xref: /kernel/linux/linux-5.10/security/security.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/kernel_read_file.h>
20#include <linux/lsm_hooks.h>
21#include <linux/integrity.h>
22#include <linux/ima.h>
23#include <linux/evm.h>
24#include <linux/fsnotify.h>
25#include <linux/mman.h>
26#include <linux/mount.h>
27#include <linux/personality.h>
28#include <linux/backing-dev.h>
29#include <linux/string.h>
30#include <linux/msg.h>
31#include <net/flow.h>
32
33#define MAX_LSM_EVM_XATTR	2
34
35/* How many LSMs were built into the kernel? */
36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38/*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45	[LOCKDOWN_NONE] = "none",
46	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50	[LOCKDOWN_HIBERNATION] = "hibernation",
51	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52	[LOCKDOWN_IOPORT] = "raw io port access",
53	[LOCKDOWN_MSR] = "raw MSR access",
54	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59	[LOCKDOWN_DEBUGFS] = "debugfs access",
60	[LOCKDOWN_XMON_WR] = "xmon write access",
61	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
64	[LOCKDOWN_KCORE] = "/proc/kcore access",
65	[LOCKDOWN_KPROBES] = "use of kprobes",
66	[LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
67	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68	[LOCKDOWN_PERF] = "unsafe use of perf",
69	[LOCKDOWN_TRACEFS] = "use of tracefs",
70	[LOCKDOWN_XMON_RW] = "xmon read and write access",
71	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
72};
73
74struct security_hook_heads security_hook_heads __lsm_ro_after_init;
75static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
76
77static struct kmem_cache *lsm_file_cache;
78static struct kmem_cache *lsm_inode_cache;
79
80char *lsm_names;
81static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
82
83/* Boot-time LSM user choice */
84static __initdata const char *chosen_lsm_order;
85static __initdata const char *chosen_major_lsm;
86
87static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
88
89/* Ordered list of LSMs to initialize. */
90static __initdata struct lsm_info **ordered_lsms;
91static __initdata struct lsm_info *exclusive;
92
93static __initdata bool debug;
94#define init_debug(...)						\
95	do {							\
96		if (debug)					\
97			pr_info(__VA_ARGS__);			\
98	} while (0)
99
100static bool __init is_enabled(struct lsm_info *lsm)
101{
102	if (!lsm->enabled)
103		return false;
104
105	return *lsm->enabled;
106}
107
108/* Mark an LSM's enabled flag. */
109static int lsm_enabled_true __initdata = 1;
110static int lsm_enabled_false __initdata = 0;
111static void __init set_enabled(struct lsm_info *lsm, bool enabled)
112{
113	/*
114	 * When an LSM hasn't configured an enable variable, we can use
115	 * a hard-coded location for storing the default enabled state.
116	 */
117	if (!lsm->enabled) {
118		if (enabled)
119			lsm->enabled = &lsm_enabled_true;
120		else
121			lsm->enabled = &lsm_enabled_false;
122	} else if (lsm->enabled == &lsm_enabled_true) {
123		if (!enabled)
124			lsm->enabled = &lsm_enabled_false;
125	} else if (lsm->enabled == &lsm_enabled_false) {
126		if (enabled)
127			lsm->enabled = &lsm_enabled_true;
128	} else {
129		*lsm->enabled = enabled;
130	}
131}
132
133/* Is an LSM already listed in the ordered LSMs list? */
134static bool __init exists_ordered_lsm(struct lsm_info *lsm)
135{
136	struct lsm_info **check;
137
138	for (check = ordered_lsms; *check; check++)
139		if (*check == lsm)
140			return true;
141
142	return false;
143}
144
145/* Append an LSM to the list of ordered LSMs to initialize. */
146static int last_lsm __initdata;
147static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
148{
149	/* Ignore duplicate selections. */
150	if (exists_ordered_lsm(lsm))
151		return;
152
153	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
154		return;
155
156	/* Enable this LSM, if it is not already set. */
157	if (!lsm->enabled)
158		lsm->enabled = &lsm_enabled_true;
159	ordered_lsms[last_lsm++] = lsm;
160
161	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
162		   is_enabled(lsm) ? "en" : "dis");
163}
164
165/* Is an LSM allowed to be initialized? */
166static bool __init lsm_allowed(struct lsm_info *lsm)
167{
168	/* Skip if the LSM is disabled. */
169	if (!is_enabled(lsm))
170		return false;
171
172	/* Not allowed if another exclusive LSM already initialized. */
173	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
174		init_debug("exclusive disabled: %s\n", lsm->name);
175		return false;
176	}
177
178	return true;
179}
180
181static void __init lsm_set_blob_size(int *need, int *lbs)
182{
183	int offset;
184
185	if (*need > 0) {
186		offset = *lbs;
187		*lbs += *need;
188		*need = offset;
189	}
190}
191
192static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
193{
194	if (!needed)
195		return;
196
197	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
198	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
199	/*
200	 * The inode blob gets an rcu_head in addition to
201	 * what the modules might need.
202	 */
203	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
204		blob_sizes.lbs_inode = sizeof(struct rcu_head);
205	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
206	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
207	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
208	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209}
210
211/* Prepare LSM for initialization. */
212static void __init prepare_lsm(struct lsm_info *lsm)
213{
214	int enabled = lsm_allowed(lsm);
215
216	/* Record enablement (to handle any following exclusive LSMs). */
217	set_enabled(lsm, enabled);
218
219	/* If enabled, do pre-initialization work. */
220	if (enabled) {
221		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222			exclusive = lsm;
223			init_debug("exclusive chosen: %s\n", lsm->name);
224		}
225
226		lsm_set_blob_sizes(lsm->blobs);
227	}
228}
229
230/* Initialize a given LSM, if it is enabled. */
231static void __init initialize_lsm(struct lsm_info *lsm)
232{
233	if (is_enabled(lsm)) {
234		int ret;
235
236		init_debug("initializing %s\n", lsm->name);
237		ret = lsm->init();
238		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239	}
240}
241
242/* Populate ordered LSMs list from comma-separated LSM name list. */
243static void __init ordered_lsm_parse(const char *order, const char *origin)
244{
245	struct lsm_info *lsm;
246	char *sep, *name, *next;
247
248	/* LSM_ORDER_FIRST is always first. */
249	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250		if (lsm->order == LSM_ORDER_FIRST)
251			append_ordered_lsm(lsm, "first");
252	}
253
254	/* Process "security=", if given. */
255	if (chosen_major_lsm) {
256		struct lsm_info *major;
257
258		/*
259		 * To match the original "security=" behavior, this
260		 * explicitly does NOT fallback to another Legacy Major
261		 * if the selected one was separately disabled: disable
262		 * all non-matching Legacy Major LSMs.
263		 */
264		for (major = __start_lsm_info; major < __end_lsm_info;
265		     major++) {
266			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267			    strcmp(major->name, chosen_major_lsm) != 0) {
268				set_enabled(major, false);
269				init_debug("security=%s disabled: %s\n",
270					   chosen_major_lsm, major->name);
271			}
272		}
273	}
274
275	sep = kstrdup(order, GFP_KERNEL);
276	next = sep;
277	/* Walk the list, looking for matching LSMs. */
278	while ((name = strsep(&next, ",")) != NULL) {
279		bool found = false;
280
281		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282			if (lsm->order == LSM_ORDER_MUTABLE &&
283			    strcmp(lsm->name, name) == 0) {
284				append_ordered_lsm(lsm, origin);
285				found = true;
286			}
287		}
288
289		if (!found)
290			init_debug("%s ignored: %s\n", origin, name);
291	}
292
293	/* Process "security=", if given. */
294	if (chosen_major_lsm) {
295		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296			if (exists_ordered_lsm(lsm))
297				continue;
298			if (strcmp(lsm->name, chosen_major_lsm) == 0)
299				append_ordered_lsm(lsm, "security=");
300		}
301	}
302
303	/* Disable all LSMs not in the ordered list. */
304	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305		if (exists_ordered_lsm(lsm))
306			continue;
307		set_enabled(lsm, false);
308		init_debug("%s disabled: %s\n", origin, lsm->name);
309	}
310
311	kfree(sep);
312}
313
314static void __init lsm_early_cred(struct cred *cred);
315static void __init lsm_early_task(struct task_struct *task);
316
317static int lsm_append(const char *new, char **result);
318
319static void __init ordered_lsm_init(void)
320{
321	struct lsm_info **lsm;
322
323	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324				GFP_KERNEL);
325
326	if (chosen_lsm_order) {
327		if (chosen_major_lsm) {
328			pr_info("security= is ignored because it is superseded by lsm=\n");
329			chosen_major_lsm = NULL;
330		}
331		ordered_lsm_parse(chosen_lsm_order, "cmdline");
332	} else
333		ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335	for (lsm = ordered_lsms; *lsm; lsm++)
336		prepare_lsm(*lsm);
337
338	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
339	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
340	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
341	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
342	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
343	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
344
345	/*
346	 * Create any kmem_caches needed for blobs
347	 */
348	if (blob_sizes.lbs_file)
349		lsm_file_cache = kmem_cache_create("lsm_file_cache",
350						   blob_sizes.lbs_file, 0,
351						   SLAB_PANIC, NULL);
352	if (blob_sizes.lbs_inode)
353		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
354						    blob_sizes.lbs_inode, 0,
355						    SLAB_PANIC, NULL);
356
357	lsm_early_cred((struct cred *) current->cred);
358	lsm_early_task(current);
359	for (lsm = ordered_lsms; *lsm; lsm++)
360		initialize_lsm(*lsm);
361
362	kfree(ordered_lsms);
363}
364
365int __init early_security_init(void)
366{
367	int i;
368	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
369	struct lsm_info *lsm;
370
371	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
372	     i++)
373		INIT_HLIST_HEAD(&list[i]);
374
375	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
376		if (!lsm->enabled)
377			lsm->enabled = &lsm_enabled_true;
378		prepare_lsm(lsm);
379		initialize_lsm(lsm);
380	}
381
382	return 0;
383}
384
385/**
386 * security_init - initializes the security framework
387 *
388 * This should be called early in the kernel initialization sequence.
389 */
390int __init security_init(void)
391{
392	struct lsm_info *lsm;
393
394	pr_info("Security Framework initializing\n");
395
396	/*
397	 * Append the names of the early LSM modules now that kmalloc() is
398	 * available
399	 */
400	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
401		if (lsm->enabled)
402			lsm_append(lsm->name, &lsm_names);
403	}
404
405	/* Load LSMs in specified order. */
406	ordered_lsm_init();
407
408	return 0;
409}
410
411/* Save user chosen LSM */
412static int __init choose_major_lsm(char *str)
413{
414	chosen_major_lsm = str;
415	return 1;
416}
417__setup("security=", choose_major_lsm);
418
419/* Explicitly choose LSM initialization order. */
420static int __init choose_lsm_order(char *str)
421{
422	chosen_lsm_order = str;
423	return 1;
424}
425__setup("lsm=", choose_lsm_order);
426
427/* Enable LSM order debugging. */
428static int __init enable_debug(char *str)
429{
430	debug = true;
431	return 1;
432}
433__setup("lsm.debug", enable_debug);
434
435static bool match_last_lsm(const char *list, const char *lsm)
436{
437	const char *last;
438
439	if (WARN_ON(!list || !lsm))
440		return false;
441	last = strrchr(list, ',');
442	if (last)
443		/* Pass the comma, strcmp() will check for '\0' */
444		last++;
445	else
446		last = list;
447	return !strcmp(last, lsm);
448}
449
450static int lsm_append(const char *new, char **result)
451{
452	char *cp;
453
454	if (*result == NULL) {
455		*result = kstrdup(new, GFP_KERNEL);
456		if (*result == NULL)
457			return -ENOMEM;
458	} else {
459		/* Check if it is the last registered name */
460		if (match_last_lsm(*result, new))
461			return 0;
462		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
463		if (cp == NULL)
464			return -ENOMEM;
465		kfree(*result);
466		*result = cp;
467	}
468	return 0;
469}
470
471/**
472 * security_add_hooks - Add a modules hooks to the hook lists.
473 * @hooks: the hooks to add
474 * @count: the number of hooks to add
475 * @lsm: the name of the security module
476 *
477 * Each LSM has to register its hooks with the infrastructure.
478 */
479void __init security_add_hooks(struct security_hook_list *hooks, int count,
480				char *lsm)
481{
482	int i;
483
484	for (i = 0; i < count; i++) {
485		hooks[i].lsm = lsm;
486		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
487	}
488
489	/*
490	 * Don't try to append during early_security_init(), we'll come back
491	 * and fix this up afterwards.
492	 */
493	if (slab_is_available()) {
494		if (lsm_append(lsm, &lsm_names) < 0)
495			panic("%s - Cannot get early memory.\n", __func__);
496	}
497}
498
499int call_blocking_lsm_notifier(enum lsm_event event, void *data)
500{
501	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
502					    event, data);
503}
504EXPORT_SYMBOL(call_blocking_lsm_notifier);
505
506int register_blocking_lsm_notifier(struct notifier_block *nb)
507{
508	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
509						nb);
510}
511EXPORT_SYMBOL(register_blocking_lsm_notifier);
512
513int unregister_blocking_lsm_notifier(struct notifier_block *nb)
514{
515	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
516						  nb);
517}
518EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
519
520/**
521 * lsm_cred_alloc - allocate a composite cred blob
522 * @cred: the cred that needs a blob
523 * @gfp: allocation type
524 *
525 * Allocate the cred blob for all the modules
526 *
527 * Returns 0, or -ENOMEM if memory can't be allocated.
528 */
529static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
530{
531	if (blob_sizes.lbs_cred == 0) {
532		cred->security = NULL;
533		return 0;
534	}
535
536	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
537	if (cred->security == NULL)
538		return -ENOMEM;
539	return 0;
540}
541
542/**
543 * lsm_early_cred - during initialization allocate a composite cred blob
544 * @cred: the cred that needs a blob
545 *
546 * Allocate the cred blob for all the modules
547 */
548static void __init lsm_early_cred(struct cred *cred)
549{
550	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
551
552	if (rc)
553		panic("%s: Early cred alloc failed.\n", __func__);
554}
555
556/**
557 * lsm_file_alloc - allocate a composite file blob
558 * @file: the file that needs a blob
559 *
560 * Allocate the file blob for all the modules
561 *
562 * Returns 0, or -ENOMEM if memory can't be allocated.
563 */
564static int lsm_file_alloc(struct file *file)
565{
566	if (!lsm_file_cache) {
567		file->f_security = NULL;
568		return 0;
569	}
570
571	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
572	if (file->f_security == NULL)
573		return -ENOMEM;
574	return 0;
575}
576
577/**
578 * lsm_inode_alloc - allocate a composite inode blob
579 * @inode: the inode that needs a blob
580 *
581 * Allocate the inode blob for all the modules
582 *
583 * Returns 0, or -ENOMEM if memory can't be allocated.
584 */
585int lsm_inode_alloc(struct inode *inode)
586{
587	if (!lsm_inode_cache) {
588		inode->i_security = NULL;
589		return 0;
590	}
591
592	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
593	if (inode->i_security == NULL)
594		return -ENOMEM;
595	return 0;
596}
597
598/**
599 * lsm_task_alloc - allocate a composite task blob
600 * @task: the task that needs a blob
601 *
602 * Allocate the task blob for all the modules
603 *
604 * Returns 0, or -ENOMEM if memory can't be allocated.
605 */
606static int lsm_task_alloc(struct task_struct *task)
607{
608	if (blob_sizes.lbs_task == 0) {
609		task->security = NULL;
610		return 0;
611	}
612
613	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
614	if (task->security == NULL)
615		return -ENOMEM;
616	return 0;
617}
618
619/**
620 * lsm_ipc_alloc - allocate a composite ipc blob
621 * @kip: the ipc that needs a blob
622 *
623 * Allocate the ipc blob for all the modules
624 *
625 * Returns 0, or -ENOMEM if memory can't be allocated.
626 */
627static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
628{
629	if (blob_sizes.lbs_ipc == 0) {
630		kip->security = NULL;
631		return 0;
632	}
633
634	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
635	if (kip->security == NULL)
636		return -ENOMEM;
637	return 0;
638}
639
640/**
641 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
642 * @mp: the msg_msg that needs a blob
643 *
644 * Allocate the ipc blob for all the modules
645 *
646 * Returns 0, or -ENOMEM if memory can't be allocated.
647 */
648static int lsm_msg_msg_alloc(struct msg_msg *mp)
649{
650	if (blob_sizes.lbs_msg_msg == 0) {
651		mp->security = NULL;
652		return 0;
653	}
654
655	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
656	if (mp->security == NULL)
657		return -ENOMEM;
658	return 0;
659}
660
661/**
662 * lsm_early_task - during initialization allocate a composite task blob
663 * @task: the task that needs a blob
664 *
665 * Allocate the task blob for all the modules
666 */
667static void __init lsm_early_task(struct task_struct *task)
668{
669	int rc = lsm_task_alloc(task);
670
671	if (rc)
672		panic("%s: Early task alloc failed.\n", __func__);
673}
674
675/*
676 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
677 * can be accessed with:
678 *
679 *	LSM_RET_DEFAULT(<hook_name>)
680 *
681 * The macros below define static constants for the default value of each
682 * LSM hook.
683 */
684#define LSM_RET_DEFAULT(NAME) (NAME##_default)
685#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
686#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
687	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
688#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
689	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
690
691#include <linux/lsm_hook_defs.h>
692#undef LSM_HOOK
693
694/*
695 * Hook list operation macros.
696 *
697 * call_void_hook:
698 *	This is a hook that does not return a value.
699 *
700 * call_int_hook:
701 *	This is a hook that returns a value.
702 */
703
704#define call_void_hook(FUNC, ...)				\
705	do {							\
706		struct security_hook_list *P;			\
707								\
708		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
709			P->hook.FUNC(__VA_ARGS__);		\
710	} while (0)
711
712#define call_int_hook(FUNC, IRC, ...) ({			\
713	int RC = IRC;						\
714	do {							\
715		struct security_hook_list *P;			\
716								\
717		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
718			RC = P->hook.FUNC(__VA_ARGS__);		\
719			if (RC != 0)				\
720				break;				\
721		}						\
722	} while (0);						\
723	RC;							\
724})
725
726/* Security operations */
727
728int security_binder_set_context_mgr(const struct cred *mgr)
729{
730	return call_int_hook(binder_set_context_mgr, 0, mgr);
731}
732
733int security_binder_transaction(const struct cred *from,
734				const struct cred *to)
735{
736	return call_int_hook(binder_transaction, 0, from, to);
737}
738
739int security_binder_transfer_binder(const struct cred *from,
740				    const struct cred *to)
741{
742	return call_int_hook(binder_transfer_binder, 0, from, to);
743}
744
745int security_binder_transfer_file(const struct cred *from,
746				  const struct cred *to, struct file *file)
747{
748	return call_int_hook(binder_transfer_file, 0, from, to, file);
749}
750
751int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
752{
753	return call_int_hook(ptrace_access_check, 0, child, mode);
754}
755
756int security_ptrace_traceme(struct task_struct *parent)
757{
758	return call_int_hook(ptrace_traceme, 0, parent);
759}
760
761int security_capget(struct task_struct *target,
762		     kernel_cap_t *effective,
763		     kernel_cap_t *inheritable,
764		     kernel_cap_t *permitted)
765{
766	return call_int_hook(capget, 0, target,
767				effective, inheritable, permitted);
768}
769
770int security_capset(struct cred *new, const struct cred *old,
771		    const kernel_cap_t *effective,
772		    const kernel_cap_t *inheritable,
773		    const kernel_cap_t *permitted)
774{
775	return call_int_hook(capset, 0, new, old,
776				effective, inheritable, permitted);
777}
778
779int security_capable(const struct cred *cred,
780		     struct user_namespace *ns,
781		     int cap,
782		     unsigned int opts)
783{
784	return call_int_hook(capable, 0, cred, ns, cap, opts);
785}
786
787int security_quotactl(int cmds, int type, int id, struct super_block *sb)
788{
789	return call_int_hook(quotactl, 0, cmds, type, id, sb);
790}
791
792int security_quota_on(struct dentry *dentry)
793{
794	return call_int_hook(quota_on, 0, dentry);
795}
796
797int security_syslog(int type)
798{
799	return call_int_hook(syslog, 0, type);
800}
801
802int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
803{
804	return call_int_hook(settime, 0, ts, tz);
805}
806
807int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
808{
809	struct security_hook_list *hp;
810	int cap_sys_admin = 1;
811	int rc;
812
813	/*
814	 * The module will respond with a positive value if
815	 * it thinks the __vm_enough_memory() call should be
816	 * made with the cap_sys_admin set. If all of the modules
817	 * agree that it should be set it will. If any module
818	 * thinks it should not be set it won't.
819	 */
820	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
821		rc = hp->hook.vm_enough_memory(mm, pages);
822		if (rc <= 0) {
823			cap_sys_admin = 0;
824			break;
825		}
826	}
827	return __vm_enough_memory(mm, pages, cap_sys_admin);
828}
829
830int security_bprm_creds_for_exec(struct linux_binprm *bprm)
831{
832	return call_int_hook(bprm_creds_for_exec, 0, bprm);
833}
834
835int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
836{
837	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
838}
839
840int security_bprm_check(struct linux_binprm *bprm)
841{
842	int ret;
843
844	ret = call_int_hook(bprm_check_security, 0, bprm);
845	if (ret)
846		return ret;
847	return ima_bprm_check(bprm);
848}
849
850void security_bprm_committing_creds(struct linux_binprm *bprm)
851{
852	call_void_hook(bprm_committing_creds, bprm);
853}
854
855void security_bprm_committed_creds(struct linux_binprm *bprm)
856{
857	call_void_hook(bprm_committed_creds, bprm);
858}
859
860int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
861{
862	return call_int_hook(fs_context_dup, 0, fc, src_fc);
863}
864
865int security_fs_context_parse_param(struct fs_context *fc,
866				    struct fs_parameter *param)
867{
868	struct security_hook_list *hp;
869	int trc;
870	int rc = -ENOPARAM;
871
872	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
873			     list) {
874		trc = hp->hook.fs_context_parse_param(fc, param);
875		if (trc == 0)
876			rc = 0;
877		else if (trc != -ENOPARAM)
878			return trc;
879	}
880	return rc;
881}
882
883int security_sb_alloc(struct super_block *sb)
884{
885	return call_int_hook(sb_alloc_security, 0, sb);
886}
887
888void security_sb_free(struct super_block *sb)
889{
890	call_void_hook(sb_free_security, sb);
891}
892
893void security_free_mnt_opts(void **mnt_opts)
894{
895	if (!*mnt_opts)
896		return;
897	call_void_hook(sb_free_mnt_opts, *mnt_opts);
898	*mnt_opts = NULL;
899}
900EXPORT_SYMBOL(security_free_mnt_opts);
901
902int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
903{
904	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
905}
906EXPORT_SYMBOL(security_sb_eat_lsm_opts);
907
908int security_sb_remount(struct super_block *sb,
909			void *mnt_opts)
910{
911	return call_int_hook(sb_remount, 0, sb, mnt_opts);
912}
913EXPORT_SYMBOL(security_sb_remount);
914
915int security_sb_kern_mount(struct super_block *sb)
916{
917	return call_int_hook(sb_kern_mount, 0, sb);
918}
919
920int security_sb_show_options(struct seq_file *m, struct super_block *sb)
921{
922	return call_int_hook(sb_show_options, 0, m, sb);
923}
924
925int security_sb_statfs(struct dentry *dentry)
926{
927	return call_int_hook(sb_statfs, 0, dentry);
928}
929
930int security_sb_mount(const char *dev_name, const struct path *path,
931                       const char *type, unsigned long flags, void *data)
932{
933	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
934}
935
936int security_sb_umount(struct vfsmount *mnt, int flags)
937{
938	return call_int_hook(sb_umount, 0, mnt, flags);
939}
940
941int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
942{
943	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
944}
945
946int security_sb_set_mnt_opts(struct super_block *sb,
947				void *mnt_opts,
948				unsigned long kern_flags,
949				unsigned long *set_kern_flags)
950{
951	return call_int_hook(sb_set_mnt_opts,
952				mnt_opts ? -EOPNOTSUPP : 0, sb,
953				mnt_opts, kern_flags, set_kern_flags);
954}
955EXPORT_SYMBOL(security_sb_set_mnt_opts);
956
957int security_sb_clone_mnt_opts(const struct super_block *oldsb,
958				struct super_block *newsb,
959				unsigned long kern_flags,
960				unsigned long *set_kern_flags)
961{
962	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
963				kern_flags, set_kern_flags);
964}
965EXPORT_SYMBOL(security_sb_clone_mnt_opts);
966
967int security_add_mnt_opt(const char *option, const char *val, int len,
968			 void **mnt_opts)
969{
970	return call_int_hook(sb_add_mnt_opt, -EINVAL,
971					option, val, len, mnt_opts);
972}
973EXPORT_SYMBOL(security_add_mnt_opt);
974
975int security_move_mount(const struct path *from_path, const struct path *to_path)
976{
977	return call_int_hook(move_mount, 0, from_path, to_path);
978}
979
980int security_path_notify(const struct path *path, u64 mask,
981				unsigned int obj_type)
982{
983	return call_int_hook(path_notify, 0, path, mask, obj_type);
984}
985
986int security_inode_alloc(struct inode *inode)
987{
988	int rc = lsm_inode_alloc(inode);
989
990	if (unlikely(rc))
991		return rc;
992	rc = call_int_hook(inode_alloc_security, 0, inode);
993	if (unlikely(rc))
994		security_inode_free(inode);
995	return rc;
996}
997
998static void inode_free_by_rcu(struct rcu_head *head)
999{
1000	/*
1001	 * The rcu head is at the start of the inode blob
1002	 */
1003	kmem_cache_free(lsm_inode_cache, head);
1004}
1005
1006void security_inode_free(struct inode *inode)
1007{
1008	integrity_inode_free(inode);
1009	call_void_hook(inode_free_security, inode);
1010	/*
1011	 * The inode may still be referenced in a path walk and
1012	 * a call to security_inode_permission() can be made
1013	 * after inode_free_security() is called. Ideally, the VFS
1014	 * wouldn't do this, but fixing that is a much harder
1015	 * job. For now, simply free the i_security via RCU, and
1016	 * leave the current inode->i_security pointer intact.
1017	 * The inode will be freed after the RCU grace period too.
1018	 */
1019	if (inode->i_security)
1020		call_rcu((struct rcu_head *)inode->i_security,
1021				inode_free_by_rcu);
1022}
1023
1024int security_dentry_init_security(struct dentry *dentry, int mode,
1025					const struct qstr *name, void **ctx,
1026					u32 *ctxlen)
1027{
1028	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1029				name, ctx, ctxlen);
1030}
1031EXPORT_SYMBOL(security_dentry_init_security);
1032
1033int security_dentry_create_files_as(struct dentry *dentry, int mode,
1034				    struct qstr *name,
1035				    const struct cred *old, struct cred *new)
1036{
1037	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1038				name, old, new);
1039}
1040EXPORT_SYMBOL(security_dentry_create_files_as);
1041
1042int security_inode_init_security(struct inode *inode, struct inode *dir,
1043				 const struct qstr *qstr,
1044				 const initxattrs initxattrs, void *fs_data)
1045{
1046	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1047	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1048	int ret;
1049
1050	if (unlikely(IS_PRIVATE(inode)))
1051		return 0;
1052
1053	if (!initxattrs)
1054		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1055				     dir, qstr, NULL, NULL, NULL);
1056	memset(new_xattrs, 0, sizeof(new_xattrs));
1057	lsm_xattr = new_xattrs;
1058	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1059						&lsm_xattr->name,
1060						&lsm_xattr->value,
1061						&lsm_xattr->value_len);
1062	if (ret)
1063		goto out;
1064
1065	evm_xattr = lsm_xattr + 1;
1066	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1067	if (ret)
1068		goto out;
1069	ret = initxattrs(inode, new_xattrs, fs_data);
1070out:
1071	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1072		kfree(xattr->value);
1073	return (ret == -EOPNOTSUPP) ? 0 : ret;
1074}
1075EXPORT_SYMBOL(security_inode_init_security);
1076
1077int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1078				     const struct qstr *qstr, const char **name,
1079				     void **value, size_t *len)
1080{
1081	if (unlikely(IS_PRIVATE(inode)))
1082		return -EOPNOTSUPP;
1083	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1084			     qstr, name, value, len);
1085}
1086EXPORT_SYMBOL(security_old_inode_init_security);
1087
1088#ifdef CONFIG_SECURITY_PATH
1089int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1090			unsigned int dev)
1091{
1092	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1093		return 0;
1094	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1095}
1096EXPORT_SYMBOL(security_path_mknod);
1097
1098int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1099{
1100	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1101		return 0;
1102	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1103}
1104EXPORT_SYMBOL(security_path_mkdir);
1105
1106int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1107{
1108	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1109		return 0;
1110	return call_int_hook(path_rmdir, 0, dir, dentry);
1111}
1112
1113int security_path_unlink(const struct path *dir, struct dentry *dentry)
1114{
1115	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1116		return 0;
1117	return call_int_hook(path_unlink, 0, dir, dentry);
1118}
1119EXPORT_SYMBOL(security_path_unlink);
1120
1121int security_path_symlink(const struct path *dir, struct dentry *dentry,
1122			  const char *old_name)
1123{
1124	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1125		return 0;
1126	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1127}
1128
1129int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1130		       struct dentry *new_dentry)
1131{
1132	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1133		return 0;
1134	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1135}
1136
1137int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1138			 const struct path *new_dir, struct dentry *new_dentry,
1139			 unsigned int flags)
1140{
1141	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1142		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1143		return 0;
1144
1145	if (flags & RENAME_EXCHANGE) {
1146		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1147					old_dir, old_dentry);
1148		if (err)
1149			return err;
1150	}
1151
1152	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1153				new_dentry);
1154}
1155EXPORT_SYMBOL(security_path_rename);
1156
1157int security_path_truncate(const struct path *path)
1158{
1159	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1160		return 0;
1161	return call_int_hook(path_truncate, 0, path);
1162}
1163
1164int security_path_chmod(const struct path *path, umode_t mode)
1165{
1166	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1167		return 0;
1168	return call_int_hook(path_chmod, 0, path, mode);
1169}
1170
1171int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1172{
1173	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1174		return 0;
1175	return call_int_hook(path_chown, 0, path, uid, gid);
1176}
1177
1178int security_path_chroot(const struct path *path)
1179{
1180	return call_int_hook(path_chroot, 0, path);
1181}
1182#endif
1183
1184int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1185{
1186	if (unlikely(IS_PRIVATE(dir)))
1187		return 0;
1188	return call_int_hook(inode_create, 0, dir, dentry, mode);
1189}
1190EXPORT_SYMBOL_GPL(security_inode_create);
1191
1192int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1193			 struct dentry *new_dentry)
1194{
1195	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1196		return 0;
1197	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1198}
1199
1200int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1201{
1202	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1203		return 0;
1204	return call_int_hook(inode_unlink, 0, dir, dentry);
1205}
1206
1207int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1208			    const char *old_name)
1209{
1210	if (unlikely(IS_PRIVATE(dir)))
1211		return 0;
1212	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1213}
1214
1215int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1216{
1217	if (unlikely(IS_PRIVATE(dir)))
1218		return 0;
1219	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1220}
1221EXPORT_SYMBOL_GPL(security_inode_mkdir);
1222
1223int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1224{
1225	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1226		return 0;
1227	return call_int_hook(inode_rmdir, 0, dir, dentry);
1228}
1229
1230int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1231{
1232	if (unlikely(IS_PRIVATE(dir)))
1233		return 0;
1234	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1235}
1236
1237int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1238			   struct inode *new_dir, struct dentry *new_dentry,
1239			   unsigned int flags)
1240{
1241        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1242            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1243		return 0;
1244
1245	if (flags & RENAME_EXCHANGE) {
1246		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1247						     old_dir, old_dentry);
1248		if (err)
1249			return err;
1250	}
1251
1252	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1253					   new_dir, new_dentry);
1254}
1255
1256int security_inode_readlink(struct dentry *dentry)
1257{
1258	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1259		return 0;
1260	return call_int_hook(inode_readlink, 0, dentry);
1261}
1262
1263int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1264			       bool rcu)
1265{
1266	if (unlikely(IS_PRIVATE(inode)))
1267		return 0;
1268	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1269}
1270
1271int security_inode_permission(struct inode *inode, int mask)
1272{
1273	if (unlikely(IS_PRIVATE(inode)))
1274		return 0;
1275	return call_int_hook(inode_permission, 0, inode, mask);
1276}
1277
1278int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1279{
1280	int ret;
1281
1282	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1283		return 0;
1284	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1285	if (ret)
1286		return ret;
1287	return evm_inode_setattr(dentry, attr);
1288}
1289EXPORT_SYMBOL_GPL(security_inode_setattr);
1290
1291int security_inode_getattr(const struct path *path)
1292{
1293	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1294		return 0;
1295	return call_int_hook(inode_getattr, 0, path);
1296}
1297
1298int security_inode_setxattr(struct dentry *dentry, const char *name,
1299			    const void *value, size_t size, int flags)
1300{
1301	int ret;
1302
1303	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1304		return 0;
1305	/*
1306	 * SELinux and Smack integrate the cap call,
1307	 * so assume that all LSMs supplying this call do so.
1308	 */
1309	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1310				flags);
1311
1312	if (ret == 1)
1313		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1314	if (ret)
1315		return ret;
1316	ret = ima_inode_setxattr(dentry, name, value, size);
1317	if (ret)
1318		return ret;
1319	return evm_inode_setxattr(dentry, name, value, size);
1320}
1321
1322void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1323				  const void *value, size_t size, int flags)
1324{
1325	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1326		return;
1327	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1328	evm_inode_post_setxattr(dentry, name, value, size);
1329}
1330
1331int security_inode_getxattr(struct dentry *dentry, const char *name)
1332{
1333	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1334		return 0;
1335	return call_int_hook(inode_getxattr, 0, dentry, name);
1336}
1337
1338int security_inode_listxattr(struct dentry *dentry)
1339{
1340	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1341		return 0;
1342	return call_int_hook(inode_listxattr, 0, dentry);
1343}
1344
1345int security_inode_removexattr(struct dentry *dentry, const char *name)
1346{
1347	int ret;
1348
1349	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1350		return 0;
1351	/*
1352	 * SELinux and Smack integrate the cap call,
1353	 * so assume that all LSMs supplying this call do so.
1354	 */
1355	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1356	if (ret == 1)
1357		ret = cap_inode_removexattr(dentry, name);
1358	if (ret)
1359		return ret;
1360	ret = ima_inode_removexattr(dentry, name);
1361	if (ret)
1362		return ret;
1363	return evm_inode_removexattr(dentry, name);
1364}
1365
1366int security_inode_need_killpriv(struct dentry *dentry)
1367{
1368	return call_int_hook(inode_need_killpriv, 0, dentry);
1369}
1370
1371int security_inode_killpriv(struct dentry *dentry)
1372{
1373	return call_int_hook(inode_killpriv, 0, dentry);
1374}
1375
1376int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1377{
1378	struct security_hook_list *hp;
1379	int rc;
1380
1381	if (unlikely(IS_PRIVATE(inode)))
1382		return LSM_RET_DEFAULT(inode_getsecurity);
1383	/*
1384	 * Only one module will provide an attribute with a given name.
1385	 */
1386	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1387		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1388		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1389			return rc;
1390	}
1391	return LSM_RET_DEFAULT(inode_getsecurity);
1392}
1393
1394int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1395{
1396	struct security_hook_list *hp;
1397	int rc;
1398
1399	if (unlikely(IS_PRIVATE(inode)))
1400		return LSM_RET_DEFAULT(inode_setsecurity);
1401	/*
1402	 * Only one module will provide an attribute with a given name.
1403	 */
1404	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1405		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1406								flags);
1407		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1408			return rc;
1409	}
1410	return LSM_RET_DEFAULT(inode_setsecurity);
1411}
1412
1413int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1414{
1415	if (unlikely(IS_PRIVATE(inode)))
1416		return 0;
1417	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1418}
1419EXPORT_SYMBOL(security_inode_listsecurity);
1420
1421void security_inode_getsecid(struct inode *inode, u32 *secid)
1422{
1423	call_void_hook(inode_getsecid, inode, secid);
1424}
1425
1426int security_inode_copy_up(struct dentry *src, struct cred **new)
1427{
1428	return call_int_hook(inode_copy_up, 0, src, new);
1429}
1430EXPORT_SYMBOL(security_inode_copy_up);
1431
1432int security_inode_copy_up_xattr(const char *name)
1433{
1434	struct security_hook_list *hp;
1435	int rc;
1436
1437	/*
1438	 * The implementation can return 0 (accept the xattr), 1 (discard the
1439	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1440	 * any other error code incase of an error.
1441	 */
1442	hlist_for_each_entry(hp,
1443		&security_hook_heads.inode_copy_up_xattr, list) {
1444		rc = hp->hook.inode_copy_up_xattr(name);
1445		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1446			return rc;
1447	}
1448
1449	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1450}
1451EXPORT_SYMBOL(security_inode_copy_up_xattr);
1452
1453int security_kernfs_init_security(struct kernfs_node *kn_dir,
1454				  struct kernfs_node *kn)
1455{
1456	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1457}
1458
1459int security_file_permission(struct file *file, int mask)
1460{
1461	int ret;
1462
1463	ret = call_int_hook(file_permission, 0, file, mask);
1464	if (ret)
1465		return ret;
1466
1467	return fsnotify_perm(file, mask);
1468}
1469
1470int security_file_alloc(struct file *file)
1471{
1472	int rc = lsm_file_alloc(file);
1473
1474	if (rc)
1475		return rc;
1476	rc = call_int_hook(file_alloc_security, 0, file);
1477	if (unlikely(rc))
1478		security_file_free(file);
1479	return rc;
1480}
1481
1482void security_file_free(struct file *file)
1483{
1484	void *blob;
1485
1486	call_void_hook(file_free_security, file);
1487
1488	blob = file->f_security;
1489	if (blob) {
1490		file->f_security = NULL;
1491		kmem_cache_free(lsm_file_cache, blob);
1492	}
1493}
1494
1495int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1496{
1497	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1498}
1499EXPORT_SYMBOL_GPL(security_file_ioctl);
1500
1501/**
1502 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
1503 * @file: associated file
1504 * @cmd: ioctl cmd
1505 * @arg: ioctl arguments
1506 *
1507 * Compat version of security_file_ioctl() that correctly handles 32-bit
1508 * processes running on 64-bit kernels.
1509 *
1510 * Return: Returns 0 if permission is granted.
1511 */
1512int security_file_ioctl_compat(struct file *file, unsigned int cmd,
1513			       unsigned long arg)
1514{
1515	return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
1516}
1517EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
1518
1519static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1520{
1521	/*
1522	 * Does we have PROT_READ and does the application expect
1523	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1524	 */
1525	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1526		return prot;
1527	if (!(current->personality & READ_IMPLIES_EXEC))
1528		return prot;
1529	/*
1530	 * if that's an anonymous mapping, let it.
1531	 */
1532	if (!file)
1533		return prot | PROT_EXEC;
1534	/*
1535	 * ditto if it's not on noexec mount, except that on !MMU we need
1536	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1537	 */
1538	if (!path_noexec(&file->f_path)) {
1539#ifndef CONFIG_MMU
1540		if (file->f_op->mmap_capabilities) {
1541			unsigned caps = file->f_op->mmap_capabilities(file);
1542			if (!(caps & NOMMU_MAP_EXEC))
1543				return prot;
1544		}
1545#endif
1546		return prot | PROT_EXEC;
1547	}
1548	/* anything on noexec mount won't get PROT_EXEC */
1549	return prot;
1550}
1551
1552int security_mmap_file(struct file *file, unsigned long prot,
1553			unsigned long flags)
1554{
1555	unsigned long prot_adj = mmap_prot(file, prot);
1556	int ret;
1557
1558	ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
1559	if (ret)
1560		return ret;
1561	return ima_file_mmap(file, prot, prot_adj, flags);
1562}
1563
1564int security_mmap_addr(unsigned long addr)
1565{
1566	return call_int_hook(mmap_addr, 0, addr);
1567}
1568
1569int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1570			    unsigned long prot)
1571{
1572	int ret;
1573
1574	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1575	if (ret)
1576		return ret;
1577	return ima_file_mprotect(vma, prot);
1578}
1579
1580int security_file_lock(struct file *file, unsigned int cmd)
1581{
1582	return call_int_hook(file_lock, 0, file, cmd);
1583}
1584
1585int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1586{
1587	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1588}
1589
1590void security_file_set_fowner(struct file *file)
1591{
1592	call_void_hook(file_set_fowner, file);
1593}
1594
1595int security_file_send_sigiotask(struct task_struct *tsk,
1596				  struct fown_struct *fown, int sig)
1597{
1598	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1599}
1600
1601int security_file_receive(struct file *file)
1602{
1603	return call_int_hook(file_receive, 0, file);
1604}
1605
1606int security_file_open(struct file *file)
1607{
1608	int ret;
1609
1610	ret = call_int_hook(file_open, 0, file);
1611	if (ret)
1612		return ret;
1613
1614	return fsnotify_perm(file, MAY_OPEN);
1615}
1616
1617int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1618{
1619	int rc = lsm_task_alloc(task);
1620
1621	if (rc)
1622		return rc;
1623	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1624	if (unlikely(rc))
1625		security_task_free(task);
1626	return rc;
1627}
1628
1629void security_task_free(struct task_struct *task)
1630{
1631	call_void_hook(task_free, task);
1632
1633	kfree(task->security);
1634	task->security = NULL;
1635}
1636
1637int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1638{
1639	int rc = lsm_cred_alloc(cred, gfp);
1640
1641	if (rc)
1642		return rc;
1643
1644	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1645	if (unlikely(rc))
1646		security_cred_free(cred);
1647	return rc;
1648}
1649
1650void security_cred_free(struct cred *cred)
1651{
1652	/*
1653	 * There is a failure case in prepare_creds() that
1654	 * may result in a call here with ->security being NULL.
1655	 */
1656	if (unlikely(cred->security == NULL))
1657		return;
1658
1659	call_void_hook(cred_free, cred);
1660
1661	kfree(cred->security);
1662	cred->security = NULL;
1663}
1664
1665int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1666{
1667	int rc = lsm_cred_alloc(new, gfp);
1668
1669	if (rc)
1670		return rc;
1671
1672	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1673	if (unlikely(rc))
1674		security_cred_free(new);
1675	return rc;
1676}
1677
1678void security_transfer_creds(struct cred *new, const struct cred *old)
1679{
1680	call_void_hook(cred_transfer, new, old);
1681}
1682
1683void security_cred_getsecid(const struct cred *c, u32 *secid)
1684{
1685	*secid = 0;
1686	call_void_hook(cred_getsecid, c, secid);
1687}
1688EXPORT_SYMBOL(security_cred_getsecid);
1689
1690int security_kernel_act_as(struct cred *new, u32 secid)
1691{
1692	return call_int_hook(kernel_act_as, 0, new, secid);
1693}
1694
1695int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1696{
1697	return call_int_hook(kernel_create_files_as, 0, new, inode);
1698}
1699
1700int security_kernel_module_request(char *kmod_name)
1701{
1702	int ret;
1703
1704	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1705	if (ret)
1706		return ret;
1707	return integrity_kernel_module_request(kmod_name);
1708}
1709
1710int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1711			      bool contents)
1712{
1713	int ret;
1714
1715	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1716	if (ret)
1717		return ret;
1718	return ima_read_file(file, id, contents);
1719}
1720EXPORT_SYMBOL_GPL(security_kernel_read_file);
1721
1722int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1723				   enum kernel_read_file_id id)
1724{
1725	int ret;
1726
1727	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1728	if (ret)
1729		return ret;
1730	return ima_post_read_file(file, buf, size, id);
1731}
1732EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1733
1734int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1735{
1736	int ret;
1737
1738	ret = call_int_hook(kernel_load_data, 0, id, contents);
1739	if (ret)
1740		return ret;
1741	return ima_load_data(id, contents);
1742}
1743EXPORT_SYMBOL_GPL(security_kernel_load_data);
1744
1745int security_kernel_post_load_data(char *buf, loff_t size,
1746				   enum kernel_load_data_id id,
1747				   char *description)
1748{
1749	int ret;
1750
1751	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1752			    description);
1753	if (ret)
1754		return ret;
1755	return ima_post_load_data(buf, size, id, description);
1756}
1757EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1758
1759int security_task_fix_setuid(struct cred *new, const struct cred *old,
1760			     int flags)
1761{
1762	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1763}
1764
1765int security_task_fix_setgid(struct cred *new, const struct cred *old,
1766				 int flags)
1767{
1768	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1769}
1770
1771int security_task_setpgid(struct task_struct *p, pid_t pgid)
1772{
1773	return call_int_hook(task_setpgid, 0, p, pgid);
1774}
1775
1776int security_task_getpgid(struct task_struct *p)
1777{
1778	return call_int_hook(task_getpgid, 0, p);
1779}
1780
1781int security_task_getsid(struct task_struct *p)
1782{
1783	return call_int_hook(task_getsid, 0, p);
1784}
1785
1786void security_task_getsecid(struct task_struct *p, u32 *secid)
1787{
1788	*secid = 0;
1789	call_void_hook(task_getsecid, p, secid);
1790}
1791EXPORT_SYMBOL(security_task_getsecid);
1792
1793int security_task_setnice(struct task_struct *p, int nice)
1794{
1795	return call_int_hook(task_setnice, 0, p, nice);
1796}
1797
1798int security_task_setioprio(struct task_struct *p, int ioprio)
1799{
1800	return call_int_hook(task_setioprio, 0, p, ioprio);
1801}
1802
1803int security_task_getioprio(struct task_struct *p)
1804{
1805	return call_int_hook(task_getioprio, 0, p);
1806}
1807
1808int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1809			  unsigned int flags)
1810{
1811	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1812}
1813
1814int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1815		struct rlimit *new_rlim)
1816{
1817	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1818}
1819
1820int security_task_setscheduler(struct task_struct *p)
1821{
1822	return call_int_hook(task_setscheduler, 0, p);
1823}
1824
1825int security_task_getscheduler(struct task_struct *p)
1826{
1827	return call_int_hook(task_getscheduler, 0, p);
1828}
1829
1830int security_task_movememory(struct task_struct *p)
1831{
1832	return call_int_hook(task_movememory, 0, p);
1833}
1834
1835int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1836			int sig, const struct cred *cred)
1837{
1838	return call_int_hook(task_kill, 0, p, info, sig, cred);
1839}
1840
1841int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1842			 unsigned long arg4, unsigned long arg5)
1843{
1844	int thisrc;
1845	int rc = LSM_RET_DEFAULT(task_prctl);
1846	struct security_hook_list *hp;
1847
1848	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1849		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1850		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1851			rc = thisrc;
1852			if (thisrc != 0)
1853				break;
1854		}
1855	}
1856	return rc;
1857}
1858
1859void security_task_to_inode(struct task_struct *p, struct inode *inode)
1860{
1861	call_void_hook(task_to_inode, p, inode);
1862}
1863
1864int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1865{
1866	return call_int_hook(ipc_permission, 0, ipcp, flag);
1867}
1868
1869void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1870{
1871	*secid = 0;
1872	call_void_hook(ipc_getsecid, ipcp, secid);
1873}
1874
1875int security_msg_msg_alloc(struct msg_msg *msg)
1876{
1877	int rc = lsm_msg_msg_alloc(msg);
1878
1879	if (unlikely(rc))
1880		return rc;
1881	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1882	if (unlikely(rc))
1883		security_msg_msg_free(msg);
1884	return rc;
1885}
1886
1887void security_msg_msg_free(struct msg_msg *msg)
1888{
1889	call_void_hook(msg_msg_free_security, msg);
1890	kfree(msg->security);
1891	msg->security = NULL;
1892}
1893
1894int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1895{
1896	int rc = lsm_ipc_alloc(msq);
1897
1898	if (unlikely(rc))
1899		return rc;
1900	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1901	if (unlikely(rc))
1902		security_msg_queue_free(msq);
1903	return rc;
1904}
1905
1906void security_msg_queue_free(struct kern_ipc_perm *msq)
1907{
1908	call_void_hook(msg_queue_free_security, msq);
1909	kfree(msq->security);
1910	msq->security = NULL;
1911}
1912
1913int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1914{
1915	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1916}
1917
1918int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1919{
1920	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1921}
1922
1923int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1924			       struct msg_msg *msg, int msqflg)
1925{
1926	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1927}
1928
1929int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1930			       struct task_struct *target, long type, int mode)
1931{
1932	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1933}
1934
1935int security_shm_alloc(struct kern_ipc_perm *shp)
1936{
1937	int rc = lsm_ipc_alloc(shp);
1938
1939	if (unlikely(rc))
1940		return rc;
1941	rc = call_int_hook(shm_alloc_security, 0, shp);
1942	if (unlikely(rc))
1943		security_shm_free(shp);
1944	return rc;
1945}
1946
1947void security_shm_free(struct kern_ipc_perm *shp)
1948{
1949	call_void_hook(shm_free_security, shp);
1950	kfree(shp->security);
1951	shp->security = NULL;
1952}
1953
1954int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1955{
1956	return call_int_hook(shm_associate, 0, shp, shmflg);
1957}
1958
1959int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1960{
1961	return call_int_hook(shm_shmctl, 0, shp, cmd);
1962}
1963
1964int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1965{
1966	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1967}
1968
1969int security_sem_alloc(struct kern_ipc_perm *sma)
1970{
1971	int rc = lsm_ipc_alloc(sma);
1972
1973	if (unlikely(rc))
1974		return rc;
1975	rc = call_int_hook(sem_alloc_security, 0, sma);
1976	if (unlikely(rc))
1977		security_sem_free(sma);
1978	return rc;
1979}
1980
1981void security_sem_free(struct kern_ipc_perm *sma)
1982{
1983	call_void_hook(sem_free_security, sma);
1984	kfree(sma->security);
1985	sma->security = NULL;
1986}
1987
1988int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1989{
1990	return call_int_hook(sem_associate, 0, sma, semflg);
1991}
1992
1993int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1994{
1995	return call_int_hook(sem_semctl, 0, sma, cmd);
1996}
1997
1998int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1999			unsigned nsops, int alter)
2000{
2001	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2002}
2003
2004void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2005{
2006	if (unlikely(inode && IS_PRIVATE(inode)))
2007		return;
2008	call_void_hook(d_instantiate, dentry, inode);
2009}
2010EXPORT_SYMBOL(security_d_instantiate);
2011
2012int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2013				char **value)
2014{
2015	struct security_hook_list *hp;
2016
2017	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2018		if (lsm != NULL && strcmp(lsm, hp->lsm))
2019			continue;
2020		return hp->hook.getprocattr(p, name, value);
2021	}
2022	return LSM_RET_DEFAULT(getprocattr);
2023}
2024
2025int security_setprocattr(const char *lsm, const char *name, void *value,
2026			 size_t size)
2027{
2028	struct security_hook_list *hp;
2029
2030	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2031		if (lsm != NULL && strcmp(lsm, hp->lsm))
2032			continue;
2033		return hp->hook.setprocattr(name, value, size);
2034	}
2035	return LSM_RET_DEFAULT(setprocattr);
2036}
2037
2038int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2039{
2040	return call_int_hook(netlink_send, 0, sk, skb);
2041}
2042
2043int security_ismaclabel(const char *name)
2044{
2045	return call_int_hook(ismaclabel, 0, name);
2046}
2047EXPORT_SYMBOL(security_ismaclabel);
2048
2049int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2050{
2051	struct security_hook_list *hp;
2052	int rc;
2053
2054	/*
2055	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2056	 * LSM hook is not "stackable").
2057	 */
2058	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2059		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2060		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2061			return rc;
2062	}
2063
2064	return LSM_RET_DEFAULT(secid_to_secctx);
2065}
2066EXPORT_SYMBOL(security_secid_to_secctx);
2067
2068int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2069{
2070	*secid = 0;
2071	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2072}
2073EXPORT_SYMBOL(security_secctx_to_secid);
2074
2075void security_release_secctx(char *secdata, u32 seclen)
2076{
2077	call_void_hook(release_secctx, secdata, seclen);
2078}
2079EXPORT_SYMBOL(security_release_secctx);
2080
2081void security_inode_invalidate_secctx(struct inode *inode)
2082{
2083	call_void_hook(inode_invalidate_secctx, inode);
2084}
2085EXPORT_SYMBOL(security_inode_invalidate_secctx);
2086
2087int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2088{
2089	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2090}
2091EXPORT_SYMBOL(security_inode_notifysecctx);
2092
2093int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2094{
2095	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2096}
2097EXPORT_SYMBOL(security_inode_setsecctx);
2098
2099int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2100{
2101	struct security_hook_list *hp;
2102	int rc;
2103
2104	/*
2105	 * Only one module will provide a security context.
2106	 */
2107	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
2108		rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
2109		if (rc != LSM_RET_DEFAULT(inode_getsecctx))
2110			return rc;
2111	}
2112
2113	return LSM_RET_DEFAULT(inode_getsecctx);
2114}
2115EXPORT_SYMBOL(security_inode_getsecctx);
2116
2117#ifdef CONFIG_WATCH_QUEUE
2118int security_post_notification(const struct cred *w_cred,
2119			       const struct cred *cred,
2120			       struct watch_notification *n)
2121{
2122	return call_int_hook(post_notification, 0, w_cred, cred, n);
2123}
2124#endif /* CONFIG_WATCH_QUEUE */
2125
2126#ifdef CONFIG_KEY_NOTIFICATIONS
2127int security_watch_key(struct key *key)
2128{
2129	return call_int_hook(watch_key, 0, key);
2130}
2131#endif
2132
2133#ifdef CONFIG_SECURITY_NETWORK
2134
2135int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2136{
2137	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2138}
2139EXPORT_SYMBOL(security_unix_stream_connect);
2140
2141int security_unix_may_send(struct socket *sock,  struct socket *other)
2142{
2143	return call_int_hook(unix_may_send, 0, sock, other);
2144}
2145EXPORT_SYMBOL(security_unix_may_send);
2146
2147int security_socket_create(int family, int type, int protocol, int kern)
2148{
2149	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2150}
2151
2152int security_socket_post_create(struct socket *sock, int family,
2153				int type, int protocol, int kern)
2154{
2155	return call_int_hook(socket_post_create, 0, sock, family, type,
2156						protocol, kern);
2157}
2158
2159int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2160{
2161	return call_int_hook(socket_socketpair, 0, socka, sockb);
2162}
2163EXPORT_SYMBOL(security_socket_socketpair);
2164
2165int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2166{
2167	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2168}
2169
2170int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2171{
2172	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2173}
2174
2175int security_socket_listen(struct socket *sock, int backlog)
2176{
2177	return call_int_hook(socket_listen, 0, sock, backlog);
2178}
2179
2180int security_socket_accept(struct socket *sock, struct socket *newsock)
2181{
2182	return call_int_hook(socket_accept, 0, sock, newsock);
2183}
2184
2185int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2186{
2187	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2188}
2189
2190int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2191			    int size, int flags)
2192{
2193	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2194}
2195
2196int security_socket_getsockname(struct socket *sock)
2197{
2198	return call_int_hook(socket_getsockname, 0, sock);
2199}
2200
2201int security_socket_getpeername(struct socket *sock)
2202{
2203	return call_int_hook(socket_getpeername, 0, sock);
2204}
2205
2206int security_socket_getsockopt(struct socket *sock, int level, int optname)
2207{
2208	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2209}
2210
2211int security_socket_setsockopt(struct socket *sock, int level, int optname)
2212{
2213	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2214}
2215
2216int security_socket_shutdown(struct socket *sock, int how)
2217{
2218	return call_int_hook(socket_shutdown, 0, sock, how);
2219}
2220
2221int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2222{
2223	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2224}
2225EXPORT_SYMBOL(security_sock_rcv_skb);
2226
2227int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2228				      int __user *optlen, unsigned len)
2229{
2230	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2231				optval, optlen, len);
2232}
2233
2234int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2235{
2236	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2237			     skb, secid);
2238}
2239EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2240
2241int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2242{
2243	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2244}
2245
2246void security_sk_free(struct sock *sk)
2247{
2248	call_void_hook(sk_free_security, sk);
2249}
2250
2251void security_sk_clone(const struct sock *sk, struct sock *newsk)
2252{
2253	call_void_hook(sk_clone_security, sk, newsk);
2254}
2255EXPORT_SYMBOL(security_sk_clone);
2256
2257void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2258{
2259	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2260}
2261EXPORT_SYMBOL(security_sk_classify_flow);
2262
2263void security_req_classify_flow(const struct request_sock *req,
2264				struct flowi_common *flic)
2265{
2266	call_void_hook(req_classify_flow, req, flic);
2267}
2268EXPORT_SYMBOL(security_req_classify_flow);
2269
2270void security_sock_graft(struct sock *sk, struct socket *parent)
2271{
2272	call_void_hook(sock_graft, sk, parent);
2273}
2274EXPORT_SYMBOL(security_sock_graft);
2275
2276int security_inet_conn_request(struct sock *sk,
2277			struct sk_buff *skb, struct request_sock *req)
2278{
2279	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2280}
2281EXPORT_SYMBOL(security_inet_conn_request);
2282
2283void security_inet_csk_clone(struct sock *newsk,
2284			const struct request_sock *req)
2285{
2286	call_void_hook(inet_csk_clone, newsk, req);
2287}
2288
2289void security_inet_conn_established(struct sock *sk,
2290			struct sk_buff *skb)
2291{
2292	call_void_hook(inet_conn_established, sk, skb);
2293}
2294EXPORT_SYMBOL(security_inet_conn_established);
2295
2296int security_secmark_relabel_packet(u32 secid)
2297{
2298	return call_int_hook(secmark_relabel_packet, 0, secid);
2299}
2300EXPORT_SYMBOL(security_secmark_relabel_packet);
2301
2302void security_secmark_refcount_inc(void)
2303{
2304	call_void_hook(secmark_refcount_inc);
2305}
2306EXPORT_SYMBOL(security_secmark_refcount_inc);
2307
2308void security_secmark_refcount_dec(void)
2309{
2310	call_void_hook(secmark_refcount_dec);
2311}
2312EXPORT_SYMBOL(security_secmark_refcount_dec);
2313
2314int security_tun_dev_alloc_security(void **security)
2315{
2316	return call_int_hook(tun_dev_alloc_security, 0, security);
2317}
2318EXPORT_SYMBOL(security_tun_dev_alloc_security);
2319
2320void security_tun_dev_free_security(void *security)
2321{
2322	call_void_hook(tun_dev_free_security, security);
2323}
2324EXPORT_SYMBOL(security_tun_dev_free_security);
2325
2326int security_tun_dev_create(void)
2327{
2328	return call_int_hook(tun_dev_create, 0);
2329}
2330EXPORT_SYMBOL(security_tun_dev_create);
2331
2332int security_tun_dev_attach_queue(void *security)
2333{
2334	return call_int_hook(tun_dev_attach_queue, 0, security);
2335}
2336EXPORT_SYMBOL(security_tun_dev_attach_queue);
2337
2338int security_tun_dev_attach(struct sock *sk, void *security)
2339{
2340	return call_int_hook(tun_dev_attach, 0, sk, security);
2341}
2342EXPORT_SYMBOL(security_tun_dev_attach);
2343
2344int security_tun_dev_open(void *security)
2345{
2346	return call_int_hook(tun_dev_open, 0, security);
2347}
2348EXPORT_SYMBOL(security_tun_dev_open);
2349
2350int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2351{
2352	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2353}
2354EXPORT_SYMBOL(security_sctp_assoc_request);
2355
2356int security_sctp_bind_connect(struct sock *sk, int optname,
2357			       struct sockaddr *address, int addrlen)
2358{
2359	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2360			     address, addrlen);
2361}
2362EXPORT_SYMBOL(security_sctp_bind_connect);
2363
2364void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2365			    struct sock *newsk)
2366{
2367	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2368}
2369EXPORT_SYMBOL(security_sctp_sk_clone);
2370
2371#endif	/* CONFIG_SECURITY_NETWORK */
2372
2373#ifdef CONFIG_SECURITY_INFINIBAND
2374
2375int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2376{
2377	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2378}
2379EXPORT_SYMBOL(security_ib_pkey_access);
2380
2381int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2382{
2383	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2384}
2385EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2386
2387int security_ib_alloc_security(void **sec)
2388{
2389	return call_int_hook(ib_alloc_security, 0, sec);
2390}
2391EXPORT_SYMBOL(security_ib_alloc_security);
2392
2393void security_ib_free_security(void *sec)
2394{
2395	call_void_hook(ib_free_security, sec);
2396}
2397EXPORT_SYMBOL(security_ib_free_security);
2398#endif	/* CONFIG_SECURITY_INFINIBAND */
2399
2400#ifdef CONFIG_SECURITY_NETWORK_XFRM
2401
2402int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2403			       struct xfrm_user_sec_ctx *sec_ctx,
2404			       gfp_t gfp)
2405{
2406	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2407}
2408EXPORT_SYMBOL(security_xfrm_policy_alloc);
2409
2410int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2411			      struct xfrm_sec_ctx **new_ctxp)
2412{
2413	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2414}
2415
2416void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2417{
2418	call_void_hook(xfrm_policy_free_security, ctx);
2419}
2420EXPORT_SYMBOL(security_xfrm_policy_free);
2421
2422int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2423{
2424	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2425}
2426
2427int security_xfrm_state_alloc(struct xfrm_state *x,
2428			      struct xfrm_user_sec_ctx *sec_ctx)
2429{
2430	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2431}
2432EXPORT_SYMBOL(security_xfrm_state_alloc);
2433
2434int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2435				      struct xfrm_sec_ctx *polsec, u32 secid)
2436{
2437	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2438}
2439
2440int security_xfrm_state_delete(struct xfrm_state *x)
2441{
2442	return call_int_hook(xfrm_state_delete_security, 0, x);
2443}
2444EXPORT_SYMBOL(security_xfrm_state_delete);
2445
2446void security_xfrm_state_free(struct xfrm_state *x)
2447{
2448	call_void_hook(xfrm_state_free_security, x);
2449}
2450
2451int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2452{
2453	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2454}
2455
2456int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2457				       struct xfrm_policy *xp,
2458				       const struct flowi_common *flic)
2459{
2460	struct security_hook_list *hp;
2461	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2462
2463	/*
2464	 * Since this function is expected to return 0 or 1, the judgment
2465	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2466	 * we can use the first LSM's judgment because currently only SELinux
2467	 * supplies this call.
2468	 *
2469	 * For speed optimization, we explicitly break the loop rather than
2470	 * using the macro
2471	 */
2472	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2473				list) {
2474		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2475		break;
2476	}
2477	return rc;
2478}
2479
2480int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2481{
2482	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2483}
2484
2485void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2486{
2487	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2488				0);
2489
2490	BUG_ON(rc);
2491}
2492EXPORT_SYMBOL(security_skb_classify_flow);
2493
2494#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2495
2496#ifdef CONFIG_KEYS
2497
2498int security_key_alloc(struct key *key, const struct cred *cred,
2499		       unsigned long flags)
2500{
2501	return call_int_hook(key_alloc, 0, key, cred, flags);
2502}
2503
2504void security_key_free(struct key *key)
2505{
2506	call_void_hook(key_free, key);
2507}
2508
2509int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2510			    enum key_need_perm need_perm)
2511{
2512	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2513}
2514
2515int security_key_getsecurity(struct key *key, char **_buffer)
2516{
2517	*_buffer = NULL;
2518	return call_int_hook(key_getsecurity, 0, key, _buffer);
2519}
2520
2521#endif	/* CONFIG_KEYS */
2522
2523#ifdef CONFIG_AUDIT
2524
2525int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2526{
2527	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2528}
2529
2530int security_audit_rule_known(struct audit_krule *krule)
2531{
2532	return call_int_hook(audit_rule_known, 0, krule);
2533}
2534
2535void security_audit_rule_free(void *lsmrule)
2536{
2537	call_void_hook(audit_rule_free, lsmrule);
2538}
2539
2540int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2541{
2542	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2543}
2544#endif /* CONFIG_AUDIT */
2545
2546#ifdef CONFIG_BPF_SYSCALL
2547int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2548{
2549	return call_int_hook(bpf, 0, cmd, attr, size);
2550}
2551int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2552{
2553	return call_int_hook(bpf_map, 0, map, fmode);
2554}
2555int security_bpf_prog(struct bpf_prog *prog)
2556{
2557	return call_int_hook(bpf_prog, 0, prog);
2558}
2559int security_bpf_map_alloc(struct bpf_map *map)
2560{
2561	return call_int_hook(bpf_map_alloc_security, 0, map);
2562}
2563int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2564{
2565	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2566}
2567void security_bpf_map_free(struct bpf_map *map)
2568{
2569	call_void_hook(bpf_map_free_security, map);
2570}
2571void security_bpf_prog_free(struct bpf_prog_aux *aux)
2572{
2573	call_void_hook(bpf_prog_free_security, aux);
2574}
2575#endif /* CONFIG_BPF_SYSCALL */
2576
2577int security_locked_down(enum lockdown_reason what)
2578{
2579	return call_int_hook(locked_down, 0, what);
2580}
2581EXPORT_SYMBOL(security_locked_down);
2582
2583#ifdef CONFIG_PERF_EVENTS
2584int security_perf_event_open(struct perf_event_attr *attr, int type)
2585{
2586	return call_int_hook(perf_event_open, 0, attr, type);
2587}
2588
2589int security_perf_event_alloc(struct perf_event *event)
2590{
2591	return call_int_hook(perf_event_alloc, 0, event);
2592}
2593
2594void security_perf_event_free(struct perf_event *event)
2595{
2596	call_void_hook(perf_event_free, event);
2597}
2598
2599int security_perf_event_read(struct perf_event *event)
2600{
2601	return call_int_hook(perf_event_read, 0, event);
2602}
2603
2604int security_perf_event_write(struct perf_event *event)
2605{
2606	return call_int_hook(perf_event_write, 0, event);
2607}
2608#endif /* CONFIG_PERF_EVENTS */
2609
2610#ifdef CONFIG_SECURITY_XPM
2611int security_mmap_region(struct vm_area_struct *vma)
2612{
2613	return call_int_hook(mmap_region, 0, vma);
2614}
2615#endif
2616