1/* SPDX-License-Identifier: GPL-2.0 */ 2/* XDP user-space ring structure 3 * Copyright(c) 2018 Intel Corporation. 4 */ 5 6#ifndef _LINUX_XSK_QUEUE_H 7#define _LINUX_XSK_QUEUE_H 8 9#include <linux/types.h> 10#include <linux/if_xdp.h> 11#include <net/xdp_sock.h> 12#include <net/xsk_buff_pool.h> 13 14#include "xsk.h" 15 16struct xdp_ring { 17 u32 producer ____cacheline_aligned_in_smp; 18 /* Hinder the adjacent cache prefetcher to prefetch the consumer 19 * pointer if the producer pointer is touched and vice versa. 20 */ 21 u32 pad ____cacheline_aligned_in_smp; 22 u32 consumer ____cacheline_aligned_in_smp; 23 u32 flags; 24}; 25 26/* Used for the RX and TX queues for packets */ 27struct xdp_rxtx_ring { 28 struct xdp_ring ptrs; 29 struct xdp_desc desc[] ____cacheline_aligned_in_smp; 30}; 31 32/* Used for the fill and completion queues for buffers */ 33struct xdp_umem_ring { 34 struct xdp_ring ptrs; 35 u64 desc[] ____cacheline_aligned_in_smp; 36}; 37 38struct xsk_queue { 39 u32 ring_mask; 40 u32 nentries; 41 u32 cached_prod; 42 u32 cached_cons; 43 struct xdp_ring *ring; 44 u64 invalid_descs; 45 u64 queue_empty_descs; 46}; 47 48/* The structure of the shared state of the rings are the same as the 49 * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion 50 * ring, the kernel is the producer and user space is the consumer. For 51 * the Tx and fill rings, the kernel is the consumer and user space is 52 * the producer. 53 * 54 * producer consumer 55 * 56 * if (LOAD ->consumer) { LOAD ->producer 57 * (A) smp_rmb() (C) 58 * STORE $data LOAD $data 59 * smp_wmb() (B) smp_mb() (D) 60 * STORE ->producer STORE ->consumer 61 * } 62 * 63 * (A) pairs with (D), and (B) pairs with (C). 64 * 65 * Starting with (B), it protects the data from being written after 66 * the producer pointer. If this barrier was missing, the consumer 67 * could observe the producer pointer being set and thus load the data 68 * before the producer has written the new data. The consumer would in 69 * this case load the old data. 70 * 71 * (C) protects the consumer from speculatively loading the data before 72 * the producer pointer actually has been read. If we do not have this 73 * barrier, some architectures could load old data as speculative loads 74 * are not discarded as the CPU does not know there is a dependency 75 * between ->producer and data. 76 * 77 * (A) is a control dependency that separates the load of ->consumer 78 * from the stores of $data. In case ->consumer indicates there is no 79 * room in the buffer to store $data we do not. So no barrier is needed. 80 * 81 * (D) protects the load of the data to be observed to happen after the 82 * store of the consumer pointer. If we did not have this memory 83 * barrier, the producer could observe the consumer pointer being set 84 * and overwrite the data with a new value before the consumer got the 85 * chance to read the old value. The consumer would thus miss reading 86 * the old entry and very likely read the new entry twice, once right 87 * now and again after circling through the ring. 88 */ 89 90/* The operations on the rings are the following: 91 * 92 * producer consumer 93 * 94 * RESERVE entries PEEK in the ring for entries 95 * WRITE data into the ring READ data from the ring 96 * SUBMIT entries RELEASE entries 97 * 98 * The producer reserves one or more entries in the ring. It can then 99 * fill in these entries and finally submit them so that they can be 100 * seen and read by the consumer. 101 * 102 * The consumer peeks into the ring to see if the producer has written 103 * any new entries. If so, the consumer can then read these entries 104 * and when it is done reading them release them back to the producer 105 * so that the producer can use these slots to fill in new entries. 106 * 107 * The function names below reflect these operations. 108 */ 109 110/* Functions that read and validate content from consumer rings. */ 111 112static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) 113{ 114 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 115 116 if (q->cached_cons != q->cached_prod) { 117 u32 idx = q->cached_cons & q->ring_mask; 118 119 *addr = ring->desc[idx]; 120 return true; 121 } 122 123 return false; 124} 125 126static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, 127 struct xdp_desc *desc) 128{ 129 u64 chunk, chunk_end; 130 131 chunk = xp_aligned_extract_addr(pool, desc->addr); 132 if (likely(desc->len)) { 133 chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1); 134 if (chunk != chunk_end) 135 return false; 136 } 137 138 if (chunk >= pool->addrs_cnt) 139 return false; 140 141 if (desc->options) 142 return false; 143 return true; 144} 145 146static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, 147 struct xdp_desc *desc) 148{ 149 u64 addr, base_addr; 150 151 base_addr = xp_unaligned_extract_addr(desc->addr); 152 addr = xp_unaligned_add_offset_to_addr(desc->addr); 153 154 if (desc->len > pool->chunk_size) 155 return false; 156 157 if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt || 158 addr + desc->len > pool->addrs_cnt || 159 xp_desc_crosses_non_contig_pg(pool, addr, desc->len)) 160 return false; 161 162 if (desc->options) 163 return false; 164 return true; 165} 166 167static inline bool xp_validate_desc(struct xsk_buff_pool *pool, 168 struct xdp_desc *desc) 169{ 170 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : 171 xp_aligned_validate_desc(pool, desc); 172} 173 174static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, 175 struct xdp_desc *d, 176 struct xsk_buff_pool *pool) 177{ 178 if (!xp_validate_desc(pool, d)) { 179 q->invalid_descs++; 180 return false; 181 } 182 return true; 183} 184 185static inline bool xskq_cons_read_desc(struct xsk_queue *q, 186 struct xdp_desc *desc, 187 struct xsk_buff_pool *pool) 188{ 189 while (q->cached_cons != q->cached_prod) { 190 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 191 u32 idx = q->cached_cons & q->ring_mask; 192 193 *desc = ring->desc[idx]; 194 if (xskq_cons_is_valid_desc(q, desc, pool)) 195 return true; 196 197 q->cached_cons++; 198 } 199 200 return false; 201} 202 203/* Functions for consumers */ 204 205static inline void __xskq_cons_release(struct xsk_queue *q) 206{ 207 smp_mb(); /* D, matches A */ 208 WRITE_ONCE(q->ring->consumer, q->cached_cons); 209} 210 211static inline void __xskq_cons_peek(struct xsk_queue *q) 212{ 213 /* Refresh the local pointer */ 214 q->cached_prod = READ_ONCE(q->ring->producer); 215 smp_rmb(); /* C, matches B */ 216} 217 218static inline void xskq_cons_get_entries(struct xsk_queue *q) 219{ 220 __xskq_cons_release(q); 221 __xskq_cons_peek(q); 222} 223 224static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) 225{ 226 u32 entries = q->cached_prod - q->cached_cons; 227 228 if (entries >= cnt) 229 return true; 230 231 __xskq_cons_peek(q); 232 entries = q->cached_prod - q->cached_cons; 233 234 return entries >= cnt; 235} 236 237static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) 238{ 239 if (q->cached_prod == q->cached_cons) 240 xskq_cons_get_entries(q); 241 return xskq_cons_read_addr_unchecked(q, addr); 242} 243 244static inline bool xskq_cons_peek_desc(struct xsk_queue *q, 245 struct xdp_desc *desc, 246 struct xsk_buff_pool *pool) 247{ 248 if (q->cached_prod == q->cached_cons) 249 xskq_cons_get_entries(q); 250 return xskq_cons_read_desc(q, desc, pool); 251} 252 253static inline void xskq_cons_release(struct xsk_queue *q) 254{ 255 /* To improve performance, only update local state here. 256 * Reflect this to global state when we get new entries 257 * from the ring in xskq_cons_get_entries() and whenever 258 * Rx or Tx processing are completed in the NAPI loop. 259 */ 260 q->cached_cons++; 261} 262 263static inline bool xskq_cons_is_full(struct xsk_queue *q) 264{ 265 /* No barriers needed since data is not accessed */ 266 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) == 267 q->nentries; 268} 269 270static inline u32 xskq_cons_present_entries(struct xsk_queue *q) 271{ 272 /* No barriers needed since data is not accessed */ 273 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); 274} 275 276/* Functions for producers */ 277 278static inline bool xskq_prod_is_full(struct xsk_queue *q) 279{ 280 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 281 282 if (free_entries) 283 return false; 284 285 /* Refresh the local tail pointer */ 286 q->cached_cons = READ_ONCE(q->ring->consumer); 287 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 288 289 return !free_entries; 290} 291 292static inline void xskq_prod_cancel(struct xsk_queue *q) 293{ 294 q->cached_prod--; 295} 296 297static inline int xskq_prod_reserve(struct xsk_queue *q) 298{ 299 if (xskq_prod_is_full(q)) 300 return -ENOSPC; 301 302 /* A, matches D */ 303 q->cached_prod++; 304 return 0; 305} 306 307static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) 308{ 309 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 310 311 if (xskq_prod_is_full(q)) 312 return -ENOSPC; 313 314 /* A, matches D */ 315 ring->desc[q->cached_prod++ & q->ring_mask] = addr; 316 return 0; 317} 318 319static inline int xskq_prod_reserve_desc(struct xsk_queue *q, 320 u64 addr, u32 len) 321{ 322 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 323 u32 idx; 324 325 if (xskq_prod_is_full(q)) 326 return -ENOSPC; 327 328 /* A, matches D */ 329 idx = q->cached_prod++ & q->ring_mask; 330 ring->desc[idx].addr = addr; 331 ring->desc[idx].len = len; 332 333 return 0; 334} 335 336static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) 337{ 338 smp_wmb(); /* B, matches C */ 339 340 WRITE_ONCE(q->ring->producer, idx); 341} 342 343static inline void xskq_prod_submit(struct xsk_queue *q) 344{ 345 __xskq_prod_submit(q, q->cached_prod); 346} 347 348static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr) 349{ 350 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 351 u32 idx = q->ring->producer; 352 353 ring->desc[idx++ & q->ring_mask] = addr; 354 355 __xskq_prod_submit(q, idx); 356} 357 358static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) 359{ 360 __xskq_prod_submit(q, q->ring->producer + nb_entries); 361} 362 363static inline bool xskq_prod_is_empty(struct xsk_queue *q) 364{ 365 /* No barriers needed since data is not accessed */ 366 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); 367} 368 369/* For both producers and consumers */ 370 371static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) 372{ 373 return q ? q->invalid_descs : 0; 374} 375 376static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) 377{ 378 return q ? q->queue_empty_descs : 0; 379} 380 381struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); 382void xskq_destroy(struct xsk_queue *q_ops); 383 384#endif /* _LINUX_XSK_QUEUE_H */ 385