1/* Copyright (c) 2018, Mellanox Technologies All rights reserved. 2 * 3 * This software is available to you under a choice of one of two 4 * licenses. You may choose to be licensed under the terms of the GNU 5 * General Public License (GPL) Version 2, available from the file 6 * COPYING in the main directory of this source tree, or the 7 * OpenIB.org BSD license below: 8 * 9 * Redistribution and use in source and binary forms, with or 10 * without modification, are permitted provided that the following 11 * conditions are met: 12 * 13 * - Redistributions of source code must retain the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer. 16 * 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 */ 31 32#include <crypto/aead.h> 33#include <linux/highmem.h> 34#include <linux/module.h> 35#include <linux/netdevice.h> 36#include <net/dst.h> 37#include <net/inet_connection_sock.h> 38#include <net/tcp.h> 39#include <net/tls.h> 40 41#include "trace.h" 42 43/* device_offload_lock is used to synchronize tls_dev_add 44 * against NETDEV_DOWN notifications. 45 */ 46static DECLARE_RWSEM(device_offload_lock); 47 48static void tls_device_gc_task(struct work_struct *work); 49 50static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); 51static LIST_HEAD(tls_device_gc_list); 52static LIST_HEAD(tls_device_list); 53static LIST_HEAD(tls_device_down_list); 54static DEFINE_SPINLOCK(tls_device_lock); 55 56static void tls_device_free_ctx(struct tls_context *ctx) 57{ 58 if (ctx->tx_conf == TLS_HW) { 59 kfree(tls_offload_ctx_tx(ctx)); 60 kfree(ctx->tx.rec_seq); 61 kfree(ctx->tx.iv); 62 } 63 64 if (ctx->rx_conf == TLS_HW) 65 kfree(tls_offload_ctx_rx(ctx)); 66 67 tls_ctx_free(NULL, ctx); 68} 69 70static void tls_device_gc_task(struct work_struct *work) 71{ 72 struct tls_context *ctx, *tmp; 73 unsigned long flags; 74 LIST_HEAD(gc_list); 75 76 spin_lock_irqsave(&tls_device_lock, flags); 77 list_splice_init(&tls_device_gc_list, &gc_list); 78 spin_unlock_irqrestore(&tls_device_lock, flags); 79 80 list_for_each_entry_safe(ctx, tmp, &gc_list, list) { 81 struct net_device *netdev = ctx->netdev; 82 83 if (netdev && ctx->tx_conf == TLS_HW) { 84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 85 TLS_OFFLOAD_CTX_DIR_TX); 86 dev_put(netdev); 87 ctx->netdev = NULL; 88 } 89 90 list_del(&ctx->list); 91 tls_device_free_ctx(ctx); 92 } 93} 94 95static void tls_device_queue_ctx_destruction(struct tls_context *ctx) 96{ 97 unsigned long flags; 98 99 spin_lock_irqsave(&tls_device_lock, flags); 100 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) 101 goto unlock; 102 103 list_move_tail(&ctx->list, &tls_device_gc_list); 104 105 /* schedule_work inside the spinlock 106 * to make sure tls_device_down waits for that work. 107 */ 108 schedule_work(&tls_device_gc_work); 109unlock: 110 spin_unlock_irqrestore(&tls_device_lock, flags); 111} 112 113/* We assume that the socket is already connected */ 114static struct net_device *get_netdev_for_sock(struct sock *sk) 115{ 116 struct dst_entry *dst = sk_dst_get(sk); 117 struct net_device *netdev = NULL; 118 119 if (likely(dst)) { 120 netdev = dst->dev; 121 dev_hold(netdev); 122 } 123 124 dst_release(dst); 125 126 return netdev; 127} 128 129static void destroy_record(struct tls_record_info *record) 130{ 131 int i; 132 133 for (i = 0; i < record->num_frags; i++) 134 __skb_frag_unref(&record->frags[i]); 135 kfree(record); 136} 137 138static void delete_all_records(struct tls_offload_context_tx *offload_ctx) 139{ 140 struct tls_record_info *info, *temp; 141 142 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { 143 list_del(&info->list); 144 destroy_record(info); 145 } 146 147 offload_ctx->retransmit_hint = NULL; 148} 149 150static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) 151{ 152 struct tls_context *tls_ctx = tls_get_ctx(sk); 153 struct tls_record_info *info, *temp; 154 struct tls_offload_context_tx *ctx; 155 u64 deleted_records = 0; 156 unsigned long flags; 157 158 if (!tls_ctx) 159 return; 160 161 ctx = tls_offload_ctx_tx(tls_ctx); 162 163 spin_lock_irqsave(&ctx->lock, flags); 164 info = ctx->retransmit_hint; 165 if (info && !before(acked_seq, info->end_seq)) 166 ctx->retransmit_hint = NULL; 167 168 list_for_each_entry_safe(info, temp, &ctx->records_list, list) { 169 if (before(acked_seq, info->end_seq)) 170 break; 171 list_del(&info->list); 172 173 destroy_record(info); 174 deleted_records++; 175 } 176 177 ctx->unacked_record_sn += deleted_records; 178 spin_unlock_irqrestore(&ctx->lock, flags); 179} 180 181/* At this point, there should be no references on this 182 * socket and no in-flight SKBs associated with this 183 * socket, so it is safe to free all the resources. 184 */ 185void tls_device_sk_destruct(struct sock *sk) 186{ 187 struct tls_context *tls_ctx = tls_get_ctx(sk); 188 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 189 190 tls_ctx->sk_destruct(sk); 191 192 if (tls_ctx->tx_conf == TLS_HW) { 193 if (ctx->open_record) 194 destroy_record(ctx->open_record); 195 delete_all_records(ctx); 196 crypto_free_aead(ctx->aead_send); 197 clean_acked_data_disable(inet_csk(sk)); 198 } 199 200 tls_device_queue_ctx_destruction(tls_ctx); 201} 202EXPORT_SYMBOL_GPL(tls_device_sk_destruct); 203 204void tls_device_free_resources_tx(struct sock *sk) 205{ 206 struct tls_context *tls_ctx = tls_get_ctx(sk); 207 208 tls_free_partial_record(sk, tls_ctx); 209} 210 211void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) 212{ 213 struct tls_context *tls_ctx = tls_get_ctx(sk); 214 215 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); 216 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); 217} 218EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); 219 220static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, 221 u32 seq) 222{ 223 struct net_device *netdev; 224 struct sk_buff *skb; 225 int err = 0; 226 u8 *rcd_sn; 227 228 skb = tcp_write_queue_tail(sk); 229 if (skb) 230 TCP_SKB_CB(skb)->eor = 1; 231 232 rcd_sn = tls_ctx->tx.rec_seq; 233 234 trace_tls_device_tx_resync_send(sk, seq, rcd_sn); 235 down_read(&device_offload_lock); 236 netdev = tls_ctx->netdev; 237 if (netdev) 238 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, 239 rcd_sn, 240 TLS_OFFLOAD_CTX_DIR_TX); 241 up_read(&device_offload_lock); 242 if (err) 243 return; 244 245 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 246} 247 248static void tls_append_frag(struct tls_record_info *record, 249 struct page_frag *pfrag, 250 int size) 251{ 252 skb_frag_t *frag; 253 254 frag = &record->frags[record->num_frags - 1]; 255 if (skb_frag_page(frag) == pfrag->page && 256 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { 257 skb_frag_size_add(frag, size); 258 } else { 259 ++frag; 260 __skb_frag_set_page(frag, pfrag->page); 261 skb_frag_off_set(frag, pfrag->offset); 262 skb_frag_size_set(frag, size); 263 ++record->num_frags; 264 get_page(pfrag->page); 265 } 266 267 pfrag->offset += size; 268 record->len += size; 269} 270 271static int tls_push_record(struct sock *sk, 272 struct tls_context *ctx, 273 struct tls_offload_context_tx *offload_ctx, 274 struct tls_record_info *record, 275 int flags) 276{ 277 struct tls_prot_info *prot = &ctx->prot_info; 278 struct tcp_sock *tp = tcp_sk(sk); 279 skb_frag_t *frag; 280 int i; 281 282 record->end_seq = tp->write_seq + record->len; 283 list_add_tail_rcu(&record->list, &offload_ctx->records_list); 284 offload_ctx->open_record = NULL; 285 286 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) 287 tls_device_resync_tx(sk, ctx, tp->write_seq); 288 289 tls_advance_record_sn(sk, prot, &ctx->tx); 290 291 for (i = 0; i < record->num_frags; i++) { 292 frag = &record->frags[i]; 293 sg_unmark_end(&offload_ctx->sg_tx_data[i]); 294 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), 295 skb_frag_size(frag), skb_frag_off(frag)); 296 sk_mem_charge(sk, skb_frag_size(frag)); 297 get_page(skb_frag_page(frag)); 298 } 299 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); 300 301 /* all ready, send */ 302 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); 303} 304 305static int tls_device_record_close(struct sock *sk, 306 struct tls_context *ctx, 307 struct tls_record_info *record, 308 struct page_frag *pfrag, 309 unsigned char record_type) 310{ 311 struct tls_prot_info *prot = &ctx->prot_info; 312 int ret; 313 314 /* append tag 315 * device will fill in the tag, we just need to append a placeholder 316 * use socket memory to improve coalescing (re-using a single buffer 317 * increases frag count) 318 * if we can't allocate memory now, steal some back from data 319 */ 320 if (likely(skb_page_frag_refill(prot->tag_size, pfrag, 321 sk->sk_allocation))) { 322 ret = 0; 323 tls_append_frag(record, pfrag, prot->tag_size); 324 } else { 325 ret = prot->tag_size; 326 if (record->len <= prot->overhead_size) 327 return -ENOMEM; 328 } 329 330 /* fill prepend */ 331 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), 332 record->len - prot->overhead_size, 333 record_type, prot->version); 334 return ret; 335} 336 337static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, 338 struct page_frag *pfrag, 339 size_t prepend_size) 340{ 341 struct tls_record_info *record; 342 skb_frag_t *frag; 343 344 record = kmalloc(sizeof(*record), GFP_KERNEL); 345 if (!record) 346 return -ENOMEM; 347 348 frag = &record->frags[0]; 349 __skb_frag_set_page(frag, pfrag->page); 350 skb_frag_off_set(frag, pfrag->offset); 351 skb_frag_size_set(frag, prepend_size); 352 353 get_page(pfrag->page); 354 pfrag->offset += prepend_size; 355 356 record->num_frags = 1; 357 record->len = prepend_size; 358 offload_ctx->open_record = record; 359 return 0; 360} 361 362static int tls_do_allocation(struct sock *sk, 363 struct tls_offload_context_tx *offload_ctx, 364 struct page_frag *pfrag, 365 size_t prepend_size) 366{ 367 int ret; 368 369 if (!offload_ctx->open_record) { 370 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, 371 sk->sk_allocation))) { 372 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); 373 sk_stream_moderate_sndbuf(sk); 374 return -ENOMEM; 375 } 376 377 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); 378 if (ret) 379 return ret; 380 381 if (pfrag->size > pfrag->offset) 382 return 0; 383 } 384 385 if (!sk_page_frag_refill(sk, pfrag)) 386 return -ENOMEM; 387 388 return 0; 389} 390 391static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) 392{ 393 size_t pre_copy, nocache; 394 395 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); 396 if (pre_copy) { 397 pre_copy = min(pre_copy, bytes); 398 if (copy_from_iter(addr, pre_copy, i) != pre_copy) 399 return -EFAULT; 400 bytes -= pre_copy; 401 addr += pre_copy; 402 } 403 404 nocache = round_down(bytes, SMP_CACHE_BYTES); 405 if (copy_from_iter_nocache(addr, nocache, i) != nocache) 406 return -EFAULT; 407 bytes -= nocache; 408 addr += nocache; 409 410 if (bytes && copy_from_iter(addr, bytes, i) != bytes) 411 return -EFAULT; 412 413 return 0; 414} 415 416static int tls_push_data(struct sock *sk, 417 struct iov_iter *msg_iter, 418 size_t size, int flags, 419 unsigned char record_type) 420{ 421 struct tls_context *tls_ctx = tls_get_ctx(sk); 422 struct tls_prot_info *prot = &tls_ctx->prot_info; 423 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); 424 struct tls_record_info *record = ctx->open_record; 425 int tls_push_record_flags; 426 struct page_frag *pfrag; 427 size_t orig_size = size; 428 u32 max_open_record_len; 429 bool more = false; 430 bool done = false; 431 int copy, rc = 0; 432 long timeo; 433 434 if (flags & 435 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) 436 return -EOPNOTSUPP; 437 438 if (unlikely(sk->sk_err)) 439 return -sk->sk_err; 440 441 flags |= MSG_SENDPAGE_DECRYPTED; 442 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; 443 444 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 445 if (tls_is_partially_sent_record(tls_ctx)) { 446 rc = tls_push_partial_record(sk, tls_ctx, flags); 447 if (rc < 0) 448 return rc; 449 } 450 451 pfrag = sk_page_frag(sk); 452 453 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and 454 * we need to leave room for an authentication tag. 455 */ 456 max_open_record_len = TLS_MAX_PAYLOAD_SIZE + 457 prot->prepend_size; 458 do { 459 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); 460 if (unlikely(rc)) { 461 rc = sk_stream_wait_memory(sk, &timeo); 462 if (!rc) 463 continue; 464 465 record = ctx->open_record; 466 if (!record) 467 break; 468handle_error: 469 if (record_type != TLS_RECORD_TYPE_DATA) { 470 /* avoid sending partial 471 * record with type != 472 * application_data 473 */ 474 size = orig_size; 475 destroy_record(record); 476 ctx->open_record = NULL; 477 } else if (record->len > prot->prepend_size) { 478 goto last_record; 479 } 480 481 break; 482 } 483 484 record = ctx->open_record; 485 copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); 486 copy = min_t(size_t, copy, (max_open_record_len - record->len)); 487 488 if (copy) { 489 rc = tls_device_copy_data(page_address(pfrag->page) + 490 pfrag->offset, copy, msg_iter); 491 if (rc) 492 goto handle_error; 493 tls_append_frag(record, pfrag, copy); 494 } 495 496 size -= copy; 497 if (!size) { 498last_record: 499 tls_push_record_flags = flags; 500 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { 501 more = true; 502 break; 503 } 504 505 done = true; 506 } 507 508 if (done || record->len >= max_open_record_len || 509 (record->num_frags >= MAX_SKB_FRAGS - 1)) { 510 rc = tls_device_record_close(sk, tls_ctx, record, 511 pfrag, record_type); 512 if (rc) { 513 if (rc > 0) { 514 size += rc; 515 } else { 516 size = orig_size; 517 destroy_record(record); 518 ctx->open_record = NULL; 519 break; 520 } 521 } 522 523 rc = tls_push_record(sk, 524 tls_ctx, 525 ctx, 526 record, 527 tls_push_record_flags); 528 if (rc < 0) 529 break; 530 } 531 } while (!done); 532 533 tls_ctx->pending_open_record_frags = more; 534 535 if (orig_size - size > 0) 536 rc = orig_size - size; 537 538 return rc; 539} 540 541int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 542{ 543 unsigned char record_type = TLS_RECORD_TYPE_DATA; 544 struct tls_context *tls_ctx = tls_get_ctx(sk); 545 int rc; 546 547 mutex_lock(&tls_ctx->tx_lock); 548 lock_sock(sk); 549 550 if (unlikely(msg->msg_controllen)) { 551 rc = tls_proccess_cmsg(sk, msg, &record_type); 552 if (rc) 553 goto out; 554 } 555 556 rc = tls_push_data(sk, &msg->msg_iter, size, 557 msg->msg_flags, record_type); 558 559out: 560 release_sock(sk); 561 mutex_unlock(&tls_ctx->tx_lock); 562 return rc; 563} 564 565int tls_device_sendpage(struct sock *sk, struct page *page, 566 int offset, size_t size, int flags) 567{ 568 struct tls_context *tls_ctx = tls_get_ctx(sk); 569 struct iov_iter msg_iter; 570 char *kaddr; 571 struct kvec iov; 572 int rc; 573 574 if (flags & MSG_SENDPAGE_NOTLAST) 575 flags |= MSG_MORE; 576 577 mutex_lock(&tls_ctx->tx_lock); 578 lock_sock(sk); 579 580 if (flags & MSG_OOB) { 581 rc = -EOPNOTSUPP; 582 goto out; 583 } 584 585 kaddr = kmap(page); 586 iov.iov_base = kaddr + offset; 587 iov.iov_len = size; 588 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); 589 rc = tls_push_data(sk, &msg_iter, size, 590 flags, TLS_RECORD_TYPE_DATA); 591 kunmap(page); 592 593out: 594 release_sock(sk); 595 mutex_unlock(&tls_ctx->tx_lock); 596 return rc; 597} 598 599struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 600 u32 seq, u64 *p_record_sn) 601{ 602 u64 record_sn = context->hint_record_sn; 603 struct tls_record_info *info, *last; 604 605 info = context->retransmit_hint; 606 if (!info || 607 before(seq, info->end_seq - info->len)) { 608 /* if retransmit_hint is irrelevant start 609 * from the beggining of the list 610 */ 611 info = list_first_entry_or_null(&context->records_list, 612 struct tls_record_info, list); 613 if (!info) 614 return NULL; 615 /* send the start_marker record if seq number is before the 616 * tls offload start marker sequence number. This record is 617 * required to handle TCP packets which are before TLS offload 618 * started. 619 * And if it's not start marker, look if this seq number 620 * belongs to the list. 621 */ 622 if (likely(!tls_record_is_start_marker(info))) { 623 /* we have the first record, get the last record to see 624 * if this seq number belongs to the list. 625 */ 626 last = list_last_entry(&context->records_list, 627 struct tls_record_info, list); 628 629 if (!between(seq, tls_record_start_seq(info), 630 last->end_seq)) 631 return NULL; 632 } 633 record_sn = context->unacked_record_sn; 634 } 635 636 /* We just need the _rcu for the READ_ONCE() */ 637 rcu_read_lock(); 638 list_for_each_entry_from_rcu(info, &context->records_list, list) { 639 if (before(seq, info->end_seq)) { 640 if (!context->retransmit_hint || 641 after(info->end_seq, 642 context->retransmit_hint->end_seq)) { 643 context->hint_record_sn = record_sn; 644 context->retransmit_hint = info; 645 } 646 *p_record_sn = record_sn; 647 goto exit_rcu_unlock; 648 } 649 record_sn++; 650 } 651 info = NULL; 652 653exit_rcu_unlock: 654 rcu_read_unlock(); 655 return info; 656} 657EXPORT_SYMBOL(tls_get_record); 658 659static int tls_device_push_pending_record(struct sock *sk, int flags) 660{ 661 struct iov_iter msg_iter; 662 663 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); 664 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); 665} 666 667void tls_device_write_space(struct sock *sk, struct tls_context *ctx) 668{ 669 if (tls_is_partially_sent_record(ctx)) { 670 gfp_t sk_allocation = sk->sk_allocation; 671 672 WARN_ON_ONCE(sk->sk_write_pending); 673 674 sk->sk_allocation = GFP_ATOMIC; 675 tls_push_partial_record(sk, ctx, 676 MSG_DONTWAIT | MSG_NOSIGNAL | 677 MSG_SENDPAGE_DECRYPTED); 678 sk->sk_allocation = sk_allocation; 679 } 680} 681 682static void tls_device_resync_rx(struct tls_context *tls_ctx, 683 struct sock *sk, u32 seq, u8 *rcd_sn) 684{ 685 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 686 struct net_device *netdev; 687 688 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); 689 rcu_read_lock(); 690 netdev = READ_ONCE(tls_ctx->netdev); 691 if (netdev) 692 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, 693 TLS_OFFLOAD_CTX_DIR_RX); 694 rcu_read_unlock(); 695 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); 696} 697 698static bool 699tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, 700 s64 resync_req, u32 *seq, u16 *rcd_delta) 701{ 702 u32 is_async = resync_req & RESYNC_REQ_ASYNC; 703 u32 req_seq = resync_req >> 32; 704 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); 705 u16 i; 706 707 *rcd_delta = 0; 708 709 if (is_async) { 710 /* shouldn't get to wraparound: 711 * too long in async stage, something bad happened 712 */ 713 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) 714 return false; 715 716 /* asynchronous stage: log all headers seq such that 717 * req_seq <= seq <= end_seq, and wait for real resync request 718 */ 719 if (before(*seq, req_seq)) 720 return false; 721 if (!after(*seq, req_end) && 722 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) 723 resync_async->log[resync_async->loglen++] = *seq; 724 725 resync_async->rcd_delta++; 726 727 return false; 728 } 729 730 /* synchronous stage: check against the logged entries and 731 * proceed to check the next entries if no match was found 732 */ 733 for (i = 0; i < resync_async->loglen; i++) 734 if (req_seq == resync_async->log[i] && 735 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { 736 *rcd_delta = resync_async->rcd_delta - i; 737 *seq = req_seq; 738 resync_async->loglen = 0; 739 resync_async->rcd_delta = 0; 740 return true; 741 } 742 743 resync_async->loglen = 0; 744 resync_async->rcd_delta = 0; 745 746 if (req_seq == *seq && 747 atomic64_try_cmpxchg(&resync_async->req, 748 &resync_req, 0)) 749 return true; 750 751 return false; 752} 753 754void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) 755{ 756 struct tls_context *tls_ctx = tls_get_ctx(sk); 757 struct tls_offload_context_rx *rx_ctx; 758 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 759 u32 sock_data, is_req_pending; 760 struct tls_prot_info *prot; 761 s64 resync_req; 762 u16 rcd_delta; 763 u32 req_seq; 764 765 if (tls_ctx->rx_conf != TLS_HW) 766 return; 767 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) 768 return; 769 770 prot = &tls_ctx->prot_info; 771 rx_ctx = tls_offload_ctx_rx(tls_ctx); 772 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 773 774 switch (rx_ctx->resync_type) { 775 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: 776 resync_req = atomic64_read(&rx_ctx->resync_req); 777 req_seq = resync_req >> 32; 778 seq += TLS_HEADER_SIZE - 1; 779 is_req_pending = resync_req; 780 781 if (likely(!is_req_pending) || req_seq != seq || 782 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) 783 return; 784 break; 785 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: 786 if (likely(!rx_ctx->resync_nh_do_now)) 787 return; 788 789 /* head of next rec is already in, note that the sock_inq will 790 * include the currently parsed message when called from parser 791 */ 792 sock_data = tcp_inq(sk); 793 if (sock_data > rcd_len) { 794 trace_tls_device_rx_resync_nh_delay(sk, sock_data, 795 rcd_len); 796 return; 797 } 798 799 rx_ctx->resync_nh_do_now = 0; 800 seq += rcd_len; 801 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 802 break; 803 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: 804 resync_req = atomic64_read(&rx_ctx->resync_async->req); 805 is_req_pending = resync_req; 806 if (likely(!is_req_pending)) 807 return; 808 809 if (!tls_device_rx_resync_async(rx_ctx->resync_async, 810 resync_req, &seq, &rcd_delta)) 811 return; 812 tls_bigint_subtract(rcd_sn, rcd_delta); 813 break; 814 } 815 816 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); 817} 818 819static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, 820 struct tls_offload_context_rx *ctx, 821 struct sock *sk, struct sk_buff *skb) 822{ 823 struct strp_msg *rxm; 824 825 /* device will request resyncs by itself based on stream scan */ 826 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) 827 return; 828 /* already scheduled */ 829 if (ctx->resync_nh_do_now) 830 return; 831 /* seen decrypted fragments since last fully-failed record */ 832 if (ctx->resync_nh_reset) { 833 ctx->resync_nh_reset = 0; 834 ctx->resync_nh.decrypted_failed = 1; 835 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; 836 return; 837 } 838 839 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) 840 return; 841 842 /* doing resync, bump the next target in case it fails */ 843 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) 844 ctx->resync_nh.decrypted_tgt *= 2; 845 else 846 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; 847 848 rxm = strp_msg(skb); 849 850 /* head of next rec is already in, parser will sync for us */ 851 if (tcp_inq(sk) > rxm->full_len) { 852 trace_tls_device_rx_resync_nh_schedule(sk); 853 ctx->resync_nh_do_now = 1; 854 } else { 855 struct tls_prot_info *prot = &tls_ctx->prot_info; 856 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; 857 858 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); 859 tls_bigint_increment(rcd_sn, prot->rec_seq_size); 860 861 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, 862 rcd_sn); 863 } 864} 865 866static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) 867{ 868 struct strp_msg *rxm = strp_msg(skb); 869 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; 870 struct sk_buff *skb_iter, *unused; 871 struct scatterlist sg[1]; 872 char *orig_buf, *buf; 873 874 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + 875 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); 876 if (!orig_buf) 877 return -ENOMEM; 878 buf = orig_buf; 879 880 nsg = skb_cow_data(skb, 0, &unused); 881 if (unlikely(nsg < 0)) { 882 err = nsg; 883 goto free_buf; 884 } 885 886 sg_init_table(sg, 1); 887 sg_set_buf(&sg[0], buf, 888 rxm->full_len + TLS_HEADER_SIZE + 889 TLS_CIPHER_AES_GCM_128_IV_SIZE); 890 err = skb_copy_bits(skb, offset, buf, 891 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); 892 if (err) 893 goto free_buf; 894 895 /* We are interested only in the decrypted data not the auth */ 896 err = decrypt_skb(sk, skb, sg); 897 if (err != -EBADMSG) 898 goto free_buf; 899 else 900 err = 0; 901 902 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; 903 904 if (skb_pagelen(skb) > offset) { 905 copy = min_t(int, skb_pagelen(skb) - offset, data_len); 906 907 if (skb->decrypted) { 908 err = skb_store_bits(skb, offset, buf, copy); 909 if (err) 910 goto free_buf; 911 } 912 913 offset += copy; 914 buf += copy; 915 } 916 917 pos = skb_pagelen(skb); 918 skb_walk_frags(skb, skb_iter) { 919 int frag_pos; 920 921 /* Practically all frags must belong to msg if reencrypt 922 * is needed with current strparser and coalescing logic, 923 * but strparser may "get optimized", so let's be safe. 924 */ 925 if (pos + skb_iter->len <= offset) 926 goto done_with_frag; 927 if (pos >= data_len + rxm->offset) 928 break; 929 930 frag_pos = offset - pos; 931 copy = min_t(int, skb_iter->len - frag_pos, 932 data_len + rxm->offset - offset); 933 934 if (skb_iter->decrypted) { 935 err = skb_store_bits(skb_iter, frag_pos, buf, copy); 936 if (err) 937 goto free_buf; 938 } 939 940 offset += copy; 941 buf += copy; 942done_with_frag: 943 pos += skb_iter->len; 944 } 945 946free_buf: 947 kfree(orig_buf); 948 return err; 949} 950 951int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 952 struct sk_buff *skb, struct strp_msg *rxm) 953{ 954 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); 955 int is_decrypted = skb->decrypted; 956 int is_encrypted = !is_decrypted; 957 struct sk_buff *skb_iter; 958 959 /* Check if all the data is decrypted already */ 960 skb_walk_frags(skb, skb_iter) { 961 is_decrypted &= skb_iter->decrypted; 962 is_encrypted &= !skb_iter->decrypted; 963 } 964 965 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, 966 tls_ctx->rx.rec_seq, rxm->full_len, 967 is_encrypted, is_decrypted); 968 969 ctx->sw.decrypted |= is_decrypted; 970 971 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { 972 if (likely(is_encrypted || is_decrypted)) 973 return 0; 974 975 /* After tls_device_down disables the offload, the next SKB will 976 * likely have initial fragments decrypted, and final ones not 977 * decrypted. We need to reencrypt that single SKB. 978 */ 979 return tls_device_reencrypt(sk, skb); 980 } 981 982 /* Return immediately if the record is either entirely plaintext or 983 * entirely ciphertext. Otherwise handle reencrypt partially decrypted 984 * record. 985 */ 986 if (is_decrypted) { 987 ctx->resync_nh_reset = 1; 988 return 0; 989 } 990 if (is_encrypted) { 991 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); 992 return 0; 993 } 994 995 ctx->resync_nh_reset = 1; 996 return tls_device_reencrypt(sk, skb); 997} 998 999static void tls_device_attach(struct tls_context *ctx, struct sock *sk, 1000 struct net_device *netdev) 1001{ 1002 if (sk->sk_destruct != tls_device_sk_destruct) { 1003 refcount_set(&ctx->refcount, 1); 1004 dev_hold(netdev); 1005 ctx->netdev = netdev; 1006 spin_lock_irq(&tls_device_lock); 1007 list_add_tail(&ctx->list, &tls_device_list); 1008 spin_unlock_irq(&tls_device_lock); 1009 1010 ctx->sk_destruct = sk->sk_destruct; 1011 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); 1012 } 1013} 1014 1015int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 1016{ 1017 u16 nonce_size, tag_size, iv_size, rec_seq_size; 1018 struct tls_context *tls_ctx = tls_get_ctx(sk); 1019 struct tls_prot_info *prot = &tls_ctx->prot_info; 1020 struct tls_record_info *start_marker_record; 1021 struct tls_offload_context_tx *offload_ctx; 1022 struct tls_crypto_info *crypto_info; 1023 struct net_device *netdev; 1024 char *iv, *rec_seq; 1025 struct sk_buff *skb; 1026 __be64 rcd_sn; 1027 int rc; 1028 1029 if (!ctx) 1030 return -EINVAL; 1031 1032 if (ctx->priv_ctx_tx) 1033 return -EEXIST; 1034 1035 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); 1036 if (!start_marker_record) 1037 return -ENOMEM; 1038 1039 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); 1040 if (!offload_ctx) { 1041 rc = -ENOMEM; 1042 goto free_marker_record; 1043 } 1044 1045 crypto_info = &ctx->crypto_send.info; 1046 if (crypto_info->version != TLS_1_2_VERSION) { 1047 rc = -EOPNOTSUPP; 1048 goto free_offload_ctx; 1049 } 1050 1051 switch (crypto_info->cipher_type) { 1052 case TLS_CIPHER_AES_GCM_128: 1053 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1054 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1055 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1056 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1057 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1058 rec_seq = 1059 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1060 break; 1061 default: 1062 rc = -EINVAL; 1063 goto free_offload_ctx; 1064 } 1065 1066 /* Sanity-check the rec_seq_size for stack allocations */ 1067 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 1068 rc = -EINVAL; 1069 goto free_offload_ctx; 1070 } 1071 1072 prot->version = crypto_info->version; 1073 prot->cipher_type = crypto_info->cipher_type; 1074 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 1075 prot->tag_size = tag_size; 1076 prot->overhead_size = prot->prepend_size + prot->tag_size; 1077 prot->iv_size = iv_size; 1078 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1079 GFP_KERNEL); 1080 if (!ctx->tx.iv) { 1081 rc = -ENOMEM; 1082 goto free_offload_ctx; 1083 } 1084 1085 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1086 1087 prot->rec_seq_size = rec_seq_size; 1088 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1089 if (!ctx->tx.rec_seq) { 1090 rc = -ENOMEM; 1091 goto free_iv; 1092 } 1093 1094 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); 1095 if (rc) 1096 goto free_rec_seq; 1097 1098 /* start at rec_seq - 1 to account for the start marker record */ 1099 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); 1100 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; 1101 1102 start_marker_record->end_seq = tcp_sk(sk)->write_seq; 1103 start_marker_record->len = 0; 1104 start_marker_record->num_frags = 0; 1105 1106 INIT_LIST_HEAD(&offload_ctx->records_list); 1107 list_add_tail(&start_marker_record->list, &offload_ctx->records_list); 1108 spin_lock_init(&offload_ctx->lock); 1109 sg_init_table(offload_ctx->sg_tx_data, 1110 ARRAY_SIZE(offload_ctx->sg_tx_data)); 1111 1112 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); 1113 ctx->push_pending_record = tls_device_push_pending_record; 1114 1115 /* TLS offload is greatly simplified if we don't send 1116 * SKBs where only part of the payload needs to be encrypted. 1117 * So mark the last skb in the write queue as end of record. 1118 */ 1119 skb = tcp_write_queue_tail(sk); 1120 if (skb) 1121 TCP_SKB_CB(skb)->eor = 1; 1122 1123 netdev = get_netdev_for_sock(sk); 1124 if (!netdev) { 1125 pr_err_ratelimited("%s: netdev not found\n", __func__); 1126 rc = -EINVAL; 1127 goto disable_cad; 1128 } 1129 1130 if (!(netdev->features & NETIF_F_HW_TLS_TX)) { 1131 rc = -EOPNOTSUPP; 1132 goto release_netdev; 1133 } 1134 1135 /* Avoid offloading if the device is down 1136 * We don't want to offload new flows after 1137 * the NETDEV_DOWN event 1138 * 1139 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1140 * handler thus protecting from the device going down before 1141 * ctx was added to tls_device_list. 1142 */ 1143 down_read(&device_offload_lock); 1144 if (!(netdev->flags & IFF_UP)) { 1145 rc = -EINVAL; 1146 goto release_lock; 1147 } 1148 1149 ctx->priv_ctx_tx = offload_ctx; 1150 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, 1151 &ctx->crypto_send.info, 1152 tcp_sk(sk)->write_seq); 1153 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, 1154 tcp_sk(sk)->write_seq, rec_seq, rc); 1155 if (rc) 1156 goto release_lock; 1157 1158 tls_device_attach(ctx, sk, netdev); 1159 up_read(&device_offload_lock); 1160 1161 /* following this assignment tls_is_sk_tx_device_offloaded 1162 * will return true and the context might be accessed 1163 * by the netdev's xmit function. 1164 */ 1165 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); 1166 dev_put(netdev); 1167 1168 return 0; 1169 1170release_lock: 1171 up_read(&device_offload_lock); 1172release_netdev: 1173 dev_put(netdev); 1174disable_cad: 1175 clean_acked_data_disable(inet_csk(sk)); 1176 crypto_free_aead(offload_ctx->aead_send); 1177free_rec_seq: 1178 kfree(ctx->tx.rec_seq); 1179free_iv: 1180 kfree(ctx->tx.iv); 1181free_offload_ctx: 1182 kfree(offload_ctx); 1183 ctx->priv_ctx_tx = NULL; 1184free_marker_record: 1185 kfree(start_marker_record); 1186 return rc; 1187} 1188 1189int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 1190{ 1191 struct tls12_crypto_info_aes_gcm_128 *info; 1192 struct tls_offload_context_rx *context; 1193 struct net_device *netdev; 1194 int rc = 0; 1195 1196 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) 1197 return -EOPNOTSUPP; 1198 1199 netdev = get_netdev_for_sock(sk); 1200 if (!netdev) { 1201 pr_err_ratelimited("%s: netdev not found\n", __func__); 1202 return -EINVAL; 1203 } 1204 1205 if (!(netdev->features & NETIF_F_HW_TLS_RX)) { 1206 rc = -EOPNOTSUPP; 1207 goto release_netdev; 1208 } 1209 1210 /* Avoid offloading if the device is down 1211 * We don't want to offload new flows after 1212 * the NETDEV_DOWN event 1213 * 1214 * device_offload_lock is taken in tls_devices's NETDEV_DOWN 1215 * handler thus protecting from the device going down before 1216 * ctx was added to tls_device_list. 1217 */ 1218 down_read(&device_offload_lock); 1219 if (!(netdev->flags & IFF_UP)) { 1220 rc = -EINVAL; 1221 goto release_lock; 1222 } 1223 1224 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); 1225 if (!context) { 1226 rc = -ENOMEM; 1227 goto release_lock; 1228 } 1229 context->resync_nh_reset = 1; 1230 1231 ctx->priv_ctx_rx = context; 1232 rc = tls_set_sw_offload(sk, ctx, 0); 1233 if (rc) 1234 goto release_ctx; 1235 1236 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, 1237 &ctx->crypto_recv.info, 1238 tcp_sk(sk)->copied_seq); 1239 info = (void *)&ctx->crypto_recv.info; 1240 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, 1241 tcp_sk(sk)->copied_seq, info->rec_seq, rc); 1242 if (rc) 1243 goto free_sw_resources; 1244 1245 tls_device_attach(ctx, sk, netdev); 1246 up_read(&device_offload_lock); 1247 1248 dev_put(netdev); 1249 1250 return 0; 1251 1252free_sw_resources: 1253 up_read(&device_offload_lock); 1254 tls_sw_free_resources_rx(sk); 1255 down_read(&device_offload_lock); 1256release_ctx: 1257 ctx->priv_ctx_rx = NULL; 1258release_lock: 1259 up_read(&device_offload_lock); 1260release_netdev: 1261 dev_put(netdev); 1262 return rc; 1263} 1264 1265void tls_device_offload_cleanup_rx(struct sock *sk) 1266{ 1267 struct tls_context *tls_ctx = tls_get_ctx(sk); 1268 struct net_device *netdev; 1269 1270 down_read(&device_offload_lock); 1271 netdev = tls_ctx->netdev; 1272 if (!netdev) 1273 goto out; 1274 1275 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, 1276 TLS_OFFLOAD_CTX_DIR_RX); 1277 1278 if (tls_ctx->tx_conf != TLS_HW) { 1279 dev_put(netdev); 1280 tls_ctx->netdev = NULL; 1281 } else { 1282 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); 1283 } 1284out: 1285 up_read(&device_offload_lock); 1286 tls_sw_release_resources_rx(sk); 1287} 1288 1289static int tls_device_down(struct net_device *netdev) 1290{ 1291 struct tls_context *ctx, *tmp; 1292 unsigned long flags; 1293 LIST_HEAD(list); 1294 1295 /* Request a write lock to block new offload attempts */ 1296 down_write(&device_offload_lock); 1297 1298 spin_lock_irqsave(&tls_device_lock, flags); 1299 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { 1300 if (ctx->netdev != netdev || 1301 !refcount_inc_not_zero(&ctx->refcount)) 1302 continue; 1303 1304 list_move(&ctx->list, &list); 1305 } 1306 spin_unlock_irqrestore(&tls_device_lock, flags); 1307 1308 list_for_each_entry_safe(ctx, tmp, &list, list) { 1309 /* Stop offloaded TX and switch to the fallback. 1310 * tls_is_sk_tx_device_offloaded will return false. 1311 */ 1312 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); 1313 1314 /* Stop the RX and TX resync. 1315 * tls_dev_resync must not be called after tls_dev_del. 1316 */ 1317 WRITE_ONCE(ctx->netdev, NULL); 1318 1319 /* Start skipping the RX resync logic completely. */ 1320 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); 1321 1322 /* Sync with inflight packets. After this point: 1323 * TX: no non-encrypted packets will be passed to the driver. 1324 * RX: resync requests from the driver will be ignored. 1325 */ 1326 synchronize_net(); 1327 1328 /* Release the offload context on the driver side. */ 1329 if (ctx->tx_conf == TLS_HW) 1330 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1331 TLS_OFFLOAD_CTX_DIR_TX); 1332 if (ctx->rx_conf == TLS_HW && 1333 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) 1334 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, 1335 TLS_OFFLOAD_CTX_DIR_RX); 1336 1337 dev_put(netdev); 1338 1339 /* Move the context to a separate list for two reasons: 1340 * 1. When the context is deallocated, list_del is called. 1341 * 2. It's no longer an offloaded context, so we don't want to 1342 * run offload-specific code on this context. 1343 */ 1344 spin_lock_irqsave(&tls_device_lock, flags); 1345 list_move_tail(&ctx->list, &tls_device_down_list); 1346 spin_unlock_irqrestore(&tls_device_lock, flags); 1347 1348 /* Device contexts for RX and TX will be freed in on sk_destruct 1349 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. 1350 * Now release the ref taken above. 1351 */ 1352 if (refcount_dec_and_test(&ctx->refcount)) { 1353 /* sk_destruct ran after tls_device_down took a ref, and 1354 * it returned early. Complete the destruction here. 1355 */ 1356 list_del(&ctx->list); 1357 tls_device_free_ctx(ctx); 1358 } 1359 } 1360 1361 up_write(&device_offload_lock); 1362 1363 flush_work(&tls_device_gc_work); 1364 1365 return NOTIFY_DONE; 1366} 1367 1368static int tls_dev_event(struct notifier_block *this, unsigned long event, 1369 void *ptr) 1370{ 1371 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1372 1373 if (!dev->tlsdev_ops && 1374 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) 1375 return NOTIFY_DONE; 1376 1377 switch (event) { 1378 case NETDEV_REGISTER: 1379 case NETDEV_FEAT_CHANGE: 1380 if ((dev->features & NETIF_F_HW_TLS_RX) && 1381 !dev->tlsdev_ops->tls_dev_resync) 1382 return NOTIFY_BAD; 1383 1384 if (dev->tlsdev_ops && 1385 dev->tlsdev_ops->tls_dev_add && 1386 dev->tlsdev_ops->tls_dev_del) 1387 return NOTIFY_DONE; 1388 else 1389 return NOTIFY_BAD; 1390 case NETDEV_DOWN: 1391 return tls_device_down(dev); 1392 } 1393 return NOTIFY_DONE; 1394} 1395 1396static struct notifier_block tls_dev_notifier = { 1397 .notifier_call = tls_dev_event, 1398}; 1399 1400int __init tls_device_init(void) 1401{ 1402 return register_netdevice_notifier(&tls_dev_notifier); 1403} 1404 1405void __exit tls_device_cleanup(void) 1406{ 1407 unregister_netdevice_notifier(&tls_dev_notifier); 1408 flush_work(&tls_device_gc_work); 1409 clean_acked_data_flush(); 1410} 1411