1/* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24/** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50#include <linux/kernel.h> 51#include <linux/export.h> 52#include <linux/slab.h> 53#include <linux/list.h> 54#include <linux/ctype.h> 55#include <linux/nl80211.h> 56#include <linux/platform_device.h> 57#include <linux/verification.h> 58#include <linux/moduleparam.h> 59#include <linux/firmware.h> 60#include <net/cfg80211.h> 61#include "core.h" 62#include "reg.h" 63#include "rdev-ops.h" 64#include "nl80211.h" 65 66/* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70#define REG_ENFORCE_GRACE_MS 60000 71 72/** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87}; 88 89static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96}; 97 98/* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105/* To trigger userspace events and load firmware */ 106static struct platform_device *reg_pdev; 107 108/* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116/* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121static int reg_num_devs_support_basehint; 122 123/* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128static bool reg_is_indoor; 129static spinlock_t reg_indoor_lock; 130 131/* Used to track the userspace process controlling the indoor setting */ 132static u32 reg_is_indoor_portid; 133 134static void restore_regulatory_settings(bool reset_user, bool cached); 135static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138{ 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140} 141 142const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143{ 144 return rcu_dereference_rtnl(wiphy->regd); 145} 146 147static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148{ 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160} 161 162enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163{ 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183out: 184 return regd->dfs_region; 185} 186 187static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188{ 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192} 193 194static struct regulatory_request *get_last_request(void) 195{ 196 return rcu_dereference_rtnl(last_request); 197} 198 199/* Used to queue up regulatory hints */ 200static LIST_HEAD(reg_requests_list); 201static spinlock_t reg_requests_lock; 202 203/* Used to queue up beacon hints for review */ 204static LIST_HEAD(reg_pending_beacons); 205static spinlock_t reg_pending_beacons_lock; 206 207/* Used to keep track of processed beacon hints */ 208static LIST_HEAD(reg_beacon_list); 209 210struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213}; 214 215static void reg_check_chans_work(struct work_struct *work); 216static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218static void reg_todo(struct work_struct *work); 219static DECLARE_WORK(reg_work, reg_todo); 220 221/* We keep a static world regulatory domain in case of the absence of CRDA */ 222static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259}; 260 261/* protected by RTNL */ 262static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265static char *ieee80211_regdom = "00"; 266static char user_alpha2[2]; 267static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269module_param(ieee80211_regdom, charp, 0444); 270MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272static void reg_free_request(struct regulatory_request *request) 273{ 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279} 280 281static void reg_free_last_request(void) 282{ 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287} 288 289static void reg_update_last_request(struct regulatory_request *request) 290{ 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299} 300 301static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303{ 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328} 329 330/* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335{ 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345} 346 347bool is_world_regdom(const char *alpha2) 348{ 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352} 353 354static bool is_alpha2_set(const char *alpha2) 355{ 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359} 360 361static bool is_unknown_alpha2(const char *alpha2) 362{ 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370} 371 372static bool is_intersected_alpha2(const char *alpha2) 373{ 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382} 383 384static bool is_an_alpha2(const char *alpha2) 385{ 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389} 390 391static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392{ 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396} 397 398static bool regdom_changes(const char *alpha2) 399{ 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405} 406 407/* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412static bool is_user_regdom_saved(void) 413{ 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424} 425 426static const struct ieee80211_regdomain * 427reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428{ 429 struct ieee80211_regdomain *regd; 430 unsigned int i; 431 432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 433 GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444} 445 446static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 447{ 448 ASSERT_RTNL(); 449 450 if (!IS_ERR(cfg80211_user_regdom)) 451 kfree(cfg80211_user_regdom); 452 cfg80211_user_regdom = reg_copy_regd(rd); 453} 454 455struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458}; 459 460static LIST_HEAD(reg_regdb_apply_list); 461static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463static void reg_regdb_apply(struct work_struct *work) 464{ 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482} 483 484static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 487{ 488 struct reg_regdb_apply_request *request; 489 490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 491 if (!request) { 492 kfree(regdom); 493 return -ENOMEM; 494 } 495 496 request->regdom = regdom; 497 498 mutex_lock(®_regdb_apply_mutex); 499 list_add_tail(&request->list, ®_regdb_apply_list); 500 mutex_unlock(®_regdb_apply_mutex); 501 502 schedule_work(®_regdb_work); 503 return 0; 504} 505 506#ifdef CONFIG_CFG80211_CRDA_SUPPORT 507/* Max number of consecutive attempts to communicate with CRDA */ 508#define REG_MAX_CRDA_TIMEOUTS 10 509 510static u32 reg_crda_timeouts; 511 512static void crda_timeout_work(struct work_struct *work); 513static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 514 515static void crda_timeout_work(struct work_struct *work) 516{ 517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 518 rtnl_lock(); 519 reg_crda_timeouts++; 520 restore_regulatory_settings(true, false); 521 rtnl_unlock(); 522} 523 524static void cancel_crda_timeout(void) 525{ 526 cancel_delayed_work(&crda_timeout); 527} 528 529static void cancel_crda_timeout_sync(void) 530{ 531 cancel_delayed_work_sync(&crda_timeout); 532} 533 534static void reset_crda_timeouts(void) 535{ 536 reg_crda_timeouts = 0; 537} 538 539/* 540 * This lets us keep regulatory code which is updated on a regulatory 541 * basis in userspace. 542 */ 543static int call_crda(const char *alpha2) 544{ 545 char country[12]; 546 char *env[] = { country, NULL }; 547 int ret; 548 549 snprintf(country, sizeof(country), "COUNTRY=%c%c", 550 alpha2[0], alpha2[1]); 551 552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 554 return -EINVAL; 555 } 556 557 if (!is_world_regdom((char *) alpha2)) 558 pr_debug("Calling CRDA for country: %c%c\n", 559 alpha2[0], alpha2[1]); 560 else 561 pr_debug("Calling CRDA to update world regulatory domain\n"); 562 563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 564 if (ret) 565 return ret; 566 567 queue_delayed_work(system_power_efficient_wq, 568 &crda_timeout, msecs_to_jiffies(3142)); 569 return 0; 570} 571#else 572static inline void cancel_crda_timeout(void) {} 573static inline void cancel_crda_timeout_sync(void) {} 574static inline void reset_crda_timeouts(void) {} 575static inline int call_crda(const char *alpha2) 576{ 577 return -ENODATA; 578} 579#endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 580 581/* code to directly load a firmware database through request_firmware */ 582static const struct fwdb_header *regdb; 583 584struct fwdb_country { 585 u8 alpha2[2]; 586 __be16 coll_ptr; 587 /* this struct cannot be extended */ 588} __packed __aligned(4); 589 590struct fwdb_collection { 591 u8 len; 592 u8 n_rules; 593 u8 dfs_region; 594 /* no optional data yet */ 595 /* aligned to 2, then followed by __be16 array of rule pointers */ 596} __packed __aligned(4); 597 598enum fwdb_flags { 599 FWDB_FLAG_NO_OFDM = BIT(0), 600 FWDB_FLAG_NO_OUTDOOR = BIT(1), 601 FWDB_FLAG_DFS = BIT(2), 602 FWDB_FLAG_NO_IR = BIT(3), 603 FWDB_FLAG_AUTO_BW = BIT(4), 604}; 605 606struct fwdb_wmm_ac { 607 u8 ecw; 608 u8 aifsn; 609 __be16 cot; 610} __packed; 611 612struct fwdb_wmm_rule { 613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 615} __packed; 616 617struct fwdb_rule { 618 u8 len; 619 u8 flags; 620 __be16 max_eirp; 621 __be32 start, end, max_bw; 622 /* start of optional data */ 623 __be16 cac_timeout; 624 __be16 wmm_ptr; 625} __packed __aligned(4); 626 627#define FWDB_MAGIC 0x52474442 628#define FWDB_VERSION 20 629 630struct fwdb_header { 631 __be32 magic; 632 __be32 version; 633 struct fwdb_country country[]; 634} __packed __aligned(4); 635 636static int ecw2cw(int ecw) 637{ 638 return (1 << ecw) - 1; 639} 640 641static bool valid_wmm(struct fwdb_wmm_rule *rule) 642{ 643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 644 int i; 645 646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 649 u8 aifsn = ac[i].aifsn; 650 651 if (cw_min >= cw_max) 652 return false; 653 654 if (aifsn < 1) 655 return false; 656 } 657 658 return true; 659} 660 661static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 662{ 663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 664 665 if ((u8 *)rule + sizeof(rule->len) > data + size) 666 return false; 667 668 /* mandatory fields */ 669 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 670 return false; 671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 673 struct fwdb_wmm_rule *wmm; 674 675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 676 return false; 677 678 wmm = (void *)(data + wmm_ptr); 679 680 if (!valid_wmm(wmm)) 681 return false; 682 } 683 return true; 684} 685 686static bool valid_country(const u8 *data, unsigned int size, 687 const struct fwdb_country *country) 688{ 689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 690 struct fwdb_collection *coll = (void *)(data + ptr); 691 __be16 *rules_ptr; 692 unsigned int i; 693 694 /* make sure we can read len/n_rules */ 695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 696 return false; 697 698 /* make sure base struct and all rules fit */ 699 if ((u8 *)coll + ALIGN(coll->len, 2) + 700 (coll->n_rules * 2) > data + size) 701 return false; 702 703 /* mandatory fields must exist */ 704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 705 return false; 706 707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 708 709 for (i = 0; i < coll->n_rules; i++) { 710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 711 712 if (!valid_rule(data, size, rule_ptr)) 713 return false; 714 } 715 716 return true; 717} 718 719#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 720static struct key *builtin_regdb_keys; 721 722static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 723{ 724 const u8 *end = p + buflen; 725 size_t plen; 726 key_ref_t key; 727 728 while (p < end) { 729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 730 * than 256 bytes in size. 731 */ 732 if (end - p < 4) 733 goto dodgy_cert; 734 if (p[0] != 0x30 && 735 p[1] != 0x82) 736 goto dodgy_cert; 737 plen = (p[2] << 8) | p[3]; 738 plen += 4; 739 if (plen > end - p) 740 goto dodgy_cert; 741 742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 743 "asymmetric", NULL, p, plen, 744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 745 KEY_USR_VIEW | KEY_USR_READ), 746 KEY_ALLOC_NOT_IN_QUOTA | 747 KEY_ALLOC_BUILT_IN | 748 KEY_ALLOC_BYPASS_RESTRICTION); 749 if (IS_ERR(key)) { 750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 751 PTR_ERR(key)); 752 } else { 753 pr_notice("Loaded X.509 cert '%s'\n", 754 key_ref_to_ptr(key)->description); 755 key_ref_put(key); 756 } 757 p += plen; 758 } 759 760 return; 761 762dodgy_cert: 763 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 764} 765 766static int __init load_builtin_regdb_keys(void) 767{ 768 builtin_regdb_keys = 769 keyring_alloc(".builtin_regdb_keys", 770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 774 if (IS_ERR(builtin_regdb_keys)) 775 return PTR_ERR(builtin_regdb_keys); 776 777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 778 779#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 781#endif 782#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 785#endif 786 787 return 0; 788} 789 790MODULE_FIRMWARE("regulatory.db.p7s"); 791 792static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 793{ 794 const struct firmware *sig; 795 bool result; 796 797 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 798 return false; 799 800 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 801 builtin_regdb_keys, 802 VERIFYING_UNSPECIFIED_SIGNATURE, 803 NULL, NULL) == 0; 804 805 release_firmware(sig); 806 807 return result; 808} 809 810static void free_regdb_keyring(void) 811{ 812 key_put(builtin_regdb_keys); 813} 814#else 815static int load_builtin_regdb_keys(void) 816{ 817 return 0; 818} 819 820static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 821{ 822 return true; 823} 824 825static void free_regdb_keyring(void) 826{ 827} 828#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 829 830static bool valid_regdb(const u8 *data, unsigned int size) 831{ 832 const struct fwdb_header *hdr = (void *)data; 833 const struct fwdb_country *country; 834 835 if (size < sizeof(*hdr)) 836 return false; 837 838 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 839 return false; 840 841 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 842 return false; 843 844 if (!regdb_has_valid_signature(data, size)) 845 return false; 846 847 country = &hdr->country[0]; 848 while ((u8 *)(country + 1) <= data + size) { 849 if (!country->coll_ptr) 850 break; 851 if (!valid_country(data, size, country)) 852 return false; 853 country++; 854 } 855 856 return true; 857} 858 859static void set_wmm_rule(const struct fwdb_header *db, 860 const struct fwdb_country *country, 861 const struct fwdb_rule *rule, 862 struct ieee80211_reg_rule *rrule) 863{ 864 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 865 struct fwdb_wmm_rule *wmm; 866 unsigned int i, wmm_ptr; 867 868 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 869 wmm = (void *)((u8 *)db + wmm_ptr); 870 871 if (!valid_wmm(wmm)) { 872 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 873 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 874 country->alpha2[0], country->alpha2[1]); 875 return; 876 } 877 878 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 879 wmm_rule->client[i].cw_min = 880 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 881 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 882 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 883 wmm_rule->client[i].cot = 884 1000 * be16_to_cpu(wmm->client[i].cot); 885 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 886 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 887 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 888 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 889 } 890 891 rrule->has_wmm = true; 892} 893 894static int __regdb_query_wmm(const struct fwdb_header *db, 895 const struct fwdb_country *country, int freq, 896 struct ieee80211_reg_rule *rrule) 897{ 898 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 899 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 900 int i; 901 902 for (i = 0; i < coll->n_rules; i++) { 903 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 904 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 905 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 906 907 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 908 continue; 909 910 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 911 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 912 set_wmm_rule(db, country, rule, rrule); 913 return 0; 914 } 915 } 916 917 return -ENODATA; 918} 919 920int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 921{ 922 const struct fwdb_header *hdr = regdb; 923 const struct fwdb_country *country; 924 925 if (!regdb) 926 return -ENODATA; 927 928 if (IS_ERR(regdb)) 929 return PTR_ERR(regdb); 930 931 country = &hdr->country[0]; 932 while (country->coll_ptr) { 933 if (alpha2_equal(alpha2, country->alpha2)) 934 return __regdb_query_wmm(regdb, country, freq, rule); 935 936 country++; 937 } 938 939 return -ENODATA; 940} 941EXPORT_SYMBOL(reg_query_regdb_wmm); 942 943static int regdb_query_country(const struct fwdb_header *db, 944 const struct fwdb_country *country) 945{ 946 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 947 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 948 struct ieee80211_regdomain *regdom; 949 unsigned int i; 950 951 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 952 GFP_KERNEL); 953 if (!regdom) 954 return -ENOMEM; 955 956 regdom->n_reg_rules = coll->n_rules; 957 regdom->alpha2[0] = country->alpha2[0]; 958 regdom->alpha2[1] = country->alpha2[1]; 959 regdom->dfs_region = coll->dfs_region; 960 961 for (i = 0; i < regdom->n_reg_rules; i++) { 962 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 963 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 964 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 965 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 966 967 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 968 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 969 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 970 971 rrule->power_rule.max_antenna_gain = 0; 972 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 973 974 rrule->flags = 0; 975 if (rule->flags & FWDB_FLAG_NO_OFDM) 976 rrule->flags |= NL80211_RRF_NO_OFDM; 977 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 978 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 979 if (rule->flags & FWDB_FLAG_DFS) 980 rrule->flags |= NL80211_RRF_DFS; 981 if (rule->flags & FWDB_FLAG_NO_IR) 982 rrule->flags |= NL80211_RRF_NO_IR; 983 if (rule->flags & FWDB_FLAG_AUTO_BW) 984 rrule->flags |= NL80211_RRF_AUTO_BW; 985 986 rrule->dfs_cac_ms = 0; 987 988 /* handle optional data */ 989 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 990 rrule->dfs_cac_ms = 991 1000 * be16_to_cpu(rule->cac_timeout); 992 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 993 set_wmm_rule(db, country, rule, rrule); 994 } 995 996 return reg_schedule_apply(regdom); 997} 998 999static int query_regdb(const char *alpha2) 1000{ 1001 const struct fwdb_header *hdr = regdb; 1002 const struct fwdb_country *country; 1003 1004 ASSERT_RTNL(); 1005 1006 if (IS_ERR(regdb)) 1007 return PTR_ERR(regdb); 1008 1009 country = &hdr->country[0]; 1010 while (country->coll_ptr) { 1011 if (alpha2_equal(alpha2, country->alpha2)) 1012 return regdb_query_country(regdb, country); 1013 country++; 1014 } 1015 1016 return -ENODATA; 1017} 1018 1019static void regdb_fw_cb(const struct firmware *fw, void *context) 1020{ 1021 int set_error = 0; 1022 bool restore = true; 1023 void *db; 1024 1025 if (!fw) { 1026 pr_info("failed to load regulatory.db\n"); 1027 set_error = -ENODATA; 1028 } else if (!valid_regdb(fw->data, fw->size)) { 1029 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1030 set_error = -EINVAL; 1031 } 1032 1033 rtnl_lock(); 1034 if (regdb && !IS_ERR(regdb)) { 1035 /* negative case - a bug 1036 * positive case - can happen due to race in case of multiple cb's in 1037 * queue, due to usage of asynchronous callback 1038 * 1039 * Either case, just restore and free new db. 1040 */ 1041 } else if (set_error) { 1042 regdb = ERR_PTR(set_error); 1043 } else if (fw) { 1044 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1045 if (db) { 1046 regdb = db; 1047 restore = context && query_regdb(context); 1048 } else { 1049 restore = true; 1050 } 1051 } 1052 1053 if (restore) 1054 restore_regulatory_settings(true, false); 1055 1056 rtnl_unlock(); 1057 1058 kfree(context); 1059 1060 release_firmware(fw); 1061} 1062 1063MODULE_FIRMWARE("regulatory.db"); 1064 1065static int query_regdb_file(const char *alpha2) 1066{ 1067 int err; 1068 1069 ASSERT_RTNL(); 1070 1071 if (regdb) 1072 return query_regdb(alpha2); 1073 1074 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1075 if (!alpha2) 1076 return -ENOMEM; 1077 1078 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1079 ®_pdev->dev, GFP_KERNEL, 1080 (void *)alpha2, regdb_fw_cb); 1081 if (err) 1082 kfree(alpha2); 1083 1084 return err; 1085} 1086 1087int reg_reload_regdb(void) 1088{ 1089 const struct firmware *fw; 1090 void *db; 1091 int err; 1092 1093 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1094 if (err) 1095 return err; 1096 1097 if (!valid_regdb(fw->data, fw->size)) { 1098 err = -ENODATA; 1099 goto out; 1100 } 1101 1102 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1103 if (!db) { 1104 err = -ENOMEM; 1105 goto out; 1106 } 1107 1108 rtnl_lock(); 1109 if (!IS_ERR_OR_NULL(regdb)) 1110 kfree(regdb); 1111 regdb = db; 1112 rtnl_unlock(); 1113 1114 out: 1115 release_firmware(fw); 1116 return err; 1117} 1118 1119static bool reg_query_database(struct regulatory_request *request) 1120{ 1121 if (query_regdb_file(request->alpha2) == 0) 1122 return true; 1123 1124 if (call_crda(request->alpha2) == 0) 1125 return true; 1126 1127 return false; 1128} 1129 1130bool reg_is_valid_request(const char *alpha2) 1131{ 1132 struct regulatory_request *lr = get_last_request(); 1133 1134 if (!lr || lr->processed) 1135 return false; 1136 1137 return alpha2_equal(lr->alpha2, alpha2); 1138} 1139 1140static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1141{ 1142 struct regulatory_request *lr = get_last_request(); 1143 1144 /* 1145 * Follow the driver's regulatory domain, if present, unless a country 1146 * IE has been processed or a user wants to help complaince further 1147 */ 1148 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1149 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1150 wiphy->regd) 1151 return get_wiphy_regdom(wiphy); 1152 1153 return get_cfg80211_regdom(); 1154} 1155 1156static unsigned int 1157reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1158 const struct ieee80211_reg_rule *rule) 1159{ 1160 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1161 const struct ieee80211_freq_range *freq_range_tmp; 1162 const struct ieee80211_reg_rule *tmp; 1163 u32 start_freq, end_freq, idx, no; 1164 1165 for (idx = 0; idx < rd->n_reg_rules; idx++) 1166 if (rule == &rd->reg_rules[idx]) 1167 break; 1168 1169 if (idx == rd->n_reg_rules) 1170 return 0; 1171 1172 /* get start_freq */ 1173 no = idx; 1174 1175 while (no) { 1176 tmp = &rd->reg_rules[--no]; 1177 freq_range_tmp = &tmp->freq_range; 1178 1179 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1180 break; 1181 1182 freq_range = freq_range_tmp; 1183 } 1184 1185 start_freq = freq_range->start_freq_khz; 1186 1187 /* get end_freq */ 1188 freq_range = &rule->freq_range; 1189 no = idx; 1190 1191 while (no < rd->n_reg_rules - 1) { 1192 tmp = &rd->reg_rules[++no]; 1193 freq_range_tmp = &tmp->freq_range; 1194 1195 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1196 break; 1197 1198 freq_range = freq_range_tmp; 1199 } 1200 1201 end_freq = freq_range->end_freq_khz; 1202 1203 return end_freq - start_freq; 1204} 1205 1206unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1207 const struct ieee80211_reg_rule *rule) 1208{ 1209 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1210 1211 if (rule->flags & NL80211_RRF_NO_160MHZ) 1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1213 if (rule->flags & NL80211_RRF_NO_80MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1215 1216 /* 1217 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1218 * are not allowed. 1219 */ 1220 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1221 rule->flags & NL80211_RRF_NO_HT40PLUS) 1222 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1223 1224 return bw; 1225} 1226 1227/* Sanity check on a regulatory rule */ 1228static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1229{ 1230 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1231 u32 freq_diff; 1232 1233 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1234 return false; 1235 1236 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1237 return false; 1238 1239 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1240 1241 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1242 freq_range->max_bandwidth_khz > freq_diff) 1243 return false; 1244 1245 return true; 1246} 1247 1248static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1249{ 1250 const struct ieee80211_reg_rule *reg_rule = NULL; 1251 unsigned int i; 1252 1253 if (!rd->n_reg_rules) 1254 return false; 1255 1256 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1257 return false; 1258 1259 for (i = 0; i < rd->n_reg_rules; i++) { 1260 reg_rule = &rd->reg_rules[i]; 1261 if (!is_valid_reg_rule(reg_rule)) 1262 return false; 1263 } 1264 1265 return true; 1266} 1267 1268/** 1269 * freq_in_rule_band - tells us if a frequency is in a frequency band 1270 * @freq_range: frequency rule we want to query 1271 * @freq_khz: frequency we are inquiring about 1272 * 1273 * This lets us know if a specific frequency rule is or is not relevant to 1274 * a specific frequency's band. Bands are device specific and artificial 1275 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1276 * however it is safe for now to assume that a frequency rule should not be 1277 * part of a frequency's band if the start freq or end freq are off by more 1278 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1279 * 60 GHz band. 1280 * This resolution can be lowered and should be considered as we add 1281 * regulatory rule support for other "bands". 1282 **/ 1283static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1284 u32 freq_khz) 1285{ 1286#define ONE_GHZ_IN_KHZ 1000000 1287 /* 1288 * From 802.11ad: directional multi-gigabit (DMG): 1289 * Pertaining to operation in a frequency band containing a channel 1290 * with the Channel starting frequency above 45 GHz. 1291 */ 1292 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1293 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1294 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1295 return true; 1296 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1297 return true; 1298 return false; 1299#undef ONE_GHZ_IN_KHZ 1300} 1301 1302/* 1303 * Later on we can perhaps use the more restrictive DFS 1304 * region but we don't have information for that yet so 1305 * for now simply disallow conflicts. 1306 */ 1307static enum nl80211_dfs_regions 1308reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1309 const enum nl80211_dfs_regions dfs_region2) 1310{ 1311 if (dfs_region1 != dfs_region2) 1312 return NL80211_DFS_UNSET; 1313 return dfs_region1; 1314} 1315 1316static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1317 const struct ieee80211_wmm_ac *wmm_ac2, 1318 struct ieee80211_wmm_ac *intersect) 1319{ 1320 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1321 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1322 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1323 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1324} 1325 1326/* 1327 * Helper for regdom_intersect(), this does the real 1328 * mathematical intersection fun 1329 */ 1330static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1331 const struct ieee80211_regdomain *rd2, 1332 const struct ieee80211_reg_rule *rule1, 1333 const struct ieee80211_reg_rule *rule2, 1334 struct ieee80211_reg_rule *intersected_rule) 1335{ 1336 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1337 struct ieee80211_freq_range *freq_range; 1338 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1339 struct ieee80211_power_rule *power_rule; 1340 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1341 struct ieee80211_wmm_rule *wmm_rule; 1342 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1343 1344 freq_range1 = &rule1->freq_range; 1345 freq_range2 = &rule2->freq_range; 1346 freq_range = &intersected_rule->freq_range; 1347 1348 power_rule1 = &rule1->power_rule; 1349 power_rule2 = &rule2->power_rule; 1350 power_rule = &intersected_rule->power_rule; 1351 1352 wmm_rule1 = &rule1->wmm_rule; 1353 wmm_rule2 = &rule2->wmm_rule; 1354 wmm_rule = &intersected_rule->wmm_rule; 1355 1356 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1357 freq_range2->start_freq_khz); 1358 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1359 freq_range2->end_freq_khz); 1360 1361 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1362 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1363 1364 if (rule1->flags & NL80211_RRF_AUTO_BW) 1365 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1366 if (rule2->flags & NL80211_RRF_AUTO_BW) 1367 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1368 1369 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1370 1371 intersected_rule->flags = rule1->flags | rule2->flags; 1372 1373 /* 1374 * In case NL80211_RRF_AUTO_BW requested for both rules 1375 * set AUTO_BW in intersected rule also. Next we will 1376 * calculate BW correctly in handle_channel function. 1377 * In other case remove AUTO_BW flag while we calculate 1378 * maximum bandwidth correctly and auto calculation is 1379 * not required. 1380 */ 1381 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1382 (rule2->flags & NL80211_RRF_AUTO_BW)) 1383 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1384 else 1385 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1386 1387 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1388 if (freq_range->max_bandwidth_khz > freq_diff) 1389 freq_range->max_bandwidth_khz = freq_diff; 1390 1391 power_rule->max_eirp = min(power_rule1->max_eirp, 1392 power_rule2->max_eirp); 1393 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1394 power_rule2->max_antenna_gain); 1395 1396 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1397 rule2->dfs_cac_ms); 1398 1399 if (rule1->has_wmm && rule2->has_wmm) { 1400 u8 ac; 1401 1402 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1403 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1404 &wmm_rule2->client[ac], 1405 &wmm_rule->client[ac]); 1406 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1407 &wmm_rule2->ap[ac], 1408 &wmm_rule->ap[ac]); 1409 } 1410 1411 intersected_rule->has_wmm = true; 1412 } else if (rule1->has_wmm) { 1413 *wmm_rule = *wmm_rule1; 1414 intersected_rule->has_wmm = true; 1415 } else if (rule2->has_wmm) { 1416 *wmm_rule = *wmm_rule2; 1417 intersected_rule->has_wmm = true; 1418 } else { 1419 intersected_rule->has_wmm = false; 1420 } 1421 1422 if (!is_valid_reg_rule(intersected_rule)) 1423 return -EINVAL; 1424 1425 return 0; 1426} 1427 1428/* check whether old rule contains new rule */ 1429static bool rule_contains(struct ieee80211_reg_rule *r1, 1430 struct ieee80211_reg_rule *r2) 1431{ 1432 /* for simplicity, currently consider only same flags */ 1433 if (r1->flags != r2->flags) 1434 return false; 1435 1436 /* verify r1 is more restrictive */ 1437 if ((r1->power_rule.max_antenna_gain > 1438 r2->power_rule.max_antenna_gain) || 1439 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1440 return false; 1441 1442 /* make sure r2's range is contained within r1 */ 1443 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1444 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1445 return false; 1446 1447 /* and finally verify that r1.max_bw >= r2.max_bw */ 1448 if (r1->freq_range.max_bandwidth_khz < 1449 r2->freq_range.max_bandwidth_khz) 1450 return false; 1451 1452 return true; 1453} 1454 1455/* add or extend current rules. do nothing if rule is already contained */ 1456static void add_rule(struct ieee80211_reg_rule *rule, 1457 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1458{ 1459 struct ieee80211_reg_rule *tmp_rule; 1460 int i; 1461 1462 for (i = 0; i < *n_rules; i++) { 1463 tmp_rule = ®_rules[i]; 1464 /* rule is already contained - do nothing */ 1465 if (rule_contains(tmp_rule, rule)) 1466 return; 1467 1468 /* extend rule if possible */ 1469 if (rule_contains(rule, tmp_rule)) { 1470 memcpy(tmp_rule, rule, sizeof(*rule)); 1471 return; 1472 } 1473 } 1474 1475 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1476 (*n_rules)++; 1477} 1478 1479/** 1480 * regdom_intersect - do the intersection between two regulatory domains 1481 * @rd1: first regulatory domain 1482 * @rd2: second regulatory domain 1483 * 1484 * Use this function to get the intersection between two regulatory domains. 1485 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1486 * as no one single alpha2 can represent this regulatory domain. 1487 * 1488 * Returns a pointer to the regulatory domain structure which will hold the 1489 * resulting intersection of rules between rd1 and rd2. We will 1490 * kzalloc() this structure for you. 1491 */ 1492static struct ieee80211_regdomain * 1493regdom_intersect(const struct ieee80211_regdomain *rd1, 1494 const struct ieee80211_regdomain *rd2) 1495{ 1496 int r; 1497 unsigned int x, y; 1498 unsigned int num_rules = 0; 1499 const struct ieee80211_reg_rule *rule1, *rule2; 1500 struct ieee80211_reg_rule intersected_rule; 1501 struct ieee80211_regdomain *rd; 1502 1503 if (!rd1 || !rd2) 1504 return NULL; 1505 1506 /* 1507 * First we get a count of the rules we'll need, then we actually 1508 * build them. This is to so we can malloc() and free() a 1509 * regdomain once. The reason we use reg_rules_intersect() here 1510 * is it will return -EINVAL if the rule computed makes no sense. 1511 * All rules that do check out OK are valid. 1512 */ 1513 1514 for (x = 0; x < rd1->n_reg_rules; x++) { 1515 rule1 = &rd1->reg_rules[x]; 1516 for (y = 0; y < rd2->n_reg_rules; y++) { 1517 rule2 = &rd2->reg_rules[y]; 1518 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1519 &intersected_rule)) 1520 num_rules++; 1521 } 1522 } 1523 1524 if (!num_rules) 1525 return NULL; 1526 1527 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1528 if (!rd) 1529 return NULL; 1530 1531 for (x = 0; x < rd1->n_reg_rules; x++) { 1532 rule1 = &rd1->reg_rules[x]; 1533 for (y = 0; y < rd2->n_reg_rules; y++) { 1534 rule2 = &rd2->reg_rules[y]; 1535 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1536 &intersected_rule); 1537 /* 1538 * No need to memset here the intersected rule here as 1539 * we're not using the stack anymore 1540 */ 1541 if (r) 1542 continue; 1543 1544 add_rule(&intersected_rule, rd->reg_rules, 1545 &rd->n_reg_rules); 1546 } 1547 } 1548 1549 rd->alpha2[0] = '9'; 1550 rd->alpha2[1] = '8'; 1551 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1552 rd2->dfs_region); 1553 1554 return rd; 1555} 1556 1557/* 1558 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1559 * want to just have the channel structure use these 1560 */ 1561static u32 map_regdom_flags(u32 rd_flags) 1562{ 1563 u32 channel_flags = 0; 1564 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1565 channel_flags |= IEEE80211_CHAN_NO_IR; 1566 if (rd_flags & NL80211_RRF_DFS) 1567 channel_flags |= IEEE80211_CHAN_RADAR; 1568 if (rd_flags & NL80211_RRF_NO_OFDM) 1569 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1570 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1571 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1572 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1573 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1574 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1575 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1576 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1577 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1578 if (rd_flags & NL80211_RRF_NO_80MHZ) 1579 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1580 if (rd_flags & NL80211_RRF_NO_160MHZ) 1581 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1582 if (rd_flags & NL80211_RRF_NO_HE) 1583 channel_flags |= IEEE80211_CHAN_NO_HE; 1584 return channel_flags; 1585} 1586 1587static const struct ieee80211_reg_rule * 1588freq_reg_info_regd(u32 center_freq, 1589 const struct ieee80211_regdomain *regd, u32 bw) 1590{ 1591 int i; 1592 bool band_rule_found = false; 1593 bool bw_fits = false; 1594 1595 if (!regd) 1596 return ERR_PTR(-EINVAL); 1597 1598 for (i = 0; i < regd->n_reg_rules; i++) { 1599 const struct ieee80211_reg_rule *rr; 1600 const struct ieee80211_freq_range *fr = NULL; 1601 1602 rr = ®d->reg_rules[i]; 1603 fr = &rr->freq_range; 1604 1605 /* 1606 * We only need to know if one frequency rule was 1607 * in center_freq's band, that's enough, so let's 1608 * not overwrite it once found 1609 */ 1610 if (!band_rule_found) 1611 band_rule_found = freq_in_rule_band(fr, center_freq); 1612 1613 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1614 1615 if (band_rule_found && bw_fits) 1616 return rr; 1617 } 1618 1619 if (!band_rule_found) 1620 return ERR_PTR(-ERANGE); 1621 1622 return ERR_PTR(-EINVAL); 1623} 1624 1625static const struct ieee80211_reg_rule * 1626__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1627{ 1628 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1629 const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1630 const struct ieee80211_reg_rule *reg_rule; 1631 int i = ARRAY_SIZE(bws) - 1; 1632 u32 bw; 1633 1634 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1635 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1636 if (!IS_ERR(reg_rule)) 1637 return reg_rule; 1638 } 1639 1640 return reg_rule; 1641} 1642 1643const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1644 u32 center_freq) 1645{ 1646 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1647 1648 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1649} 1650EXPORT_SYMBOL(freq_reg_info); 1651 1652const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1653{ 1654 switch (initiator) { 1655 case NL80211_REGDOM_SET_BY_CORE: 1656 return "core"; 1657 case NL80211_REGDOM_SET_BY_USER: 1658 return "user"; 1659 case NL80211_REGDOM_SET_BY_DRIVER: 1660 return "driver"; 1661 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1662 return "country element"; 1663 default: 1664 WARN_ON(1); 1665 return "bug"; 1666 } 1667} 1668EXPORT_SYMBOL(reg_initiator_name); 1669 1670static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1671 const struct ieee80211_reg_rule *reg_rule, 1672 const struct ieee80211_channel *chan) 1673{ 1674 const struct ieee80211_freq_range *freq_range = NULL; 1675 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1676 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1677 1678 freq_range = ®_rule->freq_range; 1679 1680 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1681 center_freq_khz = ieee80211_channel_to_khz(chan); 1682 /* Check if auto calculation requested */ 1683 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1684 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1685 1686 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1687 if (!cfg80211_does_bw_fit_range(freq_range, 1688 center_freq_khz, 1689 MHZ_TO_KHZ(10))) 1690 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1691 if (!cfg80211_does_bw_fit_range(freq_range, 1692 center_freq_khz, 1693 MHZ_TO_KHZ(20))) 1694 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1695 1696 if (is_s1g) { 1697 /* S1G is strict about non overlapping channels. We can 1698 * calculate which bandwidth is allowed per channel by finding 1699 * the largest bandwidth which cleanly divides the freq_range. 1700 */ 1701 int edge_offset; 1702 int ch_bw = max_bandwidth_khz; 1703 1704 while (ch_bw) { 1705 edge_offset = (center_freq_khz - ch_bw / 2) - 1706 freq_range->start_freq_khz; 1707 if (edge_offset % ch_bw == 0) { 1708 switch (KHZ_TO_MHZ(ch_bw)) { 1709 case 1: 1710 bw_flags |= IEEE80211_CHAN_1MHZ; 1711 break; 1712 case 2: 1713 bw_flags |= IEEE80211_CHAN_2MHZ; 1714 break; 1715 case 4: 1716 bw_flags |= IEEE80211_CHAN_4MHZ; 1717 break; 1718 case 8: 1719 bw_flags |= IEEE80211_CHAN_8MHZ; 1720 break; 1721 case 16: 1722 bw_flags |= IEEE80211_CHAN_16MHZ; 1723 break; 1724 default: 1725 /* If we got here, no bandwidths fit on 1726 * this frequency, ie. band edge. 1727 */ 1728 bw_flags |= IEEE80211_CHAN_DISABLED; 1729 break; 1730 } 1731 break; 1732 } 1733 ch_bw /= 2; 1734 } 1735 } else { 1736 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1737 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1738 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1739 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1740 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1741 bw_flags |= IEEE80211_CHAN_NO_HT40; 1742 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1743 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1744 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1745 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1746 } 1747 return bw_flags; 1748} 1749 1750static void handle_channel_single_rule(struct wiphy *wiphy, 1751 enum nl80211_reg_initiator initiator, 1752 struct ieee80211_channel *chan, 1753 u32 flags, 1754 struct regulatory_request *lr, 1755 struct wiphy *request_wiphy, 1756 const struct ieee80211_reg_rule *reg_rule) 1757{ 1758 u32 bw_flags = 0; 1759 const struct ieee80211_power_rule *power_rule = NULL; 1760 const struct ieee80211_regdomain *regd; 1761 1762 regd = reg_get_regdomain(wiphy); 1763 1764 power_rule = ®_rule->power_rule; 1765 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1766 1767 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1768 request_wiphy && request_wiphy == wiphy && 1769 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1770 /* 1771 * This guarantees the driver's requested regulatory domain 1772 * will always be used as a base for further regulatory 1773 * settings 1774 */ 1775 chan->flags = chan->orig_flags = 1776 map_regdom_flags(reg_rule->flags) | bw_flags; 1777 chan->max_antenna_gain = chan->orig_mag = 1778 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1779 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1780 (int) MBM_TO_DBM(power_rule->max_eirp); 1781 1782 if (chan->flags & IEEE80211_CHAN_RADAR) { 1783 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1784 if (reg_rule->dfs_cac_ms) 1785 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1786 } 1787 1788 return; 1789 } 1790 1791 chan->dfs_state = NL80211_DFS_USABLE; 1792 chan->dfs_state_entered = jiffies; 1793 1794 chan->beacon_found = false; 1795 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1796 chan->max_antenna_gain = 1797 min_t(int, chan->orig_mag, 1798 MBI_TO_DBI(power_rule->max_antenna_gain)); 1799 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1800 1801 if (chan->flags & IEEE80211_CHAN_RADAR) { 1802 if (reg_rule->dfs_cac_ms) 1803 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1804 else 1805 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1806 } 1807 1808 if (chan->orig_mpwr) { 1809 /* 1810 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1811 * will always follow the passed country IE power settings. 1812 */ 1813 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1814 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1815 chan->max_power = chan->max_reg_power; 1816 else 1817 chan->max_power = min(chan->orig_mpwr, 1818 chan->max_reg_power); 1819 } else 1820 chan->max_power = chan->max_reg_power; 1821} 1822 1823static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1824 enum nl80211_reg_initiator initiator, 1825 struct ieee80211_channel *chan, 1826 u32 flags, 1827 struct regulatory_request *lr, 1828 struct wiphy *request_wiphy, 1829 const struct ieee80211_reg_rule *rrule1, 1830 const struct ieee80211_reg_rule *rrule2, 1831 struct ieee80211_freq_range *comb_range) 1832{ 1833 u32 bw_flags1 = 0; 1834 u32 bw_flags2 = 0; 1835 const struct ieee80211_power_rule *power_rule1 = NULL; 1836 const struct ieee80211_power_rule *power_rule2 = NULL; 1837 const struct ieee80211_regdomain *regd; 1838 1839 regd = reg_get_regdomain(wiphy); 1840 1841 power_rule1 = &rrule1->power_rule; 1842 power_rule2 = &rrule2->power_rule; 1843 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1844 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1845 1846 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1847 request_wiphy && request_wiphy == wiphy && 1848 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1849 /* This guarantees the driver's requested regulatory domain 1850 * will always be used as a base for further regulatory 1851 * settings 1852 */ 1853 chan->flags = 1854 map_regdom_flags(rrule1->flags) | 1855 map_regdom_flags(rrule2->flags) | 1856 bw_flags1 | 1857 bw_flags2; 1858 chan->orig_flags = chan->flags; 1859 chan->max_antenna_gain = 1860 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1861 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1862 chan->orig_mag = chan->max_antenna_gain; 1863 chan->max_reg_power = 1864 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1865 MBM_TO_DBM(power_rule2->max_eirp)); 1866 chan->max_power = chan->max_reg_power; 1867 chan->orig_mpwr = chan->max_reg_power; 1868 1869 if (chan->flags & IEEE80211_CHAN_RADAR) { 1870 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1871 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1872 chan->dfs_cac_ms = max_t(unsigned int, 1873 rrule1->dfs_cac_ms, 1874 rrule2->dfs_cac_ms); 1875 } 1876 1877 return; 1878 } 1879 1880 chan->dfs_state = NL80211_DFS_USABLE; 1881 chan->dfs_state_entered = jiffies; 1882 1883 chan->beacon_found = false; 1884 chan->flags = flags | bw_flags1 | bw_flags2 | 1885 map_regdom_flags(rrule1->flags) | 1886 map_regdom_flags(rrule2->flags); 1887 1888 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1889 * (otherwise no adj. rule case), recheck therefore 1890 */ 1891 if (cfg80211_does_bw_fit_range(comb_range, 1892 ieee80211_channel_to_khz(chan), 1893 MHZ_TO_KHZ(10))) 1894 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1895 if (cfg80211_does_bw_fit_range(comb_range, 1896 ieee80211_channel_to_khz(chan), 1897 MHZ_TO_KHZ(20))) 1898 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1899 1900 chan->max_antenna_gain = 1901 min_t(int, chan->orig_mag, 1902 min_t(int, 1903 MBI_TO_DBI(power_rule1->max_antenna_gain), 1904 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1905 chan->max_reg_power = min_t(int, 1906 MBM_TO_DBM(power_rule1->max_eirp), 1907 MBM_TO_DBM(power_rule2->max_eirp)); 1908 1909 if (chan->flags & IEEE80211_CHAN_RADAR) { 1910 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1911 chan->dfs_cac_ms = max_t(unsigned int, 1912 rrule1->dfs_cac_ms, 1913 rrule2->dfs_cac_ms); 1914 else 1915 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1916 } 1917 1918 if (chan->orig_mpwr) { 1919 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1920 * will always follow the passed country IE power settings. 1921 */ 1922 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1923 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1924 chan->max_power = chan->max_reg_power; 1925 else 1926 chan->max_power = min(chan->orig_mpwr, 1927 chan->max_reg_power); 1928 } else { 1929 chan->max_power = chan->max_reg_power; 1930 } 1931} 1932 1933/* Note that right now we assume the desired channel bandwidth 1934 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1935 * per channel, the primary and the extension channel). 1936 */ 1937static void handle_channel(struct wiphy *wiphy, 1938 enum nl80211_reg_initiator initiator, 1939 struct ieee80211_channel *chan) 1940{ 1941 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1942 struct regulatory_request *lr = get_last_request(); 1943 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1944 const struct ieee80211_reg_rule *rrule = NULL; 1945 const struct ieee80211_reg_rule *rrule1 = NULL; 1946 const struct ieee80211_reg_rule *rrule2 = NULL; 1947 1948 u32 flags = chan->orig_flags; 1949 1950 rrule = freq_reg_info(wiphy, orig_chan_freq); 1951 if (IS_ERR(rrule)) { 1952 /* check for adjacent match, therefore get rules for 1953 * chan - 20 MHz and chan + 20 MHz and test 1954 * if reg rules are adjacent 1955 */ 1956 rrule1 = freq_reg_info(wiphy, 1957 orig_chan_freq - MHZ_TO_KHZ(20)); 1958 rrule2 = freq_reg_info(wiphy, 1959 orig_chan_freq + MHZ_TO_KHZ(20)); 1960 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1961 struct ieee80211_freq_range comb_range; 1962 1963 if (rrule1->freq_range.end_freq_khz != 1964 rrule2->freq_range.start_freq_khz) 1965 goto disable_chan; 1966 1967 comb_range.start_freq_khz = 1968 rrule1->freq_range.start_freq_khz; 1969 comb_range.end_freq_khz = 1970 rrule2->freq_range.end_freq_khz; 1971 comb_range.max_bandwidth_khz = 1972 min_t(u32, 1973 rrule1->freq_range.max_bandwidth_khz, 1974 rrule2->freq_range.max_bandwidth_khz); 1975 1976 if (!cfg80211_does_bw_fit_range(&comb_range, 1977 orig_chan_freq, 1978 MHZ_TO_KHZ(20))) 1979 goto disable_chan; 1980 1981 handle_channel_adjacent_rules(wiphy, initiator, chan, 1982 flags, lr, request_wiphy, 1983 rrule1, rrule2, 1984 &comb_range); 1985 return; 1986 } 1987 1988disable_chan: 1989 /* We will disable all channels that do not match our 1990 * received regulatory rule unless the hint is coming 1991 * from a Country IE and the Country IE had no information 1992 * about a band. The IEEE 802.11 spec allows for an AP 1993 * to send only a subset of the regulatory rules allowed, 1994 * so an AP in the US that only supports 2.4 GHz may only send 1995 * a country IE with information for the 2.4 GHz band 1996 * while 5 GHz is still supported. 1997 */ 1998 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1999 PTR_ERR(rrule) == -ERANGE) 2000 return; 2001 2002 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2003 request_wiphy && request_wiphy == wiphy && 2004 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2005 pr_debug("Disabling freq %d.%03d MHz for good\n", 2006 chan->center_freq, chan->freq_offset); 2007 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2008 chan->flags = chan->orig_flags; 2009 } else { 2010 pr_debug("Disabling freq %d.%03d MHz\n", 2011 chan->center_freq, chan->freq_offset); 2012 chan->flags |= IEEE80211_CHAN_DISABLED; 2013 } 2014 return; 2015 } 2016 2017 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2018 request_wiphy, rrule); 2019} 2020 2021static void handle_band(struct wiphy *wiphy, 2022 enum nl80211_reg_initiator initiator, 2023 struct ieee80211_supported_band *sband) 2024{ 2025 unsigned int i; 2026 2027 if (!sband) 2028 return; 2029 2030 for (i = 0; i < sband->n_channels; i++) 2031 handle_channel(wiphy, initiator, &sband->channels[i]); 2032} 2033 2034static bool reg_request_cell_base(struct regulatory_request *request) 2035{ 2036 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2037 return false; 2038 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2039} 2040 2041bool reg_last_request_cell_base(void) 2042{ 2043 return reg_request_cell_base(get_last_request()); 2044} 2045 2046#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2047/* Core specific check */ 2048static enum reg_request_treatment 2049reg_ignore_cell_hint(struct regulatory_request *pending_request) 2050{ 2051 struct regulatory_request *lr = get_last_request(); 2052 2053 if (!reg_num_devs_support_basehint) 2054 return REG_REQ_IGNORE; 2055 2056 if (reg_request_cell_base(lr) && 2057 !regdom_changes(pending_request->alpha2)) 2058 return REG_REQ_ALREADY_SET; 2059 2060 return REG_REQ_OK; 2061} 2062 2063/* Device specific check */ 2064static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2065{ 2066 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2067} 2068#else 2069static enum reg_request_treatment 2070reg_ignore_cell_hint(struct regulatory_request *pending_request) 2071{ 2072 return REG_REQ_IGNORE; 2073} 2074 2075static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2076{ 2077 return true; 2078} 2079#endif 2080 2081static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2082{ 2083 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2084 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2085 return true; 2086 return false; 2087} 2088 2089static bool ignore_reg_update(struct wiphy *wiphy, 2090 enum nl80211_reg_initiator initiator) 2091{ 2092 struct regulatory_request *lr = get_last_request(); 2093 2094 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2095 return true; 2096 2097 if (!lr) { 2098 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2099 reg_initiator_name(initiator)); 2100 return true; 2101 } 2102 2103 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2104 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2105 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2106 reg_initiator_name(initiator)); 2107 return true; 2108 } 2109 2110 /* 2111 * wiphy->regd will be set once the device has its own 2112 * desired regulatory domain set 2113 */ 2114 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2115 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2116 !is_world_regdom(lr->alpha2)) { 2117 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2118 reg_initiator_name(initiator)); 2119 return true; 2120 } 2121 2122 if (reg_request_cell_base(lr)) 2123 return reg_dev_ignore_cell_hint(wiphy); 2124 2125 return false; 2126} 2127 2128static bool reg_is_world_roaming(struct wiphy *wiphy) 2129{ 2130 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2131 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2132 struct regulatory_request *lr = get_last_request(); 2133 2134 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2135 return true; 2136 2137 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2138 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2139 return true; 2140 2141 return false; 2142} 2143 2144static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2145 struct reg_beacon *reg_beacon) 2146{ 2147 struct ieee80211_supported_band *sband; 2148 struct ieee80211_channel *chan; 2149 bool channel_changed = false; 2150 struct ieee80211_channel chan_before; 2151 2152 sband = wiphy->bands[reg_beacon->chan.band]; 2153 chan = &sband->channels[chan_idx]; 2154 2155 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2156 return; 2157 2158 if (chan->beacon_found) 2159 return; 2160 2161 chan->beacon_found = true; 2162 2163 if (!reg_is_world_roaming(wiphy)) 2164 return; 2165 2166 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2167 return; 2168 2169 chan_before = *chan; 2170 2171 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2172 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2173 channel_changed = true; 2174 } 2175 2176 if (channel_changed) 2177 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2178} 2179 2180/* 2181 * Called when a scan on a wiphy finds a beacon on 2182 * new channel 2183 */ 2184static void wiphy_update_new_beacon(struct wiphy *wiphy, 2185 struct reg_beacon *reg_beacon) 2186{ 2187 unsigned int i; 2188 struct ieee80211_supported_band *sband; 2189 2190 if (!wiphy->bands[reg_beacon->chan.band]) 2191 return; 2192 2193 sband = wiphy->bands[reg_beacon->chan.band]; 2194 2195 for (i = 0; i < sband->n_channels; i++) 2196 handle_reg_beacon(wiphy, i, reg_beacon); 2197} 2198 2199/* 2200 * Called upon reg changes or a new wiphy is added 2201 */ 2202static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2203{ 2204 unsigned int i; 2205 struct ieee80211_supported_band *sband; 2206 struct reg_beacon *reg_beacon; 2207 2208 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2209 if (!wiphy->bands[reg_beacon->chan.band]) 2210 continue; 2211 sband = wiphy->bands[reg_beacon->chan.band]; 2212 for (i = 0; i < sband->n_channels; i++) 2213 handle_reg_beacon(wiphy, i, reg_beacon); 2214 } 2215} 2216 2217/* Reap the advantages of previously found beacons */ 2218static void reg_process_beacons(struct wiphy *wiphy) 2219{ 2220 /* 2221 * Means we are just firing up cfg80211, so no beacons would 2222 * have been processed yet. 2223 */ 2224 if (!last_request) 2225 return; 2226 wiphy_update_beacon_reg(wiphy); 2227} 2228 2229static bool is_ht40_allowed(struct ieee80211_channel *chan) 2230{ 2231 if (!chan) 2232 return false; 2233 if (chan->flags & IEEE80211_CHAN_DISABLED) 2234 return false; 2235 /* This would happen when regulatory rules disallow HT40 completely */ 2236 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2237 return false; 2238 return true; 2239} 2240 2241static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2242 struct ieee80211_channel *channel) 2243{ 2244 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2245 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2246 const struct ieee80211_regdomain *regd; 2247 unsigned int i; 2248 u32 flags; 2249 2250 if (!is_ht40_allowed(channel)) { 2251 channel->flags |= IEEE80211_CHAN_NO_HT40; 2252 return; 2253 } 2254 2255 /* 2256 * We need to ensure the extension channels exist to 2257 * be able to use HT40- or HT40+, this finds them (or not) 2258 */ 2259 for (i = 0; i < sband->n_channels; i++) { 2260 struct ieee80211_channel *c = &sband->channels[i]; 2261 2262 if (c->center_freq == (channel->center_freq - 20)) 2263 channel_before = c; 2264 if (c->center_freq == (channel->center_freq + 20)) 2265 channel_after = c; 2266 } 2267 2268 flags = 0; 2269 regd = get_wiphy_regdom(wiphy); 2270 if (regd) { 2271 const struct ieee80211_reg_rule *reg_rule = 2272 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2273 regd, MHZ_TO_KHZ(20)); 2274 2275 if (!IS_ERR(reg_rule)) 2276 flags = reg_rule->flags; 2277 } 2278 2279 /* 2280 * Please note that this assumes target bandwidth is 20 MHz, 2281 * if that ever changes we also need to change the below logic 2282 * to include that as well. 2283 */ 2284 if (!is_ht40_allowed(channel_before) || 2285 flags & NL80211_RRF_NO_HT40MINUS) 2286 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2287 else 2288 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2289 2290 if (!is_ht40_allowed(channel_after) || 2291 flags & NL80211_RRF_NO_HT40PLUS) 2292 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2293 else 2294 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2295} 2296 2297static void reg_process_ht_flags_band(struct wiphy *wiphy, 2298 struct ieee80211_supported_band *sband) 2299{ 2300 unsigned int i; 2301 2302 if (!sband) 2303 return; 2304 2305 for (i = 0; i < sband->n_channels; i++) 2306 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2307} 2308 2309static void reg_process_ht_flags(struct wiphy *wiphy) 2310{ 2311 enum nl80211_band band; 2312 2313 if (!wiphy) 2314 return; 2315 2316 for (band = 0; band < NUM_NL80211_BANDS; band++) 2317 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2318} 2319 2320static void reg_call_notifier(struct wiphy *wiphy, 2321 struct regulatory_request *request) 2322{ 2323 if (wiphy->reg_notifier) 2324 wiphy->reg_notifier(wiphy, request); 2325} 2326 2327static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2328{ 2329 struct cfg80211_chan_def chandef = {}; 2330 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2331 enum nl80211_iftype iftype; 2332 2333 wdev_lock(wdev); 2334 iftype = wdev->iftype; 2335 2336 /* make sure the interface is active */ 2337 if (!wdev->netdev || !netif_running(wdev->netdev)) 2338 goto wdev_inactive_unlock; 2339 2340 switch (iftype) { 2341 case NL80211_IFTYPE_AP: 2342 case NL80211_IFTYPE_P2P_GO: 2343 if (!wdev->beacon_interval) 2344 goto wdev_inactive_unlock; 2345 chandef = wdev->chandef; 2346 break; 2347 case NL80211_IFTYPE_ADHOC: 2348 if (!wdev->ssid_len) 2349 goto wdev_inactive_unlock; 2350 chandef = wdev->chandef; 2351 break; 2352 case NL80211_IFTYPE_STATION: 2353 case NL80211_IFTYPE_P2P_CLIENT: 2354 if (!wdev->current_bss || 2355 !wdev->current_bss->pub.channel) 2356 goto wdev_inactive_unlock; 2357 2358 if (!rdev->ops->get_channel || 2359 rdev_get_channel(rdev, wdev, &chandef)) 2360 cfg80211_chandef_create(&chandef, 2361 wdev->current_bss->pub.channel, 2362 NL80211_CHAN_NO_HT); 2363 break; 2364 case NL80211_IFTYPE_MONITOR: 2365 case NL80211_IFTYPE_AP_VLAN: 2366 case NL80211_IFTYPE_P2P_DEVICE: 2367 /* no enforcement required */ 2368 break; 2369 default: 2370 /* others not implemented for now */ 2371 WARN_ON(1); 2372 break; 2373 } 2374 2375 wdev_unlock(wdev); 2376 2377 switch (iftype) { 2378 case NL80211_IFTYPE_AP: 2379 case NL80211_IFTYPE_P2P_GO: 2380 case NL80211_IFTYPE_ADHOC: 2381 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2382 case NL80211_IFTYPE_STATION: 2383 case NL80211_IFTYPE_P2P_CLIENT: 2384 return cfg80211_chandef_usable(wiphy, &chandef, 2385 IEEE80211_CHAN_DISABLED); 2386 default: 2387 break; 2388 } 2389 2390 return true; 2391 2392wdev_inactive_unlock: 2393 wdev_unlock(wdev); 2394 return true; 2395} 2396 2397static void reg_leave_invalid_chans(struct wiphy *wiphy) 2398{ 2399 struct wireless_dev *wdev; 2400 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2401 2402 ASSERT_RTNL(); 2403 2404 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2405 if (!reg_wdev_chan_valid(wiphy, wdev)) 2406 cfg80211_leave(rdev, wdev); 2407} 2408 2409static void reg_check_chans_work(struct work_struct *work) 2410{ 2411 struct cfg80211_registered_device *rdev; 2412 2413 pr_debug("Verifying active interfaces after reg change\n"); 2414 rtnl_lock(); 2415 2416 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2417 if (!(rdev->wiphy.regulatory_flags & 2418 REGULATORY_IGNORE_STALE_KICKOFF)) 2419 reg_leave_invalid_chans(&rdev->wiphy); 2420 2421 rtnl_unlock(); 2422} 2423 2424static void reg_check_channels(void) 2425{ 2426 /* 2427 * Give usermode a chance to do something nicer (move to another 2428 * channel, orderly disconnection), before forcing a disconnection. 2429 */ 2430 mod_delayed_work(system_power_efficient_wq, 2431 ®_check_chans, 2432 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2433} 2434 2435static void wiphy_update_regulatory(struct wiphy *wiphy, 2436 enum nl80211_reg_initiator initiator) 2437{ 2438 enum nl80211_band band; 2439 struct regulatory_request *lr = get_last_request(); 2440 2441 if (ignore_reg_update(wiphy, initiator)) { 2442 /* 2443 * Regulatory updates set by CORE are ignored for custom 2444 * regulatory cards. Let us notify the changes to the driver, 2445 * as some drivers used this to restore its orig_* reg domain. 2446 */ 2447 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2448 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2449 !(wiphy->regulatory_flags & 2450 REGULATORY_WIPHY_SELF_MANAGED)) 2451 reg_call_notifier(wiphy, lr); 2452 return; 2453 } 2454 2455 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2456 2457 for (band = 0; band < NUM_NL80211_BANDS; band++) 2458 handle_band(wiphy, initiator, wiphy->bands[band]); 2459 2460 reg_process_beacons(wiphy); 2461 reg_process_ht_flags(wiphy); 2462 reg_call_notifier(wiphy, lr); 2463} 2464 2465static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2466{ 2467 struct cfg80211_registered_device *rdev; 2468 struct wiphy *wiphy; 2469 2470 ASSERT_RTNL(); 2471 2472 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2473 wiphy = &rdev->wiphy; 2474 wiphy_update_regulatory(wiphy, initiator); 2475 } 2476 2477 reg_check_channels(); 2478} 2479 2480static void handle_channel_custom(struct wiphy *wiphy, 2481 struct ieee80211_channel *chan, 2482 const struct ieee80211_regdomain *regd, 2483 u32 min_bw) 2484{ 2485 u32 bw_flags = 0; 2486 const struct ieee80211_reg_rule *reg_rule = NULL; 2487 const struct ieee80211_power_rule *power_rule = NULL; 2488 u32 bw, center_freq_khz; 2489 2490 center_freq_khz = ieee80211_channel_to_khz(chan); 2491 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2492 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2493 if (!IS_ERR(reg_rule)) 2494 break; 2495 } 2496 2497 if (IS_ERR_OR_NULL(reg_rule)) { 2498 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2499 chan->center_freq, chan->freq_offset); 2500 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2501 chan->flags |= IEEE80211_CHAN_DISABLED; 2502 } else { 2503 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2504 chan->flags = chan->orig_flags; 2505 } 2506 return; 2507 } 2508 2509 power_rule = ®_rule->power_rule; 2510 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2511 2512 chan->dfs_state_entered = jiffies; 2513 chan->dfs_state = NL80211_DFS_USABLE; 2514 2515 chan->beacon_found = false; 2516 2517 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2518 chan->flags = chan->orig_flags | bw_flags | 2519 map_regdom_flags(reg_rule->flags); 2520 else 2521 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2522 2523 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2524 chan->max_reg_power = chan->max_power = 2525 (int) MBM_TO_DBM(power_rule->max_eirp); 2526 2527 if (chan->flags & IEEE80211_CHAN_RADAR) { 2528 if (reg_rule->dfs_cac_ms) 2529 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2530 else 2531 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2532 } 2533 2534 chan->max_power = chan->max_reg_power; 2535} 2536 2537static void handle_band_custom(struct wiphy *wiphy, 2538 struct ieee80211_supported_band *sband, 2539 const struct ieee80211_regdomain *regd) 2540{ 2541 unsigned int i; 2542 2543 if (!sband) 2544 return; 2545 2546 /* 2547 * We currently assume that you always want at least 20 MHz, 2548 * otherwise channel 12 might get enabled if this rule is 2549 * compatible to US, which permits 2402 - 2472 MHz. 2550 */ 2551 for (i = 0; i < sband->n_channels; i++) 2552 handle_channel_custom(wiphy, &sband->channels[i], regd, 2553 MHZ_TO_KHZ(20)); 2554} 2555 2556/* Used by drivers prior to wiphy registration */ 2557void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2558 const struct ieee80211_regdomain *regd) 2559{ 2560 enum nl80211_band band; 2561 unsigned int bands_set = 0; 2562 2563 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2564 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2565 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2566 2567 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2568 if (!wiphy->bands[band]) 2569 continue; 2570 handle_band_custom(wiphy, wiphy->bands[band], regd); 2571 bands_set++; 2572 } 2573 2574 /* 2575 * no point in calling this if it won't have any effect 2576 * on your device's supported bands. 2577 */ 2578 WARN_ON(!bands_set); 2579} 2580EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2581 2582static void reg_set_request_processed(void) 2583{ 2584 bool need_more_processing = false; 2585 struct regulatory_request *lr = get_last_request(); 2586 2587 lr->processed = true; 2588 2589 spin_lock(®_requests_lock); 2590 if (!list_empty(®_requests_list)) 2591 need_more_processing = true; 2592 spin_unlock(®_requests_lock); 2593 2594 cancel_crda_timeout(); 2595 2596 if (need_more_processing) 2597 schedule_work(®_work); 2598} 2599 2600/** 2601 * reg_process_hint_core - process core regulatory requests 2602 * @core_request: a pending core regulatory request 2603 * 2604 * The wireless subsystem can use this function to process 2605 * a regulatory request issued by the regulatory core. 2606 */ 2607static enum reg_request_treatment 2608reg_process_hint_core(struct regulatory_request *core_request) 2609{ 2610 if (reg_query_database(core_request)) { 2611 core_request->intersect = false; 2612 core_request->processed = false; 2613 reg_update_last_request(core_request); 2614 return REG_REQ_OK; 2615 } 2616 2617 return REG_REQ_IGNORE; 2618} 2619 2620static enum reg_request_treatment 2621__reg_process_hint_user(struct regulatory_request *user_request) 2622{ 2623 struct regulatory_request *lr = get_last_request(); 2624 2625 if (reg_request_cell_base(user_request)) 2626 return reg_ignore_cell_hint(user_request); 2627 2628 if (reg_request_cell_base(lr)) 2629 return REG_REQ_IGNORE; 2630 2631 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2632 return REG_REQ_INTERSECT; 2633 /* 2634 * If the user knows better the user should set the regdom 2635 * to their country before the IE is picked up 2636 */ 2637 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2638 lr->intersect) 2639 return REG_REQ_IGNORE; 2640 /* 2641 * Process user requests only after previous user/driver/core 2642 * requests have been processed 2643 */ 2644 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2645 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2646 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2647 regdom_changes(lr->alpha2)) 2648 return REG_REQ_IGNORE; 2649 2650 if (!regdom_changes(user_request->alpha2)) 2651 return REG_REQ_ALREADY_SET; 2652 2653 return REG_REQ_OK; 2654} 2655 2656/** 2657 * reg_process_hint_user - process user regulatory requests 2658 * @user_request: a pending user regulatory request 2659 * 2660 * The wireless subsystem can use this function to process 2661 * a regulatory request initiated by userspace. 2662 */ 2663static enum reg_request_treatment 2664reg_process_hint_user(struct regulatory_request *user_request) 2665{ 2666 enum reg_request_treatment treatment; 2667 2668 treatment = __reg_process_hint_user(user_request); 2669 if (treatment == REG_REQ_IGNORE || 2670 treatment == REG_REQ_ALREADY_SET) 2671 return REG_REQ_IGNORE; 2672 2673 user_request->intersect = treatment == REG_REQ_INTERSECT; 2674 user_request->processed = false; 2675 2676 if (reg_query_database(user_request)) { 2677 reg_update_last_request(user_request); 2678 user_alpha2[0] = user_request->alpha2[0]; 2679 user_alpha2[1] = user_request->alpha2[1]; 2680 return REG_REQ_OK; 2681 } 2682 2683 return REG_REQ_IGNORE; 2684} 2685 2686static enum reg_request_treatment 2687__reg_process_hint_driver(struct regulatory_request *driver_request) 2688{ 2689 struct regulatory_request *lr = get_last_request(); 2690 2691 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2692 if (regdom_changes(driver_request->alpha2)) 2693 return REG_REQ_OK; 2694 return REG_REQ_ALREADY_SET; 2695 } 2696 2697 /* 2698 * This would happen if you unplug and plug your card 2699 * back in or if you add a new device for which the previously 2700 * loaded card also agrees on the regulatory domain. 2701 */ 2702 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2703 !regdom_changes(driver_request->alpha2)) 2704 return REG_REQ_ALREADY_SET; 2705 2706 return REG_REQ_INTERSECT; 2707} 2708 2709/** 2710 * reg_process_hint_driver - process driver regulatory requests 2711 * @wiphy: the wireless device for the regulatory request 2712 * @driver_request: a pending driver regulatory request 2713 * 2714 * The wireless subsystem can use this function to process 2715 * a regulatory request issued by an 802.11 driver. 2716 * 2717 * Returns one of the different reg request treatment values. 2718 */ 2719static enum reg_request_treatment 2720reg_process_hint_driver(struct wiphy *wiphy, 2721 struct regulatory_request *driver_request) 2722{ 2723 const struct ieee80211_regdomain *regd, *tmp; 2724 enum reg_request_treatment treatment; 2725 2726 treatment = __reg_process_hint_driver(driver_request); 2727 2728 switch (treatment) { 2729 case REG_REQ_OK: 2730 break; 2731 case REG_REQ_IGNORE: 2732 return REG_REQ_IGNORE; 2733 case REG_REQ_INTERSECT: 2734 case REG_REQ_ALREADY_SET: 2735 regd = reg_copy_regd(get_cfg80211_regdom()); 2736 if (IS_ERR(regd)) 2737 return REG_REQ_IGNORE; 2738 2739 tmp = get_wiphy_regdom(wiphy); 2740 rcu_assign_pointer(wiphy->regd, regd); 2741 rcu_free_regdom(tmp); 2742 } 2743 2744 2745 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2746 driver_request->processed = false; 2747 2748 /* 2749 * Since CRDA will not be called in this case as we already 2750 * have applied the requested regulatory domain before we just 2751 * inform userspace we have processed the request 2752 */ 2753 if (treatment == REG_REQ_ALREADY_SET) { 2754 nl80211_send_reg_change_event(driver_request); 2755 reg_update_last_request(driver_request); 2756 reg_set_request_processed(); 2757 return REG_REQ_ALREADY_SET; 2758 } 2759 2760 if (reg_query_database(driver_request)) { 2761 reg_update_last_request(driver_request); 2762 return REG_REQ_OK; 2763 } 2764 2765 return REG_REQ_IGNORE; 2766} 2767 2768static enum reg_request_treatment 2769__reg_process_hint_country_ie(struct wiphy *wiphy, 2770 struct regulatory_request *country_ie_request) 2771{ 2772 struct wiphy *last_wiphy = NULL; 2773 struct regulatory_request *lr = get_last_request(); 2774 2775 if (reg_request_cell_base(lr)) { 2776 /* Trust a Cell base station over the AP's country IE */ 2777 if (regdom_changes(country_ie_request->alpha2)) 2778 return REG_REQ_IGNORE; 2779 return REG_REQ_ALREADY_SET; 2780 } else { 2781 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2782 return REG_REQ_IGNORE; 2783 } 2784 2785 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2786 return -EINVAL; 2787 2788 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2789 return REG_REQ_OK; 2790 2791 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2792 2793 if (last_wiphy != wiphy) { 2794 /* 2795 * Two cards with two APs claiming different 2796 * Country IE alpha2s. We could 2797 * intersect them, but that seems unlikely 2798 * to be correct. Reject second one for now. 2799 */ 2800 if (regdom_changes(country_ie_request->alpha2)) 2801 return REG_REQ_IGNORE; 2802 return REG_REQ_ALREADY_SET; 2803 } 2804 2805 if (regdom_changes(country_ie_request->alpha2)) 2806 return REG_REQ_OK; 2807 return REG_REQ_ALREADY_SET; 2808} 2809 2810/** 2811 * reg_process_hint_country_ie - process regulatory requests from country IEs 2812 * @wiphy: the wireless device for the regulatory request 2813 * @country_ie_request: a regulatory request from a country IE 2814 * 2815 * The wireless subsystem can use this function to process 2816 * a regulatory request issued by a country Information Element. 2817 * 2818 * Returns one of the different reg request treatment values. 2819 */ 2820static enum reg_request_treatment 2821reg_process_hint_country_ie(struct wiphy *wiphy, 2822 struct regulatory_request *country_ie_request) 2823{ 2824 enum reg_request_treatment treatment; 2825 2826 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2827 2828 switch (treatment) { 2829 case REG_REQ_OK: 2830 break; 2831 case REG_REQ_IGNORE: 2832 return REG_REQ_IGNORE; 2833 case REG_REQ_ALREADY_SET: 2834 reg_free_request(country_ie_request); 2835 return REG_REQ_ALREADY_SET; 2836 case REG_REQ_INTERSECT: 2837 /* 2838 * This doesn't happen yet, not sure we 2839 * ever want to support it for this case. 2840 */ 2841 WARN_ONCE(1, "Unexpected intersection for country elements"); 2842 return REG_REQ_IGNORE; 2843 } 2844 2845 country_ie_request->intersect = false; 2846 country_ie_request->processed = false; 2847 2848 if (reg_query_database(country_ie_request)) { 2849 reg_update_last_request(country_ie_request); 2850 return REG_REQ_OK; 2851 } 2852 2853 return REG_REQ_IGNORE; 2854} 2855 2856bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2857{ 2858 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2859 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2860 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2861 bool dfs_domain_same; 2862 2863 rcu_read_lock(); 2864 2865 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2866 wiphy1_regd = rcu_dereference(wiphy1->regd); 2867 if (!wiphy1_regd) 2868 wiphy1_regd = cfg80211_regd; 2869 2870 wiphy2_regd = rcu_dereference(wiphy2->regd); 2871 if (!wiphy2_regd) 2872 wiphy2_regd = cfg80211_regd; 2873 2874 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2875 2876 rcu_read_unlock(); 2877 2878 return dfs_domain_same; 2879} 2880 2881static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2882 struct ieee80211_channel *src_chan) 2883{ 2884 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2885 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2886 return; 2887 2888 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2889 src_chan->flags & IEEE80211_CHAN_DISABLED) 2890 return; 2891 2892 if (src_chan->center_freq == dst_chan->center_freq && 2893 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2894 dst_chan->dfs_state = src_chan->dfs_state; 2895 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2896 } 2897} 2898 2899static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2900 struct wiphy *src_wiphy) 2901{ 2902 struct ieee80211_supported_band *src_sband, *dst_sband; 2903 struct ieee80211_channel *src_chan, *dst_chan; 2904 int i, j, band; 2905 2906 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2907 return; 2908 2909 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2910 dst_sband = dst_wiphy->bands[band]; 2911 src_sband = src_wiphy->bands[band]; 2912 if (!dst_sband || !src_sband) 2913 continue; 2914 2915 for (i = 0; i < dst_sband->n_channels; i++) { 2916 dst_chan = &dst_sband->channels[i]; 2917 for (j = 0; j < src_sband->n_channels; j++) { 2918 src_chan = &src_sband->channels[j]; 2919 reg_copy_dfs_chan_state(dst_chan, src_chan); 2920 } 2921 } 2922 } 2923} 2924 2925static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2926{ 2927 struct cfg80211_registered_device *rdev; 2928 2929 ASSERT_RTNL(); 2930 2931 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2932 if (wiphy == &rdev->wiphy) 2933 continue; 2934 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2935 } 2936} 2937 2938/* This processes *all* regulatory hints */ 2939static void reg_process_hint(struct regulatory_request *reg_request) 2940{ 2941 struct wiphy *wiphy = NULL; 2942 enum reg_request_treatment treatment; 2943 enum nl80211_reg_initiator initiator = reg_request->initiator; 2944 2945 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2946 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2947 2948 switch (initiator) { 2949 case NL80211_REGDOM_SET_BY_CORE: 2950 treatment = reg_process_hint_core(reg_request); 2951 break; 2952 case NL80211_REGDOM_SET_BY_USER: 2953 treatment = reg_process_hint_user(reg_request); 2954 break; 2955 case NL80211_REGDOM_SET_BY_DRIVER: 2956 if (!wiphy) 2957 goto out_free; 2958 treatment = reg_process_hint_driver(wiphy, reg_request); 2959 break; 2960 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2961 if (!wiphy) 2962 goto out_free; 2963 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2964 break; 2965 default: 2966 WARN(1, "invalid initiator %d\n", initiator); 2967 goto out_free; 2968 } 2969 2970 if (treatment == REG_REQ_IGNORE) 2971 goto out_free; 2972 2973 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2974 "unexpected treatment value %d\n", treatment); 2975 2976 /* This is required so that the orig_* parameters are saved. 2977 * NOTE: treatment must be set for any case that reaches here! 2978 */ 2979 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2980 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2981 wiphy_update_regulatory(wiphy, initiator); 2982 wiphy_all_share_dfs_chan_state(wiphy); 2983 reg_check_channels(); 2984 } 2985 2986 return; 2987 2988out_free: 2989 reg_free_request(reg_request); 2990} 2991 2992static void notify_self_managed_wiphys(struct regulatory_request *request) 2993{ 2994 struct cfg80211_registered_device *rdev; 2995 struct wiphy *wiphy; 2996 2997 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2998 wiphy = &rdev->wiphy; 2999 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3000 request->initiator == NL80211_REGDOM_SET_BY_USER) 3001 reg_call_notifier(wiphy, request); 3002 } 3003} 3004 3005/* 3006 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3007 * Regulatory hints come on a first come first serve basis and we 3008 * must process each one atomically. 3009 */ 3010static void reg_process_pending_hints(void) 3011{ 3012 struct regulatory_request *reg_request, *lr; 3013 3014 lr = get_last_request(); 3015 3016 /* When last_request->processed becomes true this will be rescheduled */ 3017 if (lr && !lr->processed) { 3018 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3019 return; 3020 } 3021 3022 spin_lock(®_requests_lock); 3023 3024 if (list_empty(®_requests_list)) { 3025 spin_unlock(®_requests_lock); 3026 return; 3027 } 3028 3029 reg_request = list_first_entry(®_requests_list, 3030 struct regulatory_request, 3031 list); 3032 list_del_init(®_request->list); 3033 3034 spin_unlock(®_requests_lock); 3035 3036 notify_self_managed_wiphys(reg_request); 3037 3038 reg_process_hint(reg_request); 3039 3040 lr = get_last_request(); 3041 3042 spin_lock(®_requests_lock); 3043 if (!list_empty(®_requests_list) && lr && lr->processed) 3044 schedule_work(®_work); 3045 spin_unlock(®_requests_lock); 3046} 3047 3048/* Processes beacon hints -- this has nothing to do with country IEs */ 3049static void reg_process_pending_beacon_hints(void) 3050{ 3051 struct cfg80211_registered_device *rdev; 3052 struct reg_beacon *pending_beacon, *tmp; 3053 3054 /* This goes through the _pending_ beacon list */ 3055 spin_lock_bh(®_pending_beacons_lock); 3056 3057 list_for_each_entry_safe(pending_beacon, tmp, 3058 ®_pending_beacons, list) { 3059 list_del_init(&pending_beacon->list); 3060 3061 /* Applies the beacon hint to current wiphys */ 3062 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3063 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3064 3065 /* Remembers the beacon hint for new wiphys or reg changes */ 3066 list_add_tail(&pending_beacon->list, ®_beacon_list); 3067 } 3068 3069 spin_unlock_bh(®_pending_beacons_lock); 3070} 3071 3072static void reg_process_self_managed_hints(void) 3073{ 3074 struct cfg80211_registered_device *rdev; 3075 struct wiphy *wiphy; 3076 const struct ieee80211_regdomain *tmp; 3077 const struct ieee80211_regdomain *regd; 3078 enum nl80211_band band; 3079 struct regulatory_request request = {}; 3080 3081 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3082 wiphy = &rdev->wiphy; 3083 3084 spin_lock(®_requests_lock); 3085 regd = rdev->requested_regd; 3086 rdev->requested_regd = NULL; 3087 spin_unlock(®_requests_lock); 3088 3089 if (regd == NULL) 3090 continue; 3091 3092 tmp = get_wiphy_regdom(wiphy); 3093 rcu_assign_pointer(wiphy->regd, regd); 3094 rcu_free_regdom(tmp); 3095 3096 for (band = 0; band < NUM_NL80211_BANDS; band++) 3097 handle_band_custom(wiphy, wiphy->bands[band], regd); 3098 3099 reg_process_ht_flags(wiphy); 3100 3101 request.wiphy_idx = get_wiphy_idx(wiphy); 3102 request.alpha2[0] = regd->alpha2[0]; 3103 request.alpha2[1] = regd->alpha2[1]; 3104 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3105 3106 nl80211_send_wiphy_reg_change_event(&request); 3107 } 3108 3109 reg_check_channels(); 3110} 3111 3112static void reg_todo(struct work_struct *work) 3113{ 3114 rtnl_lock(); 3115 reg_process_pending_hints(); 3116 reg_process_pending_beacon_hints(); 3117 reg_process_self_managed_hints(); 3118 rtnl_unlock(); 3119} 3120 3121static void queue_regulatory_request(struct regulatory_request *request) 3122{ 3123 request->alpha2[0] = toupper(request->alpha2[0]); 3124 request->alpha2[1] = toupper(request->alpha2[1]); 3125 3126 spin_lock(®_requests_lock); 3127 list_add_tail(&request->list, ®_requests_list); 3128 spin_unlock(®_requests_lock); 3129 3130 schedule_work(®_work); 3131} 3132 3133/* 3134 * Core regulatory hint -- happens during cfg80211_init() 3135 * and when we restore regulatory settings. 3136 */ 3137static int regulatory_hint_core(const char *alpha2) 3138{ 3139 struct regulatory_request *request; 3140 3141 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3142 if (!request) 3143 return -ENOMEM; 3144 3145 request->alpha2[0] = alpha2[0]; 3146 request->alpha2[1] = alpha2[1]; 3147 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3148 request->wiphy_idx = WIPHY_IDX_INVALID; 3149 3150 queue_regulatory_request(request); 3151 3152 return 0; 3153} 3154 3155/* User hints */ 3156int regulatory_hint_user(const char *alpha2, 3157 enum nl80211_user_reg_hint_type user_reg_hint_type) 3158{ 3159 struct regulatory_request *request; 3160 3161 if (WARN_ON(!alpha2)) 3162 return -EINVAL; 3163 3164 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3165 return -EINVAL; 3166 3167 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3168 if (!request) 3169 return -ENOMEM; 3170 3171 request->wiphy_idx = WIPHY_IDX_INVALID; 3172 request->alpha2[0] = alpha2[0]; 3173 request->alpha2[1] = alpha2[1]; 3174 request->initiator = NL80211_REGDOM_SET_BY_USER; 3175 request->user_reg_hint_type = user_reg_hint_type; 3176 3177 /* Allow calling CRDA again */ 3178 reset_crda_timeouts(); 3179 3180 queue_regulatory_request(request); 3181 3182 return 0; 3183} 3184 3185int regulatory_hint_indoor(bool is_indoor, u32 portid) 3186{ 3187 spin_lock(®_indoor_lock); 3188 3189 /* It is possible that more than one user space process is trying to 3190 * configure the indoor setting. To handle such cases, clear the indoor 3191 * setting in case that some process does not think that the device 3192 * is operating in an indoor environment. In addition, if a user space 3193 * process indicates that it is controlling the indoor setting, save its 3194 * portid, i.e., make it the owner. 3195 */ 3196 reg_is_indoor = is_indoor; 3197 if (reg_is_indoor) { 3198 if (!reg_is_indoor_portid) 3199 reg_is_indoor_portid = portid; 3200 } else { 3201 reg_is_indoor_portid = 0; 3202 } 3203 3204 spin_unlock(®_indoor_lock); 3205 3206 if (!is_indoor) 3207 reg_check_channels(); 3208 3209 return 0; 3210} 3211 3212void regulatory_netlink_notify(u32 portid) 3213{ 3214 spin_lock(®_indoor_lock); 3215 3216 if (reg_is_indoor_portid != portid) { 3217 spin_unlock(®_indoor_lock); 3218 return; 3219 } 3220 3221 reg_is_indoor = false; 3222 reg_is_indoor_portid = 0; 3223 3224 spin_unlock(®_indoor_lock); 3225 3226 reg_check_channels(); 3227} 3228 3229/* Driver hints */ 3230int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3231{ 3232 struct regulatory_request *request; 3233 3234 if (WARN_ON(!alpha2 || !wiphy)) 3235 return -EINVAL; 3236 3237 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3238 3239 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3240 if (!request) 3241 return -ENOMEM; 3242 3243 request->wiphy_idx = get_wiphy_idx(wiphy); 3244 3245 request->alpha2[0] = alpha2[0]; 3246 request->alpha2[1] = alpha2[1]; 3247 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3248 3249 /* Allow calling CRDA again */ 3250 reset_crda_timeouts(); 3251 3252 queue_regulatory_request(request); 3253 3254 return 0; 3255} 3256EXPORT_SYMBOL(regulatory_hint); 3257 3258void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3259 const u8 *country_ie, u8 country_ie_len) 3260{ 3261 char alpha2[2]; 3262 enum environment_cap env = ENVIRON_ANY; 3263 struct regulatory_request *request = NULL, *lr; 3264 3265 /* IE len must be evenly divisible by 2 */ 3266 if (country_ie_len & 0x01) 3267 return; 3268 3269 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3270 return; 3271 3272 request = kzalloc(sizeof(*request), GFP_KERNEL); 3273 if (!request) 3274 return; 3275 3276 alpha2[0] = country_ie[0]; 3277 alpha2[1] = country_ie[1]; 3278 3279 if (country_ie[2] == 'I') 3280 env = ENVIRON_INDOOR; 3281 else if (country_ie[2] == 'O') 3282 env = ENVIRON_OUTDOOR; 3283 3284 rcu_read_lock(); 3285 lr = get_last_request(); 3286 3287 if (unlikely(!lr)) 3288 goto out; 3289 3290 /* 3291 * We will run this only upon a successful connection on cfg80211. 3292 * We leave conflict resolution to the workqueue, where can hold 3293 * the RTNL. 3294 */ 3295 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3296 lr->wiphy_idx != WIPHY_IDX_INVALID) 3297 goto out; 3298 3299 request->wiphy_idx = get_wiphy_idx(wiphy); 3300 request->alpha2[0] = alpha2[0]; 3301 request->alpha2[1] = alpha2[1]; 3302 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3303 request->country_ie_env = env; 3304 3305 /* Allow calling CRDA again */ 3306 reset_crda_timeouts(); 3307 3308 queue_regulatory_request(request); 3309 request = NULL; 3310out: 3311 kfree(request); 3312 rcu_read_unlock(); 3313} 3314 3315static void restore_alpha2(char *alpha2, bool reset_user) 3316{ 3317 /* indicates there is no alpha2 to consider for restoration */ 3318 alpha2[0] = '9'; 3319 alpha2[1] = '7'; 3320 3321 /* The user setting has precedence over the module parameter */ 3322 if (is_user_regdom_saved()) { 3323 /* Unless we're asked to ignore it and reset it */ 3324 if (reset_user) { 3325 pr_debug("Restoring regulatory settings including user preference\n"); 3326 user_alpha2[0] = '9'; 3327 user_alpha2[1] = '7'; 3328 3329 /* 3330 * If we're ignoring user settings, we still need to 3331 * check the module parameter to ensure we put things 3332 * back as they were for a full restore. 3333 */ 3334 if (!is_world_regdom(ieee80211_regdom)) { 3335 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3336 ieee80211_regdom[0], ieee80211_regdom[1]); 3337 alpha2[0] = ieee80211_regdom[0]; 3338 alpha2[1] = ieee80211_regdom[1]; 3339 } 3340 } else { 3341 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3342 user_alpha2[0], user_alpha2[1]); 3343 alpha2[0] = user_alpha2[0]; 3344 alpha2[1] = user_alpha2[1]; 3345 } 3346 } else if (!is_world_regdom(ieee80211_regdom)) { 3347 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3348 ieee80211_regdom[0], ieee80211_regdom[1]); 3349 alpha2[0] = ieee80211_regdom[0]; 3350 alpha2[1] = ieee80211_regdom[1]; 3351 } else 3352 pr_debug("Restoring regulatory settings\n"); 3353} 3354 3355static void restore_custom_reg_settings(struct wiphy *wiphy) 3356{ 3357 struct ieee80211_supported_band *sband; 3358 enum nl80211_band band; 3359 struct ieee80211_channel *chan; 3360 int i; 3361 3362 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3363 sband = wiphy->bands[band]; 3364 if (!sband) 3365 continue; 3366 for (i = 0; i < sband->n_channels; i++) { 3367 chan = &sband->channels[i]; 3368 chan->flags = chan->orig_flags; 3369 chan->max_antenna_gain = chan->orig_mag; 3370 chan->max_power = chan->orig_mpwr; 3371 chan->beacon_found = false; 3372 } 3373 } 3374} 3375 3376/* 3377 * Restoring regulatory settings involves ingoring any 3378 * possibly stale country IE information and user regulatory 3379 * settings if so desired, this includes any beacon hints 3380 * learned as we could have traveled outside to another country 3381 * after disconnection. To restore regulatory settings we do 3382 * exactly what we did at bootup: 3383 * 3384 * - send a core regulatory hint 3385 * - send a user regulatory hint if applicable 3386 * 3387 * Device drivers that send a regulatory hint for a specific country 3388 * keep their own regulatory domain on wiphy->regd so that does 3389 * not need to be remembered. 3390 */ 3391static void restore_regulatory_settings(bool reset_user, bool cached) 3392{ 3393 char alpha2[2]; 3394 char world_alpha2[2]; 3395 struct reg_beacon *reg_beacon, *btmp; 3396 LIST_HEAD(tmp_reg_req_list); 3397 struct cfg80211_registered_device *rdev; 3398 3399 ASSERT_RTNL(); 3400 3401 /* 3402 * Clear the indoor setting in case that it is not controlled by user 3403 * space, as otherwise there is no guarantee that the device is still 3404 * operating in an indoor environment. 3405 */ 3406 spin_lock(®_indoor_lock); 3407 if (reg_is_indoor && !reg_is_indoor_portid) { 3408 reg_is_indoor = false; 3409 reg_check_channels(); 3410 } 3411 spin_unlock(®_indoor_lock); 3412 3413 reset_regdomains(true, &world_regdom); 3414 restore_alpha2(alpha2, reset_user); 3415 3416 /* 3417 * If there's any pending requests we simply 3418 * stash them to a temporary pending queue and 3419 * add then after we've restored regulatory 3420 * settings. 3421 */ 3422 spin_lock(®_requests_lock); 3423 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3424 spin_unlock(®_requests_lock); 3425 3426 /* Clear beacon hints */ 3427 spin_lock_bh(®_pending_beacons_lock); 3428 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3429 list_del(®_beacon->list); 3430 kfree(reg_beacon); 3431 } 3432 spin_unlock_bh(®_pending_beacons_lock); 3433 3434 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3435 list_del(®_beacon->list); 3436 kfree(reg_beacon); 3437 } 3438 3439 /* First restore to the basic regulatory settings */ 3440 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3441 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3442 3443 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3444 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3445 continue; 3446 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3447 restore_custom_reg_settings(&rdev->wiphy); 3448 } 3449 3450 if (cached && (!is_an_alpha2(alpha2) || 3451 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3452 reset_regdomains(false, cfg80211_world_regdom); 3453 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3454 print_regdomain(get_cfg80211_regdom()); 3455 nl80211_send_reg_change_event(&core_request_world); 3456 reg_set_request_processed(); 3457 3458 if (is_an_alpha2(alpha2) && 3459 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3460 struct regulatory_request *ureq; 3461 3462 spin_lock(®_requests_lock); 3463 ureq = list_last_entry(®_requests_list, 3464 struct regulatory_request, 3465 list); 3466 list_del(&ureq->list); 3467 spin_unlock(®_requests_lock); 3468 3469 notify_self_managed_wiphys(ureq); 3470 reg_update_last_request(ureq); 3471 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3472 REGD_SOURCE_CACHED); 3473 } 3474 } else { 3475 regulatory_hint_core(world_alpha2); 3476 3477 /* 3478 * This restores the ieee80211_regdom module parameter 3479 * preference or the last user requested regulatory 3480 * settings, user regulatory settings takes precedence. 3481 */ 3482 if (is_an_alpha2(alpha2)) 3483 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3484 } 3485 3486 spin_lock(®_requests_lock); 3487 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3488 spin_unlock(®_requests_lock); 3489 3490 pr_debug("Kicking the queue\n"); 3491 3492 schedule_work(®_work); 3493} 3494 3495static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3496{ 3497 struct cfg80211_registered_device *rdev; 3498 struct wireless_dev *wdev; 3499 3500 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3501 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3502 wdev_lock(wdev); 3503 if (!(wdev->wiphy->regulatory_flags & flag)) { 3504 wdev_unlock(wdev); 3505 return false; 3506 } 3507 wdev_unlock(wdev); 3508 } 3509 } 3510 3511 return true; 3512} 3513 3514void regulatory_hint_disconnect(void) 3515{ 3516 /* Restore of regulatory settings is not required when wiphy(s) 3517 * ignore IE from connected access point but clearance of beacon hints 3518 * is required when wiphy(s) supports beacon hints. 3519 */ 3520 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3521 struct reg_beacon *reg_beacon, *btmp; 3522 3523 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3524 return; 3525 3526 spin_lock_bh(®_pending_beacons_lock); 3527 list_for_each_entry_safe(reg_beacon, btmp, 3528 ®_pending_beacons, list) { 3529 list_del(®_beacon->list); 3530 kfree(reg_beacon); 3531 } 3532 spin_unlock_bh(®_pending_beacons_lock); 3533 3534 list_for_each_entry_safe(reg_beacon, btmp, 3535 ®_beacon_list, list) { 3536 list_del(®_beacon->list); 3537 kfree(reg_beacon); 3538 } 3539 3540 return; 3541 } 3542 3543 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3544 restore_regulatory_settings(false, true); 3545} 3546 3547static bool freq_is_chan_12_13_14(u32 freq) 3548{ 3549 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3550 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3551 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3552 return true; 3553 return false; 3554} 3555 3556static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3557{ 3558 struct reg_beacon *pending_beacon; 3559 3560 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3561 if (ieee80211_channel_equal(beacon_chan, 3562 &pending_beacon->chan)) 3563 return true; 3564 return false; 3565} 3566 3567int regulatory_hint_found_beacon(struct wiphy *wiphy, 3568 struct ieee80211_channel *beacon_chan, 3569 gfp_t gfp) 3570{ 3571 struct reg_beacon *reg_beacon; 3572 bool processing; 3573 3574 if (beacon_chan->beacon_found || 3575 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3576 (beacon_chan->band == NL80211_BAND_2GHZ && 3577 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3578 return 0; 3579 3580 spin_lock_bh(®_pending_beacons_lock); 3581 processing = pending_reg_beacon(beacon_chan); 3582 spin_unlock_bh(®_pending_beacons_lock); 3583 3584 if (processing) 3585 return 0; 3586 3587 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3588 if (!reg_beacon) 3589 return -ENOMEM; 3590 3591 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3592 beacon_chan->center_freq, beacon_chan->freq_offset, 3593 ieee80211_freq_khz_to_channel( 3594 ieee80211_channel_to_khz(beacon_chan)), 3595 wiphy_name(wiphy)); 3596 3597 memcpy(®_beacon->chan, beacon_chan, 3598 sizeof(struct ieee80211_channel)); 3599 3600 /* 3601 * Since we can be called from BH or and non-BH context 3602 * we must use spin_lock_bh() 3603 */ 3604 spin_lock_bh(®_pending_beacons_lock); 3605 list_add_tail(®_beacon->list, ®_pending_beacons); 3606 spin_unlock_bh(®_pending_beacons_lock); 3607 3608 schedule_work(®_work); 3609 3610 return 0; 3611} 3612 3613static void print_rd_rules(const struct ieee80211_regdomain *rd) 3614{ 3615 unsigned int i; 3616 const struct ieee80211_reg_rule *reg_rule = NULL; 3617 const struct ieee80211_freq_range *freq_range = NULL; 3618 const struct ieee80211_power_rule *power_rule = NULL; 3619 char bw[32], cac_time[32]; 3620 3621 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3622 3623 for (i = 0; i < rd->n_reg_rules; i++) { 3624 reg_rule = &rd->reg_rules[i]; 3625 freq_range = ®_rule->freq_range; 3626 power_rule = ®_rule->power_rule; 3627 3628 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3629 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3630 freq_range->max_bandwidth_khz, 3631 reg_get_max_bandwidth(rd, reg_rule)); 3632 else 3633 snprintf(bw, sizeof(bw), "%d KHz", 3634 freq_range->max_bandwidth_khz); 3635 3636 if (reg_rule->flags & NL80211_RRF_DFS) 3637 scnprintf(cac_time, sizeof(cac_time), "%u s", 3638 reg_rule->dfs_cac_ms/1000); 3639 else 3640 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3641 3642 3643 /* 3644 * There may not be documentation for max antenna gain 3645 * in certain regions 3646 */ 3647 if (power_rule->max_antenna_gain) 3648 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3649 freq_range->start_freq_khz, 3650 freq_range->end_freq_khz, 3651 bw, 3652 power_rule->max_antenna_gain, 3653 power_rule->max_eirp, 3654 cac_time); 3655 else 3656 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3657 freq_range->start_freq_khz, 3658 freq_range->end_freq_khz, 3659 bw, 3660 power_rule->max_eirp, 3661 cac_time); 3662 } 3663} 3664 3665bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3666{ 3667 switch (dfs_region) { 3668 case NL80211_DFS_UNSET: 3669 case NL80211_DFS_FCC: 3670 case NL80211_DFS_ETSI: 3671 case NL80211_DFS_JP: 3672 return true; 3673 default: 3674 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3675 return false; 3676 } 3677} 3678 3679static void print_regdomain(const struct ieee80211_regdomain *rd) 3680{ 3681 struct regulatory_request *lr = get_last_request(); 3682 3683 if (is_intersected_alpha2(rd->alpha2)) { 3684 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3685 struct cfg80211_registered_device *rdev; 3686 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3687 if (rdev) { 3688 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3689 rdev->country_ie_alpha2[0], 3690 rdev->country_ie_alpha2[1]); 3691 } else 3692 pr_debug("Current regulatory domain intersected:\n"); 3693 } else 3694 pr_debug("Current regulatory domain intersected:\n"); 3695 } else if (is_world_regdom(rd->alpha2)) { 3696 pr_debug("World regulatory domain updated:\n"); 3697 } else { 3698 if (is_unknown_alpha2(rd->alpha2)) 3699 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3700 else { 3701 if (reg_request_cell_base(lr)) 3702 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3703 rd->alpha2[0], rd->alpha2[1]); 3704 else 3705 pr_debug("Regulatory domain changed to country: %c%c\n", 3706 rd->alpha2[0], rd->alpha2[1]); 3707 } 3708 } 3709 3710 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3711 print_rd_rules(rd); 3712} 3713 3714static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3715{ 3716 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3717 print_rd_rules(rd); 3718} 3719 3720static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3721{ 3722 if (!is_world_regdom(rd->alpha2)) 3723 return -EINVAL; 3724 update_world_regdomain(rd); 3725 return 0; 3726} 3727 3728static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3729 struct regulatory_request *user_request) 3730{ 3731 const struct ieee80211_regdomain *intersected_rd = NULL; 3732 3733 if (!regdom_changes(rd->alpha2)) 3734 return -EALREADY; 3735 3736 if (!is_valid_rd(rd)) { 3737 pr_err("Invalid regulatory domain detected: %c%c\n", 3738 rd->alpha2[0], rd->alpha2[1]); 3739 print_regdomain_info(rd); 3740 return -EINVAL; 3741 } 3742 3743 if (!user_request->intersect) { 3744 reset_regdomains(false, rd); 3745 return 0; 3746 } 3747 3748 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3749 if (!intersected_rd) 3750 return -EINVAL; 3751 3752 kfree(rd); 3753 rd = NULL; 3754 reset_regdomains(false, intersected_rd); 3755 3756 return 0; 3757} 3758 3759static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3760 struct regulatory_request *driver_request) 3761{ 3762 const struct ieee80211_regdomain *regd; 3763 const struct ieee80211_regdomain *intersected_rd = NULL; 3764 const struct ieee80211_regdomain *tmp; 3765 struct wiphy *request_wiphy; 3766 3767 if (is_world_regdom(rd->alpha2)) 3768 return -EINVAL; 3769 3770 if (!regdom_changes(rd->alpha2)) 3771 return -EALREADY; 3772 3773 if (!is_valid_rd(rd)) { 3774 pr_err("Invalid regulatory domain detected: %c%c\n", 3775 rd->alpha2[0], rd->alpha2[1]); 3776 print_regdomain_info(rd); 3777 return -EINVAL; 3778 } 3779 3780 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3781 if (!request_wiphy) 3782 return -ENODEV; 3783 3784 if (!driver_request->intersect) { 3785 if (request_wiphy->regd) 3786 return -EALREADY; 3787 3788 regd = reg_copy_regd(rd); 3789 if (IS_ERR(regd)) 3790 return PTR_ERR(regd); 3791 3792 rcu_assign_pointer(request_wiphy->regd, regd); 3793 reset_regdomains(false, rd); 3794 return 0; 3795 } 3796 3797 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3798 if (!intersected_rd) 3799 return -EINVAL; 3800 3801 /* 3802 * We can trash what CRDA provided now. 3803 * However if a driver requested this specific regulatory 3804 * domain we keep it for its private use 3805 */ 3806 tmp = get_wiphy_regdom(request_wiphy); 3807 rcu_assign_pointer(request_wiphy->regd, rd); 3808 rcu_free_regdom(tmp); 3809 3810 rd = NULL; 3811 3812 reset_regdomains(false, intersected_rd); 3813 3814 return 0; 3815} 3816 3817static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3818 struct regulatory_request *country_ie_request) 3819{ 3820 struct wiphy *request_wiphy; 3821 3822 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3823 !is_unknown_alpha2(rd->alpha2)) 3824 return -EINVAL; 3825 3826 /* 3827 * Lets only bother proceeding on the same alpha2 if the current 3828 * rd is non static (it means CRDA was present and was used last) 3829 * and the pending request came in from a country IE 3830 */ 3831 3832 if (!is_valid_rd(rd)) { 3833 pr_err("Invalid regulatory domain detected: %c%c\n", 3834 rd->alpha2[0], rd->alpha2[1]); 3835 print_regdomain_info(rd); 3836 return -EINVAL; 3837 } 3838 3839 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3840 if (!request_wiphy) 3841 return -ENODEV; 3842 3843 if (country_ie_request->intersect) 3844 return -EINVAL; 3845 3846 reset_regdomains(false, rd); 3847 return 0; 3848} 3849 3850/* 3851 * Use this call to set the current regulatory domain. Conflicts with 3852 * multiple drivers can be ironed out later. Caller must've already 3853 * kmalloc'd the rd structure. 3854 */ 3855int set_regdom(const struct ieee80211_regdomain *rd, 3856 enum ieee80211_regd_source regd_src) 3857{ 3858 struct regulatory_request *lr; 3859 bool user_reset = false; 3860 int r; 3861 3862 if (IS_ERR_OR_NULL(rd)) 3863 return -ENODATA; 3864 3865 if (!reg_is_valid_request(rd->alpha2)) { 3866 kfree(rd); 3867 return -EINVAL; 3868 } 3869 3870 if (regd_src == REGD_SOURCE_CRDA) 3871 reset_crda_timeouts(); 3872 3873 lr = get_last_request(); 3874 3875 /* Note that this doesn't update the wiphys, this is done below */ 3876 switch (lr->initiator) { 3877 case NL80211_REGDOM_SET_BY_CORE: 3878 r = reg_set_rd_core(rd); 3879 break; 3880 case NL80211_REGDOM_SET_BY_USER: 3881 cfg80211_save_user_regdom(rd); 3882 r = reg_set_rd_user(rd, lr); 3883 user_reset = true; 3884 break; 3885 case NL80211_REGDOM_SET_BY_DRIVER: 3886 r = reg_set_rd_driver(rd, lr); 3887 break; 3888 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3889 r = reg_set_rd_country_ie(rd, lr); 3890 break; 3891 default: 3892 WARN(1, "invalid initiator %d\n", lr->initiator); 3893 kfree(rd); 3894 return -EINVAL; 3895 } 3896 3897 if (r) { 3898 switch (r) { 3899 case -EALREADY: 3900 reg_set_request_processed(); 3901 break; 3902 default: 3903 /* Back to world regulatory in case of errors */ 3904 restore_regulatory_settings(user_reset, false); 3905 } 3906 3907 kfree(rd); 3908 return r; 3909 } 3910 3911 /* This would make this whole thing pointless */ 3912 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3913 return -EINVAL; 3914 3915 /* update all wiphys now with the new established regulatory domain */ 3916 update_all_wiphy_regulatory(lr->initiator); 3917 3918 print_regdomain(get_cfg80211_regdom()); 3919 3920 nl80211_send_reg_change_event(lr); 3921 3922 reg_set_request_processed(); 3923 3924 return 0; 3925} 3926 3927static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3928 struct ieee80211_regdomain *rd) 3929{ 3930 const struct ieee80211_regdomain *regd; 3931 const struct ieee80211_regdomain *prev_regd; 3932 struct cfg80211_registered_device *rdev; 3933 3934 if (WARN_ON(!wiphy || !rd)) 3935 return -EINVAL; 3936 3937 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3938 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3939 return -EPERM; 3940 3941 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3942 print_regdomain_info(rd); 3943 return -EINVAL; 3944 } 3945 3946 regd = reg_copy_regd(rd); 3947 if (IS_ERR(regd)) 3948 return PTR_ERR(regd); 3949 3950 rdev = wiphy_to_rdev(wiphy); 3951 3952 spin_lock(®_requests_lock); 3953 prev_regd = rdev->requested_regd; 3954 rdev->requested_regd = regd; 3955 spin_unlock(®_requests_lock); 3956 3957 kfree(prev_regd); 3958 return 0; 3959} 3960 3961int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3962 struct ieee80211_regdomain *rd) 3963{ 3964 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3965 3966 if (ret) 3967 return ret; 3968 3969 schedule_work(®_work); 3970 return 0; 3971} 3972EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3973 3974int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3975 struct ieee80211_regdomain *rd) 3976{ 3977 int ret; 3978 3979 ASSERT_RTNL(); 3980 3981 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3982 if (ret) 3983 return ret; 3984 3985 /* process the request immediately */ 3986 reg_process_self_managed_hints(); 3987 return 0; 3988} 3989EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3990 3991void wiphy_regulatory_register(struct wiphy *wiphy) 3992{ 3993 struct regulatory_request *lr = get_last_request(); 3994 3995 /* self-managed devices ignore beacon hints and country IE */ 3996 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3997 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3998 REGULATORY_COUNTRY_IE_IGNORE; 3999 4000 /* 4001 * The last request may have been received before this 4002 * registration call. Call the driver notifier if 4003 * initiator is USER. 4004 */ 4005 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4006 reg_call_notifier(wiphy, lr); 4007 } 4008 4009 if (!reg_dev_ignore_cell_hint(wiphy)) 4010 reg_num_devs_support_basehint++; 4011 4012 wiphy_update_regulatory(wiphy, lr->initiator); 4013 wiphy_all_share_dfs_chan_state(wiphy); 4014 reg_process_self_managed_hints(); 4015} 4016 4017void wiphy_regulatory_deregister(struct wiphy *wiphy) 4018{ 4019 struct wiphy *request_wiphy = NULL; 4020 struct regulatory_request *lr; 4021 4022 lr = get_last_request(); 4023 4024 if (!reg_dev_ignore_cell_hint(wiphy)) 4025 reg_num_devs_support_basehint--; 4026 4027 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4028 RCU_INIT_POINTER(wiphy->regd, NULL); 4029 4030 if (lr) 4031 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4032 4033 if (!request_wiphy || request_wiphy != wiphy) 4034 return; 4035 4036 lr->wiphy_idx = WIPHY_IDX_INVALID; 4037 lr->country_ie_env = ENVIRON_ANY; 4038} 4039 4040/* 4041 * See FCC notices for UNII band definitions 4042 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4043 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4044 */ 4045int cfg80211_get_unii(int freq) 4046{ 4047 /* UNII-1 */ 4048 if (freq >= 5150 && freq <= 5250) 4049 return 0; 4050 4051 /* UNII-2A */ 4052 if (freq > 5250 && freq <= 5350) 4053 return 1; 4054 4055 /* UNII-2B */ 4056 if (freq > 5350 && freq <= 5470) 4057 return 2; 4058 4059 /* UNII-2C */ 4060 if (freq > 5470 && freq <= 5725) 4061 return 3; 4062 4063 /* UNII-3 */ 4064 if (freq > 5725 && freq <= 5825) 4065 return 4; 4066 4067 /* UNII-5 */ 4068 if (freq > 5925 && freq <= 6425) 4069 return 5; 4070 4071 /* UNII-6 */ 4072 if (freq > 6425 && freq <= 6525) 4073 return 6; 4074 4075 /* UNII-7 */ 4076 if (freq > 6525 && freq <= 6875) 4077 return 7; 4078 4079 /* UNII-8 */ 4080 if (freq > 6875 && freq <= 7125) 4081 return 8; 4082 4083 return -EINVAL; 4084} 4085 4086bool regulatory_indoor_allowed(void) 4087{ 4088 return reg_is_indoor; 4089} 4090 4091bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4092{ 4093 const struct ieee80211_regdomain *regd = NULL; 4094 const struct ieee80211_regdomain *wiphy_regd = NULL; 4095 bool pre_cac_allowed = false; 4096 4097 rcu_read_lock(); 4098 4099 regd = rcu_dereference(cfg80211_regdomain); 4100 wiphy_regd = rcu_dereference(wiphy->regd); 4101 if (!wiphy_regd) { 4102 if (regd->dfs_region == NL80211_DFS_ETSI) 4103 pre_cac_allowed = true; 4104 4105 rcu_read_unlock(); 4106 4107 return pre_cac_allowed; 4108 } 4109 4110 if (regd->dfs_region == wiphy_regd->dfs_region && 4111 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4112 pre_cac_allowed = true; 4113 4114 rcu_read_unlock(); 4115 4116 return pre_cac_allowed; 4117} 4118EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4119 4120static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4121{ 4122 struct wireless_dev *wdev; 4123 /* If we finished CAC or received radar, we should end any 4124 * CAC running on the same channels. 4125 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4126 * either all channels are available - those the CAC_FINISHED 4127 * event has effected another wdev state, or there is a channel 4128 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4129 * event has effected another wdev state. 4130 * In both cases we should end the CAC on the wdev. 4131 */ 4132 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4133 if (wdev->cac_started && 4134 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4135 rdev_end_cac(rdev, wdev->netdev); 4136 } 4137} 4138 4139void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4140 struct cfg80211_chan_def *chandef, 4141 enum nl80211_dfs_state dfs_state, 4142 enum nl80211_radar_event event) 4143{ 4144 struct cfg80211_registered_device *rdev; 4145 4146 ASSERT_RTNL(); 4147 4148 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4149 return; 4150 4151 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4152 if (wiphy == &rdev->wiphy) 4153 continue; 4154 4155 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4156 continue; 4157 4158 if (!ieee80211_get_channel(&rdev->wiphy, 4159 chandef->chan->center_freq)) 4160 continue; 4161 4162 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4163 4164 if (event == NL80211_RADAR_DETECTED || 4165 event == NL80211_RADAR_CAC_FINISHED) { 4166 cfg80211_sched_dfs_chan_update(rdev); 4167 cfg80211_check_and_end_cac(rdev); 4168 } 4169 4170 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4171 } 4172} 4173 4174static int __init regulatory_init_db(void) 4175{ 4176 int err; 4177 4178 /* 4179 * It's possible that - due to other bugs/issues - cfg80211 4180 * never called regulatory_init() below, or that it failed; 4181 * in that case, don't try to do any further work here as 4182 * it's doomed to lead to crashes. 4183 */ 4184 if (IS_ERR_OR_NULL(reg_pdev)) 4185 return -EINVAL; 4186 4187 err = load_builtin_regdb_keys(); 4188 if (err) { 4189 platform_device_unregister(reg_pdev); 4190 return err; 4191 } 4192 4193 /* We always try to get an update for the static regdomain */ 4194 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4195 if (err) { 4196 if (err == -ENOMEM) { 4197 platform_device_unregister(reg_pdev); 4198 return err; 4199 } 4200 /* 4201 * N.B. kobject_uevent_env() can fail mainly for when we're out 4202 * memory which is handled and propagated appropriately above 4203 * but it can also fail during a netlink_broadcast() or during 4204 * early boot for call_usermodehelper(). For now treat these 4205 * errors as non-fatal. 4206 */ 4207 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4208 } 4209 4210 /* 4211 * Finally, if the user set the module parameter treat it 4212 * as a user hint. 4213 */ 4214 if (!is_world_regdom(ieee80211_regdom)) 4215 regulatory_hint_user(ieee80211_regdom, 4216 NL80211_USER_REG_HINT_USER); 4217 4218 return 0; 4219} 4220#ifndef MODULE 4221late_initcall(regulatory_init_db); 4222#endif 4223 4224int __init regulatory_init(void) 4225{ 4226 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4227 if (IS_ERR(reg_pdev)) 4228 return PTR_ERR(reg_pdev); 4229 4230 spin_lock_init(®_requests_lock); 4231 spin_lock_init(®_pending_beacons_lock); 4232 spin_lock_init(®_indoor_lock); 4233 4234 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4235 4236 user_alpha2[0] = '9'; 4237 user_alpha2[1] = '7'; 4238 4239#ifdef MODULE 4240 return regulatory_init_db(); 4241#else 4242 return 0; 4243#endif 4244} 4245 4246void regulatory_exit(void) 4247{ 4248 struct regulatory_request *reg_request, *tmp; 4249 struct reg_beacon *reg_beacon, *btmp; 4250 4251 cancel_work_sync(®_work); 4252 cancel_crda_timeout_sync(); 4253 cancel_delayed_work_sync(®_check_chans); 4254 4255 /* Lock to suppress warnings */ 4256 rtnl_lock(); 4257 reset_regdomains(true, NULL); 4258 rtnl_unlock(); 4259 4260 dev_set_uevent_suppress(®_pdev->dev, true); 4261 4262 platform_device_unregister(reg_pdev); 4263 4264 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4265 list_del(®_beacon->list); 4266 kfree(reg_beacon); 4267 } 4268 4269 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4270 list_del(®_beacon->list); 4271 kfree(reg_beacon); 4272 } 4273 4274 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4275 list_del(®_request->list); 4276 kfree(reg_request); 4277 } 4278 4279 if (!IS_ERR_OR_NULL(regdb)) 4280 kfree(regdb); 4281 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4282 kfree(cfg80211_user_regdom); 4283 4284 free_regdb_keyring(); 4285} 4286