux_policy *newpolicy, *oldpolicy;
3063	int rc;
3064	u32 i, seqno = 0;
3065
3066	if (!selinux_initialized(state))
3067		return -EINVAL;
3068
3069	oldpolicy = rcu_dereference_protected(state->policy,
3070					lockdep_is_held(&state->policy_mutex));
3071
3072	/* Consistency check on number of booleans, should never fail */
3073	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3074		return -EINVAL;
3075
3076	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3077	if (!newpolicy)
3078		return -ENOMEM;
3079
3080	/*
3081	 * Deep copy only the parts of the policydb that might be
3082	 * modified as a result of changing booleans.
3083	 */
3084	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3085	if (rc) {
3086		kfree(newpolicy);
3087		return -ENOMEM;
3088	}
3089
3090	/* Update the boolean states in the copy */
3091	for (i = 0; i < len; i++) {
3092		int new_state = !!values[i];
3093		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3094
3095		if (new_state != old_state) {
3096			audit_log(audit_context(), GFP_ATOMIC,
3097				AUDIT_MAC_CONFIG_CHANGE,
3098				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3099				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3100				new_state,
3101				old_state,
3102				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3103				audit_get_sessionid(current));
3104			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3105		}
3106	}
3107
3108	/* Re-evaluate the conditional rules in the copy */
3109	evaluate_cond_nodes(&newpolicy->policydb);
3110
3111	/* Set latest granting seqno for new policy */
3112	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3113	seqno = newpolicy->latest_granting;
3114
3115	/* Install the new policy */
3116	rcu_assign_pointer(state->policy, newpolicy);
3117
3118	/*
3119	 * Free the conditional portions of the old policydb
3120	 * that were copied for the new policy, and the oldpolicy
3121	 * structure itself but not what it references.
3122	 */
3123	synchronize_rcu();
3124	selinux_policy_cond_free(oldpolicy);
3125
3126	/* Notify others of the policy change */
3127	selinux_notify_policy_change(state, seqno);
3128	return 0;
3129}
3130
3131int security_get_bool_value(struct selinux_state *state,
3132			    u32 index)
3133{
3134	struct selinux_policy *policy;
3135	struct policydb *policydb;
3136	int rc;
3137	u32 len;
3138
3139	if (!selinux_initialized(state))
3140		return 0;
3141
3142	rcu_read_lock();
3143	policy = rcu_dereference(state->policy);
3144	policydb = &policy->policydb;
3145
3146	rc = -EFAULT;
3147	len = policydb->p_bools.nprim;
3148	if (index >= len)
3149		goto out;
3150
3151	rc = policydb->bool_val_to_struct[index]->state;
3152out:
3153	rcu_read_unlock();
3154	return rc;
3155}
3156
3157static int security_preserve_bools(struct selinux_policy *oldpolicy,
3158				struct selinux_policy *newpolicy)
3159{
3160	int rc, *bvalues = NULL;
3161	char **bnames = NULL;
3162	struct cond_bool_datum *booldatum;
3163	u32 i, nbools = 0;
3164
3165	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3166	if (rc)
3167		goto out;
3168	for (i = 0; i < nbools; i++) {
3169		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3170					bnames[i]);
3171		if (booldatum)
3172			booldatum->state = bvalues[i];
3173	}
3174	evaluate_cond_nodes(&newpolicy->policydb);
3175
3176out:
3177	if (bnames) {
3178		for (i = 0; i < nbools; i++)
3179			kfree(bnames[i]);
3180	}
3181	kfree(bnames);
3182	kfree(bvalues);
3183	return rc;
3184}
3185
3186/*
3187 * security_sid_mls_copy() - computes a new sid based on the given
3188 * sid and the mls portion of mls_sid.
3189 */
3190int security_sid_mls_copy(struct selinux_state *state,
3191			  u32 sid, u32 mls_sid, u32 *new_sid)
3192{
3193	struct selinux_policy *policy;
3194	struct policydb *policydb;
3195	struct sidtab *sidtab;
3196	struct context *context1;
3197	struct context *context2;
3198	struct context newcon;
3199	char *s;
3200	u32 len;
3201	int rc;
3202
3203	if (!selinux_initialized(state)) {
3204		*new_sid = sid;
3205		return 0;
3206	}
3207
3208retry:
3209	rc = 0;
3210	context_init(&newcon);
3211
3212	rcu_read_lock();
3213	policy = rcu_dereference(state->policy);
3214	policydb = &policy->policydb;
3215	sidtab = policy->sidtab;
3216
3217	if (!policydb->mls_enabled) {
3218		*new_sid = sid;
3219		goto out_unlock;
3220	}
3221
3222	rc = -EINVAL;
3223	context1 = sidtab_search(sidtab, sid);
3224	if (!context1) {
3225		pr_err("SELinux: %s:  unrecognized SID %d\n",
3226			__func__, sid);
3227		goto out_unlock;
3228	}
3229
3230	rc = -EINVAL;
3231	context2 = sidtab_search(sidtab, mls_sid);
3232	if (!context2) {
3233		pr_err("SELinux: %s:  unrecognized SID %d\n",
3234			__func__, mls_sid);
3235		goto out_unlock;
3236	}
3237
3238	newcon.user = context1->user;
3239	newcon.role = context1->role;
3240	newcon.type = context1->type;
3241	rc = mls_context_cpy(&newcon, context2);
3242	if (rc)
3243		goto out_unlock;
3244
3245	/* Check the validity of the new context. */
3246	if (!policydb_context_isvalid(policydb, &newcon)) {
3247		rc = convert_context_handle_invalid_context(state, policydb,
3248							&newcon);
3249		if (rc) {
3250			if (!context_struct_to_string(policydb, &newcon, &s,
3251						      &len)) {
3252				struct audit_buffer *ab;
3253
3254				ab = audit_log_start(audit_context(),
3255						     GFP_ATOMIC,
3256						     AUDIT_SELINUX_ERR);
3257				audit_log_format(ab,
3258						 "op=security_sid_mls_copy invalid_context=");
3259				/* don't record NUL with untrusted strings */
3260				audit_log_n_untrustedstring(ab, s, len - 1);
3261				audit_log_end(ab);
3262				kfree(s);
3263			}
3264			goto out_unlock;
3265		}
3266	}
3267	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3268	if (rc == -ESTALE) {
3269		rcu_read_unlock();
3270		context_destroy(&newcon);
3271		goto retry;
3272	}
3273out_unlock:
3274	rcu_read_unlock();
3275	context_destroy(&newcon);
3276	return rc;
3277}
3278
3279/**
3280 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3281 * @nlbl_sid: NetLabel SID
3282 * @nlbl_type: NetLabel labeling protocol type
3283 * @xfrm_sid: XFRM SID
3284 *
3285 * Description:
3286 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3287 * resolved into a single SID it is returned via @peer_sid and the function
3288 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3289 * returns a negative value.  A table summarizing the behavior is below:
3290 *
3291 *                                 | function return |      @sid
3292 *   ------------------------------+-----------------+-----------------
3293 *   no peer labels                |        0        |    SECSID_NULL
3294 *   single peer label             |        0        |    <peer_label>
3295 *   multiple, consistent labels   |        0        |    <peer_label>
3296 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3297 *
3298 */
3299int security_net_peersid_resolve(struct selinux_state *state,
3300				 u32 nlbl_sid, u32 nlbl_type,
3301				 u32 xfrm_sid,
3302				 u32 *peer_sid)
3303{
3304	struct selinux_policy *policy;
3305	struct policydb *policydb;
3306	struct sidtab *sidtab;
3307	int rc;
3308	struct context *nlbl_ctx;
3309	struct context *xfrm_ctx;
3310
3311	*peer_sid = SECSID_NULL;
3312
3313	/* handle the common (which also happens to be the set of easy) cases
3314	 * right away, these two if statements catch everything involving a
3315	 * single or absent peer SID/label */
3316	if (xfrm_sid == SECSID_NULL) {
3317		*peer_sid = nlbl_sid;
3318		return 0;
3319	}
3320	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3321	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3322	 * is present */
3323	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3324		*peer_sid = xfrm_sid;
3325		return 0;
3326	}
3327
3328	if (!selinux_initialized(state))
3329		return 0;
3330
3331	rcu_read_lock();
3332	policy = rcu_dereference(state->policy);
3333	policydb = &policy->policydb;
3334	sidtab = policy->sidtab;
3335
3336	/*
3337	 * We don't need to check initialized here since the only way both
3338	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3339	 * security server was initialized and state->initialized was true.
3340	 */
3341	if (!policydb->mls_enabled) {
3342		rc = 0;
3343		goto out;
3344	}
3345
3346	rc = -EINVAL;
3347	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3348	if (!nlbl_ctx) {
3349		pr_err("SELinux: %s:  unrecognized SID %d\n",
3350		       __func__, nlbl_sid);
3351		goto out;
3352	}
3353	rc = -EINVAL;
3354	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3355	if (!xfrm_ctx) {
3356		pr_err("SELinux: %s:  unrecognized SID %d\n",
3357		       __func__, xfrm_sid);
3358		goto out;
3359	}
3360	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3361	if (rc)
3362		goto out;
3363
3364	/* at present NetLabel SIDs/labels really only carry MLS
3365	 * information so if the MLS portion of the NetLabel SID
3366	 * matches the MLS portion of the labeled XFRM SID/label
3367	 * then pass along the XFRM SID as it is the most
3368	 * expressive */
3369	*peer_sid = xfrm_sid;
3370out:
3371	rcu_read_unlock();
3372	return rc;
3373}
3374
3375static int get_classes_callback(void *k, void *d, void *args)
3376{
3377	struct class_datum *datum = d;
3378	char *name = k, **classes = args;
3379	int value = datum->value - 1;
3380
3381	classes[value] = kstrdup(name, GFP_ATOMIC);
3382	if (!classes[value])
3383		return -ENOMEM;
3384
3385	return 0;
3386}
3387
3388int security_get_classes(struct selinux_policy *policy,
3389			 char ***classes, int *nclasses)
3390{
3391	struct policydb *policydb;
3392	int rc;
3393
3394	policydb = &policy->policydb;
3395
3396	rc = -ENOMEM;
3397	*nclasses = policydb->p_classes.nprim;
3398	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3399	if (!*classes)
3400		goto out;
3401
3402	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3403			 *classes);
3404	if (rc) {
3405		int i;
3406		for (i = 0; i < *nclasses; i++)
3407			kfree((*classes)[i]);
3408		kfree(*classes);
3409	}
3410
3411out:
3412	return rc;
3413}
3414
3415static int get_permissions_callback(void *k, void *d, void *args)
3416{
3417	struct perm_datum *datum = d;
3418	char *name = k, **perms = args;
3419	int value = datum->value - 1;
3420
3421	perms[value] = kstrdup(name, GFP_ATOMIC);
3422	if (!perms[value])
3423		return -ENOMEM;
3424
3425	return 0;
3426}
3427
3428int security_get_permissions(struct selinux_policy *policy,
3429			     char *class, char ***perms, int *nperms)
3430{
3431	struct policydb *policydb;
3432	int rc, i;
3433	struct class_datum *match;
3434
3435	policydb = &policy->policydb;
3436
3437	rc = -EINVAL;
3438	match = symtab_search(&policydb->p_classes, class);
3439	if (!match) {
3440		pr_err("SELinux: %s:  unrecognized class %s\n",
3441			__func__, class);
3442		goto out;
3443	}
3444
3445	rc = -ENOMEM;
3446	*nperms = match->permissions.nprim;
3447	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3448	if (!*perms)
3449		goto out;
3450
3451	if (match->comdatum) {
3452		rc = hashtab_map(&match->comdatum->permissions.table,
3453				 get_permissions_callback, *perms);
3454		if (rc)
3455			goto err;
3456	}
3457
3458	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3459			 *perms);
3460	if (rc)
3461		goto err;
3462
3463out:
3464	return rc;
3465
3466err:
3467	for (i = 0; i < *nperms; i++)
3468		kfree((*perms)[i]);
3469	kfree(*perms);
3470	return rc;
3471}
3472
3473int security_get_reject_unknown(struct selinux_state *state)
3474{
3475	struct selinux_policy *policy;
3476	int value;
3477
3478	if (!selinux_initialized(state))
3479		return 0;
3480
3481	rcu_read_lock();
3482	policy = rcu_dereference(state->policy);
3483	value = policy->policydb.reject_unknown;
3484	rcu_read_unlock();
3485	return value;
3486}
3487
3488int security_get_allow_unknown(struct selinux_state *state)
3489{
3490	struct selinux_policy *policy;
3491	int value;
3492
3493	if (!selinux_initialized(state))
3494		return 0;
3495
3496	rcu_read_lock();
3497	policy = rcu_dereference(state->policy);
3498	value = policy->policydb.allow_unknown;
3499	rcu_read_unlock();
3500	return value;
3501}
3502
3503/**
3504 * security_policycap_supported - Check for a specific policy capability
3505 * @req_cap: capability
3506 *
3507 * Description:
3508 * This function queries the currently loaded policy to see if it supports the
3509 * capability specified by @req_cap.  Returns true (1) if the capability is
3510 * supported, false (0) if it isn't supported.
3511 *
3512 */
3513int security_policycap_supported(struct selinux_state *state,
3514				 unsigned int req_cap)
3515{
3516	struct selinux_policy *policy;
3517	int rc;
3518
3519	if (!selinux_initialized(state))
3520		return 0;
3521
3522	rcu_read_lock();
3523	policy = rcu_dereference(state->policy);
3524	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3525	rcu_read_unlock();
3526
3527	return rc;
3528}
3529
3530struct selinux_audit_rule {
3531	u32 au_seqno;
3532	struct context au_ctxt;
3533};
3534
3535void selinux_audit_rule_free(void *vrule)
3536{
3537	struct selinux_audit_rule *rule = vrule;
3538
3539	if (rule) {
3540		context_destroy(&rule->au_ctxt);
3541		kfree(rule);
3542	}
3543}
3544
3545int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3546{
3547	struct selinux_state *state = &selinux_state;
3548	struct selinux_policy *policy;
3549	struct policydb *policydb;
3550	struct selinux_audit_rule *tmprule;
3551	struct role_datum *roledatum;
3552	struct type_datum *typedatum;
3553	struct user_datum *userdatum;
3554	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3555	int rc = 0;
3556
3557	*rule = NULL;
3558
3559	if (!selinux_initialized(state))
3560		return -EOPNOTSUPP;
3561
3562	switch (field) {
3563	case AUDIT_SUBJ_USER:
3564	case AUDIT_SUBJ_ROLE:
3565	case AUDIT_SUBJ_TYPE:
3566	case AUDIT_OBJ_USER:
3567	case AUDIT_OBJ_ROLE:
3568	case AUDIT_OBJ_TYPE:
3569		/* only 'equals' and 'not equals' fit user, role, and type */
3570		if (op != Audit_equal && op != Audit_not_equal)
3571			return -EINVAL;
3572		break;
3573	case AUDIT_SUBJ_SEN:
3574	case AUDIT_SUBJ_CLR:
3575	case AUDIT_OBJ_LEV_LOW:
3576	case AUDIT_OBJ_LEV_HIGH:
3577		/* we do not allow a range, indicated by the presence of '-' */
3578		if (strchr(rulestr, '-'))
3579			return -EINVAL;
3580		break;
3581	default:
3582		/* only the above fields are valid */
3583		return -EINVAL;
3584	}
3585
3586	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3587	if (!tmprule)
3588		return -ENOMEM;
3589
3590	context_init(&tmprule->au_ctxt);
3591
3592	rcu_read_lock();
3593	policy = rcu_dereference(state->policy);
3594	policydb = &policy->policydb;
3595
3596	tmprule->au_seqno = policy->latest_granting;
3597
3598	switch (field) {
3599	case AUDIT_SUBJ_USER:
3600	case AUDIT_OBJ_USER:
3601		rc = -EINVAL;
3602		userdatum = symtab_search(&policydb->p_users, rulestr);
3603		if (!userdatum)
3604			goto out;
3605		tmprule->au_ctxt.user = userdatum->value;
3606		break;
3607	case AUDIT_SUBJ_ROLE:
3608	case AUDIT_OBJ_ROLE:
3609		rc = -EINVAL;
3610		roledatum = symtab_search(&policydb->p_roles, rulestr);
3611		if (!roledatum)
3612			goto out;
3613		tmprule->au_ctxt.role = roledatum->value;
3614		break;
3615	case AUDIT_SUBJ_TYPE:
3616	case AUDIT_OBJ_TYPE:
3617		rc = -EINVAL;
3618		typedatum = symtab_search(&policydb->p_types, rulestr);
3619		if (!typedatum)
3620			goto out;
3621		tmprule->au_ctxt.type = typedatum->value;
3622		break;
3623	case AUDIT_SUBJ_SEN:
3624	case AUDIT_SUBJ_CLR:
3625	case AUDIT_OBJ_LEV_LOW:
3626	case AUDIT_OBJ_LEV_HIGH:
3627		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3628				     GFP_ATOMIC);
3629		if (rc)
3630			goto out;
3631		break;
3632	}
3633	rc = 0;
3634out:
3635	rcu_read_unlock();
3636
3637	if (rc) {
3638		selinux_audit_rule_free(tmprule);
3639		tmprule = NULL;
3640	}
3641
3642	*rule = tmprule;
3643
3644	return rc;
3645}
3646
3647/* Check to see if the rule contains any selinux fields */
3648int selinux_audit_rule_known(struct audit_krule *rule)
3649{
3650	int i;
3651
3652	for (i = 0; i < rule->field_count; i++) {
3653		struct audit_field *f = &rule->fields[i];
3654		switch (f->type) {
3655		case AUDIT_SUBJ_USER:
3656		case AUDIT_SUBJ_ROLE:
3657		case AUDIT_SUBJ_TYPE:
3658		case AUDIT_SUBJ_SEN:
3659		case AUDIT_SUBJ_CLR:
3660		case AUDIT_OBJ_USER:
3661		case AUDIT_OBJ_ROLE:
3662		case AUDIT_OBJ_TYPE:
3663		case AUDIT_OBJ_LEV_LOW:
3664		case AUDIT_OBJ_LEV_HIGH:
3665			return 1;
3666		}
3667	}
3668
3669	return 0;
3670}
3671
3672int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3673{
3674	struct selinux_state *state = &selinux_state;
3675	struct selinux_policy *policy;
3676	struct context *ctxt;
3677	struct mls_level *level;
3678	struct selinux_audit_rule *rule = vrule;
3679	int match = 0;
3680
3681	if (unlikely(!rule)) {
3682		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3683		return -ENOENT;
3684	}
3685
3686	if (!selinux_initialized(state))
3687		return 0;
3688
3689	rcu_read_lock();
3690
3691	policy = rcu_dereference(state->policy);
3692
3693	if (rule->au_seqno < policy->latest_granting) {
3694		match = -ESTALE;
3695		goto out;
3696	}
3697
3698	ctxt = sidtab_search(policy->sidtab, sid);
3699	if (unlikely(!ctxt)) {
3700		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3701			  sid);
3702		match = -ENOENT;
3703		goto out;
3704	}
3705
3706	/* a field/op pair that is not caught here will simply fall through
3707	   without a match */
3708	switch (field) {
3709	case AUDIT_SUBJ_USER:
3710	case AUDIT_OBJ_USER:
3711		switch (op) {
3712		case Audit_equal:
3713			match = (ctxt->user == rule->au_ctxt.user);
3714			break;
3715		case Audit_not_equal:
3716			match = (ctxt->user != rule->au_ctxt.user);
3717			break;
3718		}
3719		break;
3720	case AUDIT_SUBJ_ROLE:
3721	case AUDIT_OBJ_ROLE:
3722		switch (op) {
3723		case Audit_equal:
3724			match = (ctxt->role == rule->au_ctxt.role);
3725			break;
3726		case Audit_not_equal:
3727			match = (ctxt->role != rule->au_ctxt.role);
3728			break;
3729		}
3730		break;
3731	case AUDIT_SUBJ_TYPE:
3732	case AUDIT_OBJ_TYPE:
3733		switch (op) {
3734		case Audit_equal:
3735			match = (ctxt->type == rule->au_ctxt.type);
3736			break;
3737		case Audit_not_equal:
3738			match = (ctxt->type != rule->au_ctxt.type);
3739			break;
3740		}
3741		break;
3742	case AUDIT_SUBJ_SEN:
3743	case AUDIT_SUBJ_CLR:
3744	case AUDIT_OBJ_LEV_LOW:
3745	case AUDIT_OBJ_LEV_HIGH:
3746		level = ((field == AUDIT_SUBJ_SEN ||
3747			  field == AUDIT_OBJ_LEV_LOW) ?
3748			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3749		switch (op) {
3750		case Audit_equal:
3751			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3752					     level);
3753			break;
3754		case Audit_not_equal:
3755			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3756					      level);
3757			break;
3758		case Audit_lt:
3759			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3760					       level) &&
3761				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3762					       level));
3763			break;
3764		case Audit_le:
3765			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3766					      level);
3767			break;
3768		case Audit_gt:
3769			match = (mls_level_dom(level,
3770					      &rule->au_ctxt.range.level[0]) &&
3771				 !mls_level_eq(level,
3772					       &rule->au_ctxt.range.level[0]));
3773			break;
3774		case Audit_ge:
3775			match = mls_level_dom(level,
3776					      &rule->au_ctxt.range.level[0]);
3777			break;
3778		}
3779	}
3780
3781out:
3782	rcu_read_unlock();
3783	return match;
3784}
3785
3786static int (*aurule_callback)(void) = audit_update_lsm_rules;
3787
3788static int aurule_avc_callback(u32 event)
3789{
3790	int err = 0;
3791
3792	if (event == AVC_CALLBACK_RESET && aurule_callback)
3793		err = aurule_callback();
3794	return err;
3795}
3796
3797static int __init aurule_init(void)
3798{
3799	int err;
3800
3801	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3802	if (err)
3803		panic("avc_add_callback() failed, error %d\n", err);
3804
3805	return err;
3806}
3807__initcall(aurule_init);
3808
3809#ifdef CONFIG_NETLABEL
3810/**
3811 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3812 * @secattr: the NetLabel packet security attributes
3813 * @sid: the SELinux SID
3814 *
3815 * Description:
3816 * Attempt to cache the context in @ctx, which was derived from the packet in
3817 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3818 * already been initialized.
3819 *
3820 */
3821static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3822				      u32 sid)
3823{
3824	u32 *sid_cache;
3825
3826	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3827	if (sid_cache == NULL)
3828		return;
3829	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3830	if (secattr->cache == NULL) {
3831		kfree(sid_cache);
3832		return;
3833	}
3834
3835	*sid_cache = sid;
3836	secattr->cache->free = kfree;
3837	secattr->cache->data = sid_cache;
3838	secattr->flags |= NETLBL_SECATTR_CACHE;
3839}
3840
3841/**
3842 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3843 * @secattr: the NetLabel packet security attributes
3844 * @sid: the SELinux SID
3845 *
3846 * Description:
3847 * Convert the given NetLabel security attributes in @secattr into a
3848 * SELinux SID.  If the @secattr field does not contain a full SELinux
3849 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3850 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3851 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3852 * conversion for future lookups.  Returns zero on success, negative values on
3853 * failure.
3854 *
3855 */
3856int security_netlbl_secattr_to_sid(struct selinux_state *state,
3857				   struct netlbl_lsm_secattr *secattr,
3858				   u32 *sid)
3859{
3860	struct selinux_policy *policy;
3861	struct policydb *policydb;
3862	struct sidtab *sidtab;
3863	int rc;
3864	struct context *ctx;
3865	struct context ctx_new;
3866
3867	if (!selinux_initialized(state)) {
3868		*sid = SECSID_NULL;
3869		return 0;
3870	}
3871
3872retry:
3873	rc = 0;
3874	rcu_read_lock();
3875	policy = rcu_dereference(state->policy);
3876	policydb = &policy->policydb;
3877	sidtab = policy->sidtab;
3878
3879	if (secattr->flags & NETLBL_SECATTR_CACHE)
3880		*sid = *(u32 *)secattr->cache->data;
3881	else if (secattr->flags & NETLBL_SECATTR_SECID)
3882		*sid = secattr->attr.secid;
3883	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3884		rc = -EIDRM;
3885		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3886		if (ctx == NULL)
3887			goto out;
3888
3889		context_init(&ctx_new);
3890		ctx_new.user = ctx->user;
3891		ctx_new.role = ctx->role;
3892		ctx_new.type = ctx->type;
3893		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3894		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3895			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3896			if (rc)
3897				goto out;
3898		}
3899		rc = -EIDRM;
3900		if (!mls_context_isvalid(policydb, &ctx_new)) {
3901			ebitmap_destroy(&ctx_new.range.level[0].cat);
3902			goto out;
3903		}
3904
3905		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3906		ebitmap_destroy(&ctx_new.range.level[0].cat);
3907		if (rc == -ESTALE) {
3908			rcu_read_unlock();
3909			goto retry;
3910		}
3911		if (rc)
3912			goto out;
3913
3914		security_netlbl_cache_add(secattr, *sid);
3915	} else
3916		*sid = SECSID_NULL;
3917
3918out:
3919	rcu_read_unlock();
3920	return rc;
3921}
3922
3923/**
3924 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3925 * @sid: the SELinux SID
3926 * @secattr: the NetLabel packet security attributes
3927 *
3928 * Description:
3929 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3930 * Returns zero on success, negative values on failure.
3931 *
3932 */
3933int security_netlbl_sid_to_secattr(struct selinux_state *state,
3934				   u32 sid, struct netlbl_lsm_secattr *secattr)
3935{
3936	struct selinux_policy *policy;
3937	struct policydb *policydb;
3938	int rc;
3939	struct context *ctx;
3940
3941	if (!selinux_initialized(state))
3942		return 0;
3943
3944	rcu_read_lock();
3945	policy = rcu_dereference(state->policy);
3946	policydb = &policy->policydb;
3947
3948	rc = -ENOENT;
3949	ctx = sidtab_search(policy->sidtab, sid);
3950	if (ctx == NULL)
3951		goto out;
3952
3953	rc = -ENOMEM;
3954	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3955				  GFP_ATOMIC);
3956	if (secattr->domain == NULL)
3957		goto out;
3958
3959	secattr->attr.secid = sid;
3960	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3961	mls_export_netlbl_lvl(policydb, ctx, secattr);
3962	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3963out:
3964	rcu_read_unlock();
3965	return rc;
3966}
3967#endif /* CONFIG_NETLABEL */
3968
3969/**
3970 * security_read_policy - read the policy.
3971 * @data: binary policy data
3972 * @len: length of data in bytes
3973 *
3974 */
3975int security_read_policy(struct selinux_state *state,
3976			 void **data, size_t *len)
3977{
3978	struct selinux_policy *policy;
3979	int rc;
3980	struct policy_file fp;
3981
3982	policy = rcu_dereference_protected(
3983			state->policy, lockdep_is_held(&state->policy_mutex));
3984	if (!policy)
3985		return -EINVAL;
3986
3987	*len = policy->policydb.len;
3988	*data = vmalloc_user(*len);
3989	if (!*data)
3990		return -ENOMEM;
3991
3992	fp.data = *data;
3993	fp.len = *len;
3994
3995	rc = policydb_write(&policy->policydb, &fp);
3996	if (rc)
3997		return rc;
3998
3999	*len = (unsigned long)fp.data - (unsigned long)*data;
4000	return 0;
4001
4002}
4003