1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010 IBM Corporation
4 * Copyright (C) 2010 Politecnico di Torino, Italy
5 *                    TORSEC group -- https://security.polito.it
6 *
7 * Authors:
8 * Mimi Zohar <zohar@us.ibm.com>
9 * Roberto Sassu <roberto.sassu@polito.it>
10 *
11 * See Documentation/security/keys/trusted-encrypted.rst
12 */
13
14#include <linux/uaccess.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/parser.h>
19#include <linux/string.h>
20#include <linux/err.h>
21#include <keys/user-type.h>
22#include <keys/trusted-type.h>
23#include <keys/encrypted-type.h>
24#include <linux/key-type.h>
25#include <linux/random.h>
26#include <linux/rcupdate.h>
27#include <linux/scatterlist.h>
28#include <linux/ctype.h>
29#include <crypto/aes.h>
30#include <crypto/algapi.h>
31#include <crypto/hash.h>
32#include <crypto/sha.h>
33#include <crypto/skcipher.h>
34
35#include "encrypted.h"
36#include "ecryptfs_format.h"
37
38static const char KEY_TRUSTED_PREFIX[] = "trusted:";
39static const char KEY_USER_PREFIX[] = "user:";
40static const char hash_alg[] = "sha256";
41static const char hmac_alg[] = "hmac(sha256)";
42static const char blkcipher_alg[] = "cbc(aes)";
43static const char key_format_default[] = "default";
44static const char key_format_ecryptfs[] = "ecryptfs";
45static const char key_format_enc32[] = "enc32";
46static unsigned int ivsize;
47static int blksize;
48
49#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
50#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
51#define KEY_ECRYPTFS_DESC_LEN 16
52#define HASH_SIZE SHA256_DIGEST_SIZE
53#define MAX_DATA_SIZE 4096
54#define MIN_DATA_SIZE  20
55#define KEY_ENC32_PAYLOAD_LEN 32
56
57static struct crypto_shash *hash_tfm;
58
59enum {
60	Opt_new, Opt_load, Opt_update, Opt_err
61};
62
63enum {
64	Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
65};
66
67static const match_table_t key_format_tokens = {
68	{Opt_default, "default"},
69	{Opt_ecryptfs, "ecryptfs"},
70	{Opt_enc32, "enc32"},
71	{Opt_error, NULL}
72};
73
74static const match_table_t key_tokens = {
75	{Opt_new, "new"},
76	{Opt_load, "load"},
77	{Opt_update, "update"},
78	{Opt_err, NULL}
79};
80
81static int aes_get_sizes(void)
82{
83	struct crypto_skcipher *tfm;
84
85	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
86	if (IS_ERR(tfm)) {
87		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
88		       PTR_ERR(tfm));
89		return PTR_ERR(tfm);
90	}
91	ivsize = crypto_skcipher_ivsize(tfm);
92	blksize = crypto_skcipher_blocksize(tfm);
93	crypto_free_skcipher(tfm);
94	return 0;
95}
96
97/*
98 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
99 *
100 * The description of a encrypted key with format 'ecryptfs' must contain
101 * exactly 16 hexadecimal characters.
102 *
103 */
104static int valid_ecryptfs_desc(const char *ecryptfs_desc)
105{
106	int i;
107
108	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
109		pr_err("encrypted_key: key description must be %d hexadecimal "
110		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
111		return -EINVAL;
112	}
113
114	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
115		if (!isxdigit(ecryptfs_desc[i])) {
116			pr_err("encrypted_key: key description must contain "
117			       "only hexadecimal characters\n");
118			return -EINVAL;
119		}
120	}
121
122	return 0;
123}
124
125/*
126 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
127 *
128 * key-type:= "trusted:" | "user:"
129 * desc:= master-key description
130 *
131 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
132 * only the master key description is permitted to change, not the key-type.
133 * The key-type remains constant.
134 *
135 * On success returns 0, otherwise -EINVAL.
136 */
137static int valid_master_desc(const char *new_desc, const char *orig_desc)
138{
139	int prefix_len;
140
141	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
142		prefix_len = KEY_TRUSTED_PREFIX_LEN;
143	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
144		prefix_len = KEY_USER_PREFIX_LEN;
145	else
146		return -EINVAL;
147
148	if (!new_desc[prefix_len])
149		return -EINVAL;
150
151	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
152		return -EINVAL;
153
154	return 0;
155}
156
157/*
158 * datablob_parse - parse the keyctl data
159 *
160 * datablob format:
161 * new [<format>] <master-key name> <decrypted data length>
162 * load [<format>] <master-key name> <decrypted data length>
163 *     <encrypted iv + data>
164 * update <new-master-key name>
165 *
166 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
167 * which is null terminated.
168 *
169 * On success returns 0, otherwise -EINVAL.
170 */
171static int datablob_parse(char *datablob, const char **format,
172			  char **master_desc, char **decrypted_datalen,
173			  char **hex_encoded_iv)
174{
175	substring_t args[MAX_OPT_ARGS];
176	int ret = -EINVAL;
177	int key_cmd;
178	int key_format;
179	char *p, *keyword;
180
181	keyword = strsep(&datablob, " \t");
182	if (!keyword) {
183		pr_info("encrypted_key: insufficient parameters specified\n");
184		return ret;
185	}
186	key_cmd = match_token(keyword, key_tokens, args);
187
188	/* Get optional format: default | ecryptfs */
189	p = strsep(&datablob, " \t");
190	if (!p) {
191		pr_err("encrypted_key: insufficient parameters specified\n");
192		return ret;
193	}
194
195	key_format = match_token(p, key_format_tokens, args);
196	switch (key_format) {
197	case Opt_ecryptfs:
198	case Opt_enc32:
199	case Opt_default:
200		*format = p;
201		*master_desc = strsep(&datablob, " \t");
202		break;
203	case Opt_error:
204		*master_desc = p;
205		break;
206	}
207
208	if (!*master_desc) {
209		pr_info("encrypted_key: master key parameter is missing\n");
210		goto out;
211	}
212
213	if (valid_master_desc(*master_desc, NULL) < 0) {
214		pr_info("encrypted_key: master key parameter \'%s\' "
215			"is invalid\n", *master_desc);
216		goto out;
217	}
218
219	if (decrypted_datalen) {
220		*decrypted_datalen = strsep(&datablob, " \t");
221		if (!*decrypted_datalen) {
222			pr_info("encrypted_key: keylen parameter is missing\n");
223			goto out;
224		}
225	}
226
227	switch (key_cmd) {
228	case Opt_new:
229		if (!decrypted_datalen) {
230			pr_info("encrypted_key: keyword \'%s\' not allowed "
231				"when called from .update method\n", keyword);
232			break;
233		}
234		ret = 0;
235		break;
236	case Opt_load:
237		if (!decrypted_datalen) {
238			pr_info("encrypted_key: keyword \'%s\' not allowed "
239				"when called from .update method\n", keyword);
240			break;
241		}
242		*hex_encoded_iv = strsep(&datablob, " \t");
243		if (!*hex_encoded_iv) {
244			pr_info("encrypted_key: hex blob is missing\n");
245			break;
246		}
247		ret = 0;
248		break;
249	case Opt_update:
250		if (decrypted_datalen) {
251			pr_info("encrypted_key: keyword \'%s\' not allowed "
252				"when called from .instantiate method\n",
253				keyword);
254			break;
255		}
256		ret = 0;
257		break;
258	case Opt_err:
259		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
260			keyword);
261		break;
262	}
263out:
264	return ret;
265}
266
267/*
268 * datablob_format - format as an ascii string, before copying to userspace
269 */
270static char *datablob_format(struct encrypted_key_payload *epayload,
271			     size_t asciiblob_len)
272{
273	char *ascii_buf, *bufp;
274	u8 *iv = epayload->iv;
275	int len;
276	int i;
277
278	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
279	if (!ascii_buf)
280		goto out;
281
282	ascii_buf[asciiblob_len] = '\0';
283
284	/* copy datablob master_desc and datalen strings */
285	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
286		      epayload->master_desc, epayload->datalen);
287
288	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
289	bufp = &ascii_buf[len];
290	for (i = 0; i < (asciiblob_len - len) / 2; i++)
291		bufp = hex_byte_pack(bufp, iv[i]);
292out:
293	return ascii_buf;
294}
295
296/*
297 * request_user_key - request the user key
298 *
299 * Use a user provided key to encrypt/decrypt an encrypted-key.
300 */
301static struct key *request_user_key(const char *master_desc, const u8 **master_key,
302				    size_t *master_keylen)
303{
304	const struct user_key_payload *upayload;
305	struct key *ukey;
306
307	ukey = request_key(&key_type_user, master_desc, NULL);
308	if (IS_ERR(ukey))
309		goto error;
310
311	down_read(&ukey->sem);
312	upayload = user_key_payload_locked(ukey);
313	if (!upayload) {
314		/* key was revoked before we acquired its semaphore */
315		up_read(&ukey->sem);
316		key_put(ukey);
317		ukey = ERR_PTR(-EKEYREVOKED);
318		goto error;
319	}
320	*master_key = upayload->data;
321	*master_keylen = upayload->datalen;
322error:
323	return ukey;
324}
325
326static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
327		     const u8 *buf, unsigned int buflen)
328{
329	struct crypto_shash *tfm;
330	int err;
331
332	tfm = crypto_alloc_shash(hmac_alg, 0, 0);
333	if (IS_ERR(tfm)) {
334		pr_err("encrypted_key: can't alloc %s transform: %ld\n",
335		       hmac_alg, PTR_ERR(tfm));
336		return PTR_ERR(tfm);
337	}
338
339	err = crypto_shash_setkey(tfm, key, keylen);
340	if (!err)
341		err = crypto_shash_tfm_digest(tfm, buf, buflen, digest);
342	crypto_free_shash(tfm);
343	return err;
344}
345
346enum derived_key_type { ENC_KEY, AUTH_KEY };
347
348/* Derive authentication/encryption key from trusted key */
349static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
350			   const u8 *master_key, size_t master_keylen)
351{
352	u8 *derived_buf;
353	unsigned int derived_buf_len;
354	int ret;
355
356	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
357	if (derived_buf_len < HASH_SIZE)
358		derived_buf_len = HASH_SIZE;
359
360	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
361	if (!derived_buf)
362		return -ENOMEM;
363
364	if (key_type)
365		strcpy(derived_buf, "AUTH_KEY");
366	else
367		strcpy(derived_buf, "ENC_KEY");
368
369	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
370	       master_keylen);
371	ret = crypto_shash_tfm_digest(hash_tfm, derived_buf, derived_buf_len,
372				      derived_key);
373	kfree_sensitive(derived_buf);
374	return ret;
375}
376
377static struct skcipher_request *init_skcipher_req(const u8 *key,
378						  unsigned int key_len)
379{
380	struct skcipher_request *req;
381	struct crypto_skcipher *tfm;
382	int ret;
383
384	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
385	if (IS_ERR(tfm)) {
386		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
387		       blkcipher_alg, PTR_ERR(tfm));
388		return ERR_CAST(tfm);
389	}
390
391	ret = crypto_skcipher_setkey(tfm, key, key_len);
392	if (ret < 0) {
393		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
394		crypto_free_skcipher(tfm);
395		return ERR_PTR(ret);
396	}
397
398	req = skcipher_request_alloc(tfm, GFP_KERNEL);
399	if (!req) {
400		pr_err("encrypted_key: failed to allocate request for %s\n",
401		       blkcipher_alg);
402		crypto_free_skcipher(tfm);
403		return ERR_PTR(-ENOMEM);
404	}
405
406	skcipher_request_set_callback(req, 0, NULL, NULL);
407	return req;
408}
409
410static struct key *request_master_key(struct encrypted_key_payload *epayload,
411				      const u8 **master_key, size_t *master_keylen)
412{
413	struct key *mkey = ERR_PTR(-EINVAL);
414
415	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
416		     KEY_TRUSTED_PREFIX_LEN)) {
417		mkey = request_trusted_key(epayload->master_desc +
418					   KEY_TRUSTED_PREFIX_LEN,
419					   master_key, master_keylen);
420	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
421			    KEY_USER_PREFIX_LEN)) {
422		mkey = request_user_key(epayload->master_desc +
423					KEY_USER_PREFIX_LEN,
424					master_key, master_keylen);
425	} else
426		goto out;
427
428	if (IS_ERR(mkey)) {
429		int ret = PTR_ERR(mkey);
430
431		if (ret == -ENOTSUPP)
432			pr_info("encrypted_key: key %s not supported",
433				epayload->master_desc);
434		else
435			pr_info("encrypted_key: key %s not found",
436				epayload->master_desc);
437		goto out;
438	}
439
440	dump_master_key(*master_key, *master_keylen);
441out:
442	return mkey;
443}
444
445/* Before returning data to userspace, encrypt decrypted data. */
446static int derived_key_encrypt(struct encrypted_key_payload *epayload,
447			       const u8 *derived_key,
448			       unsigned int derived_keylen)
449{
450	struct scatterlist sg_in[2];
451	struct scatterlist sg_out[1];
452	struct crypto_skcipher *tfm;
453	struct skcipher_request *req;
454	unsigned int encrypted_datalen;
455	u8 iv[AES_BLOCK_SIZE];
456	int ret;
457
458	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
459
460	req = init_skcipher_req(derived_key, derived_keylen);
461	ret = PTR_ERR(req);
462	if (IS_ERR(req))
463		goto out;
464	dump_decrypted_data(epayload);
465
466	sg_init_table(sg_in, 2);
467	sg_set_buf(&sg_in[0], epayload->decrypted_data,
468		   epayload->decrypted_datalen);
469	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
470
471	sg_init_table(sg_out, 1);
472	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
473
474	memcpy(iv, epayload->iv, sizeof(iv));
475	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
476	ret = crypto_skcipher_encrypt(req);
477	tfm = crypto_skcipher_reqtfm(req);
478	skcipher_request_free(req);
479	crypto_free_skcipher(tfm);
480	if (ret < 0)
481		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
482	else
483		dump_encrypted_data(epayload, encrypted_datalen);
484out:
485	return ret;
486}
487
488static int datablob_hmac_append(struct encrypted_key_payload *epayload,
489				const u8 *master_key, size_t master_keylen)
490{
491	u8 derived_key[HASH_SIZE];
492	u8 *digest;
493	int ret;
494
495	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
496	if (ret < 0)
497		goto out;
498
499	digest = epayload->format + epayload->datablob_len;
500	ret = calc_hmac(digest, derived_key, sizeof derived_key,
501			epayload->format, epayload->datablob_len);
502	if (!ret)
503		dump_hmac(NULL, digest, HASH_SIZE);
504out:
505	memzero_explicit(derived_key, sizeof(derived_key));
506	return ret;
507}
508
509/* verify HMAC before decrypting encrypted key */
510static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
511				const u8 *format, const u8 *master_key,
512				size_t master_keylen)
513{
514	u8 derived_key[HASH_SIZE];
515	u8 digest[HASH_SIZE];
516	int ret;
517	char *p;
518	unsigned short len;
519
520	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
521	if (ret < 0)
522		goto out;
523
524	len = epayload->datablob_len;
525	if (!format) {
526		p = epayload->master_desc;
527		len -= strlen(epayload->format) + 1;
528	} else
529		p = epayload->format;
530
531	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
532	if (ret < 0)
533		goto out;
534	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
535			    sizeof(digest));
536	if (ret) {
537		ret = -EINVAL;
538		dump_hmac("datablob",
539			  epayload->format + epayload->datablob_len,
540			  HASH_SIZE);
541		dump_hmac("calc", digest, HASH_SIZE);
542	}
543out:
544	memzero_explicit(derived_key, sizeof(derived_key));
545	return ret;
546}
547
548static int derived_key_decrypt(struct encrypted_key_payload *epayload,
549			       const u8 *derived_key,
550			       unsigned int derived_keylen)
551{
552	struct scatterlist sg_in[1];
553	struct scatterlist sg_out[2];
554	struct crypto_skcipher *tfm;
555	struct skcipher_request *req;
556	unsigned int encrypted_datalen;
557	u8 iv[AES_BLOCK_SIZE];
558	u8 *pad;
559	int ret;
560
561	/* Throwaway buffer to hold the unused zero padding at the end */
562	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
563	if (!pad)
564		return -ENOMEM;
565
566	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
567	req = init_skcipher_req(derived_key, derived_keylen);
568	ret = PTR_ERR(req);
569	if (IS_ERR(req))
570		goto out;
571	dump_encrypted_data(epayload, encrypted_datalen);
572
573	sg_init_table(sg_in, 1);
574	sg_init_table(sg_out, 2);
575	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
576	sg_set_buf(&sg_out[0], epayload->decrypted_data,
577		   epayload->decrypted_datalen);
578	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
579
580	memcpy(iv, epayload->iv, sizeof(iv));
581	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
582	ret = crypto_skcipher_decrypt(req);
583	tfm = crypto_skcipher_reqtfm(req);
584	skcipher_request_free(req);
585	crypto_free_skcipher(tfm);
586	if (ret < 0)
587		goto out;
588	dump_decrypted_data(epayload);
589out:
590	kfree(pad);
591	return ret;
592}
593
594/* Allocate memory for decrypted key and datablob. */
595static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
596							 const char *format,
597							 const char *master_desc,
598							 const char *datalen)
599{
600	struct encrypted_key_payload *epayload = NULL;
601	unsigned short datablob_len;
602	unsigned short decrypted_datalen;
603	unsigned short payload_datalen;
604	unsigned int encrypted_datalen;
605	unsigned int format_len;
606	long dlen;
607	int ret;
608
609	ret = kstrtol(datalen, 10, &dlen);
610	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
611		return ERR_PTR(-EINVAL);
612
613	format_len = (!format) ? strlen(key_format_default) : strlen(format);
614	decrypted_datalen = dlen;
615	payload_datalen = decrypted_datalen;
616	if (format) {
617		if (!strcmp(format, key_format_ecryptfs)) {
618			if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
619				pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
620					ECRYPTFS_MAX_KEY_BYTES);
621				return ERR_PTR(-EINVAL);
622			}
623			decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
624			payload_datalen = sizeof(struct ecryptfs_auth_tok);
625		} else if (!strcmp(format, key_format_enc32)) {
626			if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
627				pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
628						decrypted_datalen);
629				return ERR_PTR(-EINVAL);
630			}
631		}
632	}
633
634	encrypted_datalen = roundup(decrypted_datalen, blksize);
635
636	datablob_len = format_len + 1 + strlen(master_desc) + 1
637	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
638
639	ret = key_payload_reserve(key, payload_datalen + datablob_len
640				  + HASH_SIZE + 1);
641	if (ret < 0)
642		return ERR_PTR(ret);
643
644	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
645			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
646	if (!epayload)
647		return ERR_PTR(-ENOMEM);
648
649	epayload->payload_datalen = payload_datalen;
650	epayload->decrypted_datalen = decrypted_datalen;
651	epayload->datablob_len = datablob_len;
652	return epayload;
653}
654
655static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
656				 const char *format, const char *hex_encoded_iv)
657{
658	struct key *mkey;
659	u8 derived_key[HASH_SIZE];
660	const u8 *master_key;
661	u8 *hmac;
662	const char *hex_encoded_data;
663	unsigned int encrypted_datalen;
664	size_t master_keylen;
665	size_t asciilen;
666	int ret;
667
668	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
669	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
670	if (strlen(hex_encoded_iv) != asciilen)
671		return -EINVAL;
672
673	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
674	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
675	if (ret < 0)
676		return -EINVAL;
677	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
678		      encrypted_datalen);
679	if (ret < 0)
680		return -EINVAL;
681
682	hmac = epayload->format + epayload->datablob_len;
683	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
684		      HASH_SIZE);
685	if (ret < 0)
686		return -EINVAL;
687
688	mkey = request_master_key(epayload, &master_key, &master_keylen);
689	if (IS_ERR(mkey))
690		return PTR_ERR(mkey);
691
692	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
693	if (ret < 0) {
694		pr_err("encrypted_key: bad hmac (%d)\n", ret);
695		goto out;
696	}
697
698	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
699	if (ret < 0)
700		goto out;
701
702	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
703	if (ret < 0)
704		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
705out:
706	up_read(&mkey->sem);
707	key_put(mkey);
708	memzero_explicit(derived_key, sizeof(derived_key));
709	return ret;
710}
711
712static void __ekey_init(struct encrypted_key_payload *epayload,
713			const char *format, const char *master_desc,
714			const char *datalen)
715{
716	unsigned int format_len;
717
718	format_len = (!format) ? strlen(key_format_default) : strlen(format);
719	epayload->format = epayload->payload_data + epayload->payload_datalen;
720	epayload->master_desc = epayload->format + format_len + 1;
721	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
722	epayload->iv = epayload->datalen + strlen(datalen) + 1;
723	epayload->encrypted_data = epayload->iv + ivsize + 1;
724	epayload->decrypted_data = epayload->payload_data;
725
726	if (!format)
727		memcpy(epayload->format, key_format_default, format_len);
728	else {
729		if (!strcmp(format, key_format_ecryptfs))
730			epayload->decrypted_data =
731				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
732
733		memcpy(epayload->format, format, format_len);
734	}
735
736	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
737	memcpy(epayload->datalen, datalen, strlen(datalen));
738}
739
740/*
741 * encrypted_init - initialize an encrypted key
742 *
743 * For a new key, use a random number for both the iv and data
744 * itself.  For an old key, decrypt the hex encoded data.
745 */
746static int encrypted_init(struct encrypted_key_payload *epayload,
747			  const char *key_desc, const char *format,
748			  const char *master_desc, const char *datalen,
749			  const char *hex_encoded_iv)
750{
751	int ret = 0;
752
753	if (format && !strcmp(format, key_format_ecryptfs)) {
754		ret = valid_ecryptfs_desc(key_desc);
755		if (ret < 0)
756			return ret;
757
758		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
759				       key_desc);
760	}
761
762	__ekey_init(epayload, format, master_desc, datalen);
763	if (!hex_encoded_iv) {
764		get_random_bytes(epayload->iv, ivsize);
765
766		get_random_bytes(epayload->decrypted_data,
767				 epayload->decrypted_datalen);
768	} else
769		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
770	return ret;
771}
772
773/*
774 * encrypted_instantiate - instantiate an encrypted key
775 *
776 * Decrypt an existing encrypted datablob or create a new encrypted key
777 * based on a kernel random number.
778 *
779 * On success, return 0. Otherwise return errno.
780 */
781static int encrypted_instantiate(struct key *key,
782				 struct key_preparsed_payload *prep)
783{
784	struct encrypted_key_payload *epayload = NULL;
785	char *datablob = NULL;
786	const char *format = NULL;
787	char *master_desc = NULL;
788	char *decrypted_datalen = NULL;
789	char *hex_encoded_iv = NULL;
790	size_t datalen = prep->datalen;
791	int ret;
792
793	if (datalen <= 0 || datalen > 32767 || !prep->data)
794		return -EINVAL;
795
796	datablob = kmalloc(datalen + 1, GFP_KERNEL);
797	if (!datablob)
798		return -ENOMEM;
799	datablob[datalen] = 0;
800	memcpy(datablob, prep->data, datalen);
801	ret = datablob_parse(datablob, &format, &master_desc,
802			     &decrypted_datalen, &hex_encoded_iv);
803	if (ret < 0)
804		goto out;
805
806	epayload = encrypted_key_alloc(key, format, master_desc,
807				       decrypted_datalen);
808	if (IS_ERR(epayload)) {
809		ret = PTR_ERR(epayload);
810		goto out;
811	}
812	ret = encrypted_init(epayload, key->description, format, master_desc,
813			     decrypted_datalen, hex_encoded_iv);
814	if (ret < 0) {
815		kfree_sensitive(epayload);
816		goto out;
817	}
818
819	rcu_assign_keypointer(key, epayload);
820out:
821	kfree_sensitive(datablob);
822	return ret;
823}
824
825static void encrypted_rcu_free(struct rcu_head *rcu)
826{
827	struct encrypted_key_payload *epayload;
828
829	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
830	kfree_sensitive(epayload);
831}
832
833/*
834 * encrypted_update - update the master key description
835 *
836 * Change the master key description for an existing encrypted key.
837 * The next read will return an encrypted datablob using the new
838 * master key description.
839 *
840 * On success, return 0. Otherwise return errno.
841 */
842static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
843{
844	struct encrypted_key_payload *epayload = key->payload.data[0];
845	struct encrypted_key_payload *new_epayload;
846	char *buf;
847	char *new_master_desc = NULL;
848	const char *format = NULL;
849	size_t datalen = prep->datalen;
850	int ret = 0;
851
852	if (key_is_negative(key))
853		return -ENOKEY;
854	if (datalen <= 0 || datalen > 32767 || !prep->data)
855		return -EINVAL;
856
857	buf = kmalloc(datalen + 1, GFP_KERNEL);
858	if (!buf)
859		return -ENOMEM;
860
861	buf[datalen] = 0;
862	memcpy(buf, prep->data, datalen);
863	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
864	if (ret < 0)
865		goto out;
866
867	ret = valid_master_desc(new_master_desc, epayload->master_desc);
868	if (ret < 0)
869		goto out;
870
871	new_epayload = encrypted_key_alloc(key, epayload->format,
872					   new_master_desc, epayload->datalen);
873	if (IS_ERR(new_epayload)) {
874		ret = PTR_ERR(new_epayload);
875		goto out;
876	}
877
878	__ekey_init(new_epayload, epayload->format, new_master_desc,
879		    epayload->datalen);
880
881	memcpy(new_epayload->iv, epayload->iv, ivsize);
882	memcpy(new_epayload->payload_data, epayload->payload_data,
883	       epayload->payload_datalen);
884
885	rcu_assign_keypointer(key, new_epayload);
886	call_rcu(&epayload->rcu, encrypted_rcu_free);
887out:
888	kfree_sensitive(buf);
889	return ret;
890}
891
892/*
893 * encrypted_read - format and copy out the encrypted data
894 *
895 * The resulting datablob format is:
896 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
897 *
898 * On success, return to userspace the encrypted key datablob size.
899 */
900static long encrypted_read(const struct key *key, char *buffer,
901			   size_t buflen)
902{
903	struct encrypted_key_payload *epayload;
904	struct key *mkey;
905	const u8 *master_key;
906	size_t master_keylen;
907	char derived_key[HASH_SIZE];
908	char *ascii_buf;
909	size_t asciiblob_len;
910	int ret;
911
912	epayload = dereference_key_locked(key);
913
914	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
915	asciiblob_len = epayload->datablob_len + ivsize + 1
916	    + roundup(epayload->decrypted_datalen, blksize)
917	    + (HASH_SIZE * 2);
918
919	if (!buffer || buflen < asciiblob_len)
920		return asciiblob_len;
921
922	mkey = request_master_key(epayload, &master_key, &master_keylen);
923	if (IS_ERR(mkey))
924		return PTR_ERR(mkey);
925
926	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
927	if (ret < 0)
928		goto out;
929
930	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
931	if (ret < 0)
932		goto out;
933
934	ret = datablob_hmac_append(epayload, master_key, master_keylen);
935	if (ret < 0)
936		goto out;
937
938	ascii_buf = datablob_format(epayload, asciiblob_len);
939	if (!ascii_buf) {
940		ret = -ENOMEM;
941		goto out;
942	}
943
944	up_read(&mkey->sem);
945	key_put(mkey);
946	memzero_explicit(derived_key, sizeof(derived_key));
947
948	memcpy(buffer, ascii_buf, asciiblob_len);
949	kfree_sensitive(ascii_buf);
950
951	return asciiblob_len;
952out:
953	up_read(&mkey->sem);
954	key_put(mkey);
955	memzero_explicit(derived_key, sizeof(derived_key));
956	return ret;
957}
958
959/*
960 * encrypted_destroy - clear and free the key's payload
961 */
962static void encrypted_destroy(struct key *key)
963{
964	kfree_sensitive(key->payload.data[0]);
965}
966
967struct key_type key_type_encrypted = {
968	.name = "encrypted",
969	.instantiate = encrypted_instantiate,
970	.update = encrypted_update,
971	.destroy = encrypted_destroy,
972	.describe = user_describe,
973	.read = encrypted_read,
974};
975EXPORT_SYMBOL_GPL(key_type_encrypted);
976
977static int __init init_encrypted(void)
978{
979	int ret;
980
981	hash_tfm = crypto_alloc_shash(hash_alg, 0, 0);
982	if (IS_ERR(hash_tfm)) {
983		pr_err("encrypted_key: can't allocate %s transform: %ld\n",
984		       hash_alg, PTR_ERR(hash_tfm));
985		return PTR_ERR(hash_tfm);
986	}
987
988	ret = aes_get_sizes();
989	if (ret < 0)
990		goto out;
991	ret = register_key_type(&key_type_encrypted);
992	if (ret < 0)
993		goto out;
994	return 0;
995out:
996	crypto_free_shash(hash_tfm);
997	return ret;
998
999}
1000
1001static void __exit cleanup_encrypted(void)
1002{
1003	crypto_free_shash(hash_tfm);
1004	unregister_key_type(&key_type_encrypted);
1005}
1006
1007late_initcall(init_encrypted);
1008module_exit(cleanup_encrypted);
1009
1010MODULE_LICENSE("GPL");
1011