1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the BSD-type
11 * license below:
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 *      Redistributions of source code must retain the above copyright
18 *      notice, this list of conditions and the following disclaimer.
19 *
20 *      Redistributions in binary form must reproduce the above
21 *      copyright notice, this list of conditions and the following
22 *      disclaimer in the documentation and/or other materials provided
23 *      with the distribution.
24 *
25 *      Neither the name of the Network Appliance, Inc. nor the names of
26 *      its contributors may be used to endorse or promote products
27 *      derived from this software without specific prior written
28 *      permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Author: Tom Tucker <tom@opengridcomputing.com>
43 */
44
45/* Operation
46 *
47 * The main entry point is svc_rdma_sendto. This is called by the
48 * RPC server when an RPC Reply is ready to be transmitted to a client.
49 *
50 * The passed-in svc_rqst contains a struct xdr_buf which holds an
51 * XDR-encoded RPC Reply message. sendto must construct the RPC-over-RDMA
52 * transport header, post all Write WRs needed for this Reply, then post
53 * a Send WR conveying the transport header and the RPC message itself to
54 * the client.
55 *
56 * svc_rdma_sendto must fully transmit the Reply before returning, as
57 * the svc_rqst will be recycled as soon as sendto returns. Remaining
58 * resources referred to by the svc_rqst are also recycled at that time.
59 * Therefore any resources that must remain longer must be detached
60 * from the svc_rqst and released later.
61 *
62 * Page Management
63 *
64 * The I/O that performs Reply transmission is asynchronous, and may
65 * complete well after sendto returns. Thus pages under I/O must be
66 * removed from the svc_rqst before sendto returns.
67 *
68 * The logic here depends on Send Queue and completion ordering. Since
69 * the Send WR is always posted last, it will always complete last. Thus
70 * when it completes, it is guaranteed that all previous Write WRs have
71 * also completed.
72 *
73 * Write WRs are constructed and posted. Each Write segment gets its own
74 * svc_rdma_rw_ctxt, allowing the Write completion handler to find and
75 * DMA-unmap the pages under I/O for that Write segment. The Write
76 * completion handler does not release any pages.
77 *
78 * When the Send WR is constructed, it also gets its own svc_rdma_send_ctxt.
79 * The ownership of all of the Reply's pages are transferred into that
80 * ctxt, the Send WR is posted, and sendto returns.
81 *
82 * The svc_rdma_send_ctxt is presented when the Send WR completes. The
83 * Send completion handler finally releases the Reply's pages.
84 *
85 * This mechanism also assumes that completions on the transport's Send
86 * Completion Queue do not run in parallel. Otherwise a Write completion
87 * and Send completion running at the same time could release pages that
88 * are still DMA-mapped.
89 *
90 * Error Handling
91 *
92 * - If the Send WR is posted successfully, it will either complete
93 *   successfully, or get flushed. Either way, the Send completion
94 *   handler releases the Reply's pages.
95 * - If the Send WR cannot be not posted, the forward path releases
96 *   the Reply's pages.
97 *
98 * This handles the case, without the use of page reference counting,
99 * where two different Write segments send portions of the same page.
100 */
101
102#include <linux/spinlock.h>
103#include <asm/unaligned.h>
104
105#include <rdma/ib_verbs.h>
106#include <rdma/rdma_cm.h>
107
108#include <linux/sunrpc/debug.h>
109#include <linux/sunrpc/svc_rdma.h>
110
111#include "xprt_rdma.h"
112#include <trace/events/rpcrdma.h>
113
114#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
115
116static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc);
117
118static inline struct svc_rdma_send_ctxt *
119svc_rdma_next_send_ctxt(struct list_head *list)
120{
121	return list_first_entry_or_null(list, struct svc_rdma_send_ctxt,
122					sc_list);
123}
124
125static void svc_rdma_send_cid_init(struct svcxprt_rdma *rdma,
126				   struct rpc_rdma_cid *cid)
127{
128	cid->ci_queue_id = rdma->sc_sq_cq->res.id;
129	cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
130}
131
132static struct svc_rdma_send_ctxt *
133svc_rdma_send_ctxt_alloc(struct svcxprt_rdma *rdma)
134{
135	struct svc_rdma_send_ctxt *ctxt;
136	dma_addr_t addr;
137	void *buffer;
138	size_t size;
139	int i;
140
141	size = sizeof(*ctxt);
142	size += rdma->sc_max_send_sges * sizeof(struct ib_sge);
143	ctxt = kmalloc(size, GFP_KERNEL);
144	if (!ctxt)
145		goto fail0;
146	buffer = kmalloc(rdma->sc_max_req_size, GFP_KERNEL);
147	if (!buffer)
148		goto fail1;
149	addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
150				 rdma->sc_max_req_size, DMA_TO_DEVICE);
151	if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
152		goto fail2;
153
154	svc_rdma_send_cid_init(rdma, &ctxt->sc_cid);
155
156	ctxt->sc_send_wr.next = NULL;
157	ctxt->sc_send_wr.wr_cqe = &ctxt->sc_cqe;
158	ctxt->sc_send_wr.sg_list = ctxt->sc_sges;
159	ctxt->sc_send_wr.send_flags = IB_SEND_SIGNALED;
160	ctxt->sc_cqe.done = svc_rdma_wc_send;
161	ctxt->sc_xprt_buf = buffer;
162	xdr_buf_init(&ctxt->sc_hdrbuf, ctxt->sc_xprt_buf,
163		     rdma->sc_max_req_size);
164	ctxt->sc_sges[0].addr = addr;
165
166	for (i = 0; i < rdma->sc_max_send_sges; i++)
167		ctxt->sc_sges[i].lkey = rdma->sc_pd->local_dma_lkey;
168	return ctxt;
169
170fail2:
171	kfree(buffer);
172fail1:
173	kfree(ctxt);
174fail0:
175	return NULL;
176}
177
178/**
179 * svc_rdma_send_ctxts_destroy - Release all send_ctxt's for an xprt
180 * @rdma: svcxprt_rdma being torn down
181 *
182 */
183void svc_rdma_send_ctxts_destroy(struct svcxprt_rdma *rdma)
184{
185	struct svc_rdma_send_ctxt *ctxt;
186
187	while ((ctxt = svc_rdma_next_send_ctxt(&rdma->sc_send_ctxts))) {
188		list_del(&ctxt->sc_list);
189		ib_dma_unmap_single(rdma->sc_pd->device,
190				    ctxt->sc_sges[0].addr,
191				    rdma->sc_max_req_size,
192				    DMA_TO_DEVICE);
193		kfree(ctxt->sc_xprt_buf);
194		kfree(ctxt);
195	}
196}
197
198/**
199 * svc_rdma_send_ctxt_get - Get a free send_ctxt
200 * @rdma: controlling svcxprt_rdma
201 *
202 * Returns a ready-to-use send_ctxt, or NULL if none are
203 * available and a fresh one cannot be allocated.
204 */
205struct svc_rdma_send_ctxt *svc_rdma_send_ctxt_get(struct svcxprt_rdma *rdma)
206{
207	struct svc_rdma_send_ctxt *ctxt;
208
209	spin_lock(&rdma->sc_send_lock);
210	ctxt = svc_rdma_next_send_ctxt(&rdma->sc_send_ctxts);
211	if (!ctxt)
212		goto out_empty;
213	list_del(&ctxt->sc_list);
214	spin_unlock(&rdma->sc_send_lock);
215
216out:
217	rpcrdma_set_xdrlen(&ctxt->sc_hdrbuf, 0);
218	xdr_init_encode(&ctxt->sc_stream, &ctxt->sc_hdrbuf,
219			ctxt->sc_xprt_buf, NULL);
220
221	ctxt->sc_send_wr.num_sge = 0;
222	ctxt->sc_cur_sge_no = 0;
223	ctxt->sc_page_count = 0;
224	return ctxt;
225
226out_empty:
227	spin_unlock(&rdma->sc_send_lock);
228	ctxt = svc_rdma_send_ctxt_alloc(rdma);
229	if (!ctxt)
230		return NULL;
231	goto out;
232}
233
234/**
235 * svc_rdma_send_ctxt_put - Return send_ctxt to free list
236 * @rdma: controlling svcxprt_rdma
237 * @ctxt: object to return to the free list
238 *
239 * Pages left in sc_pages are DMA unmapped and released.
240 */
241void svc_rdma_send_ctxt_put(struct svcxprt_rdma *rdma,
242			    struct svc_rdma_send_ctxt *ctxt)
243{
244	struct ib_device *device = rdma->sc_cm_id->device;
245	unsigned int i;
246
247	/* The first SGE contains the transport header, which
248	 * remains mapped until @ctxt is destroyed.
249	 */
250	for (i = 1; i < ctxt->sc_send_wr.num_sge; i++) {
251		ib_dma_unmap_page(device,
252				  ctxt->sc_sges[i].addr,
253				  ctxt->sc_sges[i].length,
254				  DMA_TO_DEVICE);
255		trace_svcrdma_dma_unmap_page(rdma,
256					     ctxt->sc_sges[i].addr,
257					     ctxt->sc_sges[i].length);
258	}
259
260	for (i = 0; i < ctxt->sc_page_count; ++i)
261		put_page(ctxt->sc_pages[i]);
262
263	spin_lock(&rdma->sc_send_lock);
264	list_add(&ctxt->sc_list, &rdma->sc_send_ctxts);
265	spin_unlock(&rdma->sc_send_lock);
266}
267
268/**
269 * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC
270 * @cq: Completion Queue context
271 * @wc: Work Completion object
272 *
273 * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that
274 * the Send completion handler could be running.
275 */
276static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
277{
278	struct svcxprt_rdma *rdma = cq->cq_context;
279	struct ib_cqe *cqe = wc->wr_cqe;
280	struct svc_rdma_send_ctxt *ctxt =
281		container_of(cqe, struct svc_rdma_send_ctxt, sc_cqe);
282
283	trace_svcrdma_wc_send(wc, &ctxt->sc_cid);
284
285	atomic_inc(&rdma->sc_sq_avail);
286	wake_up(&rdma->sc_send_wait);
287
288	svc_rdma_send_ctxt_put(rdma, ctxt);
289
290	if (unlikely(wc->status != IB_WC_SUCCESS)) {
291		set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
292		svc_xprt_enqueue(&rdma->sc_xprt);
293	}
294}
295
296/**
297 * svc_rdma_send - Post a single Send WR
298 * @rdma: transport on which to post the WR
299 * @ctxt: send ctxt with a Send WR ready to post
300 *
301 * Returns zero the Send WR was posted successfully. Otherwise, a
302 * negative errno is returned.
303 */
304int svc_rdma_send(struct svcxprt_rdma *rdma, struct svc_rdma_send_ctxt *ctxt)
305{
306	struct ib_send_wr *wr = &ctxt->sc_send_wr;
307	int ret;
308
309	might_sleep();
310
311	/* Sync the transport header buffer */
312	ib_dma_sync_single_for_device(rdma->sc_pd->device,
313				      wr->sg_list[0].addr,
314				      wr->sg_list[0].length,
315				      DMA_TO_DEVICE);
316
317	/* If the SQ is full, wait until an SQ entry is available */
318	while (1) {
319		if ((atomic_dec_return(&rdma->sc_sq_avail) < 0)) {
320			atomic_inc(&rdma_stat_sq_starve);
321			trace_svcrdma_sq_full(rdma);
322			atomic_inc(&rdma->sc_sq_avail);
323			wait_event(rdma->sc_send_wait,
324				   atomic_read(&rdma->sc_sq_avail) > 1);
325			if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags))
326				return -ENOTCONN;
327			trace_svcrdma_sq_retry(rdma);
328			continue;
329		}
330
331		trace_svcrdma_post_send(ctxt);
332		ret = ib_post_send(rdma->sc_qp, wr, NULL);
333		if (ret)
334			break;
335		return 0;
336	}
337
338	trace_svcrdma_sq_post_err(rdma, ret);
339	set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
340	wake_up(&rdma->sc_send_wait);
341	return ret;
342}
343
344/**
345 * svc_rdma_encode_read_list - Encode RPC Reply's Read chunk list
346 * @sctxt: Send context for the RPC Reply
347 *
348 * Return values:
349 *   On success, returns length in bytes of the Reply XDR buffer
350 *   that was consumed by the Reply Read list
351 *   %-EMSGSIZE on XDR buffer overflow
352 */
353static ssize_t svc_rdma_encode_read_list(struct svc_rdma_send_ctxt *sctxt)
354{
355	/* RPC-over-RDMA version 1 replies never have a Read list. */
356	return xdr_stream_encode_item_absent(&sctxt->sc_stream);
357}
358
359/**
360 * svc_rdma_encode_write_segment - Encode one Write segment
361 * @src: matching Write chunk in the RPC Call header
362 * @sctxt: Send context for the RPC Reply
363 * @remaining: remaining bytes of the payload left in the Write chunk
364 *
365 * Return values:
366 *   On success, returns length in bytes of the Reply XDR buffer
367 *   that was consumed by the Write segment
368 *   %-EMSGSIZE on XDR buffer overflow
369 */
370static ssize_t svc_rdma_encode_write_segment(__be32 *src,
371					     struct svc_rdma_send_ctxt *sctxt,
372					     unsigned int *remaining)
373{
374	__be32 *p;
375	const size_t len = rpcrdma_segment_maxsz * sizeof(*p);
376	u32 handle, length;
377	u64 offset;
378
379	p = xdr_reserve_space(&sctxt->sc_stream, len);
380	if (!p)
381		return -EMSGSIZE;
382
383	xdr_decode_rdma_segment(src, &handle, &length, &offset);
384
385	if (*remaining < length) {
386		/* segment only partly filled */
387		length = *remaining;
388		*remaining = 0;
389	} else {
390		/* entire segment was consumed */
391		*remaining -= length;
392	}
393	xdr_encode_rdma_segment(p, handle, length, offset);
394
395	trace_svcrdma_encode_wseg(handle, length, offset);
396	return len;
397}
398
399/**
400 * svc_rdma_encode_write_chunk - Encode one Write chunk
401 * @src: matching Write chunk in the RPC Call header
402 * @sctxt: Send context for the RPC Reply
403 * @remaining: size in bytes of the payload in the Write chunk
404 *
405 * Copy a Write chunk from the Call transport header to the
406 * Reply transport header. Update each segment's length field
407 * to reflect the number of bytes written in that segment.
408 *
409 * Return values:
410 *   On success, returns length in bytes of the Reply XDR buffer
411 *   that was consumed by the Write chunk
412 *   %-EMSGSIZE on XDR buffer overflow
413 */
414static ssize_t svc_rdma_encode_write_chunk(__be32 *src,
415					   struct svc_rdma_send_ctxt *sctxt,
416					   unsigned int remaining)
417{
418	unsigned int i, nsegs;
419	ssize_t len, ret;
420
421	len = 0;
422	trace_svcrdma_encode_write_chunk(remaining);
423
424	src++;
425	ret = xdr_stream_encode_item_present(&sctxt->sc_stream);
426	if (ret < 0)
427		return -EMSGSIZE;
428	len += ret;
429
430	nsegs = be32_to_cpup(src++);
431	ret = xdr_stream_encode_u32(&sctxt->sc_stream, nsegs);
432	if (ret < 0)
433		return -EMSGSIZE;
434	len += ret;
435
436	for (i = nsegs; i; i--) {
437		ret = svc_rdma_encode_write_segment(src, sctxt, &remaining);
438		if (ret < 0)
439			return -EMSGSIZE;
440		src += rpcrdma_segment_maxsz;
441		len += ret;
442	}
443
444	return len;
445}
446
447/**
448 * svc_rdma_encode_write_list - Encode RPC Reply's Write chunk list
449 * @rctxt: Reply context with information about the RPC Call
450 * @sctxt: Send context for the RPC Reply
451 * @length: size in bytes of the payload in the first Write chunk
452 *
453 * The client provides a Write chunk list in the Call message. Fill
454 * in the segments in the first Write chunk in the Reply's transport
455 * header with the number of bytes consumed in each segment.
456 * Remaining chunks are returned unused.
457 *
458 * Assumptions:
459 *  - Client has provided only one Write chunk
460 *
461 * Return values:
462 *   On success, returns length in bytes of the Reply XDR buffer
463 *   that was consumed by the Reply's Write list
464 *   %-EMSGSIZE on XDR buffer overflow
465 */
466static ssize_t
467svc_rdma_encode_write_list(const struct svc_rdma_recv_ctxt *rctxt,
468			   struct svc_rdma_send_ctxt *sctxt,
469			   unsigned int length)
470{
471	ssize_t len, ret;
472
473	ret = svc_rdma_encode_write_chunk(rctxt->rc_write_list, sctxt, length);
474	if (ret < 0)
475		return ret;
476	len = ret;
477
478	/* Terminate the Write list */
479	ret = xdr_stream_encode_item_absent(&sctxt->sc_stream);
480	if (ret < 0)
481		return ret;
482
483	return len + ret;
484}
485
486/**
487 * svc_rdma_encode_reply_chunk - Encode RPC Reply's Reply chunk
488 * @rctxt: Reply context with information about the RPC Call
489 * @sctxt: Send context for the RPC Reply
490 * @length: size in bytes of the payload in the Reply chunk
491 *
492 * Assumptions:
493 * - Reply can always fit in the client-provided Reply chunk
494 *
495 * Return values:
496 *   On success, returns length in bytes of the Reply XDR buffer
497 *   that was consumed by the Reply's Reply chunk
498 *   %-EMSGSIZE on XDR buffer overflow
499 */
500static ssize_t
501svc_rdma_encode_reply_chunk(const struct svc_rdma_recv_ctxt *rctxt,
502			    struct svc_rdma_send_ctxt *sctxt,
503			    unsigned int length)
504{
505	return svc_rdma_encode_write_chunk(rctxt->rc_reply_chunk, sctxt,
506					   length);
507}
508
509static int svc_rdma_dma_map_page(struct svcxprt_rdma *rdma,
510				 struct svc_rdma_send_ctxt *ctxt,
511				 struct page *page,
512				 unsigned long offset,
513				 unsigned int len)
514{
515	struct ib_device *dev = rdma->sc_cm_id->device;
516	dma_addr_t dma_addr;
517
518	dma_addr = ib_dma_map_page(dev, page, offset, len, DMA_TO_DEVICE);
519	trace_svcrdma_dma_map_page(rdma, dma_addr, len);
520	if (ib_dma_mapping_error(dev, dma_addr))
521		goto out_maperr;
522
523	ctxt->sc_sges[ctxt->sc_cur_sge_no].addr = dma_addr;
524	ctxt->sc_sges[ctxt->sc_cur_sge_no].length = len;
525	ctxt->sc_send_wr.num_sge++;
526	return 0;
527
528out_maperr:
529	return -EIO;
530}
531
532/* ib_dma_map_page() is used here because svc_rdma_dma_unmap()
533 * handles DMA-unmap and it uses ib_dma_unmap_page() exclusively.
534 */
535static int svc_rdma_dma_map_buf(struct svcxprt_rdma *rdma,
536				struct svc_rdma_send_ctxt *ctxt,
537				unsigned char *base,
538				unsigned int len)
539{
540	return svc_rdma_dma_map_page(rdma, ctxt, virt_to_page(base),
541				     offset_in_page(base), len);
542}
543
544/**
545 * svc_rdma_pull_up_needed - Determine whether to use pull-up
546 * @rdma: controlling transport
547 * @sctxt: send_ctxt for the Send WR
548 * @rctxt: Write and Reply chunks provided by client
549 * @xdr: xdr_buf containing RPC message to transmit
550 *
551 * Returns:
552 *	%true if pull-up must be used
553 *	%false otherwise
554 */
555static bool svc_rdma_pull_up_needed(struct svcxprt_rdma *rdma,
556				    struct svc_rdma_send_ctxt *sctxt,
557				    const struct svc_rdma_recv_ctxt *rctxt,
558				    struct xdr_buf *xdr)
559{
560	int elements;
561
562	/* For small messages, copying bytes is cheaper than DMA mapping.
563	 */
564	if (sctxt->sc_hdrbuf.len + xdr->len < RPCRDMA_PULLUP_THRESH)
565		return true;
566
567	/* Check whether the xdr_buf has more elements than can
568	 * fit in a single RDMA Send.
569	 */
570	/* xdr->head */
571	elements = 1;
572
573	/* xdr->pages */
574	if (!rctxt || !rctxt->rc_write_list) {
575		unsigned int remaining;
576		unsigned long pageoff;
577
578		pageoff = xdr->page_base & ~PAGE_MASK;
579		remaining = xdr->page_len;
580		while (remaining) {
581			++elements;
582			remaining -= min_t(u32, PAGE_SIZE - pageoff,
583					   remaining);
584			pageoff = 0;
585		}
586	}
587
588	/* xdr->tail */
589	if (xdr->tail[0].iov_len)
590		++elements;
591
592	/* assume 1 SGE is needed for the transport header */
593	return elements >= rdma->sc_max_send_sges;
594}
595
596/**
597 * svc_rdma_pull_up_reply_msg - Copy Reply into a single buffer
598 * @rdma: controlling transport
599 * @sctxt: send_ctxt for the Send WR; xprt hdr is already prepared
600 * @rctxt: Write and Reply chunks provided by client
601 * @xdr: prepared xdr_buf containing RPC message
602 *
603 * The device is not capable of sending the reply directly.
604 * Assemble the elements of @xdr into the transport header buffer.
605 *
606 * Returns zero on success, or a negative errno on failure.
607 */
608static int svc_rdma_pull_up_reply_msg(struct svcxprt_rdma *rdma,
609				      struct svc_rdma_send_ctxt *sctxt,
610				      const struct svc_rdma_recv_ctxt *rctxt,
611				      const struct xdr_buf *xdr)
612{
613	unsigned char *dst, *tailbase;
614	unsigned int taillen;
615
616	dst = sctxt->sc_xprt_buf + sctxt->sc_hdrbuf.len;
617	memcpy(dst, xdr->head[0].iov_base, xdr->head[0].iov_len);
618	dst += xdr->head[0].iov_len;
619
620	tailbase = xdr->tail[0].iov_base;
621	taillen = xdr->tail[0].iov_len;
622	if (rctxt && rctxt->rc_write_list) {
623		u32 xdrpad;
624
625		xdrpad = xdr_pad_size(xdr->page_len);
626		if (taillen && xdrpad) {
627			tailbase += xdrpad;
628			taillen -= xdrpad;
629		}
630	} else {
631		unsigned int len, remaining;
632		unsigned long pageoff;
633		struct page **ppages;
634
635		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
636		pageoff = xdr->page_base & ~PAGE_MASK;
637		remaining = xdr->page_len;
638		while (remaining) {
639			len = min_t(u32, PAGE_SIZE - pageoff, remaining);
640
641			memcpy(dst, page_address(*ppages) + pageoff, len);
642			remaining -= len;
643			dst += len;
644			pageoff = 0;
645			ppages++;
646		}
647	}
648
649	if (taillen)
650		memcpy(dst, tailbase, taillen);
651
652	sctxt->sc_sges[0].length += xdr->len;
653	trace_svcrdma_send_pullup(sctxt->sc_sges[0].length);
654	return 0;
655}
656
657/* svc_rdma_map_reply_msg - DMA map the buffer holding RPC message
658 * @rdma: controlling transport
659 * @sctxt: send_ctxt for the Send WR
660 * @rctxt: Write and Reply chunks provided by client
661 * @xdr: prepared xdr_buf containing RPC message
662 *
663 * Load the xdr_buf into the ctxt's sge array, and DMA map each
664 * element as it is added. The Send WR's num_sge field is set.
665 *
666 * Returns zero on success, or a negative errno on failure.
667 */
668int svc_rdma_map_reply_msg(struct svcxprt_rdma *rdma,
669			   struct svc_rdma_send_ctxt *sctxt,
670			   const struct svc_rdma_recv_ctxt *rctxt,
671			   struct xdr_buf *xdr)
672{
673	unsigned int len, remaining;
674	unsigned long page_off;
675	struct page **ppages;
676	unsigned char *base;
677	u32 xdr_pad;
678	int ret;
679
680	/* Set up the (persistently-mapped) transport header SGE. */
681	sctxt->sc_send_wr.num_sge = 1;
682	sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len;
683
684	/* If there is a Reply chunk, nothing follows the transport
685	 * header, and we're done here.
686	 */
687	if (rctxt && rctxt->rc_reply_chunk)
688		return 0;
689
690	/* For pull-up, svc_rdma_send() will sync the transport header.
691	 * No additional DMA mapping is necessary.
692	 */
693	if (svc_rdma_pull_up_needed(rdma, sctxt, rctxt, xdr))
694		return svc_rdma_pull_up_reply_msg(rdma, sctxt, rctxt, xdr);
695
696	++sctxt->sc_cur_sge_no;
697	ret = svc_rdma_dma_map_buf(rdma, sctxt,
698				   xdr->head[0].iov_base,
699				   xdr->head[0].iov_len);
700	if (ret < 0)
701		return ret;
702
703	/* If a Write chunk is present, the xdr_buf's page list
704	 * is not included inline. However the Upper Layer may
705	 * have added XDR padding in the tail buffer, and that
706	 * should not be included inline.
707	 */
708	if (rctxt && rctxt->rc_write_list) {
709		base = xdr->tail[0].iov_base;
710		len = xdr->tail[0].iov_len;
711		xdr_pad = xdr_pad_size(xdr->page_len);
712
713		if (len && xdr_pad) {
714			base += xdr_pad;
715			len -= xdr_pad;
716		}
717
718		goto tail;
719	}
720
721	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
722	page_off = xdr->page_base & ~PAGE_MASK;
723	remaining = xdr->page_len;
724	while (remaining) {
725		len = min_t(u32, PAGE_SIZE - page_off, remaining);
726
727		++sctxt->sc_cur_sge_no;
728		ret = svc_rdma_dma_map_page(rdma, sctxt, *ppages++,
729					    page_off, len);
730		if (ret < 0)
731			return ret;
732
733		remaining -= len;
734		page_off = 0;
735	}
736
737	base = xdr->tail[0].iov_base;
738	len = xdr->tail[0].iov_len;
739tail:
740	if (len) {
741		++sctxt->sc_cur_sge_no;
742		ret = svc_rdma_dma_map_buf(rdma, sctxt, base, len);
743		if (ret < 0)
744			return ret;
745	}
746
747	return 0;
748}
749
750/* The svc_rqst and all resources it owns are released as soon as
751 * svc_rdma_sendto returns. Transfer pages under I/O to the ctxt
752 * so they are released by the Send completion handler.
753 */
754static void svc_rdma_save_io_pages(struct svc_rqst *rqstp,
755				   struct svc_rdma_send_ctxt *ctxt)
756{
757	int i, pages = rqstp->rq_next_page - rqstp->rq_respages;
758
759	ctxt->sc_page_count += pages;
760	for (i = 0; i < pages; i++) {
761		ctxt->sc_pages[i] = rqstp->rq_respages[i];
762		rqstp->rq_respages[i] = NULL;
763	}
764
765	/* Prevent svc_xprt_release from releasing pages in rq_pages */
766	rqstp->rq_next_page = rqstp->rq_respages;
767}
768
769/* Prepare the portion of the RPC Reply that will be transmitted
770 * via RDMA Send. The RPC-over-RDMA transport header is prepared
771 * in sc_sges[0], and the RPC xdr_buf is prepared in following sges.
772 *
773 * Depending on whether a Write list or Reply chunk is present,
774 * the server may send all, a portion of, or none of the xdr_buf.
775 * In the latter case, only the transport header (sc_sges[0]) is
776 * transmitted.
777 *
778 * RDMA Send is the last step of transmitting an RPC reply. Pages
779 * involved in the earlier RDMA Writes are here transferred out
780 * of the rqstp and into the sctxt's page array. These pages are
781 * DMA unmapped by each Write completion, but the subsequent Send
782 * completion finally releases these pages.
783 *
784 * Assumptions:
785 * - The Reply's transport header will never be larger than a page.
786 */
787static int svc_rdma_send_reply_msg(struct svcxprt_rdma *rdma,
788				   struct svc_rdma_send_ctxt *sctxt,
789				   const struct svc_rdma_recv_ctxt *rctxt,
790				   struct svc_rqst *rqstp)
791{
792	int ret;
793
794	ret = svc_rdma_map_reply_msg(rdma, sctxt, rctxt, &rqstp->rq_res);
795	if (ret < 0)
796		return ret;
797
798	svc_rdma_save_io_pages(rqstp, sctxt);
799
800	if (rctxt->rc_inv_rkey) {
801		sctxt->sc_send_wr.opcode = IB_WR_SEND_WITH_INV;
802		sctxt->sc_send_wr.ex.invalidate_rkey = rctxt->rc_inv_rkey;
803	} else {
804		sctxt->sc_send_wr.opcode = IB_WR_SEND;
805	}
806	return svc_rdma_send(rdma, sctxt);
807}
808
809/**
810 * svc_rdma_send_error_msg - Send an RPC/RDMA v1 error response
811 * @rdma: controlling transport context
812 * @sctxt: Send context for the response
813 * @rctxt: Receive context for incoming bad message
814 * @status: negative errno indicating error that occurred
815 *
816 * Given the client-provided Read, Write, and Reply chunks, the
817 * server was not able to parse the Call or form a complete Reply.
818 * Return an RDMA_ERROR message so the client can retire the RPC
819 * transaction.
820 *
821 * The caller does not have to release @sctxt. It is released by
822 * Send completion, or by this function on error.
823 */
824void svc_rdma_send_error_msg(struct svcxprt_rdma *rdma,
825			     struct svc_rdma_send_ctxt *sctxt,
826			     struct svc_rdma_recv_ctxt *rctxt,
827			     int status)
828{
829	__be32 *rdma_argp = rctxt->rc_recv_buf;
830	__be32 *p;
831
832	rpcrdma_set_xdrlen(&sctxt->sc_hdrbuf, 0);
833	xdr_init_encode(&sctxt->sc_stream, &sctxt->sc_hdrbuf,
834			sctxt->sc_xprt_buf, NULL);
835
836	p = xdr_reserve_space(&sctxt->sc_stream,
837			      rpcrdma_fixed_maxsz * sizeof(*p));
838	if (!p)
839		goto put_ctxt;
840
841	*p++ = *rdma_argp;
842	*p++ = *(rdma_argp + 1);
843	*p++ = rdma->sc_fc_credits;
844	*p = rdma_error;
845
846	switch (status) {
847	case -EPROTONOSUPPORT:
848		p = xdr_reserve_space(&sctxt->sc_stream, 3 * sizeof(*p));
849		if (!p)
850			goto put_ctxt;
851
852		*p++ = err_vers;
853		*p++ = rpcrdma_version;
854		*p = rpcrdma_version;
855		trace_svcrdma_err_vers(*rdma_argp);
856		break;
857	default:
858		p = xdr_reserve_space(&sctxt->sc_stream, sizeof(*p));
859		if (!p)
860			goto put_ctxt;
861
862		*p = err_chunk;
863		trace_svcrdma_err_chunk(*rdma_argp);
864	}
865
866	/* Remote Invalidation is skipped for simplicity. */
867	sctxt->sc_send_wr.num_sge = 1;
868	sctxt->sc_send_wr.opcode = IB_WR_SEND;
869	sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len;
870	if (svc_rdma_send(rdma, sctxt))
871		goto put_ctxt;
872	return;
873
874put_ctxt:
875	svc_rdma_send_ctxt_put(rdma, sctxt);
876}
877
878/**
879 * svc_rdma_sendto - Transmit an RPC reply
880 * @rqstp: processed RPC request, reply XDR already in ::rq_res
881 *
882 * Any resources still associated with @rqstp are released upon return.
883 * If no reply message was possible, the connection is closed.
884 *
885 * Returns:
886 *	%0 if an RPC reply has been successfully posted,
887 *	%-ENOMEM if a resource shortage occurred (connection is lost),
888 *	%-ENOTCONN if posting failed (connection is lost).
889 */
890int svc_rdma_sendto(struct svc_rqst *rqstp)
891{
892	struct svc_xprt *xprt = rqstp->rq_xprt;
893	struct svcxprt_rdma *rdma =
894		container_of(xprt, struct svcxprt_rdma, sc_xprt);
895	struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt;
896	__be32 *rdma_argp = rctxt->rc_recv_buf;
897	__be32 *wr_lst = rctxt->rc_write_list;
898	__be32 *rp_ch = rctxt->rc_reply_chunk;
899	struct xdr_buf *xdr = &rqstp->rq_res;
900	struct svc_rdma_send_ctxt *sctxt;
901	__be32 *p;
902	int ret;
903
904	ret = -ENOTCONN;
905	if (svc_xprt_is_dead(xprt))
906		goto err0;
907
908	ret = -ENOMEM;
909	sctxt = svc_rdma_send_ctxt_get(rdma);
910	if (!sctxt)
911		goto err0;
912
913	p = xdr_reserve_space(&sctxt->sc_stream,
914			      rpcrdma_fixed_maxsz * sizeof(*p));
915	if (!p)
916		goto err0;
917	*p++ = *rdma_argp;
918	*p++ = *(rdma_argp + 1);
919	*p++ = rdma->sc_fc_credits;
920	*p   = rp_ch ? rdma_nomsg : rdma_msg;
921
922	if (svc_rdma_encode_read_list(sctxt) < 0)
923		goto err0;
924	if (wr_lst) {
925		/* XXX: Presume the client sent only one Write chunk */
926		unsigned long offset;
927		unsigned int length;
928
929		if (rctxt->rc_read_payload_length) {
930			offset = rctxt->rc_read_payload_offset;
931			length = rctxt->rc_read_payload_length;
932		} else {
933			offset = xdr->head[0].iov_len;
934			length = xdr->page_len;
935		}
936		ret = svc_rdma_send_write_chunk(rdma, wr_lst, xdr, offset,
937						length);
938		if (ret < 0)
939			goto err2;
940		if (svc_rdma_encode_write_list(rctxt, sctxt, length) < 0)
941			goto err0;
942	} else {
943		if (xdr_stream_encode_item_absent(&sctxt->sc_stream) < 0)
944			goto err0;
945	}
946	if (rp_ch) {
947		ret = svc_rdma_send_reply_chunk(rdma, rctxt, &rqstp->rq_res);
948		if (ret < 0)
949			goto err2;
950		if (svc_rdma_encode_reply_chunk(rctxt, sctxt, ret) < 0)
951			goto err0;
952	} else {
953		if (xdr_stream_encode_item_absent(&sctxt->sc_stream) < 0)
954			goto err0;
955	}
956
957	ret = svc_rdma_send_reply_msg(rdma, sctxt, rctxt, rqstp);
958	if (ret < 0)
959		goto err1;
960	return 0;
961
962 err2:
963	if (ret != -E2BIG && ret != -EINVAL)
964		goto err1;
965
966	/* Send completion releases payload pages that were part
967	 * of previously posted RDMA Writes.
968	 */
969	svc_rdma_save_io_pages(rqstp, sctxt);
970	svc_rdma_send_error_msg(rdma, sctxt, rctxt, ret);
971	return 0;
972
973 err1:
974	svc_rdma_send_ctxt_put(rdma, sctxt);
975 err0:
976	trace_svcrdma_send_err(rqstp, ret);
977	set_bit(XPT_CLOSE, &xprt->xpt_flags);
978	return -ENOTCONN;
979}
980
981/**
982 * svc_rdma_read_payload - special processing for a READ payload
983 * @rqstp: svc_rqst to operate on
984 * @offset: payload's byte offset in @xdr
985 * @length: size of payload, in bytes
986 *
987 * Returns zero on success.
988 *
989 * For the moment, just record the xdr_buf location of the READ
990 * payload. svc_rdma_sendto will use that location later when
991 * we actually send the payload.
992 */
993int svc_rdma_read_payload(struct svc_rqst *rqstp, unsigned int offset,
994			  unsigned int length)
995{
996	struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt;
997
998	/* XXX: Just one READ payload slot for now, since our
999	 * transport implementation currently supports only one
1000	 * Write chunk.
1001	 */
1002	rctxt->rc_read_payload_offset = offset;
1003	rctxt->rc_read_payload_length = length;
1004
1005	return 0;
1006}
1007