1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10#include <linux/export.h> 11#include <linux/bitops.h> 12#include <linux/etherdevice.h> 13#include <linux/slab.h> 14#include <linux/ieee80211.h> 15#include <net/cfg80211.h> 16#include <net/ip.h> 17#include <net/dsfield.h> 18#include <linux/if_vlan.h> 19#include <linux/mpls.h> 20#include <linux/gcd.h> 21#include <linux/bitfield.h> 22#include <linux/nospec.h> 23#include "core.h" 24#include "rdev-ops.h" 25 26 27struct ieee80211_rate * 28ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30{ 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43} 44EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48{ 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72} 73EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76{ 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return MHZ_TO_KHZ(2484); 85 else if (chan < 14) 86 return MHZ_TO_KHZ(2407 + chan * 5); 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return MHZ_TO_KHZ(4000 + chan * 5); 91 else 92 return MHZ_TO_KHZ(5000 + chan * 5); 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D6.1 27.3.23.2 */ 96 if (chan == 2) 97 return MHZ_TO_KHZ(5935); 98 if (chan <= 233) 99 return MHZ_TO_KHZ(5950 + chan * 5); 100 break; 101 case NL80211_BAND_60GHZ: 102 if (chan < 7) 103 return MHZ_TO_KHZ(56160 + chan * 2160); 104 break; 105 case NL80211_BAND_S1GHZ: 106 return 902000 + chan * 500; 107 default: 108 ; 109 } 110 return 0; /* not supported */ 111} 112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 113 114enum nl80211_chan_width 115ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 116{ 117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 118 return NL80211_CHAN_WIDTH_20_NOHT; 119 120 /*S1G defines a single allowed channel width per channel. 121 * Extract that width here. 122 */ 123 if (chan->flags & IEEE80211_CHAN_1MHZ) 124 return NL80211_CHAN_WIDTH_1; 125 else if (chan->flags & IEEE80211_CHAN_2MHZ) 126 return NL80211_CHAN_WIDTH_2; 127 else if (chan->flags & IEEE80211_CHAN_4MHZ) 128 return NL80211_CHAN_WIDTH_4; 129 else if (chan->flags & IEEE80211_CHAN_8MHZ) 130 return NL80211_CHAN_WIDTH_8; 131 else if (chan->flags & IEEE80211_CHAN_16MHZ) 132 return NL80211_CHAN_WIDTH_16; 133 134 pr_err("unknown channel width for channel at %dKHz?\n", 135 ieee80211_channel_to_khz(chan)); 136 137 return NL80211_CHAN_WIDTH_1; 138} 139EXPORT_SYMBOL(ieee80211_s1g_channel_width); 140 141int ieee80211_freq_khz_to_channel(u32 freq) 142{ 143 /* TODO: just handle MHz for now */ 144 freq = KHZ_TO_MHZ(freq); 145 146 /* see 802.11 17.3.8.3.2 and Annex J */ 147 if (freq == 2484) 148 return 14; 149 else if (freq < 2484) 150 return (freq - 2407) / 5; 151 else if (freq >= 4910 && freq <= 4980) 152 return (freq - 4000) / 5; 153 else if (freq < 5925) 154 return (freq - 5000) / 5; 155 else if (freq == 5935) 156 return 2; 157 else if (freq <= 45000) /* DMG band lower limit */ 158 /* see 802.11ax D6.1 27.3.22.2 */ 159 return (freq - 5950) / 5; 160 else if (freq >= 58320 && freq <= 70200) 161 return (freq - 56160) / 2160; 162 else 163 return 0; 164} 165EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 166 167struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 168 u32 freq) 169{ 170 enum nl80211_band band; 171 struct ieee80211_supported_band *sband; 172 int i; 173 174 for (band = 0; band < NUM_NL80211_BANDS; band++) { 175 sband = wiphy->bands[band]; 176 177 if (!sband) 178 continue; 179 180 for (i = 0; i < sband->n_channels; i++) { 181 struct ieee80211_channel *chan = &sband->channels[i]; 182 183 if (ieee80211_channel_to_khz(chan) == freq) 184 return chan; 185 } 186 } 187 188 return NULL; 189} 190EXPORT_SYMBOL(ieee80211_get_channel_khz); 191 192static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 193{ 194 int i, want; 195 196 switch (sband->band) { 197 case NL80211_BAND_5GHZ: 198 case NL80211_BAND_6GHZ: 199 want = 3; 200 for (i = 0; i < sband->n_bitrates; i++) { 201 if (sband->bitrates[i].bitrate == 60 || 202 sband->bitrates[i].bitrate == 120 || 203 sband->bitrates[i].bitrate == 240) { 204 sband->bitrates[i].flags |= 205 IEEE80211_RATE_MANDATORY_A; 206 want--; 207 } 208 } 209 WARN_ON(want); 210 break; 211 case NL80211_BAND_2GHZ: 212 want = 7; 213 for (i = 0; i < sband->n_bitrates; i++) { 214 switch (sband->bitrates[i].bitrate) { 215 case 10: 216 case 20: 217 case 55: 218 case 110: 219 sband->bitrates[i].flags |= 220 IEEE80211_RATE_MANDATORY_B | 221 IEEE80211_RATE_MANDATORY_G; 222 want--; 223 break; 224 case 60: 225 case 120: 226 case 240: 227 sband->bitrates[i].flags |= 228 IEEE80211_RATE_MANDATORY_G; 229 want--; 230 fallthrough; 231 default: 232 sband->bitrates[i].flags |= 233 IEEE80211_RATE_ERP_G; 234 break; 235 } 236 } 237 WARN_ON(want != 0 && want != 3); 238 break; 239 case NL80211_BAND_60GHZ: 240 /* check for mandatory HT MCS 1..4 */ 241 WARN_ON(!sband->ht_cap.ht_supported); 242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 243 break; 244 case NL80211_BAND_S1GHZ: 245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 246 * mandatory is ok. 247 */ 248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 249 break; 250 case NUM_NL80211_BANDS: 251 default: 252 WARN_ON(1); 253 break; 254 } 255} 256 257void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 258{ 259 enum nl80211_band band; 260 261 for (band = 0; band < NUM_NL80211_BANDS; band++) 262 if (wiphy->bands[band]) 263 set_mandatory_flags_band(wiphy->bands[band]); 264} 265 266bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 267{ 268 int i; 269 for (i = 0; i < wiphy->n_cipher_suites; i++) 270 if (cipher == wiphy->cipher_suites[i]) 271 return true; 272 return false; 273} 274 275static bool 276cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 277{ 278 struct wiphy *wiphy = &rdev->wiphy; 279 int i; 280 281 for (i = 0; i < wiphy->n_cipher_suites; i++) { 282 switch (wiphy->cipher_suites[i]) { 283 case WLAN_CIPHER_SUITE_AES_CMAC: 284 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 285 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 286 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 287 return true; 288 } 289 } 290 291 return false; 292} 293 294bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 295 int key_idx, bool pairwise) 296{ 297 int max_key_idx; 298 299 if (pairwise) 300 max_key_idx = 3; 301 else if (wiphy_ext_feature_isset(&rdev->wiphy, 302 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 303 wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 305 max_key_idx = 7; 306 else if (cfg80211_igtk_cipher_supported(rdev)) 307 max_key_idx = 5; 308 else 309 max_key_idx = 3; 310 311 if (key_idx < 0 || key_idx > max_key_idx) 312 return false; 313 314 return true; 315} 316 317int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 318 struct key_params *params, int key_idx, 319 bool pairwise, const u8 *mac_addr) 320{ 321 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 322 return -EINVAL; 323 324 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 325 return -EINVAL; 326 327 if (pairwise && !mac_addr) 328 return -EINVAL; 329 330 switch (params->cipher) { 331 case WLAN_CIPHER_SUITE_TKIP: 332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 333 if ((pairwise && key_idx) || 334 params->mode != NL80211_KEY_RX_TX) 335 return -EINVAL; 336 break; 337 case WLAN_CIPHER_SUITE_CCMP: 338 case WLAN_CIPHER_SUITE_CCMP_256: 339 case WLAN_CIPHER_SUITE_GCMP: 340 case WLAN_CIPHER_SUITE_GCMP_256: 341 /* IEEE802.11-2016 allows only 0 and - when supporting 342 * Extended Key ID - 1 as index for pairwise keys. 343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 344 * the driver supports Extended Key ID. 345 * @NL80211_KEY_SET_TX can't be set when installing and 346 * validating a key. 347 */ 348 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 349 params->mode == NL80211_KEY_SET_TX) 350 return -EINVAL; 351 if (wiphy_ext_feature_isset(&rdev->wiphy, 352 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 353 if (pairwise && (key_idx < 0 || key_idx > 1)) 354 return -EINVAL; 355 } else if (pairwise && key_idx) { 356 return -EINVAL; 357 } 358 break; 359 case WLAN_CIPHER_SUITE_AES_CMAC: 360 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 361 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 362 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 363 /* Disallow BIP (group-only) cipher as pairwise cipher */ 364 if (pairwise) 365 return -EINVAL; 366 if (key_idx < 4) 367 return -EINVAL; 368 break; 369 case WLAN_CIPHER_SUITE_WEP40: 370 case WLAN_CIPHER_SUITE_WEP104: 371 if (key_idx > 3) 372 return -EINVAL; 373 default: 374 break; 375 } 376 377 switch (params->cipher) { 378 case WLAN_CIPHER_SUITE_WEP40: 379 if (params->key_len != WLAN_KEY_LEN_WEP40) 380 return -EINVAL; 381 break; 382 case WLAN_CIPHER_SUITE_TKIP: 383 if (params->key_len != WLAN_KEY_LEN_TKIP) 384 return -EINVAL; 385 break; 386 case WLAN_CIPHER_SUITE_CCMP: 387 if (params->key_len != WLAN_KEY_LEN_CCMP) 388 return -EINVAL; 389 break; 390 case WLAN_CIPHER_SUITE_CCMP_256: 391 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 392 return -EINVAL; 393 break; 394 case WLAN_CIPHER_SUITE_GCMP: 395 if (params->key_len != WLAN_KEY_LEN_GCMP) 396 return -EINVAL; 397 break; 398 case WLAN_CIPHER_SUITE_GCMP_256: 399 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 400 return -EINVAL; 401 break; 402 case WLAN_CIPHER_SUITE_WEP104: 403 if (params->key_len != WLAN_KEY_LEN_WEP104) 404 return -EINVAL; 405 break; 406 case WLAN_CIPHER_SUITE_AES_CMAC: 407 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 408 return -EINVAL; 409 break; 410 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 411 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 412 return -EINVAL; 413 break; 414 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 415 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 416 return -EINVAL; 417 break; 418 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 419 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 420 return -EINVAL; 421 break; 422 default: 423 /* 424 * We don't know anything about this algorithm, 425 * allow using it -- but the driver must check 426 * all parameters! We still check below whether 427 * or not the driver supports this algorithm, 428 * of course. 429 */ 430 break; 431 } 432 433 if (params->seq) { 434 switch (params->cipher) { 435 case WLAN_CIPHER_SUITE_WEP40: 436 case WLAN_CIPHER_SUITE_WEP104: 437 /* These ciphers do not use key sequence */ 438 return -EINVAL; 439 case WLAN_CIPHER_SUITE_TKIP: 440 case WLAN_CIPHER_SUITE_CCMP: 441 case WLAN_CIPHER_SUITE_CCMP_256: 442 case WLAN_CIPHER_SUITE_GCMP: 443 case WLAN_CIPHER_SUITE_GCMP_256: 444 case WLAN_CIPHER_SUITE_AES_CMAC: 445 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 446 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 447 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 448 if (params->seq_len != 6) 449 return -EINVAL; 450 break; 451 } 452 } 453 454 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 455 return -EINVAL; 456 457 return 0; 458} 459 460unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 461{ 462 unsigned int hdrlen = 24; 463 464 if (ieee80211_is_ext(fc)) { 465 hdrlen = 4; 466 goto out; 467 } 468 469 if (ieee80211_is_data(fc)) { 470 if (ieee80211_has_a4(fc)) 471 hdrlen = 30; 472 if (ieee80211_is_data_qos(fc)) { 473 hdrlen += IEEE80211_QOS_CTL_LEN; 474 if (ieee80211_has_order(fc)) 475 hdrlen += IEEE80211_HT_CTL_LEN; 476 } 477 goto out; 478 } 479 480 if (ieee80211_is_mgmt(fc)) { 481 if (ieee80211_has_order(fc)) 482 hdrlen += IEEE80211_HT_CTL_LEN; 483 goto out; 484 } 485 486 if (ieee80211_is_ctl(fc)) { 487 /* 488 * ACK and CTS are 10 bytes, all others 16. To see how 489 * to get this condition consider 490 * subtype mask: 0b0000000011110000 (0x00F0) 491 * ACK subtype: 0b0000000011010000 (0x00D0) 492 * CTS subtype: 0b0000000011000000 (0x00C0) 493 * bits that matter: ^^^ (0x00E0) 494 * value of those: 0b0000000011000000 (0x00C0) 495 */ 496 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 497 hdrlen = 10; 498 else 499 hdrlen = 16; 500 } 501out: 502 return hdrlen; 503} 504EXPORT_SYMBOL(ieee80211_hdrlen); 505 506unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 507{ 508 const struct ieee80211_hdr *hdr = 509 (const struct ieee80211_hdr *)skb->data; 510 unsigned int hdrlen; 511 512 if (unlikely(skb->len < 10)) 513 return 0; 514 hdrlen = ieee80211_hdrlen(hdr->frame_control); 515 if (unlikely(hdrlen > skb->len)) 516 return 0; 517 return hdrlen; 518} 519EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 520 521static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 522{ 523 int ae = flags & MESH_FLAGS_AE; 524 /* 802.11-2012, 8.2.4.7.3 */ 525 switch (ae) { 526 default: 527 case 0: 528 return 6; 529 case MESH_FLAGS_AE_A4: 530 return 12; 531 case MESH_FLAGS_AE_A5_A6: 532 return 18; 533 } 534} 535 536unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 537{ 538 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 539} 540EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 541 542int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 543 const u8 *addr, enum nl80211_iftype iftype, 544 u8 data_offset, bool is_amsdu) 545{ 546 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 547 struct { 548 u8 hdr[ETH_ALEN] __aligned(2); 549 __be16 proto; 550 } payload; 551 struct ethhdr tmp; 552 u16 hdrlen; 553 u8 mesh_flags = 0; 554 555 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 556 return -1; 557 558 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 559 if (skb->len < hdrlen + 8) 560 return -1; 561 562 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 563 * header 564 * IEEE 802.11 address fields: 565 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 566 * 0 0 DA SA BSSID n/a 567 * 0 1 DA BSSID SA n/a 568 * 1 0 BSSID SA DA n/a 569 * 1 1 RA TA DA SA 570 */ 571 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 572 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 573 574 if (iftype == NL80211_IFTYPE_MESH_POINT) 575 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 576 577 mesh_flags &= MESH_FLAGS_AE; 578 579 switch (hdr->frame_control & 580 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 581 case cpu_to_le16(IEEE80211_FCTL_TODS): 582 if (unlikely(iftype != NL80211_IFTYPE_AP && 583 iftype != NL80211_IFTYPE_AP_VLAN && 584 iftype != NL80211_IFTYPE_P2P_GO)) 585 return -1; 586 break; 587 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 588 if (unlikely(iftype != NL80211_IFTYPE_WDS && 589 iftype != NL80211_IFTYPE_MESH_POINT && 590 iftype != NL80211_IFTYPE_AP_VLAN && 591 iftype != NL80211_IFTYPE_STATION)) 592 return -1; 593 if (iftype == NL80211_IFTYPE_MESH_POINT) { 594 if (mesh_flags == MESH_FLAGS_AE_A4) 595 return -1; 596 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 597 skb_copy_bits(skb, hdrlen + 598 offsetof(struct ieee80211s_hdr, eaddr1), 599 tmp.h_dest, 2 * ETH_ALEN); 600 } 601 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 602 } 603 break; 604 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 605 if ((iftype != NL80211_IFTYPE_STATION && 606 iftype != NL80211_IFTYPE_P2P_CLIENT && 607 iftype != NL80211_IFTYPE_MESH_POINT) || 608 (is_multicast_ether_addr(tmp.h_dest) && 609 ether_addr_equal(tmp.h_source, addr))) 610 return -1; 611 if (iftype == NL80211_IFTYPE_MESH_POINT) { 612 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 613 return -1; 614 if (mesh_flags == MESH_FLAGS_AE_A4) 615 skb_copy_bits(skb, hdrlen + 616 offsetof(struct ieee80211s_hdr, eaddr1), 617 tmp.h_source, ETH_ALEN); 618 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 619 } 620 break; 621 case cpu_to_le16(0): 622 if (iftype != NL80211_IFTYPE_ADHOC && 623 iftype != NL80211_IFTYPE_STATION && 624 iftype != NL80211_IFTYPE_OCB) 625 return -1; 626 break; 627 } 628 629 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 630 tmp.h_proto = payload.proto; 631 632 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) && 633 tmp.h_proto != htons(ETH_P_AARP) && 634 tmp.h_proto != htons(ETH_P_IPX)) || 635 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 636 /* remove RFC1042 or Bridge-Tunnel encapsulation and 637 * replace EtherType */ 638 hdrlen += ETH_ALEN + 2; 639 else 640 tmp.h_proto = htons(skb->len - hdrlen); 641 642 pskb_pull(skb, hdrlen); 643 644 if (!ehdr) 645 ehdr = skb_push(skb, sizeof(struct ethhdr)); 646 memcpy(ehdr, &tmp, sizeof(tmp)); 647 648 return 0; 649} 650EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 651 652static void 653__frame_add_frag(struct sk_buff *skb, struct page *page, 654 void *ptr, int len, int size) 655{ 656 struct skb_shared_info *sh = skb_shinfo(skb); 657 int page_offset; 658 659 get_page(page); 660 page_offset = ptr - page_address(page); 661 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 662} 663 664static void 665__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 666 int offset, int len) 667{ 668 struct skb_shared_info *sh = skb_shinfo(skb); 669 const skb_frag_t *frag = &sh->frags[0]; 670 struct page *frag_page; 671 void *frag_ptr; 672 int frag_len, frag_size; 673 int head_size = skb->len - skb->data_len; 674 int cur_len; 675 676 frag_page = virt_to_head_page(skb->head); 677 frag_ptr = skb->data; 678 frag_size = head_size; 679 680 while (offset >= frag_size) { 681 offset -= frag_size; 682 frag_page = skb_frag_page(frag); 683 frag_ptr = skb_frag_address(frag); 684 frag_size = skb_frag_size(frag); 685 frag++; 686 } 687 688 frag_ptr += offset; 689 frag_len = frag_size - offset; 690 691 cur_len = min(len, frag_len); 692 693 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 694 len -= cur_len; 695 696 while (len > 0) { 697 frag_len = skb_frag_size(frag); 698 cur_len = min(len, frag_len); 699 __frame_add_frag(frame, skb_frag_page(frag), 700 skb_frag_address(frag), cur_len, frag_len); 701 len -= cur_len; 702 frag++; 703 } 704} 705 706static struct sk_buff * 707__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 708 int offset, int len, bool reuse_frag) 709{ 710 struct sk_buff *frame; 711 int cur_len = len; 712 713 if (skb->len - offset < len) 714 return NULL; 715 716 /* 717 * When reusing framents, copy some data to the head to simplify 718 * ethernet header handling and speed up protocol header processing 719 * in the stack later. 720 */ 721 if (reuse_frag) 722 cur_len = min_t(int, len, 32); 723 724 /* 725 * Allocate and reserve two bytes more for payload 726 * alignment since sizeof(struct ethhdr) is 14. 727 */ 728 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 729 if (!frame) 730 return NULL; 731 732 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 733 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 734 735 len -= cur_len; 736 if (!len) 737 return frame; 738 739 offset += cur_len; 740 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 741 742 return frame; 743} 744 745void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 746 const u8 *addr, enum nl80211_iftype iftype, 747 const unsigned int extra_headroom, 748 const u8 *check_da, const u8 *check_sa) 749{ 750 unsigned int hlen = ALIGN(extra_headroom, 4); 751 struct sk_buff *frame = NULL; 752 u16 ethertype; 753 u8 *payload; 754 int offset = 0, remaining; 755 struct ethhdr eth; 756 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 757 bool reuse_skb = false; 758 bool last = false; 759 760 while (!last) { 761 unsigned int subframe_len; 762 int len; 763 u8 padding; 764 765 skb_copy_bits(skb, offset, ð, sizeof(eth)); 766 len = ntohs(eth.h_proto); 767 subframe_len = sizeof(struct ethhdr) + len; 768 padding = (4 - subframe_len) & 0x3; 769 770 /* the last MSDU has no padding */ 771 remaining = skb->len - offset; 772 if (subframe_len > remaining) 773 goto purge; 774 /* mitigate A-MSDU aggregation injection attacks */ 775 if (ether_addr_equal(eth.h_dest, rfc1042_header)) 776 goto purge; 777 778 offset += sizeof(struct ethhdr); 779 last = remaining <= subframe_len + padding; 780 781 /* FIXME: should we really accept multicast DA? */ 782 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 783 !ether_addr_equal(check_da, eth.h_dest)) || 784 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 785 offset += len + padding; 786 continue; 787 } 788 789 /* reuse skb for the last subframe */ 790 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 791 skb_pull(skb, offset); 792 frame = skb; 793 reuse_skb = true; 794 } else { 795 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 796 reuse_frag); 797 if (!frame) 798 goto purge; 799 800 offset += len + padding; 801 } 802 803 skb_reset_network_header(frame); 804 frame->dev = skb->dev; 805 frame->priority = skb->priority; 806 807 payload = frame->data; 808 ethertype = (payload[6] << 8) | payload[7]; 809 if (likely((ether_addr_equal(payload, rfc1042_header) && 810 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 811 ether_addr_equal(payload, bridge_tunnel_header))) { 812 eth.h_proto = htons(ethertype); 813 skb_pull(frame, ETH_ALEN + 2); 814 } 815 816 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 817 __skb_queue_tail(list, frame); 818 } 819 820 if (!reuse_skb) 821 dev_kfree_skb(skb); 822 823 return; 824 825 purge: 826 __skb_queue_purge(list); 827 dev_kfree_skb(skb); 828} 829EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 830 831/* Given a data frame determine the 802.1p/1d tag to use. */ 832unsigned int cfg80211_classify8021d(struct sk_buff *skb, 833 struct cfg80211_qos_map *qos_map) 834{ 835 unsigned int dscp; 836 unsigned char vlan_priority; 837 unsigned int ret; 838 839 /* skb->priority values from 256->263 are magic values to 840 * directly indicate a specific 802.1d priority. This is used 841 * to allow 802.1d priority to be passed directly in from VLAN 842 * tags, etc. 843 */ 844 if (skb->priority >= 256 && skb->priority <= 263) { 845 ret = skb->priority - 256; 846 goto out; 847 } 848 849 if (skb_vlan_tag_present(skb)) { 850 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 851 >> VLAN_PRIO_SHIFT; 852 if (vlan_priority > 0) { 853 ret = vlan_priority; 854 goto out; 855 } 856 } 857 858 switch (skb->protocol) { 859 case htons(ETH_P_IP): 860 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 861 break; 862 case htons(ETH_P_IPV6): 863 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 864 break; 865 case htons(ETH_P_MPLS_UC): 866 case htons(ETH_P_MPLS_MC): { 867 struct mpls_label mpls_tmp, *mpls; 868 869 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 870 sizeof(*mpls), &mpls_tmp); 871 if (!mpls) 872 return 0; 873 874 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 875 >> MPLS_LS_TC_SHIFT; 876 goto out; 877 } 878 case htons(ETH_P_80221): 879 /* 802.21 is always network control traffic */ 880 return 7; 881 default: 882 return 0; 883 } 884 885 if (qos_map) { 886 unsigned int i, tmp_dscp = dscp >> 2; 887 888 for (i = 0; i < qos_map->num_des; i++) { 889 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 890 ret = qos_map->dscp_exception[i].up; 891 goto out; 892 } 893 } 894 895 for (i = 0; i < 8; i++) { 896 if (tmp_dscp >= qos_map->up[i].low && 897 tmp_dscp <= qos_map->up[i].high) { 898 ret = i; 899 goto out; 900 } 901 } 902 } 903 904 ret = dscp >> 5; 905out: 906 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 907} 908EXPORT_SYMBOL(cfg80211_classify8021d); 909 910const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 911{ 912 const struct cfg80211_bss_ies *ies; 913 914 ies = rcu_dereference(bss->ies); 915 if (!ies) 916 return NULL; 917 918 return cfg80211_find_elem(id, ies->data, ies->len); 919} 920EXPORT_SYMBOL(ieee80211_bss_get_elem); 921 922void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 923{ 924 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 925 struct net_device *dev = wdev->netdev; 926 int i; 927 928 if (!wdev->connect_keys) 929 return; 930 931 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 932 if (!wdev->connect_keys->params[i].cipher) 933 continue; 934 if (rdev_add_key(rdev, dev, i, false, NULL, 935 &wdev->connect_keys->params[i])) { 936 netdev_err(dev, "failed to set key %d\n", i); 937 continue; 938 } 939 if (wdev->connect_keys->def == i && 940 rdev_set_default_key(rdev, dev, i, true, true)) { 941 netdev_err(dev, "failed to set defkey %d\n", i); 942 continue; 943 } 944 } 945 946 kfree_sensitive(wdev->connect_keys); 947 wdev->connect_keys = NULL; 948} 949 950void cfg80211_process_wdev_events(struct wireless_dev *wdev) 951{ 952 struct cfg80211_event *ev; 953 unsigned long flags; 954 955 spin_lock_irqsave(&wdev->event_lock, flags); 956 while (!list_empty(&wdev->event_list)) { 957 ev = list_first_entry(&wdev->event_list, 958 struct cfg80211_event, list); 959 list_del(&ev->list); 960 spin_unlock_irqrestore(&wdev->event_lock, flags); 961 962 wdev_lock(wdev); 963 switch (ev->type) { 964 case EVENT_CONNECT_RESULT: 965 __cfg80211_connect_result( 966 wdev->netdev, 967 &ev->cr, 968 ev->cr.status == WLAN_STATUS_SUCCESS); 969 break; 970 case EVENT_ROAMED: 971 __cfg80211_roamed(wdev, &ev->rm); 972 break; 973 case EVENT_DISCONNECTED: 974 __cfg80211_disconnected(wdev->netdev, 975 ev->dc.ie, ev->dc.ie_len, 976 ev->dc.reason, 977 !ev->dc.locally_generated); 978 break; 979 case EVENT_IBSS_JOINED: 980 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 981 ev->ij.channel); 982 break; 983 case EVENT_STOPPED: 984 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 985 break; 986 case EVENT_PORT_AUTHORIZED: 987 __cfg80211_port_authorized(wdev, ev->pa.bssid); 988 break; 989 } 990 wdev_unlock(wdev); 991 992 kfree(ev); 993 994 spin_lock_irqsave(&wdev->event_lock, flags); 995 } 996 spin_unlock_irqrestore(&wdev->event_lock, flags); 997} 998 999void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1000{ 1001 struct wireless_dev *wdev; 1002 1003 ASSERT_RTNL(); 1004 1005 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1006 cfg80211_process_wdev_events(wdev); 1007} 1008 1009int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1010 struct net_device *dev, enum nl80211_iftype ntype, 1011 struct vif_params *params) 1012{ 1013 int err; 1014 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1015 1016 ASSERT_RTNL(); 1017 1018 /* don't support changing VLANs, you just re-create them */ 1019 if (otype == NL80211_IFTYPE_AP_VLAN) 1020 return -EOPNOTSUPP; 1021 1022 /* cannot change into P2P device or NAN */ 1023 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1024 ntype == NL80211_IFTYPE_NAN) 1025 return -EOPNOTSUPP; 1026 1027 if (!rdev->ops->change_virtual_intf || 1028 !(rdev->wiphy.interface_modes & (1 << ntype))) 1029 return -EOPNOTSUPP; 1030 1031 if (ntype != otype) { 1032 /* if it's part of a bridge, reject changing type to station/ibss */ 1033 if (netif_is_bridge_port(dev) && 1034 (ntype == NL80211_IFTYPE_ADHOC || 1035 ntype == NL80211_IFTYPE_STATION || 1036 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1037 return -EBUSY; 1038 1039 dev->ieee80211_ptr->use_4addr = false; 1040 dev->ieee80211_ptr->mesh_id_up_len = 0; 1041 wdev_lock(dev->ieee80211_ptr); 1042 rdev_set_qos_map(rdev, dev, NULL); 1043 wdev_unlock(dev->ieee80211_ptr); 1044 1045 switch (otype) { 1046 case NL80211_IFTYPE_AP: 1047 case NL80211_IFTYPE_P2P_GO: 1048 cfg80211_stop_ap(rdev, dev, true); 1049 break; 1050 case NL80211_IFTYPE_ADHOC: 1051 cfg80211_leave_ibss(rdev, dev, false); 1052 break; 1053 case NL80211_IFTYPE_STATION: 1054 case NL80211_IFTYPE_P2P_CLIENT: 1055 wdev_lock(dev->ieee80211_ptr); 1056 cfg80211_disconnect(rdev, dev, 1057 WLAN_REASON_DEAUTH_LEAVING, true); 1058 wdev_unlock(dev->ieee80211_ptr); 1059 break; 1060 case NL80211_IFTYPE_MESH_POINT: 1061 /* mesh should be handled? */ 1062 break; 1063 case NL80211_IFTYPE_OCB: 1064 cfg80211_leave_ocb(rdev, dev); 1065 break; 1066 default: 1067 break; 1068 } 1069 1070 cfg80211_process_rdev_events(rdev); 1071 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1072 } 1073 1074 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1075 1076 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1077 1078 if (!err && params && params->use_4addr != -1) 1079 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1080 1081 if (!err) { 1082 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1083 switch (ntype) { 1084 case NL80211_IFTYPE_STATION: 1085 if (dev->ieee80211_ptr->use_4addr) 1086 break; 1087 fallthrough; 1088 case NL80211_IFTYPE_OCB: 1089 case NL80211_IFTYPE_P2P_CLIENT: 1090 case NL80211_IFTYPE_ADHOC: 1091 dev->priv_flags |= IFF_DONT_BRIDGE; 1092 break; 1093 case NL80211_IFTYPE_P2P_GO: 1094 case NL80211_IFTYPE_AP: 1095 case NL80211_IFTYPE_AP_VLAN: 1096 case NL80211_IFTYPE_WDS: 1097 case NL80211_IFTYPE_MESH_POINT: 1098 /* bridging OK */ 1099 break; 1100 case NL80211_IFTYPE_MONITOR: 1101 /* monitor can't bridge anyway */ 1102 break; 1103 case NL80211_IFTYPE_UNSPECIFIED: 1104 case NUM_NL80211_IFTYPES: 1105 /* not happening */ 1106 break; 1107 case NL80211_IFTYPE_P2P_DEVICE: 1108 case NL80211_IFTYPE_NAN: 1109 WARN_ON(1); 1110 break; 1111 } 1112 } 1113 1114 if (!err && ntype != otype && netif_running(dev)) { 1115 cfg80211_update_iface_num(rdev, ntype, 1); 1116 cfg80211_update_iface_num(rdev, otype, -1); 1117 } 1118 1119 return err; 1120} 1121 1122static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1123{ 1124 int modulation, streams, bitrate; 1125 1126 /* the formula below does only work for MCS values smaller than 32 */ 1127 if (WARN_ON_ONCE(rate->mcs >= 32)) 1128 return 0; 1129 1130 modulation = rate->mcs & 7; 1131 streams = (rate->mcs >> 3) + 1; 1132 1133 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1134 1135 if (modulation < 4) 1136 bitrate *= (modulation + 1); 1137 else if (modulation == 4) 1138 bitrate *= (modulation + 2); 1139 else 1140 bitrate *= (modulation + 3); 1141 1142 bitrate *= streams; 1143 1144 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1145 bitrate = (bitrate / 9) * 10; 1146 1147 /* do NOT round down here */ 1148 return (bitrate + 50000) / 100000; 1149} 1150 1151static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1152{ 1153 static const u32 __mcs2bitrate[] = { 1154 /* control PHY */ 1155 [0] = 275, 1156 /* SC PHY */ 1157 [1] = 3850, 1158 [2] = 7700, 1159 [3] = 9625, 1160 [4] = 11550, 1161 [5] = 12512, /* 1251.25 mbps */ 1162 [6] = 15400, 1163 [7] = 19250, 1164 [8] = 23100, 1165 [9] = 25025, 1166 [10] = 30800, 1167 [11] = 38500, 1168 [12] = 46200, 1169 /* OFDM PHY */ 1170 [13] = 6930, 1171 [14] = 8662, /* 866.25 mbps */ 1172 [15] = 13860, 1173 [16] = 17325, 1174 [17] = 20790, 1175 [18] = 27720, 1176 [19] = 34650, 1177 [20] = 41580, 1178 [21] = 45045, 1179 [22] = 51975, 1180 [23] = 62370, 1181 [24] = 67568, /* 6756.75 mbps */ 1182 /* LP-SC PHY */ 1183 [25] = 6260, 1184 [26] = 8340, 1185 [27] = 11120, 1186 [28] = 12510, 1187 [29] = 16680, 1188 [30] = 22240, 1189 [31] = 25030, 1190 }; 1191 1192 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1193 return 0; 1194 1195 return __mcs2bitrate[rate->mcs]; 1196} 1197 1198static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1199{ 1200 static const u32 __mcs2bitrate[] = { 1201 /* control PHY */ 1202 [0] = 275, 1203 /* SC PHY */ 1204 [1] = 3850, 1205 [2] = 7700, 1206 [3] = 9625, 1207 [4] = 11550, 1208 [5] = 12512, /* 1251.25 mbps */ 1209 [6] = 13475, 1210 [7] = 15400, 1211 [8] = 19250, 1212 [9] = 23100, 1213 [10] = 25025, 1214 [11] = 26950, 1215 [12] = 30800, 1216 [13] = 38500, 1217 [14] = 46200, 1218 [15] = 50050, 1219 [16] = 53900, 1220 [17] = 57750, 1221 [18] = 69300, 1222 [19] = 75075, 1223 [20] = 80850, 1224 }; 1225 1226 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1227 return 0; 1228 1229 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1230} 1231 1232static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1233{ 1234 static const u32 base[4][10] = { 1235 { 6500000, 1236 13000000, 1237 19500000, 1238 26000000, 1239 39000000, 1240 52000000, 1241 58500000, 1242 65000000, 1243 78000000, 1244 /* not in the spec, but some devices use this: */ 1245 86500000, 1246 }, 1247 { 13500000, 1248 27000000, 1249 40500000, 1250 54000000, 1251 81000000, 1252 108000000, 1253 121500000, 1254 135000000, 1255 162000000, 1256 180000000, 1257 }, 1258 { 29300000, 1259 58500000, 1260 87800000, 1261 117000000, 1262 175500000, 1263 234000000, 1264 263300000, 1265 292500000, 1266 351000000, 1267 390000000, 1268 }, 1269 { 58500000, 1270 117000000, 1271 175500000, 1272 234000000, 1273 351000000, 1274 468000000, 1275 526500000, 1276 585000000, 1277 702000000, 1278 780000000, 1279 }, 1280 }; 1281 u32 bitrate; 1282 int idx; 1283 1284 if (rate->mcs > 9) 1285 goto warn; 1286 1287 switch (rate->bw) { 1288 case RATE_INFO_BW_160: 1289 idx = 3; 1290 break; 1291 case RATE_INFO_BW_80: 1292 idx = 2; 1293 break; 1294 case RATE_INFO_BW_40: 1295 idx = 1; 1296 break; 1297 case RATE_INFO_BW_5: 1298 case RATE_INFO_BW_10: 1299 default: 1300 goto warn; 1301 case RATE_INFO_BW_20: 1302 idx = 0; 1303 } 1304 1305 bitrate = base[idx][rate->mcs]; 1306 bitrate *= rate->nss; 1307 1308 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1309 bitrate = (bitrate / 9) * 10; 1310 1311 /* do NOT round down here */ 1312 return (bitrate + 50000) / 100000; 1313 warn: 1314 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1315 rate->bw, rate->mcs, rate->nss); 1316 return 0; 1317} 1318 1319static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1320{ 1321#define SCALE 2048 1322 u16 mcs_divisors[12] = { 1323 34133, /* 16.666666... */ 1324 17067, /* 8.333333... */ 1325 11378, /* 5.555555... */ 1326 8533, /* 4.166666... */ 1327 5689, /* 2.777777... */ 1328 4267, /* 2.083333... */ 1329 3923, /* 1.851851... */ 1330 3413, /* 1.666666... */ 1331 2844, /* 1.388888... */ 1332 2560, /* 1.250000... */ 1333 2276, /* 1.111111... */ 1334 2048, /* 1.000000... */ 1335 }; 1336 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1337 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1338 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1339 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1340 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1341 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1342 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1343 u64 tmp; 1344 u32 result; 1345 1346 if (WARN_ON_ONCE(rate->mcs > 11)) 1347 return 0; 1348 1349 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1350 return 0; 1351 if (WARN_ON_ONCE(rate->he_ru_alloc > 1352 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1353 return 0; 1354 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1355 return 0; 1356 1357 if (rate->bw == RATE_INFO_BW_160 || 1358 (rate->bw == RATE_INFO_BW_HE_RU && 1359 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1360 result = rates_160M[rate->he_gi]; 1361 else if (rate->bw == RATE_INFO_BW_80 || 1362 (rate->bw == RATE_INFO_BW_HE_RU && 1363 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1364 result = rates_969[rate->he_gi]; 1365 else if (rate->bw == RATE_INFO_BW_40 || 1366 (rate->bw == RATE_INFO_BW_HE_RU && 1367 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1368 result = rates_484[rate->he_gi]; 1369 else if (rate->bw == RATE_INFO_BW_20 || 1370 (rate->bw == RATE_INFO_BW_HE_RU && 1371 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1372 result = rates_242[rate->he_gi]; 1373 else if (rate->bw == RATE_INFO_BW_HE_RU && 1374 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1375 result = rates_106[rate->he_gi]; 1376 else if (rate->bw == RATE_INFO_BW_HE_RU && 1377 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1378 result = rates_52[rate->he_gi]; 1379 else if (rate->bw == RATE_INFO_BW_HE_RU && 1380 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1381 result = rates_26[rate->he_gi]; 1382 else { 1383 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1384 rate->bw, rate->he_ru_alloc); 1385 return 0; 1386 } 1387 1388 /* now scale to the appropriate MCS */ 1389 tmp = result; 1390 tmp *= SCALE; 1391 do_div(tmp, mcs_divisors[rate->mcs]); 1392 result = tmp; 1393 1394 /* and take NSS, DCM into account */ 1395 result = (result * rate->nss) / 8; 1396 if (rate->he_dcm) 1397 result /= 2; 1398 1399 return result / 10000; 1400} 1401 1402u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1403{ 1404 if (rate->flags & RATE_INFO_FLAGS_MCS) 1405 return cfg80211_calculate_bitrate_ht(rate); 1406 if (rate->flags & RATE_INFO_FLAGS_DMG) 1407 return cfg80211_calculate_bitrate_dmg(rate); 1408 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1409 return cfg80211_calculate_bitrate_edmg(rate); 1410 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1411 return cfg80211_calculate_bitrate_vht(rate); 1412 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1413 return cfg80211_calculate_bitrate_he(rate); 1414 1415 return rate->legacy; 1416} 1417EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1418 1419int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1420 enum ieee80211_p2p_attr_id attr, 1421 u8 *buf, unsigned int bufsize) 1422{ 1423 u8 *out = buf; 1424 u16 attr_remaining = 0; 1425 bool desired_attr = false; 1426 u16 desired_len = 0; 1427 1428 while (len > 0) { 1429 unsigned int iedatalen; 1430 unsigned int copy; 1431 const u8 *iedata; 1432 1433 if (len < 2) 1434 return -EILSEQ; 1435 iedatalen = ies[1]; 1436 if (iedatalen + 2 > len) 1437 return -EILSEQ; 1438 1439 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1440 goto cont; 1441 1442 if (iedatalen < 4) 1443 goto cont; 1444 1445 iedata = ies + 2; 1446 1447 /* check WFA OUI, P2P subtype */ 1448 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1449 iedata[2] != 0x9a || iedata[3] != 0x09) 1450 goto cont; 1451 1452 iedatalen -= 4; 1453 iedata += 4; 1454 1455 /* check attribute continuation into this IE */ 1456 copy = min_t(unsigned int, attr_remaining, iedatalen); 1457 if (copy && desired_attr) { 1458 desired_len += copy; 1459 if (out) { 1460 memcpy(out, iedata, min(bufsize, copy)); 1461 out += min(bufsize, copy); 1462 bufsize -= min(bufsize, copy); 1463 } 1464 1465 1466 if (copy == attr_remaining) 1467 return desired_len; 1468 } 1469 1470 attr_remaining -= copy; 1471 if (attr_remaining) 1472 goto cont; 1473 1474 iedatalen -= copy; 1475 iedata += copy; 1476 1477 while (iedatalen > 0) { 1478 u16 attr_len; 1479 1480 /* P2P attribute ID & size must fit */ 1481 if (iedatalen < 3) 1482 return -EILSEQ; 1483 desired_attr = iedata[0] == attr; 1484 attr_len = get_unaligned_le16(iedata + 1); 1485 iedatalen -= 3; 1486 iedata += 3; 1487 1488 copy = min_t(unsigned int, attr_len, iedatalen); 1489 1490 if (desired_attr) { 1491 desired_len += copy; 1492 if (out) { 1493 memcpy(out, iedata, min(bufsize, copy)); 1494 out += min(bufsize, copy); 1495 bufsize -= min(bufsize, copy); 1496 } 1497 1498 if (copy == attr_len) 1499 return desired_len; 1500 } 1501 1502 iedata += copy; 1503 iedatalen -= copy; 1504 attr_remaining = attr_len - copy; 1505 } 1506 1507 cont: 1508 len -= ies[1] + 2; 1509 ies += ies[1] + 2; 1510 } 1511 1512 if (attr_remaining && desired_attr) 1513 return -EILSEQ; 1514 1515 return -ENOENT; 1516} 1517EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1518 1519static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1520{ 1521 int i; 1522 1523 /* Make sure array values are legal */ 1524 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1525 return false; 1526 1527 i = 0; 1528 while (i < n_ids) { 1529 if (ids[i] == WLAN_EID_EXTENSION) { 1530 if (id_ext && (ids[i + 1] == id)) 1531 return true; 1532 1533 i += 2; 1534 continue; 1535 } 1536 1537 if (ids[i] == id && !id_ext) 1538 return true; 1539 1540 i++; 1541 } 1542 return false; 1543} 1544 1545static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1546{ 1547 /* we assume a validly formed IEs buffer */ 1548 u8 len = ies[pos + 1]; 1549 1550 pos += 2 + len; 1551 1552 /* the IE itself must have 255 bytes for fragments to follow */ 1553 if (len < 255) 1554 return pos; 1555 1556 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1557 len = ies[pos + 1]; 1558 pos += 2 + len; 1559 } 1560 1561 return pos; 1562} 1563 1564size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1565 const u8 *ids, int n_ids, 1566 const u8 *after_ric, int n_after_ric, 1567 size_t offset) 1568{ 1569 size_t pos = offset; 1570 1571 while (pos < ielen) { 1572 u8 ext = 0; 1573 1574 if (ies[pos] == WLAN_EID_EXTENSION) 1575 ext = 2; 1576 if ((pos + ext) >= ielen) 1577 break; 1578 1579 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1580 ies[pos] == WLAN_EID_EXTENSION)) 1581 break; 1582 1583 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1584 pos = skip_ie(ies, ielen, pos); 1585 1586 while (pos < ielen) { 1587 if (ies[pos] == WLAN_EID_EXTENSION) 1588 ext = 2; 1589 else 1590 ext = 0; 1591 1592 if ((pos + ext) >= ielen) 1593 break; 1594 1595 if (!ieee80211_id_in_list(after_ric, 1596 n_after_ric, 1597 ies[pos + ext], 1598 ext == 2)) 1599 pos = skip_ie(ies, ielen, pos); 1600 else 1601 break; 1602 } 1603 } else { 1604 pos = skip_ie(ies, ielen, pos); 1605 } 1606 } 1607 1608 return pos; 1609} 1610EXPORT_SYMBOL(ieee80211_ie_split_ric); 1611 1612bool ieee80211_operating_class_to_band(u8 operating_class, 1613 enum nl80211_band *band) 1614{ 1615 switch (operating_class) { 1616 case 112: 1617 case 115 ... 127: 1618 case 128 ... 130: 1619 *band = NL80211_BAND_5GHZ; 1620 return true; 1621 case 131 ... 135: 1622 *band = NL80211_BAND_6GHZ; 1623 return true; 1624 case 81: 1625 case 82: 1626 case 83: 1627 case 84: 1628 *band = NL80211_BAND_2GHZ; 1629 return true; 1630 case 180: 1631 *band = NL80211_BAND_60GHZ; 1632 return true; 1633 } 1634 1635 return false; 1636} 1637EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1638 1639bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1640 u8 *op_class) 1641{ 1642 u8 vht_opclass; 1643 u32 freq = chandef->center_freq1; 1644 1645 if (freq >= 2412 && freq <= 2472) { 1646 if (chandef->width > NL80211_CHAN_WIDTH_40) 1647 return false; 1648 1649 /* 2.407 GHz, channels 1..13 */ 1650 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1651 if (freq > chandef->chan->center_freq) 1652 *op_class = 83; /* HT40+ */ 1653 else 1654 *op_class = 84; /* HT40- */ 1655 } else { 1656 *op_class = 81; 1657 } 1658 1659 return true; 1660 } 1661 1662 if (freq == 2484) { 1663 /* channel 14 is only for IEEE 802.11b */ 1664 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1665 return false; 1666 1667 *op_class = 82; /* channel 14 */ 1668 return true; 1669 } 1670 1671 switch (chandef->width) { 1672 case NL80211_CHAN_WIDTH_80: 1673 vht_opclass = 128; 1674 break; 1675 case NL80211_CHAN_WIDTH_160: 1676 vht_opclass = 129; 1677 break; 1678 case NL80211_CHAN_WIDTH_80P80: 1679 vht_opclass = 130; 1680 break; 1681 case NL80211_CHAN_WIDTH_10: 1682 case NL80211_CHAN_WIDTH_5: 1683 return false; /* unsupported for now */ 1684 default: 1685 vht_opclass = 0; 1686 break; 1687 } 1688 1689 /* 5 GHz, channels 36..48 */ 1690 if (freq >= 5180 && freq <= 5240) { 1691 if (vht_opclass) { 1692 *op_class = vht_opclass; 1693 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1694 if (freq > chandef->chan->center_freq) 1695 *op_class = 116; 1696 else 1697 *op_class = 117; 1698 } else { 1699 *op_class = 115; 1700 } 1701 1702 return true; 1703 } 1704 1705 /* 5 GHz, channels 52..64 */ 1706 if (freq >= 5260 && freq <= 5320) { 1707 if (vht_opclass) { 1708 *op_class = vht_opclass; 1709 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1710 if (freq > chandef->chan->center_freq) 1711 *op_class = 119; 1712 else 1713 *op_class = 120; 1714 } else { 1715 *op_class = 118; 1716 } 1717 1718 return true; 1719 } 1720 1721 /* 5 GHz, channels 100..144 */ 1722 if (freq >= 5500 && freq <= 5720) { 1723 if (vht_opclass) { 1724 *op_class = vht_opclass; 1725 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1726 if (freq > chandef->chan->center_freq) 1727 *op_class = 122; 1728 else 1729 *op_class = 123; 1730 } else { 1731 *op_class = 121; 1732 } 1733 1734 return true; 1735 } 1736 1737 /* 5 GHz, channels 149..169 */ 1738 if (freq >= 5745 && freq <= 5845) { 1739 if (vht_opclass) { 1740 *op_class = vht_opclass; 1741 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1742 if (freq > chandef->chan->center_freq) 1743 *op_class = 126; 1744 else 1745 *op_class = 127; 1746 } else if (freq <= 5805) { 1747 *op_class = 124; 1748 } else { 1749 *op_class = 125; 1750 } 1751 1752 return true; 1753 } 1754 1755 /* 56.16 GHz, channel 1..4 */ 1756 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1757 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1758 return false; 1759 1760 *op_class = 180; 1761 return true; 1762 } 1763 1764 /* not supported yet */ 1765 return false; 1766} 1767EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1768 1769static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1770 u32 *beacon_int_gcd, 1771 bool *beacon_int_different) 1772{ 1773 struct wireless_dev *wdev; 1774 1775 *beacon_int_gcd = 0; 1776 *beacon_int_different = false; 1777 1778 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1779 if (!wdev->beacon_interval) 1780 continue; 1781 1782 if (!*beacon_int_gcd) { 1783 *beacon_int_gcd = wdev->beacon_interval; 1784 continue; 1785 } 1786 1787 if (wdev->beacon_interval == *beacon_int_gcd) 1788 continue; 1789 1790 *beacon_int_different = true; 1791 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1792 } 1793 1794 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1795 if (*beacon_int_gcd) 1796 *beacon_int_different = true; 1797 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1798 } 1799} 1800 1801int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1802 enum nl80211_iftype iftype, u32 beacon_int) 1803{ 1804 /* 1805 * This is just a basic pre-condition check; if interface combinations 1806 * are possible the driver must already be checking those with a call 1807 * to cfg80211_check_combinations(), in which case we'll validate more 1808 * through the cfg80211_calculate_bi_data() call and code in 1809 * cfg80211_iter_combinations(). 1810 */ 1811 1812 if (beacon_int < 10 || beacon_int > 10000) 1813 return -EINVAL; 1814 1815 return 0; 1816} 1817 1818int cfg80211_iter_combinations(struct wiphy *wiphy, 1819 struct iface_combination_params *params, 1820 void (*iter)(const struct ieee80211_iface_combination *c, 1821 void *data), 1822 void *data) 1823{ 1824 const struct ieee80211_regdomain *regdom; 1825 enum nl80211_dfs_regions region = 0; 1826 int i, j, iftype; 1827 int num_interfaces = 0; 1828 u32 used_iftypes = 0; 1829 u32 beacon_int_gcd; 1830 bool beacon_int_different; 1831 1832 /* 1833 * This is a bit strange, since the iteration used to rely only on 1834 * the data given by the driver, but here it now relies on context, 1835 * in form of the currently operating interfaces. 1836 * This is OK for all current users, and saves us from having to 1837 * push the GCD calculations into all the drivers. 1838 * In the future, this should probably rely more on data that's in 1839 * cfg80211 already - the only thing not would appear to be any new 1840 * interfaces (while being brought up) and channel/radar data. 1841 */ 1842 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1843 &beacon_int_gcd, &beacon_int_different); 1844 1845 if (params->radar_detect) { 1846 rcu_read_lock(); 1847 regdom = rcu_dereference(cfg80211_regdomain); 1848 if (regdom) 1849 region = regdom->dfs_region; 1850 rcu_read_unlock(); 1851 } 1852 1853 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1854 num_interfaces += params->iftype_num[iftype]; 1855 if (params->iftype_num[iftype] > 0 && 1856 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1857 used_iftypes |= BIT(iftype); 1858 } 1859 1860 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1861 const struct ieee80211_iface_combination *c; 1862 struct ieee80211_iface_limit *limits; 1863 u32 all_iftypes = 0; 1864 1865 c = &wiphy->iface_combinations[i]; 1866 1867 if (num_interfaces > c->max_interfaces) 1868 continue; 1869 if (params->num_different_channels > c->num_different_channels) 1870 continue; 1871 1872 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1873 GFP_KERNEL); 1874 if (!limits) 1875 return -ENOMEM; 1876 1877 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1878 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1879 continue; 1880 for (j = 0; j < c->n_limits; j++) { 1881 all_iftypes |= limits[j].types; 1882 if (!(limits[j].types & BIT(iftype))) 1883 continue; 1884 if (limits[j].max < params->iftype_num[iftype]) 1885 goto cont; 1886 limits[j].max -= params->iftype_num[iftype]; 1887 } 1888 } 1889 1890 if (params->radar_detect != 1891 (c->radar_detect_widths & params->radar_detect)) 1892 goto cont; 1893 1894 if (params->radar_detect && c->radar_detect_regions && 1895 !(c->radar_detect_regions & BIT(region))) 1896 goto cont; 1897 1898 /* Finally check that all iftypes that we're currently 1899 * using are actually part of this combination. If they 1900 * aren't then we can't use this combination and have 1901 * to continue to the next. 1902 */ 1903 if ((all_iftypes & used_iftypes) != used_iftypes) 1904 goto cont; 1905 1906 if (beacon_int_gcd) { 1907 if (c->beacon_int_min_gcd && 1908 beacon_int_gcd < c->beacon_int_min_gcd) 1909 goto cont; 1910 if (!c->beacon_int_min_gcd && beacon_int_different) 1911 goto cont; 1912 } 1913 1914 /* This combination covered all interface types and 1915 * supported the requested numbers, so we're good. 1916 */ 1917 1918 (*iter)(c, data); 1919 cont: 1920 kfree(limits); 1921 } 1922 1923 return 0; 1924} 1925EXPORT_SYMBOL(cfg80211_iter_combinations); 1926 1927static void 1928cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1929 void *data) 1930{ 1931 int *num = data; 1932 (*num)++; 1933} 1934 1935int cfg80211_check_combinations(struct wiphy *wiphy, 1936 struct iface_combination_params *params) 1937{ 1938 int err, num = 0; 1939 1940 err = cfg80211_iter_combinations(wiphy, params, 1941 cfg80211_iter_sum_ifcombs, &num); 1942 if (err) 1943 return err; 1944 if (num == 0) 1945 return -EBUSY; 1946 1947 return 0; 1948} 1949EXPORT_SYMBOL(cfg80211_check_combinations); 1950 1951int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1952 const u8 *rates, unsigned int n_rates, 1953 u32 *mask) 1954{ 1955 int i, j; 1956 1957 if (!sband) 1958 return -EINVAL; 1959 1960 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1961 return -EINVAL; 1962 1963 *mask = 0; 1964 1965 for (i = 0; i < n_rates; i++) { 1966 int rate = (rates[i] & 0x7f) * 5; 1967 bool found = false; 1968 1969 for (j = 0; j < sband->n_bitrates; j++) { 1970 if (sband->bitrates[j].bitrate == rate) { 1971 found = true; 1972 *mask |= BIT(j); 1973 break; 1974 } 1975 } 1976 if (!found) 1977 return -EINVAL; 1978 } 1979 1980 /* 1981 * mask must have at least one bit set here since we 1982 * didn't accept a 0-length rates array nor allowed 1983 * entries in the array that didn't exist 1984 */ 1985 1986 return 0; 1987} 1988 1989unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1990{ 1991 enum nl80211_band band; 1992 unsigned int n_channels = 0; 1993 1994 for (band = 0; band < NUM_NL80211_BANDS; band++) 1995 if (wiphy->bands[band]) 1996 n_channels += wiphy->bands[band]->n_channels; 1997 1998 return n_channels; 1999} 2000EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2001 2002int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2003 struct station_info *sinfo) 2004{ 2005 struct cfg80211_registered_device *rdev; 2006 struct wireless_dev *wdev; 2007 2008 wdev = dev->ieee80211_ptr; 2009 if (!wdev) 2010 return -EOPNOTSUPP; 2011 2012 rdev = wiphy_to_rdev(wdev->wiphy); 2013 if (!rdev->ops->get_station) 2014 return -EOPNOTSUPP; 2015 2016 memset(sinfo, 0, sizeof(*sinfo)); 2017 2018 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2019} 2020EXPORT_SYMBOL(cfg80211_get_station); 2021 2022void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2023{ 2024 int i; 2025 2026 if (!f) 2027 return; 2028 2029 kfree(f->serv_spec_info); 2030 kfree(f->srf_bf); 2031 kfree(f->srf_macs); 2032 for (i = 0; i < f->num_rx_filters; i++) 2033 kfree(f->rx_filters[i].filter); 2034 2035 for (i = 0; i < f->num_tx_filters; i++) 2036 kfree(f->tx_filters[i].filter); 2037 2038 kfree(f->rx_filters); 2039 kfree(f->tx_filters); 2040 kfree(f); 2041} 2042EXPORT_SYMBOL(cfg80211_free_nan_func); 2043 2044bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2045 u32 center_freq_khz, u32 bw_khz) 2046{ 2047 u32 start_freq_khz, end_freq_khz; 2048 2049 start_freq_khz = center_freq_khz - (bw_khz / 2); 2050 end_freq_khz = center_freq_khz + (bw_khz / 2); 2051 2052 if (start_freq_khz >= freq_range->start_freq_khz && 2053 end_freq_khz <= freq_range->end_freq_khz) 2054 return true; 2055 2056 return false; 2057} 2058 2059int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2060{ 2061 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2062 sizeof(*(sinfo->pertid)), 2063 gfp); 2064 if (!sinfo->pertid) 2065 return -ENOMEM; 2066 2067 return 0; 2068} 2069EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2070 2071/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2072/* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2073const unsigned char rfc1042_header[] __aligned(2) = 2074 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2075EXPORT_SYMBOL(rfc1042_header); 2076 2077/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2078const unsigned char bridge_tunnel_header[] __aligned(2) = 2079 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2080EXPORT_SYMBOL(bridge_tunnel_header); 2081 2082/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2083struct iapp_layer2_update { 2084 u8 da[ETH_ALEN]; /* broadcast */ 2085 u8 sa[ETH_ALEN]; /* STA addr */ 2086 __be16 len; /* 6 */ 2087 u8 dsap; /* 0 */ 2088 u8 ssap; /* 0 */ 2089 u8 control; 2090 u8 xid_info[3]; 2091} __packed; 2092 2093void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2094{ 2095 struct iapp_layer2_update *msg; 2096 struct sk_buff *skb; 2097 2098 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2099 * bridge devices */ 2100 2101 skb = dev_alloc_skb(sizeof(*msg)); 2102 if (!skb) 2103 return; 2104 msg = skb_put(skb, sizeof(*msg)); 2105 2106 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2107 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2108 2109 eth_broadcast_addr(msg->da); 2110 ether_addr_copy(msg->sa, addr); 2111 msg->len = htons(6); 2112 msg->dsap = 0; 2113 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2114 msg->control = 0xaf; /* XID response lsb.1111F101. 2115 * F=0 (no poll command; unsolicited frame) */ 2116 msg->xid_info[0] = 0x81; /* XID format identifier */ 2117 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2118 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2119 2120 skb->dev = dev; 2121 skb->protocol = eth_type_trans(skb, dev); 2122 memset(skb->cb, 0, sizeof(skb->cb)); 2123 netif_rx_ni(skb); 2124} 2125EXPORT_SYMBOL(cfg80211_send_layer2_update); 2126 2127int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2128 enum ieee80211_vht_chanwidth bw, 2129 int mcs, bool ext_nss_bw_capable, 2130 unsigned int max_vht_nss) 2131{ 2132 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2133 int ext_nss_bw; 2134 int supp_width; 2135 int i, mcs_encoding; 2136 2137 if (map == 0xffff) 2138 return 0; 2139 2140 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2141 return 0; 2142 if (mcs <= 7) 2143 mcs_encoding = 0; 2144 else if (mcs == 8) 2145 mcs_encoding = 1; 2146 else 2147 mcs_encoding = 2; 2148 2149 if (!max_vht_nss) { 2150 /* find max_vht_nss for the given MCS */ 2151 for (i = 7; i >= 0; i--) { 2152 int supp = (map >> (2 * i)) & 3; 2153 2154 if (supp == 3) 2155 continue; 2156 2157 if (supp >= mcs_encoding) { 2158 max_vht_nss = i + 1; 2159 break; 2160 } 2161 } 2162 } 2163 2164 if (!(cap->supp_mcs.tx_mcs_map & 2165 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2166 return max_vht_nss; 2167 2168 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2169 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2170 supp_width = le32_get_bits(cap->vht_cap_info, 2171 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2172 2173 /* if not capable, treat ext_nss_bw as 0 */ 2174 if (!ext_nss_bw_capable) 2175 ext_nss_bw = 0; 2176 2177 /* This is invalid */ 2178 if (supp_width == 3) 2179 return 0; 2180 2181 /* This is an invalid combination so pretend nothing is supported */ 2182 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2183 return 0; 2184 2185 /* 2186 * Cover all the special cases according to IEEE 802.11-2016 2187 * Table 9-250. All other cases are either factor of 1 or not 2188 * valid/supported. 2189 */ 2190 switch (bw) { 2191 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2192 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2193 if ((supp_width == 1 || supp_width == 2) && 2194 ext_nss_bw == 3) 2195 return 2 * max_vht_nss; 2196 break; 2197 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2198 if (supp_width == 0 && 2199 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2200 return max_vht_nss / 2; 2201 if (supp_width == 0 && 2202 ext_nss_bw == 3) 2203 return (3 * max_vht_nss) / 4; 2204 if (supp_width == 1 && 2205 ext_nss_bw == 3) 2206 return 2 * max_vht_nss; 2207 break; 2208 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2209 if (supp_width == 0 && ext_nss_bw == 1) 2210 return 0; /* not possible */ 2211 if (supp_width == 0 && 2212 ext_nss_bw == 2) 2213 return max_vht_nss / 2; 2214 if (supp_width == 0 && 2215 ext_nss_bw == 3) 2216 return (3 * max_vht_nss) / 4; 2217 if (supp_width == 1 && 2218 ext_nss_bw == 0) 2219 return 0; /* not possible */ 2220 if (supp_width == 1 && 2221 ext_nss_bw == 1) 2222 return max_vht_nss / 2; 2223 if (supp_width == 1 && 2224 ext_nss_bw == 2) 2225 return (3 * max_vht_nss) / 4; 2226 break; 2227 } 2228 2229 /* not covered or invalid combination received */ 2230 return max_vht_nss; 2231} 2232EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2233 2234bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2235 bool is_4addr, u8 check_swif) 2236 2237{ 2238 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2239 2240 switch (check_swif) { 2241 case 0: 2242 if (is_vlan && is_4addr) 2243 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2244 return wiphy->interface_modes & BIT(iftype); 2245 case 1: 2246 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2247 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2248 return wiphy->software_iftypes & BIT(iftype); 2249 default: 2250 break; 2251 } 2252 2253 return false; 2254} 2255EXPORT_SYMBOL(cfg80211_iftype_allowed); 2256