1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010 IBM Corporation
4 *
5 * Author:
6 * David Safford <safford@us.ibm.com>
7 *
8 * See Documentation/security/keys/trusted-encrypted.rst
9 */
10
11#include <crypto/hash_info.h>
12#include <linux/uaccess.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/parser.h>
17#include <linux/string.h>
18#include <linux/err.h>
19#include <keys/user-type.h>
20#include <keys/trusted-type.h>
21#include <linux/key-type.h>
22#include <linux/rcupdate.h>
23#include <linux/crypto.h>
24#include <crypto/hash.h>
25#include <crypto/sha.h>
26#include <linux/capability.h>
27#include <linux/tpm.h>
28#include <linux/tpm_command.h>
29
30#include <keys/trusted_tpm.h>
31
32static const char hmac_alg[] = "hmac(sha1)";
33static const char hash_alg[] = "sha1";
34static struct tpm_chip *chip;
35static struct tpm_digest *digests;
36
37struct sdesc {
38	struct shash_desc shash;
39	char ctx[];
40};
41
42static struct crypto_shash *hashalg;
43static struct crypto_shash *hmacalg;
44
45static struct sdesc *init_sdesc(struct crypto_shash *alg)
46{
47	struct sdesc *sdesc;
48	int size;
49
50	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51	sdesc = kmalloc(size, GFP_KERNEL);
52	if (!sdesc)
53		return ERR_PTR(-ENOMEM);
54	sdesc->shash.tfm = alg;
55	return sdesc;
56}
57
58static int TSS_sha1(const unsigned char *data, unsigned int datalen,
59		    unsigned char *digest)
60{
61	struct sdesc *sdesc;
62	int ret;
63
64	sdesc = init_sdesc(hashalg);
65	if (IS_ERR(sdesc)) {
66		pr_info("trusted_key: can't alloc %s\n", hash_alg);
67		return PTR_ERR(sdesc);
68	}
69
70	ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
71	kfree_sensitive(sdesc);
72	return ret;
73}
74
75static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
76		       unsigned int keylen, ...)
77{
78	struct sdesc *sdesc;
79	va_list argp;
80	unsigned int dlen;
81	unsigned char *data;
82	int ret;
83
84	sdesc = init_sdesc(hmacalg);
85	if (IS_ERR(sdesc)) {
86		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
87		return PTR_ERR(sdesc);
88	}
89
90	ret = crypto_shash_setkey(hmacalg, key, keylen);
91	if (ret < 0)
92		goto out;
93	ret = crypto_shash_init(&sdesc->shash);
94	if (ret < 0)
95		goto out;
96
97	va_start(argp, keylen);
98	for (;;) {
99		dlen = va_arg(argp, unsigned int);
100		if (dlen == 0)
101			break;
102		data = va_arg(argp, unsigned char *);
103		if (data == NULL) {
104			ret = -EINVAL;
105			break;
106		}
107		ret = crypto_shash_update(&sdesc->shash, data, dlen);
108		if (ret < 0)
109			break;
110	}
111	va_end(argp);
112	if (!ret)
113		ret = crypto_shash_final(&sdesc->shash, digest);
114out:
115	kfree_sensitive(sdesc);
116	return ret;
117}
118
119/*
120 * calculate authorization info fields to send to TPM
121 */
122int TSS_authhmac(unsigned char *digest, const unsigned char *key,
123			unsigned int keylen, unsigned char *h1,
124			unsigned char *h2, unsigned int h3, ...)
125{
126	unsigned char paramdigest[SHA1_DIGEST_SIZE];
127	struct sdesc *sdesc;
128	unsigned int dlen;
129	unsigned char *data;
130	unsigned char c;
131	int ret;
132	va_list argp;
133
134	if (!chip)
135		return -ENODEV;
136
137	sdesc = init_sdesc(hashalg);
138	if (IS_ERR(sdesc)) {
139		pr_info("trusted_key: can't alloc %s\n", hash_alg);
140		return PTR_ERR(sdesc);
141	}
142
143	c = !!h3;
144	ret = crypto_shash_init(&sdesc->shash);
145	if (ret < 0)
146		goto out;
147	va_start(argp, h3);
148	for (;;) {
149		dlen = va_arg(argp, unsigned int);
150		if (dlen == 0)
151			break;
152		data = va_arg(argp, unsigned char *);
153		if (!data) {
154			ret = -EINVAL;
155			break;
156		}
157		ret = crypto_shash_update(&sdesc->shash, data, dlen);
158		if (ret < 0)
159			break;
160	}
161	va_end(argp);
162	if (!ret)
163		ret = crypto_shash_final(&sdesc->shash, paramdigest);
164	if (!ret)
165		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
166				  paramdigest, TPM_NONCE_SIZE, h1,
167				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
168out:
169	kfree_sensitive(sdesc);
170	return ret;
171}
172EXPORT_SYMBOL_GPL(TSS_authhmac);
173
174/*
175 * verify the AUTH1_COMMAND (Seal) result from TPM
176 */
177int TSS_checkhmac1(unsigned char *buffer,
178			  const uint32_t command,
179			  const unsigned char *ononce,
180			  const unsigned char *key,
181			  unsigned int keylen, ...)
182{
183	uint32_t bufsize;
184	uint16_t tag;
185	uint32_t ordinal;
186	uint32_t result;
187	unsigned char *enonce;
188	unsigned char *continueflag;
189	unsigned char *authdata;
190	unsigned char testhmac[SHA1_DIGEST_SIZE];
191	unsigned char paramdigest[SHA1_DIGEST_SIZE];
192	struct sdesc *sdesc;
193	unsigned int dlen;
194	unsigned int dpos;
195	va_list argp;
196	int ret;
197
198	if (!chip)
199		return -ENODEV;
200
201	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
202	tag = LOAD16(buffer, 0);
203	ordinal = command;
204	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
205	if (tag == TPM_TAG_RSP_COMMAND)
206		return 0;
207	if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
208		return -EINVAL;
209	authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
210	continueflag = authdata - 1;
211	enonce = continueflag - TPM_NONCE_SIZE;
212
213	sdesc = init_sdesc(hashalg);
214	if (IS_ERR(sdesc)) {
215		pr_info("trusted_key: can't alloc %s\n", hash_alg);
216		return PTR_ERR(sdesc);
217	}
218	ret = crypto_shash_init(&sdesc->shash);
219	if (ret < 0)
220		goto out;
221	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
222				  sizeof result);
223	if (ret < 0)
224		goto out;
225	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
226				  sizeof ordinal);
227	if (ret < 0)
228		goto out;
229	va_start(argp, keylen);
230	for (;;) {
231		dlen = va_arg(argp, unsigned int);
232		if (dlen == 0)
233			break;
234		dpos = va_arg(argp, unsigned int);
235		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
236		if (ret < 0)
237			break;
238	}
239	va_end(argp);
240	if (!ret)
241		ret = crypto_shash_final(&sdesc->shash, paramdigest);
242	if (ret < 0)
243		goto out;
244
245	ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
246			  TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
247			  1, continueflag, 0, 0);
248	if (ret < 0)
249		goto out;
250
251	if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
252		ret = -EINVAL;
253out:
254	kfree_sensitive(sdesc);
255	return ret;
256}
257EXPORT_SYMBOL_GPL(TSS_checkhmac1);
258
259/*
260 * verify the AUTH2_COMMAND (unseal) result from TPM
261 */
262static int TSS_checkhmac2(unsigned char *buffer,
263			  const uint32_t command,
264			  const unsigned char *ononce,
265			  const unsigned char *key1,
266			  unsigned int keylen1,
267			  const unsigned char *key2,
268			  unsigned int keylen2, ...)
269{
270	uint32_t bufsize;
271	uint16_t tag;
272	uint32_t ordinal;
273	uint32_t result;
274	unsigned char *enonce1;
275	unsigned char *continueflag1;
276	unsigned char *authdata1;
277	unsigned char *enonce2;
278	unsigned char *continueflag2;
279	unsigned char *authdata2;
280	unsigned char testhmac1[SHA1_DIGEST_SIZE];
281	unsigned char testhmac2[SHA1_DIGEST_SIZE];
282	unsigned char paramdigest[SHA1_DIGEST_SIZE];
283	struct sdesc *sdesc;
284	unsigned int dlen;
285	unsigned int dpos;
286	va_list argp;
287	int ret;
288
289	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
290	tag = LOAD16(buffer, 0);
291	ordinal = command;
292	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
293
294	if (tag == TPM_TAG_RSP_COMMAND)
295		return 0;
296	if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
297		return -EINVAL;
298	authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
299			+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
300	authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
301	continueflag1 = authdata1 - 1;
302	continueflag2 = authdata2 - 1;
303	enonce1 = continueflag1 - TPM_NONCE_SIZE;
304	enonce2 = continueflag2 - TPM_NONCE_SIZE;
305
306	sdesc = init_sdesc(hashalg);
307	if (IS_ERR(sdesc)) {
308		pr_info("trusted_key: can't alloc %s\n", hash_alg);
309		return PTR_ERR(sdesc);
310	}
311	ret = crypto_shash_init(&sdesc->shash);
312	if (ret < 0)
313		goto out;
314	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
315				  sizeof result);
316	if (ret < 0)
317		goto out;
318	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
319				  sizeof ordinal);
320	if (ret < 0)
321		goto out;
322
323	va_start(argp, keylen2);
324	for (;;) {
325		dlen = va_arg(argp, unsigned int);
326		if (dlen == 0)
327			break;
328		dpos = va_arg(argp, unsigned int);
329		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
330		if (ret < 0)
331			break;
332	}
333	va_end(argp);
334	if (!ret)
335		ret = crypto_shash_final(&sdesc->shash, paramdigest);
336	if (ret < 0)
337		goto out;
338
339	ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
340			  paramdigest, TPM_NONCE_SIZE, enonce1,
341			  TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
342	if (ret < 0)
343		goto out;
344	if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
345		ret = -EINVAL;
346		goto out;
347	}
348	ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
349			  paramdigest, TPM_NONCE_SIZE, enonce2,
350			  TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
351	if (ret < 0)
352		goto out;
353	if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
354		ret = -EINVAL;
355out:
356	kfree_sensitive(sdesc);
357	return ret;
358}
359
360/*
361 * For key specific tpm requests, we will generate and send our
362 * own TPM command packets using the drivers send function.
363 */
364int trusted_tpm_send(unsigned char *cmd, size_t buflen)
365{
366	int rc;
367
368	if (!chip)
369		return -ENODEV;
370
371	dump_tpm_buf(cmd);
372	rc = tpm_send(chip, cmd, buflen);
373	dump_tpm_buf(cmd);
374	if (rc > 0)
375		/* Can't return positive return codes values to keyctl */
376		rc = -EPERM;
377	return rc;
378}
379EXPORT_SYMBOL_GPL(trusted_tpm_send);
380
381/*
382 * Lock a trusted key, by extending a selected PCR.
383 *
384 * Prevents a trusted key that is sealed to PCRs from being accessed.
385 * This uses the tpm driver's extend function.
386 */
387static int pcrlock(const int pcrnum)
388{
389	if (!capable(CAP_SYS_ADMIN))
390		return -EPERM;
391
392	return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0;
393}
394
395/*
396 * Create an object specific authorisation protocol (OSAP) session
397 */
398static int osap(struct tpm_buf *tb, struct osapsess *s,
399		const unsigned char *key, uint16_t type, uint32_t handle)
400{
401	unsigned char enonce[TPM_NONCE_SIZE];
402	unsigned char ononce[TPM_NONCE_SIZE];
403	int ret;
404
405	ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE);
406	if (ret < 0)
407		return ret;
408
409	if (ret != TPM_NONCE_SIZE)
410		return -EIO;
411
412	tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OSAP);
413	tpm_buf_append_u16(tb, type);
414	tpm_buf_append_u32(tb, handle);
415	tpm_buf_append(tb, ononce, TPM_NONCE_SIZE);
416
417	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
418	if (ret < 0)
419		return ret;
420
421	s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
422	memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
423	       TPM_NONCE_SIZE);
424	memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
425				  TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
426	return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
427			   enonce, TPM_NONCE_SIZE, ononce, 0, 0);
428}
429
430/*
431 * Create an object independent authorisation protocol (oiap) session
432 */
433int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
434{
435	int ret;
436
437	if (!chip)
438		return -ENODEV;
439
440	tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP);
441	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
442	if (ret < 0)
443		return ret;
444
445	*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
446	memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
447	       TPM_NONCE_SIZE);
448	return 0;
449}
450EXPORT_SYMBOL_GPL(oiap);
451
452struct tpm_digests {
453	unsigned char encauth[SHA1_DIGEST_SIZE];
454	unsigned char pubauth[SHA1_DIGEST_SIZE];
455	unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
456	unsigned char xorhash[SHA1_DIGEST_SIZE];
457	unsigned char nonceodd[TPM_NONCE_SIZE];
458};
459
460/*
461 * Have the TPM seal(encrypt) the trusted key, possibly based on
462 * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
463 */
464static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
465		    uint32_t keyhandle, const unsigned char *keyauth,
466		    const unsigned char *data, uint32_t datalen,
467		    unsigned char *blob, uint32_t *bloblen,
468		    const unsigned char *blobauth,
469		    const unsigned char *pcrinfo, uint32_t pcrinfosize)
470{
471	struct osapsess sess;
472	struct tpm_digests *td;
473	unsigned char cont;
474	uint32_t ordinal;
475	uint32_t pcrsize;
476	uint32_t datsize;
477	int sealinfosize;
478	int encdatasize;
479	int storedsize;
480	int ret;
481	int i;
482
483	/* alloc some work space for all the hashes */
484	td = kmalloc(sizeof *td, GFP_KERNEL);
485	if (!td)
486		return -ENOMEM;
487
488	/* get session for sealing key */
489	ret = osap(tb, &sess, keyauth, keytype, keyhandle);
490	if (ret < 0)
491		goto out;
492	dump_sess(&sess);
493
494	/* calculate encrypted authorization value */
495	memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
496	memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
497	ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
498	if (ret < 0)
499		goto out;
500
501	ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE);
502	if (ret < 0)
503		goto out;
504
505	if (ret != TPM_NONCE_SIZE) {
506		ret = -EIO;
507		goto out;
508	}
509
510	ordinal = htonl(TPM_ORD_SEAL);
511	datsize = htonl(datalen);
512	pcrsize = htonl(pcrinfosize);
513	cont = 0;
514
515	/* encrypt data authorization key */
516	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
517		td->encauth[i] = td->xorhash[i] ^ blobauth[i];
518
519	/* calculate authorization HMAC value */
520	if (pcrinfosize == 0) {
521		/* no pcr info specified */
522		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
523				   sess.enonce, td->nonceodd, cont,
524				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
525				   td->encauth, sizeof(uint32_t), &pcrsize,
526				   sizeof(uint32_t), &datsize, datalen, data, 0,
527				   0);
528	} else {
529		/* pcr info specified */
530		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
531				   sess.enonce, td->nonceodd, cont,
532				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
533				   td->encauth, sizeof(uint32_t), &pcrsize,
534				   pcrinfosize, pcrinfo, sizeof(uint32_t),
535				   &datsize, datalen, data, 0, 0);
536	}
537	if (ret < 0)
538		goto out;
539
540	/* build and send the TPM request packet */
541	tpm_buf_reset(tb, TPM_TAG_RQU_AUTH1_COMMAND, TPM_ORD_SEAL);
542	tpm_buf_append_u32(tb, keyhandle);
543	tpm_buf_append(tb, td->encauth, SHA1_DIGEST_SIZE);
544	tpm_buf_append_u32(tb, pcrinfosize);
545	tpm_buf_append(tb, pcrinfo, pcrinfosize);
546	tpm_buf_append_u32(tb, datalen);
547	tpm_buf_append(tb, data, datalen);
548	tpm_buf_append_u32(tb, sess.handle);
549	tpm_buf_append(tb, td->nonceodd, TPM_NONCE_SIZE);
550	tpm_buf_append_u8(tb, cont);
551	tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE);
552
553	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
554	if (ret < 0)
555		goto out;
556
557	/* calculate the size of the returned Blob */
558	sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
559	encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
560			     sizeof(uint32_t) + sealinfosize);
561	storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
562	    sizeof(uint32_t) + encdatasize;
563
564	/* check the HMAC in the response */
565	ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
566			     SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
567			     0);
568
569	/* copy the returned blob to caller */
570	if (!ret) {
571		memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
572		*bloblen = storedsize;
573	}
574out:
575	kfree_sensitive(td);
576	return ret;
577}
578
579/*
580 * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
581 */
582static int tpm_unseal(struct tpm_buf *tb,
583		      uint32_t keyhandle, const unsigned char *keyauth,
584		      const unsigned char *blob, int bloblen,
585		      const unsigned char *blobauth,
586		      unsigned char *data, unsigned int *datalen)
587{
588	unsigned char nonceodd[TPM_NONCE_SIZE];
589	unsigned char enonce1[TPM_NONCE_SIZE];
590	unsigned char enonce2[TPM_NONCE_SIZE];
591	unsigned char authdata1[SHA1_DIGEST_SIZE];
592	unsigned char authdata2[SHA1_DIGEST_SIZE];
593	uint32_t authhandle1 = 0;
594	uint32_t authhandle2 = 0;
595	unsigned char cont = 0;
596	uint32_t ordinal;
597	int ret;
598
599	/* sessions for unsealing key and data */
600	ret = oiap(tb, &authhandle1, enonce1);
601	if (ret < 0) {
602		pr_info("trusted_key: oiap failed (%d)\n", ret);
603		return ret;
604	}
605	ret = oiap(tb, &authhandle2, enonce2);
606	if (ret < 0) {
607		pr_info("trusted_key: oiap failed (%d)\n", ret);
608		return ret;
609	}
610
611	ordinal = htonl(TPM_ORD_UNSEAL);
612	ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE);
613	if (ret < 0)
614		return ret;
615
616	if (ret != TPM_NONCE_SIZE) {
617		pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
618		return -EIO;
619	}
620	ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
621			   enonce1, nonceodd, cont, sizeof(uint32_t),
622			   &ordinal, bloblen, blob, 0, 0);
623	if (ret < 0)
624		return ret;
625	ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
626			   enonce2, nonceodd, cont, sizeof(uint32_t),
627			   &ordinal, bloblen, blob, 0, 0);
628	if (ret < 0)
629		return ret;
630
631	/* build and send TPM request packet */
632	tpm_buf_reset(tb, TPM_TAG_RQU_AUTH2_COMMAND, TPM_ORD_UNSEAL);
633	tpm_buf_append_u32(tb, keyhandle);
634	tpm_buf_append(tb, blob, bloblen);
635	tpm_buf_append_u32(tb, authhandle1);
636	tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
637	tpm_buf_append_u8(tb, cont);
638	tpm_buf_append(tb, authdata1, SHA1_DIGEST_SIZE);
639	tpm_buf_append_u32(tb, authhandle2);
640	tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
641	tpm_buf_append_u8(tb, cont);
642	tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE);
643
644	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
645	if (ret < 0) {
646		pr_info("trusted_key: authhmac failed (%d)\n", ret);
647		return ret;
648	}
649
650	*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
651	ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
652			     keyauth, SHA1_DIGEST_SIZE,
653			     blobauth, SHA1_DIGEST_SIZE,
654			     sizeof(uint32_t), TPM_DATA_OFFSET,
655			     *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
656			     0);
657	if (ret < 0) {
658		pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
659		return ret;
660	}
661	memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
662	return 0;
663}
664
665/*
666 * Have the TPM seal(encrypt) the symmetric key
667 */
668static int key_seal(struct trusted_key_payload *p,
669		    struct trusted_key_options *o)
670{
671	struct tpm_buf tb;
672	int ret;
673
674	ret = tpm_buf_init(&tb, 0, 0);
675	if (ret)
676		return ret;
677
678	/* include migratable flag at end of sealed key */
679	p->key[p->key_len] = p->migratable;
680
681	ret = tpm_seal(&tb, o->keytype, o->keyhandle, o->keyauth,
682		       p->key, p->key_len + 1, p->blob, &p->blob_len,
683		       o->blobauth, o->pcrinfo, o->pcrinfo_len);
684	if (ret < 0)
685		pr_info("trusted_key: srkseal failed (%d)\n", ret);
686
687	tpm_buf_destroy(&tb);
688	return ret;
689}
690
691/*
692 * Have the TPM unseal(decrypt) the symmetric key
693 */
694static int key_unseal(struct trusted_key_payload *p,
695		      struct trusted_key_options *o)
696{
697	struct tpm_buf tb;
698	int ret;
699
700	ret = tpm_buf_init(&tb, 0, 0);
701	if (ret)
702		return ret;
703
704	ret = tpm_unseal(&tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
705			 o->blobauth, p->key, &p->key_len);
706	if (ret < 0)
707		pr_info("trusted_key: srkunseal failed (%d)\n", ret);
708	else
709		/* pull migratable flag out of sealed key */
710		p->migratable = p->key[--p->key_len];
711
712	tpm_buf_destroy(&tb);
713	return ret;
714}
715
716enum {
717	Opt_err,
718	Opt_new, Opt_load, Opt_update,
719	Opt_keyhandle, Opt_keyauth, Opt_blobauth,
720	Opt_pcrinfo, Opt_pcrlock, Opt_migratable,
721	Opt_hash,
722	Opt_policydigest,
723	Opt_policyhandle,
724};
725
726static const match_table_t key_tokens = {
727	{Opt_new, "new"},
728	{Opt_load, "load"},
729	{Opt_update, "update"},
730	{Opt_keyhandle, "keyhandle=%s"},
731	{Opt_keyauth, "keyauth=%s"},
732	{Opt_blobauth, "blobauth=%s"},
733	{Opt_pcrinfo, "pcrinfo=%s"},
734	{Opt_pcrlock, "pcrlock=%s"},
735	{Opt_migratable, "migratable=%s"},
736	{Opt_hash, "hash=%s"},
737	{Opt_policydigest, "policydigest=%s"},
738	{Opt_policyhandle, "policyhandle=%s"},
739	{Opt_err, NULL}
740};
741
742/* can have zero or more token= options */
743static int getoptions(char *c, struct trusted_key_payload *pay,
744		      struct trusted_key_options *opt)
745{
746	substring_t args[MAX_OPT_ARGS];
747	char *p = c;
748	int token;
749	int res;
750	unsigned long handle;
751	unsigned long lock;
752	unsigned long token_mask = 0;
753	unsigned int digest_len;
754	int i;
755	int tpm2;
756
757	tpm2 = tpm_is_tpm2(chip);
758	if (tpm2 < 0)
759		return tpm2;
760
761	opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1;
762
763	while ((p = strsep(&c, " \t"))) {
764		if (*p == '\0' || *p == ' ' || *p == '\t')
765			continue;
766		token = match_token(p, key_tokens, args);
767		if (test_and_set_bit(token, &token_mask))
768			return -EINVAL;
769
770		switch (token) {
771		case Opt_pcrinfo:
772			opt->pcrinfo_len = strlen(args[0].from) / 2;
773			if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
774				return -EINVAL;
775			res = hex2bin(opt->pcrinfo, args[0].from,
776				      opt->pcrinfo_len);
777			if (res < 0)
778				return -EINVAL;
779			break;
780		case Opt_keyhandle:
781			res = kstrtoul(args[0].from, 16, &handle);
782			if (res < 0)
783				return -EINVAL;
784			opt->keytype = SEAL_keytype;
785			opt->keyhandle = handle;
786			break;
787		case Opt_keyauth:
788			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
789				return -EINVAL;
790			res = hex2bin(opt->keyauth, args[0].from,
791				      SHA1_DIGEST_SIZE);
792			if (res < 0)
793				return -EINVAL;
794			break;
795		case Opt_blobauth:
796			/*
797			 * TPM 1.2 authorizations are sha1 hashes passed in as
798			 * hex strings.  TPM 2.0 authorizations are simple
799			 * passwords (although it can take a hash as well)
800			 */
801			opt->blobauth_len = strlen(args[0].from);
802
803			if (opt->blobauth_len == 2 * TPM_DIGEST_SIZE) {
804				res = hex2bin(opt->blobauth, args[0].from,
805					      TPM_DIGEST_SIZE);
806				if (res < 0)
807					return -EINVAL;
808
809				opt->blobauth_len = TPM_DIGEST_SIZE;
810				break;
811			}
812
813			if (tpm2 && opt->blobauth_len <= sizeof(opt->blobauth)) {
814				memcpy(opt->blobauth, args[0].from,
815				       opt->blobauth_len);
816				break;
817			}
818
819			return -EINVAL;
820
821			break;
822
823		case Opt_migratable:
824			if (*args[0].from == '0')
825				pay->migratable = 0;
826			else if (*args[0].from != '1')
827				return -EINVAL;
828			break;
829		case Opt_pcrlock:
830			res = kstrtoul(args[0].from, 10, &lock);
831			if (res < 0)
832				return -EINVAL;
833			opt->pcrlock = lock;
834			break;
835		case Opt_hash:
836			if (test_bit(Opt_policydigest, &token_mask))
837				return -EINVAL;
838			for (i = 0; i < HASH_ALGO__LAST; i++) {
839				if (!strcmp(args[0].from, hash_algo_name[i])) {
840					opt->hash = i;
841					break;
842				}
843			}
844			if (i == HASH_ALGO__LAST)
845				return -EINVAL;
846			if  (!tpm2 && i != HASH_ALGO_SHA1) {
847				pr_info("trusted_key: TPM 1.x only supports SHA-1.\n");
848				return -EINVAL;
849			}
850			break;
851		case Opt_policydigest:
852			digest_len = hash_digest_size[opt->hash];
853			if (!tpm2 || strlen(args[0].from) != (2 * digest_len))
854				return -EINVAL;
855			res = hex2bin(opt->policydigest, args[0].from,
856				      digest_len);
857			if (res < 0)
858				return -EINVAL;
859			opt->policydigest_len = digest_len;
860			break;
861		case Opt_policyhandle:
862			if (!tpm2)
863				return -EINVAL;
864			res = kstrtoul(args[0].from, 16, &handle);
865			if (res < 0)
866				return -EINVAL;
867			opt->policyhandle = handle;
868			break;
869		default:
870			return -EINVAL;
871		}
872	}
873	return 0;
874}
875
876/*
877 * datablob_parse - parse the keyctl data and fill in the
878 * 		    payload and options structures
879 *
880 * On success returns 0, otherwise -EINVAL.
881 */
882static int datablob_parse(char *datablob, struct trusted_key_payload *p,
883			  struct trusted_key_options *o)
884{
885	substring_t args[MAX_OPT_ARGS];
886	long keylen;
887	int ret = -EINVAL;
888	int key_cmd;
889	char *c;
890
891	/* main command */
892	c = strsep(&datablob, " \t");
893	if (!c)
894		return -EINVAL;
895	key_cmd = match_token(c, key_tokens, args);
896	switch (key_cmd) {
897	case Opt_new:
898		/* first argument is key size */
899		c = strsep(&datablob, " \t");
900		if (!c)
901			return -EINVAL;
902		ret = kstrtol(c, 10, &keylen);
903		if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
904			return -EINVAL;
905		p->key_len = keylen;
906		ret = getoptions(datablob, p, o);
907		if (ret < 0)
908			return ret;
909		ret = Opt_new;
910		break;
911	case Opt_load:
912		/* first argument is sealed blob */
913		c = strsep(&datablob, " \t");
914		if (!c)
915			return -EINVAL;
916		p->blob_len = strlen(c) / 2;
917		if (p->blob_len > MAX_BLOB_SIZE)
918			return -EINVAL;
919		ret = hex2bin(p->blob, c, p->blob_len);
920		if (ret < 0)
921			return -EINVAL;
922		ret = getoptions(datablob, p, o);
923		if (ret < 0)
924			return ret;
925		ret = Opt_load;
926		break;
927	case Opt_update:
928		/* all arguments are options */
929		ret = getoptions(datablob, p, o);
930		if (ret < 0)
931			return ret;
932		ret = Opt_update;
933		break;
934	case Opt_err:
935		return -EINVAL;
936		break;
937	}
938	return ret;
939}
940
941static struct trusted_key_options *trusted_options_alloc(void)
942{
943	struct trusted_key_options *options;
944	int tpm2;
945
946	tpm2 = tpm_is_tpm2(chip);
947	if (tpm2 < 0)
948		return NULL;
949
950	options = kzalloc(sizeof *options, GFP_KERNEL);
951	if (options) {
952		/* set any non-zero defaults */
953		options->keytype = SRK_keytype;
954
955		if (!tpm2)
956			options->keyhandle = SRKHANDLE;
957	}
958	return options;
959}
960
961static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
962{
963	struct trusted_key_payload *p = NULL;
964	int ret;
965
966	ret = key_payload_reserve(key, sizeof *p);
967	if (ret < 0)
968		return p;
969	p = kzalloc(sizeof *p, GFP_KERNEL);
970	if (p)
971		p->migratable = 1; /* migratable by default */
972	return p;
973}
974
975/*
976 * trusted_instantiate - create a new trusted key
977 *
978 * Unseal an existing trusted blob or, for a new key, get a
979 * random key, then seal and create a trusted key-type key,
980 * adding it to the specified keyring.
981 *
982 * On success, return 0. Otherwise return errno.
983 */
984static int trusted_instantiate(struct key *key,
985			       struct key_preparsed_payload *prep)
986{
987	struct trusted_key_payload *payload = NULL;
988	struct trusted_key_options *options = NULL;
989	size_t datalen = prep->datalen;
990	char *datablob;
991	int ret = 0;
992	int key_cmd;
993	size_t key_len;
994	int tpm2;
995
996	tpm2 = tpm_is_tpm2(chip);
997	if (tpm2 < 0)
998		return tpm2;
999
1000	if (datalen <= 0 || datalen > 32767 || !prep->data)
1001		return -EINVAL;
1002
1003	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1004	if (!datablob)
1005		return -ENOMEM;
1006	memcpy(datablob, prep->data, datalen);
1007	datablob[datalen] = '\0';
1008
1009	options = trusted_options_alloc();
1010	if (!options) {
1011		ret = -ENOMEM;
1012		goto out;
1013	}
1014	payload = trusted_payload_alloc(key);
1015	if (!payload) {
1016		ret = -ENOMEM;
1017		goto out;
1018	}
1019
1020	key_cmd = datablob_parse(datablob, payload, options);
1021	if (key_cmd < 0) {
1022		ret = key_cmd;
1023		goto out;
1024	}
1025
1026	if (!options->keyhandle) {
1027		ret = -EINVAL;
1028		goto out;
1029	}
1030
1031	dump_payload(payload);
1032	dump_options(options);
1033
1034	switch (key_cmd) {
1035	case Opt_load:
1036		if (tpm2)
1037			ret = tpm2_unseal_trusted(chip, payload, options);
1038		else
1039			ret = key_unseal(payload, options);
1040		dump_payload(payload);
1041		dump_options(options);
1042		if (ret < 0)
1043			pr_info("trusted_key: key_unseal failed (%d)\n", ret);
1044		break;
1045	case Opt_new:
1046		key_len = payload->key_len;
1047		ret = tpm_get_random(chip, payload->key, key_len);
1048		if (ret < 0)
1049			goto out;
1050
1051		if (ret != key_len) {
1052			pr_info("trusted_key: key_create failed (%d)\n", ret);
1053			ret = -EIO;
1054			goto out;
1055		}
1056		if (tpm2)
1057			ret = tpm2_seal_trusted(chip, payload, options);
1058		else
1059			ret = key_seal(payload, options);
1060		if (ret < 0)
1061			pr_info("trusted_key: key_seal failed (%d)\n", ret);
1062		break;
1063	default:
1064		ret = -EINVAL;
1065		goto out;
1066	}
1067	if (!ret && options->pcrlock)
1068		ret = pcrlock(options->pcrlock);
1069out:
1070	kfree_sensitive(datablob);
1071	kfree_sensitive(options);
1072	if (!ret)
1073		rcu_assign_keypointer(key, payload);
1074	else
1075		kfree_sensitive(payload);
1076	return ret;
1077}
1078
1079static void trusted_rcu_free(struct rcu_head *rcu)
1080{
1081	struct trusted_key_payload *p;
1082
1083	p = container_of(rcu, struct trusted_key_payload, rcu);
1084	kfree_sensitive(p);
1085}
1086
1087/*
1088 * trusted_update - reseal an existing key with new PCR values
1089 */
1090static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
1091{
1092	struct trusted_key_payload *p;
1093	struct trusted_key_payload *new_p;
1094	struct trusted_key_options *new_o;
1095	size_t datalen = prep->datalen;
1096	char *datablob;
1097	int ret = 0;
1098
1099	if (key_is_negative(key))
1100		return -ENOKEY;
1101	p = key->payload.data[0];
1102	if (!p->migratable)
1103		return -EPERM;
1104	if (datalen <= 0 || datalen > 32767 || !prep->data)
1105		return -EINVAL;
1106
1107	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1108	if (!datablob)
1109		return -ENOMEM;
1110	new_o = trusted_options_alloc();
1111	if (!new_o) {
1112		ret = -ENOMEM;
1113		goto out;
1114	}
1115	new_p = trusted_payload_alloc(key);
1116	if (!new_p) {
1117		ret = -ENOMEM;
1118		goto out;
1119	}
1120
1121	memcpy(datablob, prep->data, datalen);
1122	datablob[datalen] = '\0';
1123	ret = datablob_parse(datablob, new_p, new_o);
1124	if (ret != Opt_update) {
1125		ret = -EINVAL;
1126		kfree_sensitive(new_p);
1127		goto out;
1128	}
1129
1130	if (!new_o->keyhandle) {
1131		ret = -EINVAL;
1132		kfree_sensitive(new_p);
1133		goto out;
1134	}
1135
1136	/* copy old key values, and reseal with new pcrs */
1137	new_p->migratable = p->migratable;
1138	new_p->key_len = p->key_len;
1139	memcpy(new_p->key, p->key, p->key_len);
1140	dump_payload(p);
1141	dump_payload(new_p);
1142
1143	ret = key_seal(new_p, new_o);
1144	if (ret < 0) {
1145		pr_info("trusted_key: key_seal failed (%d)\n", ret);
1146		kfree_sensitive(new_p);
1147		goto out;
1148	}
1149	if (new_o->pcrlock) {
1150		ret = pcrlock(new_o->pcrlock);
1151		if (ret < 0) {
1152			pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1153			kfree_sensitive(new_p);
1154			goto out;
1155		}
1156	}
1157	rcu_assign_keypointer(key, new_p);
1158	call_rcu(&p->rcu, trusted_rcu_free);
1159out:
1160	kfree_sensitive(datablob);
1161	kfree_sensitive(new_o);
1162	return ret;
1163}
1164
1165/*
1166 * trusted_read - copy the sealed blob data to userspace in hex.
1167 * On success, return to userspace the trusted key datablob size.
1168 */
1169static long trusted_read(const struct key *key, char *buffer,
1170			 size_t buflen)
1171{
1172	const struct trusted_key_payload *p;
1173	char *bufp;
1174	int i;
1175
1176	p = dereference_key_locked(key);
1177	if (!p)
1178		return -EINVAL;
1179
1180	if (buffer && buflen >= 2 * p->blob_len) {
1181		bufp = buffer;
1182		for (i = 0; i < p->blob_len; i++)
1183			bufp = hex_byte_pack(bufp, p->blob[i]);
1184	}
1185	return 2 * p->blob_len;
1186}
1187
1188/*
1189 * trusted_destroy - clear and free the key's payload
1190 */
1191static void trusted_destroy(struct key *key)
1192{
1193	kfree_sensitive(key->payload.data[0]);
1194}
1195
1196struct key_type key_type_trusted = {
1197	.name = "trusted",
1198	.instantiate = trusted_instantiate,
1199	.update = trusted_update,
1200	.destroy = trusted_destroy,
1201	.describe = user_describe,
1202	.read = trusted_read,
1203};
1204
1205EXPORT_SYMBOL_GPL(key_type_trusted);
1206
1207static void trusted_shash_release(void)
1208{
1209	if (hashalg)
1210		crypto_free_shash(hashalg);
1211	if (hmacalg)
1212		crypto_free_shash(hmacalg);
1213}
1214
1215static int __init trusted_shash_alloc(void)
1216{
1217	int ret;
1218
1219	hmacalg = crypto_alloc_shash(hmac_alg, 0, 0);
1220	if (IS_ERR(hmacalg)) {
1221		pr_info("trusted_key: could not allocate crypto %s\n",
1222			hmac_alg);
1223		return PTR_ERR(hmacalg);
1224	}
1225
1226	hashalg = crypto_alloc_shash(hash_alg, 0, 0);
1227	if (IS_ERR(hashalg)) {
1228		pr_info("trusted_key: could not allocate crypto %s\n",
1229			hash_alg);
1230		ret = PTR_ERR(hashalg);
1231		goto hashalg_fail;
1232	}
1233
1234	return 0;
1235
1236hashalg_fail:
1237	crypto_free_shash(hmacalg);
1238	return ret;
1239}
1240
1241static int __init init_digests(void)
1242{
1243	int i;
1244
1245	digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests),
1246			  GFP_KERNEL);
1247	if (!digests)
1248		return -ENOMEM;
1249
1250	for (i = 0; i < chip->nr_allocated_banks; i++)
1251		digests[i].alg_id = chip->allocated_banks[i].alg_id;
1252
1253	return 0;
1254}
1255
1256static int __init init_trusted(void)
1257{
1258	int ret;
1259
1260	/* encrypted_keys.ko depends on successful load of this module even if
1261	 * TPM is not used.
1262	 */
1263	chip = tpm_default_chip();
1264	if (!chip)
1265		return 0;
1266
1267	ret = init_digests();
1268	if (ret < 0)
1269		goto err_put;
1270	ret = trusted_shash_alloc();
1271	if (ret < 0)
1272		goto err_free;
1273	ret = register_key_type(&key_type_trusted);
1274	if (ret < 0)
1275		goto err_release;
1276	return 0;
1277err_release:
1278	trusted_shash_release();
1279err_free:
1280	kfree(digests);
1281err_put:
1282	put_device(&chip->dev);
1283	return ret;
1284}
1285
1286static void __exit cleanup_trusted(void)
1287{
1288	if (chip) {
1289		put_device(&chip->dev);
1290		kfree(digests);
1291		trusted_shash_release();
1292		unregister_key_type(&key_type_trusted);
1293	}
1294}
1295
1296late_initcall(init_trusted);
1297module_exit(cleanup_trusted);
1298
1299MODULE_LICENSE("GPL");
1300