1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11#define pr_fmt(fmt) "LSM: " fmt 12 13#include <linux/bpf.h> 14#include <linux/capability.h> 15#include <linux/dcache.h> 16#include <linux/export.h> 17#include <linux/init.h> 18#include <linux/kernel.h> 19#include <linux/kernel_read_file.h> 20#include <linux/lsm_hooks.h> 21#include <linux/integrity.h> 22#include <linux/ima.h> 23#include <linux/evm.h> 24#include <linux/fsnotify.h> 25#include <linux/mman.h> 26#include <linux/mount.h> 27#include <linux/personality.h> 28#include <linux/backing-dev.h> 29#include <linux/string.h> 30#include <linux/msg.h> 31#include <net/flow.h> 32 33#define MAX_LSM_EVM_XATTR 2 34 35/* How many LSMs were built into the kernel? */ 36#define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38/* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 63 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 64 [LOCKDOWN_KCORE] = "/proc/kcore access", 65 [LOCKDOWN_KPROBES] = "use of kprobes", 66 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM", 67 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 68 [LOCKDOWN_PERF] = "unsafe use of perf", 69 [LOCKDOWN_TRACEFS] = "use of tracefs", 70 [LOCKDOWN_XMON_RW] = "xmon read and write access", 71 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 72}; 73 74struct security_hook_heads security_hook_heads __lsm_ro_after_init; 75static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 76 77static struct kmem_cache *lsm_file_cache; 78static struct kmem_cache *lsm_inode_cache; 79 80char *lsm_names; 81static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 82 83/* Boot-time LSM user choice */ 84static __initdata const char *chosen_lsm_order; 85static __initdata const char *chosen_major_lsm; 86 87static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 88 89/* Ordered list of LSMs to initialize. */ 90static __initdata struct lsm_info **ordered_lsms; 91static __initdata struct lsm_info *exclusive; 92 93static __initdata bool debug; 94#define init_debug(...) \ 95 do { \ 96 if (debug) \ 97 pr_info(__VA_ARGS__); \ 98 } while (0) 99 100static bool __init is_enabled(struct lsm_info *lsm) 101{ 102 if (!lsm->enabled) 103 return false; 104 105 return *lsm->enabled; 106} 107 108/* Mark an LSM's enabled flag. */ 109static int lsm_enabled_true __initdata = 1; 110static int lsm_enabled_false __initdata = 0; 111static void __init set_enabled(struct lsm_info *lsm, bool enabled) 112{ 113 /* 114 * When an LSM hasn't configured an enable variable, we can use 115 * a hard-coded location for storing the default enabled state. 116 */ 117 if (!lsm->enabled) { 118 if (enabled) 119 lsm->enabled = &lsm_enabled_true; 120 else 121 lsm->enabled = &lsm_enabled_false; 122 } else if (lsm->enabled == &lsm_enabled_true) { 123 if (!enabled) 124 lsm->enabled = &lsm_enabled_false; 125 } else if (lsm->enabled == &lsm_enabled_false) { 126 if (enabled) 127 lsm->enabled = &lsm_enabled_true; 128 } else { 129 *lsm->enabled = enabled; 130 } 131} 132 133/* Is an LSM already listed in the ordered LSMs list? */ 134static bool __init exists_ordered_lsm(struct lsm_info *lsm) 135{ 136 struct lsm_info **check; 137 138 for (check = ordered_lsms; *check; check++) 139 if (*check == lsm) 140 return true; 141 142 return false; 143} 144 145/* Append an LSM to the list of ordered LSMs to initialize. */ 146static int last_lsm __initdata; 147static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 148{ 149 /* Ignore duplicate selections. */ 150 if (exists_ordered_lsm(lsm)) 151 return; 152 153 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 154 return; 155 156 /* Enable this LSM, if it is not already set. */ 157 if (!lsm->enabled) 158 lsm->enabled = &lsm_enabled_true; 159 ordered_lsms[last_lsm++] = lsm; 160 161 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 162 is_enabled(lsm) ? "en" : "dis"); 163} 164 165/* Is an LSM allowed to be initialized? */ 166static bool __init lsm_allowed(struct lsm_info *lsm) 167{ 168 /* Skip if the LSM is disabled. */ 169 if (!is_enabled(lsm)) 170 return false; 171 172 /* Not allowed if another exclusive LSM already initialized. */ 173 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 174 init_debug("exclusive disabled: %s\n", lsm->name); 175 return false; 176 } 177 178 return true; 179} 180 181static void __init lsm_set_blob_size(int *need, int *lbs) 182{ 183 int offset; 184 185 if (*need > 0) { 186 offset = *lbs; 187 *lbs += *need; 188 *need = offset; 189 } 190} 191 192static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 193{ 194 if (!needed) 195 return; 196 197 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 198 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 199 /* 200 * The inode blob gets an rcu_head in addition to 201 * what the modules might need. 202 */ 203 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 204 blob_sizes.lbs_inode = sizeof(struct rcu_head); 205 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 206 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 207 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 209} 210 211/* Prepare LSM for initialization. */ 212static void __init prepare_lsm(struct lsm_info *lsm) 213{ 214 int enabled = lsm_allowed(lsm); 215 216 /* Record enablement (to handle any following exclusive LSMs). */ 217 set_enabled(lsm, enabled); 218 219 /* If enabled, do pre-initialization work. */ 220 if (enabled) { 221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 222 exclusive = lsm; 223 init_debug("exclusive chosen: %s\n", lsm->name); 224 } 225 226 lsm_set_blob_sizes(lsm->blobs); 227 } 228} 229 230/* Initialize a given LSM, if it is enabled. */ 231static void __init initialize_lsm(struct lsm_info *lsm) 232{ 233 if (is_enabled(lsm)) { 234 int ret; 235 236 init_debug("initializing %s\n", lsm->name); 237 ret = lsm->init(); 238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 239 } 240} 241 242/* Populate ordered LSMs list from comma-separated LSM name list. */ 243static void __init ordered_lsm_parse(const char *order, const char *origin) 244{ 245 struct lsm_info *lsm; 246 char *sep, *name, *next; 247 248 /* LSM_ORDER_FIRST is always first. */ 249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 250 if (lsm->order == LSM_ORDER_FIRST) 251 append_ordered_lsm(lsm, "first"); 252 } 253 254 /* Process "security=", if given. */ 255 if (chosen_major_lsm) { 256 struct lsm_info *major; 257 258 /* 259 * To match the original "security=" behavior, this 260 * explicitly does NOT fallback to another Legacy Major 261 * if the selected one was separately disabled: disable 262 * all non-matching Legacy Major LSMs. 263 */ 264 for (major = __start_lsm_info; major < __end_lsm_info; 265 major++) { 266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 267 strcmp(major->name, chosen_major_lsm) != 0) { 268 set_enabled(major, false); 269 init_debug("security=%s disabled: %s\n", 270 chosen_major_lsm, major->name); 271 } 272 } 273 } 274 275 sep = kstrdup(order, GFP_KERNEL); 276 next = sep; 277 /* Walk the list, looking for matching LSMs. */ 278 while ((name = strsep(&next, ",")) != NULL) { 279 bool found = false; 280 281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 282 if (lsm->order == LSM_ORDER_MUTABLE && 283 strcmp(lsm->name, name) == 0) { 284 append_ordered_lsm(lsm, origin); 285 found = true; 286 } 287 } 288 289 if (!found) 290 init_debug("%s ignored: %s\n", origin, name); 291 } 292 293 /* Process "security=", if given. */ 294 if (chosen_major_lsm) { 295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 296 if (exists_ordered_lsm(lsm)) 297 continue; 298 if (strcmp(lsm->name, chosen_major_lsm) == 0) 299 append_ordered_lsm(lsm, "security="); 300 } 301 } 302 303 /* Disable all LSMs not in the ordered list. */ 304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 305 if (exists_ordered_lsm(lsm)) 306 continue; 307 set_enabled(lsm, false); 308 init_debug("%s disabled: %s\n", origin, lsm->name); 309 } 310 311 kfree(sep); 312} 313 314static void __init lsm_early_cred(struct cred *cred); 315static void __init lsm_early_task(struct task_struct *task); 316 317static int lsm_append(const char *new, char **result); 318 319static void __init ordered_lsm_init(void) 320{ 321 struct lsm_info **lsm; 322 323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 324 GFP_KERNEL); 325 326 if (chosen_lsm_order) { 327 if (chosen_major_lsm) { 328 pr_info("security= is ignored because it is superseded by lsm=\n"); 329 chosen_major_lsm = NULL; 330 } 331 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 332 } else 333 ordered_lsm_parse(builtin_lsm_order, "builtin"); 334 335 for (lsm = ordered_lsms; *lsm; lsm++) 336 prepare_lsm(*lsm); 337 338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 339 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 343 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 344 345 /* 346 * Create any kmem_caches needed for blobs 347 */ 348 if (blob_sizes.lbs_file) 349 lsm_file_cache = kmem_cache_create("lsm_file_cache", 350 blob_sizes.lbs_file, 0, 351 SLAB_PANIC, NULL); 352 if (blob_sizes.lbs_inode) 353 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 354 blob_sizes.lbs_inode, 0, 355 SLAB_PANIC, NULL); 356 357 lsm_early_cred((struct cred *) current->cred); 358 lsm_early_task(current); 359 for (lsm = ordered_lsms; *lsm; lsm++) 360 initialize_lsm(*lsm); 361 362 kfree(ordered_lsms); 363} 364 365int __init early_security_init(void) 366{ 367 int i; 368 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 369 struct lsm_info *lsm; 370 371 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 372 i++) 373 INIT_HLIST_HEAD(&list[i]); 374 375 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 376 if (!lsm->enabled) 377 lsm->enabled = &lsm_enabled_true; 378 prepare_lsm(lsm); 379 initialize_lsm(lsm); 380 } 381 382 return 0; 383} 384 385/** 386 * security_init - initializes the security framework 387 * 388 * This should be called early in the kernel initialization sequence. 389 */ 390int __init security_init(void) 391{ 392 struct lsm_info *lsm; 393 394 pr_info("Security Framework initializing\n"); 395 396 /* 397 * Append the names of the early LSM modules now that kmalloc() is 398 * available 399 */ 400 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 401 if (lsm->enabled) 402 lsm_append(lsm->name, &lsm_names); 403 } 404 405 /* Load LSMs in specified order. */ 406 ordered_lsm_init(); 407 408 return 0; 409} 410 411/* Save user chosen LSM */ 412static int __init choose_major_lsm(char *str) 413{ 414 chosen_major_lsm = str; 415 return 1; 416} 417__setup("security=", choose_major_lsm); 418 419/* Explicitly choose LSM initialization order. */ 420static int __init choose_lsm_order(char *str) 421{ 422 chosen_lsm_order = str; 423 return 1; 424} 425__setup("lsm=", choose_lsm_order); 426 427/* Enable LSM order debugging. */ 428static int __init enable_debug(char *str) 429{ 430 debug = true; 431 return 1; 432} 433__setup("lsm.debug", enable_debug); 434 435static bool match_last_lsm(const char *list, const char *lsm) 436{ 437 const char *last; 438 439 if (WARN_ON(!list || !lsm)) 440 return false; 441 last = strrchr(list, ','); 442 if (last) 443 /* Pass the comma, strcmp() will check for '\0' */ 444 last++; 445 else 446 last = list; 447 return !strcmp(last, lsm); 448} 449 450static int lsm_append(const char *new, char **result) 451{ 452 char *cp; 453 454 if (*result == NULL) { 455 *result = kstrdup(new, GFP_KERNEL); 456 if (*result == NULL) 457 return -ENOMEM; 458 } else { 459 /* Check if it is the last registered name */ 460 if (match_last_lsm(*result, new)) 461 return 0; 462 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 463 if (cp == NULL) 464 return -ENOMEM; 465 kfree(*result); 466 *result = cp; 467 } 468 return 0; 469} 470 471/** 472 * security_add_hooks - Add a modules hooks to the hook lists. 473 * @hooks: the hooks to add 474 * @count: the number of hooks to add 475 * @lsm: the name of the security module 476 * 477 * Each LSM has to register its hooks with the infrastructure. 478 */ 479void __init security_add_hooks(struct security_hook_list *hooks, int count, 480 char *lsm) 481{ 482 int i; 483 484 for (i = 0; i < count; i++) { 485 hooks[i].lsm = lsm; 486 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 487 } 488 489 /* 490 * Don't try to append during early_security_init(), we'll come back 491 * and fix this up afterwards. 492 */ 493 if (slab_is_available()) { 494 if (lsm_append(lsm, &lsm_names) < 0) 495 panic("%s - Cannot get early memory.\n", __func__); 496 } 497} 498 499int call_blocking_lsm_notifier(enum lsm_event event, void *data) 500{ 501 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 502 event, data); 503} 504EXPORT_SYMBOL(call_blocking_lsm_notifier); 505 506int register_blocking_lsm_notifier(struct notifier_block *nb) 507{ 508 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 509 nb); 510} 511EXPORT_SYMBOL(register_blocking_lsm_notifier); 512 513int unregister_blocking_lsm_notifier(struct notifier_block *nb) 514{ 515 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 516 nb); 517} 518EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 519 520/** 521 * lsm_cred_alloc - allocate a composite cred blob 522 * @cred: the cred that needs a blob 523 * @gfp: allocation type 524 * 525 * Allocate the cred blob for all the modules 526 * 527 * Returns 0, or -ENOMEM if memory can't be allocated. 528 */ 529static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 530{ 531 if (blob_sizes.lbs_cred == 0) { 532 cred->security = NULL; 533 return 0; 534 } 535 536 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 537 if (cred->security == NULL) 538 return -ENOMEM; 539 return 0; 540} 541 542/** 543 * lsm_early_cred - during initialization allocate a composite cred blob 544 * @cred: the cred that needs a blob 545 * 546 * Allocate the cred blob for all the modules 547 */ 548static void __init lsm_early_cred(struct cred *cred) 549{ 550 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 551 552 if (rc) 553 panic("%s: Early cred alloc failed.\n", __func__); 554} 555 556/** 557 * lsm_file_alloc - allocate a composite file blob 558 * @file: the file that needs a blob 559 * 560 * Allocate the file blob for all the modules 561 * 562 * Returns 0, or -ENOMEM if memory can't be allocated. 563 */ 564static int lsm_file_alloc(struct file *file) 565{ 566 if (!lsm_file_cache) { 567 file->f_security = NULL; 568 return 0; 569 } 570 571 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 572 if (file->f_security == NULL) 573 return -ENOMEM; 574 return 0; 575} 576 577/** 578 * lsm_inode_alloc - allocate a composite inode blob 579 * @inode: the inode that needs a blob 580 * 581 * Allocate the inode blob for all the modules 582 * 583 * Returns 0, or -ENOMEM if memory can't be allocated. 584 */ 585int lsm_inode_alloc(struct inode *inode) 586{ 587 if (!lsm_inode_cache) { 588 inode->i_security = NULL; 589 return 0; 590 } 591 592 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 593 if (inode->i_security == NULL) 594 return -ENOMEM; 595 return 0; 596} 597 598/** 599 * lsm_task_alloc - allocate a composite task blob 600 * @task: the task that needs a blob 601 * 602 * Allocate the task blob for all the modules 603 * 604 * Returns 0, or -ENOMEM if memory can't be allocated. 605 */ 606static int lsm_task_alloc(struct task_struct *task) 607{ 608 if (blob_sizes.lbs_task == 0) { 609 task->security = NULL; 610 return 0; 611 } 612 613 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 614 if (task->security == NULL) 615 return -ENOMEM; 616 return 0; 617} 618 619/** 620 * lsm_ipc_alloc - allocate a composite ipc blob 621 * @kip: the ipc that needs a blob 622 * 623 * Allocate the ipc blob for all the modules 624 * 625 * Returns 0, or -ENOMEM if memory can't be allocated. 626 */ 627static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 628{ 629 if (blob_sizes.lbs_ipc == 0) { 630 kip->security = NULL; 631 return 0; 632 } 633 634 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 635 if (kip->security == NULL) 636 return -ENOMEM; 637 return 0; 638} 639 640/** 641 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 642 * @mp: the msg_msg that needs a blob 643 * 644 * Allocate the ipc blob for all the modules 645 * 646 * Returns 0, or -ENOMEM if memory can't be allocated. 647 */ 648static int lsm_msg_msg_alloc(struct msg_msg *mp) 649{ 650 if (blob_sizes.lbs_msg_msg == 0) { 651 mp->security = NULL; 652 return 0; 653 } 654 655 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 656 if (mp->security == NULL) 657 return -ENOMEM; 658 return 0; 659} 660 661/** 662 * lsm_early_task - during initialization allocate a composite task blob 663 * @task: the task that needs a blob 664 * 665 * Allocate the task blob for all the modules 666 */ 667static void __init lsm_early_task(struct task_struct *task) 668{ 669 int rc = lsm_task_alloc(task); 670 671 if (rc) 672 panic("%s: Early task alloc failed.\n", __func__); 673} 674 675/* 676 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 677 * can be accessed with: 678 * 679 * LSM_RET_DEFAULT(<hook_name>) 680 * 681 * The macros below define static constants for the default value of each 682 * LSM hook. 683 */ 684#define LSM_RET_DEFAULT(NAME) (NAME##_default) 685#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 686#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 687 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); 688#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 689 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 690 691#include <linux/lsm_hook_defs.h> 692#undef LSM_HOOK 693 694/* 695 * Hook list operation macros. 696 * 697 * call_void_hook: 698 * This is a hook that does not return a value. 699 * 700 * call_int_hook: 701 * This is a hook that returns a value. 702 */ 703 704#define call_void_hook(FUNC, ...) \ 705 do { \ 706 struct security_hook_list *P; \ 707 \ 708 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 709 P->hook.FUNC(__VA_ARGS__); \ 710 } while (0) 711 712#define call_int_hook(FUNC, IRC, ...) ({ \ 713 int RC = IRC; \ 714 do { \ 715 struct security_hook_list *P; \ 716 \ 717 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 718 RC = P->hook.FUNC(__VA_ARGS__); \ 719 if (RC != 0) \ 720 break; \ 721 } \ 722 } while (0); \ 723 RC; \ 724}) 725 726/* Security operations */ 727 728int security_binder_set_context_mgr(const struct cred *mgr) 729{ 730 return call_int_hook(binder_set_context_mgr, 0, mgr); 731} 732 733int security_binder_transaction(const struct cred *from, 734 const struct cred *to) 735{ 736 return call_int_hook(binder_transaction, 0, from, to); 737} 738 739int security_binder_transfer_binder(const struct cred *from, 740 const struct cred *to) 741{ 742 return call_int_hook(binder_transfer_binder, 0, from, to); 743} 744 745int security_binder_transfer_file(const struct cred *from, 746 const struct cred *to, struct file *file) 747{ 748 return call_int_hook(binder_transfer_file, 0, from, to, file); 749} 750 751int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 752{ 753 return call_int_hook(ptrace_access_check, 0, child, mode); 754} 755 756int security_ptrace_traceme(struct task_struct *parent) 757{ 758 return call_int_hook(ptrace_traceme, 0, parent); 759} 760 761int security_capget(struct task_struct *target, 762 kernel_cap_t *effective, 763 kernel_cap_t *inheritable, 764 kernel_cap_t *permitted) 765{ 766 return call_int_hook(capget, 0, target, 767 effective, inheritable, permitted); 768} 769 770int security_capset(struct cred *new, const struct cred *old, 771 const kernel_cap_t *effective, 772 const kernel_cap_t *inheritable, 773 const kernel_cap_t *permitted) 774{ 775 return call_int_hook(capset, 0, new, old, 776 effective, inheritable, permitted); 777} 778 779int security_capable(const struct cred *cred, 780 struct user_namespace *ns, 781 int cap, 782 unsigned int opts) 783{ 784 return call_int_hook(capable, 0, cred, ns, cap, opts); 785} 786 787int security_quotactl(int cmds, int type, int id, struct super_block *sb) 788{ 789 return call_int_hook(quotactl, 0, cmds, type, id, sb); 790} 791 792int security_quota_on(struct dentry *dentry) 793{ 794 return call_int_hook(quota_on, 0, dentry); 795} 796 797int security_syslog(int type) 798{ 799 return call_int_hook(syslog, 0, type); 800} 801 802int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 803{ 804 return call_int_hook(settime, 0, ts, tz); 805} 806 807int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 808{ 809 struct security_hook_list *hp; 810 int cap_sys_admin = 1; 811 int rc; 812 813 /* 814 * The module will respond with a positive value if 815 * it thinks the __vm_enough_memory() call should be 816 * made with the cap_sys_admin set. If all of the modules 817 * agree that it should be set it will. If any module 818 * thinks it should not be set it won't. 819 */ 820 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 821 rc = hp->hook.vm_enough_memory(mm, pages); 822 if (rc <= 0) { 823 cap_sys_admin = 0; 824 break; 825 } 826 } 827 return __vm_enough_memory(mm, pages, cap_sys_admin); 828} 829 830int security_bprm_creds_for_exec(struct linux_binprm *bprm) 831{ 832 return call_int_hook(bprm_creds_for_exec, 0, bprm); 833} 834 835int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 836{ 837 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 838} 839 840int security_bprm_check(struct linux_binprm *bprm) 841{ 842 int ret; 843 844 ret = call_int_hook(bprm_check_security, 0, bprm); 845 if (ret) 846 return ret; 847 return ima_bprm_check(bprm); 848} 849 850void security_bprm_committing_creds(struct linux_binprm *bprm) 851{ 852 call_void_hook(bprm_committing_creds, bprm); 853} 854 855void security_bprm_committed_creds(struct linux_binprm *bprm) 856{ 857 call_void_hook(bprm_committed_creds, bprm); 858} 859 860int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 861{ 862 return call_int_hook(fs_context_dup, 0, fc, src_fc); 863} 864 865int security_fs_context_parse_param(struct fs_context *fc, 866 struct fs_parameter *param) 867{ 868 struct security_hook_list *hp; 869 int trc; 870 int rc = -ENOPARAM; 871 872 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 873 list) { 874 trc = hp->hook.fs_context_parse_param(fc, param); 875 if (trc == 0) 876 rc = 0; 877 else if (trc != -ENOPARAM) 878 return trc; 879 } 880 return rc; 881} 882 883int security_sb_alloc(struct super_block *sb) 884{ 885 return call_int_hook(sb_alloc_security, 0, sb); 886} 887 888void security_sb_free(struct super_block *sb) 889{ 890 call_void_hook(sb_free_security, sb); 891} 892 893void security_free_mnt_opts(void **mnt_opts) 894{ 895 if (!*mnt_opts) 896 return; 897 call_void_hook(sb_free_mnt_opts, *mnt_opts); 898 *mnt_opts = NULL; 899} 900EXPORT_SYMBOL(security_free_mnt_opts); 901 902int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 903{ 904 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 905} 906EXPORT_SYMBOL(security_sb_eat_lsm_opts); 907 908int security_sb_remount(struct super_block *sb, 909 void *mnt_opts) 910{ 911 return call_int_hook(sb_remount, 0, sb, mnt_opts); 912} 913EXPORT_SYMBOL(security_sb_remount); 914 915int security_sb_kern_mount(struct super_block *sb) 916{ 917 return call_int_hook(sb_kern_mount, 0, sb); 918} 919 920int security_sb_show_options(struct seq_file *m, struct super_block *sb) 921{ 922 return call_int_hook(sb_show_options, 0, m, sb); 923} 924 925int security_sb_statfs(struct dentry *dentry) 926{ 927 return call_int_hook(sb_statfs, 0, dentry); 928} 929 930int security_sb_mount(const char *dev_name, const struct path *path, 931 const char *type, unsigned long flags, void *data) 932{ 933 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 934} 935 936int security_sb_umount(struct vfsmount *mnt, int flags) 937{ 938 return call_int_hook(sb_umount, 0, mnt, flags); 939} 940 941int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 942{ 943 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 944} 945 946int security_sb_set_mnt_opts(struct super_block *sb, 947 void *mnt_opts, 948 unsigned long kern_flags, 949 unsigned long *set_kern_flags) 950{ 951 return call_int_hook(sb_set_mnt_opts, 952 mnt_opts ? -EOPNOTSUPP : 0, sb, 953 mnt_opts, kern_flags, set_kern_flags); 954} 955EXPORT_SYMBOL(security_sb_set_mnt_opts); 956 957int security_sb_clone_mnt_opts(const struct super_block *oldsb, 958 struct super_block *newsb, 959 unsigned long kern_flags, 960 unsigned long *set_kern_flags) 961{ 962 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 963 kern_flags, set_kern_flags); 964} 965EXPORT_SYMBOL(security_sb_clone_mnt_opts); 966 967int security_add_mnt_opt(const char *option, const char *val, int len, 968 void **mnt_opts) 969{ 970 return call_int_hook(sb_add_mnt_opt, -EINVAL, 971 option, val, len, mnt_opts); 972} 973EXPORT_SYMBOL(security_add_mnt_opt); 974 975int security_move_mount(const struct path *from_path, const struct path *to_path) 976{ 977 return call_int_hook(move_mount, 0, from_path, to_path); 978} 979 980int security_path_notify(const struct path *path, u64 mask, 981 unsigned int obj_type) 982{ 983 return call_int_hook(path_notify, 0, path, mask, obj_type); 984} 985 986int security_inode_alloc(struct inode *inode) 987{ 988 int rc = lsm_inode_alloc(inode); 989 990 if (unlikely(rc)) 991 return rc; 992 rc = call_int_hook(inode_alloc_security, 0, inode); 993 if (unlikely(rc)) 994 security_inode_free(inode); 995 return rc; 996} 997 998static void inode_free_by_rcu(struct rcu_head *head) 999{ 1000 /* 1001 * The rcu head is at the start of the inode blob 1002 */ 1003 kmem_cache_free(lsm_inode_cache, head); 1004} 1005 1006void security_inode_free(struct inode *inode) 1007{ 1008 integrity_inode_free(inode); 1009 call_void_hook(inode_free_security, inode); 1010 /* 1011 * The inode may still be referenced in a path walk and 1012 * a call to security_inode_permission() can be made 1013 * after inode_free_security() is called. Ideally, the VFS 1014 * wouldn't do this, but fixing that is a much harder 1015 * job. For now, simply free the i_security via RCU, and 1016 * leave the current inode->i_security pointer intact. 1017 * The inode will be freed after the RCU grace period too. 1018 */ 1019 if (inode->i_security) 1020 call_rcu((struct rcu_head *)inode->i_security, 1021 inode_free_by_rcu); 1022} 1023 1024int security_dentry_init_security(struct dentry *dentry, int mode, 1025 const struct qstr *name, void **ctx, 1026 u32 *ctxlen) 1027{ 1028 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1029 name, ctx, ctxlen); 1030} 1031EXPORT_SYMBOL(security_dentry_init_security); 1032 1033int security_dentry_create_files_as(struct dentry *dentry, int mode, 1034 struct qstr *name, 1035 const struct cred *old, struct cred *new) 1036{ 1037 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1038 name, old, new); 1039} 1040EXPORT_SYMBOL(security_dentry_create_files_as); 1041 1042int security_inode_init_security(struct inode *inode, struct inode *dir, 1043 const struct qstr *qstr, 1044 const initxattrs initxattrs, void *fs_data) 1045{ 1046 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1047 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1048 int ret; 1049 1050 if (unlikely(IS_PRIVATE(inode))) 1051 return 0; 1052 1053 if (!initxattrs) 1054 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1055 dir, qstr, NULL, NULL, NULL); 1056 memset(new_xattrs, 0, sizeof(new_xattrs)); 1057 lsm_xattr = new_xattrs; 1058 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1059 &lsm_xattr->name, 1060 &lsm_xattr->value, 1061 &lsm_xattr->value_len); 1062 if (ret) 1063 goto out; 1064 1065 evm_xattr = lsm_xattr + 1; 1066 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1067 if (ret) 1068 goto out; 1069 ret = initxattrs(inode, new_xattrs, fs_data); 1070out: 1071 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1072 kfree(xattr->value); 1073 return (ret == -EOPNOTSUPP) ? 0 : ret; 1074} 1075EXPORT_SYMBOL(security_inode_init_security); 1076 1077int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1078 const struct qstr *qstr, const char **name, 1079 void **value, size_t *len) 1080{ 1081 if (unlikely(IS_PRIVATE(inode))) 1082 return -EOPNOTSUPP; 1083 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1084 qstr, name, value, len); 1085} 1086EXPORT_SYMBOL(security_old_inode_init_security); 1087 1088#ifdef CONFIG_SECURITY_PATH 1089int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1090 unsigned int dev) 1091{ 1092 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1093 return 0; 1094 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1095} 1096EXPORT_SYMBOL(security_path_mknod); 1097 1098int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1099{ 1100 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1101 return 0; 1102 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1103} 1104EXPORT_SYMBOL(security_path_mkdir); 1105 1106int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1107{ 1108 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1109 return 0; 1110 return call_int_hook(path_rmdir, 0, dir, dentry); 1111} 1112 1113int security_path_unlink(const struct path *dir, struct dentry *dentry) 1114{ 1115 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1116 return 0; 1117 return call_int_hook(path_unlink, 0, dir, dentry); 1118} 1119EXPORT_SYMBOL(security_path_unlink); 1120 1121int security_path_symlink(const struct path *dir, struct dentry *dentry, 1122 const char *old_name) 1123{ 1124 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1125 return 0; 1126 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1127} 1128 1129int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1130 struct dentry *new_dentry) 1131{ 1132 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1133 return 0; 1134 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1135} 1136 1137int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1138 const struct path *new_dir, struct dentry *new_dentry, 1139 unsigned int flags) 1140{ 1141 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1142 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1143 return 0; 1144 1145 if (flags & RENAME_EXCHANGE) { 1146 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1147 old_dir, old_dentry); 1148 if (err) 1149 return err; 1150 } 1151 1152 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1153 new_dentry); 1154} 1155EXPORT_SYMBOL(security_path_rename); 1156 1157int security_path_truncate(const struct path *path) 1158{ 1159 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1160 return 0; 1161 return call_int_hook(path_truncate, 0, path); 1162} 1163 1164int security_path_chmod(const struct path *path, umode_t mode) 1165{ 1166 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1167 return 0; 1168 return call_int_hook(path_chmod, 0, path, mode); 1169} 1170 1171int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1172{ 1173 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1174 return 0; 1175 return call_int_hook(path_chown, 0, path, uid, gid); 1176} 1177 1178int security_path_chroot(const struct path *path) 1179{ 1180 return call_int_hook(path_chroot, 0, path); 1181} 1182#endif 1183 1184int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1185{ 1186 if (unlikely(IS_PRIVATE(dir))) 1187 return 0; 1188 return call_int_hook(inode_create, 0, dir, dentry, mode); 1189} 1190EXPORT_SYMBOL_GPL(security_inode_create); 1191 1192int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1193 struct dentry *new_dentry) 1194{ 1195 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1196 return 0; 1197 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1198} 1199 1200int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1201{ 1202 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1203 return 0; 1204 return call_int_hook(inode_unlink, 0, dir, dentry); 1205} 1206 1207int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1208 const char *old_name) 1209{ 1210 if (unlikely(IS_PRIVATE(dir))) 1211 return 0; 1212 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1213} 1214 1215int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1216{ 1217 if (unlikely(IS_PRIVATE(dir))) 1218 return 0; 1219 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1220} 1221EXPORT_SYMBOL_GPL(security_inode_mkdir); 1222 1223int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1224{ 1225 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1226 return 0; 1227 return call_int_hook(inode_rmdir, 0, dir, dentry); 1228} 1229 1230int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1231{ 1232 if (unlikely(IS_PRIVATE(dir))) 1233 return 0; 1234 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1235} 1236 1237int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1238 struct inode *new_dir, struct dentry *new_dentry, 1239 unsigned int flags) 1240{ 1241 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1242 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1243 return 0; 1244 1245 if (flags & RENAME_EXCHANGE) { 1246 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1247 old_dir, old_dentry); 1248 if (err) 1249 return err; 1250 } 1251 1252 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1253 new_dir, new_dentry); 1254} 1255 1256int security_inode_readlink(struct dentry *dentry) 1257{ 1258 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1259 return 0; 1260 return call_int_hook(inode_readlink, 0, dentry); 1261} 1262 1263int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1264 bool rcu) 1265{ 1266 if (unlikely(IS_PRIVATE(inode))) 1267 return 0; 1268 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1269} 1270 1271int security_inode_permission(struct inode *inode, int mask) 1272{ 1273 if (unlikely(IS_PRIVATE(inode))) 1274 return 0; 1275 return call_int_hook(inode_permission, 0, inode, mask); 1276} 1277 1278int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1279{ 1280 int ret; 1281 1282 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1283 return 0; 1284 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1285 if (ret) 1286 return ret; 1287 return evm_inode_setattr(dentry, attr); 1288} 1289EXPORT_SYMBOL_GPL(security_inode_setattr); 1290 1291int security_inode_getattr(const struct path *path) 1292{ 1293 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1294 return 0; 1295 return call_int_hook(inode_getattr, 0, path); 1296} 1297 1298int security_inode_setxattr(struct dentry *dentry, const char *name, 1299 const void *value, size_t size, int flags) 1300{ 1301 int ret; 1302 1303 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1304 return 0; 1305 /* 1306 * SELinux and Smack integrate the cap call, 1307 * so assume that all LSMs supplying this call do so. 1308 */ 1309 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1310 flags); 1311 1312 if (ret == 1) 1313 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1314 if (ret) 1315 return ret; 1316 ret = ima_inode_setxattr(dentry, name, value, size); 1317 if (ret) 1318 return ret; 1319 return evm_inode_setxattr(dentry, name, value, size); 1320} 1321 1322void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1323 const void *value, size_t size, int flags) 1324{ 1325 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1326 return; 1327 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1328 evm_inode_post_setxattr(dentry, name, value, size); 1329} 1330 1331int security_inode_getxattr(struct dentry *dentry, const char *name) 1332{ 1333 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1334 return 0; 1335 return call_int_hook(inode_getxattr, 0, dentry, name); 1336} 1337 1338int security_inode_listxattr(struct dentry *dentry) 1339{ 1340 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1341 return 0; 1342 return call_int_hook(inode_listxattr, 0, dentry); 1343} 1344 1345int security_inode_removexattr(struct dentry *dentry, const char *name) 1346{ 1347 int ret; 1348 1349 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1350 return 0; 1351 /* 1352 * SELinux and Smack integrate the cap call, 1353 * so assume that all LSMs supplying this call do so. 1354 */ 1355 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1356 if (ret == 1) 1357 ret = cap_inode_removexattr(dentry, name); 1358 if (ret) 1359 return ret; 1360 ret = ima_inode_removexattr(dentry, name); 1361 if (ret) 1362 return ret; 1363 return evm_inode_removexattr(dentry, name); 1364} 1365 1366int security_inode_need_killpriv(struct dentry *dentry) 1367{ 1368 return call_int_hook(inode_need_killpriv, 0, dentry); 1369} 1370 1371int security_inode_killpriv(struct dentry *dentry) 1372{ 1373 return call_int_hook(inode_killpriv, 0, dentry); 1374} 1375 1376int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1377{ 1378 struct security_hook_list *hp; 1379 int rc; 1380 1381 if (unlikely(IS_PRIVATE(inode))) 1382 return LSM_RET_DEFAULT(inode_getsecurity); 1383 /* 1384 * Only one module will provide an attribute with a given name. 1385 */ 1386 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1387 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1388 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1389 return rc; 1390 } 1391 return LSM_RET_DEFAULT(inode_getsecurity); 1392} 1393 1394int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1395{ 1396 struct security_hook_list *hp; 1397 int rc; 1398 1399 if (unlikely(IS_PRIVATE(inode))) 1400 return LSM_RET_DEFAULT(inode_setsecurity); 1401 /* 1402 * Only one module will provide an attribute with a given name. 1403 */ 1404 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1405 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1406 flags); 1407 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1408 return rc; 1409 } 1410 return LSM_RET_DEFAULT(inode_setsecurity); 1411} 1412 1413int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1414{ 1415 if (unlikely(IS_PRIVATE(inode))) 1416 return 0; 1417 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1418} 1419EXPORT_SYMBOL(security_inode_listsecurity); 1420 1421void security_inode_getsecid(struct inode *inode, u32 *secid) 1422{ 1423 call_void_hook(inode_getsecid, inode, secid); 1424} 1425 1426int security_inode_copy_up(struct dentry *src, struct cred **new) 1427{ 1428 return call_int_hook(inode_copy_up, 0, src, new); 1429} 1430EXPORT_SYMBOL(security_inode_copy_up); 1431 1432int security_inode_copy_up_xattr(const char *name) 1433{ 1434 struct security_hook_list *hp; 1435 int rc; 1436 1437 /* 1438 * The implementation can return 0 (accept the xattr), 1 (discard the 1439 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1440 * any other error code incase of an error. 1441 */ 1442 hlist_for_each_entry(hp, 1443 &security_hook_heads.inode_copy_up_xattr, list) { 1444 rc = hp->hook.inode_copy_up_xattr(name); 1445 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1446 return rc; 1447 } 1448 1449 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1450} 1451EXPORT_SYMBOL(security_inode_copy_up_xattr); 1452 1453int security_kernfs_init_security(struct kernfs_node *kn_dir, 1454 struct kernfs_node *kn) 1455{ 1456 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1457} 1458 1459int security_file_permission(struct file *file, int mask) 1460{ 1461 int ret; 1462 1463 ret = call_int_hook(file_permission, 0, file, mask); 1464 if (ret) 1465 return ret; 1466 1467 return fsnotify_perm(file, mask); 1468} 1469 1470int security_file_alloc(struct file *file) 1471{ 1472 int rc = lsm_file_alloc(file); 1473 1474 if (rc) 1475 return rc; 1476 rc = call_int_hook(file_alloc_security, 0, file); 1477 if (unlikely(rc)) 1478 security_file_free(file); 1479 return rc; 1480} 1481 1482void security_file_free(struct file *file) 1483{ 1484 void *blob; 1485 1486 call_void_hook(file_free_security, file); 1487 1488 blob = file->f_security; 1489 if (blob) { 1490 file->f_security = NULL; 1491 kmem_cache_free(lsm_file_cache, blob); 1492 } 1493} 1494 1495int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1496{ 1497 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1498} 1499EXPORT_SYMBOL_GPL(security_file_ioctl); 1500 1501/** 1502 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 1503 * @file: associated file 1504 * @cmd: ioctl cmd 1505 * @arg: ioctl arguments 1506 * 1507 * Compat version of security_file_ioctl() that correctly handles 32-bit 1508 * processes running on 64-bit kernels. 1509 * 1510 * Return: Returns 0 if permission is granted. 1511 */ 1512int security_file_ioctl_compat(struct file *file, unsigned int cmd, 1513 unsigned long arg) 1514{ 1515 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg); 1516} 1517EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 1518 1519static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1520{ 1521 /* 1522 * Does we have PROT_READ and does the application expect 1523 * it to imply PROT_EXEC? If not, nothing to talk about... 1524 */ 1525 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1526 return prot; 1527 if (!(current->personality & READ_IMPLIES_EXEC)) 1528 return prot; 1529 /* 1530 * if that's an anonymous mapping, let it. 1531 */ 1532 if (!file) 1533 return prot | PROT_EXEC; 1534 /* 1535 * ditto if it's not on noexec mount, except that on !MMU we need 1536 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1537 */ 1538 if (!path_noexec(&file->f_path)) { 1539#ifndef CONFIG_MMU 1540 if (file->f_op->mmap_capabilities) { 1541 unsigned caps = file->f_op->mmap_capabilities(file); 1542 if (!(caps & NOMMU_MAP_EXEC)) 1543 return prot; 1544 } 1545#endif 1546 return prot | PROT_EXEC; 1547 } 1548 /* anything on noexec mount won't get PROT_EXEC */ 1549 return prot; 1550} 1551 1552int security_mmap_file(struct file *file, unsigned long prot, 1553 unsigned long flags) 1554{ 1555 unsigned long prot_adj = mmap_prot(file, prot); 1556 int ret; 1557 1558 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); 1559 if (ret) 1560 return ret; 1561 return ima_file_mmap(file, prot, prot_adj, flags); 1562} 1563 1564int security_mmap_addr(unsigned long addr) 1565{ 1566 return call_int_hook(mmap_addr, 0, addr); 1567} 1568 1569int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1570 unsigned long prot) 1571{ 1572 int ret; 1573 1574 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1575 if (ret) 1576 return ret; 1577 return ima_file_mprotect(vma, prot); 1578} 1579 1580int security_file_lock(struct file *file, unsigned int cmd) 1581{ 1582 return call_int_hook(file_lock, 0, file, cmd); 1583} 1584 1585int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1586{ 1587 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1588} 1589 1590void security_file_set_fowner(struct file *file) 1591{ 1592 call_void_hook(file_set_fowner, file); 1593} 1594 1595int security_file_send_sigiotask(struct task_struct *tsk, 1596 struct fown_struct *fown, int sig) 1597{ 1598 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1599} 1600 1601int security_file_receive(struct file *file) 1602{ 1603 return call_int_hook(file_receive, 0, file); 1604} 1605 1606int security_file_open(struct file *file) 1607{ 1608 int ret; 1609 1610 ret = call_int_hook(file_open, 0, file); 1611 if (ret) 1612 return ret; 1613 1614 return fsnotify_perm(file, MAY_OPEN); 1615} 1616 1617int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1618{ 1619 int rc = lsm_task_alloc(task); 1620 1621 if (rc) 1622 return rc; 1623 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1624 if (unlikely(rc)) 1625 security_task_free(task); 1626 return rc; 1627} 1628 1629void security_task_free(struct task_struct *task) 1630{ 1631 call_void_hook(task_free, task); 1632 1633 kfree(task->security); 1634 task->security = NULL; 1635} 1636 1637int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1638{ 1639 int rc = lsm_cred_alloc(cred, gfp); 1640 1641 if (rc) 1642 return rc; 1643 1644 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1645 if (unlikely(rc)) 1646 security_cred_free(cred); 1647 return rc; 1648} 1649 1650void security_cred_free(struct cred *cred) 1651{ 1652 /* 1653 * There is a failure case in prepare_creds() that 1654 * may result in a call here with ->security being NULL. 1655 */ 1656 if (unlikely(cred->security == NULL)) 1657 return; 1658 1659 call_void_hook(cred_free, cred); 1660 1661 kfree(cred->security); 1662 cred->security = NULL; 1663} 1664 1665int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1666{ 1667 int rc = lsm_cred_alloc(new, gfp); 1668 1669 if (rc) 1670 return rc; 1671 1672 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1673 if (unlikely(rc)) 1674 security_cred_free(new); 1675 return rc; 1676} 1677 1678void security_transfer_creds(struct cred *new, const struct cred *old) 1679{ 1680 call_void_hook(cred_transfer, new, old); 1681} 1682 1683void security_cred_getsecid(const struct cred *c, u32 *secid) 1684{ 1685 *secid = 0; 1686 call_void_hook(cred_getsecid, c, secid); 1687} 1688EXPORT_SYMBOL(security_cred_getsecid); 1689 1690int security_kernel_act_as(struct cred *new, u32 secid) 1691{ 1692 return call_int_hook(kernel_act_as, 0, new, secid); 1693} 1694 1695int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1696{ 1697 return call_int_hook(kernel_create_files_as, 0, new, inode); 1698} 1699 1700int security_kernel_module_request(char *kmod_name) 1701{ 1702 int ret; 1703 1704 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1705 if (ret) 1706 return ret; 1707 return integrity_kernel_module_request(kmod_name); 1708} 1709 1710int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1711 bool contents) 1712{ 1713 int ret; 1714 1715 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1716 if (ret) 1717 return ret; 1718 return ima_read_file(file, id, contents); 1719} 1720EXPORT_SYMBOL_GPL(security_kernel_read_file); 1721 1722int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1723 enum kernel_read_file_id id) 1724{ 1725 int ret; 1726 1727 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1728 if (ret) 1729 return ret; 1730 return ima_post_read_file(file, buf, size, id); 1731} 1732EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1733 1734int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1735{ 1736 int ret; 1737 1738 ret = call_int_hook(kernel_load_data, 0, id, contents); 1739 if (ret) 1740 return ret; 1741 return ima_load_data(id, contents); 1742} 1743EXPORT_SYMBOL_GPL(security_kernel_load_data); 1744 1745int security_kernel_post_load_data(char *buf, loff_t size, 1746 enum kernel_load_data_id id, 1747 char *description) 1748{ 1749 int ret; 1750 1751 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1752 description); 1753 if (ret) 1754 return ret; 1755 return ima_post_load_data(buf, size, id, description); 1756} 1757EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1758 1759int security_task_fix_setuid(struct cred *new, const struct cred *old, 1760 int flags) 1761{ 1762 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1763} 1764 1765int security_task_fix_setgid(struct cred *new, const struct cred *old, 1766 int flags) 1767{ 1768 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1769} 1770 1771int security_task_setpgid(struct task_struct *p, pid_t pgid) 1772{ 1773 return call_int_hook(task_setpgid, 0, p, pgid); 1774} 1775 1776int security_task_getpgid(struct task_struct *p) 1777{ 1778 return call_int_hook(task_getpgid, 0, p); 1779} 1780 1781int security_task_getsid(struct task_struct *p) 1782{ 1783 return call_int_hook(task_getsid, 0, p); 1784} 1785 1786void security_task_getsecid(struct task_struct *p, u32 *secid) 1787{ 1788 *secid = 0; 1789 call_void_hook(task_getsecid, p, secid); 1790} 1791EXPORT_SYMBOL(security_task_getsecid); 1792 1793int security_task_setnice(struct task_struct *p, int nice) 1794{ 1795 return call_int_hook(task_setnice, 0, p, nice); 1796} 1797 1798int security_task_setioprio(struct task_struct *p, int ioprio) 1799{ 1800 return call_int_hook(task_setioprio, 0, p, ioprio); 1801} 1802 1803int security_task_getioprio(struct task_struct *p) 1804{ 1805 return call_int_hook(task_getioprio, 0, p); 1806} 1807 1808int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1809 unsigned int flags) 1810{ 1811 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1812} 1813 1814int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1815 struct rlimit *new_rlim) 1816{ 1817 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1818} 1819 1820int security_task_setscheduler(struct task_struct *p) 1821{ 1822 return call_int_hook(task_setscheduler, 0, p); 1823} 1824 1825int security_task_getscheduler(struct task_struct *p) 1826{ 1827 return call_int_hook(task_getscheduler, 0, p); 1828} 1829 1830int security_task_movememory(struct task_struct *p) 1831{ 1832 return call_int_hook(task_movememory, 0, p); 1833} 1834 1835int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1836 int sig, const struct cred *cred) 1837{ 1838 return call_int_hook(task_kill, 0, p, info, sig, cred); 1839} 1840 1841int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1842 unsigned long arg4, unsigned long arg5) 1843{ 1844 int thisrc; 1845 int rc = LSM_RET_DEFAULT(task_prctl); 1846 struct security_hook_list *hp; 1847 1848 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1849 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1850 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1851 rc = thisrc; 1852 if (thisrc != 0) 1853 break; 1854 } 1855 } 1856 return rc; 1857} 1858 1859void security_task_to_inode(struct task_struct *p, struct inode *inode) 1860{ 1861 call_void_hook(task_to_inode, p, inode); 1862} 1863 1864int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1865{ 1866 return call_int_hook(ipc_permission, 0, ipcp, flag); 1867} 1868 1869void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1870{ 1871 *secid = 0; 1872 call_void_hook(ipc_getsecid, ipcp, secid); 1873} 1874 1875int security_msg_msg_alloc(struct msg_msg *msg) 1876{ 1877 int rc = lsm_msg_msg_alloc(msg); 1878 1879 if (unlikely(rc)) 1880 return rc; 1881 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1882 if (unlikely(rc)) 1883 security_msg_msg_free(msg); 1884 return rc; 1885} 1886 1887void security_msg_msg_free(struct msg_msg *msg) 1888{ 1889 call_void_hook(msg_msg_free_security, msg); 1890 kfree(msg->security); 1891 msg->security = NULL; 1892} 1893 1894int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1895{ 1896 int rc = lsm_ipc_alloc(msq); 1897 1898 if (unlikely(rc)) 1899 return rc; 1900 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1901 if (unlikely(rc)) 1902 security_msg_queue_free(msq); 1903 return rc; 1904} 1905 1906void security_msg_queue_free(struct kern_ipc_perm *msq) 1907{ 1908 call_void_hook(msg_queue_free_security, msq); 1909 kfree(msq->security); 1910 msq->security = NULL; 1911} 1912 1913int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1914{ 1915 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1916} 1917 1918int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1919{ 1920 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1921} 1922 1923int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1924 struct msg_msg *msg, int msqflg) 1925{ 1926 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1927} 1928 1929int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1930 struct task_struct *target, long type, int mode) 1931{ 1932 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1933} 1934 1935int security_shm_alloc(struct kern_ipc_perm *shp) 1936{ 1937 int rc = lsm_ipc_alloc(shp); 1938 1939 if (unlikely(rc)) 1940 return rc; 1941 rc = call_int_hook(shm_alloc_security, 0, shp); 1942 if (unlikely(rc)) 1943 security_shm_free(shp); 1944 return rc; 1945} 1946 1947void security_shm_free(struct kern_ipc_perm *shp) 1948{ 1949 call_void_hook(shm_free_security, shp); 1950 kfree(shp->security); 1951 shp->security = NULL; 1952} 1953 1954int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1955{ 1956 return call_int_hook(shm_associate, 0, shp, shmflg); 1957} 1958 1959int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1960{ 1961 return call_int_hook(shm_shmctl, 0, shp, cmd); 1962} 1963 1964int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1965{ 1966 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1967} 1968 1969int security_sem_alloc(struct kern_ipc_perm *sma) 1970{ 1971 int rc = lsm_ipc_alloc(sma); 1972 1973 if (unlikely(rc)) 1974 return rc; 1975 rc = call_int_hook(sem_alloc_security, 0, sma); 1976 if (unlikely(rc)) 1977 security_sem_free(sma); 1978 return rc; 1979} 1980 1981void security_sem_free(struct kern_ipc_perm *sma) 1982{ 1983 call_void_hook(sem_free_security, sma); 1984 kfree(sma->security); 1985 sma->security = NULL; 1986} 1987 1988int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1989{ 1990 return call_int_hook(sem_associate, 0, sma, semflg); 1991} 1992 1993int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1994{ 1995 return call_int_hook(sem_semctl, 0, sma, cmd); 1996} 1997 1998int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1999 unsigned nsops, int alter) 2000{ 2001 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2002} 2003 2004void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2005{ 2006 if (unlikely(inode && IS_PRIVATE(inode))) 2007 return; 2008 call_void_hook(d_instantiate, dentry, inode); 2009} 2010EXPORT_SYMBOL(security_d_instantiate); 2011 2012int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2013 char **value) 2014{ 2015 struct security_hook_list *hp; 2016 2017 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2018 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2019 continue; 2020 return hp->hook.getprocattr(p, name, value); 2021 } 2022 return LSM_RET_DEFAULT(getprocattr); 2023} 2024 2025int security_setprocattr(const char *lsm, const char *name, void *value, 2026 size_t size) 2027{ 2028 struct security_hook_list *hp; 2029 2030 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2031 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2032 continue; 2033 return hp->hook.setprocattr(name, value, size); 2034 } 2035 return LSM_RET_DEFAULT(setprocattr); 2036} 2037 2038int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2039{ 2040 return call_int_hook(netlink_send, 0, sk, skb); 2041} 2042 2043int security_ismaclabel(const char *name) 2044{ 2045 return call_int_hook(ismaclabel, 0, name); 2046} 2047EXPORT_SYMBOL(security_ismaclabel); 2048 2049int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2050{ 2051 struct security_hook_list *hp; 2052 int rc; 2053 2054 /* 2055 * Currently, only one LSM can implement secid_to_secctx (i.e this 2056 * LSM hook is not "stackable"). 2057 */ 2058 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2059 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2060 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2061 return rc; 2062 } 2063 2064 return LSM_RET_DEFAULT(secid_to_secctx); 2065} 2066EXPORT_SYMBOL(security_secid_to_secctx); 2067 2068int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2069{ 2070 *secid = 0; 2071 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2072} 2073EXPORT_SYMBOL(security_secctx_to_secid); 2074 2075void security_release_secctx(char *secdata, u32 seclen) 2076{ 2077 call_void_hook(release_secctx, secdata, seclen); 2078} 2079EXPORT_SYMBOL(security_release_secctx); 2080 2081void security_inode_invalidate_secctx(struct inode *inode) 2082{ 2083 call_void_hook(inode_invalidate_secctx, inode); 2084} 2085EXPORT_SYMBOL(security_inode_invalidate_secctx); 2086 2087int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2088{ 2089 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2090} 2091EXPORT_SYMBOL(security_inode_notifysecctx); 2092 2093int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2094{ 2095 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2096} 2097EXPORT_SYMBOL(security_inode_setsecctx); 2098 2099int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2100{ 2101 struct security_hook_list *hp; 2102 int rc; 2103 2104 /* 2105 * Only one module will provide a security context. 2106 */ 2107 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) { 2108 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen); 2109 if (rc != LSM_RET_DEFAULT(inode_getsecctx)) 2110 return rc; 2111 } 2112 2113 return LSM_RET_DEFAULT(inode_getsecctx); 2114} 2115EXPORT_SYMBOL(security_inode_getsecctx); 2116 2117#ifdef CONFIG_WATCH_QUEUE 2118int security_post_notification(const struct cred *w_cred, 2119 const struct cred *cred, 2120 struct watch_notification *n) 2121{ 2122 return call_int_hook(post_notification, 0, w_cred, cred, n); 2123} 2124#endif /* CONFIG_WATCH_QUEUE */ 2125 2126#ifdef CONFIG_KEY_NOTIFICATIONS 2127int security_watch_key(struct key *key) 2128{ 2129 return call_int_hook(watch_key, 0, key); 2130} 2131#endif 2132 2133#ifdef CONFIG_SECURITY_NETWORK 2134 2135int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2136{ 2137 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2138} 2139EXPORT_SYMBOL(security_unix_stream_connect); 2140 2141int security_unix_may_send(struct socket *sock, struct socket *other) 2142{ 2143 return call_int_hook(unix_may_send, 0, sock, other); 2144} 2145EXPORT_SYMBOL(security_unix_may_send); 2146 2147int security_socket_create(int family, int type, int protocol, int kern) 2148{ 2149 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2150} 2151 2152int security_socket_post_create(struct socket *sock, int family, 2153 int type, int protocol, int kern) 2154{ 2155 return call_int_hook(socket_post_create, 0, sock, family, type, 2156 protocol, kern); 2157} 2158 2159int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2160{ 2161 return call_int_hook(socket_socketpair, 0, socka, sockb); 2162} 2163EXPORT_SYMBOL(security_socket_socketpair); 2164 2165int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2166{ 2167 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2168} 2169 2170int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2171{ 2172 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2173} 2174 2175int security_socket_listen(struct socket *sock, int backlog) 2176{ 2177 return call_int_hook(socket_listen, 0, sock, backlog); 2178} 2179 2180int security_socket_accept(struct socket *sock, struct socket *newsock) 2181{ 2182 return call_int_hook(socket_accept, 0, sock, newsock); 2183} 2184 2185int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2186{ 2187 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2188} 2189 2190int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2191 int size, int flags) 2192{ 2193 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2194} 2195 2196int security_socket_getsockname(struct socket *sock) 2197{ 2198 return call_int_hook(socket_getsockname, 0, sock); 2199} 2200 2201int security_socket_getpeername(struct socket *sock) 2202{ 2203 return call_int_hook(socket_getpeername, 0, sock); 2204} 2205 2206int security_socket_getsockopt(struct socket *sock, int level, int optname) 2207{ 2208 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2209} 2210 2211int security_socket_setsockopt(struct socket *sock, int level, int optname) 2212{ 2213 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2214} 2215 2216int security_socket_shutdown(struct socket *sock, int how) 2217{ 2218 return call_int_hook(socket_shutdown, 0, sock, how); 2219} 2220 2221int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2222{ 2223 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2224} 2225EXPORT_SYMBOL(security_sock_rcv_skb); 2226 2227int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2228 int __user *optlen, unsigned len) 2229{ 2230 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2231 optval, optlen, len); 2232} 2233 2234int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2235{ 2236 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2237 skb, secid); 2238} 2239EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2240 2241int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2242{ 2243 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2244} 2245 2246void security_sk_free(struct sock *sk) 2247{ 2248 call_void_hook(sk_free_security, sk); 2249} 2250 2251void security_sk_clone(const struct sock *sk, struct sock *newsk) 2252{ 2253 call_void_hook(sk_clone_security, sk, newsk); 2254} 2255EXPORT_SYMBOL(security_sk_clone); 2256 2257void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2258{ 2259 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2260} 2261EXPORT_SYMBOL(security_sk_classify_flow); 2262 2263void security_req_classify_flow(const struct request_sock *req, 2264 struct flowi_common *flic) 2265{ 2266 call_void_hook(req_classify_flow, req, flic); 2267} 2268EXPORT_SYMBOL(security_req_classify_flow); 2269 2270void security_sock_graft(struct sock *sk, struct socket *parent) 2271{ 2272 call_void_hook(sock_graft, sk, parent); 2273} 2274EXPORT_SYMBOL(security_sock_graft); 2275 2276int security_inet_conn_request(struct sock *sk, 2277 struct sk_buff *skb, struct request_sock *req) 2278{ 2279 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2280} 2281EXPORT_SYMBOL(security_inet_conn_request); 2282 2283void security_inet_csk_clone(struct sock *newsk, 2284 const struct request_sock *req) 2285{ 2286 call_void_hook(inet_csk_clone, newsk, req); 2287} 2288 2289void security_inet_conn_established(struct sock *sk, 2290 struct sk_buff *skb) 2291{ 2292 call_void_hook(inet_conn_established, sk, skb); 2293} 2294EXPORT_SYMBOL(security_inet_conn_established); 2295 2296int security_secmark_relabel_packet(u32 secid) 2297{ 2298 return call_int_hook(secmark_relabel_packet, 0, secid); 2299} 2300EXPORT_SYMBOL(security_secmark_relabel_packet); 2301 2302void security_secmark_refcount_inc(void) 2303{ 2304 call_void_hook(secmark_refcount_inc); 2305} 2306EXPORT_SYMBOL(security_secmark_refcount_inc); 2307 2308void security_secmark_refcount_dec(void) 2309{ 2310 call_void_hook(secmark_refcount_dec); 2311} 2312EXPORT_SYMBOL(security_secmark_refcount_dec); 2313 2314int security_tun_dev_alloc_security(void **security) 2315{ 2316 return call_int_hook(tun_dev_alloc_security, 0, security); 2317} 2318EXPORT_SYMBOL(security_tun_dev_alloc_security); 2319 2320void security_tun_dev_free_security(void *security) 2321{ 2322 call_void_hook(tun_dev_free_security, security); 2323} 2324EXPORT_SYMBOL(security_tun_dev_free_security); 2325 2326int security_tun_dev_create(void) 2327{ 2328 return call_int_hook(tun_dev_create, 0); 2329} 2330EXPORT_SYMBOL(security_tun_dev_create); 2331 2332int security_tun_dev_attach_queue(void *security) 2333{ 2334 return call_int_hook(tun_dev_attach_queue, 0, security); 2335} 2336EXPORT_SYMBOL(security_tun_dev_attach_queue); 2337 2338int security_tun_dev_attach(struct sock *sk, void *security) 2339{ 2340 return call_int_hook(tun_dev_attach, 0, sk, security); 2341} 2342EXPORT_SYMBOL(security_tun_dev_attach); 2343 2344int security_tun_dev_open(void *security) 2345{ 2346 return call_int_hook(tun_dev_open, 0, security); 2347} 2348EXPORT_SYMBOL(security_tun_dev_open); 2349 2350int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2351{ 2352 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2353} 2354EXPORT_SYMBOL(security_sctp_assoc_request); 2355 2356int security_sctp_bind_connect(struct sock *sk, int optname, 2357 struct sockaddr *address, int addrlen) 2358{ 2359 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2360 address, addrlen); 2361} 2362EXPORT_SYMBOL(security_sctp_bind_connect); 2363 2364void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2365 struct sock *newsk) 2366{ 2367 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2368} 2369EXPORT_SYMBOL(security_sctp_sk_clone); 2370 2371#endif /* CONFIG_SECURITY_NETWORK */ 2372 2373#ifdef CONFIG_SECURITY_INFINIBAND 2374 2375int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2376{ 2377 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2378} 2379EXPORT_SYMBOL(security_ib_pkey_access); 2380 2381int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2382{ 2383 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2384} 2385EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2386 2387int security_ib_alloc_security(void **sec) 2388{ 2389 return call_int_hook(ib_alloc_security, 0, sec); 2390} 2391EXPORT_SYMBOL(security_ib_alloc_security); 2392 2393void security_ib_free_security(void *sec) 2394{ 2395 call_void_hook(ib_free_security, sec); 2396} 2397EXPORT_SYMBOL(security_ib_free_security); 2398#endif /* CONFIG_SECURITY_INFINIBAND */ 2399 2400#ifdef CONFIG_SECURITY_NETWORK_XFRM 2401 2402int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2403 struct xfrm_user_sec_ctx *sec_ctx, 2404 gfp_t gfp) 2405{ 2406 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2407} 2408EXPORT_SYMBOL(security_xfrm_policy_alloc); 2409 2410int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2411 struct xfrm_sec_ctx **new_ctxp) 2412{ 2413 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2414} 2415 2416void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2417{ 2418 call_void_hook(xfrm_policy_free_security, ctx); 2419} 2420EXPORT_SYMBOL(security_xfrm_policy_free); 2421 2422int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2423{ 2424 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2425} 2426 2427int security_xfrm_state_alloc(struct xfrm_state *x, 2428 struct xfrm_user_sec_ctx *sec_ctx) 2429{ 2430 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2431} 2432EXPORT_SYMBOL(security_xfrm_state_alloc); 2433 2434int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2435 struct xfrm_sec_ctx *polsec, u32 secid) 2436{ 2437 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2438} 2439 2440int security_xfrm_state_delete(struct xfrm_state *x) 2441{ 2442 return call_int_hook(xfrm_state_delete_security, 0, x); 2443} 2444EXPORT_SYMBOL(security_xfrm_state_delete); 2445 2446void security_xfrm_state_free(struct xfrm_state *x) 2447{ 2448 call_void_hook(xfrm_state_free_security, x); 2449} 2450 2451int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2452{ 2453 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2454} 2455 2456int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2457 struct xfrm_policy *xp, 2458 const struct flowi_common *flic) 2459{ 2460 struct security_hook_list *hp; 2461 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2462 2463 /* 2464 * Since this function is expected to return 0 or 1, the judgment 2465 * becomes difficult if multiple LSMs supply this call. Fortunately, 2466 * we can use the first LSM's judgment because currently only SELinux 2467 * supplies this call. 2468 * 2469 * For speed optimization, we explicitly break the loop rather than 2470 * using the macro 2471 */ 2472 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2473 list) { 2474 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2475 break; 2476 } 2477 return rc; 2478} 2479 2480int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2481{ 2482 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2483} 2484 2485void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2486{ 2487 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2488 0); 2489 2490 BUG_ON(rc); 2491} 2492EXPORT_SYMBOL(security_skb_classify_flow); 2493 2494#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2495 2496#ifdef CONFIG_KEYS 2497 2498int security_key_alloc(struct key *key, const struct cred *cred, 2499 unsigned long flags) 2500{ 2501 return call_int_hook(key_alloc, 0, key, cred, flags); 2502} 2503 2504void security_key_free(struct key *key) 2505{ 2506 call_void_hook(key_free, key); 2507} 2508 2509int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2510 enum key_need_perm need_perm) 2511{ 2512 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2513} 2514 2515int security_key_getsecurity(struct key *key, char **_buffer) 2516{ 2517 *_buffer = NULL; 2518 return call_int_hook(key_getsecurity, 0, key, _buffer); 2519} 2520 2521#endif /* CONFIG_KEYS */ 2522 2523#ifdef CONFIG_AUDIT 2524 2525int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2526{ 2527 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2528} 2529 2530int security_audit_rule_known(struct audit_krule *krule) 2531{ 2532 return call_int_hook(audit_rule_known, 0, krule); 2533} 2534 2535void security_audit_rule_free(void *lsmrule) 2536{ 2537 call_void_hook(audit_rule_free, lsmrule); 2538} 2539 2540int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2541{ 2542 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2543} 2544#endif /* CONFIG_AUDIT */ 2545 2546#ifdef CONFIG_BPF_SYSCALL 2547int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2548{ 2549 return call_int_hook(bpf, 0, cmd, attr, size); 2550} 2551int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2552{ 2553 return call_int_hook(bpf_map, 0, map, fmode); 2554} 2555int security_bpf_prog(struct bpf_prog *prog) 2556{ 2557 return call_int_hook(bpf_prog, 0, prog); 2558} 2559int security_bpf_map_alloc(struct bpf_map *map) 2560{ 2561 return call_int_hook(bpf_map_alloc_security, 0, map); 2562} 2563int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2564{ 2565 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2566} 2567void security_bpf_map_free(struct bpf_map *map) 2568{ 2569 call_void_hook(bpf_map_free_security, map); 2570} 2571void security_bpf_prog_free(struct bpf_prog_aux *aux) 2572{ 2573 call_void_hook(bpf_prog_free_security, aux); 2574} 2575#endif /* CONFIG_BPF_SYSCALL */ 2576 2577int security_locked_down(enum lockdown_reason what) 2578{ 2579 return call_int_hook(locked_down, 0, what); 2580} 2581EXPORT_SYMBOL(security_locked_down); 2582 2583#ifdef CONFIG_PERF_EVENTS 2584int security_perf_event_open(struct perf_event_attr *attr, int type) 2585{ 2586 return call_int_hook(perf_event_open, 0, attr, type); 2587} 2588 2589int security_perf_event_alloc(struct perf_event *event) 2590{ 2591 return call_int_hook(perf_event_alloc, 0, event); 2592} 2593 2594void security_perf_event_free(struct perf_event *event) 2595{ 2596 call_void_hook(perf_event_free, event); 2597} 2598 2599int security_perf_event_read(struct perf_event *event) 2600{ 2601 return call_int_hook(perf_event_read, 0, event); 2602} 2603 2604int security_perf_event_write(struct perf_event *event) 2605{ 2606 return call_int_hook(perf_event_write, 0, event); 2607} 2608#endif /* CONFIG_PERF_EVENTS */ 2609 2610#ifdef CONFIG_SECURITY_XPM 2611int security_mmap_region(struct vm_area_struct *vma) 2612{ 2613 return call_int_hook(mmap_region, 0, vma); 2614} 2615#endif 2616