1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8/* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state.  When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket.  These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection.  If it does, we process the packet for the
38 * pending socket.  When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue.  If the socket cannot be accepted
42 * for some reason then it is marked rejected.  Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request.  Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established.  This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 *     lock_sock(listener);
59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed.  Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference.  When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 *   TCP_CLOSE - unconnected
82 *   TCP_SYN_SENT - connecting
83 *   TCP_ESTABLISHED - connected
84 *   TCP_CLOSING - disconnecting
85 *   TCP_LISTEN - listening
86 */
87
88#include <linux/types.h>
89#include <linux/bitops.h>
90#include <linux/cred.h>
91#include <linux/init.h>
92#include <linux/io.h>
93#include <linux/kernel.h>
94#include <linux/sched/signal.h>
95#include <linux/kmod.h>
96#include <linux/list.h>
97#include <linux/miscdevice.h>
98#include <linux/module.h>
99#include <linux/mutex.h>
100#include <linux/net.h>
101#include <linux/poll.h>
102#include <linux/random.h>
103#include <linux/skbuff.h>
104#include <linux/smp.h>
105#include <linux/socket.h>
106#include <linux/stddef.h>
107#include <linux/unistd.h>
108#include <linux/wait.h>
109#include <linux/workqueue.h>
110#include <net/sock.h>
111#include <net/af_vsock.h>
112
113static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114static void vsock_sk_destruct(struct sock *sk);
115static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117/* Protocol family. */
118static struct proto vsock_proto = {
119	.name = "AF_VSOCK",
120	.owner = THIS_MODULE,
121	.obj_size = sizeof(struct vsock_sock),
122};
123
124/* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
126 */
127#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133/* Transport used for host->guest communication */
134static const struct vsock_transport *transport_h2g;
135/* Transport used for guest->host communication */
136static const struct vsock_transport *transport_g2h;
137/* Transport used for DGRAM communication */
138static const struct vsock_transport *transport_dgram;
139/* Transport used for local communication */
140static const struct vsock_transport *transport_local;
141static DEFINE_MUTEX(vsock_register_mutex);
142
143/**** UTILS ****/
144
145/* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
147 *
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
152 *
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
158 */
159#define MAX_PORT_RETRIES        24
160
161#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165/* XXX This can probably be implemented in a better way. */
166#define VSOCK_CONN_HASH(src, dst)				\
167	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168#define vsock_connected_sockets(src, dst)		\
169	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170#define vsock_connected_sockets_vsk(vsk)				\
171	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174EXPORT_SYMBOL_GPL(vsock_bind_table);
175struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176EXPORT_SYMBOL_GPL(vsock_connected_table);
177DEFINE_SPINLOCK(vsock_table_lock);
178EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180/* Autobind this socket to the local address if necessary. */
181static int vsock_auto_bind(struct vsock_sock *vsk)
182{
183	struct sock *sk = sk_vsock(vsk);
184	struct sockaddr_vm local_addr;
185
186	if (vsock_addr_bound(&vsk->local_addr))
187		return 0;
188	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189	return __vsock_bind(sk, &local_addr);
190}
191
192static void vsock_init_tables(void)
193{
194	int i;
195
196	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197		INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200		INIT_LIST_HEAD(&vsock_connected_table[i]);
201}
202
203static void __vsock_insert_bound(struct list_head *list,
204				 struct vsock_sock *vsk)
205{
206	sock_hold(&vsk->sk);
207	list_add(&vsk->bound_table, list);
208}
209
210static void __vsock_insert_connected(struct list_head *list,
211				     struct vsock_sock *vsk)
212{
213	sock_hold(&vsk->sk);
214	list_add(&vsk->connected_table, list);
215}
216
217static void __vsock_remove_bound(struct vsock_sock *vsk)
218{
219	list_del_init(&vsk->bound_table);
220	sock_put(&vsk->sk);
221}
222
223static void __vsock_remove_connected(struct vsock_sock *vsk)
224{
225	list_del_init(&vsk->connected_table);
226	sock_put(&vsk->sk);
227}
228
229static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230{
231	struct vsock_sock *vsk;
232
233	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235			return sk_vsock(vsk);
236
237		if (addr->svm_port == vsk->local_addr.svm_port &&
238		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239		     addr->svm_cid == VMADDR_CID_ANY))
240			return sk_vsock(vsk);
241	}
242
243	return NULL;
244}
245
246static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247						  struct sockaddr_vm *dst)
248{
249	struct vsock_sock *vsk;
250
251	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252			    connected_table) {
253		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254		    dst->svm_port == vsk->local_addr.svm_port) {
255			return sk_vsock(vsk);
256		}
257	}
258
259	return NULL;
260}
261
262static void vsock_insert_unbound(struct vsock_sock *vsk)
263{
264	spin_lock_bh(&vsock_table_lock);
265	__vsock_insert_bound(vsock_unbound_sockets, vsk);
266	spin_unlock_bh(&vsock_table_lock);
267}
268
269void vsock_insert_connected(struct vsock_sock *vsk)
270{
271	struct list_head *list = vsock_connected_sockets(
272		&vsk->remote_addr, &vsk->local_addr);
273
274	spin_lock_bh(&vsock_table_lock);
275	__vsock_insert_connected(list, vsk);
276	spin_unlock_bh(&vsock_table_lock);
277}
278EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
280void vsock_remove_bound(struct vsock_sock *vsk)
281{
282	spin_lock_bh(&vsock_table_lock);
283	if (__vsock_in_bound_table(vsk))
284		__vsock_remove_bound(vsk);
285	spin_unlock_bh(&vsock_table_lock);
286}
287EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
289void vsock_remove_connected(struct vsock_sock *vsk)
290{
291	spin_lock_bh(&vsock_table_lock);
292	if (__vsock_in_connected_table(vsk))
293		__vsock_remove_connected(vsk);
294	spin_unlock_bh(&vsock_table_lock);
295}
296EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
298struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299{
300	struct sock *sk;
301
302	spin_lock_bh(&vsock_table_lock);
303	sk = __vsock_find_bound_socket(addr);
304	if (sk)
305		sock_hold(sk);
306
307	spin_unlock_bh(&vsock_table_lock);
308
309	return sk;
310}
311EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
313struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314					 struct sockaddr_vm *dst)
315{
316	struct sock *sk;
317
318	spin_lock_bh(&vsock_table_lock);
319	sk = __vsock_find_connected_socket(src, dst);
320	if (sk)
321		sock_hold(sk);
322
323	spin_unlock_bh(&vsock_table_lock);
324
325	return sk;
326}
327EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
329void vsock_remove_sock(struct vsock_sock *vsk)
330{
331	vsock_remove_bound(vsk);
332	vsock_remove_connected(vsk);
333}
334EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
336void vsock_for_each_connected_socket(struct vsock_transport *transport,
337				     void (*fn)(struct sock *sk))
338{
339	int i;
340
341	spin_lock_bh(&vsock_table_lock);
342
343	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
344		struct vsock_sock *vsk;
345		list_for_each_entry(vsk, &vsock_connected_table[i],
346				    connected_table) {
347			if (vsk->transport != transport)
348				continue;
349
350			fn(sk_vsock(vsk));
351		}
352	}
353
354	spin_unlock_bh(&vsock_table_lock);
355}
356EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
357
358void vsock_add_pending(struct sock *listener, struct sock *pending)
359{
360	struct vsock_sock *vlistener;
361	struct vsock_sock *vpending;
362
363	vlistener = vsock_sk(listener);
364	vpending = vsock_sk(pending);
365
366	sock_hold(pending);
367	sock_hold(listener);
368	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
369}
370EXPORT_SYMBOL_GPL(vsock_add_pending);
371
372void vsock_remove_pending(struct sock *listener, struct sock *pending)
373{
374	struct vsock_sock *vpending = vsock_sk(pending);
375
376	list_del_init(&vpending->pending_links);
377	sock_put(listener);
378	sock_put(pending);
379}
380EXPORT_SYMBOL_GPL(vsock_remove_pending);
381
382void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
383{
384	struct vsock_sock *vlistener;
385	struct vsock_sock *vconnected;
386
387	vlistener = vsock_sk(listener);
388	vconnected = vsock_sk(connected);
389
390	sock_hold(connected);
391	sock_hold(listener);
392	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
393}
394EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
395
396static bool vsock_use_local_transport(unsigned int remote_cid)
397{
398	if (!transport_local)
399		return false;
400
401	if (remote_cid == VMADDR_CID_LOCAL)
402		return true;
403
404	if (transport_g2h) {
405		return remote_cid == transport_g2h->get_local_cid();
406	} else {
407		return remote_cid == VMADDR_CID_HOST;
408	}
409}
410
411static void vsock_deassign_transport(struct vsock_sock *vsk)
412{
413	if (!vsk->transport)
414		return;
415
416	vsk->transport->destruct(vsk);
417	module_put(vsk->transport->module);
418	vsk->transport = NULL;
419}
420
421/* Assign a transport to a socket and call the .init transport callback.
422 *
423 * Note: for stream socket this must be called when vsk->remote_addr is set
424 * (e.g. during the connect() or when a connection request on a listener
425 * socket is received).
426 * The vsk->remote_addr is used to decide which transport to use:
427 *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
428 *    g2h is not loaded, will use local transport;
429 *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
430 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
431 */
432int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
433{
434	const struct vsock_transport *new_transport;
435	struct sock *sk = sk_vsock(vsk);
436	unsigned int remote_cid = vsk->remote_addr.svm_cid;
437	int ret;
438
439	switch (sk->sk_type) {
440	case SOCK_DGRAM:
441		new_transport = transport_dgram;
442		break;
443	case SOCK_STREAM:
444		if (vsock_use_local_transport(remote_cid))
445			new_transport = transport_local;
446		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
447			new_transport = transport_g2h;
448		else
449			new_transport = transport_h2g;
450		break;
451	default:
452		return -ESOCKTNOSUPPORT;
453	}
454
455	if (vsk->transport) {
456		if (vsk->transport == new_transport)
457			return 0;
458
459		/* transport->release() must be called with sock lock acquired.
460		 * This path can only be taken during vsock_stream_connect(),
461		 * where we have already held the sock lock.
462		 * In the other cases, this function is called on a new socket
463		 * which is not assigned to any transport.
464		 */
465		vsk->transport->release(vsk);
466		vsock_deassign_transport(vsk);
467	}
468
469	/* We increase the module refcnt to prevent the transport unloading
470	 * while there are open sockets assigned to it.
471	 */
472	if (!new_transport || !try_module_get(new_transport->module))
473		return -ENODEV;
474
475	ret = new_transport->init(vsk, psk);
476	if (ret) {
477		module_put(new_transport->module);
478		return ret;
479	}
480
481	vsk->transport = new_transport;
482
483	return 0;
484}
485EXPORT_SYMBOL_GPL(vsock_assign_transport);
486
487bool vsock_find_cid(unsigned int cid)
488{
489	if (transport_g2h && cid == transport_g2h->get_local_cid())
490		return true;
491
492	if (transport_h2g && cid == VMADDR_CID_HOST)
493		return true;
494
495	if (transport_local && cid == VMADDR_CID_LOCAL)
496		return true;
497
498	return false;
499}
500EXPORT_SYMBOL_GPL(vsock_find_cid);
501
502static struct sock *vsock_dequeue_accept(struct sock *listener)
503{
504	struct vsock_sock *vlistener;
505	struct vsock_sock *vconnected;
506
507	vlistener = vsock_sk(listener);
508
509	if (list_empty(&vlistener->accept_queue))
510		return NULL;
511
512	vconnected = list_entry(vlistener->accept_queue.next,
513				struct vsock_sock, accept_queue);
514
515	list_del_init(&vconnected->accept_queue);
516	sock_put(listener);
517	/* The caller will need a reference on the connected socket so we let
518	 * it call sock_put().
519	 */
520
521	return sk_vsock(vconnected);
522}
523
524static bool vsock_is_accept_queue_empty(struct sock *sk)
525{
526	struct vsock_sock *vsk = vsock_sk(sk);
527	return list_empty(&vsk->accept_queue);
528}
529
530static bool vsock_is_pending(struct sock *sk)
531{
532	struct vsock_sock *vsk = vsock_sk(sk);
533	return !list_empty(&vsk->pending_links);
534}
535
536static int vsock_send_shutdown(struct sock *sk, int mode)
537{
538	struct vsock_sock *vsk = vsock_sk(sk);
539
540	if (!vsk->transport)
541		return -ENODEV;
542
543	return vsk->transport->shutdown(vsk, mode);
544}
545
546static void vsock_pending_work(struct work_struct *work)
547{
548	struct sock *sk;
549	struct sock *listener;
550	struct vsock_sock *vsk;
551	bool cleanup;
552
553	vsk = container_of(work, struct vsock_sock, pending_work.work);
554	sk = sk_vsock(vsk);
555	listener = vsk->listener;
556	cleanup = true;
557
558	lock_sock(listener);
559	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
560
561	if (vsock_is_pending(sk)) {
562		vsock_remove_pending(listener, sk);
563
564		sk_acceptq_removed(listener);
565	} else if (!vsk->rejected) {
566		/* We are not on the pending list and accept() did not reject
567		 * us, so we must have been accepted by our user process.  We
568		 * just need to drop our references to the sockets and be on
569		 * our way.
570		 */
571		cleanup = false;
572		goto out;
573	}
574
575	/* We need to remove ourself from the global connected sockets list so
576	 * incoming packets can't find this socket, and to reduce the reference
577	 * count.
578	 */
579	vsock_remove_connected(vsk);
580
581	sk->sk_state = TCP_CLOSE;
582
583out:
584	release_sock(sk);
585	release_sock(listener);
586	if (cleanup)
587		sock_put(sk);
588
589	sock_put(sk);
590	sock_put(listener);
591}
592
593/**** SOCKET OPERATIONS ****/
594
595static int __vsock_bind_stream(struct vsock_sock *vsk,
596			       struct sockaddr_vm *addr)
597{
598	static u32 port;
599	struct sockaddr_vm new_addr;
600
601	if (!port)
602		port = LAST_RESERVED_PORT + 1 +
603			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
604
605	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
606
607	if (addr->svm_port == VMADDR_PORT_ANY) {
608		bool found = false;
609		unsigned int i;
610
611		for (i = 0; i < MAX_PORT_RETRIES; i++) {
612			if (port <= LAST_RESERVED_PORT)
613				port = LAST_RESERVED_PORT + 1;
614
615			new_addr.svm_port = port++;
616
617			if (!__vsock_find_bound_socket(&new_addr)) {
618				found = true;
619				break;
620			}
621		}
622
623		if (!found)
624			return -EADDRNOTAVAIL;
625	} else {
626		/* If port is in reserved range, ensure caller
627		 * has necessary privileges.
628		 */
629		if (addr->svm_port <= LAST_RESERVED_PORT &&
630		    !capable(CAP_NET_BIND_SERVICE)) {
631			return -EACCES;
632		}
633
634		if (__vsock_find_bound_socket(&new_addr))
635			return -EADDRINUSE;
636	}
637
638	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
639
640	/* Remove stream sockets from the unbound list and add them to the hash
641	 * table for easy lookup by its address.  The unbound list is simply an
642	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
643	 */
644	__vsock_remove_bound(vsk);
645	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
646
647	return 0;
648}
649
650static int __vsock_bind_dgram(struct vsock_sock *vsk,
651			      struct sockaddr_vm *addr)
652{
653	return vsk->transport->dgram_bind(vsk, addr);
654}
655
656static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
657{
658	struct vsock_sock *vsk = vsock_sk(sk);
659	int retval;
660
661	/* First ensure this socket isn't already bound. */
662	if (vsock_addr_bound(&vsk->local_addr))
663		return -EINVAL;
664
665	/* Now bind to the provided address or select appropriate values if
666	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
667	 * like AF_INET prevents binding to a non-local IP address (in most
668	 * cases), we only allow binding to a local CID.
669	 */
670	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
671		return -EADDRNOTAVAIL;
672
673	switch (sk->sk_socket->type) {
674	case SOCK_STREAM:
675		spin_lock_bh(&vsock_table_lock);
676		retval = __vsock_bind_stream(vsk, addr);
677		spin_unlock_bh(&vsock_table_lock);
678		break;
679
680	case SOCK_DGRAM:
681		retval = __vsock_bind_dgram(vsk, addr);
682		break;
683
684	default:
685		retval = -EINVAL;
686		break;
687	}
688
689	return retval;
690}
691
692static void vsock_connect_timeout(struct work_struct *work);
693
694static struct sock *__vsock_create(struct net *net,
695				   struct socket *sock,
696				   struct sock *parent,
697				   gfp_t priority,
698				   unsigned short type,
699				   int kern)
700{
701	struct sock *sk;
702	struct vsock_sock *psk;
703	struct vsock_sock *vsk;
704
705	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
706	if (!sk)
707		return NULL;
708
709	sock_init_data(sock, sk);
710
711	/* sk->sk_type is normally set in sock_init_data, but only if sock is
712	 * non-NULL. We make sure that our sockets always have a type by
713	 * setting it here if needed.
714	 */
715	if (!sock)
716		sk->sk_type = type;
717
718	vsk = vsock_sk(sk);
719	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
720	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
721
722	sk->sk_destruct = vsock_sk_destruct;
723	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
724	sock_reset_flag(sk, SOCK_DONE);
725
726	INIT_LIST_HEAD(&vsk->bound_table);
727	INIT_LIST_HEAD(&vsk->connected_table);
728	vsk->listener = NULL;
729	INIT_LIST_HEAD(&vsk->pending_links);
730	INIT_LIST_HEAD(&vsk->accept_queue);
731	vsk->rejected = false;
732	vsk->sent_request = false;
733	vsk->ignore_connecting_rst = false;
734	vsk->peer_shutdown = 0;
735	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
736	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
737
738	psk = parent ? vsock_sk(parent) : NULL;
739	if (parent) {
740		vsk->trusted = psk->trusted;
741		vsk->owner = get_cred(psk->owner);
742		vsk->connect_timeout = psk->connect_timeout;
743		vsk->buffer_size = psk->buffer_size;
744		vsk->buffer_min_size = psk->buffer_min_size;
745		vsk->buffer_max_size = psk->buffer_max_size;
746		security_sk_clone(parent, sk);
747	} else {
748		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
749		vsk->owner = get_current_cred();
750		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
751		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
752		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
753		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
754	}
755
756	return sk;
757}
758
759static void __vsock_release(struct sock *sk, int level)
760{
761	if (sk) {
762		struct sock *pending;
763		struct vsock_sock *vsk;
764
765		vsk = vsock_sk(sk);
766		pending = NULL;	/* Compiler warning. */
767
768		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
769		 * version to avoid the warning "possible recursive locking
770		 * detected". When "level" is 0, lock_sock_nested(sk, level)
771		 * is the same as lock_sock(sk).
772		 */
773		lock_sock_nested(sk, level);
774
775		if (vsk->transport)
776			vsk->transport->release(vsk);
777		else if (sk->sk_type == SOCK_STREAM)
778			vsock_remove_sock(vsk);
779
780		sock_orphan(sk);
781		sk->sk_shutdown = SHUTDOWN_MASK;
782
783		skb_queue_purge(&sk->sk_receive_queue);
784
785		/* Clean up any sockets that never were accepted. */
786		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
787			__vsock_release(pending, SINGLE_DEPTH_NESTING);
788			sock_put(pending);
789		}
790
791		release_sock(sk);
792		sock_put(sk);
793	}
794}
795
796static void vsock_sk_destruct(struct sock *sk)
797{
798	struct vsock_sock *vsk = vsock_sk(sk);
799
800	vsock_deassign_transport(vsk);
801
802	/* When clearing these addresses, there's no need to set the family and
803	 * possibly register the address family with the kernel.
804	 */
805	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
806	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
807
808	put_cred(vsk->owner);
809}
810
811static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
812{
813	int err;
814
815	err = sock_queue_rcv_skb(sk, skb);
816	if (err)
817		kfree_skb(skb);
818
819	return err;
820}
821
822struct sock *vsock_create_connected(struct sock *parent)
823{
824	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
825			      parent->sk_type, 0);
826}
827EXPORT_SYMBOL_GPL(vsock_create_connected);
828
829s64 vsock_stream_has_data(struct vsock_sock *vsk)
830{
831	return vsk->transport->stream_has_data(vsk);
832}
833EXPORT_SYMBOL_GPL(vsock_stream_has_data);
834
835s64 vsock_stream_has_space(struct vsock_sock *vsk)
836{
837	return vsk->transport->stream_has_space(vsk);
838}
839EXPORT_SYMBOL_GPL(vsock_stream_has_space);
840
841static int vsock_release(struct socket *sock)
842{
843	__vsock_release(sock->sk, 0);
844	sock->sk = NULL;
845	sock->state = SS_FREE;
846
847	return 0;
848}
849
850static int
851vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
852{
853	int err;
854	struct sock *sk;
855	struct sockaddr_vm *vm_addr;
856
857	sk = sock->sk;
858
859	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
860		return -EINVAL;
861
862	lock_sock(sk);
863	err = __vsock_bind(sk, vm_addr);
864	release_sock(sk);
865
866	return err;
867}
868
869static int vsock_getname(struct socket *sock,
870			 struct sockaddr *addr, int peer)
871{
872	int err;
873	struct sock *sk;
874	struct vsock_sock *vsk;
875	struct sockaddr_vm *vm_addr;
876
877	sk = sock->sk;
878	vsk = vsock_sk(sk);
879	err = 0;
880
881	lock_sock(sk);
882
883	if (peer) {
884		if (sock->state != SS_CONNECTED) {
885			err = -ENOTCONN;
886			goto out;
887		}
888		vm_addr = &vsk->remote_addr;
889	} else {
890		vm_addr = &vsk->local_addr;
891	}
892
893	if (!vm_addr) {
894		err = -EINVAL;
895		goto out;
896	}
897
898	/* sys_getsockname() and sys_getpeername() pass us a
899	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
900	 * that macro is defined in socket.c instead of .h, so we hardcode its
901	 * value here.
902	 */
903	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
904	memcpy(addr, vm_addr, sizeof(*vm_addr));
905	err = sizeof(*vm_addr);
906
907out:
908	release_sock(sk);
909	return err;
910}
911
912static int vsock_shutdown(struct socket *sock, int mode)
913{
914	int err;
915	struct sock *sk;
916
917	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
918	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
919	 * here like the other address families do.  Note also that the
920	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
921	 * which is what we want.
922	 */
923	mode++;
924
925	if ((mode & ~SHUTDOWN_MASK) || !mode)
926		return -EINVAL;
927
928	/* If this is a STREAM socket and it is not connected then bail out
929	 * immediately.  If it is a DGRAM socket then we must first kick the
930	 * socket so that it wakes up from any sleeping calls, for example
931	 * recv(), and then afterwards return the error.
932	 */
933
934	sk = sock->sk;
935
936	lock_sock(sk);
937	if (sock->state == SS_UNCONNECTED) {
938		err = -ENOTCONN;
939		if (sk->sk_type == SOCK_STREAM)
940			goto out;
941	} else {
942		sock->state = SS_DISCONNECTING;
943		err = 0;
944	}
945
946	/* Receive and send shutdowns are treated alike. */
947	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
948	if (mode) {
949		sk->sk_shutdown |= mode;
950		sk->sk_state_change(sk);
951
952		if (sk->sk_type == SOCK_STREAM) {
953			sock_reset_flag(sk, SOCK_DONE);
954			vsock_send_shutdown(sk, mode);
955		}
956	}
957
958out:
959	release_sock(sk);
960	return err;
961}
962
963static __poll_t vsock_poll(struct file *file, struct socket *sock,
964			       poll_table *wait)
965{
966	struct sock *sk;
967	__poll_t mask;
968	struct vsock_sock *vsk;
969
970	sk = sock->sk;
971	vsk = vsock_sk(sk);
972
973	poll_wait(file, sk_sleep(sk), wait);
974	mask = 0;
975
976	if (sk->sk_err)
977		/* Signify that there has been an error on this socket. */
978		mask |= EPOLLERR;
979
980	/* INET sockets treat local write shutdown and peer write shutdown as a
981	 * case of EPOLLHUP set.
982	 */
983	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
984	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
985	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
986		mask |= EPOLLHUP;
987	}
988
989	if (sk->sk_shutdown & RCV_SHUTDOWN ||
990	    vsk->peer_shutdown & SEND_SHUTDOWN) {
991		mask |= EPOLLRDHUP;
992	}
993
994	if (sock->type == SOCK_DGRAM) {
995		/* For datagram sockets we can read if there is something in
996		 * the queue and write as long as the socket isn't shutdown for
997		 * sending.
998		 */
999		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1000		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1001			mask |= EPOLLIN | EPOLLRDNORM;
1002		}
1003
1004		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1005			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1006
1007	} else if (sock->type == SOCK_STREAM) {
1008		const struct vsock_transport *transport;
1009
1010		lock_sock(sk);
1011
1012		transport = vsk->transport;
1013
1014		/* Listening sockets that have connections in their accept
1015		 * queue can be read.
1016		 */
1017		if (sk->sk_state == TCP_LISTEN
1018		    && !vsock_is_accept_queue_empty(sk))
1019			mask |= EPOLLIN | EPOLLRDNORM;
1020
1021		/* If there is something in the queue then we can read. */
1022		if (transport && transport->stream_is_active(vsk) &&
1023		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1024			bool data_ready_now = false;
1025			int ret = transport->notify_poll_in(
1026					vsk, 1, &data_ready_now);
1027			if (ret < 0) {
1028				mask |= EPOLLERR;
1029			} else {
1030				if (data_ready_now)
1031					mask |= EPOLLIN | EPOLLRDNORM;
1032
1033			}
1034		}
1035
1036		/* Sockets whose connections have been closed, reset, or
1037		 * terminated should also be considered read, and we check the
1038		 * shutdown flag for that.
1039		 */
1040		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1041		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1042			mask |= EPOLLIN | EPOLLRDNORM;
1043		}
1044
1045		/* Connected sockets that can produce data can be written. */
1046		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1047			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1048				bool space_avail_now = false;
1049				int ret = transport->notify_poll_out(
1050						vsk, 1, &space_avail_now);
1051				if (ret < 0) {
1052					mask |= EPOLLERR;
1053				} else {
1054					if (space_avail_now)
1055						/* Remove EPOLLWRBAND since INET
1056						 * sockets are not setting it.
1057						 */
1058						mask |= EPOLLOUT | EPOLLWRNORM;
1059
1060				}
1061			}
1062		}
1063
1064		/* Simulate INET socket poll behaviors, which sets
1065		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1066		 * but local send is not shutdown.
1067		 */
1068		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1069			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1070				mask |= EPOLLOUT | EPOLLWRNORM;
1071
1072		}
1073
1074		release_sock(sk);
1075	}
1076
1077	return mask;
1078}
1079
1080static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1081			       size_t len)
1082{
1083	int err;
1084	struct sock *sk;
1085	struct vsock_sock *vsk;
1086	struct sockaddr_vm *remote_addr;
1087	const struct vsock_transport *transport;
1088
1089	if (msg->msg_flags & MSG_OOB)
1090		return -EOPNOTSUPP;
1091
1092	/* For now, MSG_DONTWAIT is always assumed... */
1093	err = 0;
1094	sk = sock->sk;
1095	vsk = vsock_sk(sk);
1096
1097	lock_sock(sk);
1098
1099	transport = vsk->transport;
1100
1101	err = vsock_auto_bind(vsk);
1102	if (err)
1103		goto out;
1104
1105
1106	/* If the provided message contains an address, use that.  Otherwise
1107	 * fall back on the socket's remote handle (if it has been connected).
1108	 */
1109	if (msg->msg_name &&
1110	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1111			    &remote_addr) == 0) {
1112		/* Ensure this address is of the right type and is a valid
1113		 * destination.
1114		 */
1115
1116		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1117			remote_addr->svm_cid = transport->get_local_cid();
1118
1119		if (!vsock_addr_bound(remote_addr)) {
1120			err = -EINVAL;
1121			goto out;
1122		}
1123	} else if (sock->state == SS_CONNECTED) {
1124		remote_addr = &vsk->remote_addr;
1125
1126		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1127			remote_addr->svm_cid = transport->get_local_cid();
1128
1129		/* XXX Should connect() or this function ensure remote_addr is
1130		 * bound?
1131		 */
1132		if (!vsock_addr_bound(&vsk->remote_addr)) {
1133			err = -EINVAL;
1134			goto out;
1135		}
1136	} else {
1137		err = -EINVAL;
1138		goto out;
1139	}
1140
1141	if (!transport->dgram_allow(remote_addr->svm_cid,
1142				    remote_addr->svm_port)) {
1143		err = -EINVAL;
1144		goto out;
1145	}
1146
1147	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1148
1149out:
1150	release_sock(sk);
1151	return err;
1152}
1153
1154static int vsock_dgram_connect(struct socket *sock,
1155			       struct sockaddr *addr, int addr_len, int flags)
1156{
1157	int err;
1158	struct sock *sk;
1159	struct vsock_sock *vsk;
1160	struct sockaddr_vm *remote_addr;
1161
1162	sk = sock->sk;
1163	vsk = vsock_sk(sk);
1164
1165	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1166	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1167		lock_sock(sk);
1168		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1169				VMADDR_PORT_ANY);
1170		sock->state = SS_UNCONNECTED;
1171		release_sock(sk);
1172		return 0;
1173	} else if (err != 0)
1174		return -EINVAL;
1175
1176	lock_sock(sk);
1177
1178	err = vsock_auto_bind(vsk);
1179	if (err)
1180		goto out;
1181
1182	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1183					 remote_addr->svm_port)) {
1184		err = -EINVAL;
1185		goto out;
1186	}
1187
1188	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1189	sock->state = SS_CONNECTED;
1190
1191out:
1192	release_sock(sk);
1193	return err;
1194}
1195
1196static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1197			       size_t len, int flags)
1198{
1199	struct vsock_sock *vsk = vsock_sk(sock->sk);
1200
1201	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1202}
1203
1204static const struct proto_ops vsock_dgram_ops = {
1205	.family = PF_VSOCK,
1206	.owner = THIS_MODULE,
1207	.release = vsock_release,
1208	.bind = vsock_bind,
1209	.connect = vsock_dgram_connect,
1210	.socketpair = sock_no_socketpair,
1211	.accept = sock_no_accept,
1212	.getname = vsock_getname,
1213	.poll = vsock_poll,
1214	.ioctl = sock_no_ioctl,
1215	.listen = sock_no_listen,
1216	.shutdown = vsock_shutdown,
1217	.sendmsg = vsock_dgram_sendmsg,
1218	.recvmsg = vsock_dgram_recvmsg,
1219	.mmap = sock_no_mmap,
1220	.sendpage = sock_no_sendpage,
1221};
1222
1223static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1224{
1225	const struct vsock_transport *transport = vsk->transport;
1226
1227	if (!transport || !transport->cancel_pkt)
1228		return -EOPNOTSUPP;
1229
1230	return transport->cancel_pkt(vsk);
1231}
1232
1233static void vsock_connect_timeout(struct work_struct *work)
1234{
1235	struct sock *sk;
1236	struct vsock_sock *vsk;
1237
1238	vsk = container_of(work, struct vsock_sock, connect_work.work);
1239	sk = sk_vsock(vsk);
1240
1241	lock_sock(sk);
1242	if (sk->sk_state == TCP_SYN_SENT &&
1243	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1244		sk->sk_state = TCP_CLOSE;
1245		sk->sk_socket->state = SS_UNCONNECTED;
1246		sk->sk_err = ETIMEDOUT;
1247		sk->sk_error_report(sk);
1248		vsock_transport_cancel_pkt(vsk);
1249	}
1250	release_sock(sk);
1251
1252	sock_put(sk);
1253}
1254
1255static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1256				int addr_len, int flags)
1257{
1258	int err;
1259	struct sock *sk;
1260	struct vsock_sock *vsk;
1261	const struct vsock_transport *transport;
1262	struct sockaddr_vm *remote_addr;
1263	long timeout;
1264	DEFINE_WAIT(wait);
1265
1266	err = 0;
1267	sk = sock->sk;
1268	vsk = vsock_sk(sk);
1269
1270	lock_sock(sk);
1271
1272	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1273	switch (sock->state) {
1274	case SS_CONNECTED:
1275		err = -EISCONN;
1276		goto out;
1277	case SS_DISCONNECTING:
1278		err = -EINVAL;
1279		goto out;
1280	case SS_CONNECTING:
1281		/* This continues on so we can move sock into the SS_CONNECTED
1282		 * state once the connection has completed (at which point err
1283		 * will be set to zero also).  Otherwise, we will either wait
1284		 * for the connection or return -EALREADY should this be a
1285		 * non-blocking call.
1286		 */
1287		err = -EALREADY;
1288		if (flags & O_NONBLOCK)
1289			goto out;
1290		break;
1291	default:
1292		if ((sk->sk_state == TCP_LISTEN) ||
1293		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1294			err = -EINVAL;
1295			goto out;
1296		}
1297
1298		/* Set the remote address that we are connecting to. */
1299		memcpy(&vsk->remote_addr, remote_addr,
1300		       sizeof(vsk->remote_addr));
1301
1302		err = vsock_assign_transport(vsk, NULL);
1303		if (err)
1304			goto out;
1305
1306		transport = vsk->transport;
1307
1308		/* The hypervisor and well-known contexts do not have socket
1309		 * endpoints.
1310		 */
1311		if (!transport ||
1312		    !transport->stream_allow(remote_addr->svm_cid,
1313					     remote_addr->svm_port)) {
1314			err = -ENETUNREACH;
1315			goto out;
1316		}
1317
1318		err = vsock_auto_bind(vsk);
1319		if (err)
1320			goto out;
1321
1322		sk->sk_state = TCP_SYN_SENT;
1323
1324		err = transport->connect(vsk);
1325		if (err < 0)
1326			goto out;
1327
1328		/* Mark sock as connecting and set the error code to in
1329		 * progress in case this is a non-blocking connect.
1330		 */
1331		sock->state = SS_CONNECTING;
1332		err = -EINPROGRESS;
1333	}
1334
1335	/* The receive path will handle all communication until we are able to
1336	 * enter the connected state.  Here we wait for the connection to be
1337	 * completed or a notification of an error.
1338	 */
1339	timeout = vsk->connect_timeout;
1340	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1341
1342	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1343		if (flags & O_NONBLOCK) {
1344			/* If we're not going to block, we schedule a timeout
1345			 * function to generate a timeout on the connection
1346			 * attempt, in case the peer doesn't respond in a
1347			 * timely manner. We hold on to the socket until the
1348			 * timeout fires.
1349			 */
1350			sock_hold(sk);
1351
1352			/* If the timeout function is already scheduled,
1353			 * reschedule it, then ungrab the socket refcount to
1354			 * keep it balanced.
1355			 */
1356			if (mod_delayed_work(system_wq, &vsk->connect_work,
1357					     timeout))
1358				sock_put(sk);
1359
1360			/* Skip ahead to preserve error code set above. */
1361			goto out_wait;
1362		}
1363
1364		release_sock(sk);
1365		timeout = schedule_timeout(timeout);
1366		lock_sock(sk);
1367
1368		if (signal_pending(current)) {
1369			err = sock_intr_errno(timeout);
1370			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1371			sock->state = SS_UNCONNECTED;
1372			vsock_transport_cancel_pkt(vsk);
1373			vsock_remove_connected(vsk);
1374			goto out_wait;
1375		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1376			err = -ETIMEDOUT;
1377			sk->sk_state = TCP_CLOSE;
1378			sock->state = SS_UNCONNECTED;
1379			vsock_transport_cancel_pkt(vsk);
1380			goto out_wait;
1381		}
1382
1383		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1384	}
1385
1386	if (sk->sk_err) {
1387		err = -sk->sk_err;
1388		sk->sk_state = TCP_CLOSE;
1389		sock->state = SS_UNCONNECTED;
1390	} else {
1391		err = 0;
1392	}
1393
1394out_wait:
1395	finish_wait(sk_sleep(sk), &wait);
1396out:
1397	release_sock(sk);
1398	return err;
1399}
1400
1401static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1402			bool kern)
1403{
1404	struct sock *listener;
1405	int err;
1406	struct sock *connected;
1407	struct vsock_sock *vconnected;
1408	long timeout;
1409	DEFINE_WAIT(wait);
1410
1411	err = 0;
1412	listener = sock->sk;
1413
1414	lock_sock(listener);
1415
1416	if (sock->type != SOCK_STREAM) {
1417		err = -EOPNOTSUPP;
1418		goto out;
1419	}
1420
1421	if (listener->sk_state != TCP_LISTEN) {
1422		err = -EINVAL;
1423		goto out;
1424	}
1425
1426	/* Wait for children sockets to appear; these are the new sockets
1427	 * created upon connection establishment.
1428	 */
1429	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1430	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1431
1432	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1433	       listener->sk_err == 0) {
1434		release_sock(listener);
1435		timeout = schedule_timeout(timeout);
1436		finish_wait(sk_sleep(listener), &wait);
1437		lock_sock(listener);
1438
1439		if (signal_pending(current)) {
1440			err = sock_intr_errno(timeout);
1441			goto out;
1442		} else if (timeout == 0) {
1443			err = -EAGAIN;
1444			goto out;
1445		}
1446
1447		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1448	}
1449	finish_wait(sk_sleep(listener), &wait);
1450
1451	if (listener->sk_err)
1452		err = -listener->sk_err;
1453
1454	if (connected) {
1455		sk_acceptq_removed(listener);
1456
1457		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1458		vconnected = vsock_sk(connected);
1459
1460		/* If the listener socket has received an error, then we should
1461		 * reject this socket and return.  Note that we simply mark the
1462		 * socket rejected, drop our reference, and let the cleanup
1463		 * function handle the cleanup; the fact that we found it in
1464		 * the listener's accept queue guarantees that the cleanup
1465		 * function hasn't run yet.
1466		 */
1467		if (err) {
1468			vconnected->rejected = true;
1469		} else {
1470			newsock->state = SS_CONNECTED;
1471			sock_graft(connected, newsock);
1472		}
1473
1474		release_sock(connected);
1475		sock_put(connected);
1476	}
1477
1478out:
1479	release_sock(listener);
1480	return err;
1481}
1482
1483static int vsock_listen(struct socket *sock, int backlog)
1484{
1485	int err;
1486	struct sock *sk;
1487	struct vsock_sock *vsk;
1488
1489	sk = sock->sk;
1490
1491	lock_sock(sk);
1492
1493	if (sock->type != SOCK_STREAM) {
1494		err = -EOPNOTSUPP;
1495		goto out;
1496	}
1497
1498	if (sock->state != SS_UNCONNECTED) {
1499		err = -EINVAL;
1500		goto out;
1501	}
1502
1503	vsk = vsock_sk(sk);
1504
1505	if (!vsock_addr_bound(&vsk->local_addr)) {
1506		err = -EINVAL;
1507		goto out;
1508	}
1509
1510	sk->sk_max_ack_backlog = backlog;
1511	sk->sk_state = TCP_LISTEN;
1512
1513	err = 0;
1514
1515out:
1516	release_sock(sk);
1517	return err;
1518}
1519
1520static void vsock_update_buffer_size(struct vsock_sock *vsk,
1521				     const struct vsock_transport *transport,
1522				     u64 val)
1523{
1524	if (val > vsk->buffer_max_size)
1525		val = vsk->buffer_max_size;
1526
1527	if (val < vsk->buffer_min_size)
1528		val = vsk->buffer_min_size;
1529
1530	if (val != vsk->buffer_size &&
1531	    transport && transport->notify_buffer_size)
1532		transport->notify_buffer_size(vsk, &val);
1533
1534	vsk->buffer_size = val;
1535}
1536
1537static int vsock_stream_setsockopt(struct socket *sock,
1538				   int level,
1539				   int optname,
1540				   sockptr_t optval,
1541				   unsigned int optlen)
1542{
1543	int err;
1544	struct sock *sk;
1545	struct vsock_sock *vsk;
1546	const struct vsock_transport *transport;
1547	u64 val;
1548
1549	if (level != AF_VSOCK)
1550		return -ENOPROTOOPT;
1551
1552#define COPY_IN(_v)                                       \
1553	do {						  \
1554		if (optlen < sizeof(_v)) {		  \
1555			err = -EINVAL;			  \
1556			goto exit;			  \
1557		}					  \
1558		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1559			err = -EFAULT;					\
1560			goto exit;					\
1561		}							\
1562	} while (0)
1563
1564	err = 0;
1565	sk = sock->sk;
1566	vsk = vsock_sk(sk);
1567
1568	lock_sock(sk);
1569
1570	transport = vsk->transport;
1571
1572	switch (optname) {
1573	case SO_VM_SOCKETS_BUFFER_SIZE:
1574		COPY_IN(val);
1575		vsock_update_buffer_size(vsk, transport, val);
1576		break;
1577
1578	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1579		COPY_IN(val);
1580		vsk->buffer_max_size = val;
1581		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1582		break;
1583
1584	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1585		COPY_IN(val);
1586		vsk->buffer_min_size = val;
1587		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1588		break;
1589
1590	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1591		struct __kernel_old_timeval tv;
1592		COPY_IN(tv);
1593		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1594		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1595			vsk->connect_timeout = tv.tv_sec * HZ +
1596			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1597			if (vsk->connect_timeout == 0)
1598				vsk->connect_timeout =
1599				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1600
1601		} else {
1602			err = -ERANGE;
1603		}
1604		break;
1605	}
1606
1607	default:
1608		err = -ENOPROTOOPT;
1609		break;
1610	}
1611
1612#undef COPY_IN
1613
1614exit:
1615	release_sock(sk);
1616	return err;
1617}
1618
1619static int vsock_stream_getsockopt(struct socket *sock,
1620				   int level, int optname,
1621				   char __user *optval,
1622				   int __user *optlen)
1623{
1624	int err;
1625	int len;
1626	struct sock *sk;
1627	struct vsock_sock *vsk;
1628	u64 val;
1629
1630	if (level != AF_VSOCK)
1631		return -ENOPROTOOPT;
1632
1633	err = get_user(len, optlen);
1634	if (err != 0)
1635		return err;
1636
1637#define COPY_OUT(_v)                            \
1638	do {					\
1639		if (len < sizeof(_v))		\
1640			return -EINVAL;		\
1641						\
1642		len = sizeof(_v);		\
1643		if (copy_to_user(optval, &_v, len) != 0)	\
1644			return -EFAULT;				\
1645								\
1646	} while (0)
1647
1648	err = 0;
1649	sk = sock->sk;
1650	vsk = vsock_sk(sk);
1651
1652	switch (optname) {
1653	case SO_VM_SOCKETS_BUFFER_SIZE:
1654		val = vsk->buffer_size;
1655		COPY_OUT(val);
1656		break;
1657
1658	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1659		val = vsk->buffer_max_size;
1660		COPY_OUT(val);
1661		break;
1662
1663	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1664		val = vsk->buffer_min_size;
1665		COPY_OUT(val);
1666		break;
1667
1668	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1669		struct __kernel_old_timeval tv;
1670		tv.tv_sec = vsk->connect_timeout / HZ;
1671		tv.tv_usec =
1672		    (vsk->connect_timeout -
1673		     tv.tv_sec * HZ) * (1000000 / HZ);
1674		COPY_OUT(tv);
1675		break;
1676	}
1677	default:
1678		return -ENOPROTOOPT;
1679	}
1680
1681	err = put_user(len, optlen);
1682	if (err != 0)
1683		return -EFAULT;
1684
1685#undef COPY_OUT
1686
1687	return 0;
1688}
1689
1690static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1691				size_t len)
1692{
1693	struct sock *sk;
1694	struct vsock_sock *vsk;
1695	const struct vsock_transport *transport;
1696	ssize_t total_written;
1697	long timeout;
1698	int err;
1699	struct vsock_transport_send_notify_data send_data;
1700	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1701
1702	sk = sock->sk;
1703	vsk = vsock_sk(sk);
1704	total_written = 0;
1705	err = 0;
1706
1707	if (msg->msg_flags & MSG_OOB)
1708		return -EOPNOTSUPP;
1709
1710	lock_sock(sk);
1711
1712	transport = vsk->transport;
1713
1714	/* Callers should not provide a destination with stream sockets. */
1715	if (msg->msg_namelen) {
1716		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1717		goto out;
1718	}
1719
1720	/* Send data only if both sides are not shutdown in the direction. */
1721	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1722	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1723		err = -EPIPE;
1724		goto out;
1725	}
1726
1727	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1728	    !vsock_addr_bound(&vsk->local_addr)) {
1729		err = -ENOTCONN;
1730		goto out;
1731	}
1732
1733	if (!vsock_addr_bound(&vsk->remote_addr)) {
1734		err = -EDESTADDRREQ;
1735		goto out;
1736	}
1737
1738	/* Wait for room in the produce queue to enqueue our user's data. */
1739	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1740
1741	err = transport->notify_send_init(vsk, &send_data);
1742	if (err < 0)
1743		goto out;
1744
1745	while (total_written < len) {
1746		ssize_t written;
1747
1748		add_wait_queue(sk_sleep(sk), &wait);
1749		while (vsock_stream_has_space(vsk) == 0 &&
1750		       sk->sk_err == 0 &&
1751		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1752		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1753
1754			/* Don't wait for non-blocking sockets. */
1755			if (timeout == 0) {
1756				err = -EAGAIN;
1757				remove_wait_queue(sk_sleep(sk), &wait);
1758				goto out_err;
1759			}
1760
1761			err = transport->notify_send_pre_block(vsk, &send_data);
1762			if (err < 0) {
1763				remove_wait_queue(sk_sleep(sk), &wait);
1764				goto out_err;
1765			}
1766
1767			release_sock(sk);
1768			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1769			lock_sock(sk);
1770			if (signal_pending(current)) {
1771				err = sock_intr_errno(timeout);
1772				remove_wait_queue(sk_sleep(sk), &wait);
1773				goto out_err;
1774			} else if (timeout == 0) {
1775				err = -EAGAIN;
1776				remove_wait_queue(sk_sleep(sk), &wait);
1777				goto out_err;
1778			}
1779		}
1780		remove_wait_queue(sk_sleep(sk), &wait);
1781
1782		/* These checks occur both as part of and after the loop
1783		 * conditional since we need to check before and after
1784		 * sleeping.
1785		 */
1786		if (sk->sk_err) {
1787			err = -sk->sk_err;
1788			goto out_err;
1789		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1790			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1791			err = -EPIPE;
1792			goto out_err;
1793		}
1794
1795		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1796		if (err < 0)
1797			goto out_err;
1798
1799		/* Note that enqueue will only write as many bytes as are free
1800		 * in the produce queue, so we don't need to ensure len is
1801		 * smaller than the queue size.  It is the caller's
1802		 * responsibility to check how many bytes we were able to send.
1803		 */
1804
1805		written = transport->stream_enqueue(
1806				vsk, msg,
1807				len - total_written);
1808		if (written < 0) {
1809			err = -ENOMEM;
1810			goto out_err;
1811		}
1812
1813		total_written += written;
1814
1815		err = transport->notify_send_post_enqueue(
1816				vsk, written, &send_data);
1817		if (err < 0)
1818			goto out_err;
1819
1820	}
1821
1822out_err:
1823	if (total_written > 0)
1824		err = total_written;
1825out:
1826	release_sock(sk);
1827	return err;
1828}
1829
1830
1831static int
1832vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1833		     int flags)
1834{
1835	struct sock *sk;
1836	struct vsock_sock *vsk;
1837	const struct vsock_transport *transport;
1838	int err;
1839	size_t target;
1840	ssize_t copied;
1841	long timeout;
1842	struct vsock_transport_recv_notify_data recv_data;
1843
1844	DEFINE_WAIT(wait);
1845
1846	sk = sock->sk;
1847	vsk = vsock_sk(sk);
1848	err = 0;
1849
1850	lock_sock(sk);
1851
1852	transport = vsk->transport;
1853
1854	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1855		/* Recvmsg is supposed to return 0 if a peer performs an
1856		 * orderly shutdown. Differentiate between that case and when a
1857		 * peer has not connected or a local shutdown occured with the
1858		 * SOCK_DONE flag.
1859		 */
1860		if (sock_flag(sk, SOCK_DONE))
1861			err = 0;
1862		else
1863			err = -ENOTCONN;
1864
1865		goto out;
1866	}
1867
1868	if (flags & MSG_OOB) {
1869		err = -EOPNOTSUPP;
1870		goto out;
1871	}
1872
1873	/* We don't check peer_shutdown flag here since peer may actually shut
1874	 * down, but there can be data in the queue that a local socket can
1875	 * receive.
1876	 */
1877	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1878		err = 0;
1879		goto out;
1880	}
1881
1882	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1883	 * is not an error.  We may as well bail out now.
1884	 */
1885	if (!len) {
1886		err = 0;
1887		goto out;
1888	}
1889
1890	/* We must not copy less than target bytes into the user's buffer
1891	 * before returning successfully, so we wait for the consume queue to
1892	 * have that much data to consume before dequeueing.  Note that this
1893	 * makes it impossible to handle cases where target is greater than the
1894	 * queue size.
1895	 */
1896	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1897	if (target >= transport->stream_rcvhiwat(vsk)) {
1898		err = -ENOMEM;
1899		goto out;
1900	}
1901	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1902	copied = 0;
1903
1904	err = transport->notify_recv_init(vsk, target, &recv_data);
1905	if (err < 0)
1906		goto out;
1907
1908
1909	while (1) {
1910		s64 ready;
1911
1912		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1913		ready = vsock_stream_has_data(vsk);
1914
1915		if (ready == 0) {
1916			if (sk->sk_err != 0 ||
1917			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1918			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1919				finish_wait(sk_sleep(sk), &wait);
1920				break;
1921			}
1922			/* Don't wait for non-blocking sockets. */
1923			if (timeout == 0) {
1924				err = -EAGAIN;
1925				finish_wait(sk_sleep(sk), &wait);
1926				break;
1927			}
1928
1929			err = transport->notify_recv_pre_block(
1930					vsk, target, &recv_data);
1931			if (err < 0) {
1932				finish_wait(sk_sleep(sk), &wait);
1933				break;
1934			}
1935			release_sock(sk);
1936			timeout = schedule_timeout(timeout);
1937			lock_sock(sk);
1938
1939			if (signal_pending(current)) {
1940				err = sock_intr_errno(timeout);
1941				finish_wait(sk_sleep(sk), &wait);
1942				break;
1943			} else if (timeout == 0) {
1944				err = -EAGAIN;
1945				finish_wait(sk_sleep(sk), &wait);
1946				break;
1947			}
1948		} else {
1949			ssize_t read;
1950
1951			finish_wait(sk_sleep(sk), &wait);
1952
1953			if (ready < 0) {
1954				/* Invalid queue pair content. XXX This should
1955				* be changed to a connection reset in a later
1956				* change.
1957				*/
1958
1959				err = -ENOMEM;
1960				goto out;
1961			}
1962
1963			err = transport->notify_recv_pre_dequeue(
1964					vsk, target, &recv_data);
1965			if (err < 0)
1966				break;
1967
1968			read = transport->stream_dequeue(
1969					vsk, msg,
1970					len - copied, flags);
1971			if (read < 0) {
1972				err = -ENOMEM;
1973				break;
1974			}
1975
1976			copied += read;
1977
1978			err = transport->notify_recv_post_dequeue(
1979					vsk, target, read,
1980					!(flags & MSG_PEEK), &recv_data);
1981			if (err < 0)
1982				goto out;
1983
1984			if (read >= target || flags & MSG_PEEK)
1985				break;
1986
1987			target -= read;
1988		}
1989	}
1990
1991	if (sk->sk_err)
1992		err = -sk->sk_err;
1993	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1994		err = 0;
1995
1996	if (copied > 0)
1997		err = copied;
1998
1999out:
2000	release_sock(sk);
2001	return err;
2002}
2003
2004static const struct proto_ops vsock_stream_ops = {
2005	.family = PF_VSOCK,
2006	.owner = THIS_MODULE,
2007	.release = vsock_release,
2008	.bind = vsock_bind,
2009	.connect = vsock_stream_connect,
2010	.socketpair = sock_no_socketpair,
2011	.accept = vsock_accept,
2012	.getname = vsock_getname,
2013	.poll = vsock_poll,
2014	.ioctl = sock_no_ioctl,
2015	.listen = vsock_listen,
2016	.shutdown = vsock_shutdown,
2017	.setsockopt = vsock_stream_setsockopt,
2018	.getsockopt = vsock_stream_getsockopt,
2019	.sendmsg = vsock_stream_sendmsg,
2020	.recvmsg = vsock_stream_recvmsg,
2021	.mmap = sock_no_mmap,
2022	.sendpage = sock_no_sendpage,
2023};
2024
2025static int vsock_create(struct net *net, struct socket *sock,
2026			int protocol, int kern)
2027{
2028	struct vsock_sock *vsk;
2029	struct sock *sk;
2030	int ret;
2031
2032	if (!sock)
2033		return -EINVAL;
2034
2035	if (protocol && protocol != PF_VSOCK)
2036		return -EPROTONOSUPPORT;
2037
2038	switch (sock->type) {
2039	case SOCK_DGRAM:
2040		sock->ops = &vsock_dgram_ops;
2041		break;
2042	case SOCK_STREAM:
2043		sock->ops = &vsock_stream_ops;
2044		break;
2045	default:
2046		return -ESOCKTNOSUPPORT;
2047	}
2048
2049	sock->state = SS_UNCONNECTED;
2050
2051	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2052	if (!sk)
2053		return -ENOMEM;
2054
2055	vsk = vsock_sk(sk);
2056
2057	if (sock->type == SOCK_DGRAM) {
2058		ret = vsock_assign_transport(vsk, NULL);
2059		if (ret < 0) {
2060			sock_put(sk);
2061			return ret;
2062		}
2063	}
2064
2065	vsock_insert_unbound(vsk);
2066
2067	return 0;
2068}
2069
2070static const struct net_proto_family vsock_family_ops = {
2071	.family = AF_VSOCK,
2072	.create = vsock_create,
2073	.owner = THIS_MODULE,
2074};
2075
2076static long vsock_dev_do_ioctl(struct file *filp,
2077			       unsigned int cmd, void __user *ptr)
2078{
2079	u32 __user *p = ptr;
2080	u32 cid = VMADDR_CID_ANY;
2081	int retval = 0;
2082
2083	switch (cmd) {
2084	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2085		/* To be compatible with the VMCI behavior, we prioritize the
2086		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2087		 */
2088		if (transport_g2h)
2089			cid = transport_g2h->get_local_cid();
2090		else if (transport_h2g)
2091			cid = transport_h2g->get_local_cid();
2092
2093		if (put_user(cid, p) != 0)
2094			retval = -EFAULT;
2095		break;
2096
2097	default:
2098		pr_err("Unknown ioctl %d\n", cmd);
2099		retval = -EINVAL;
2100	}
2101
2102	return retval;
2103}
2104
2105static long vsock_dev_ioctl(struct file *filp,
2106			    unsigned int cmd, unsigned long arg)
2107{
2108	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2109}
2110
2111#ifdef CONFIG_COMPAT
2112static long vsock_dev_compat_ioctl(struct file *filp,
2113				   unsigned int cmd, unsigned long arg)
2114{
2115	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2116}
2117#endif
2118
2119static const struct file_operations vsock_device_ops = {
2120	.owner		= THIS_MODULE,
2121	.unlocked_ioctl	= vsock_dev_ioctl,
2122#ifdef CONFIG_COMPAT
2123	.compat_ioctl	= vsock_dev_compat_ioctl,
2124#endif
2125	.open		= nonseekable_open,
2126};
2127
2128static struct miscdevice vsock_device = {
2129	.name		= "vsock",
2130	.fops		= &vsock_device_ops,
2131};
2132
2133static int __init vsock_init(void)
2134{
2135	int err = 0;
2136
2137	vsock_init_tables();
2138
2139	vsock_proto.owner = THIS_MODULE;
2140	vsock_device.minor = MISC_DYNAMIC_MINOR;
2141	err = misc_register(&vsock_device);
2142	if (err) {
2143		pr_err("Failed to register misc device\n");
2144		goto err_reset_transport;
2145	}
2146
2147	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2148	if (err) {
2149		pr_err("Cannot register vsock protocol\n");
2150		goto err_deregister_misc;
2151	}
2152
2153	err = sock_register(&vsock_family_ops);
2154	if (err) {
2155		pr_err("could not register af_vsock (%d) address family: %d\n",
2156		       AF_VSOCK, err);
2157		goto err_unregister_proto;
2158	}
2159
2160	return 0;
2161
2162err_unregister_proto:
2163	proto_unregister(&vsock_proto);
2164err_deregister_misc:
2165	misc_deregister(&vsock_device);
2166err_reset_transport:
2167	return err;
2168}
2169
2170static void __exit vsock_exit(void)
2171{
2172	misc_deregister(&vsock_device);
2173	sock_unregister(AF_VSOCK);
2174	proto_unregister(&vsock_proto);
2175}
2176
2177const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2178{
2179	return vsk->transport;
2180}
2181EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2182
2183int vsock_core_register(const struct vsock_transport *t, int features)
2184{
2185	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2186	int err = mutex_lock_interruptible(&vsock_register_mutex);
2187
2188	if (err)
2189		return err;
2190
2191	t_h2g = transport_h2g;
2192	t_g2h = transport_g2h;
2193	t_dgram = transport_dgram;
2194	t_local = transport_local;
2195
2196	if (features & VSOCK_TRANSPORT_F_H2G) {
2197		if (t_h2g) {
2198			err = -EBUSY;
2199			goto err_busy;
2200		}
2201		t_h2g = t;
2202	}
2203
2204	if (features & VSOCK_TRANSPORT_F_G2H) {
2205		if (t_g2h) {
2206			err = -EBUSY;
2207			goto err_busy;
2208		}
2209		t_g2h = t;
2210	}
2211
2212	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2213		if (t_dgram) {
2214			err = -EBUSY;
2215			goto err_busy;
2216		}
2217		t_dgram = t;
2218	}
2219
2220	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2221		if (t_local) {
2222			err = -EBUSY;
2223			goto err_busy;
2224		}
2225		t_local = t;
2226	}
2227
2228	transport_h2g = t_h2g;
2229	transport_g2h = t_g2h;
2230	transport_dgram = t_dgram;
2231	transport_local = t_local;
2232
2233err_busy:
2234	mutex_unlock(&vsock_register_mutex);
2235	return err;
2236}
2237EXPORT_SYMBOL_GPL(vsock_core_register);
2238
2239void vsock_core_unregister(const struct vsock_transport *t)
2240{
2241	mutex_lock(&vsock_register_mutex);
2242
2243	if (transport_h2g == t)
2244		transport_h2g = NULL;
2245
2246	if (transport_g2h == t)
2247		transport_g2h = NULL;
2248
2249	if (transport_dgram == t)
2250		transport_dgram = NULL;
2251
2252	if (transport_local == t)
2253		transport_local = NULL;
2254
2255	mutex_unlock(&vsock_register_mutex);
2256}
2257EXPORT_SYMBOL_GPL(vsock_core_unregister);
2258
2259module_init(vsock_init);
2260module_exit(vsock_exit);
2261
2262MODULE_AUTHOR("VMware, Inc.");
2263MODULE_DESCRIPTION("VMware Virtual Socket Family");
2264MODULE_VERSION("1.0.2.0-k");
2265MODULE_LICENSE("GPL v2");
2266