1// SPDX-License-Identifier: GPL-2.0-or-later 2/* Basic authentication token and access key management 3 * 4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8#include <linux/export.h> 9#include <linux/init.h> 10#include <linux/poison.h> 11#include <linux/sched.h> 12#include <linux/slab.h> 13#include <linux/security.h> 14#include <linux/workqueue.h> 15#include <linux/random.h> 16#include <linux/ima.h> 17#include <linux/err.h> 18#include "internal.h" 19 20struct kmem_cache *key_jar; 21struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 22DEFINE_SPINLOCK(key_serial_lock); 23 24struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 25DEFINE_SPINLOCK(key_user_lock); 26 27unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 29unsigned int key_quota_maxkeys = 200; /* general key count quota */ 30unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 31 32static LIST_HEAD(key_types_list); 33static DECLARE_RWSEM(key_types_sem); 34 35/* We serialise key instantiation and link */ 36DEFINE_MUTEX(key_construction_mutex); 37 38#ifdef KEY_DEBUGGING 39void __key_check(const struct key *key) 40{ 41 printk("__key_check: key %p {%08x} should be {%08x}\n", 42 key, key->magic, KEY_DEBUG_MAGIC); 43 BUG(); 44} 45#endif 46 47/* 48 * Get the key quota record for a user, allocating a new record if one doesn't 49 * already exist. 50 */ 51struct key_user *key_user_lookup(kuid_t uid) 52{ 53 struct key_user *candidate = NULL, *user; 54 struct rb_node *parent, **p; 55 56try_again: 57 parent = NULL; 58 p = &key_user_tree.rb_node; 59 spin_lock(&key_user_lock); 60 61 /* search the tree for a user record with a matching UID */ 62 while (*p) { 63 parent = *p; 64 user = rb_entry(parent, struct key_user, node); 65 66 if (uid_lt(uid, user->uid)) 67 p = &(*p)->rb_left; 68 else if (uid_gt(uid, user->uid)) 69 p = &(*p)->rb_right; 70 else 71 goto found; 72 } 73 74 /* if we get here, we failed to find a match in the tree */ 75 if (!candidate) { 76 /* allocate a candidate user record if we don't already have 77 * one */ 78 spin_unlock(&key_user_lock); 79 80 user = NULL; 81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 82 if (unlikely(!candidate)) 83 goto out; 84 85 /* the allocation may have scheduled, so we need to repeat the 86 * search lest someone else added the record whilst we were 87 * asleep */ 88 goto try_again; 89 } 90 91 /* if we get here, then the user record still hadn't appeared on the 92 * second pass - so we use the candidate record */ 93 refcount_set(&candidate->usage, 1); 94 atomic_set(&candidate->nkeys, 0); 95 atomic_set(&candidate->nikeys, 0); 96 candidate->uid = uid; 97 candidate->qnkeys = 0; 98 candidate->qnbytes = 0; 99 spin_lock_init(&candidate->lock); 100 mutex_init(&candidate->cons_lock); 101 102 rb_link_node(&candidate->node, parent, p); 103 rb_insert_color(&candidate->node, &key_user_tree); 104 spin_unlock(&key_user_lock); 105 user = candidate; 106 goto out; 107 108 /* okay - we found a user record for this UID */ 109found: 110 refcount_inc(&user->usage); 111 spin_unlock(&key_user_lock); 112 kfree(candidate); 113out: 114 return user; 115} 116 117/* 118 * Dispose of a user structure 119 */ 120void key_user_put(struct key_user *user) 121{ 122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 123 rb_erase(&user->node, &key_user_tree); 124 spin_unlock(&key_user_lock); 125 126 kfree(user); 127 } 128} 129 130/* 131 * Allocate a serial number for a key. These are assigned randomly to avoid 132 * security issues through covert channel problems. 133 */ 134static inline void key_alloc_serial(struct key *key) 135{ 136 struct rb_node *parent, **p; 137 struct key *xkey; 138 139 /* propose a random serial number and look for a hole for it in the 140 * serial number tree */ 141 do { 142 get_random_bytes(&key->serial, sizeof(key->serial)); 143 144 key->serial >>= 1; /* negative numbers are not permitted */ 145 } while (key->serial < 3); 146 147 spin_lock(&key_serial_lock); 148 149attempt_insertion: 150 parent = NULL; 151 p = &key_serial_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 xkey = rb_entry(parent, struct key, serial_node); 156 157 if (key->serial < xkey->serial) 158 p = &(*p)->rb_left; 159 else if (key->serial > xkey->serial) 160 p = &(*p)->rb_right; 161 else 162 goto serial_exists; 163 } 164 165 /* we've found a suitable hole - arrange for this key to occupy it */ 166 rb_link_node(&key->serial_node, parent, p); 167 rb_insert_color(&key->serial_node, &key_serial_tree); 168 169 spin_unlock(&key_serial_lock); 170 return; 171 172 /* we found a key with the proposed serial number - walk the tree from 173 * that point looking for the next unused serial number */ 174serial_exists: 175 for (;;) { 176 key->serial++; 177 if (key->serial < 3) { 178 key->serial = 3; 179 goto attempt_insertion; 180 } 181 182 parent = rb_next(parent); 183 if (!parent) 184 goto attempt_insertion; 185 186 xkey = rb_entry(parent, struct key, serial_node); 187 if (key->serial < xkey->serial) 188 goto attempt_insertion; 189 } 190} 191 192/** 193 * key_alloc - Allocate a key of the specified type. 194 * @type: The type of key to allocate. 195 * @desc: The key description to allow the key to be searched out. 196 * @uid: The owner of the new key. 197 * @gid: The group ID for the new key's group permissions. 198 * @cred: The credentials specifying UID namespace. 199 * @perm: The permissions mask of the new key. 200 * @flags: Flags specifying quota properties. 201 * @restrict_link: Optional link restriction for new keyrings. 202 * 203 * Allocate a key of the specified type with the attributes given. The key is 204 * returned in an uninstantiated state and the caller needs to instantiate the 205 * key before returning. 206 * 207 * The restrict_link structure (if not NULL) will be freed when the 208 * keyring is destroyed, so it must be dynamically allocated. 209 * 210 * The user's key count quota is updated to reflect the creation of the key and 211 * the user's key data quota has the default for the key type reserved. The 212 * instantiation function should amend this as necessary. If insufficient 213 * quota is available, -EDQUOT will be returned. 214 * 215 * The LSM security modules can prevent a key being created, in which case 216 * -EACCES will be returned. 217 * 218 * Returns a pointer to the new key if successful and an error code otherwise. 219 * 220 * Note that the caller needs to ensure the key type isn't uninstantiated. 221 * Internally this can be done by locking key_types_sem. Externally, this can 222 * be done by either never unregistering the key type, or making sure 223 * key_alloc() calls don't race with module unloading. 224 */ 225struct key *key_alloc(struct key_type *type, const char *desc, 226 kuid_t uid, kgid_t gid, const struct cred *cred, 227 key_perm_t perm, unsigned long flags, 228 struct key_restriction *restrict_link) 229{ 230 struct key_user *user = NULL; 231 struct key *key; 232 size_t desclen, quotalen; 233 int ret; 234 235 key = ERR_PTR(-EINVAL); 236 if (!desc || !*desc) 237 goto error; 238 239 if (type->vet_description) { 240 ret = type->vet_description(desc); 241 if (ret < 0) { 242 key = ERR_PTR(ret); 243 goto error; 244 } 245 } 246 247 desclen = strlen(desc); 248 quotalen = desclen + 1 + type->def_datalen; 249 250 /* get hold of the key tracking for this user */ 251 user = key_user_lookup(uid); 252 if (!user) 253 goto no_memory_1; 254 255 /* check that the user's quota permits allocation of another key and 256 * its description */ 257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxkeys : key_quota_maxkeys; 260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 261 key_quota_root_maxbytes : key_quota_maxbytes; 262 263 spin_lock(&user->lock); 264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 265 if (user->qnkeys + 1 > maxkeys || 266 user->qnbytes + quotalen > maxbytes || 267 user->qnbytes + quotalen < user->qnbytes) 268 goto no_quota; 269 } 270 271 user->qnkeys++; 272 user->qnbytes += quotalen; 273 spin_unlock(&user->lock); 274 } 275 276 /* allocate and initialise the key and its description */ 277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 278 if (!key) 279 goto no_memory_2; 280 281 key->index_key.desc_len = desclen; 282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 283 if (!key->index_key.description) 284 goto no_memory_3; 285 key->index_key.type = type; 286 key_set_index_key(&key->index_key); 287 288 refcount_set(&key->usage, 1); 289 init_rwsem(&key->sem); 290 lockdep_set_class(&key->sem, &type->lock_class); 291 key->user = user; 292 key->quotalen = quotalen; 293 key->datalen = type->def_datalen; 294 key->uid = uid; 295 key->gid = gid; 296 key->perm = perm; 297 key->expiry = TIME64_MAX; 298 key->restrict_link = restrict_link; 299 key->last_used_at = ktime_get_real_seconds(); 300 301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 302 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 303 if (flags & KEY_ALLOC_BUILT_IN) 304 key->flags |= 1 << KEY_FLAG_BUILTIN; 305 if (flags & KEY_ALLOC_UID_KEYRING) 306 key->flags |= 1 << KEY_FLAG_UID_KEYRING; 307 if (flags & KEY_ALLOC_SET_KEEP) 308 key->flags |= 1 << KEY_FLAG_KEEP; 309 310#ifdef KEY_DEBUGGING 311 key->magic = KEY_DEBUG_MAGIC; 312#endif 313 314 /* let the security module know about the key */ 315 ret = security_key_alloc(key, cred, flags); 316 if (ret < 0) 317 goto security_error; 318 319 /* publish the key by giving it a serial number */ 320 refcount_inc(&key->domain_tag->usage); 321 atomic_inc(&user->nkeys); 322 key_alloc_serial(key); 323 324error: 325 return key; 326 327security_error: 328 kfree(key->description); 329 kmem_cache_free(key_jar, key); 330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 331 spin_lock(&user->lock); 332 user->qnkeys--; 333 user->qnbytes -= quotalen; 334 spin_unlock(&user->lock); 335 } 336 key_user_put(user); 337 key = ERR_PTR(ret); 338 goto error; 339 340no_memory_3: 341 kmem_cache_free(key_jar, key); 342no_memory_2: 343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 344 spin_lock(&user->lock); 345 user->qnkeys--; 346 user->qnbytes -= quotalen; 347 spin_unlock(&user->lock); 348 } 349 key_user_put(user); 350no_memory_1: 351 key = ERR_PTR(-ENOMEM); 352 goto error; 353 354no_quota: 355 spin_unlock(&user->lock); 356 key_user_put(user); 357 key = ERR_PTR(-EDQUOT); 358 goto error; 359} 360EXPORT_SYMBOL(key_alloc); 361 362/** 363 * key_payload_reserve - Adjust data quota reservation for the key's payload 364 * @key: The key to make the reservation for. 365 * @datalen: The amount of data payload the caller now wants. 366 * 367 * Adjust the amount of the owning user's key data quota that a key reserves. 368 * If the amount is increased, then -EDQUOT may be returned if there isn't 369 * enough free quota available. 370 * 371 * If successful, 0 is returned. 372 */ 373int key_payload_reserve(struct key *key, size_t datalen) 374{ 375 int delta = (int)datalen - key->datalen; 376 int ret = 0; 377 378 key_check(key); 379 380 /* contemplate the quota adjustment */ 381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 382 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 383 key_quota_root_maxbytes : key_quota_maxbytes; 384 385 spin_lock(&key->user->lock); 386 387 if (delta > 0 && 388 (key->user->qnbytes + delta > maxbytes || 389 key->user->qnbytes + delta < key->user->qnbytes)) { 390 ret = -EDQUOT; 391 } 392 else { 393 key->user->qnbytes += delta; 394 key->quotalen += delta; 395 } 396 spin_unlock(&key->user->lock); 397 } 398 399 /* change the recorded data length if that didn't generate an error */ 400 if (ret == 0) 401 key->datalen = datalen; 402 403 return ret; 404} 405EXPORT_SYMBOL(key_payload_reserve); 406 407/* 408 * Change the key state to being instantiated. 409 */ 410static void mark_key_instantiated(struct key *key, int reject_error) 411{ 412 /* Commit the payload before setting the state; barrier versus 413 * key_read_state(). 414 */ 415 smp_store_release(&key->state, 416 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE); 417} 418 419/* 420 * Instantiate a key and link it into the target keyring atomically. Must be 421 * called with the target keyring's semaphore writelocked. The target key's 422 * semaphore need not be locked as instantiation is serialised by 423 * key_construction_mutex. 424 */ 425static int __key_instantiate_and_link(struct key *key, 426 struct key_preparsed_payload *prep, 427 struct key *keyring, 428 struct key *authkey, 429 struct assoc_array_edit **_edit) 430{ 431 int ret, awaken; 432 433 key_check(key); 434 key_check(keyring); 435 436 awaken = 0; 437 ret = -EBUSY; 438 439 mutex_lock(&key_construction_mutex); 440 441 /* can't instantiate twice */ 442 if (key->state == KEY_IS_UNINSTANTIATED) { 443 /* instantiate the key */ 444 ret = key->type->instantiate(key, prep); 445 446 if (ret == 0) { 447 /* mark the key as being instantiated */ 448 atomic_inc(&key->user->nikeys); 449 mark_key_instantiated(key, 0); 450 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0); 451 452 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 453 awaken = 1; 454 455 /* and link it into the destination keyring */ 456 if (keyring) { 457 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 458 set_bit(KEY_FLAG_KEEP, &key->flags); 459 460 __key_link(keyring, key, _edit); 461 } 462 463 /* disable the authorisation key */ 464 if (authkey) 465 key_invalidate(authkey); 466 467 if (prep->expiry != TIME64_MAX) 468 key_set_expiry(key, prep->expiry); 469 } 470 } 471 472 mutex_unlock(&key_construction_mutex); 473 474 /* wake up anyone waiting for a key to be constructed */ 475 if (awaken) 476 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 477 478 return ret; 479} 480 481/** 482 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 483 * @key: The key to instantiate. 484 * @data: The data to use to instantiate the keyring. 485 * @datalen: The length of @data. 486 * @keyring: Keyring to create a link in on success (or NULL). 487 * @authkey: The authorisation token permitting instantiation. 488 * 489 * Instantiate a key that's in the uninstantiated state using the provided data 490 * and, if successful, link it in to the destination keyring if one is 491 * supplied. 492 * 493 * If successful, 0 is returned, the authorisation token is revoked and anyone 494 * waiting for the key is woken up. If the key was already instantiated, 495 * -EBUSY will be returned. 496 */ 497int key_instantiate_and_link(struct key *key, 498 const void *data, 499 size_t datalen, 500 struct key *keyring, 501 struct key *authkey) 502{ 503 struct key_preparsed_payload prep; 504 struct assoc_array_edit *edit = NULL; 505 int ret; 506 507 memset(&prep, 0, sizeof(prep)); 508 prep.data = data; 509 prep.datalen = datalen; 510 prep.quotalen = key->type->def_datalen; 511 prep.expiry = TIME64_MAX; 512 if (key->type->preparse) { 513 ret = key->type->preparse(&prep); 514 if (ret < 0) 515 goto error; 516 } 517 518 if (keyring) { 519 ret = __key_link_lock(keyring, &key->index_key); 520 if (ret < 0) 521 goto error; 522 523 ret = __key_link_begin(keyring, &key->index_key, &edit); 524 if (ret < 0) 525 goto error_link_end; 526 527 if (keyring->restrict_link && keyring->restrict_link->check) { 528 struct key_restriction *keyres = keyring->restrict_link; 529 530 ret = keyres->check(keyring, key->type, &prep.payload, 531 keyres->key); 532 if (ret < 0) 533 goto error_link_end; 534 } 535 } 536 537 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 538 539error_link_end: 540 if (keyring) 541 __key_link_end(keyring, &key->index_key, edit); 542 543error: 544 if (key->type->preparse) 545 key->type->free_preparse(&prep); 546 return ret; 547} 548 549EXPORT_SYMBOL(key_instantiate_and_link); 550 551/** 552 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 553 * @key: The key to instantiate. 554 * @timeout: The timeout on the negative key. 555 * @error: The error to return when the key is hit. 556 * @keyring: Keyring to create a link in on success (or NULL). 557 * @authkey: The authorisation token permitting instantiation. 558 * 559 * Negatively instantiate a key that's in the uninstantiated state and, if 560 * successful, set its timeout and stored error and link it in to the 561 * destination keyring if one is supplied. The key and any links to the key 562 * will be automatically garbage collected after the timeout expires. 563 * 564 * Negative keys are used to rate limit repeated request_key() calls by causing 565 * them to return the stored error code (typically ENOKEY) until the negative 566 * key expires. 567 * 568 * If successful, 0 is returned, the authorisation token is revoked and anyone 569 * waiting for the key is woken up. If the key was already instantiated, 570 * -EBUSY will be returned. 571 */ 572int key_reject_and_link(struct key *key, 573 unsigned timeout, 574 unsigned error, 575 struct key *keyring, 576 struct key *authkey) 577{ 578 struct assoc_array_edit *edit = NULL; 579 int ret, awaken, link_ret = 0; 580 581 key_check(key); 582 key_check(keyring); 583 584 awaken = 0; 585 ret = -EBUSY; 586 587 if (keyring) { 588 if (keyring->restrict_link) 589 return -EPERM; 590 591 link_ret = __key_link_lock(keyring, &key->index_key); 592 if (link_ret == 0) { 593 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 594 if (link_ret < 0) 595 __key_link_end(keyring, &key->index_key, edit); 596 } 597 } 598 599 mutex_lock(&key_construction_mutex); 600 601 /* can't instantiate twice */ 602 if (key->state == KEY_IS_UNINSTANTIATED) { 603 /* mark the key as being negatively instantiated */ 604 atomic_inc(&key->user->nikeys); 605 mark_key_instantiated(key, -error); 606 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error); 607 key_set_expiry(key, ktime_get_real_seconds() + timeout); 608 609 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 610 awaken = 1; 611 612 ret = 0; 613 614 /* and link it into the destination keyring */ 615 if (keyring && link_ret == 0) 616 __key_link(keyring, key, &edit); 617 618 /* disable the authorisation key */ 619 if (authkey) 620 key_invalidate(authkey); 621 } 622 623 mutex_unlock(&key_construction_mutex); 624 625 if (keyring && link_ret == 0) 626 __key_link_end(keyring, &key->index_key, edit); 627 628 /* wake up anyone waiting for a key to be constructed */ 629 if (awaken) 630 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 631 632 return ret == 0 ? link_ret : ret; 633} 634EXPORT_SYMBOL(key_reject_and_link); 635 636/** 637 * key_put - Discard a reference to a key. 638 * @key: The key to discard a reference from. 639 * 640 * Discard a reference to a key, and when all the references are gone, we 641 * schedule the cleanup task to come and pull it out of the tree in process 642 * context at some later time. 643 */ 644void key_put(struct key *key) 645{ 646 if (key) { 647 key_check(key); 648 649 if (refcount_dec_and_test(&key->usage)) 650 schedule_work(&key_gc_work); 651 } 652} 653EXPORT_SYMBOL(key_put); 654 655/* 656 * Find a key by its serial number. 657 */ 658struct key *key_lookup(key_serial_t id) 659{ 660 struct rb_node *n; 661 struct key *key; 662 663 spin_lock(&key_serial_lock); 664 665 /* search the tree for the specified key */ 666 n = key_serial_tree.rb_node; 667 while (n) { 668 key = rb_entry(n, struct key, serial_node); 669 670 if (id < key->serial) 671 n = n->rb_left; 672 else if (id > key->serial) 673 n = n->rb_right; 674 else 675 goto found; 676 } 677 678not_found: 679 key = ERR_PTR(-ENOKEY); 680 goto error; 681 682found: 683 /* A key is allowed to be looked up only if someone still owns a 684 * reference to it - otherwise it's awaiting the gc. 685 */ 686 if (!refcount_inc_not_zero(&key->usage)) 687 goto not_found; 688 689error: 690 spin_unlock(&key_serial_lock); 691 return key; 692} 693 694/* 695 * Find and lock the specified key type against removal. 696 * 697 * We return with the sem read-locked if successful. If the type wasn't 698 * available -ENOKEY is returned instead. 699 */ 700struct key_type *key_type_lookup(const char *type) 701{ 702 struct key_type *ktype; 703 704 down_read(&key_types_sem); 705 706 /* look up the key type to see if it's one of the registered kernel 707 * types */ 708 list_for_each_entry(ktype, &key_types_list, link) { 709 if (strcmp(ktype->name, type) == 0) 710 goto found_kernel_type; 711 } 712 713 up_read(&key_types_sem); 714 ktype = ERR_PTR(-ENOKEY); 715 716found_kernel_type: 717 return ktype; 718} 719 720void key_set_timeout(struct key *key, unsigned timeout) 721{ 722 time64_t expiry = TIME64_MAX; 723 724 /* make the changes with the locks held to prevent races */ 725 down_write(&key->sem); 726 727 if (timeout > 0) 728 expiry = ktime_get_real_seconds() + timeout; 729 key_set_expiry(key, expiry); 730 731 up_write(&key->sem); 732} 733EXPORT_SYMBOL_GPL(key_set_timeout); 734 735/* 736 * Unlock a key type locked by key_type_lookup(). 737 */ 738void key_type_put(struct key_type *ktype) 739{ 740 up_read(&key_types_sem); 741} 742 743/* 744 * Attempt to update an existing key. 745 * 746 * The key is given to us with an incremented refcount that we need to discard 747 * if we get an error. 748 */ 749static inline key_ref_t __key_update(key_ref_t key_ref, 750 struct key_preparsed_payload *prep) 751{ 752 struct key *key = key_ref_to_ptr(key_ref); 753 int ret; 754 755 /* need write permission on the key to update it */ 756 ret = key_permission(key_ref, KEY_NEED_WRITE); 757 if (ret < 0) 758 goto error; 759 760 ret = -EEXIST; 761 if (!key->type->update) 762 goto error; 763 764 down_write(&key->sem); 765 766 ret = key->type->update(key, prep); 767 if (ret == 0) { 768 /* Updating a negative key positively instantiates it */ 769 mark_key_instantiated(key, 0); 770 notify_key(key, NOTIFY_KEY_UPDATED, 0); 771 } 772 773 up_write(&key->sem); 774 775 if (ret < 0) 776 goto error; 777out: 778 return key_ref; 779 780error: 781 key_put(key); 782 key_ref = ERR_PTR(ret); 783 goto out; 784} 785 786/** 787 * key_create_or_update - Update or create and instantiate a key. 788 * @keyring_ref: A pointer to the destination keyring with possession flag. 789 * @type: The type of key. 790 * @description: The searchable description for the key. 791 * @payload: The data to use to instantiate or update the key. 792 * @plen: The length of @payload. 793 * @perm: The permissions mask for a new key. 794 * @flags: The quota flags for a new key. 795 * 796 * Search the destination keyring for a key of the same description and if one 797 * is found, update it, otherwise create and instantiate a new one and create a 798 * link to it from that keyring. 799 * 800 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 801 * concocted. 802 * 803 * Returns a pointer to the new key if successful, -ENODEV if the key type 804 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 805 * caller isn't permitted to modify the keyring or the LSM did not permit 806 * creation of the key. 807 * 808 * On success, the possession flag from the keyring ref will be tacked on to 809 * the key ref before it is returned. 810 */ 811key_ref_t key_create_or_update(key_ref_t keyring_ref, 812 const char *type, 813 const char *description, 814 const void *payload, 815 size_t plen, 816 key_perm_t perm, 817 unsigned long flags) 818{ 819 struct keyring_index_key index_key = { 820 .description = description, 821 }; 822 struct key_preparsed_payload prep; 823 struct assoc_array_edit *edit = NULL; 824 const struct cred *cred = current_cred(); 825 struct key *keyring, *key = NULL; 826 key_ref_t key_ref; 827 int ret; 828 struct key_restriction *restrict_link = NULL; 829 830 /* look up the key type to see if it's one of the registered kernel 831 * types */ 832 index_key.type = key_type_lookup(type); 833 if (IS_ERR(index_key.type)) { 834 key_ref = ERR_PTR(-ENODEV); 835 goto error; 836 } 837 838 key_ref = ERR_PTR(-EINVAL); 839 if (!index_key.type->instantiate || 840 (!index_key.description && !index_key.type->preparse)) 841 goto error_put_type; 842 843 keyring = key_ref_to_ptr(keyring_ref); 844 845 key_check(keyring); 846 847 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 848 restrict_link = keyring->restrict_link; 849 850 key_ref = ERR_PTR(-ENOTDIR); 851 if (keyring->type != &key_type_keyring) 852 goto error_put_type; 853 854 memset(&prep, 0, sizeof(prep)); 855 prep.data = payload; 856 prep.datalen = plen; 857 prep.quotalen = index_key.type->def_datalen; 858 prep.expiry = TIME64_MAX; 859 if (index_key.type->preparse) { 860 ret = index_key.type->preparse(&prep); 861 if (ret < 0) { 862 key_ref = ERR_PTR(ret); 863 goto error_free_prep; 864 } 865 if (!index_key.description) 866 index_key.description = prep.description; 867 key_ref = ERR_PTR(-EINVAL); 868 if (!index_key.description) 869 goto error_free_prep; 870 } 871 index_key.desc_len = strlen(index_key.description); 872 key_set_index_key(&index_key); 873 874 ret = __key_link_lock(keyring, &index_key); 875 if (ret < 0) { 876 key_ref = ERR_PTR(ret); 877 goto error_free_prep; 878 } 879 880 ret = __key_link_begin(keyring, &index_key, &edit); 881 if (ret < 0) { 882 key_ref = ERR_PTR(ret); 883 goto error_link_end; 884 } 885 886 if (restrict_link && restrict_link->check) { 887 ret = restrict_link->check(keyring, index_key.type, 888 &prep.payload, restrict_link->key); 889 if (ret < 0) { 890 key_ref = ERR_PTR(ret); 891 goto error_link_end; 892 } 893 } 894 895 /* if we're going to allocate a new key, we're going to have 896 * to modify the keyring */ 897 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 898 if (ret < 0) { 899 key_ref = ERR_PTR(ret); 900 goto error_link_end; 901 } 902 903 /* if it's possible to update this type of key, search for an existing 904 * key of the same type and description in the destination keyring and 905 * update that instead if possible 906 */ 907 if (index_key.type->update) { 908 key_ref = find_key_to_update(keyring_ref, &index_key); 909 if (key_ref) 910 goto found_matching_key; 911 } 912 913 /* if the client doesn't provide, decide on the permissions we want */ 914 if (perm == KEY_PERM_UNDEF) { 915 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 916 perm |= KEY_USR_VIEW; 917 918 if (index_key.type->read) 919 perm |= KEY_POS_READ; 920 921 if (index_key.type == &key_type_keyring || 922 index_key.type->update) 923 perm |= KEY_POS_WRITE; 924 } 925 926 /* allocate a new key */ 927 key = key_alloc(index_key.type, index_key.description, 928 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 929 if (IS_ERR(key)) { 930 key_ref = ERR_CAST(key); 931 goto error_link_end; 932 } 933 934 /* instantiate it and link it into the target keyring */ 935 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 936 if (ret < 0) { 937 key_put(key); 938 key_ref = ERR_PTR(ret); 939 goto error_link_end; 940 } 941 942 ima_post_key_create_or_update(keyring, key, payload, plen, 943 flags, true); 944 945 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 946 947error_link_end: 948 __key_link_end(keyring, &index_key, edit); 949error_free_prep: 950 if (index_key.type->preparse) 951 index_key.type->free_preparse(&prep); 952error_put_type: 953 key_type_put(index_key.type); 954error: 955 return key_ref; 956 957 found_matching_key: 958 /* we found a matching key, so we're going to try to update it 959 * - we can drop the locks first as we have the key pinned 960 */ 961 __key_link_end(keyring, &index_key, edit); 962 963 key = key_ref_to_ptr(key_ref); 964 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) { 965 ret = wait_for_key_construction(key, true); 966 if (ret < 0) { 967 key_ref_put(key_ref); 968 key_ref = ERR_PTR(ret); 969 goto error_free_prep; 970 } 971 } 972 973 key_ref = __key_update(key_ref, &prep); 974 975 if (!IS_ERR(key_ref)) 976 ima_post_key_create_or_update(keyring, key, 977 payload, plen, 978 flags, false); 979 980 goto error_free_prep; 981} 982EXPORT_SYMBOL(key_create_or_update); 983 984/** 985 * key_update - Update a key's contents. 986 * @key_ref: The pointer (plus possession flag) to the key. 987 * @payload: The data to be used to update the key. 988 * @plen: The length of @payload. 989 * 990 * Attempt to update the contents of a key with the given payload data. The 991 * caller must be granted Write permission on the key. Negative keys can be 992 * instantiated by this method. 993 * 994 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 995 * type does not support updating. The key type may return other errors. 996 */ 997int key_update(key_ref_t key_ref, const void *payload, size_t plen) 998{ 999 struct key_preparsed_payload prep; 1000 struct key *key = key_ref_to_ptr(key_ref); 1001 int ret; 1002 1003 key_check(key); 1004 1005 /* the key must be writable */ 1006 ret = key_permission(key_ref, KEY_NEED_WRITE); 1007 if (ret < 0) 1008 return ret; 1009 1010 /* attempt to update it if supported */ 1011 if (!key->type->update) 1012 return -EOPNOTSUPP; 1013 1014 memset(&prep, 0, sizeof(prep)); 1015 prep.data = payload; 1016 prep.datalen = plen; 1017 prep.quotalen = key->type->def_datalen; 1018 prep.expiry = TIME64_MAX; 1019 if (key->type->preparse) { 1020 ret = key->type->preparse(&prep); 1021 if (ret < 0) 1022 goto error; 1023 } 1024 1025 down_write(&key->sem); 1026 1027 ret = key->type->update(key, &prep); 1028 if (ret == 0) { 1029 /* Updating a negative key positively instantiates it */ 1030 mark_key_instantiated(key, 0); 1031 notify_key(key, NOTIFY_KEY_UPDATED, 0); 1032 } 1033 1034 up_write(&key->sem); 1035 1036error: 1037 if (key->type->preparse) 1038 key->type->free_preparse(&prep); 1039 return ret; 1040} 1041EXPORT_SYMBOL(key_update); 1042 1043/** 1044 * key_revoke - Revoke a key. 1045 * @key: The key to be revoked. 1046 * 1047 * Mark a key as being revoked and ask the type to free up its resources. The 1048 * revocation timeout is set and the key and all its links will be 1049 * automatically garbage collected after key_gc_delay amount of time if they 1050 * are not manually dealt with first. 1051 */ 1052void key_revoke(struct key *key) 1053{ 1054 time64_t time; 1055 1056 key_check(key); 1057 1058 /* make sure no one's trying to change or use the key when we mark it 1059 * - we tell lockdep that we might nest because we might be revoking an 1060 * authorisation key whilst holding the sem on a key we've just 1061 * instantiated 1062 */ 1063 down_write_nested(&key->sem, 1); 1064 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) { 1065 notify_key(key, NOTIFY_KEY_REVOKED, 0); 1066 if (key->type->revoke) 1067 key->type->revoke(key); 1068 1069 /* set the death time to no more than the expiry time */ 1070 time = ktime_get_real_seconds(); 1071 if (key->revoked_at == 0 || key->revoked_at > time) { 1072 key->revoked_at = time; 1073 key_schedule_gc(key->revoked_at + key_gc_delay); 1074 } 1075 } 1076 1077 up_write(&key->sem); 1078} 1079EXPORT_SYMBOL(key_revoke); 1080 1081/** 1082 * key_invalidate - Invalidate a key. 1083 * @key: The key to be invalidated. 1084 * 1085 * Mark a key as being invalidated and have it cleaned up immediately. The key 1086 * is ignored by all searches and other operations from this point. 1087 */ 1088void key_invalidate(struct key *key) 1089{ 1090 kenter("%d", key_serial(key)); 1091 1092 key_check(key); 1093 1094 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1095 down_write_nested(&key->sem, 1); 1096 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1097 notify_key(key, NOTIFY_KEY_INVALIDATED, 0); 1098 key_schedule_gc_links(); 1099 } 1100 up_write(&key->sem); 1101 } 1102} 1103EXPORT_SYMBOL(key_invalidate); 1104 1105/** 1106 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1107 * @key: The key to be instantiated 1108 * @prep: The preparsed data to load. 1109 * 1110 * Instantiate a key from preparsed data. We assume we can just copy the data 1111 * in directly and clear the old pointers. 1112 * 1113 * This can be pointed to directly by the key type instantiate op pointer. 1114 */ 1115int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1116{ 1117 int ret; 1118 1119 pr_devel("==>%s()\n", __func__); 1120 1121 ret = key_payload_reserve(key, prep->quotalen); 1122 if (ret == 0) { 1123 rcu_assign_keypointer(key, prep->payload.data[0]); 1124 key->payload.data[1] = prep->payload.data[1]; 1125 key->payload.data[2] = prep->payload.data[2]; 1126 key->payload.data[3] = prep->payload.data[3]; 1127 prep->payload.data[0] = NULL; 1128 prep->payload.data[1] = NULL; 1129 prep->payload.data[2] = NULL; 1130 prep->payload.data[3] = NULL; 1131 } 1132 pr_devel("<==%s() = %d\n", __func__, ret); 1133 return ret; 1134} 1135EXPORT_SYMBOL(generic_key_instantiate); 1136 1137/** 1138 * register_key_type - Register a type of key. 1139 * @ktype: The new key type. 1140 * 1141 * Register a new key type. 1142 * 1143 * Returns 0 on success or -EEXIST if a type of this name already exists. 1144 */ 1145int register_key_type(struct key_type *ktype) 1146{ 1147 struct key_type *p; 1148 int ret; 1149 1150 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1151 1152 ret = -EEXIST; 1153 down_write(&key_types_sem); 1154 1155 /* disallow key types with the same name */ 1156 list_for_each_entry(p, &key_types_list, link) { 1157 if (strcmp(p->name, ktype->name) == 0) 1158 goto out; 1159 } 1160 1161 /* store the type */ 1162 list_add(&ktype->link, &key_types_list); 1163 1164 pr_notice("Key type %s registered\n", ktype->name); 1165 ret = 0; 1166 1167out: 1168 up_write(&key_types_sem); 1169 return ret; 1170} 1171EXPORT_SYMBOL(register_key_type); 1172 1173/** 1174 * unregister_key_type - Unregister a type of key. 1175 * @ktype: The key type. 1176 * 1177 * Unregister a key type and mark all the extant keys of this type as dead. 1178 * Those keys of this type are then destroyed to get rid of their payloads and 1179 * they and their links will be garbage collected as soon as possible. 1180 */ 1181void unregister_key_type(struct key_type *ktype) 1182{ 1183 down_write(&key_types_sem); 1184 list_del_init(&ktype->link); 1185 downgrade_write(&key_types_sem); 1186 key_gc_keytype(ktype); 1187 pr_notice("Key type %s unregistered\n", ktype->name); 1188 up_read(&key_types_sem); 1189} 1190EXPORT_SYMBOL(unregister_key_type); 1191 1192/* 1193 * Initialise the key management state. 1194 */ 1195void __init key_init(void) 1196{ 1197 /* allocate a slab in which we can store keys */ 1198 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1199 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1200 1201 /* add the special key types */ 1202 list_add_tail(&key_type_keyring.link, &key_types_list); 1203 list_add_tail(&key_type_dead.link, &key_types_list); 1204 list_add_tail(&key_type_user.link, &key_types_list); 1205 list_add_tail(&key_type_logon.link, &key_types_list); 1206 1207 /* record the root user tracking */ 1208 rb_link_node(&root_key_user.node, 1209 NULL, 1210 &key_user_tree.rb_node); 1211 1212 rb_insert_color(&root_key_user.node, 1213 &key_user_tree); 1214} 1215