1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Implementation of the security services. 4 * 5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 9 * 10 * Support for enhanced MLS infrastructure. 11 * Support for context based audit filters. 12 * 13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 14 * 15 * Added conditional policy language extensions 16 * 17 * Updated: Hewlett-Packard <paul@paul-moore.com> 18 * 19 * Added support for NetLabel 20 * Added support for the policy capability bitmap 21 * 22 * Updated: Chad Sellers <csellers@tresys.com> 23 * 24 * Added validation of kernel classes and permissions 25 * 26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 27 * 28 * Added support for bounds domain and audit messaged on masked permissions 29 * 30 * Updated: Guido Trentalancia <guido@trentalancia.com> 31 * 32 * Added support for runtime switching of the policy type 33 * 34 * Copyright (C) 2008, 2009 NEC Corporation 35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 39 */ 40#include <linux/kernel.h> 41#include <linux/slab.h> 42#include <linux/string.h> 43#include <linux/spinlock.h> 44#include <linux/rcupdate.h> 45#include <linux/errno.h> 46#include <linux/in.h> 47#include <linux/sched.h> 48#include <linux/audit.h> 49#include <linux/vmalloc.h> 50#include <net/netlabel.h> 51 52#include "flask.h" 53#include "avc.h" 54#include "avc_ss.h" 55#include "security.h" 56#include "context.h" 57#include "policydb.h" 58#include "sidtab.h" 59#include "services.h" 60#include "conditional.h" 61#include "mls.h" 62#include "objsec.h" 63#include "netlabel.h" 64#include "xfrm.h" 65#include "ebitmap.h" 66#include "audit.h" 67#include "policycap_names.h" 68 69struct convert_context_args { 70 struct selinux_state *state; 71 struct policydb *oldp; 72 struct policydb *newp; 73}; 74 75struct selinux_policy_convert_data { 76 struct convert_context_args args; 77 struct sidtab_convert_params sidtab_params; 78}; 79 80/* Forward declaration. */ 81static int context_struct_to_string(struct policydb *policydb, 82 struct context *context, 83 char **scontext, 84 u32 *scontext_len); 85 86static int sidtab_entry_to_string(struct policydb *policydb, 87 struct sidtab *sidtab, 88 struct sidtab_entry *entry, 89 char **scontext, 90 u32 *scontext_len); 91 92static void context_struct_compute_av(struct policydb *policydb, 93 struct context *scontext, 94 struct context *tcontext, 95 u16 tclass, 96 struct av_decision *avd, 97 struct extended_perms *xperms); 98 99static int selinux_set_mapping(struct policydb *pol, 100 struct security_class_mapping *map, 101 struct selinux_map *out_map) 102{ 103 u16 i, j; 104 unsigned k; 105 bool print_unknown_handle = false; 106 107 /* Find number of classes in the input mapping */ 108 if (!map) 109 return -EINVAL; 110 i = 0; 111 while (map[i].name) 112 i++; 113 114 /* Allocate space for the class records, plus one for class zero */ 115 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC); 116 if (!out_map->mapping) 117 return -ENOMEM; 118 119 /* Store the raw class and permission values */ 120 j = 0; 121 while (map[j].name) { 122 struct security_class_mapping *p_in = map + (j++); 123 struct selinux_mapping *p_out = out_map->mapping + j; 124 125 /* An empty class string skips ahead */ 126 if (!strcmp(p_in->name, "")) { 127 p_out->num_perms = 0; 128 continue; 129 } 130 131 p_out->value = string_to_security_class(pol, p_in->name); 132 if (!p_out->value) { 133 pr_info("SELinux: Class %s not defined in policy.\n", 134 p_in->name); 135 if (pol->reject_unknown) 136 goto err; 137 p_out->num_perms = 0; 138 print_unknown_handle = true; 139 continue; 140 } 141 142 k = 0; 143 while (p_in->perms[k]) { 144 /* An empty permission string skips ahead */ 145 if (!*p_in->perms[k]) { 146 k++; 147 continue; 148 } 149 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 150 p_in->perms[k]); 151 if (!p_out->perms[k]) { 152 pr_info("SELinux: Permission %s in class %s not defined in policy.\n", 153 p_in->perms[k], p_in->name); 154 if (pol->reject_unknown) 155 goto err; 156 print_unknown_handle = true; 157 } 158 159 k++; 160 } 161 p_out->num_perms = k; 162 } 163 164 if (print_unknown_handle) 165 pr_info("SELinux: the above unknown classes and permissions will be %s\n", 166 pol->allow_unknown ? "allowed" : "denied"); 167 168 out_map->size = i; 169 return 0; 170err: 171 kfree(out_map->mapping); 172 out_map->mapping = NULL; 173 return -EINVAL; 174} 175 176/* 177 * Get real, policy values from mapped values 178 */ 179 180static u16 unmap_class(struct selinux_map *map, u16 tclass) 181{ 182 if (tclass < map->size) 183 return map->mapping[tclass].value; 184 185 return tclass; 186} 187 188/* 189 * Get kernel value for class from its policy value 190 */ 191static u16 map_class(struct selinux_map *map, u16 pol_value) 192{ 193 u16 i; 194 195 for (i = 1; i < map->size; i++) { 196 if (map->mapping[i].value == pol_value) 197 return i; 198 } 199 200 return SECCLASS_NULL; 201} 202 203static void map_decision(struct selinux_map *map, 204 u16 tclass, struct av_decision *avd, 205 int allow_unknown) 206{ 207 if (tclass < map->size) { 208 struct selinux_mapping *mapping = &map->mapping[tclass]; 209 unsigned int i, n = mapping->num_perms; 210 u32 result; 211 212 for (i = 0, result = 0; i < n; i++) { 213 if (avd->allowed & mapping->perms[i]) 214 result |= 1<<i; 215 if (allow_unknown && !mapping->perms[i]) 216 result |= 1<<i; 217 } 218 avd->allowed = result; 219 220 for (i = 0, result = 0; i < n; i++) 221 if (avd->auditallow & mapping->perms[i]) 222 result |= 1<<i; 223 avd->auditallow = result; 224 225 for (i = 0, result = 0; i < n; i++) { 226 if (avd->auditdeny & mapping->perms[i]) 227 result |= 1<<i; 228 if (!allow_unknown && !mapping->perms[i]) 229 result |= 1<<i; 230 } 231 /* 232 * In case the kernel has a bug and requests a permission 233 * between num_perms and the maximum permission number, we 234 * should audit that denial 235 */ 236 for (; i < (sizeof(u32)*8); i++) 237 result |= 1<<i; 238 avd->auditdeny = result; 239 } 240} 241 242int security_mls_enabled(struct selinux_state *state) 243{ 244 int mls_enabled; 245 struct selinux_policy *policy; 246 247 if (!selinux_initialized(state)) 248 return 0; 249 250 rcu_read_lock(); 251 policy = rcu_dereference(state->policy); 252 mls_enabled = policy->policydb.mls_enabled; 253 rcu_read_unlock(); 254 return mls_enabled; 255} 256 257/* 258 * Return the boolean value of a constraint expression 259 * when it is applied to the specified source and target 260 * security contexts. 261 * 262 * xcontext is a special beast... It is used by the validatetrans rules 263 * only. For these rules, scontext is the context before the transition, 264 * tcontext is the context after the transition, and xcontext is the context 265 * of the process performing the transition. All other callers of 266 * constraint_expr_eval should pass in NULL for xcontext. 267 */ 268static int constraint_expr_eval(struct policydb *policydb, 269 struct context *scontext, 270 struct context *tcontext, 271 struct context *xcontext, 272 struct constraint_expr *cexpr) 273{ 274 u32 val1, val2; 275 struct context *c; 276 struct role_datum *r1, *r2; 277 struct mls_level *l1, *l2; 278 struct constraint_expr *e; 279 int s[CEXPR_MAXDEPTH]; 280 int sp = -1; 281 282 for (e = cexpr; e; e = e->next) { 283 switch (e->expr_type) { 284 case CEXPR_NOT: 285 BUG_ON(sp < 0); 286 s[sp] = !s[sp]; 287 break; 288 case CEXPR_AND: 289 BUG_ON(sp < 1); 290 sp--; 291 s[sp] &= s[sp + 1]; 292 break; 293 case CEXPR_OR: 294 BUG_ON(sp < 1); 295 sp--; 296 s[sp] |= s[sp + 1]; 297 break; 298 case CEXPR_ATTR: 299 if (sp == (CEXPR_MAXDEPTH - 1)) 300 return 0; 301 switch (e->attr) { 302 case CEXPR_USER: 303 val1 = scontext->user; 304 val2 = tcontext->user; 305 break; 306 case CEXPR_TYPE: 307 val1 = scontext->type; 308 val2 = tcontext->type; 309 break; 310 case CEXPR_ROLE: 311 val1 = scontext->role; 312 val2 = tcontext->role; 313 r1 = policydb->role_val_to_struct[val1 - 1]; 314 r2 = policydb->role_val_to_struct[val2 - 1]; 315 switch (e->op) { 316 case CEXPR_DOM: 317 s[++sp] = ebitmap_get_bit(&r1->dominates, 318 val2 - 1); 319 continue; 320 case CEXPR_DOMBY: 321 s[++sp] = ebitmap_get_bit(&r2->dominates, 322 val1 - 1); 323 continue; 324 case CEXPR_INCOMP: 325 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 326 val2 - 1) && 327 !ebitmap_get_bit(&r2->dominates, 328 val1 - 1)); 329 continue; 330 default: 331 break; 332 } 333 break; 334 case CEXPR_L1L2: 335 l1 = &(scontext->range.level[0]); 336 l2 = &(tcontext->range.level[0]); 337 goto mls_ops; 338 case CEXPR_L1H2: 339 l1 = &(scontext->range.level[0]); 340 l2 = &(tcontext->range.level[1]); 341 goto mls_ops; 342 case CEXPR_H1L2: 343 l1 = &(scontext->range.level[1]); 344 l2 = &(tcontext->range.level[0]); 345 goto mls_ops; 346 case CEXPR_H1H2: 347 l1 = &(scontext->range.level[1]); 348 l2 = &(tcontext->range.level[1]); 349 goto mls_ops; 350 case CEXPR_L1H1: 351 l1 = &(scontext->range.level[0]); 352 l2 = &(scontext->range.level[1]); 353 goto mls_ops; 354 case CEXPR_L2H2: 355 l1 = &(tcontext->range.level[0]); 356 l2 = &(tcontext->range.level[1]); 357 goto mls_ops; 358mls_ops: 359 switch (e->op) { 360 case CEXPR_EQ: 361 s[++sp] = mls_level_eq(l1, l2); 362 continue; 363 case CEXPR_NEQ: 364 s[++sp] = !mls_level_eq(l1, l2); 365 continue; 366 case CEXPR_DOM: 367 s[++sp] = mls_level_dom(l1, l2); 368 continue; 369 case CEXPR_DOMBY: 370 s[++sp] = mls_level_dom(l2, l1); 371 continue; 372 case CEXPR_INCOMP: 373 s[++sp] = mls_level_incomp(l2, l1); 374 continue; 375 default: 376 BUG(); 377 return 0; 378 } 379 break; 380 default: 381 BUG(); 382 return 0; 383 } 384 385 switch (e->op) { 386 case CEXPR_EQ: 387 s[++sp] = (val1 == val2); 388 break; 389 case CEXPR_NEQ: 390 s[++sp] = (val1 != val2); 391 break; 392 default: 393 BUG(); 394 return 0; 395 } 396 break; 397 case CEXPR_NAMES: 398 if (sp == (CEXPR_MAXDEPTH-1)) 399 return 0; 400 c = scontext; 401 if (e->attr & CEXPR_TARGET) 402 c = tcontext; 403 else if (e->attr & CEXPR_XTARGET) { 404 c = xcontext; 405 if (!c) { 406 BUG(); 407 return 0; 408 } 409 } 410 if (e->attr & CEXPR_USER) 411 val1 = c->user; 412 else if (e->attr & CEXPR_ROLE) 413 val1 = c->role; 414 else if (e->attr & CEXPR_TYPE) 415 val1 = c->type; 416 else { 417 BUG(); 418 return 0; 419 } 420 421 switch (e->op) { 422 case CEXPR_EQ: 423 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 424 break; 425 case CEXPR_NEQ: 426 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 427 break; 428 default: 429 BUG(); 430 return 0; 431 } 432 break; 433 default: 434 BUG(); 435 return 0; 436 } 437 } 438 439 BUG_ON(sp != 0); 440 return s[0]; 441} 442 443/* 444 * security_dump_masked_av - dumps masked permissions during 445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 446 */ 447static int dump_masked_av_helper(void *k, void *d, void *args) 448{ 449 struct perm_datum *pdatum = d; 450 char **permission_names = args; 451 452 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 453 454 permission_names[pdatum->value - 1] = (char *)k; 455 456 return 0; 457} 458 459static void security_dump_masked_av(struct policydb *policydb, 460 struct context *scontext, 461 struct context *tcontext, 462 u16 tclass, 463 u32 permissions, 464 const char *reason) 465{ 466 struct common_datum *common_dat; 467 struct class_datum *tclass_dat; 468 struct audit_buffer *ab; 469 char *tclass_name; 470 char *scontext_name = NULL; 471 char *tcontext_name = NULL; 472 char *permission_names[32]; 473 int index; 474 u32 length; 475 bool need_comma = false; 476 477 if (!permissions) 478 return; 479 480 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1); 481 tclass_dat = policydb->class_val_to_struct[tclass - 1]; 482 common_dat = tclass_dat->comdatum; 483 484 /* init permission_names */ 485 if (common_dat && 486 hashtab_map(&common_dat->permissions.table, 487 dump_masked_av_helper, permission_names) < 0) 488 goto out; 489 490 if (hashtab_map(&tclass_dat->permissions.table, 491 dump_masked_av_helper, permission_names) < 0) 492 goto out; 493 494 /* get scontext/tcontext in text form */ 495 if (context_struct_to_string(policydb, scontext, 496 &scontext_name, &length) < 0) 497 goto out; 498 499 if (context_struct_to_string(policydb, tcontext, 500 &tcontext_name, &length) < 0) 501 goto out; 502 503 /* audit a message */ 504 ab = audit_log_start(audit_context(), 505 GFP_ATOMIC, AUDIT_SELINUX_ERR); 506 if (!ab) 507 goto out; 508 509 audit_log_format(ab, "op=security_compute_av reason=%s " 510 "scontext=%s tcontext=%s tclass=%s perms=", 511 reason, scontext_name, tcontext_name, tclass_name); 512 513 for (index = 0; index < 32; index++) { 514 u32 mask = (1 << index); 515 516 if ((mask & permissions) == 0) 517 continue; 518 519 audit_log_format(ab, "%s%s", 520 need_comma ? "," : "", 521 permission_names[index] 522 ? permission_names[index] : "????"); 523 need_comma = true; 524 } 525 audit_log_end(ab); 526out: 527 /* release scontext/tcontext */ 528 kfree(tcontext_name); 529 kfree(scontext_name); 530 531 return; 532} 533 534/* 535 * security_boundary_permission - drops violated permissions 536 * on boundary constraint. 537 */ 538static void type_attribute_bounds_av(struct policydb *policydb, 539 struct context *scontext, 540 struct context *tcontext, 541 u16 tclass, 542 struct av_decision *avd) 543{ 544 struct context lo_scontext; 545 struct context lo_tcontext, *tcontextp = tcontext; 546 struct av_decision lo_avd; 547 struct type_datum *source; 548 struct type_datum *target; 549 u32 masked = 0; 550 551 source = policydb->type_val_to_struct[scontext->type - 1]; 552 BUG_ON(!source); 553 554 if (!source->bounds) 555 return; 556 557 target = policydb->type_val_to_struct[tcontext->type - 1]; 558 BUG_ON(!target); 559 560 memset(&lo_avd, 0, sizeof(lo_avd)); 561 562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 563 lo_scontext.type = source->bounds; 564 565 if (target->bounds) { 566 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 567 lo_tcontext.type = target->bounds; 568 tcontextp = &lo_tcontext; 569 } 570 571 context_struct_compute_av(policydb, &lo_scontext, 572 tcontextp, 573 tclass, 574 &lo_avd, 575 NULL); 576 577 masked = ~lo_avd.allowed & avd->allowed; 578 579 if (likely(!masked)) 580 return; /* no masked permission */ 581 582 /* mask violated permissions */ 583 avd->allowed &= ~masked; 584 585 /* audit masked permissions */ 586 security_dump_masked_av(policydb, scontext, tcontext, 587 tclass, masked, "bounds"); 588} 589 590/* 591 * flag which drivers have permissions 592 * only looking for ioctl based extended permssions 593 */ 594void services_compute_xperms_drivers( 595 struct extended_perms *xperms, 596 struct avtab_node *node) 597{ 598 unsigned int i; 599 600 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 601 /* if one or more driver has all permissions allowed */ 602 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++) 603 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i]; 604 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 605 /* if allowing permissions within a driver */ 606 security_xperm_set(xperms->drivers.p, 607 node->datum.u.xperms->driver); 608 } 609 610 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */ 611 if (node->key.specified & AVTAB_XPERMS_ALLOWED) 612 xperms->len = 1; 613} 614 615/* 616 * Compute access vectors and extended permissions based on a context 617 * structure pair for the permissions in a particular class. 618 */ 619static void context_struct_compute_av(struct policydb *policydb, 620 struct context *scontext, 621 struct context *tcontext, 622 u16 tclass, 623 struct av_decision *avd, 624 struct extended_perms *xperms) 625{ 626 struct constraint_node *constraint; 627 struct role_allow *ra; 628 struct avtab_key avkey; 629 struct avtab_node *node; 630 struct class_datum *tclass_datum; 631 struct ebitmap *sattr, *tattr; 632 struct ebitmap_node *snode, *tnode; 633 unsigned int i, j; 634 635 avd->allowed = 0; 636 avd->auditallow = 0; 637 avd->auditdeny = 0xffffffff; 638 if (xperms) { 639 memset(&xperms->drivers, 0, sizeof(xperms->drivers)); 640 xperms->len = 0; 641 } 642 643 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) { 644 if (printk_ratelimit()) 645 pr_warn("SELinux: Invalid class %hu\n", tclass); 646 return; 647 } 648 649 tclass_datum = policydb->class_val_to_struct[tclass - 1]; 650 651 /* 652 * If a specific type enforcement rule was defined for 653 * this permission check, then use it. 654 */ 655 avkey.target_class = tclass; 656 avkey.specified = AVTAB_AV | AVTAB_XPERMS; 657 sattr = &policydb->type_attr_map_array[scontext->type - 1]; 658 tattr = &policydb->type_attr_map_array[tcontext->type - 1]; 659 ebitmap_for_each_positive_bit(sattr, snode, i) { 660 ebitmap_for_each_positive_bit(tattr, tnode, j) { 661 avkey.source_type = i + 1; 662 avkey.target_type = j + 1; 663 for (node = avtab_search_node(&policydb->te_avtab, 664 &avkey); 665 node; 666 node = avtab_search_node_next(node, avkey.specified)) { 667 if (node->key.specified == AVTAB_ALLOWED) 668 avd->allowed |= node->datum.u.data; 669 else if (node->key.specified == AVTAB_AUDITALLOW) 670 avd->auditallow |= node->datum.u.data; 671 else if (node->key.specified == AVTAB_AUDITDENY) 672 avd->auditdeny &= node->datum.u.data; 673 else if (xperms && (node->key.specified & AVTAB_XPERMS)) 674 services_compute_xperms_drivers(xperms, node); 675 } 676 677 /* Check conditional av table for additional permissions */ 678 cond_compute_av(&policydb->te_cond_avtab, &avkey, 679 avd, xperms); 680 681 } 682 } 683 684 /* 685 * Remove any permissions prohibited by a constraint (this includes 686 * the MLS policy). 687 */ 688 constraint = tclass_datum->constraints; 689 while (constraint) { 690 if ((constraint->permissions & (avd->allowed)) && 691 !constraint_expr_eval(policydb, scontext, tcontext, NULL, 692 constraint->expr)) { 693 avd->allowed &= ~(constraint->permissions); 694 } 695 constraint = constraint->next; 696 } 697 698 /* 699 * If checking process transition permission and the 700 * role is changing, then check the (current_role, new_role) 701 * pair. 702 */ 703 if (tclass == policydb->process_class && 704 (avd->allowed & policydb->process_trans_perms) && 705 scontext->role != tcontext->role) { 706 for (ra = policydb->role_allow; ra; ra = ra->next) { 707 if (scontext->role == ra->role && 708 tcontext->role == ra->new_role) 709 break; 710 } 711 if (!ra) 712 avd->allowed &= ~policydb->process_trans_perms; 713 } 714 715 /* 716 * If the given source and target types have boundary 717 * constraint, lazy checks have to mask any violated 718 * permission and notice it to userspace via audit. 719 */ 720 type_attribute_bounds_av(policydb, scontext, tcontext, 721 tclass, avd); 722} 723 724static int security_validtrans_handle_fail(struct selinux_state *state, 725 struct selinux_policy *policy, 726 struct sidtab_entry *oentry, 727 struct sidtab_entry *nentry, 728 struct sidtab_entry *tentry, 729 u16 tclass) 730{ 731 struct policydb *p = &policy->policydb; 732 struct sidtab *sidtab = policy->sidtab; 733 char *o = NULL, *n = NULL, *t = NULL; 734 u32 olen, nlen, tlen; 735 736 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen)) 737 goto out; 738 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen)) 739 goto out; 740 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen)) 741 goto out; 742 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR, 743 "op=security_validate_transition seresult=denied" 744 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 745 o, n, t, sym_name(p, SYM_CLASSES, tclass-1)); 746out: 747 kfree(o); 748 kfree(n); 749 kfree(t); 750 751 if (!enforcing_enabled(state)) 752 return 0; 753 return -EPERM; 754} 755 756static int security_compute_validatetrans(struct selinux_state *state, 757 u32 oldsid, u32 newsid, u32 tasksid, 758 u16 orig_tclass, bool user) 759{ 760 struct selinux_policy *policy; 761 struct policydb *policydb; 762 struct sidtab *sidtab; 763 struct sidtab_entry *oentry; 764 struct sidtab_entry *nentry; 765 struct sidtab_entry *tentry; 766 struct class_datum *tclass_datum; 767 struct constraint_node *constraint; 768 u16 tclass; 769 int rc = 0; 770 771 772 if (!selinux_initialized(state)) 773 return 0; 774 775 rcu_read_lock(); 776 777 policy = rcu_dereference(state->policy); 778 policydb = &policy->policydb; 779 sidtab = policy->sidtab; 780 781 if (!user) 782 tclass = unmap_class(&policy->map, orig_tclass); 783 else 784 tclass = orig_tclass; 785 786 if (!tclass || tclass > policydb->p_classes.nprim) { 787 rc = -EINVAL; 788 goto out; 789 } 790 tclass_datum = policydb->class_val_to_struct[tclass - 1]; 791 792 oentry = sidtab_search_entry(sidtab, oldsid); 793 if (!oentry) { 794 pr_err("SELinux: %s: unrecognized SID %d\n", 795 __func__, oldsid); 796 rc = -EINVAL; 797 goto out; 798 } 799 800 nentry = sidtab_search_entry(sidtab, newsid); 801 if (!nentry) { 802 pr_err("SELinux: %s: unrecognized SID %d\n", 803 __func__, newsid); 804 rc = -EINVAL; 805 goto out; 806 } 807 808 tentry = sidtab_search_entry(sidtab, tasksid); 809 if (!tentry) { 810 pr_err("SELinux: %s: unrecognized SID %d\n", 811 __func__, tasksid); 812 rc = -EINVAL; 813 goto out; 814 } 815 816 constraint = tclass_datum->validatetrans; 817 while (constraint) { 818 if (!constraint_expr_eval(policydb, &oentry->context, 819 &nentry->context, &tentry->context, 820 constraint->expr)) { 821 if (user) 822 rc = -EPERM; 823 else 824 rc = security_validtrans_handle_fail(state, 825 policy, 826 oentry, 827 nentry, 828 tentry, 829 tclass); 830 goto out; 831 } 832 constraint = constraint->next; 833 } 834 835out: 836 rcu_read_unlock(); 837 return rc; 838} 839 840int security_validate_transition_user(struct selinux_state *state, 841 u32 oldsid, u32 newsid, u32 tasksid, 842 u16 tclass) 843{ 844 return security_compute_validatetrans(state, oldsid, newsid, tasksid, 845 tclass, true); 846} 847 848int security_validate_transition(struct selinux_state *state, 849 u32 oldsid, u32 newsid, u32 tasksid, 850 u16 orig_tclass) 851{ 852 return security_compute_validatetrans(state, oldsid, newsid, tasksid, 853 orig_tclass, false); 854} 855 856/* 857 * security_bounded_transition - check whether the given 858 * transition is directed to bounded, or not. 859 * It returns 0, if @newsid is bounded by @oldsid. 860 * Otherwise, it returns error code. 861 * 862 * @oldsid : current security identifier 863 * @newsid : destinated security identifier 864 */ 865int security_bounded_transition(struct selinux_state *state, 866 u32 old_sid, u32 new_sid) 867{ 868 struct selinux_policy *policy; 869 struct policydb *policydb; 870 struct sidtab *sidtab; 871 struct sidtab_entry *old_entry, *new_entry; 872 struct type_datum *type; 873 int index; 874 int rc; 875 876 if (!selinux_initialized(state)) 877 return 0; 878 879 rcu_read_lock(); 880 policy = rcu_dereference(state->policy); 881 policydb = &policy->policydb; 882 sidtab = policy->sidtab; 883 884 rc = -EINVAL; 885 old_entry = sidtab_search_entry(sidtab, old_sid); 886 if (!old_entry) { 887 pr_err("SELinux: %s: unrecognized SID %u\n", 888 __func__, old_sid); 889 goto out; 890 } 891 892 rc = -EINVAL; 893 new_entry = sidtab_search_entry(sidtab, new_sid); 894 if (!new_entry) { 895 pr_err("SELinux: %s: unrecognized SID %u\n", 896 __func__, new_sid); 897 goto out; 898 } 899 900 rc = 0; 901 /* type/domain unchanged */ 902 if (old_entry->context.type == new_entry->context.type) 903 goto out; 904 905 index = new_entry->context.type; 906 while (true) { 907 type = policydb->type_val_to_struct[index - 1]; 908 BUG_ON(!type); 909 910 /* not bounded anymore */ 911 rc = -EPERM; 912 if (!type->bounds) 913 break; 914 915 /* @newsid is bounded by @oldsid */ 916 rc = 0; 917 if (type->bounds == old_entry->context.type) 918 break; 919 920 index = type->bounds; 921 } 922 923 if (rc) { 924 char *old_name = NULL; 925 char *new_name = NULL; 926 u32 length; 927 928 if (!sidtab_entry_to_string(policydb, sidtab, old_entry, 929 &old_name, &length) && 930 !sidtab_entry_to_string(policydb, sidtab, new_entry, 931 &new_name, &length)) { 932 audit_log(audit_context(), 933 GFP_ATOMIC, AUDIT_SELINUX_ERR, 934 "op=security_bounded_transition " 935 "seresult=denied " 936 "oldcontext=%s newcontext=%s", 937 old_name, new_name); 938 } 939 kfree(new_name); 940 kfree(old_name); 941 } 942out: 943 rcu_read_unlock(); 944 945 return rc; 946} 947 948static void avd_init(struct selinux_policy *policy, struct av_decision *avd) 949{ 950 avd->allowed = 0; 951 avd->auditallow = 0; 952 avd->auditdeny = 0xffffffff; 953 if (policy) 954 avd->seqno = policy->latest_granting; 955 else 956 avd->seqno = 0; 957 avd->flags = 0; 958} 959 960void services_compute_xperms_decision(struct extended_perms_decision *xpermd, 961 struct avtab_node *node) 962{ 963 unsigned int i; 964 965 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 966 if (xpermd->driver != node->datum.u.xperms->driver) 967 return; 968 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 969 if (!security_xperm_test(node->datum.u.xperms->perms.p, 970 xpermd->driver)) 971 return; 972 } else { 973 BUG(); 974 } 975 976 if (node->key.specified == AVTAB_XPERMS_ALLOWED) { 977 xpermd->used |= XPERMS_ALLOWED; 978 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 979 memset(xpermd->allowed->p, 0xff, 980 sizeof(xpermd->allowed->p)); 981 } 982 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 983 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++) 984 xpermd->allowed->p[i] |= 985 node->datum.u.xperms->perms.p[i]; 986 } 987 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) { 988 xpermd->used |= XPERMS_AUDITALLOW; 989 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 990 memset(xpermd->auditallow->p, 0xff, 991 sizeof(xpermd->auditallow->p)); 992 } 993 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 994 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++) 995 xpermd->auditallow->p[i] |= 996 node->datum.u.xperms->perms.p[i]; 997 } 998 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) { 999 xpermd->used |= XPERMS_DONTAUDIT; 1000 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 1001 memset(xpermd->dontaudit->p, 0xff, 1002 sizeof(xpermd->dontaudit->p)); 1003 } 1004 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 1005 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++) 1006 xpermd->dontaudit->p[i] |= 1007 node->datum.u.xperms->perms.p[i]; 1008 } 1009 } else { 1010 BUG(); 1011 } 1012} 1013 1014void security_compute_xperms_decision(struct selinux_state *state, 1015 u32 ssid, 1016 u32 tsid, 1017 u16 orig_tclass, 1018 u8 driver, 1019 struct extended_perms_decision *xpermd) 1020{ 1021 struct selinux_policy *policy; 1022 struct policydb *policydb; 1023 struct sidtab *sidtab; 1024 u16 tclass; 1025 struct context *scontext, *tcontext; 1026 struct avtab_key avkey; 1027 struct avtab_node *node; 1028 struct ebitmap *sattr, *tattr; 1029 struct ebitmap_node *snode, *tnode; 1030 unsigned int i, j; 1031 1032 xpermd->driver = driver; 1033 xpermd->used = 0; 1034 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p)); 1035 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p)); 1036 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p)); 1037 1038 rcu_read_lock(); 1039 if (!selinux_initialized(state)) 1040 goto allow; 1041 1042 policy = rcu_dereference(state->policy); 1043 policydb = &policy->policydb; 1044 sidtab = policy->sidtab; 1045 1046 scontext = sidtab_search(sidtab, ssid); 1047 if (!scontext) { 1048 pr_err("SELinux: %s: unrecognized SID %d\n", 1049 __func__, ssid); 1050 goto out; 1051 } 1052 1053 tcontext = sidtab_search(sidtab, tsid); 1054 if (!tcontext) { 1055 pr_err("SELinux: %s: unrecognized SID %d\n", 1056 __func__, tsid); 1057 goto out; 1058 } 1059 1060 tclass = unmap_class(&policy->map, orig_tclass); 1061 if (unlikely(orig_tclass && !tclass)) { 1062 if (policydb->allow_unknown) 1063 goto allow; 1064 goto out; 1065 } 1066 1067 1068 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) { 1069 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass); 1070 goto out; 1071 } 1072 1073 avkey.target_class = tclass; 1074 avkey.specified = AVTAB_XPERMS; 1075 sattr = &policydb->type_attr_map_array[scontext->type - 1]; 1076 tattr = &policydb->type_attr_map_array[tcontext->type - 1]; 1077 ebitmap_for_each_positive_bit(sattr, snode, i) { 1078 ebitmap_for_each_positive_bit(tattr, tnode, j) { 1079 avkey.source_type = i + 1; 1080 avkey.target_type = j + 1; 1081 for (node = avtab_search_node(&policydb->te_avtab, 1082 &avkey); 1083 node; 1084 node = avtab_search_node_next(node, avkey.specified)) 1085 services_compute_xperms_decision(xpermd, node); 1086 1087 cond_compute_xperms(&policydb->te_cond_avtab, 1088 &avkey, xpermd); 1089 } 1090 } 1091out: 1092 rcu_read_unlock(); 1093 return; 1094allow: 1095 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p)); 1096 goto out; 1097} 1098 1099/** 1100 * security_compute_av - Compute access vector decisions. 1101 * @ssid: source security identifier 1102 * @tsid: target security identifier 1103 * @tclass: target security class 1104 * @avd: access vector decisions 1105 * @xperms: extended permissions 1106 * 1107 * Compute a set of access vector decisions based on the 1108 * SID pair (@ssid, @tsid) for the permissions in @tclass. 1109 */ 1110void security_compute_av(struct selinux_state *state, 1111 u32 ssid, 1112 u32 tsid, 1113 u16 orig_tclass, 1114 struct av_decision *avd, 1115 struct extended_perms *xperms) 1116{ 1117 struct selinux_policy *policy; 1118 struct policydb *policydb; 1119 struct sidtab *sidtab; 1120 u16 tclass; 1121 struct context *scontext = NULL, *tcontext = NULL; 1122 1123 rcu_read_lock(); 1124 policy = rcu_dereference(state->policy); 1125 avd_init(policy, avd); 1126 xperms->len = 0; 1127 if (!selinux_initialized(state)) 1128 goto allow; 1129 1130 policydb = &policy->policydb; 1131 sidtab = policy->sidtab; 1132 1133 scontext = sidtab_search(sidtab, ssid); 1134 if (!scontext) { 1135 pr_err("SELinux: %s: unrecognized SID %d\n", 1136 __func__, ssid); 1137 goto out; 1138 } 1139 1140 /* permissive domain? */ 1141 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type)) 1142 avd->flags |= AVD_FLAGS_PERMISSIVE; 1143 1144 tcontext = sidtab_search(sidtab, tsid); 1145 if (!tcontext) { 1146 pr_err("SELinux: %s: unrecognized SID %d\n", 1147 __func__, tsid); 1148 goto out; 1149 } 1150 1151 tclass = unmap_class(&policy->map, orig_tclass); 1152 if (unlikely(orig_tclass && !tclass)) { 1153 if (policydb->allow_unknown) 1154 goto allow; 1155 goto out; 1156 } 1157 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd, 1158 xperms); 1159 map_decision(&policy->map, orig_tclass, avd, 1160 policydb->allow_unknown); 1161out: 1162 rcu_read_unlock(); 1163 return; 1164allow: 1165 avd->allowed = 0xffffffff; 1166 goto out; 1167} 1168 1169void security_compute_av_user(struct selinux_state *state, 1170 u32 ssid, 1171 u32 tsid, 1172 u16 tclass, 1173 struct av_decision *avd) 1174{ 1175 struct selinux_policy *policy; 1176 struct policydb *policydb; 1177 struct sidtab *sidtab; 1178 struct context *scontext = NULL, *tcontext = NULL; 1179 1180 rcu_read_lock(); 1181 policy = rcu_dereference(state->policy); 1182 avd_init(policy, avd); 1183 if (!selinux_initialized(state)) 1184 goto allow; 1185 1186 policydb = &policy->policydb; 1187 sidtab = policy->sidtab; 1188 1189 scontext = sidtab_search(sidtab, ssid); 1190 if (!scontext) { 1191 pr_err("SELinux: %s: unrecognized SID %d\n", 1192 __func__, ssid); 1193 goto out; 1194 } 1195 1196 /* permissive domain? */ 1197 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type)) 1198 avd->flags |= AVD_FLAGS_PERMISSIVE; 1199 1200 tcontext = sidtab_search(sidtab, tsid); 1201 if (!tcontext) { 1202 pr_err("SELinux: %s: unrecognized SID %d\n", 1203 __func__, tsid); 1204 goto out; 1205 } 1206 1207 if (unlikely(!tclass)) { 1208 if (policydb->allow_unknown) 1209 goto allow; 1210 goto out; 1211 } 1212 1213 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd, 1214 NULL); 1215 out: 1216 rcu_read_unlock(); 1217 return; 1218allow: 1219 avd->allowed = 0xffffffff; 1220 goto out; 1221} 1222 1223/* 1224 * Write the security context string representation of 1225 * the context structure `context' into a dynamically 1226 * allocated string of the correct size. Set `*scontext' 1227 * to point to this string and set `*scontext_len' to 1228 * the length of the string. 1229 */ 1230static int context_struct_to_string(struct policydb *p, 1231 struct context *context, 1232 char **scontext, u32 *scontext_len) 1233{ 1234 char *scontextp; 1235 1236 if (scontext) 1237 *scontext = NULL; 1238 *scontext_len = 0; 1239 1240 if (context->len) { 1241 *scontext_len = context->len; 1242 if (scontext) { 1243 *scontext = kstrdup(context->str, GFP_ATOMIC); 1244 if (!(*scontext)) 1245 return -ENOMEM; 1246 } 1247 return 0; 1248 } 1249 1250 /* Compute the size of the context. */ 1251 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1; 1252 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1; 1253 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1; 1254 *scontext_len += mls_compute_context_len(p, context); 1255 1256 if (!scontext) 1257 return 0; 1258 1259 /* Allocate space for the context; caller must free this space. */ 1260 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1261 if (!scontextp) 1262 return -ENOMEM; 1263 *scontext = scontextp; 1264 1265 /* 1266 * Copy the user name, role name and type name into the context. 1267 */ 1268 scontextp += sprintf(scontextp, "%s:%s:%s", 1269 sym_name(p, SYM_USERS, context->user - 1), 1270 sym_name(p, SYM_ROLES, context->role - 1), 1271 sym_name(p, SYM_TYPES, context->type - 1)); 1272 1273 mls_sid_to_context(p, context, &scontextp); 1274 1275 *scontextp = 0; 1276 1277 return 0; 1278} 1279 1280static int sidtab_entry_to_string(struct policydb *p, 1281 struct sidtab *sidtab, 1282 struct sidtab_entry *entry, 1283 char **scontext, u32 *scontext_len) 1284{ 1285 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len); 1286 1287 if (rc != -ENOENT) 1288 return rc; 1289 1290 rc = context_struct_to_string(p, &entry->context, scontext, 1291 scontext_len); 1292 if (!rc && scontext) 1293 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len); 1294 return rc; 1295} 1296 1297#include "initial_sid_to_string.h" 1298 1299int security_sidtab_hash_stats(struct selinux_state *state, char *page) 1300{ 1301 struct selinux_policy *policy; 1302 int rc; 1303 1304 if (!selinux_initialized(state)) { 1305 pr_err("SELinux: %s: called before initial load_policy\n", 1306 __func__); 1307 return -EINVAL; 1308 } 1309 1310 rcu_read_lock(); 1311 policy = rcu_dereference(state->policy); 1312 rc = sidtab_hash_stats(policy->sidtab, page); 1313 rcu_read_unlock(); 1314 1315 return rc; 1316} 1317 1318const char *security_get_initial_sid_context(u32 sid) 1319{ 1320 if (unlikely(sid > SECINITSID_NUM)) 1321 return NULL; 1322 return initial_sid_to_string[sid]; 1323} 1324 1325static int security_sid_to_context_core(struct selinux_state *state, 1326 u32 sid, char **scontext, 1327 u32 *scontext_len, int force, 1328 int only_invalid) 1329{ 1330 struct selinux_policy *policy; 1331 struct policydb *policydb; 1332 struct sidtab *sidtab; 1333 struct sidtab_entry *entry; 1334 int rc = 0; 1335 1336 if (scontext) 1337 *scontext = NULL; 1338 *scontext_len = 0; 1339 1340 if (!selinux_initialized(state)) { 1341 if (sid <= SECINITSID_NUM) { 1342 char *scontextp; 1343 const char *s = initial_sid_to_string[sid]; 1344 1345 if (!s) 1346 return -EINVAL; 1347 *scontext_len = strlen(s) + 1; 1348 if (!scontext) 1349 return 0; 1350 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC); 1351 if (!scontextp) 1352 return -ENOMEM; 1353 *scontext = scontextp; 1354 return 0; 1355 } 1356 pr_err("SELinux: %s: called before initial " 1357 "load_policy on unknown SID %d\n", __func__, sid); 1358 return -EINVAL; 1359 } 1360 rcu_read_lock(); 1361 policy = rcu_dereference(state->policy); 1362 policydb = &policy->policydb; 1363 sidtab = policy->sidtab; 1364 1365 if (force) 1366 entry = sidtab_search_entry_force(sidtab, sid); 1367 else 1368 entry = sidtab_search_entry(sidtab, sid); 1369 if (!entry) { 1370 pr_err("SELinux: %s: unrecognized SID %d\n", 1371 __func__, sid); 1372 rc = -EINVAL; 1373 goto out_unlock; 1374 } 1375 if (only_invalid && !entry->context.len) 1376 goto out_unlock; 1377 1378 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext, 1379 scontext_len); 1380 1381out_unlock: 1382 rcu_read_unlock(); 1383 return rc; 1384 1385} 1386 1387/** 1388 * security_sid_to_context - Obtain a context for a given SID. 1389 * @sid: security identifier, SID 1390 * @scontext: security context 1391 * @scontext_len: length in bytes 1392 * 1393 * Write the string representation of the context associated with @sid 1394 * into a dynamically allocated string of the correct size. Set @scontext 1395 * to point to this string and set @scontext_len to the length of the string. 1396 */ 1397int security_sid_to_context(struct selinux_state *state, 1398 u32 sid, char **scontext, u32 *scontext_len) 1399{ 1400 return security_sid_to_context_core(state, sid, scontext, 1401 scontext_len, 0, 0); 1402} 1403 1404int security_sid_to_context_force(struct selinux_state *state, u32 sid, 1405 char **scontext, u32 *scontext_len) 1406{ 1407 return security_sid_to_context_core(state, sid, scontext, 1408 scontext_len, 1, 0); 1409} 1410 1411/** 1412 * security_sid_to_context_inval - Obtain a context for a given SID if it 1413 * is invalid. 1414 * @sid: security identifier, SID 1415 * @scontext: security context 1416 * @scontext_len: length in bytes 1417 * 1418 * Write the string representation of the context associated with @sid 1419 * into a dynamically allocated string of the correct size, but only if the 1420 * context is invalid in the current policy. Set @scontext to point to 1421 * this string (or NULL if the context is valid) and set @scontext_len to 1422 * the length of the string (or 0 if the context is valid). 1423 */ 1424int security_sid_to_context_inval(struct selinux_state *state, u32 sid, 1425 char **scontext, u32 *scontext_len) 1426{ 1427 return security_sid_to_context_core(state, sid, scontext, 1428 scontext_len, 1, 1); 1429} 1430 1431/* 1432 * Caveat: Mutates scontext. 1433 */ 1434static int string_to_context_struct(struct policydb *pol, 1435 struct sidtab *sidtabp, 1436 char *scontext, 1437 struct context *ctx, 1438 u32 def_sid) 1439{ 1440 struct role_datum *role; 1441 struct type_datum *typdatum; 1442 struct user_datum *usrdatum; 1443 char *scontextp, *p, oldc; 1444 int rc = 0; 1445 1446 context_init(ctx); 1447 1448 /* Parse the security context. */ 1449 1450 rc = -EINVAL; 1451 scontextp = (char *) scontext; 1452 1453 /* Extract the user. */ 1454 p = scontextp; 1455 while (*p && *p != ':') 1456 p++; 1457 1458 if (*p == 0) 1459 goto out; 1460 1461 *p++ = 0; 1462 1463 usrdatum = symtab_search(&pol->p_users, scontextp); 1464 if (!usrdatum) 1465 goto out; 1466 1467 ctx->user = usrdatum->value; 1468 1469 /* Extract role. */ 1470 scontextp = p; 1471 while (*p && *p != ':') 1472 p++; 1473 1474 if (*p == 0) 1475 goto out; 1476 1477 *p++ = 0; 1478 1479 role = symtab_search(&pol->p_roles, scontextp); 1480 if (!role) 1481 goto out; 1482 ctx->role = role->value; 1483 1484 /* Extract type. */ 1485 scontextp = p; 1486 while (*p && *p != ':') 1487 p++; 1488 oldc = *p; 1489 *p++ = 0; 1490 1491 typdatum = symtab_search(&pol->p_types, scontextp); 1492 if (!typdatum || typdatum->attribute) 1493 goto out; 1494 1495 ctx->type = typdatum->value; 1496 1497 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid); 1498 if (rc) 1499 goto out; 1500 1501 /* Check the validity of the new context. */ 1502 rc = -EINVAL; 1503 if (!policydb_context_isvalid(pol, ctx)) 1504 goto out; 1505 rc = 0; 1506out: 1507 if (rc) 1508 context_destroy(ctx); 1509 return rc; 1510} 1511 1512static int security_context_to_sid_core(struct selinux_state *state, 1513 const char *scontext, u32 scontext_len, 1514 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1515 int force) 1516{ 1517 struct selinux_policy *policy; 1518 struct policydb *policydb; 1519 struct sidtab *sidtab; 1520 char *scontext2, *str = NULL; 1521 struct context context; 1522 int rc = 0; 1523 1524 /* An empty security context is never valid. */ 1525 if (!scontext_len) 1526 return -EINVAL; 1527 1528 /* Copy the string to allow changes and ensure a NUL terminator */ 1529 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags); 1530 if (!scontext2) 1531 return -ENOMEM; 1532 1533 if (!selinux_initialized(state)) { 1534 int i; 1535 1536 for (i = 1; i < SECINITSID_NUM; i++) { 1537 const char *s = initial_sid_to_string[i]; 1538 1539 if (s && !strcmp(s, scontext2)) { 1540 *sid = i; 1541 goto out; 1542 } 1543 } 1544 *sid = SECINITSID_KERNEL; 1545 goto out; 1546 } 1547 *sid = SECSID_NULL; 1548 1549 if (force) { 1550 /* Save another copy for storing in uninterpreted form */ 1551 rc = -ENOMEM; 1552 str = kstrdup(scontext2, gfp_flags); 1553 if (!str) 1554 goto out; 1555 } 1556retry: 1557 rcu_read_lock(); 1558 policy = rcu_dereference(state->policy); 1559 policydb = &policy->policydb; 1560 sidtab = policy->sidtab; 1561 rc = string_to_context_struct(policydb, sidtab, scontext2, 1562 &context, def_sid); 1563 if (rc == -EINVAL && force) { 1564 context.str = str; 1565 context.len = strlen(str) + 1; 1566 str = NULL; 1567 } else if (rc) 1568 goto out_unlock; 1569 rc = sidtab_context_to_sid(sidtab, &context, sid); 1570 if (rc == -ESTALE) { 1571 rcu_read_unlock(); 1572 if (context.str) { 1573 str = context.str; 1574 context.str = NULL; 1575 } 1576 context_destroy(&context); 1577 goto retry; 1578 } 1579 context_destroy(&context); 1580out_unlock: 1581 rcu_read_unlock(); 1582out: 1583 kfree(scontext2); 1584 kfree(str); 1585 return rc; 1586} 1587 1588/** 1589 * security_context_to_sid - Obtain a SID for a given security context. 1590 * @scontext: security context 1591 * @scontext_len: length in bytes 1592 * @sid: security identifier, SID 1593 * @gfp: context for the allocation 1594 * 1595 * Obtains a SID associated with the security context that 1596 * has the string representation specified by @scontext. 1597 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1598 * memory is available, or 0 on success. 1599 */ 1600int security_context_to_sid(struct selinux_state *state, 1601 const char *scontext, u32 scontext_len, u32 *sid, 1602 gfp_t gfp) 1603{ 1604 return security_context_to_sid_core(state, scontext, scontext_len, 1605 sid, SECSID_NULL, gfp, 0); 1606} 1607 1608int security_context_str_to_sid(struct selinux_state *state, 1609 const char *scontext, u32 *sid, gfp_t gfp) 1610{ 1611 return security_context_to_sid(state, scontext, strlen(scontext), 1612 sid, gfp); 1613} 1614 1615/** 1616 * security_context_to_sid_default - Obtain a SID for a given security context, 1617 * falling back to specified default if needed. 1618 * 1619 * @scontext: security context 1620 * @scontext_len: length in bytes 1621 * @sid: security identifier, SID 1622 * @def_sid: default SID to assign on error 1623 * 1624 * Obtains a SID associated with the security context that 1625 * has the string representation specified by @scontext. 1626 * The default SID is passed to the MLS layer to be used to allow 1627 * kernel labeling of the MLS field if the MLS field is not present 1628 * (for upgrading to MLS without full relabel). 1629 * Implicitly forces adding of the context even if it cannot be mapped yet. 1630 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1631 * memory is available, or 0 on success. 1632 */ 1633int security_context_to_sid_default(struct selinux_state *state, 1634 const char *scontext, u32 scontext_len, 1635 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1636{ 1637 return security_context_to_sid_core(state, scontext, scontext_len, 1638 sid, def_sid, gfp_flags, 1); 1639} 1640 1641int security_context_to_sid_force(struct selinux_state *state, 1642 const char *scontext, u32 scontext_len, 1643 u32 *sid) 1644{ 1645 return security_context_to_sid_core(state, scontext, scontext_len, 1646 sid, SECSID_NULL, GFP_KERNEL, 1); 1647} 1648 1649static int compute_sid_handle_invalid_context( 1650 struct selinux_state *state, 1651 struct selinux_policy *policy, 1652 struct sidtab_entry *sentry, 1653 struct sidtab_entry *tentry, 1654 u16 tclass, 1655 struct context *newcontext) 1656{ 1657 struct policydb *policydb = &policy->policydb; 1658 struct sidtab *sidtab = policy->sidtab; 1659 char *s = NULL, *t = NULL, *n = NULL; 1660 u32 slen, tlen, nlen; 1661 struct audit_buffer *ab; 1662 1663 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen)) 1664 goto out; 1665 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen)) 1666 goto out; 1667 if (context_struct_to_string(policydb, newcontext, &n, &nlen)) 1668 goto out; 1669 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR); 1670 audit_log_format(ab, 1671 "op=security_compute_sid invalid_context="); 1672 /* no need to record the NUL with untrusted strings */ 1673 audit_log_n_untrustedstring(ab, n, nlen - 1); 1674 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s", 1675 s, t, sym_name(policydb, SYM_CLASSES, tclass-1)); 1676 audit_log_end(ab); 1677out: 1678 kfree(s); 1679 kfree(t); 1680 kfree(n); 1681 if (!enforcing_enabled(state)) 1682 return 0; 1683 return -EACCES; 1684} 1685 1686static void filename_compute_type(struct policydb *policydb, 1687 struct context *newcontext, 1688 u32 stype, u32 ttype, u16 tclass, 1689 const char *objname) 1690{ 1691 struct filename_trans_key ft; 1692 struct filename_trans_datum *datum; 1693 1694 /* 1695 * Most filename trans rules are going to live in specific directories 1696 * like /dev or /var/run. This bitmap will quickly skip rule searches 1697 * if the ttype does not contain any rules. 1698 */ 1699 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype)) 1700 return; 1701 1702 ft.ttype = ttype; 1703 ft.tclass = tclass; 1704 ft.name = objname; 1705 1706 datum = policydb_filenametr_search(policydb, &ft); 1707 while (datum) { 1708 if (ebitmap_get_bit(&datum->stypes, stype - 1)) { 1709 newcontext->type = datum->otype; 1710 return; 1711 } 1712 datum = datum->next; 1713 } 1714} 1715 1716static int security_compute_sid(struct selinux_state *state, 1717 u32 ssid, 1718 u32 tsid, 1719 u16 orig_tclass, 1720 u32 specified, 1721 const char *objname, 1722 u32 *out_sid, 1723 bool kern) 1724{ 1725 struct selinux_policy *policy; 1726 struct policydb *policydb; 1727 struct sidtab *sidtab; 1728 struct class_datum *cladatum; 1729 struct context *scontext, *tcontext, newcontext; 1730 struct sidtab_entry *sentry, *tentry; 1731 struct avtab_key avkey; 1732 struct avtab_datum *avdatum; 1733 struct avtab_node *node; 1734 u16 tclass; 1735 int rc = 0; 1736 bool sock; 1737 1738 if (!selinux_initialized(state)) { 1739 switch (orig_tclass) { 1740 case SECCLASS_PROCESS: /* kernel value */ 1741 *out_sid = ssid; 1742 break; 1743 default: 1744 *out_sid = tsid; 1745 break; 1746 } 1747 goto out; 1748 } 1749 1750retry: 1751 cladatum = NULL; 1752 context_init(&newcontext); 1753 1754 rcu_read_lock(); 1755 1756 policy = rcu_dereference(state->policy); 1757 1758 if (kern) { 1759 tclass = unmap_class(&policy->map, orig_tclass); 1760 sock = security_is_socket_class(orig_tclass); 1761 } else { 1762 tclass = orig_tclass; 1763 sock = security_is_socket_class(map_class(&policy->map, 1764 tclass)); 1765 } 1766 1767 policydb = &policy->policydb; 1768 sidtab = policy->sidtab; 1769 1770 sentry = sidtab_search_entry(sidtab, ssid); 1771 if (!sentry) { 1772 pr_err("SELinux: %s: unrecognized SID %d\n", 1773 __func__, ssid); 1774 rc = -EINVAL; 1775 goto out_unlock; 1776 } 1777 tentry = sidtab_search_entry(sidtab, tsid); 1778 if (!tentry) { 1779 pr_err("SELinux: %s: unrecognized SID %d\n", 1780 __func__, tsid); 1781 rc = -EINVAL; 1782 goto out_unlock; 1783 } 1784 1785 scontext = &sentry->context; 1786 tcontext = &tentry->context; 1787 1788 if (tclass && tclass <= policydb->p_classes.nprim) 1789 cladatum = policydb->class_val_to_struct[tclass - 1]; 1790 1791 /* Set the user identity. */ 1792 switch (specified) { 1793 case AVTAB_TRANSITION: 1794 case AVTAB_CHANGE: 1795 if (cladatum && cladatum->default_user == DEFAULT_TARGET) { 1796 newcontext.user = tcontext->user; 1797 } else { 1798 /* notice this gets both DEFAULT_SOURCE and unset */ 1799 /* Use the process user identity. */ 1800 newcontext.user = scontext->user; 1801 } 1802 break; 1803 case AVTAB_MEMBER: 1804 /* Use the related object owner. */ 1805 newcontext.user = tcontext->user; 1806 break; 1807 } 1808 1809 /* Set the role to default values. */ 1810 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) { 1811 newcontext.role = scontext->role; 1812 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) { 1813 newcontext.role = tcontext->role; 1814 } else { 1815 if ((tclass == policydb->process_class) || sock) 1816 newcontext.role = scontext->role; 1817 else 1818 newcontext.role = OBJECT_R_VAL; 1819 } 1820 1821 /* Set the type to default values. */ 1822 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) { 1823 newcontext.type = scontext->type; 1824 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) { 1825 newcontext.type = tcontext->type; 1826 } else { 1827 if ((tclass == policydb->process_class) || sock) { 1828 /* Use the type of process. */ 1829 newcontext.type = scontext->type; 1830 } else { 1831 /* Use the type of the related object. */ 1832 newcontext.type = tcontext->type; 1833 } 1834 } 1835 1836 /* Look for a type transition/member/change rule. */ 1837 avkey.source_type = scontext->type; 1838 avkey.target_type = tcontext->type; 1839 avkey.target_class = tclass; 1840 avkey.specified = specified; 1841 avdatum = avtab_search(&policydb->te_avtab, &avkey); 1842 1843 /* If no permanent rule, also check for enabled conditional rules */ 1844 if (!avdatum) { 1845 node = avtab_search_node(&policydb->te_cond_avtab, &avkey); 1846 for (; node; node = avtab_search_node_next(node, specified)) { 1847 if (node->key.specified & AVTAB_ENABLED) { 1848 avdatum = &node->datum; 1849 break; 1850 } 1851 } 1852 } 1853 1854 if (avdatum) { 1855 /* Use the type from the type transition/member/change rule. */ 1856 newcontext.type = avdatum->u.data; 1857 } 1858 1859 /* if we have a objname this is a file trans check so check those rules */ 1860 if (objname) 1861 filename_compute_type(policydb, &newcontext, scontext->type, 1862 tcontext->type, tclass, objname); 1863 1864 /* Check for class-specific changes. */ 1865 if (specified & AVTAB_TRANSITION) { 1866 /* Look for a role transition rule. */ 1867 struct role_trans_datum *rtd; 1868 struct role_trans_key rtk = { 1869 .role = scontext->role, 1870 .type = tcontext->type, 1871 .tclass = tclass, 1872 }; 1873 1874 rtd = policydb_roletr_search(policydb, &rtk); 1875 if (rtd) 1876 newcontext.role = rtd->new_role; 1877 } 1878 1879 /* Set the MLS attributes. 1880 This is done last because it may allocate memory. */ 1881 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified, 1882 &newcontext, sock); 1883 if (rc) 1884 goto out_unlock; 1885 1886 /* Check the validity of the context. */ 1887 if (!policydb_context_isvalid(policydb, &newcontext)) { 1888 rc = compute_sid_handle_invalid_context(state, policy, sentry, 1889 tentry, tclass, 1890 &newcontext); 1891 if (rc) 1892 goto out_unlock; 1893 } 1894 /* Obtain the sid for the context. */ 1895 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid); 1896 if (rc == -ESTALE) { 1897 rcu_read_unlock(); 1898 context_destroy(&newcontext); 1899 goto retry; 1900 } 1901out_unlock: 1902 rcu_read_unlock(); 1903 context_destroy(&newcontext); 1904out: 1905 return rc; 1906} 1907 1908/** 1909 * security_transition_sid - Compute the SID for a new subject/object. 1910 * @ssid: source security identifier 1911 * @tsid: target security identifier 1912 * @tclass: target security class 1913 * @out_sid: security identifier for new subject/object 1914 * 1915 * Compute a SID to use for labeling a new subject or object in the 1916 * class @tclass based on a SID pair (@ssid, @tsid). 1917 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1918 * if insufficient memory is available, or %0 if the new SID was 1919 * computed successfully. 1920 */ 1921int security_transition_sid(struct selinux_state *state, 1922 u32 ssid, u32 tsid, u16 tclass, 1923 const struct qstr *qstr, u32 *out_sid) 1924{ 1925 return security_compute_sid(state, ssid, tsid, tclass, 1926 AVTAB_TRANSITION, 1927 qstr ? qstr->name : NULL, out_sid, true); 1928} 1929 1930int security_transition_sid_user(struct selinux_state *state, 1931 u32 ssid, u32 tsid, u16 tclass, 1932 const char *objname, u32 *out_sid) 1933{ 1934 return security_compute_sid(state, ssid, tsid, tclass, 1935 AVTAB_TRANSITION, 1936 objname, out_sid, false); 1937} 1938 1939/** 1940 * security_member_sid - Compute the SID for member selection. 1941 * @ssid: source security identifier 1942 * @tsid: target security identifier 1943 * @tclass: target security class 1944 * @out_sid: security identifier for selected member 1945 * 1946 * Compute a SID to use when selecting a member of a polyinstantiated 1947 * object of class @tclass based on a SID pair (@ssid, @tsid). 1948 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1949 * if insufficient memory is available, or %0 if the SID was 1950 * computed successfully. 1951 */ 1952int security_member_sid(struct selinux_state *state, 1953 u32 ssid, 1954 u32 tsid, 1955 u16 tclass, 1956 u32 *out_sid) 1957{ 1958 return security_compute_sid(state, ssid, tsid, tclass, 1959 AVTAB_MEMBER, NULL, 1960 out_sid, false); 1961} 1962 1963/** 1964 * security_change_sid - Compute the SID for object relabeling. 1965 * @ssid: source security identifier 1966 * @tsid: target security identifier 1967 * @tclass: target security class 1968 * @out_sid: security identifier for selected member 1969 * 1970 * Compute a SID to use for relabeling an object of class @tclass 1971 * based on a SID pair (@ssid, @tsid). 1972 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1973 * if insufficient memory is available, or %0 if the SID was 1974 * computed successfully. 1975 */ 1976int security_change_sid(struct selinux_state *state, 1977 u32 ssid, 1978 u32 tsid, 1979 u16 tclass, 1980 u32 *out_sid) 1981{ 1982 return security_compute_sid(state, 1983 ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1984 out_sid, false); 1985} 1986 1987static inline int convert_context_handle_invalid_context( 1988 struct selinux_state *state, 1989 struct policydb *policydb, 1990 struct context *context) 1991{ 1992 char *s; 1993 u32 len; 1994 1995 if (enforcing_enabled(state)) 1996 return -EINVAL; 1997 1998 if (!context_struct_to_string(policydb, context, &s, &len)) { 1999 pr_warn("SELinux: Context %s would be invalid if enforcing\n", 2000 s); 2001 kfree(s); 2002 } 2003 return 0; 2004} 2005 2006/* 2007 * Convert the values in the security context 2008 * structure `oldc' from the values specified 2009 * in the policy `p->oldp' to the values specified 2010 * in the policy `p->newp', storing the new context 2011 * in `newc'. Verify that the context is valid 2012 * under the new policy. 2013 */ 2014static int convert_context(struct context *oldc, struct context *newc, void *p, 2015 gfp_t gfp_flags) 2016{ 2017 struct convert_context_args *args; 2018 struct ocontext *oc; 2019 struct role_datum *role; 2020 struct type_datum *typdatum; 2021 struct user_datum *usrdatum; 2022 char *s; 2023 u32 len; 2024 int rc; 2025 2026 args = p; 2027 2028 if (oldc->str) { 2029 s = kstrdup(oldc->str, gfp_flags); 2030 if (!s) 2031 return -ENOMEM; 2032 2033 rc = string_to_context_struct(args->newp, NULL, s, 2034 newc, SECSID_NULL); 2035 if (rc == -EINVAL) { 2036 /* 2037 * Retain string representation for later mapping. 2038 * 2039 * IMPORTANT: We need to copy the contents of oldc->str 2040 * back into s again because string_to_context_struct() 2041 * may have garbled it. 2042 */ 2043 memcpy(s, oldc->str, oldc->len); 2044 context_init(newc); 2045 newc->str = s; 2046 newc->len = oldc->len; 2047 return 0; 2048 } 2049 kfree(s); 2050 if (rc) { 2051 /* Other error condition, e.g. ENOMEM. */ 2052 pr_err("SELinux: Unable to map context %s, rc = %d.\n", 2053 oldc->str, -rc); 2054 return rc; 2055 } 2056 pr_info("SELinux: Context %s became valid (mapped).\n", 2057 oldc->str); 2058 return 0; 2059 } 2060 2061 context_init(newc); 2062 2063 /* Convert the user. */ 2064 rc = -EINVAL; 2065 usrdatum = symtab_search(&args->newp->p_users, 2066 sym_name(args->oldp, 2067 SYM_USERS, oldc->user - 1)); 2068 if (!usrdatum) 2069 goto bad; 2070 newc->user = usrdatum->value; 2071 2072 /* Convert the role. */ 2073 rc = -EINVAL; 2074 role = symtab_search(&args->newp->p_roles, 2075 sym_name(args->oldp, SYM_ROLES, oldc->role - 1)); 2076 if (!role) 2077 goto bad; 2078 newc->role = role->value; 2079 2080 /* Convert the type. */ 2081 rc = -EINVAL; 2082 typdatum = symtab_search(&args->newp->p_types, 2083 sym_name(args->oldp, 2084 SYM_TYPES, oldc->type - 1)); 2085 if (!typdatum) 2086 goto bad; 2087 newc->type = typdatum->value; 2088 2089 /* Convert the MLS fields if dealing with MLS policies */ 2090 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 2091 rc = mls_convert_context(args->oldp, args->newp, oldc, newc); 2092 if (rc) 2093 goto bad; 2094 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 2095 /* 2096 * Switching between non-MLS and MLS policy: 2097 * ensure that the MLS fields of the context for all 2098 * existing entries in the sidtab are filled in with a 2099 * suitable default value, likely taken from one of the 2100 * initial SIDs. 2101 */ 2102 oc = args->newp->ocontexts[OCON_ISID]; 2103 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 2104 oc = oc->next; 2105 rc = -EINVAL; 2106 if (!oc) { 2107 pr_err("SELinux: unable to look up" 2108 " the initial SIDs list\n"); 2109 goto bad; 2110 } 2111 rc = mls_range_set(newc, &oc->context[0].range); 2112 if (rc) 2113 goto bad; 2114 } 2115 2116 /* Check the validity of the new context. */ 2117 if (!policydb_context_isvalid(args->newp, newc)) { 2118 rc = convert_context_handle_invalid_context(args->state, 2119 args->oldp, 2120 oldc); 2121 if (rc) 2122 goto bad; 2123 } 2124 2125 return 0; 2126bad: 2127 /* Map old representation to string and save it. */ 2128 rc = context_struct_to_string(args->oldp, oldc, &s, &len); 2129 if (rc) 2130 return rc; 2131 context_destroy(newc); 2132 newc->str = s; 2133 newc->len = len; 2134 pr_info("SELinux: Context %s became invalid (unmapped).\n", 2135 newc->str); 2136 return 0; 2137} 2138 2139static void security_load_policycaps(struct selinux_state *state, 2140 struct selinux_policy *policy) 2141{ 2142 struct policydb *p; 2143 unsigned int i; 2144 struct ebitmap_node *node; 2145 2146 p = &policy->policydb; 2147 2148 for (i = 0; i < ARRAY_SIZE(state->policycap); i++) 2149 WRITE_ONCE(state->policycap[i], 2150 ebitmap_get_bit(&p->policycaps, i)); 2151 2152 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++) 2153 pr_info("SELinux: policy capability %s=%d\n", 2154 selinux_policycap_names[i], 2155 ebitmap_get_bit(&p->policycaps, i)); 2156 2157 ebitmap_for_each_positive_bit(&p->policycaps, node, i) { 2158 if (i >= ARRAY_SIZE(selinux_policycap_names)) 2159 pr_info("SELinux: unknown policy capability %u\n", 2160 i); 2161 } 2162} 2163 2164static int security_preserve_bools(struct selinux_policy *oldpolicy, 2165 struct selinux_policy *newpolicy); 2166 2167static void selinux_policy_free(struct selinux_policy *policy) 2168{ 2169 if (!policy) 2170 return; 2171 2172 sidtab_destroy(policy->sidtab); 2173 kfree(policy->map.mapping); 2174 policydb_destroy(&policy->policydb); 2175 kfree(policy->sidtab); 2176 kfree(policy); 2177} 2178 2179static void selinux_policy_cond_free(struct selinux_policy *policy) 2180{ 2181 cond_policydb_destroy_dup(&policy->policydb); 2182 kfree(policy); 2183} 2184 2185void selinux_policy_cancel(struct selinux_state *state, 2186 struct selinux_load_state *load_state) 2187{ 2188 struct selinux_policy *oldpolicy; 2189 2190 oldpolicy = rcu_dereference_protected(state->policy, 2191 lockdep_is_held(&state->policy_mutex)); 2192 2193 sidtab_cancel_convert(oldpolicy->sidtab); 2194 selinux_policy_free(load_state->policy); 2195 kfree(load_state->convert_data); 2196} 2197 2198static void selinux_notify_policy_change(struct selinux_state *state, 2199 u32 seqno) 2200{ 2201 /* Flush external caches and notify userspace of policy load */ 2202 avc_ss_reset(state->avc, seqno); 2203 selnl_notify_policyload(seqno); 2204 selinux_status_update_policyload(state, seqno); 2205 selinux_netlbl_cache_invalidate(); 2206 selinux_xfrm_notify_policyload(); 2207} 2208 2209void selinux_policy_commit(struct selinux_state *state, 2210 struct selinux_load_state *load_state) 2211{ 2212 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy; 2213 unsigned long flags; 2214 u32 seqno; 2215 2216 oldpolicy = rcu_dereference_protected(state->policy, 2217 lockdep_is_held(&state->policy_mutex)); 2218 2219 /* If switching between different policy types, log MLS status */ 2220 if (oldpolicy) { 2221 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled) 2222 pr_info("SELinux: Disabling MLS support...\n"); 2223 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled) 2224 pr_info("SELinux: Enabling MLS support...\n"); 2225 } 2226 2227 /* Set latest granting seqno for new policy. */ 2228 if (oldpolicy) 2229 newpolicy->latest_granting = oldpolicy->latest_granting + 1; 2230 else 2231 newpolicy->latest_granting = 1; 2232 seqno = newpolicy->latest_granting; 2233 2234 /* Install the new policy. */ 2235 if (oldpolicy) { 2236 sidtab_freeze_begin(oldpolicy->sidtab, &flags); 2237 rcu_assign_pointer(state->policy, newpolicy); 2238 sidtab_freeze_end(oldpolicy->sidtab, &flags); 2239 } else { 2240 rcu_assign_pointer(state->policy, newpolicy); 2241 } 2242 2243 /* Load the policycaps from the new policy */ 2244 security_load_policycaps(state, newpolicy); 2245 2246 if (!selinux_initialized(state)) { 2247 /* 2248 * After first policy load, the security server is 2249 * marked as initialized and ready to handle requests and 2250 * any objects created prior to policy load are then labeled. 2251 */ 2252 selinux_mark_initialized(state); 2253 selinux_complete_init(); 2254 } 2255 2256 /* Free the old policy */ 2257 synchronize_rcu(); 2258 selinux_policy_free(oldpolicy); 2259 kfree(load_state->convert_data); 2260 2261 /* Notify others of the policy change */ 2262 selinux_notify_policy_change(state, seqno); 2263} 2264 2265/** 2266 * security_load_policy - Load a security policy configuration. 2267 * @data: binary policy data 2268 * @len: length of data in bytes 2269 * 2270 * Load a new set of security policy configuration data, 2271 * validate it and convert the SID table as necessary. 2272 * This function will flush the access vector cache after 2273 * loading the new policy. 2274 */ 2275int security_load_policy(struct selinux_state *state, void *data, size_t len, 2276 struct selinux_load_state *load_state) 2277{ 2278 struct selinux_policy *newpolicy, *oldpolicy; 2279 struct selinux_policy_convert_data *convert_data; 2280 int rc = 0; 2281 struct policy_file file = { data, len }, *fp = &file; 2282 2283 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL); 2284 if (!newpolicy) 2285 return -ENOMEM; 2286 2287 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL); 2288 if (!newpolicy->sidtab) { 2289 rc = -ENOMEM; 2290 goto err_policy; 2291 } 2292 2293 rc = policydb_read(&newpolicy->policydb, fp); 2294 if (rc) 2295 goto err_sidtab; 2296 2297 newpolicy->policydb.len = len; 2298 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map, 2299 &newpolicy->map); 2300 if (rc) 2301 goto err_policydb; 2302 2303 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab); 2304 if (rc) { 2305 pr_err("SELinux: unable to load the initial SIDs\n"); 2306 goto err_mapping; 2307 } 2308 2309 if (!selinux_initialized(state)) { 2310 /* First policy load, so no need to preserve state from old policy */ 2311 load_state->policy = newpolicy; 2312 load_state->convert_data = NULL; 2313 return 0; 2314 } 2315 2316 oldpolicy = rcu_dereference_protected(state->policy, 2317 lockdep_is_held(&state->policy_mutex)); 2318 2319 /* Preserve active boolean values from the old policy */ 2320 rc = security_preserve_bools(oldpolicy, newpolicy); 2321 if (rc) { 2322 pr_err("SELinux: unable to preserve booleans\n"); 2323 goto err_free_isids; 2324 } 2325 2326 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL); 2327 if (!convert_data) { 2328 rc = -ENOMEM; 2329 goto err_free_isids; 2330 } 2331 2332 /* 2333 * Convert the internal representations of contexts 2334 * in the new SID table. 2335 */ 2336 convert_data->args.state = state; 2337 convert_data->args.oldp = &oldpolicy->policydb; 2338 convert_data->args.newp = &newpolicy->policydb; 2339 2340 convert_data->sidtab_params.func = convert_context; 2341 convert_data->sidtab_params.args = &convert_data->args; 2342 convert_data->sidtab_params.target = newpolicy->sidtab; 2343 2344 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params); 2345 if (rc) { 2346 pr_err("SELinux: unable to convert the internal" 2347 " representation of contexts in the new SID" 2348 " table\n"); 2349 goto err_free_convert_data; 2350 } 2351 2352 load_state->policy = newpolicy; 2353 load_state->convert_data = convert_data; 2354 return 0; 2355 2356err_free_convert_data: 2357 kfree(convert_data); 2358err_free_isids: 2359 sidtab_destroy(newpolicy->sidtab); 2360err_mapping: 2361 kfree(newpolicy->map.mapping); 2362err_policydb: 2363 policydb_destroy(&newpolicy->policydb); 2364err_sidtab: 2365 kfree(newpolicy->sidtab); 2366err_policy: 2367 kfree(newpolicy); 2368 2369 return rc; 2370} 2371 2372/** 2373 * ocontext_to_sid - Helper to safely get sid for an ocontext 2374 * @sidtab: SID table 2375 * @c: ocontext structure 2376 * @index: index of the context entry (0 or 1) 2377 * @out_sid: pointer to the resulting SID value 2378 * 2379 * For all ocontexts except OCON_ISID the SID fields are populated 2380 * on-demand when needed. Since updating the SID value is an SMP-sensitive 2381 * operation, this helper must be used to do that safely. 2382 * 2383 * WARNING: This function may return -ESTALE, indicating that the caller 2384 * must retry the operation after re-acquiring the policy pointer! 2385 */ 2386static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c, 2387 size_t index, u32 *out_sid) 2388{ 2389 int rc; 2390 u32 sid; 2391 2392 /* Ensure the associated sidtab entry is visible to this thread. */ 2393 sid = smp_load_acquire(&c->sid[index]); 2394 if (!sid) { 2395 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid); 2396 if (rc) 2397 return rc; 2398 2399 /* 2400 * Ensure the new sidtab entry is visible to other threads 2401 * when they see the SID. 2402 */ 2403 smp_store_release(&c->sid[index], sid); 2404 } 2405 *out_sid = sid; 2406 return 0; 2407} 2408 2409/** 2410 * security_port_sid - Obtain the SID for a port. 2411 * @protocol: protocol number 2412 * @port: port number 2413 * @out_sid: security identifier 2414 */ 2415int security_port_sid(struct selinux_state *state, 2416 u8 protocol, u16 port, u32 *out_sid) 2417{ 2418 struct selinux_policy *policy; 2419 struct policydb *policydb; 2420 struct sidtab *sidtab; 2421 struct ocontext *c; 2422 int rc; 2423 2424 if (!selinux_initialized(state)) { 2425 *out_sid = SECINITSID_PORT; 2426 return 0; 2427 } 2428 2429retry: 2430 rc = 0; 2431 rcu_read_lock(); 2432 policy = rcu_dereference(state->policy); 2433 policydb = &policy->policydb; 2434 sidtab = policy->sidtab; 2435 2436 c = policydb->ocontexts[OCON_PORT]; 2437 while (c) { 2438 if (c->u.port.protocol == protocol && 2439 c->u.port.low_port <= port && 2440 c->u.port.high_port >= port) 2441 break; 2442 c = c->next; 2443 } 2444 2445 if (c) { 2446 rc = ocontext_to_sid(sidtab, c, 0, out_sid); 2447 if (rc == -ESTALE) { 2448 rcu_read_unlock(); 2449 goto retry; 2450 } 2451 if (rc) 2452 goto out; 2453 } else { 2454 *out_sid = SECINITSID_PORT; 2455 } 2456 2457out: 2458 rcu_read_unlock(); 2459 return rc; 2460} 2461 2462/** 2463 * security_pkey_sid - Obtain the SID for a pkey. 2464 * @subnet_prefix: Subnet Prefix 2465 * @pkey_num: pkey number 2466 * @out_sid: security identifier 2467 */ 2468int security_ib_pkey_sid(struct selinux_state *state, 2469 u64 subnet_prefix, u16 pkey_num, u32 *out_sid) 2470{ 2471 struct selinux_policy *policy; 2472 struct policydb *policydb; 2473 struct sidtab *sidtab; 2474 struct ocontext *c; 2475 int rc; 2476 2477 if (!selinux_initialized(state)) { 2478 *out_sid = SECINITSID_UNLABELED; 2479 return 0; 2480 } 2481 2482retry: 2483 rc = 0; 2484 rcu_read_lock(); 2485 policy = rcu_dereference(state->policy); 2486 policydb = &policy->policydb; 2487 sidtab = policy->sidtab; 2488 2489 c = policydb->ocontexts[OCON_IBPKEY]; 2490 while (c) { 2491 if (c->u.ibpkey.low_pkey <= pkey_num && 2492 c->u.ibpkey.high_pkey >= pkey_num && 2493 c->u.ibpkey.subnet_prefix == subnet_prefix) 2494 break; 2495 2496 c = c->next; 2497 } 2498 2499 if (c) { 2500 rc = ocontext_to_sid(sidtab, c, 0, out_sid); 2501 if (rc == -ESTALE) { 2502 rcu_read_unlock(); 2503 goto retry; 2504 } 2505 if (rc) 2506 goto out; 2507 } else 2508 *out_sid = SECINITSID_UNLABELED; 2509 2510out: 2511 rcu_read_unlock(); 2512 return rc; 2513} 2514 2515/** 2516 * security_ib_endport_sid - Obtain the SID for a subnet management interface. 2517 * @dev_name: device name 2518 * @port: port number 2519 * @out_sid: security identifier 2520 */ 2521int security_ib_endport_sid(struct selinux_state *state, 2522 const char *dev_name, u8 port_num, u32 *out_sid) 2523{ 2524 struct selinux_policy *policy; 2525 struct policydb *policydb; 2526 struct sidtab *sidtab; 2527 struct ocontext *c; 2528 int rc; 2529 2530 if (!selinux_initialized(state)) { 2531 *out_sid = SECINITSID_UNLABELED; 2532 return 0; 2533 } 2534 2535retry: 2536 rc = 0; 2537 rcu_read_lock(); 2538 policy = rcu_dereference(state->policy); 2539 policydb = &policy->policydb; 2540 sidtab = policy->sidtab; 2541 2542 c = policydb->ocontexts[OCON_IBENDPORT]; 2543 while (c) { 2544 if (c->u.ibendport.port == port_num && 2545 !strncmp(c->u.ibendport.dev_name, 2546 dev_name, 2547 IB_DEVICE_NAME_MAX)) 2548 break; 2549 2550 c = c->next; 2551 } 2552 2553 if (c) { 2554 rc = ocontext_to_sid(sidtab, c, 0, out_sid); 2555 if (rc == -ESTALE) { 2556 rcu_read_unlock(); 2557 goto retry; 2558 } 2559 if (rc) 2560 goto out; 2561 } else 2562 *out_sid = SECINITSID_UNLABELED; 2563 2564out: 2565 rcu_read_unlock(); 2566 return rc; 2567} 2568 2569/** 2570 * security_netif_sid - Obtain the SID for a network interface. 2571 * @name: interface name 2572 * @if_sid: interface SID 2573 */ 2574int security_netif_sid(struct selinux_state *state, 2575 char *name, u32 *if_sid) 2576{ 2577 struct selinux_policy *policy; 2578 struct policydb *policydb; 2579 struct sidtab *sidtab; 2580 int rc; 2581 struct ocontext *c; 2582 2583 if (!selinux_initialized(state)) { 2584 *if_sid = SECINITSID_NETIF; 2585 return 0; 2586 } 2587 2588retry: 2589 rc = 0; 2590 rcu_read_lock(); 2591 policy = rcu_dereference(state->policy); 2592 policydb = &policy->policydb; 2593 sidtab = policy->sidtab; 2594 2595 c = policydb->ocontexts[OCON_NETIF]; 2596 while (c) { 2597 if (strcmp(name, c->u.name) == 0) 2598 break; 2599 c = c->next; 2600 } 2601 2602 if (c) { 2603 rc = ocontext_to_sid(sidtab, c, 0, if_sid); 2604 if (rc == -ESTALE) { 2605 rcu_read_unlock(); 2606 goto retry; 2607 } 2608 if (rc) 2609 goto out; 2610 } else 2611 *if_sid = SECINITSID_NETIF; 2612 2613out: 2614 rcu_read_unlock(); 2615 return rc; 2616} 2617 2618static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2619{ 2620 int i, fail = 0; 2621 2622 for (i = 0; i < 4; i++) 2623 if (addr[i] != (input[i] & mask[i])) { 2624 fail = 1; 2625 break; 2626 } 2627 2628 return !fail; 2629} 2630 2631/** 2632 * security_node_sid - Obtain the SID for a node (host). 2633 * @domain: communication domain aka address family 2634 * @addrp: address 2635 * @addrlen: address length in bytes 2636 * @out_sid: security identifier 2637 */ 2638int security_node_sid(struct selinux_state *state, 2639 u16 domain, 2640 void *addrp, 2641 u32 addrlen, 2642 u32 *out_sid) 2643{ 2644 struct selinux_policy *policy; 2645 struct policydb *policydb; 2646 struct sidtab *sidtab; 2647 int rc; 2648 struct ocontext *c; 2649 2650 if (!selinux_initialized(state)) { 2651 *out_sid = SECINITSID_NODE; 2652 return 0; 2653 } 2654 2655retry: 2656 rcu_read_lock(); 2657 policy = rcu_dereference(state->policy); 2658 policydb = &policy->policydb; 2659 sidtab = policy->sidtab; 2660 2661 switch (domain) { 2662 case AF_INET: { 2663 u32 addr; 2664 2665 rc = -EINVAL; 2666 if (addrlen != sizeof(u32)) 2667 goto out; 2668 2669 addr = *((u32 *)addrp); 2670 2671 c = policydb->ocontexts[OCON_NODE]; 2672 while (c) { 2673 if (c->u.node.addr == (addr & c->u.node.mask)) 2674 break; 2675 c = c->next; 2676 } 2677 break; 2678 } 2679 2680 case AF_INET6: 2681 rc = -EINVAL; 2682 if (addrlen != sizeof(u64) * 2) 2683 goto out; 2684 c = policydb->ocontexts[OCON_NODE6]; 2685 while (c) { 2686 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2687 c->u.node6.mask)) 2688 break; 2689 c = c->next; 2690 } 2691 break; 2692 2693 default: 2694 rc = 0; 2695 *out_sid = SECINITSID_NODE; 2696 goto out; 2697 } 2698 2699 if (c) { 2700 rc = ocontext_to_sid(sidtab, c, 0, out_sid); 2701 if (rc == -ESTALE) { 2702 rcu_read_unlock(); 2703 goto retry; 2704 } 2705 if (rc) 2706 goto out; 2707 } else { 2708 *out_sid = SECINITSID_NODE; 2709 } 2710 2711 rc = 0; 2712out: 2713 rcu_read_unlock(); 2714 return rc; 2715} 2716 2717#define SIDS_NEL 25 2718 2719/** 2720 * security_get_user_sids - Obtain reachable SIDs for a user. 2721 * @fromsid: starting SID 2722 * @username: username 2723 * @sids: array of reachable SIDs for user 2724 * @nel: number of elements in @sids 2725 * 2726 * Generate the set of SIDs for legal security contexts 2727 * for a given user that can be reached by @fromsid. 2728 * Set *@sids to point to a dynamically allocated 2729 * array containing the set of SIDs. Set *@nel to the 2730 * number of elements in the array. 2731 */ 2732 2733int security_get_user_sids(struct selinux_state *state, 2734 u32 fromsid, 2735 char *username, 2736 u32 **sids, 2737 u32 *nel) 2738{ 2739 struct selinux_policy *policy; 2740 struct policydb *policydb; 2741 struct sidtab *sidtab; 2742 struct context *fromcon, usercon; 2743 u32 *mysids = NULL, *mysids2, sid; 2744 u32 i, j, mynel, maxnel = SIDS_NEL; 2745 struct user_datum *user; 2746 struct role_datum *role; 2747 struct ebitmap_node *rnode, *tnode; 2748 int rc; 2749 2750 *sids = NULL; 2751 *nel = 0; 2752 2753 if (!selinux_initialized(state)) 2754 return 0; 2755 2756 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL); 2757 if (!mysids) 2758 return -ENOMEM; 2759 2760retry: 2761 mynel = 0; 2762 rcu_read_lock(); 2763 policy = rcu_dereference(state->policy); 2764 policydb = &policy->policydb; 2765 sidtab = policy->sidtab; 2766 2767 context_init(&usercon); 2768 2769 rc = -EINVAL; 2770 fromcon = sidtab_search(sidtab, fromsid); 2771 if (!fromcon) 2772 goto out_unlock; 2773 2774 rc = -EINVAL; 2775 user = symtab_search(&policydb->p_users, username); 2776 if (!user) 2777 goto out_unlock; 2778 2779 usercon.user = user->value; 2780 2781 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2782 role = policydb->role_val_to_struct[i]; 2783 usercon.role = i + 1; 2784 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2785 usercon.type = j + 1; 2786 2787 if (mls_setup_user_range(policydb, fromcon, user, 2788 &usercon)) 2789 continue; 2790 2791 rc = sidtab_context_to_sid(sidtab, &usercon, &sid); 2792 if (rc == -ESTALE) { 2793 rcu_read_unlock(); 2794 goto retry; 2795 } 2796 if (rc) 2797 goto out_unlock; 2798 if (mynel < maxnel) { 2799 mysids[mynel++] = sid; 2800 } else { 2801 rc = -ENOMEM; 2802 maxnel += SIDS_NEL; 2803 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2804 if (!mysids2) 2805 goto out_unlock; 2806 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2807 kfree(mysids); 2808 mysids = mysids2; 2809 mysids[mynel++] = sid; 2810 } 2811 } 2812 } 2813 rc = 0; 2814out_unlock: 2815 rcu_read_unlock(); 2816 if (rc || !mynel) { 2817 kfree(mysids); 2818 return rc; 2819 } 2820 2821 rc = -ENOMEM; 2822 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2823 if (!mysids2) { 2824 kfree(mysids); 2825 return rc; 2826 } 2827 for (i = 0, j = 0; i < mynel; i++) { 2828 struct av_decision dummy_avd; 2829 rc = avc_has_perm_noaudit(state, 2830 fromsid, mysids[i], 2831 SECCLASS_PROCESS, /* kernel value */ 2832 PROCESS__TRANSITION, AVC_STRICT, 2833 &dummy_avd); 2834 if (!rc) 2835 mysids2[j++] = mysids[i]; 2836 cond_resched(); 2837 } 2838 kfree(mysids); 2839 *sids = mysids2; 2840 *nel = j; 2841 return 0; 2842} 2843 2844/** 2845 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem 2846 * @fstype: filesystem type 2847 * @path: path from root of mount 2848 * @sclass: file security class 2849 * @sid: SID for path 2850 * 2851 * Obtain a SID to use for a file in a filesystem that 2852 * cannot support xattr or use a fixed labeling behavior like 2853 * transition SIDs or task SIDs. 2854 * 2855 * WARNING: This function may return -ESTALE, indicating that the caller 2856 * must retry the operation after re-acquiring the policy pointer! 2857 */ 2858static inline int __security_genfs_sid(struct selinux_policy *policy, 2859 const char *fstype, 2860 char *path, 2861 u16 orig_sclass, 2862 u32 *sid) 2863{ 2864 struct policydb *policydb = &policy->policydb; 2865 struct sidtab *sidtab = policy->sidtab; 2866 int len; 2867 u16 sclass; 2868 struct genfs *genfs; 2869 struct ocontext *c; 2870 int cmp = 0; 2871 2872 while (path[0] == '/' && path[1] == '/') 2873 path++; 2874 2875 sclass = unmap_class(&policy->map, orig_sclass); 2876 *sid = SECINITSID_UNLABELED; 2877 2878 for (genfs = policydb->genfs; genfs; genfs = genfs->next) { 2879 cmp = strcmp(fstype, genfs->fstype); 2880 if (cmp <= 0) 2881 break; 2882 } 2883 2884 if (!genfs || cmp) 2885 return -ENOENT; 2886 2887 for (c = genfs->head; c; c = c->next) { 2888 len = strlen(c->u.name); 2889 if ((!c->v.sclass || sclass == c->v.sclass) && 2890 (strncmp(c->u.name, path, len) == 0)) 2891 break; 2892 } 2893 2894 if (!c) 2895 return -ENOENT; 2896 2897 return ocontext_to_sid(sidtab, c, 0, sid); 2898} 2899 2900/** 2901 * security_genfs_sid - Obtain a SID for a file in a filesystem 2902 * @fstype: filesystem type 2903 * @path: path from root of mount 2904 * @sclass: file security class 2905 * @sid: SID for path 2906 * 2907 * Acquire policy_rwlock before calling __security_genfs_sid() and release 2908 * it afterward. 2909 */ 2910int security_genfs_sid(struct selinux_state *state, 2911 const char *fstype, 2912 char *path, 2913 u16 orig_sclass, 2914 u32 *sid) 2915{ 2916 struct selinux_policy *policy; 2917 int retval; 2918 2919 if (!selinux_initialized(state)) { 2920 *sid = SECINITSID_UNLABELED; 2921 return 0; 2922 } 2923 2924 do { 2925 rcu_read_lock(); 2926 policy = rcu_dereference(state->policy); 2927 retval = __security_genfs_sid(policy, fstype, path, 2928 orig_sclass, sid); 2929 rcu_read_unlock(); 2930 } while (retval == -ESTALE); 2931 return retval; 2932} 2933 2934int selinux_policy_genfs_sid(struct selinux_policy *policy, 2935 const char *fstype, 2936 char *path, 2937 u16 orig_sclass, 2938 u32 *sid) 2939{ 2940 /* no lock required, policy is not yet accessible by other threads */ 2941 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid); 2942} 2943 2944/** 2945 * security_fs_use - Determine how to handle labeling for a filesystem. 2946 * @sb: superblock in question 2947 */ 2948int security_fs_use(struct selinux_state *state, struct super_block *sb) 2949{ 2950 struct selinux_policy *policy; 2951 struct policydb *policydb; 2952 struct sidtab *sidtab; 2953 int rc; 2954 struct ocontext *c; 2955 struct superblock_security_struct *sbsec = sb->s_security; 2956 const char *fstype = sb->s_type->name; 2957 2958 if (!selinux_initialized(state)) { 2959 sbsec->behavior = SECURITY_FS_USE_NONE; 2960 sbsec->sid = SECINITSID_UNLABELED; 2961 return 0; 2962 } 2963 2964retry: 2965 rc = 0; 2966 rcu_read_lock(); 2967 policy = rcu_dereference(state->policy); 2968 policydb = &policy->policydb; 2969 sidtab = policy->sidtab; 2970 2971 c = policydb->ocontexts[OCON_FSUSE]; 2972 while (c) { 2973 if (strcmp(fstype, c->u.name) == 0) 2974 break; 2975 c = c->next; 2976 } 2977 2978 if (c) { 2979 sbsec->behavior = c->v.behavior; 2980 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid); 2981 if (rc == -ESTALE) { 2982 rcu_read_unlock(); 2983 goto retry; 2984 } 2985 if (rc) 2986 goto out; 2987 } else { 2988 rc = __security_genfs_sid(policy, fstype, "/", 2989 SECCLASS_DIR, &sbsec->sid); 2990 if (rc == -ESTALE) { 2991 rcu_read_unlock(); 2992 goto retry; 2993 } 2994 if (rc) { 2995 sbsec->behavior = SECURITY_FS_USE_NONE; 2996 rc = 0; 2997 } else { 2998 sbsec->behavior = SECURITY_FS_USE_GENFS; 2999 } 3000 } 3001 3002out: 3003 rcu_read_unlock(); 3004 return rc; 3005} 3006 3007int security_get_bools(struct selinux_policy *policy, 3008 u32 *len, char ***names, int **values) 3009{ 3010 struct policydb *policydb; 3011 u32 i; 3012 int rc; 3013 3014 policydb = &policy->policydb; 3015 3016 *names = NULL; 3017 *values = NULL; 3018 3019 rc = 0; 3020 *len = policydb->p_bools.nprim; 3021 if (!*len) 3022 goto out; 3023 3024 rc = -ENOMEM; 3025 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 3026 if (!*names) 3027 goto err; 3028 3029 rc = -ENOMEM; 3030 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 3031 if (!*values) 3032 goto err; 3033 3034 for (i = 0; i < *len; i++) { 3035 (*values)[i] = policydb->bool_val_to_struct[i]->state; 3036 3037 rc = -ENOMEM; 3038 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i), 3039 GFP_ATOMIC); 3040 if (!(*names)[i]) 3041 goto err; 3042 } 3043 rc = 0; 3044out: 3045 return rc; 3046err: 3047 if (*names) { 3048 for (i = 0; i < *len; i++) 3049 kfree((*names)[i]); 3050 kfree(*names); 3051 } 3052 kfree(*values); 3053 *len = 0; 3054 *names = NULL; 3055 *values = NULL; 3056 goto out; 3057} 3058 3059 3060int security_set_bools(struct selinux_state *state, u32 len, int *values) 3061{ 3062 struct selinux_policy *newpolicy, *oldpolicy; 3063 int rc; 3064 u32 i, seqno = 0; 3065 3066 if (!selinux_initialized(state)) 3067 return -EINVAL; 3068 3069 oldpolicy = rcu_dereference_protected(state->policy, 3070 lockdep_is_held(&state->policy_mutex)); 3071 3072 /* Consistency check on number of booleans, should never fail */ 3073 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim)) 3074 return -EINVAL; 3075 3076 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL); 3077 if (!newpolicy) 3078 return -ENOMEM; 3079 3080 /* 3081 * Deep copy only the parts of the policydb that might be 3082 * modified as a result of changing booleans. 3083 */ 3084 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb); 3085 if (rc) { 3086 kfree(newpolicy); 3087 return -ENOMEM; 3088 } 3089 3090 /* Update the boolean states in the copy */ 3091 for (i = 0; i < len; i++) { 3092 int new_state = !!values[i]; 3093 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state; 3094 3095 if (new_state != old_state) { 3096 audit_log(audit_context(), GFP_ATOMIC, 3097 AUDIT_MAC_CONFIG_CHANGE, 3098 "bool=%s val=%d old_val=%d auid=%u ses=%u", 3099 sym_name(&newpolicy->policydb, SYM_BOOLS, i), 3100 new_state, 3101 old_state, 3102 from_kuid(&init_user_ns, audit_get_loginuid(current)), 3103 audit_get_sessionid(current)); 3104 newpolicy->policydb.bool_val_to_struct[i]->state = new_state; 3105 } 3106 } 3107 3108 /* Re-evaluate the conditional rules in the copy */ 3109 evaluate_cond_nodes(&newpolicy->policydb); 3110 3111 /* Set latest granting seqno for new policy */ 3112 newpolicy->latest_granting = oldpolicy->latest_granting + 1; 3113 seqno = newpolicy->latest_granting; 3114 3115 /* Install the new policy */ 3116 rcu_assign_pointer(state->policy, newpolicy); 3117 3118 /* 3119 * Free the conditional portions of the old policydb 3120 * that were copied for the new policy, and the oldpolicy 3121 * structure itself but not what it references. 3122 */ 3123 synchronize_rcu(); 3124 selinux_policy_cond_free(oldpolicy); 3125 3126 /* Notify others of the policy change */ 3127 selinux_notify_policy_change(state, seqno); 3128 return 0; 3129} 3130 3131int security_get_bool_value(struct selinux_state *state, 3132 u32 index) 3133{ 3134 struct selinux_policy *policy; 3135 struct policydb *policydb; 3136 int rc; 3137 u32 len; 3138 3139 if (!selinux_initialized(state)) 3140 return 0; 3141 3142 rcu_read_lock(); 3143 policy = rcu_dereference(state->policy); 3144 policydb = &policy->policydb; 3145 3146 rc = -EFAULT; 3147 len = policydb->p_bools.nprim; 3148 if (index >= len) 3149 goto out; 3150 3151 rc = policydb->bool_val_to_struct[index]->state; 3152out: 3153 rcu_read_unlock(); 3154 return rc; 3155} 3156 3157static int security_preserve_bools(struct selinux_policy *oldpolicy, 3158 struct selinux_policy *newpolicy) 3159{ 3160 int rc, *bvalues = NULL; 3161 char **bnames = NULL; 3162 struct cond_bool_datum *booldatum; 3163 u32 i, nbools = 0; 3164 3165 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues); 3166 if (rc) 3167 goto out; 3168 for (i = 0; i < nbools; i++) { 3169 booldatum = symtab_search(&newpolicy->policydb.p_bools, 3170 bnames[i]); 3171 if (booldatum) 3172 booldatum->state = bvalues[i]; 3173 } 3174 evaluate_cond_nodes(&newpolicy->policydb); 3175 3176out: 3177 if (bnames) { 3178 for (i = 0; i < nbools; i++) 3179 kfree(bnames[i]); 3180 } 3181 kfree(bnames); 3182 kfree(bvalues); 3183 return rc; 3184} 3185 3186/* 3187 * security_sid_mls_copy() - computes a new sid based on the given 3188 * sid and the mls portion of mls_sid. 3189 */ 3190int security_sid_mls_copy(struct selinux_state *state, 3191 u32 sid, u32 mls_sid, u32 *new_sid) 3192{ 3193 struct selinux_policy *policy; 3194 struct policydb *policydb; 3195 struct sidtab *sidtab; 3196 struct context *context1; 3197 struct context *context2; 3198 struct context newcon; 3199 char *s; 3200 u32 len; 3201 int rc; 3202 3203 if (!selinux_initialized(state)) { 3204 *new_sid = sid; 3205 return 0; 3206 } 3207 3208retry: 3209 rc = 0; 3210 context_init(&newcon); 3211 3212 rcu_read_lock(); 3213 policy = rcu_dereference(state->policy); 3214 policydb = &policy->policydb; 3215 sidtab = policy->sidtab; 3216 3217 if (!policydb->mls_enabled) { 3218 *new_sid = sid; 3219 goto out_unlock; 3220 } 3221 3222 rc = -EINVAL; 3223 context1 = sidtab_search(sidtab, sid); 3224 if (!context1) { 3225 pr_err("SELinux: %s: unrecognized SID %d\n", 3226 __func__, sid); 3227 goto out_unlock; 3228 } 3229 3230 rc = -EINVAL; 3231 context2 = sidtab_search(sidtab, mls_sid); 3232 if (!context2) { 3233 pr_err("SELinux: %s: unrecognized SID %d\n", 3234 __func__, mls_sid); 3235 goto out_unlock; 3236 } 3237 3238 newcon.user = context1->user; 3239 newcon.role = context1->role; 3240 newcon.type = context1->type; 3241 rc = mls_context_cpy(&newcon, context2); 3242 if (rc) 3243 goto out_unlock; 3244 3245 /* Check the validity of the new context. */ 3246 if (!policydb_context_isvalid(policydb, &newcon)) { 3247 rc = convert_context_handle_invalid_context(state, policydb, 3248 &newcon); 3249 if (rc) { 3250 if (!context_struct_to_string(policydb, &newcon, &s, 3251 &len)) { 3252 struct audit_buffer *ab; 3253 3254 ab = audit_log_start(audit_context(), 3255 GFP_ATOMIC, 3256 AUDIT_SELINUX_ERR); 3257 audit_log_format(ab, 3258 "op=security_sid_mls_copy invalid_context="); 3259 /* don't record NUL with untrusted strings */ 3260 audit_log_n_untrustedstring(ab, s, len - 1); 3261 audit_log_end(ab); 3262 kfree(s); 3263 } 3264 goto out_unlock; 3265 } 3266 } 3267 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid); 3268 if (rc == -ESTALE) { 3269 rcu_read_unlock(); 3270 context_destroy(&newcon); 3271 goto retry; 3272 } 3273out_unlock: 3274 rcu_read_unlock(); 3275 context_destroy(&newcon); 3276 return rc; 3277} 3278 3279/** 3280 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 3281 * @nlbl_sid: NetLabel SID 3282 * @nlbl_type: NetLabel labeling protocol type 3283 * @xfrm_sid: XFRM SID 3284 * 3285 * Description: 3286 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 3287 * resolved into a single SID it is returned via @peer_sid and the function 3288 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 3289 * returns a negative value. A table summarizing the behavior is below: 3290 * 3291 * | function return | @sid 3292 * ------------------------------+-----------------+----------------- 3293 * no peer labels | 0 | SECSID_NULL 3294 * single peer label | 0 | <peer_label> 3295 * multiple, consistent labels | 0 | <peer_label> 3296 * multiple, inconsistent labels | -<errno> | SECSID_NULL 3297 * 3298 */ 3299int security_net_peersid_resolve(struct selinux_state *state, 3300 u32 nlbl_sid, u32 nlbl_type, 3301 u32 xfrm_sid, 3302 u32 *peer_sid) 3303{ 3304 struct selinux_policy *policy; 3305 struct policydb *policydb; 3306 struct sidtab *sidtab; 3307 int rc; 3308 struct context *nlbl_ctx; 3309 struct context *xfrm_ctx; 3310 3311 *peer_sid = SECSID_NULL; 3312 3313 /* handle the common (which also happens to be the set of easy) cases 3314 * right away, these two if statements catch everything involving a 3315 * single or absent peer SID/label */ 3316 if (xfrm_sid == SECSID_NULL) { 3317 *peer_sid = nlbl_sid; 3318 return 0; 3319 } 3320 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 3321 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 3322 * is present */ 3323 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 3324 *peer_sid = xfrm_sid; 3325 return 0; 3326 } 3327 3328 if (!selinux_initialized(state)) 3329 return 0; 3330 3331 rcu_read_lock(); 3332 policy = rcu_dereference(state->policy); 3333 policydb = &policy->policydb; 3334 sidtab = policy->sidtab; 3335 3336 /* 3337 * We don't need to check initialized here since the only way both 3338 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 3339 * security server was initialized and state->initialized was true. 3340 */ 3341 if (!policydb->mls_enabled) { 3342 rc = 0; 3343 goto out; 3344 } 3345 3346 rc = -EINVAL; 3347 nlbl_ctx = sidtab_search(sidtab, nlbl_sid); 3348 if (!nlbl_ctx) { 3349 pr_err("SELinux: %s: unrecognized SID %d\n", 3350 __func__, nlbl_sid); 3351 goto out; 3352 } 3353 rc = -EINVAL; 3354 xfrm_ctx = sidtab_search(sidtab, xfrm_sid); 3355 if (!xfrm_ctx) { 3356 pr_err("SELinux: %s: unrecognized SID %d\n", 3357 __func__, xfrm_sid); 3358 goto out; 3359 } 3360 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 3361 if (rc) 3362 goto out; 3363 3364 /* at present NetLabel SIDs/labels really only carry MLS 3365 * information so if the MLS portion of the NetLabel SID 3366 * matches the MLS portion of the labeled XFRM SID/label 3367 * then pass along the XFRM SID as it is the most 3368 * expressive */ 3369 *peer_sid = xfrm_sid; 3370out: 3371 rcu_read_unlock(); 3372 return rc; 3373} 3374 3375static int get_classes_callback(void *k, void *d, void *args) 3376{ 3377 struct class_datum *datum = d; 3378 char *name = k, **classes = args; 3379 int value = datum->value - 1; 3380 3381 classes[value] = kstrdup(name, GFP_ATOMIC); 3382 if (!classes[value]) 3383 return -ENOMEM; 3384 3385 return 0; 3386} 3387 3388int security_get_classes(struct selinux_policy *policy, 3389 char ***classes, int *nclasses) 3390{ 3391 struct policydb *policydb; 3392 int rc; 3393 3394 policydb = &policy->policydb; 3395 3396 rc = -ENOMEM; 3397 *nclasses = policydb->p_classes.nprim; 3398 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 3399 if (!*classes) 3400 goto out; 3401 3402 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback, 3403 *classes); 3404 if (rc) { 3405 int i; 3406 for (i = 0; i < *nclasses; i++) 3407 kfree((*classes)[i]); 3408 kfree(*classes); 3409 } 3410 3411out: 3412 return rc; 3413} 3414 3415static int get_permissions_callback(void *k, void *d, void *args) 3416{ 3417 struct perm_datum *datum = d; 3418 char *name = k, **perms = args; 3419 int value = datum->value - 1; 3420 3421 perms[value] = kstrdup(name, GFP_ATOMIC); 3422 if (!perms[value]) 3423 return -ENOMEM; 3424 3425 return 0; 3426} 3427 3428int security_get_permissions(struct selinux_policy *policy, 3429 char *class, char ***perms, int *nperms) 3430{ 3431 struct policydb *policydb; 3432 int rc, i; 3433 struct class_datum *match; 3434 3435 policydb = &policy->policydb; 3436 3437 rc = -EINVAL; 3438 match = symtab_search(&policydb->p_classes, class); 3439 if (!match) { 3440 pr_err("SELinux: %s: unrecognized class %s\n", 3441 __func__, class); 3442 goto out; 3443 } 3444 3445 rc = -ENOMEM; 3446 *nperms = match->permissions.nprim; 3447 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 3448 if (!*perms) 3449 goto out; 3450 3451 if (match->comdatum) { 3452 rc = hashtab_map(&match->comdatum->permissions.table, 3453 get_permissions_callback, *perms); 3454 if (rc) 3455 goto err; 3456 } 3457 3458 rc = hashtab_map(&match->permissions.table, get_permissions_callback, 3459 *perms); 3460 if (rc) 3461 goto err; 3462 3463out: 3464 return rc; 3465 3466err: 3467 for (i = 0; i < *nperms; i++) 3468 kfree((*perms)[i]); 3469 kfree(*perms); 3470 return rc; 3471} 3472 3473int security_get_reject_unknown(struct selinux_state *state) 3474{ 3475 struct selinux_policy *policy; 3476 int value; 3477 3478 if (!selinux_initialized(state)) 3479 return 0; 3480 3481 rcu_read_lock(); 3482 policy = rcu_dereference(state->policy); 3483 value = policy->policydb.reject_unknown; 3484 rcu_read_unlock(); 3485 return value; 3486} 3487 3488int security_get_allow_unknown(struct selinux_state *state) 3489{ 3490 struct selinux_policy *policy; 3491 int value; 3492 3493 if (!selinux_initialized(state)) 3494 return 0; 3495 3496 rcu_read_lock(); 3497 policy = rcu_dereference(state->policy); 3498 value = policy->policydb.allow_unknown; 3499 rcu_read_unlock(); 3500 return value; 3501} 3502 3503/** 3504 * security_policycap_supported - Check for a specific policy capability 3505 * @req_cap: capability 3506 * 3507 * Description: 3508 * This function queries the currently loaded policy to see if it supports the 3509 * capability specified by @req_cap. Returns true (1) if the capability is 3510 * supported, false (0) if it isn't supported. 3511 * 3512 */ 3513int security_policycap_supported(struct selinux_state *state, 3514 unsigned int req_cap) 3515{ 3516 struct selinux_policy *policy; 3517 int rc; 3518 3519 if (!selinux_initialized(state)) 3520 return 0; 3521 3522 rcu_read_lock(); 3523 policy = rcu_dereference(state->policy); 3524 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap); 3525 rcu_read_unlock(); 3526 3527 return rc; 3528} 3529 3530struct selinux_audit_rule { 3531 u32 au_seqno; 3532 struct context au_ctxt; 3533}; 3534 3535void selinux_audit_rule_free(void *vrule) 3536{ 3537 struct selinux_audit_rule *rule = vrule; 3538 3539 if (rule) { 3540 context_destroy(&rule->au_ctxt); 3541 kfree(rule); 3542 } 3543} 3544 3545int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 3546{ 3547 struct selinux_state *state = &selinux_state; 3548 struct selinux_policy *policy; 3549 struct policydb *policydb; 3550 struct selinux_audit_rule *tmprule; 3551 struct role_datum *roledatum; 3552 struct type_datum *typedatum; 3553 struct user_datum *userdatum; 3554 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 3555 int rc = 0; 3556 3557 *rule = NULL; 3558 3559 if (!selinux_initialized(state)) 3560 return -EOPNOTSUPP; 3561 3562 switch (field) { 3563 case AUDIT_SUBJ_USER: 3564 case AUDIT_SUBJ_ROLE: 3565 case AUDIT_SUBJ_TYPE: 3566 case AUDIT_OBJ_USER: 3567 case AUDIT_OBJ_ROLE: 3568 case AUDIT_OBJ_TYPE: 3569 /* only 'equals' and 'not equals' fit user, role, and type */ 3570 if (op != Audit_equal && op != Audit_not_equal) 3571 return -EINVAL; 3572 break; 3573 case AUDIT_SUBJ_SEN: 3574 case AUDIT_SUBJ_CLR: 3575 case AUDIT_OBJ_LEV_LOW: 3576 case AUDIT_OBJ_LEV_HIGH: 3577 /* we do not allow a range, indicated by the presence of '-' */ 3578 if (strchr(rulestr, '-')) 3579 return -EINVAL; 3580 break; 3581 default: 3582 /* only the above fields are valid */ 3583 return -EINVAL; 3584 } 3585 3586 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 3587 if (!tmprule) 3588 return -ENOMEM; 3589 3590 context_init(&tmprule->au_ctxt); 3591 3592 rcu_read_lock(); 3593 policy = rcu_dereference(state->policy); 3594 policydb = &policy->policydb; 3595 3596 tmprule->au_seqno = policy->latest_granting; 3597 3598 switch (field) { 3599 case AUDIT_SUBJ_USER: 3600 case AUDIT_OBJ_USER: 3601 rc = -EINVAL; 3602 userdatum = symtab_search(&policydb->p_users, rulestr); 3603 if (!userdatum) 3604 goto out; 3605 tmprule->au_ctxt.user = userdatum->value; 3606 break; 3607 case AUDIT_SUBJ_ROLE: 3608 case AUDIT_OBJ_ROLE: 3609 rc = -EINVAL; 3610 roledatum = symtab_search(&policydb->p_roles, rulestr); 3611 if (!roledatum) 3612 goto out; 3613 tmprule->au_ctxt.role = roledatum->value; 3614 break; 3615 case AUDIT_SUBJ_TYPE: 3616 case AUDIT_OBJ_TYPE: 3617 rc = -EINVAL; 3618 typedatum = symtab_search(&policydb->p_types, rulestr); 3619 if (!typedatum) 3620 goto out; 3621 tmprule->au_ctxt.type = typedatum->value; 3622 break; 3623 case AUDIT_SUBJ_SEN: 3624 case AUDIT_SUBJ_CLR: 3625 case AUDIT_OBJ_LEV_LOW: 3626 case AUDIT_OBJ_LEV_HIGH: 3627 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt, 3628 GFP_ATOMIC); 3629 if (rc) 3630 goto out; 3631 break; 3632 } 3633 rc = 0; 3634out: 3635 rcu_read_unlock(); 3636 3637 if (rc) { 3638 selinux_audit_rule_free(tmprule); 3639 tmprule = NULL; 3640 } 3641 3642 *rule = tmprule; 3643 3644 return rc; 3645} 3646 3647/* Check to see if the rule contains any selinux fields */ 3648int selinux_audit_rule_known(struct audit_krule *rule) 3649{ 3650 int i; 3651 3652 for (i = 0; i < rule->field_count; i++) { 3653 struct audit_field *f = &rule->fields[i]; 3654 switch (f->type) { 3655 case AUDIT_SUBJ_USER: 3656 case AUDIT_SUBJ_ROLE: 3657 case AUDIT_SUBJ_TYPE: 3658 case AUDIT_SUBJ_SEN: 3659 case AUDIT_SUBJ_CLR: 3660 case AUDIT_OBJ_USER: 3661 case AUDIT_OBJ_ROLE: 3662 case AUDIT_OBJ_TYPE: 3663 case AUDIT_OBJ_LEV_LOW: 3664 case AUDIT_OBJ_LEV_HIGH: 3665 return 1; 3666 } 3667 } 3668 3669 return 0; 3670} 3671 3672int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule) 3673{ 3674 struct selinux_state *state = &selinux_state; 3675 struct selinux_policy *policy; 3676 struct context *ctxt; 3677 struct mls_level *level; 3678 struct selinux_audit_rule *rule = vrule; 3679 int match = 0; 3680 3681 if (unlikely(!rule)) { 3682 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n"); 3683 return -ENOENT; 3684 } 3685 3686 if (!selinux_initialized(state)) 3687 return 0; 3688 3689 rcu_read_lock(); 3690 3691 policy = rcu_dereference(state->policy); 3692 3693 if (rule->au_seqno < policy->latest_granting) { 3694 match = -ESTALE; 3695 goto out; 3696 } 3697 3698 ctxt = sidtab_search(policy->sidtab, sid); 3699 if (unlikely(!ctxt)) { 3700 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n", 3701 sid); 3702 match = -ENOENT; 3703 goto out; 3704 } 3705 3706 /* a field/op pair that is not caught here will simply fall through 3707 without a match */ 3708 switch (field) { 3709 case AUDIT_SUBJ_USER: 3710 case AUDIT_OBJ_USER: 3711 switch (op) { 3712 case Audit_equal: 3713 match = (ctxt->user == rule->au_ctxt.user); 3714 break; 3715 case Audit_not_equal: 3716 match = (ctxt->user != rule->au_ctxt.user); 3717 break; 3718 } 3719 break; 3720 case AUDIT_SUBJ_ROLE: 3721 case AUDIT_OBJ_ROLE: 3722 switch (op) { 3723 case Audit_equal: 3724 match = (ctxt->role == rule->au_ctxt.role); 3725 break; 3726 case Audit_not_equal: 3727 match = (ctxt->role != rule->au_ctxt.role); 3728 break; 3729 } 3730 break; 3731 case AUDIT_SUBJ_TYPE: 3732 case AUDIT_OBJ_TYPE: 3733 switch (op) { 3734 case Audit_equal: 3735 match = (ctxt->type == rule->au_ctxt.type); 3736 break; 3737 case Audit_not_equal: 3738 match = (ctxt->type != rule->au_ctxt.type); 3739 break; 3740 } 3741 break; 3742 case AUDIT_SUBJ_SEN: 3743 case AUDIT_SUBJ_CLR: 3744 case AUDIT_OBJ_LEV_LOW: 3745 case AUDIT_OBJ_LEV_HIGH: 3746 level = ((field == AUDIT_SUBJ_SEN || 3747 field == AUDIT_OBJ_LEV_LOW) ? 3748 &ctxt->range.level[0] : &ctxt->range.level[1]); 3749 switch (op) { 3750 case Audit_equal: 3751 match = mls_level_eq(&rule->au_ctxt.range.level[0], 3752 level); 3753 break; 3754 case Audit_not_equal: 3755 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 3756 level); 3757 break; 3758 case Audit_lt: 3759 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 3760 level) && 3761 !mls_level_eq(&rule->au_ctxt.range.level[0], 3762 level)); 3763 break; 3764 case Audit_le: 3765 match = mls_level_dom(&rule->au_ctxt.range.level[0], 3766 level); 3767 break; 3768 case Audit_gt: 3769 match = (mls_level_dom(level, 3770 &rule->au_ctxt.range.level[0]) && 3771 !mls_level_eq(level, 3772 &rule->au_ctxt.range.level[0])); 3773 break; 3774 case Audit_ge: 3775 match = mls_level_dom(level, 3776 &rule->au_ctxt.range.level[0]); 3777 break; 3778 } 3779 } 3780 3781out: 3782 rcu_read_unlock(); 3783 return match; 3784} 3785 3786static int (*aurule_callback)(void) = audit_update_lsm_rules; 3787 3788static int aurule_avc_callback(u32 event) 3789{ 3790 int err = 0; 3791 3792 if (event == AVC_CALLBACK_RESET && aurule_callback) 3793 err = aurule_callback(); 3794 return err; 3795} 3796 3797static int __init aurule_init(void) 3798{ 3799 int err; 3800 3801 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET); 3802 if (err) 3803 panic("avc_add_callback() failed, error %d\n", err); 3804 3805 return err; 3806} 3807__initcall(aurule_init); 3808 3809#ifdef CONFIG_NETLABEL 3810/** 3811 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3812 * @secattr: the NetLabel packet security attributes 3813 * @sid: the SELinux SID 3814 * 3815 * Description: 3816 * Attempt to cache the context in @ctx, which was derived from the packet in 3817 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3818 * already been initialized. 3819 * 3820 */ 3821static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3822 u32 sid) 3823{ 3824 u32 *sid_cache; 3825 3826 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3827 if (sid_cache == NULL) 3828 return; 3829 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3830 if (secattr->cache == NULL) { 3831 kfree(sid_cache); 3832 return; 3833 } 3834 3835 *sid_cache = sid; 3836 secattr->cache->free = kfree; 3837 secattr->cache->data = sid_cache; 3838 secattr->flags |= NETLBL_SECATTR_CACHE; 3839} 3840 3841/** 3842 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3843 * @secattr: the NetLabel packet security attributes 3844 * @sid: the SELinux SID 3845 * 3846 * Description: 3847 * Convert the given NetLabel security attributes in @secattr into a 3848 * SELinux SID. If the @secattr field does not contain a full SELinux 3849 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3850 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3851 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3852 * conversion for future lookups. Returns zero on success, negative values on 3853 * failure. 3854 * 3855 */ 3856int security_netlbl_secattr_to_sid(struct selinux_state *state, 3857 struct netlbl_lsm_secattr *secattr, 3858 u32 *sid) 3859{ 3860 struct selinux_policy *policy; 3861 struct policydb *policydb; 3862 struct sidtab *sidtab; 3863 int rc; 3864 struct context *ctx; 3865 struct context ctx_new; 3866 3867 if (!selinux_initialized(state)) { 3868 *sid = SECSID_NULL; 3869 return 0; 3870 } 3871 3872retry: 3873 rc = 0; 3874 rcu_read_lock(); 3875 policy = rcu_dereference(state->policy); 3876 policydb = &policy->policydb; 3877 sidtab = policy->sidtab; 3878 3879 if (secattr->flags & NETLBL_SECATTR_CACHE) 3880 *sid = *(u32 *)secattr->cache->data; 3881 else if (secattr->flags & NETLBL_SECATTR_SECID) 3882 *sid = secattr->attr.secid; 3883 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3884 rc = -EIDRM; 3885 ctx = sidtab_search(sidtab, SECINITSID_NETMSG); 3886 if (ctx == NULL) 3887 goto out; 3888 3889 context_init(&ctx_new); 3890 ctx_new.user = ctx->user; 3891 ctx_new.role = ctx->role; 3892 ctx_new.type = ctx->type; 3893 mls_import_netlbl_lvl(policydb, &ctx_new, secattr); 3894 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3895 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr); 3896 if (rc) 3897 goto out; 3898 } 3899 rc = -EIDRM; 3900 if (!mls_context_isvalid(policydb, &ctx_new)) { 3901 ebitmap_destroy(&ctx_new.range.level[0].cat); 3902 goto out; 3903 } 3904 3905 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid); 3906 ebitmap_destroy(&ctx_new.range.level[0].cat); 3907 if (rc == -ESTALE) { 3908 rcu_read_unlock(); 3909 goto retry; 3910 } 3911 if (rc) 3912 goto out; 3913 3914 security_netlbl_cache_add(secattr, *sid); 3915 } else 3916 *sid = SECSID_NULL; 3917 3918out: 3919 rcu_read_unlock(); 3920 return rc; 3921} 3922 3923/** 3924 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3925 * @sid: the SELinux SID 3926 * @secattr: the NetLabel packet security attributes 3927 * 3928 * Description: 3929 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3930 * Returns zero on success, negative values on failure. 3931 * 3932 */ 3933int security_netlbl_sid_to_secattr(struct selinux_state *state, 3934 u32 sid, struct netlbl_lsm_secattr *secattr) 3935{ 3936 struct selinux_policy *policy; 3937 struct policydb *policydb; 3938 int rc; 3939 struct context *ctx; 3940 3941 if (!selinux_initialized(state)) 3942 return 0; 3943 3944 rcu_read_lock(); 3945 policy = rcu_dereference(state->policy); 3946 policydb = &policy->policydb; 3947 3948 rc = -ENOENT; 3949 ctx = sidtab_search(policy->sidtab, sid); 3950 if (ctx == NULL) 3951 goto out; 3952 3953 rc = -ENOMEM; 3954 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1), 3955 GFP_ATOMIC); 3956 if (secattr->domain == NULL) 3957 goto out; 3958 3959 secattr->attr.secid = sid; 3960 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3961 mls_export_netlbl_lvl(policydb, ctx, secattr); 3962 rc = mls_export_netlbl_cat(policydb, ctx, secattr); 3963out: 3964 rcu_read_unlock(); 3965 return rc; 3966} 3967#endif /* CONFIG_NETLABEL */ 3968 3969/** 3970 * security_read_policy - read the policy. 3971 * @data: binary policy data 3972 * @len: length of data in bytes 3973 * 3974 */ 3975int security_read_policy(struct selinux_state *state, 3976 void **data, size_t *len) 3977{ 3978 struct selinux_policy *policy; 3979 int rc; 3980 struct policy_file fp; 3981 3982 policy = rcu_dereference_protected( 3983 state->policy, lockdep_is_held(&state->policy_mutex)); 3984 if (!policy) 3985 return -EINVAL; 3986 3987 *len = policy->policydb.len; 3988 *data = vmalloc_user(*len); 3989 if (!*data) 3990 return -ENOMEM; 3991 3992 fp.data = *data; 3993 fp.len = *len; 3994 3995 rc = policydb_write(&policy->policydb, &fp); 3996 if (rc) 3997 return rc; 3998 3999 *len = (unsigned long)fp.data - (unsigned long)*data; 4000 return 0; 4001 4002} 4003