xref: /kernel/linux/linux-5.10/net/wireless/util.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014  Intel Mobile Communications GmbH
7 * Copyright 2017	Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29			    u32 basic_rates, int bitrate)
30{
31	struct ieee80211_rate *result = &sband->bitrates[0];
32	int i;
33
34	for (i = 0; i < sband->n_bitrates; i++) {
35		if (!(basic_rates & BIT(i)))
36			continue;
37		if (sband->bitrates[i].bitrate > bitrate)
38			continue;
39		result = &sband->bitrates[i];
40	}
41
42	return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47			      enum nl80211_bss_scan_width scan_width)
48{
49	struct ieee80211_rate *bitrates;
50	u32 mandatory_rates = 0;
51	enum ieee80211_rate_flags mandatory_flag;
52	int i;
53
54	if (WARN_ON(!sband))
55		return 1;
56
57	if (sband->band == NL80211_BAND_2GHZ) {
58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61		else
62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63	} else {
64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65	}
66
67	bitrates = sband->bitrates;
68	for (i = 0; i < sband->n_bitrates; i++)
69		if (bitrates[i].flags & mandatory_flag)
70			mandatory_rates |= BIT(i);
71	return mandatory_rates;
72}
73EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76{
77	/* see 802.11 17.3.8.3.2 and Annex J
78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79	if (chan <= 0)
80		return 0; /* not supported */
81	switch (band) {
82	case NL80211_BAND_2GHZ:
83		if (chan == 14)
84			return MHZ_TO_KHZ(2484);
85		else if (chan < 14)
86			return MHZ_TO_KHZ(2407 + chan * 5);
87		break;
88	case NL80211_BAND_5GHZ:
89		if (chan >= 182 && chan <= 196)
90			return MHZ_TO_KHZ(4000 + chan * 5);
91		else
92			return MHZ_TO_KHZ(5000 + chan * 5);
93		break;
94	case NL80211_BAND_6GHZ:
95		/* see 802.11ax D6.1 27.3.23.2 */
96		if (chan == 2)
97			return MHZ_TO_KHZ(5935);
98		if (chan <= 233)
99			return MHZ_TO_KHZ(5950 + chan * 5);
100		break;
101	case NL80211_BAND_60GHZ:
102		if (chan < 7)
103			return MHZ_TO_KHZ(56160 + chan * 2160);
104		break;
105	case NL80211_BAND_S1GHZ:
106		return 902000 + chan * 500;
107	default:
108		;
109	}
110	return 0; /* not supported */
111}
112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114enum nl80211_chan_width
115ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116{
117	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118		return NL80211_CHAN_WIDTH_20_NOHT;
119
120	/*S1G defines a single allowed channel width per channel.
121	 * Extract that width here.
122	 */
123	if (chan->flags & IEEE80211_CHAN_1MHZ)
124		return NL80211_CHAN_WIDTH_1;
125	else if (chan->flags & IEEE80211_CHAN_2MHZ)
126		return NL80211_CHAN_WIDTH_2;
127	else if (chan->flags & IEEE80211_CHAN_4MHZ)
128		return NL80211_CHAN_WIDTH_4;
129	else if (chan->flags & IEEE80211_CHAN_8MHZ)
130		return NL80211_CHAN_WIDTH_8;
131	else if (chan->flags & IEEE80211_CHAN_16MHZ)
132		return NL80211_CHAN_WIDTH_16;
133
134	pr_err("unknown channel width for channel at %dKHz?\n",
135	       ieee80211_channel_to_khz(chan));
136
137	return NL80211_CHAN_WIDTH_1;
138}
139EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
141int ieee80211_freq_khz_to_channel(u32 freq)
142{
143	/* TODO: just handle MHz for now */
144	freq = KHZ_TO_MHZ(freq);
145
146	/* see 802.11 17.3.8.3.2 and Annex J */
147	if (freq == 2484)
148		return 14;
149	else if (freq < 2484)
150		return (freq - 2407) / 5;
151	else if (freq >= 4910 && freq <= 4980)
152		return (freq - 4000) / 5;
153	else if (freq < 5925)
154		return (freq - 5000) / 5;
155	else if (freq == 5935)
156		return 2;
157	else if (freq <= 45000) /* DMG band lower limit */
158		/* see 802.11ax D6.1 27.3.22.2 */
159		return (freq - 5950) / 5;
160	else if (freq >= 58320 && freq <= 70200)
161		return (freq - 56160) / 2160;
162	else
163		return 0;
164}
165EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
167struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168						    u32 freq)
169{
170	enum nl80211_band band;
171	struct ieee80211_supported_band *sband;
172	int i;
173
174	for (band = 0; band < NUM_NL80211_BANDS; band++) {
175		sband = wiphy->bands[band];
176
177		if (!sband)
178			continue;
179
180		for (i = 0; i < sband->n_channels; i++) {
181			struct ieee80211_channel *chan = &sband->channels[i];
182
183			if (ieee80211_channel_to_khz(chan) == freq)
184				return chan;
185		}
186	}
187
188	return NULL;
189}
190EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
192static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193{
194	int i, want;
195
196	switch (sband->band) {
197	case NL80211_BAND_5GHZ:
198	case NL80211_BAND_6GHZ:
199		want = 3;
200		for (i = 0; i < sband->n_bitrates; i++) {
201			if (sband->bitrates[i].bitrate == 60 ||
202			    sband->bitrates[i].bitrate == 120 ||
203			    sband->bitrates[i].bitrate == 240) {
204				sband->bitrates[i].flags |=
205					IEEE80211_RATE_MANDATORY_A;
206				want--;
207			}
208		}
209		WARN_ON(want);
210		break;
211	case NL80211_BAND_2GHZ:
212		want = 7;
213		for (i = 0; i < sband->n_bitrates; i++) {
214			switch (sband->bitrates[i].bitrate) {
215			case 10:
216			case 20:
217			case 55:
218			case 110:
219				sband->bitrates[i].flags |=
220					IEEE80211_RATE_MANDATORY_B |
221					IEEE80211_RATE_MANDATORY_G;
222				want--;
223				break;
224			case 60:
225			case 120:
226			case 240:
227				sband->bitrates[i].flags |=
228					IEEE80211_RATE_MANDATORY_G;
229				want--;
230				fallthrough;
231			default:
232				sband->bitrates[i].flags |=
233					IEEE80211_RATE_ERP_G;
234				break;
235			}
236		}
237		WARN_ON(want != 0 && want != 3);
238		break;
239	case NL80211_BAND_60GHZ:
240		/* check for mandatory HT MCS 1..4 */
241		WARN_ON(!sband->ht_cap.ht_supported);
242		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243		break;
244	case NL80211_BAND_S1GHZ:
245		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246		 * mandatory is ok.
247		 */
248		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249		break;
250	case NUM_NL80211_BANDS:
251	default:
252		WARN_ON(1);
253		break;
254	}
255}
256
257void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258{
259	enum nl80211_band band;
260
261	for (band = 0; band < NUM_NL80211_BANDS; band++)
262		if (wiphy->bands[band])
263			set_mandatory_flags_band(wiphy->bands[band]);
264}
265
266bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267{
268	int i;
269	for (i = 0; i < wiphy->n_cipher_suites; i++)
270		if (cipher == wiphy->cipher_suites[i])
271			return true;
272	return false;
273}
274
275static bool
276cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277{
278	struct wiphy *wiphy = &rdev->wiphy;
279	int i;
280
281	for (i = 0; i < wiphy->n_cipher_suites; i++) {
282		switch (wiphy->cipher_suites[i]) {
283		case WLAN_CIPHER_SUITE_AES_CMAC:
284		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287			return true;
288		}
289	}
290
291	return false;
292}
293
294bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295			    int key_idx, bool pairwise)
296{
297	int max_key_idx;
298
299	if (pairwise)
300		max_key_idx = 3;
301	else if (wiphy_ext_feature_isset(&rdev->wiphy,
302					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303		 wiphy_ext_feature_isset(&rdev->wiphy,
304					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305		max_key_idx = 7;
306	else if (cfg80211_igtk_cipher_supported(rdev))
307		max_key_idx = 5;
308	else
309		max_key_idx = 3;
310
311	if (key_idx < 0 || key_idx > max_key_idx)
312		return false;
313
314	return true;
315}
316
317int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318				   struct key_params *params, int key_idx,
319				   bool pairwise, const u8 *mac_addr)
320{
321	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322		return -EINVAL;
323
324	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325		return -EINVAL;
326
327	if (pairwise && !mac_addr)
328		return -EINVAL;
329
330	switch (params->cipher) {
331	case WLAN_CIPHER_SUITE_TKIP:
332		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
333		if ((pairwise && key_idx) ||
334		    params->mode != NL80211_KEY_RX_TX)
335			return -EINVAL;
336		break;
337	case WLAN_CIPHER_SUITE_CCMP:
338	case WLAN_CIPHER_SUITE_CCMP_256:
339	case WLAN_CIPHER_SUITE_GCMP:
340	case WLAN_CIPHER_SUITE_GCMP_256:
341		/* IEEE802.11-2016 allows only 0 and - when supporting
342		 * Extended Key ID - 1 as index for pairwise keys.
343		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344		 * the driver supports Extended Key ID.
345		 * @NL80211_KEY_SET_TX can't be set when installing and
346		 * validating a key.
347		 */
348		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349		    params->mode == NL80211_KEY_SET_TX)
350			return -EINVAL;
351		if (wiphy_ext_feature_isset(&rdev->wiphy,
352					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353			if (pairwise && (key_idx < 0 || key_idx > 1))
354				return -EINVAL;
355		} else if (pairwise && key_idx) {
356			return -EINVAL;
357		}
358		break;
359	case WLAN_CIPHER_SUITE_AES_CMAC:
360	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363		/* Disallow BIP (group-only) cipher as pairwise cipher */
364		if (pairwise)
365			return -EINVAL;
366		if (key_idx < 4)
367			return -EINVAL;
368		break;
369	case WLAN_CIPHER_SUITE_WEP40:
370	case WLAN_CIPHER_SUITE_WEP104:
371		if (key_idx > 3)
372			return -EINVAL;
373	default:
374		break;
375	}
376
377	switch (params->cipher) {
378	case WLAN_CIPHER_SUITE_WEP40:
379		if (params->key_len != WLAN_KEY_LEN_WEP40)
380			return -EINVAL;
381		break;
382	case WLAN_CIPHER_SUITE_TKIP:
383		if (params->key_len != WLAN_KEY_LEN_TKIP)
384			return -EINVAL;
385		break;
386	case WLAN_CIPHER_SUITE_CCMP:
387		if (params->key_len != WLAN_KEY_LEN_CCMP)
388			return -EINVAL;
389		break;
390	case WLAN_CIPHER_SUITE_CCMP_256:
391		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
392			return -EINVAL;
393		break;
394	case WLAN_CIPHER_SUITE_GCMP:
395		if (params->key_len != WLAN_KEY_LEN_GCMP)
396			return -EINVAL;
397		break;
398	case WLAN_CIPHER_SUITE_GCMP_256:
399		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
400			return -EINVAL;
401		break;
402	case WLAN_CIPHER_SUITE_WEP104:
403		if (params->key_len != WLAN_KEY_LEN_WEP104)
404			return -EINVAL;
405		break;
406	case WLAN_CIPHER_SUITE_AES_CMAC:
407		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
408			return -EINVAL;
409		break;
410	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
412			return -EINVAL;
413		break;
414	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
415		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
416			return -EINVAL;
417		break;
418	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
419		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
420			return -EINVAL;
421		break;
422	default:
423		/*
424		 * We don't know anything about this algorithm,
425		 * allow using it -- but the driver must check
426		 * all parameters! We still check below whether
427		 * or not the driver supports this algorithm,
428		 * of course.
429		 */
430		break;
431	}
432
433	if (params->seq) {
434		switch (params->cipher) {
435		case WLAN_CIPHER_SUITE_WEP40:
436		case WLAN_CIPHER_SUITE_WEP104:
437			/* These ciphers do not use key sequence */
438			return -EINVAL;
439		case WLAN_CIPHER_SUITE_TKIP:
440		case WLAN_CIPHER_SUITE_CCMP:
441		case WLAN_CIPHER_SUITE_CCMP_256:
442		case WLAN_CIPHER_SUITE_GCMP:
443		case WLAN_CIPHER_SUITE_GCMP_256:
444		case WLAN_CIPHER_SUITE_AES_CMAC:
445		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
446		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448			if (params->seq_len != 6)
449				return -EINVAL;
450			break;
451		}
452	}
453
454	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
455		return -EINVAL;
456
457	return 0;
458}
459
460unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
461{
462	unsigned int hdrlen = 24;
463
464	if (ieee80211_is_ext(fc)) {
465		hdrlen = 4;
466		goto out;
467	}
468
469	if (ieee80211_is_data(fc)) {
470		if (ieee80211_has_a4(fc))
471			hdrlen = 30;
472		if (ieee80211_is_data_qos(fc)) {
473			hdrlen += IEEE80211_QOS_CTL_LEN;
474			if (ieee80211_has_order(fc))
475				hdrlen += IEEE80211_HT_CTL_LEN;
476		}
477		goto out;
478	}
479
480	if (ieee80211_is_mgmt(fc)) {
481		if (ieee80211_has_order(fc))
482			hdrlen += IEEE80211_HT_CTL_LEN;
483		goto out;
484	}
485
486	if (ieee80211_is_ctl(fc)) {
487		/*
488		 * ACK and CTS are 10 bytes, all others 16. To see how
489		 * to get this condition consider
490		 *   subtype mask:   0b0000000011110000 (0x00F0)
491		 *   ACK subtype:    0b0000000011010000 (0x00D0)
492		 *   CTS subtype:    0b0000000011000000 (0x00C0)
493		 *   bits that matter:         ^^^      (0x00E0)
494		 *   value of those: 0b0000000011000000 (0x00C0)
495		 */
496		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
497			hdrlen = 10;
498		else
499			hdrlen = 16;
500	}
501out:
502	return hdrlen;
503}
504EXPORT_SYMBOL(ieee80211_hdrlen);
505
506unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
507{
508	const struct ieee80211_hdr *hdr =
509			(const struct ieee80211_hdr *)skb->data;
510	unsigned int hdrlen;
511
512	if (unlikely(skb->len < 10))
513		return 0;
514	hdrlen = ieee80211_hdrlen(hdr->frame_control);
515	if (unlikely(hdrlen > skb->len))
516		return 0;
517	return hdrlen;
518}
519EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
520
521static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
522{
523	int ae = flags & MESH_FLAGS_AE;
524	/* 802.11-2012, 8.2.4.7.3 */
525	switch (ae) {
526	default:
527	case 0:
528		return 6;
529	case MESH_FLAGS_AE_A4:
530		return 12;
531	case MESH_FLAGS_AE_A5_A6:
532		return 18;
533	}
534}
535
536unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
537{
538	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
539}
540EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
541
542int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
543				  const u8 *addr, enum nl80211_iftype iftype,
544				  u8 data_offset, bool is_amsdu)
545{
546	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
547	struct {
548		u8 hdr[ETH_ALEN] __aligned(2);
549		__be16 proto;
550	} payload;
551	struct ethhdr tmp;
552	u16 hdrlen;
553	u8 mesh_flags = 0;
554
555	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
556		return -1;
557
558	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
559	if (skb->len < hdrlen + 8)
560		return -1;
561
562	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
563	 * header
564	 * IEEE 802.11 address fields:
565	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
566	 *   0     0   DA    SA    BSSID n/a
567	 *   0     1   DA    BSSID SA    n/a
568	 *   1     0   BSSID SA    DA    n/a
569	 *   1     1   RA    TA    DA    SA
570	 */
571	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
572	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
573
574	if (iftype == NL80211_IFTYPE_MESH_POINT)
575		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
576
577	mesh_flags &= MESH_FLAGS_AE;
578
579	switch (hdr->frame_control &
580		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
581	case cpu_to_le16(IEEE80211_FCTL_TODS):
582		if (unlikely(iftype != NL80211_IFTYPE_AP &&
583			     iftype != NL80211_IFTYPE_AP_VLAN &&
584			     iftype != NL80211_IFTYPE_P2P_GO))
585			return -1;
586		break;
587	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
588		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
589			     iftype != NL80211_IFTYPE_MESH_POINT &&
590			     iftype != NL80211_IFTYPE_AP_VLAN &&
591			     iftype != NL80211_IFTYPE_STATION))
592			return -1;
593		if (iftype == NL80211_IFTYPE_MESH_POINT) {
594			if (mesh_flags == MESH_FLAGS_AE_A4)
595				return -1;
596			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597				skb_copy_bits(skb, hdrlen +
598					offsetof(struct ieee80211s_hdr, eaddr1),
599					tmp.h_dest, 2 * ETH_ALEN);
600			}
601			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602		}
603		break;
604	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605		if ((iftype != NL80211_IFTYPE_STATION &&
606		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
607		     iftype != NL80211_IFTYPE_MESH_POINT) ||
608		    (is_multicast_ether_addr(tmp.h_dest) &&
609		     ether_addr_equal(tmp.h_source, addr)))
610			return -1;
611		if (iftype == NL80211_IFTYPE_MESH_POINT) {
612			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613				return -1;
614			if (mesh_flags == MESH_FLAGS_AE_A4)
615				skb_copy_bits(skb, hdrlen +
616					offsetof(struct ieee80211s_hdr, eaddr1),
617					tmp.h_source, ETH_ALEN);
618			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619		}
620		break;
621	case cpu_to_le16(0):
622		if (iftype != NL80211_IFTYPE_ADHOC &&
623		    iftype != NL80211_IFTYPE_STATION &&
624		    iftype != NL80211_IFTYPE_OCB)
625				return -1;
626		break;
627	}
628
629	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630	tmp.h_proto = payload.proto;
631
632	if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633		    tmp.h_proto != htons(ETH_P_AARP) &&
634		    tmp.h_proto != htons(ETH_P_IPX)) ||
635		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636		/* remove RFC1042 or Bridge-Tunnel encapsulation and
637		 * replace EtherType */
638		hdrlen += ETH_ALEN + 2;
639	else
640		tmp.h_proto = htons(skb->len - hdrlen);
641
642	pskb_pull(skb, hdrlen);
643
644	if (!ehdr)
645		ehdr = skb_push(skb, sizeof(struct ethhdr));
646	memcpy(ehdr, &tmp, sizeof(tmp));
647
648	return 0;
649}
650EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651
652static void
653__frame_add_frag(struct sk_buff *skb, struct page *page,
654		 void *ptr, int len, int size)
655{
656	struct skb_shared_info *sh = skb_shinfo(skb);
657	int page_offset;
658
659	get_page(page);
660	page_offset = ptr - page_address(page);
661	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662}
663
664static void
665__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666			    int offset, int len)
667{
668	struct skb_shared_info *sh = skb_shinfo(skb);
669	const skb_frag_t *frag = &sh->frags[0];
670	struct page *frag_page;
671	void *frag_ptr;
672	int frag_len, frag_size;
673	int head_size = skb->len - skb->data_len;
674	int cur_len;
675
676	frag_page = virt_to_head_page(skb->head);
677	frag_ptr = skb->data;
678	frag_size = head_size;
679
680	while (offset >= frag_size) {
681		offset -= frag_size;
682		frag_page = skb_frag_page(frag);
683		frag_ptr = skb_frag_address(frag);
684		frag_size = skb_frag_size(frag);
685		frag++;
686	}
687
688	frag_ptr += offset;
689	frag_len = frag_size - offset;
690
691	cur_len = min(len, frag_len);
692
693	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694	len -= cur_len;
695
696	while (len > 0) {
697		frag_len = skb_frag_size(frag);
698		cur_len = min(len, frag_len);
699		__frame_add_frag(frame, skb_frag_page(frag),
700				 skb_frag_address(frag), cur_len, frag_len);
701		len -= cur_len;
702		frag++;
703	}
704}
705
706static struct sk_buff *
707__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708		       int offset, int len, bool reuse_frag)
709{
710	struct sk_buff *frame;
711	int cur_len = len;
712
713	if (skb->len - offset < len)
714		return NULL;
715
716	/*
717	 * When reusing framents, copy some data to the head to simplify
718	 * ethernet header handling and speed up protocol header processing
719	 * in the stack later.
720	 */
721	if (reuse_frag)
722		cur_len = min_t(int, len, 32);
723
724	/*
725	 * Allocate and reserve two bytes more for payload
726	 * alignment since sizeof(struct ethhdr) is 14.
727	 */
728	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729	if (!frame)
730		return NULL;
731
732	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734
735	len -= cur_len;
736	if (!len)
737		return frame;
738
739	offset += cur_len;
740	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741
742	return frame;
743}
744
745void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746			      const u8 *addr, enum nl80211_iftype iftype,
747			      const unsigned int extra_headroom,
748			      const u8 *check_da, const u8 *check_sa)
749{
750	unsigned int hlen = ALIGN(extra_headroom, 4);
751	struct sk_buff *frame = NULL;
752	u16 ethertype;
753	u8 *payload;
754	int offset = 0, remaining;
755	struct ethhdr eth;
756	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757	bool reuse_skb = false;
758	bool last = false;
759
760	while (!last) {
761		unsigned int subframe_len;
762		int len;
763		u8 padding;
764
765		skb_copy_bits(skb, offset, &eth, sizeof(eth));
766		len = ntohs(eth.h_proto);
767		subframe_len = sizeof(struct ethhdr) + len;
768		padding = (4 - subframe_len) & 0x3;
769
770		/* the last MSDU has no padding */
771		remaining = skb->len - offset;
772		if (subframe_len > remaining)
773			goto purge;
774		/* mitigate A-MSDU aggregation injection attacks */
775		if (ether_addr_equal(eth.h_dest, rfc1042_header))
776			goto purge;
777
778		offset += sizeof(struct ethhdr);
779		last = remaining <= subframe_len + padding;
780
781		/* FIXME: should we really accept multicast DA? */
782		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
783		     !ether_addr_equal(check_da, eth.h_dest)) ||
784		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
785			offset += len + padding;
786			continue;
787		}
788
789		/* reuse skb for the last subframe */
790		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
791			skb_pull(skb, offset);
792			frame = skb;
793			reuse_skb = true;
794		} else {
795			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
796						       reuse_frag);
797			if (!frame)
798				goto purge;
799
800			offset += len + padding;
801		}
802
803		skb_reset_network_header(frame);
804		frame->dev = skb->dev;
805		frame->priority = skb->priority;
806
807		payload = frame->data;
808		ethertype = (payload[6] << 8) | payload[7];
809		if (likely((ether_addr_equal(payload, rfc1042_header) &&
810			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
811			   ether_addr_equal(payload, bridge_tunnel_header))) {
812			eth.h_proto = htons(ethertype);
813			skb_pull(frame, ETH_ALEN + 2);
814		}
815
816		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
817		__skb_queue_tail(list, frame);
818	}
819
820	if (!reuse_skb)
821		dev_kfree_skb(skb);
822
823	return;
824
825 purge:
826	__skb_queue_purge(list);
827	dev_kfree_skb(skb);
828}
829EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
830
831/* Given a data frame determine the 802.1p/1d tag to use. */
832unsigned int cfg80211_classify8021d(struct sk_buff *skb,
833				    struct cfg80211_qos_map *qos_map)
834{
835	unsigned int dscp;
836	unsigned char vlan_priority;
837	unsigned int ret;
838
839	/* skb->priority values from 256->263 are magic values to
840	 * directly indicate a specific 802.1d priority.  This is used
841	 * to allow 802.1d priority to be passed directly in from VLAN
842	 * tags, etc.
843	 */
844	if (skb->priority >= 256 && skb->priority <= 263) {
845		ret = skb->priority - 256;
846		goto out;
847	}
848
849	if (skb_vlan_tag_present(skb)) {
850		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
851			>> VLAN_PRIO_SHIFT;
852		if (vlan_priority > 0) {
853			ret = vlan_priority;
854			goto out;
855		}
856	}
857
858	switch (skb->protocol) {
859	case htons(ETH_P_IP):
860		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
861		break;
862	case htons(ETH_P_IPV6):
863		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
864		break;
865	case htons(ETH_P_MPLS_UC):
866	case htons(ETH_P_MPLS_MC): {
867		struct mpls_label mpls_tmp, *mpls;
868
869		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
870					  sizeof(*mpls), &mpls_tmp);
871		if (!mpls)
872			return 0;
873
874		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
875			>> MPLS_LS_TC_SHIFT;
876		goto out;
877	}
878	case htons(ETH_P_80221):
879		/* 802.21 is always network control traffic */
880		return 7;
881	default:
882		return 0;
883	}
884
885	if (qos_map) {
886		unsigned int i, tmp_dscp = dscp >> 2;
887
888		for (i = 0; i < qos_map->num_des; i++) {
889			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
890				ret = qos_map->dscp_exception[i].up;
891				goto out;
892			}
893		}
894
895		for (i = 0; i < 8; i++) {
896			if (tmp_dscp >= qos_map->up[i].low &&
897			    tmp_dscp <= qos_map->up[i].high) {
898				ret = i;
899				goto out;
900			}
901		}
902	}
903
904	ret = dscp >> 5;
905out:
906	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
907}
908EXPORT_SYMBOL(cfg80211_classify8021d);
909
910const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
911{
912	const struct cfg80211_bss_ies *ies;
913
914	ies = rcu_dereference(bss->ies);
915	if (!ies)
916		return NULL;
917
918	return cfg80211_find_elem(id, ies->data, ies->len);
919}
920EXPORT_SYMBOL(ieee80211_bss_get_elem);
921
922void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
923{
924	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
925	struct net_device *dev = wdev->netdev;
926	int i;
927
928	if (!wdev->connect_keys)
929		return;
930
931	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
932		if (!wdev->connect_keys->params[i].cipher)
933			continue;
934		if (rdev_add_key(rdev, dev, i, false, NULL,
935				 &wdev->connect_keys->params[i])) {
936			netdev_err(dev, "failed to set key %d\n", i);
937			continue;
938		}
939		if (wdev->connect_keys->def == i &&
940		    rdev_set_default_key(rdev, dev, i, true, true)) {
941			netdev_err(dev, "failed to set defkey %d\n", i);
942			continue;
943		}
944	}
945
946	kfree_sensitive(wdev->connect_keys);
947	wdev->connect_keys = NULL;
948}
949
950void cfg80211_process_wdev_events(struct wireless_dev *wdev)
951{
952	struct cfg80211_event *ev;
953	unsigned long flags;
954
955	spin_lock_irqsave(&wdev->event_lock, flags);
956	while (!list_empty(&wdev->event_list)) {
957		ev = list_first_entry(&wdev->event_list,
958				      struct cfg80211_event, list);
959		list_del(&ev->list);
960		spin_unlock_irqrestore(&wdev->event_lock, flags);
961
962		wdev_lock(wdev);
963		switch (ev->type) {
964		case EVENT_CONNECT_RESULT:
965			__cfg80211_connect_result(
966				wdev->netdev,
967				&ev->cr,
968				ev->cr.status == WLAN_STATUS_SUCCESS);
969			break;
970		case EVENT_ROAMED:
971			__cfg80211_roamed(wdev, &ev->rm);
972			break;
973		case EVENT_DISCONNECTED:
974			__cfg80211_disconnected(wdev->netdev,
975						ev->dc.ie, ev->dc.ie_len,
976						ev->dc.reason,
977						!ev->dc.locally_generated);
978			break;
979		case EVENT_IBSS_JOINED:
980			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
981					       ev->ij.channel);
982			break;
983		case EVENT_STOPPED:
984			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
985			break;
986		case EVENT_PORT_AUTHORIZED:
987			__cfg80211_port_authorized(wdev, ev->pa.bssid);
988			break;
989		}
990		wdev_unlock(wdev);
991
992		kfree(ev);
993
994		spin_lock_irqsave(&wdev->event_lock, flags);
995	}
996	spin_unlock_irqrestore(&wdev->event_lock, flags);
997}
998
999void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1000{
1001	struct wireless_dev *wdev;
1002
1003	ASSERT_RTNL();
1004
1005	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1006		cfg80211_process_wdev_events(wdev);
1007}
1008
1009int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1010			  struct net_device *dev, enum nl80211_iftype ntype,
1011			  struct vif_params *params)
1012{
1013	int err;
1014	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1015
1016	ASSERT_RTNL();
1017
1018	/* don't support changing VLANs, you just re-create them */
1019	if (otype == NL80211_IFTYPE_AP_VLAN)
1020		return -EOPNOTSUPP;
1021
1022	/* cannot change into P2P device or NAN */
1023	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1024	    ntype == NL80211_IFTYPE_NAN)
1025		return -EOPNOTSUPP;
1026
1027	if (!rdev->ops->change_virtual_intf ||
1028	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1029		return -EOPNOTSUPP;
1030
1031	if (ntype != otype) {
1032		/* if it's part of a bridge, reject changing type to station/ibss */
1033		if (netif_is_bridge_port(dev) &&
1034		    (ntype == NL80211_IFTYPE_ADHOC ||
1035		     ntype == NL80211_IFTYPE_STATION ||
1036		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1037			return -EBUSY;
1038
1039		dev->ieee80211_ptr->use_4addr = false;
1040		dev->ieee80211_ptr->mesh_id_up_len = 0;
1041		wdev_lock(dev->ieee80211_ptr);
1042		rdev_set_qos_map(rdev, dev, NULL);
1043		wdev_unlock(dev->ieee80211_ptr);
1044
1045		switch (otype) {
1046		case NL80211_IFTYPE_AP:
1047		case NL80211_IFTYPE_P2P_GO:
1048			cfg80211_stop_ap(rdev, dev, true);
1049			break;
1050		case NL80211_IFTYPE_ADHOC:
1051			cfg80211_leave_ibss(rdev, dev, false);
1052			break;
1053		case NL80211_IFTYPE_STATION:
1054		case NL80211_IFTYPE_P2P_CLIENT:
1055			wdev_lock(dev->ieee80211_ptr);
1056			cfg80211_disconnect(rdev, dev,
1057					    WLAN_REASON_DEAUTH_LEAVING, true);
1058			wdev_unlock(dev->ieee80211_ptr);
1059			break;
1060		case NL80211_IFTYPE_MESH_POINT:
1061			/* mesh should be handled? */
1062			break;
1063		case NL80211_IFTYPE_OCB:
1064			cfg80211_leave_ocb(rdev, dev);
1065			break;
1066		default:
1067			break;
1068		}
1069
1070		cfg80211_process_rdev_events(rdev);
1071		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1072	}
1073
1074	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1075
1076	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1077
1078	if (!err && params && params->use_4addr != -1)
1079		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1080
1081	if (!err) {
1082		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1083		switch (ntype) {
1084		case NL80211_IFTYPE_STATION:
1085			if (dev->ieee80211_ptr->use_4addr)
1086				break;
1087			fallthrough;
1088		case NL80211_IFTYPE_OCB:
1089		case NL80211_IFTYPE_P2P_CLIENT:
1090		case NL80211_IFTYPE_ADHOC:
1091			dev->priv_flags |= IFF_DONT_BRIDGE;
1092			break;
1093		case NL80211_IFTYPE_P2P_GO:
1094		case NL80211_IFTYPE_AP:
1095		case NL80211_IFTYPE_AP_VLAN:
1096		case NL80211_IFTYPE_WDS:
1097		case NL80211_IFTYPE_MESH_POINT:
1098			/* bridging OK */
1099			break;
1100		case NL80211_IFTYPE_MONITOR:
1101			/* monitor can't bridge anyway */
1102			break;
1103		case NL80211_IFTYPE_UNSPECIFIED:
1104		case NUM_NL80211_IFTYPES:
1105			/* not happening */
1106			break;
1107		case NL80211_IFTYPE_P2P_DEVICE:
1108		case NL80211_IFTYPE_NAN:
1109			WARN_ON(1);
1110			break;
1111		}
1112	}
1113
1114	if (!err && ntype != otype && netif_running(dev)) {
1115		cfg80211_update_iface_num(rdev, ntype, 1);
1116		cfg80211_update_iface_num(rdev, otype, -1);
1117	}
1118
1119	return err;
1120}
1121
1122static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1123{
1124	int modulation, streams, bitrate;
1125
1126	/* the formula below does only work for MCS values smaller than 32 */
1127	if (WARN_ON_ONCE(rate->mcs >= 32))
1128		return 0;
1129
1130	modulation = rate->mcs & 7;
1131	streams = (rate->mcs >> 3) + 1;
1132
1133	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1134
1135	if (modulation < 4)
1136		bitrate *= (modulation + 1);
1137	else if (modulation == 4)
1138		bitrate *= (modulation + 2);
1139	else
1140		bitrate *= (modulation + 3);
1141
1142	bitrate *= streams;
1143
1144	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1145		bitrate = (bitrate / 9) * 10;
1146
1147	/* do NOT round down here */
1148	return (bitrate + 50000) / 100000;
1149}
1150
1151static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1152{
1153	static const u32 __mcs2bitrate[] = {
1154		/* control PHY */
1155		[0] =   275,
1156		/* SC PHY */
1157		[1] =  3850,
1158		[2] =  7700,
1159		[3] =  9625,
1160		[4] = 11550,
1161		[5] = 12512, /* 1251.25 mbps */
1162		[6] = 15400,
1163		[7] = 19250,
1164		[8] = 23100,
1165		[9] = 25025,
1166		[10] = 30800,
1167		[11] = 38500,
1168		[12] = 46200,
1169		/* OFDM PHY */
1170		[13] =  6930,
1171		[14] =  8662, /* 866.25 mbps */
1172		[15] = 13860,
1173		[16] = 17325,
1174		[17] = 20790,
1175		[18] = 27720,
1176		[19] = 34650,
1177		[20] = 41580,
1178		[21] = 45045,
1179		[22] = 51975,
1180		[23] = 62370,
1181		[24] = 67568, /* 6756.75 mbps */
1182		/* LP-SC PHY */
1183		[25] =  6260,
1184		[26] =  8340,
1185		[27] = 11120,
1186		[28] = 12510,
1187		[29] = 16680,
1188		[30] = 22240,
1189		[31] = 25030,
1190	};
1191
1192	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1193		return 0;
1194
1195	return __mcs2bitrate[rate->mcs];
1196}
1197
1198static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1199{
1200	static const u32 __mcs2bitrate[] = {
1201		/* control PHY */
1202		[0] =   275,
1203		/* SC PHY */
1204		[1] =  3850,
1205		[2] =  7700,
1206		[3] =  9625,
1207		[4] = 11550,
1208		[5] = 12512, /* 1251.25 mbps */
1209		[6] = 13475,
1210		[7] = 15400,
1211		[8] = 19250,
1212		[9] = 23100,
1213		[10] = 25025,
1214		[11] = 26950,
1215		[12] = 30800,
1216		[13] = 38500,
1217		[14] = 46200,
1218		[15] = 50050,
1219		[16] = 53900,
1220		[17] = 57750,
1221		[18] = 69300,
1222		[19] = 75075,
1223		[20] = 80850,
1224	};
1225
1226	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1227		return 0;
1228
1229	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1230}
1231
1232static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1233{
1234	static const u32 base[4][10] = {
1235		{   6500000,
1236		   13000000,
1237		   19500000,
1238		   26000000,
1239		   39000000,
1240		   52000000,
1241		   58500000,
1242		   65000000,
1243		   78000000,
1244		/* not in the spec, but some devices use this: */
1245		   86500000,
1246		},
1247		{  13500000,
1248		   27000000,
1249		   40500000,
1250		   54000000,
1251		   81000000,
1252		  108000000,
1253		  121500000,
1254		  135000000,
1255		  162000000,
1256		  180000000,
1257		},
1258		{  29300000,
1259		   58500000,
1260		   87800000,
1261		  117000000,
1262		  175500000,
1263		  234000000,
1264		  263300000,
1265		  292500000,
1266		  351000000,
1267		  390000000,
1268		},
1269		{  58500000,
1270		  117000000,
1271		  175500000,
1272		  234000000,
1273		  351000000,
1274		  468000000,
1275		  526500000,
1276		  585000000,
1277		  702000000,
1278		  780000000,
1279		},
1280	};
1281	u32 bitrate;
1282	int idx;
1283
1284	if (rate->mcs > 9)
1285		goto warn;
1286
1287	switch (rate->bw) {
1288	case RATE_INFO_BW_160:
1289		idx = 3;
1290		break;
1291	case RATE_INFO_BW_80:
1292		idx = 2;
1293		break;
1294	case RATE_INFO_BW_40:
1295		idx = 1;
1296		break;
1297	case RATE_INFO_BW_5:
1298	case RATE_INFO_BW_10:
1299	default:
1300		goto warn;
1301	case RATE_INFO_BW_20:
1302		idx = 0;
1303	}
1304
1305	bitrate = base[idx][rate->mcs];
1306	bitrate *= rate->nss;
1307
1308	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1309		bitrate = (bitrate / 9) * 10;
1310
1311	/* do NOT round down here */
1312	return (bitrate + 50000) / 100000;
1313 warn:
1314	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1315		  rate->bw, rate->mcs, rate->nss);
1316	return 0;
1317}
1318
1319static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1320{
1321#define SCALE 2048
1322	u16 mcs_divisors[12] = {
1323		34133, /* 16.666666... */
1324		17067, /*  8.333333... */
1325		11378, /*  5.555555... */
1326		 8533, /*  4.166666... */
1327		 5689, /*  2.777777... */
1328		 4267, /*  2.083333... */
1329		 3923, /*  1.851851... */
1330		 3413, /*  1.666666... */
1331		 2844, /*  1.388888... */
1332		 2560, /*  1.250000... */
1333		 2276, /*  1.111111... */
1334		 2048, /*  1.000000... */
1335	};
1336	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1337	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1338	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1339	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1340	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1341	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1342	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1343	u64 tmp;
1344	u32 result;
1345
1346	if (WARN_ON_ONCE(rate->mcs > 11))
1347		return 0;
1348
1349	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1350		return 0;
1351	if (WARN_ON_ONCE(rate->he_ru_alloc >
1352			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1353		return 0;
1354	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1355		return 0;
1356
1357	if (rate->bw == RATE_INFO_BW_160 ||
1358	    (rate->bw == RATE_INFO_BW_HE_RU &&
1359	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1360		result = rates_160M[rate->he_gi];
1361	else if (rate->bw == RATE_INFO_BW_80 ||
1362		 (rate->bw == RATE_INFO_BW_HE_RU &&
1363		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1364		result = rates_969[rate->he_gi];
1365	else if (rate->bw == RATE_INFO_BW_40 ||
1366		 (rate->bw == RATE_INFO_BW_HE_RU &&
1367		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1368		result = rates_484[rate->he_gi];
1369	else if (rate->bw == RATE_INFO_BW_20 ||
1370		 (rate->bw == RATE_INFO_BW_HE_RU &&
1371		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1372		result = rates_242[rate->he_gi];
1373	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1374		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1375		result = rates_106[rate->he_gi];
1376	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1377		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1378		result = rates_52[rate->he_gi];
1379	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1380		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1381		result = rates_26[rate->he_gi];
1382	else {
1383		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1384		     rate->bw, rate->he_ru_alloc);
1385		return 0;
1386	}
1387
1388	/* now scale to the appropriate MCS */
1389	tmp = result;
1390	tmp *= SCALE;
1391	do_div(tmp, mcs_divisors[rate->mcs]);
1392	result = tmp;
1393
1394	/* and take NSS, DCM into account */
1395	result = (result * rate->nss) / 8;
1396	if (rate->he_dcm)
1397		result /= 2;
1398
1399	return result / 10000;
1400}
1401
1402u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1403{
1404	if (rate->flags & RATE_INFO_FLAGS_MCS)
1405		return cfg80211_calculate_bitrate_ht(rate);
1406	if (rate->flags & RATE_INFO_FLAGS_DMG)
1407		return cfg80211_calculate_bitrate_dmg(rate);
1408	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1409		return cfg80211_calculate_bitrate_edmg(rate);
1410	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1411		return cfg80211_calculate_bitrate_vht(rate);
1412	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1413		return cfg80211_calculate_bitrate_he(rate);
1414
1415	return rate->legacy;
1416}
1417EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1418
1419int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1420			  enum ieee80211_p2p_attr_id attr,
1421			  u8 *buf, unsigned int bufsize)
1422{
1423	u8 *out = buf;
1424	u16 attr_remaining = 0;
1425	bool desired_attr = false;
1426	u16 desired_len = 0;
1427
1428	while (len > 0) {
1429		unsigned int iedatalen;
1430		unsigned int copy;
1431		const u8 *iedata;
1432
1433		if (len < 2)
1434			return -EILSEQ;
1435		iedatalen = ies[1];
1436		if (iedatalen + 2 > len)
1437			return -EILSEQ;
1438
1439		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1440			goto cont;
1441
1442		if (iedatalen < 4)
1443			goto cont;
1444
1445		iedata = ies + 2;
1446
1447		/* check WFA OUI, P2P subtype */
1448		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1449		    iedata[2] != 0x9a || iedata[3] != 0x09)
1450			goto cont;
1451
1452		iedatalen -= 4;
1453		iedata += 4;
1454
1455		/* check attribute continuation into this IE */
1456		copy = min_t(unsigned int, attr_remaining, iedatalen);
1457		if (copy && desired_attr) {
1458			desired_len += copy;
1459			if (out) {
1460				memcpy(out, iedata, min(bufsize, copy));
1461				out += min(bufsize, copy);
1462				bufsize -= min(bufsize, copy);
1463			}
1464
1465
1466			if (copy == attr_remaining)
1467				return desired_len;
1468		}
1469
1470		attr_remaining -= copy;
1471		if (attr_remaining)
1472			goto cont;
1473
1474		iedatalen -= copy;
1475		iedata += copy;
1476
1477		while (iedatalen > 0) {
1478			u16 attr_len;
1479
1480			/* P2P attribute ID & size must fit */
1481			if (iedatalen < 3)
1482				return -EILSEQ;
1483			desired_attr = iedata[0] == attr;
1484			attr_len = get_unaligned_le16(iedata + 1);
1485			iedatalen -= 3;
1486			iedata += 3;
1487
1488			copy = min_t(unsigned int, attr_len, iedatalen);
1489
1490			if (desired_attr) {
1491				desired_len += copy;
1492				if (out) {
1493					memcpy(out, iedata, min(bufsize, copy));
1494					out += min(bufsize, copy);
1495					bufsize -= min(bufsize, copy);
1496				}
1497
1498				if (copy == attr_len)
1499					return desired_len;
1500			}
1501
1502			iedata += copy;
1503			iedatalen -= copy;
1504			attr_remaining = attr_len - copy;
1505		}
1506
1507 cont:
1508		len -= ies[1] + 2;
1509		ies += ies[1] + 2;
1510	}
1511
1512	if (attr_remaining && desired_attr)
1513		return -EILSEQ;
1514
1515	return -ENOENT;
1516}
1517EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1518
1519static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1520{
1521	int i;
1522
1523	/* Make sure array values are legal */
1524	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1525		return false;
1526
1527	i = 0;
1528	while (i < n_ids) {
1529		if (ids[i] == WLAN_EID_EXTENSION) {
1530			if (id_ext && (ids[i + 1] == id))
1531				return true;
1532
1533			i += 2;
1534			continue;
1535		}
1536
1537		if (ids[i] == id && !id_ext)
1538			return true;
1539
1540		i++;
1541	}
1542	return false;
1543}
1544
1545static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1546{
1547	/* we assume a validly formed IEs buffer */
1548	u8 len = ies[pos + 1];
1549
1550	pos += 2 + len;
1551
1552	/* the IE itself must have 255 bytes for fragments to follow */
1553	if (len < 255)
1554		return pos;
1555
1556	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1557		len = ies[pos + 1];
1558		pos += 2 + len;
1559	}
1560
1561	return pos;
1562}
1563
1564size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1565			      const u8 *ids, int n_ids,
1566			      const u8 *after_ric, int n_after_ric,
1567			      size_t offset)
1568{
1569	size_t pos = offset;
1570
1571	while (pos < ielen) {
1572		u8 ext = 0;
1573
1574		if (ies[pos] == WLAN_EID_EXTENSION)
1575			ext = 2;
1576		if ((pos + ext) >= ielen)
1577			break;
1578
1579		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1580					  ies[pos] == WLAN_EID_EXTENSION))
1581			break;
1582
1583		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1584			pos = skip_ie(ies, ielen, pos);
1585
1586			while (pos < ielen) {
1587				if (ies[pos] == WLAN_EID_EXTENSION)
1588					ext = 2;
1589				else
1590					ext = 0;
1591
1592				if ((pos + ext) >= ielen)
1593					break;
1594
1595				if (!ieee80211_id_in_list(after_ric,
1596							  n_after_ric,
1597							  ies[pos + ext],
1598							  ext == 2))
1599					pos = skip_ie(ies, ielen, pos);
1600				else
1601					break;
1602			}
1603		} else {
1604			pos = skip_ie(ies, ielen, pos);
1605		}
1606	}
1607
1608	return pos;
1609}
1610EXPORT_SYMBOL(ieee80211_ie_split_ric);
1611
1612bool ieee80211_operating_class_to_band(u8 operating_class,
1613				       enum nl80211_band *band)
1614{
1615	switch (operating_class) {
1616	case 112:
1617	case 115 ... 127:
1618	case 128 ... 130:
1619		*band = NL80211_BAND_5GHZ;
1620		return true;
1621	case 131 ... 135:
1622		*band = NL80211_BAND_6GHZ;
1623		return true;
1624	case 81:
1625	case 82:
1626	case 83:
1627	case 84:
1628		*band = NL80211_BAND_2GHZ;
1629		return true;
1630	case 180:
1631		*band = NL80211_BAND_60GHZ;
1632		return true;
1633	}
1634
1635	return false;
1636}
1637EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1638
1639bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1640					  u8 *op_class)
1641{
1642	u8 vht_opclass;
1643	u32 freq = chandef->center_freq1;
1644
1645	if (freq >= 2412 && freq <= 2472) {
1646		if (chandef->width > NL80211_CHAN_WIDTH_40)
1647			return false;
1648
1649		/* 2.407 GHz, channels 1..13 */
1650		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1651			if (freq > chandef->chan->center_freq)
1652				*op_class = 83; /* HT40+ */
1653			else
1654				*op_class = 84; /* HT40- */
1655		} else {
1656			*op_class = 81;
1657		}
1658
1659		return true;
1660	}
1661
1662	if (freq == 2484) {
1663		/* channel 14 is only for IEEE 802.11b */
1664		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1665			return false;
1666
1667		*op_class = 82; /* channel 14 */
1668		return true;
1669	}
1670
1671	switch (chandef->width) {
1672	case NL80211_CHAN_WIDTH_80:
1673		vht_opclass = 128;
1674		break;
1675	case NL80211_CHAN_WIDTH_160:
1676		vht_opclass = 129;
1677		break;
1678	case NL80211_CHAN_WIDTH_80P80:
1679		vht_opclass = 130;
1680		break;
1681	case NL80211_CHAN_WIDTH_10:
1682	case NL80211_CHAN_WIDTH_5:
1683		return false; /* unsupported for now */
1684	default:
1685		vht_opclass = 0;
1686		break;
1687	}
1688
1689	/* 5 GHz, channels 36..48 */
1690	if (freq >= 5180 && freq <= 5240) {
1691		if (vht_opclass) {
1692			*op_class = vht_opclass;
1693		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1694			if (freq > chandef->chan->center_freq)
1695				*op_class = 116;
1696			else
1697				*op_class = 117;
1698		} else {
1699			*op_class = 115;
1700		}
1701
1702		return true;
1703	}
1704
1705	/* 5 GHz, channels 52..64 */
1706	if (freq >= 5260 && freq <= 5320) {
1707		if (vht_opclass) {
1708			*op_class = vht_opclass;
1709		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1710			if (freq > chandef->chan->center_freq)
1711				*op_class = 119;
1712			else
1713				*op_class = 120;
1714		} else {
1715			*op_class = 118;
1716		}
1717
1718		return true;
1719	}
1720
1721	/* 5 GHz, channels 100..144 */
1722	if (freq >= 5500 && freq <= 5720) {
1723		if (vht_opclass) {
1724			*op_class = vht_opclass;
1725		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1726			if (freq > chandef->chan->center_freq)
1727				*op_class = 122;
1728			else
1729				*op_class = 123;
1730		} else {
1731			*op_class = 121;
1732		}
1733
1734		return true;
1735	}
1736
1737	/* 5 GHz, channels 149..169 */
1738	if (freq >= 5745 && freq <= 5845) {
1739		if (vht_opclass) {
1740			*op_class = vht_opclass;
1741		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1742			if (freq > chandef->chan->center_freq)
1743				*op_class = 126;
1744			else
1745				*op_class = 127;
1746		} else if (freq <= 5805) {
1747			*op_class = 124;
1748		} else {
1749			*op_class = 125;
1750		}
1751
1752		return true;
1753	}
1754
1755	/* 56.16 GHz, channel 1..4 */
1756	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1757		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1758			return false;
1759
1760		*op_class = 180;
1761		return true;
1762	}
1763
1764	/* not supported yet */
1765	return false;
1766}
1767EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1768
1769static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1770				       u32 *beacon_int_gcd,
1771				       bool *beacon_int_different)
1772{
1773	struct wireless_dev *wdev;
1774
1775	*beacon_int_gcd = 0;
1776	*beacon_int_different = false;
1777
1778	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1779		if (!wdev->beacon_interval)
1780			continue;
1781
1782		if (!*beacon_int_gcd) {
1783			*beacon_int_gcd = wdev->beacon_interval;
1784			continue;
1785		}
1786
1787		if (wdev->beacon_interval == *beacon_int_gcd)
1788			continue;
1789
1790		*beacon_int_different = true;
1791		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1792	}
1793
1794	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1795		if (*beacon_int_gcd)
1796			*beacon_int_different = true;
1797		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1798	}
1799}
1800
1801int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1802				 enum nl80211_iftype iftype, u32 beacon_int)
1803{
1804	/*
1805	 * This is just a basic pre-condition check; if interface combinations
1806	 * are possible the driver must already be checking those with a call
1807	 * to cfg80211_check_combinations(), in which case we'll validate more
1808	 * through the cfg80211_calculate_bi_data() call and code in
1809	 * cfg80211_iter_combinations().
1810	 */
1811
1812	if (beacon_int < 10 || beacon_int > 10000)
1813		return -EINVAL;
1814
1815	return 0;
1816}
1817
1818int cfg80211_iter_combinations(struct wiphy *wiphy,
1819			       struct iface_combination_params *params,
1820			       void (*iter)(const struct ieee80211_iface_combination *c,
1821					    void *data),
1822			       void *data)
1823{
1824	const struct ieee80211_regdomain *regdom;
1825	enum nl80211_dfs_regions region = 0;
1826	int i, j, iftype;
1827	int num_interfaces = 0;
1828	u32 used_iftypes = 0;
1829	u32 beacon_int_gcd;
1830	bool beacon_int_different;
1831
1832	/*
1833	 * This is a bit strange, since the iteration used to rely only on
1834	 * the data given by the driver, but here it now relies on context,
1835	 * in form of the currently operating interfaces.
1836	 * This is OK for all current users, and saves us from having to
1837	 * push the GCD calculations into all the drivers.
1838	 * In the future, this should probably rely more on data that's in
1839	 * cfg80211 already - the only thing not would appear to be any new
1840	 * interfaces (while being brought up) and channel/radar data.
1841	 */
1842	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1843				   &beacon_int_gcd, &beacon_int_different);
1844
1845	if (params->radar_detect) {
1846		rcu_read_lock();
1847		regdom = rcu_dereference(cfg80211_regdomain);
1848		if (regdom)
1849			region = regdom->dfs_region;
1850		rcu_read_unlock();
1851	}
1852
1853	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1854		num_interfaces += params->iftype_num[iftype];
1855		if (params->iftype_num[iftype] > 0 &&
1856		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1857			used_iftypes |= BIT(iftype);
1858	}
1859
1860	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1861		const struct ieee80211_iface_combination *c;
1862		struct ieee80211_iface_limit *limits;
1863		u32 all_iftypes = 0;
1864
1865		c = &wiphy->iface_combinations[i];
1866
1867		if (num_interfaces > c->max_interfaces)
1868			continue;
1869		if (params->num_different_channels > c->num_different_channels)
1870			continue;
1871
1872		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1873				 GFP_KERNEL);
1874		if (!limits)
1875			return -ENOMEM;
1876
1877		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1878			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1879				continue;
1880			for (j = 0; j < c->n_limits; j++) {
1881				all_iftypes |= limits[j].types;
1882				if (!(limits[j].types & BIT(iftype)))
1883					continue;
1884				if (limits[j].max < params->iftype_num[iftype])
1885					goto cont;
1886				limits[j].max -= params->iftype_num[iftype];
1887			}
1888		}
1889
1890		if (params->radar_detect !=
1891			(c->radar_detect_widths & params->radar_detect))
1892			goto cont;
1893
1894		if (params->radar_detect && c->radar_detect_regions &&
1895		    !(c->radar_detect_regions & BIT(region)))
1896			goto cont;
1897
1898		/* Finally check that all iftypes that we're currently
1899		 * using are actually part of this combination. If they
1900		 * aren't then we can't use this combination and have
1901		 * to continue to the next.
1902		 */
1903		if ((all_iftypes & used_iftypes) != used_iftypes)
1904			goto cont;
1905
1906		if (beacon_int_gcd) {
1907			if (c->beacon_int_min_gcd &&
1908			    beacon_int_gcd < c->beacon_int_min_gcd)
1909				goto cont;
1910			if (!c->beacon_int_min_gcd && beacon_int_different)
1911				goto cont;
1912		}
1913
1914		/* This combination covered all interface types and
1915		 * supported the requested numbers, so we're good.
1916		 */
1917
1918		(*iter)(c, data);
1919 cont:
1920		kfree(limits);
1921	}
1922
1923	return 0;
1924}
1925EXPORT_SYMBOL(cfg80211_iter_combinations);
1926
1927static void
1928cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1929			  void *data)
1930{
1931	int *num = data;
1932	(*num)++;
1933}
1934
1935int cfg80211_check_combinations(struct wiphy *wiphy,
1936				struct iface_combination_params *params)
1937{
1938	int err, num = 0;
1939
1940	err = cfg80211_iter_combinations(wiphy, params,
1941					 cfg80211_iter_sum_ifcombs, &num);
1942	if (err)
1943		return err;
1944	if (num == 0)
1945		return -EBUSY;
1946
1947	return 0;
1948}
1949EXPORT_SYMBOL(cfg80211_check_combinations);
1950
1951int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1952			   const u8 *rates, unsigned int n_rates,
1953			   u32 *mask)
1954{
1955	int i, j;
1956
1957	if (!sband)
1958		return -EINVAL;
1959
1960	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1961		return -EINVAL;
1962
1963	*mask = 0;
1964
1965	for (i = 0; i < n_rates; i++) {
1966		int rate = (rates[i] & 0x7f) * 5;
1967		bool found = false;
1968
1969		for (j = 0; j < sband->n_bitrates; j++) {
1970			if (sband->bitrates[j].bitrate == rate) {
1971				found = true;
1972				*mask |= BIT(j);
1973				break;
1974			}
1975		}
1976		if (!found)
1977			return -EINVAL;
1978	}
1979
1980	/*
1981	 * mask must have at least one bit set here since we
1982	 * didn't accept a 0-length rates array nor allowed
1983	 * entries in the array that didn't exist
1984	 */
1985
1986	return 0;
1987}
1988
1989unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1990{
1991	enum nl80211_band band;
1992	unsigned int n_channels = 0;
1993
1994	for (band = 0; band < NUM_NL80211_BANDS; band++)
1995		if (wiphy->bands[band])
1996			n_channels += wiphy->bands[band]->n_channels;
1997
1998	return n_channels;
1999}
2000EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2001
2002int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2003			 struct station_info *sinfo)
2004{
2005	struct cfg80211_registered_device *rdev;
2006	struct wireless_dev *wdev;
2007
2008	wdev = dev->ieee80211_ptr;
2009	if (!wdev)
2010		return -EOPNOTSUPP;
2011
2012	rdev = wiphy_to_rdev(wdev->wiphy);
2013	if (!rdev->ops->get_station)
2014		return -EOPNOTSUPP;
2015
2016	memset(sinfo, 0, sizeof(*sinfo));
2017
2018	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2019}
2020EXPORT_SYMBOL(cfg80211_get_station);
2021
2022void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2023{
2024	int i;
2025
2026	if (!f)
2027		return;
2028
2029	kfree(f->serv_spec_info);
2030	kfree(f->srf_bf);
2031	kfree(f->srf_macs);
2032	for (i = 0; i < f->num_rx_filters; i++)
2033		kfree(f->rx_filters[i].filter);
2034
2035	for (i = 0; i < f->num_tx_filters; i++)
2036		kfree(f->tx_filters[i].filter);
2037
2038	kfree(f->rx_filters);
2039	kfree(f->tx_filters);
2040	kfree(f);
2041}
2042EXPORT_SYMBOL(cfg80211_free_nan_func);
2043
2044bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2045				u32 center_freq_khz, u32 bw_khz)
2046{
2047	u32 start_freq_khz, end_freq_khz;
2048
2049	start_freq_khz = center_freq_khz - (bw_khz / 2);
2050	end_freq_khz = center_freq_khz + (bw_khz / 2);
2051
2052	if (start_freq_khz >= freq_range->start_freq_khz &&
2053	    end_freq_khz <= freq_range->end_freq_khz)
2054		return true;
2055
2056	return false;
2057}
2058
2059int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2060{
2061	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2062				sizeof(*(sinfo->pertid)),
2063				gfp);
2064	if (!sinfo->pertid)
2065		return -ENOMEM;
2066
2067	return 0;
2068}
2069EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2070
2071/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2072/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2073const unsigned char rfc1042_header[] __aligned(2) =
2074	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2075EXPORT_SYMBOL(rfc1042_header);
2076
2077/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2078const unsigned char bridge_tunnel_header[] __aligned(2) =
2079	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2080EXPORT_SYMBOL(bridge_tunnel_header);
2081
2082/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2083struct iapp_layer2_update {
2084	u8 da[ETH_ALEN];	/* broadcast */
2085	u8 sa[ETH_ALEN];	/* STA addr */
2086	__be16 len;		/* 6 */
2087	u8 dsap;		/* 0 */
2088	u8 ssap;		/* 0 */
2089	u8 control;
2090	u8 xid_info[3];
2091} __packed;
2092
2093void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2094{
2095	struct iapp_layer2_update *msg;
2096	struct sk_buff *skb;
2097
2098	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2099	 * bridge devices */
2100
2101	skb = dev_alloc_skb(sizeof(*msg));
2102	if (!skb)
2103		return;
2104	msg = skb_put(skb, sizeof(*msg));
2105
2106	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2107	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2108
2109	eth_broadcast_addr(msg->da);
2110	ether_addr_copy(msg->sa, addr);
2111	msg->len = htons(6);
2112	msg->dsap = 0;
2113	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2114	msg->control = 0xaf;	/* XID response lsb.1111F101.
2115				 * F=0 (no poll command; unsolicited frame) */
2116	msg->xid_info[0] = 0x81;	/* XID format identifier */
2117	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2118	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2119
2120	skb->dev = dev;
2121	skb->protocol = eth_type_trans(skb, dev);
2122	memset(skb->cb, 0, sizeof(skb->cb));
2123	netif_rx_ni(skb);
2124}
2125EXPORT_SYMBOL(cfg80211_send_layer2_update);
2126
2127int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2128			      enum ieee80211_vht_chanwidth bw,
2129			      int mcs, bool ext_nss_bw_capable,
2130			      unsigned int max_vht_nss)
2131{
2132	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2133	int ext_nss_bw;
2134	int supp_width;
2135	int i, mcs_encoding;
2136
2137	if (map == 0xffff)
2138		return 0;
2139
2140	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2141		return 0;
2142	if (mcs <= 7)
2143		mcs_encoding = 0;
2144	else if (mcs == 8)
2145		mcs_encoding = 1;
2146	else
2147		mcs_encoding = 2;
2148
2149	if (!max_vht_nss) {
2150		/* find max_vht_nss for the given MCS */
2151		for (i = 7; i >= 0; i--) {
2152			int supp = (map >> (2 * i)) & 3;
2153
2154			if (supp == 3)
2155				continue;
2156
2157			if (supp >= mcs_encoding) {
2158				max_vht_nss = i + 1;
2159				break;
2160			}
2161		}
2162	}
2163
2164	if (!(cap->supp_mcs.tx_mcs_map &
2165			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2166		return max_vht_nss;
2167
2168	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2169				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2170	supp_width = le32_get_bits(cap->vht_cap_info,
2171				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2172
2173	/* if not capable, treat ext_nss_bw as 0 */
2174	if (!ext_nss_bw_capable)
2175		ext_nss_bw = 0;
2176
2177	/* This is invalid */
2178	if (supp_width == 3)
2179		return 0;
2180
2181	/* This is an invalid combination so pretend nothing is supported */
2182	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2183		return 0;
2184
2185	/*
2186	 * Cover all the special cases according to IEEE 802.11-2016
2187	 * Table 9-250. All other cases are either factor of 1 or not
2188	 * valid/supported.
2189	 */
2190	switch (bw) {
2191	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2192	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2193		if ((supp_width == 1 || supp_width == 2) &&
2194		    ext_nss_bw == 3)
2195			return 2 * max_vht_nss;
2196		break;
2197	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2198		if (supp_width == 0 &&
2199		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2200			return max_vht_nss / 2;
2201		if (supp_width == 0 &&
2202		    ext_nss_bw == 3)
2203			return (3 * max_vht_nss) / 4;
2204		if (supp_width == 1 &&
2205		    ext_nss_bw == 3)
2206			return 2 * max_vht_nss;
2207		break;
2208	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2209		if (supp_width == 0 && ext_nss_bw == 1)
2210			return 0; /* not possible */
2211		if (supp_width == 0 &&
2212		    ext_nss_bw == 2)
2213			return max_vht_nss / 2;
2214		if (supp_width == 0 &&
2215		    ext_nss_bw == 3)
2216			return (3 * max_vht_nss) / 4;
2217		if (supp_width == 1 &&
2218		    ext_nss_bw == 0)
2219			return 0; /* not possible */
2220		if (supp_width == 1 &&
2221		    ext_nss_bw == 1)
2222			return max_vht_nss / 2;
2223		if (supp_width == 1 &&
2224		    ext_nss_bw == 2)
2225			return (3 * max_vht_nss) / 4;
2226		break;
2227	}
2228
2229	/* not covered or invalid combination received */
2230	return max_vht_nss;
2231}
2232EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2233
2234bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2235			     bool is_4addr, u8 check_swif)
2236
2237{
2238	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2239
2240	switch (check_swif) {
2241	case 0:
2242		if (is_vlan && is_4addr)
2243			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2244		return wiphy->interface_modes & BIT(iftype);
2245	case 1:
2246		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2247			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2248		return wiphy->software_iftypes & BIT(iftype);
2249	default:
2250		break;
2251	}
2252
2253	return false;
2254}
2255EXPORT_SYMBOL(cfg80211_iftype_allowed);
2256