xref: /kernel/linux/linux-5.10/net/xdp/xsk_queue.h (revision 8c2ecf20)
1/* SPDX-License-Identifier: GPL-2.0 */
2/* XDP user-space ring structure
3 * Copyright(c) 2018 Intel Corporation.
4 */
5
6#ifndef _LINUX_XSK_QUEUE_H
7#define _LINUX_XSK_QUEUE_H
8
9#include <linux/types.h>
10#include <linux/if_xdp.h>
11#include <net/xdp_sock.h>
12#include <net/xsk_buff_pool.h>
13
14#include "xsk.h"
15
16struct xdp_ring {
17	u32 producer ____cacheline_aligned_in_smp;
18	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19	 * pointer if the producer pointer is touched and vice versa.
20	 */
21	u32 pad ____cacheline_aligned_in_smp;
22	u32 consumer ____cacheline_aligned_in_smp;
23	u32 flags;
24};
25
26/* Used for the RX and TX queues for packets */
27struct xdp_rxtx_ring {
28	struct xdp_ring ptrs;
29	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
30};
31
32/* Used for the fill and completion queues for buffers */
33struct xdp_umem_ring {
34	struct xdp_ring ptrs;
35	u64 desc[] ____cacheline_aligned_in_smp;
36};
37
38struct xsk_queue {
39	u32 ring_mask;
40	u32 nentries;
41	u32 cached_prod;
42	u32 cached_cons;
43	struct xdp_ring *ring;
44	u64 invalid_descs;
45	u64 queue_empty_descs;
46};
47
48/* The structure of the shared state of the rings are the same as the
49 * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
50 * ring, the kernel is the producer and user space is the consumer. For
51 * the Tx and fill rings, the kernel is the consumer and user space is
52 * the producer.
53 *
54 * producer                         consumer
55 *
56 * if (LOAD ->consumer) {           LOAD ->producer
57 *                    (A)           smp_rmb()       (C)
58 *    STORE $data                   LOAD $data
59 *    smp_wmb()       (B)           smp_mb()        (D)
60 *    STORE ->producer              STORE ->consumer
61 * }
62 *
63 * (A) pairs with (D), and (B) pairs with (C).
64 *
65 * Starting with (B), it protects the data from being written after
66 * the producer pointer. If this barrier was missing, the consumer
67 * could observe the producer pointer being set and thus load the data
68 * before the producer has written the new data. The consumer would in
69 * this case load the old data.
70 *
71 * (C) protects the consumer from speculatively loading the data before
72 * the producer pointer actually has been read. If we do not have this
73 * barrier, some architectures could load old data as speculative loads
74 * are not discarded as the CPU does not know there is a dependency
75 * between ->producer and data.
76 *
77 * (A) is a control dependency that separates the load of ->consumer
78 * from the stores of $data. In case ->consumer indicates there is no
79 * room in the buffer to store $data we do not. So no barrier is needed.
80 *
81 * (D) protects the load of the data to be observed to happen after the
82 * store of the consumer pointer. If we did not have this memory
83 * barrier, the producer could observe the consumer pointer being set
84 * and overwrite the data with a new value before the consumer got the
85 * chance to read the old value. The consumer would thus miss reading
86 * the old entry and very likely read the new entry twice, once right
87 * now and again after circling through the ring.
88 */
89
90/* The operations on the rings are the following:
91 *
92 * producer                           consumer
93 *
94 * RESERVE entries                    PEEK in the ring for entries
95 * WRITE data into the ring           READ data from the ring
96 * SUBMIT entries                     RELEASE entries
97 *
98 * The producer reserves one or more entries in the ring. It can then
99 * fill in these entries and finally submit them so that they can be
100 * seen and read by the consumer.
101 *
102 * The consumer peeks into the ring to see if the producer has written
103 * any new entries. If so, the consumer can then read these entries
104 * and when it is done reading them release them back to the producer
105 * so that the producer can use these slots to fill in new entries.
106 *
107 * The function names below reflect these operations.
108 */
109
110/* Functions that read and validate content from consumer rings. */
111
112static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
113{
114	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
115
116	if (q->cached_cons != q->cached_prod) {
117		u32 idx = q->cached_cons & q->ring_mask;
118
119		*addr = ring->desc[idx];
120		return true;
121	}
122
123	return false;
124}
125
126static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
127					    struct xdp_desc *desc)
128{
129	u64 chunk, chunk_end;
130
131	chunk = xp_aligned_extract_addr(pool, desc->addr);
132	if (likely(desc->len)) {
133		chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1);
134		if (chunk != chunk_end)
135			return false;
136	}
137
138	if (chunk >= pool->addrs_cnt)
139		return false;
140
141	if (desc->options)
142		return false;
143	return true;
144}
145
146static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
147					      struct xdp_desc *desc)
148{
149	u64 addr, base_addr;
150
151	base_addr = xp_unaligned_extract_addr(desc->addr);
152	addr = xp_unaligned_add_offset_to_addr(desc->addr);
153
154	if (desc->len > pool->chunk_size)
155		return false;
156
157	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
158	    addr + desc->len > pool->addrs_cnt ||
159	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
160		return false;
161
162	if (desc->options)
163		return false;
164	return true;
165}
166
167static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
168				    struct xdp_desc *desc)
169{
170	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
171		xp_aligned_validate_desc(pool, desc);
172}
173
174static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
175					   struct xdp_desc *d,
176					   struct xsk_buff_pool *pool)
177{
178	if (!xp_validate_desc(pool, d)) {
179		q->invalid_descs++;
180		return false;
181	}
182	return true;
183}
184
185static inline bool xskq_cons_read_desc(struct xsk_queue *q,
186				       struct xdp_desc *desc,
187				       struct xsk_buff_pool *pool)
188{
189	while (q->cached_cons != q->cached_prod) {
190		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
191		u32 idx = q->cached_cons & q->ring_mask;
192
193		*desc = ring->desc[idx];
194		if (xskq_cons_is_valid_desc(q, desc, pool))
195			return true;
196
197		q->cached_cons++;
198	}
199
200	return false;
201}
202
203/* Functions for consumers */
204
205static inline void __xskq_cons_release(struct xsk_queue *q)
206{
207	smp_mb(); /* D, matches A */
208	WRITE_ONCE(q->ring->consumer, q->cached_cons);
209}
210
211static inline void __xskq_cons_peek(struct xsk_queue *q)
212{
213	/* Refresh the local pointer */
214	q->cached_prod = READ_ONCE(q->ring->producer);
215	smp_rmb(); /* C, matches B */
216}
217
218static inline void xskq_cons_get_entries(struct xsk_queue *q)
219{
220	__xskq_cons_release(q);
221	__xskq_cons_peek(q);
222}
223
224static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
225{
226	u32 entries = q->cached_prod - q->cached_cons;
227
228	if (entries >= cnt)
229		return true;
230
231	__xskq_cons_peek(q);
232	entries = q->cached_prod - q->cached_cons;
233
234	return entries >= cnt;
235}
236
237static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
238{
239	if (q->cached_prod == q->cached_cons)
240		xskq_cons_get_entries(q);
241	return xskq_cons_read_addr_unchecked(q, addr);
242}
243
244static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
245				       struct xdp_desc *desc,
246				       struct xsk_buff_pool *pool)
247{
248	if (q->cached_prod == q->cached_cons)
249		xskq_cons_get_entries(q);
250	return xskq_cons_read_desc(q, desc, pool);
251}
252
253static inline void xskq_cons_release(struct xsk_queue *q)
254{
255	/* To improve performance, only update local state here.
256	 * Reflect this to global state when we get new entries
257	 * from the ring in xskq_cons_get_entries() and whenever
258	 * Rx or Tx processing are completed in the NAPI loop.
259	 */
260	q->cached_cons++;
261}
262
263static inline bool xskq_cons_is_full(struct xsk_queue *q)
264{
265	/* No barriers needed since data is not accessed */
266	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
267		q->nentries;
268}
269
270static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
271{
272	/* No barriers needed since data is not accessed */
273	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
274}
275
276/* Functions for producers */
277
278static inline bool xskq_prod_is_full(struct xsk_queue *q)
279{
280	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
281
282	if (free_entries)
283		return false;
284
285	/* Refresh the local tail pointer */
286	q->cached_cons = READ_ONCE(q->ring->consumer);
287	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
288
289	return !free_entries;
290}
291
292static inline void xskq_prod_cancel(struct xsk_queue *q)
293{
294	q->cached_prod--;
295}
296
297static inline int xskq_prod_reserve(struct xsk_queue *q)
298{
299	if (xskq_prod_is_full(q))
300		return -ENOSPC;
301
302	/* A, matches D */
303	q->cached_prod++;
304	return 0;
305}
306
307static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
308{
309	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
310
311	if (xskq_prod_is_full(q))
312		return -ENOSPC;
313
314	/* A, matches D */
315	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
316	return 0;
317}
318
319static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
320					 u64 addr, u32 len)
321{
322	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
323	u32 idx;
324
325	if (xskq_prod_is_full(q))
326		return -ENOSPC;
327
328	/* A, matches D */
329	idx = q->cached_prod++ & q->ring_mask;
330	ring->desc[idx].addr = addr;
331	ring->desc[idx].len = len;
332
333	return 0;
334}
335
336static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
337{
338	smp_wmb(); /* B, matches C */
339
340	WRITE_ONCE(q->ring->producer, idx);
341}
342
343static inline void xskq_prod_submit(struct xsk_queue *q)
344{
345	__xskq_prod_submit(q, q->cached_prod);
346}
347
348static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
349{
350	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
351	u32 idx = q->ring->producer;
352
353	ring->desc[idx++ & q->ring_mask] = addr;
354
355	__xskq_prod_submit(q, idx);
356}
357
358static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
359{
360	__xskq_prod_submit(q, q->ring->producer + nb_entries);
361}
362
363static inline bool xskq_prod_is_empty(struct xsk_queue *q)
364{
365	/* No barriers needed since data is not accessed */
366	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
367}
368
369/* For both producers and consumers */
370
371static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
372{
373	return q ? q->invalid_descs : 0;
374}
375
376static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
377{
378	return q ? q->queue_empty_descs : 0;
379}
380
381struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
382void xskq_destroy(struct xsk_queue *q_ops);
383
384#endif /* _LINUX_XSK_QUEUE_H */
385