1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016-2018 Oracle.  All rights reserved.
4 *
5 * Use the core R/W API to move RPC-over-RDMA Read and Write chunks.
6 */
7
8#include <rdma/rw.h>
9
10#include <linux/sunrpc/xdr.h>
11#include <linux/sunrpc/rpc_rdma.h>
12#include <linux/sunrpc/svc_rdma.h>
13
14#include "xprt_rdma.h"
15#include <trace/events/rpcrdma.h>
16
17static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc);
18static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc);
19
20/* Each R/W context contains state for one chain of RDMA Read or
21 * Write Work Requests.
22 *
23 * Each WR chain handles a single contiguous server-side buffer,
24 * because scatterlist entries after the first have to start on
25 * page alignment. xdr_buf iovecs cannot guarantee alignment.
26 *
27 * Each WR chain handles only one R_key. Each RPC-over-RDMA segment
28 * from a client may contain a unique R_key, so each WR chain moves
29 * up to one segment at a time.
30 *
31 * The scatterlist makes this data structure over 4KB in size. To
32 * make it less likely to fail, and to handle the allocation for
33 * smaller I/O requests without disabling bottom-halves, these
34 * contexts are created on demand, but cached and reused until the
35 * controlling svcxprt_rdma is destroyed.
36 */
37struct svc_rdma_rw_ctxt {
38	struct list_head	rw_list;
39	struct rdma_rw_ctx	rw_ctx;
40	unsigned int		rw_nents;
41	struct sg_table		rw_sg_table;
42	struct scatterlist	rw_first_sgl[];
43};
44
45static inline struct svc_rdma_rw_ctxt *
46svc_rdma_next_ctxt(struct list_head *list)
47{
48	return list_first_entry_or_null(list, struct svc_rdma_rw_ctxt,
49					rw_list);
50}
51
52static struct svc_rdma_rw_ctxt *
53svc_rdma_get_rw_ctxt(struct svcxprt_rdma *rdma, unsigned int sges)
54{
55	struct svc_rdma_rw_ctxt *ctxt;
56
57	spin_lock(&rdma->sc_rw_ctxt_lock);
58
59	ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts);
60	if (ctxt) {
61		list_del(&ctxt->rw_list);
62		spin_unlock(&rdma->sc_rw_ctxt_lock);
63	} else {
64		spin_unlock(&rdma->sc_rw_ctxt_lock);
65		ctxt = kmalloc(struct_size(ctxt, rw_first_sgl, SG_CHUNK_SIZE),
66			       GFP_KERNEL);
67		if (!ctxt)
68			goto out_noctx;
69		INIT_LIST_HEAD(&ctxt->rw_list);
70	}
71
72	ctxt->rw_sg_table.sgl = ctxt->rw_first_sgl;
73	if (sg_alloc_table_chained(&ctxt->rw_sg_table, sges,
74				   ctxt->rw_sg_table.sgl,
75				   SG_CHUNK_SIZE))
76		goto out_free;
77	return ctxt;
78
79out_free:
80	kfree(ctxt);
81out_noctx:
82	trace_svcrdma_no_rwctx_err(rdma, sges);
83	return NULL;
84}
85
86static void svc_rdma_put_rw_ctxt(struct svcxprt_rdma *rdma,
87				 struct svc_rdma_rw_ctxt *ctxt)
88{
89	sg_free_table_chained(&ctxt->rw_sg_table, SG_CHUNK_SIZE);
90
91	spin_lock(&rdma->sc_rw_ctxt_lock);
92	list_add(&ctxt->rw_list, &rdma->sc_rw_ctxts);
93	spin_unlock(&rdma->sc_rw_ctxt_lock);
94}
95
96/**
97 * svc_rdma_destroy_rw_ctxts - Free accumulated R/W contexts
98 * @rdma: transport about to be destroyed
99 *
100 */
101void svc_rdma_destroy_rw_ctxts(struct svcxprt_rdma *rdma)
102{
103	struct svc_rdma_rw_ctxt *ctxt;
104
105	while ((ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts)) != NULL) {
106		list_del(&ctxt->rw_list);
107		kfree(ctxt);
108	}
109}
110
111/**
112 * svc_rdma_rw_ctx_init - Prepare a R/W context for I/O
113 * @rdma: controlling transport instance
114 * @ctxt: R/W context to prepare
115 * @offset: RDMA offset
116 * @handle: RDMA tag/handle
117 * @direction: I/O direction
118 *
119 * Returns on success, the number of WQEs that will be needed
120 * on the workqueue, or a negative errno.
121 */
122static int svc_rdma_rw_ctx_init(struct svcxprt_rdma *rdma,
123				struct svc_rdma_rw_ctxt *ctxt,
124				u64 offset, u32 handle,
125				enum dma_data_direction direction)
126{
127	int ret;
128
129	ret = rdma_rw_ctx_init(&ctxt->rw_ctx, rdma->sc_qp, rdma->sc_port_num,
130			       ctxt->rw_sg_table.sgl, ctxt->rw_nents,
131			       0, offset, handle, direction);
132	if (unlikely(ret < 0)) {
133		svc_rdma_put_rw_ctxt(rdma, ctxt);
134		trace_svcrdma_dma_map_rw_err(rdma, ctxt->rw_nents, ret);
135	}
136	return ret;
137}
138
139/* A chunk context tracks all I/O for moving one Read or Write
140 * chunk. This is a set of rdma_rw's that handle data movement
141 * for all segments of one chunk.
142 *
143 * These are small, acquired with a single allocator call, and
144 * no more than one is needed per chunk. They are allocated on
145 * demand, and not cached.
146 */
147struct svc_rdma_chunk_ctxt {
148	struct rpc_rdma_cid	cc_cid;
149	struct ib_cqe		cc_cqe;
150	struct svcxprt_rdma	*cc_rdma;
151	struct list_head	cc_rwctxts;
152	int			cc_sqecount;
153};
154
155static void svc_rdma_cc_cid_init(struct svcxprt_rdma *rdma,
156				 struct rpc_rdma_cid *cid)
157{
158	cid->ci_queue_id = rdma->sc_sq_cq->res.id;
159	cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
160}
161
162static void svc_rdma_cc_init(struct svcxprt_rdma *rdma,
163			     struct svc_rdma_chunk_ctxt *cc)
164{
165	svc_rdma_cc_cid_init(rdma, &cc->cc_cid);
166	cc->cc_rdma = rdma;
167
168	INIT_LIST_HEAD(&cc->cc_rwctxts);
169	cc->cc_sqecount = 0;
170}
171
172static void svc_rdma_cc_release(struct svc_rdma_chunk_ctxt *cc,
173				enum dma_data_direction dir)
174{
175	struct svcxprt_rdma *rdma = cc->cc_rdma;
176	struct svc_rdma_rw_ctxt *ctxt;
177
178	while ((ctxt = svc_rdma_next_ctxt(&cc->cc_rwctxts)) != NULL) {
179		list_del(&ctxt->rw_list);
180
181		rdma_rw_ctx_destroy(&ctxt->rw_ctx, rdma->sc_qp,
182				    rdma->sc_port_num, ctxt->rw_sg_table.sgl,
183				    ctxt->rw_nents, dir);
184		svc_rdma_put_rw_ctxt(rdma, ctxt);
185	}
186}
187
188/* State for sending a Write or Reply chunk.
189 *  - Tracks progress of writing one chunk over all its segments
190 *  - Stores arguments for the SGL constructor functions
191 */
192struct svc_rdma_write_info {
193	/* write state of this chunk */
194	unsigned int		wi_seg_off;
195	unsigned int		wi_seg_no;
196	unsigned int		wi_nsegs;
197	__be32			*wi_segs;
198
199	/* SGL constructor arguments */
200	struct xdr_buf		*wi_xdr;
201	unsigned char		*wi_base;
202	unsigned int		wi_next_off;
203
204	struct svc_rdma_chunk_ctxt	wi_cc;
205};
206
207static struct svc_rdma_write_info *
208svc_rdma_write_info_alloc(struct svcxprt_rdma *rdma, __be32 *chunk)
209{
210	struct svc_rdma_write_info *info;
211
212	info = kmalloc(sizeof(*info), GFP_KERNEL);
213	if (!info)
214		return info;
215
216	info->wi_seg_off = 0;
217	info->wi_seg_no = 0;
218	info->wi_nsegs = be32_to_cpup(++chunk);
219	info->wi_segs = ++chunk;
220	svc_rdma_cc_init(rdma, &info->wi_cc);
221	info->wi_cc.cc_cqe.done = svc_rdma_write_done;
222	return info;
223}
224
225static void svc_rdma_write_info_free(struct svc_rdma_write_info *info)
226{
227	svc_rdma_cc_release(&info->wi_cc, DMA_TO_DEVICE);
228	kfree(info);
229}
230
231/**
232 * svc_rdma_write_done - Write chunk completion
233 * @cq: controlling Completion Queue
234 * @wc: Work Completion
235 *
236 * Pages under I/O are freed by a subsequent Send completion.
237 */
238static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
239{
240	struct ib_cqe *cqe = wc->wr_cqe;
241	struct svc_rdma_chunk_ctxt *cc =
242			container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
243	struct svcxprt_rdma *rdma = cc->cc_rdma;
244	struct svc_rdma_write_info *info =
245			container_of(cc, struct svc_rdma_write_info, wi_cc);
246
247	trace_svcrdma_wc_write(wc, &cc->cc_cid);
248
249	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
250	wake_up(&rdma->sc_send_wait);
251
252	if (unlikely(wc->status != IB_WC_SUCCESS))
253		set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
254
255	svc_rdma_write_info_free(info);
256}
257
258/* State for pulling a Read chunk.
259 */
260struct svc_rdma_read_info {
261	struct svc_rdma_recv_ctxt	*ri_readctxt;
262	unsigned int			ri_position;
263	unsigned int			ri_pageno;
264	unsigned int			ri_pageoff;
265	unsigned int			ri_chunklen;
266
267	struct svc_rdma_chunk_ctxt	ri_cc;
268};
269
270static struct svc_rdma_read_info *
271svc_rdma_read_info_alloc(struct svcxprt_rdma *rdma)
272{
273	struct svc_rdma_read_info *info;
274
275	info = kmalloc(sizeof(*info), GFP_KERNEL);
276	if (!info)
277		return info;
278
279	svc_rdma_cc_init(rdma, &info->ri_cc);
280	info->ri_cc.cc_cqe.done = svc_rdma_wc_read_done;
281	return info;
282}
283
284static void svc_rdma_read_info_free(struct svc_rdma_read_info *info)
285{
286	svc_rdma_cc_release(&info->ri_cc, DMA_FROM_DEVICE);
287	kfree(info);
288}
289
290/**
291 * svc_rdma_wc_read_done - Handle completion of an RDMA Read ctx
292 * @cq: controlling Completion Queue
293 * @wc: Work Completion
294 *
295 */
296static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc)
297{
298	struct ib_cqe *cqe = wc->wr_cqe;
299	struct svc_rdma_chunk_ctxt *cc =
300			container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
301	struct svcxprt_rdma *rdma = cc->cc_rdma;
302	struct svc_rdma_read_info *info =
303			container_of(cc, struct svc_rdma_read_info, ri_cc);
304
305	trace_svcrdma_wc_read(wc, &cc->cc_cid);
306
307	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
308	wake_up(&rdma->sc_send_wait);
309
310	if (unlikely(wc->status != IB_WC_SUCCESS)) {
311		set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
312		svc_rdma_recv_ctxt_put(rdma, info->ri_readctxt);
313	} else {
314		spin_lock(&rdma->sc_rq_dto_lock);
315		list_add_tail(&info->ri_readctxt->rc_list,
316			      &rdma->sc_read_complete_q);
317		/* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
318		set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
319		spin_unlock(&rdma->sc_rq_dto_lock);
320
321		svc_xprt_enqueue(&rdma->sc_xprt);
322	}
323
324	svc_rdma_read_info_free(info);
325}
326
327/* This function sleeps when the transport's Send Queue is congested.
328 *
329 * Assumptions:
330 * - If ib_post_send() succeeds, only one completion is expected,
331 *   even if one or more WRs are flushed. This is true when posting
332 *   an rdma_rw_ctx or when posting a single signaled WR.
333 */
334static int svc_rdma_post_chunk_ctxt(struct svc_rdma_chunk_ctxt *cc)
335{
336	struct svcxprt_rdma *rdma = cc->cc_rdma;
337	struct svc_xprt *xprt = &rdma->sc_xprt;
338	struct ib_send_wr *first_wr;
339	const struct ib_send_wr *bad_wr;
340	struct list_head *tmp;
341	struct ib_cqe *cqe;
342	int ret;
343
344	if (cc->cc_sqecount > rdma->sc_sq_depth)
345		return -EINVAL;
346
347	first_wr = NULL;
348	cqe = &cc->cc_cqe;
349	list_for_each(tmp, &cc->cc_rwctxts) {
350		struct svc_rdma_rw_ctxt *ctxt;
351
352		ctxt = list_entry(tmp, struct svc_rdma_rw_ctxt, rw_list);
353		first_wr = rdma_rw_ctx_wrs(&ctxt->rw_ctx, rdma->sc_qp,
354					   rdma->sc_port_num, cqe, first_wr);
355		cqe = NULL;
356	}
357
358	do {
359		if (atomic_sub_return(cc->cc_sqecount,
360				      &rdma->sc_sq_avail) > 0) {
361			trace_svcrdma_post_chunk(&cc->cc_cid, cc->cc_sqecount);
362			ret = ib_post_send(rdma->sc_qp, first_wr, &bad_wr);
363			if (ret)
364				break;
365			return 0;
366		}
367
368		trace_svcrdma_sq_full(rdma);
369		atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
370		wait_event(rdma->sc_send_wait,
371			   atomic_read(&rdma->sc_sq_avail) > cc->cc_sqecount);
372		trace_svcrdma_sq_retry(rdma);
373	} while (1);
374
375	trace_svcrdma_sq_post_err(rdma, ret);
376	set_bit(XPT_CLOSE, &xprt->xpt_flags);
377
378	/* If even one was posted, there will be a completion. */
379	if (bad_wr != first_wr)
380		return 0;
381
382	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
383	wake_up(&rdma->sc_send_wait);
384	return -ENOTCONN;
385}
386
387/* Build and DMA-map an SGL that covers one kvec in an xdr_buf
388 */
389static void svc_rdma_vec_to_sg(struct svc_rdma_write_info *info,
390			       unsigned int len,
391			       struct svc_rdma_rw_ctxt *ctxt)
392{
393	struct scatterlist *sg = ctxt->rw_sg_table.sgl;
394
395	sg_set_buf(&sg[0], info->wi_base, len);
396	info->wi_base += len;
397
398	ctxt->rw_nents = 1;
399}
400
401/* Build and DMA-map an SGL that covers part of an xdr_buf's pagelist.
402 */
403static void svc_rdma_pagelist_to_sg(struct svc_rdma_write_info *info,
404				    unsigned int remaining,
405				    struct svc_rdma_rw_ctxt *ctxt)
406{
407	unsigned int sge_no, sge_bytes, page_off, page_no;
408	struct xdr_buf *xdr = info->wi_xdr;
409	struct scatterlist *sg;
410	struct page **page;
411
412	page_off = info->wi_next_off + xdr->page_base;
413	page_no = page_off >> PAGE_SHIFT;
414	page_off = offset_in_page(page_off);
415	page = xdr->pages + page_no;
416	info->wi_next_off += remaining;
417	sg = ctxt->rw_sg_table.sgl;
418	sge_no = 0;
419	do {
420		sge_bytes = min_t(unsigned int, remaining,
421				  PAGE_SIZE - page_off);
422		sg_set_page(sg, *page, sge_bytes, page_off);
423
424		remaining -= sge_bytes;
425		sg = sg_next(sg);
426		page_off = 0;
427		sge_no++;
428		page++;
429	} while (remaining);
430
431	ctxt->rw_nents = sge_no;
432}
433
434/* Construct RDMA Write WRs to send a portion of an xdr_buf containing
435 * an RPC Reply.
436 */
437static int
438svc_rdma_build_writes(struct svc_rdma_write_info *info,
439		      void (*constructor)(struct svc_rdma_write_info *info,
440					  unsigned int len,
441					  struct svc_rdma_rw_ctxt *ctxt),
442		      unsigned int remaining)
443{
444	struct svc_rdma_chunk_ctxt *cc = &info->wi_cc;
445	struct svcxprt_rdma *rdma = cc->cc_rdma;
446	struct svc_rdma_rw_ctxt *ctxt;
447	__be32 *seg;
448	int ret;
449
450	seg = info->wi_segs + info->wi_seg_no * rpcrdma_segment_maxsz;
451	do {
452		unsigned int write_len;
453		u32 handle, length;
454		u64 offset;
455
456		if (info->wi_seg_no >= info->wi_nsegs)
457			goto out_overflow;
458
459		xdr_decode_rdma_segment(seg, &handle, &length, &offset);
460		offset += info->wi_seg_off;
461
462		write_len = min(remaining, length - info->wi_seg_off);
463		ctxt = svc_rdma_get_rw_ctxt(rdma,
464					    (write_len >> PAGE_SHIFT) + 2);
465		if (!ctxt)
466			return -ENOMEM;
467
468		constructor(info, write_len, ctxt);
469		ret = svc_rdma_rw_ctx_init(rdma, ctxt, offset, handle,
470					   DMA_TO_DEVICE);
471		if (ret < 0)
472			return -EIO;
473
474		trace_svcrdma_send_wseg(handle, write_len, offset);
475
476		list_add(&ctxt->rw_list, &cc->cc_rwctxts);
477		cc->cc_sqecount += ret;
478		if (write_len == length - info->wi_seg_off) {
479			seg += 4;
480			info->wi_seg_no++;
481			info->wi_seg_off = 0;
482		} else {
483			info->wi_seg_off += write_len;
484		}
485		remaining -= write_len;
486	} while (remaining);
487
488	return 0;
489
490out_overflow:
491	trace_svcrdma_small_wrch_err(rdma, remaining, info->wi_seg_no,
492				     info->wi_nsegs);
493	return -E2BIG;
494}
495
496/* Send one of an xdr_buf's kvecs by itself. To send a Reply
497 * chunk, the whole RPC Reply is written back to the client.
498 * This function writes either the head or tail of the xdr_buf
499 * containing the Reply.
500 */
501static int svc_rdma_send_xdr_kvec(struct svc_rdma_write_info *info,
502				  struct kvec *vec)
503{
504	info->wi_base = vec->iov_base;
505	return svc_rdma_build_writes(info, svc_rdma_vec_to_sg,
506				     vec->iov_len);
507}
508
509/* Send an xdr_buf's page list by itself. A Write chunk is just
510 * the page list. A Reply chunk is @xdr's head, page list, and
511 * tail. This function is shared between the two types of chunk.
512 */
513static int svc_rdma_send_xdr_pagelist(struct svc_rdma_write_info *info,
514				      struct xdr_buf *xdr,
515				      unsigned int offset,
516				      unsigned long length)
517{
518	info->wi_xdr = xdr;
519	info->wi_next_off = offset - xdr->head[0].iov_len;
520	return svc_rdma_build_writes(info, svc_rdma_pagelist_to_sg,
521				     length);
522}
523
524/**
525 * svc_rdma_send_write_chunk - Write all segments in a Write chunk
526 * @rdma: controlling RDMA transport
527 * @wr_ch: Write chunk provided by client
528 * @xdr: xdr_buf containing the data payload
529 * @offset: payload's byte offset in @xdr
530 * @length: size of payload, in bytes
531 *
532 * Returns a non-negative number of bytes the chunk consumed, or
533 *	%-E2BIG if the payload was larger than the Write chunk,
534 *	%-EINVAL if client provided too many segments,
535 *	%-ENOMEM if rdma_rw context pool was exhausted,
536 *	%-ENOTCONN if posting failed (connection is lost),
537 *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
538 */
539int svc_rdma_send_write_chunk(struct svcxprt_rdma *rdma, __be32 *wr_ch,
540			      struct xdr_buf *xdr,
541			      unsigned int offset, unsigned long length)
542{
543	struct svc_rdma_write_info *info;
544	int ret;
545
546	if (!length)
547		return 0;
548
549	info = svc_rdma_write_info_alloc(rdma, wr_ch);
550	if (!info)
551		return -ENOMEM;
552
553	ret = svc_rdma_send_xdr_pagelist(info, xdr, offset, length);
554	if (ret < 0)
555		goto out_err;
556
557	ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
558	if (ret < 0)
559		goto out_err;
560
561	trace_svcrdma_send_write_chunk(xdr->page_len);
562	return length;
563
564out_err:
565	svc_rdma_write_info_free(info);
566	return ret;
567}
568
569/**
570 * svc_rdma_send_reply_chunk - Write all segments in the Reply chunk
571 * @rdma: controlling RDMA transport
572 * @rctxt: Write and Reply chunks from client
573 * @xdr: xdr_buf containing an RPC Reply
574 *
575 * Returns a non-negative number of bytes the chunk consumed, or
576 *	%-E2BIG if the payload was larger than the Reply chunk,
577 *	%-EINVAL if client provided too many segments,
578 *	%-ENOMEM if rdma_rw context pool was exhausted,
579 *	%-ENOTCONN if posting failed (connection is lost),
580 *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
581 */
582int svc_rdma_send_reply_chunk(struct svcxprt_rdma *rdma,
583			      const struct svc_rdma_recv_ctxt *rctxt,
584			      struct xdr_buf *xdr)
585{
586	struct svc_rdma_write_info *info;
587	int consumed, ret;
588
589	info = svc_rdma_write_info_alloc(rdma, rctxt->rc_reply_chunk);
590	if (!info)
591		return -ENOMEM;
592
593	ret = svc_rdma_send_xdr_kvec(info, &xdr->head[0]);
594	if (ret < 0)
595		goto out_err;
596	consumed = xdr->head[0].iov_len;
597
598	/* Send the page list in the Reply chunk only if the
599	 * client did not provide Write chunks.
600	 */
601	if (!rctxt->rc_write_list && xdr->page_len) {
602		ret = svc_rdma_send_xdr_pagelist(info, xdr,
603						 xdr->head[0].iov_len,
604						 xdr->page_len);
605		if (ret < 0)
606			goto out_err;
607		consumed += xdr->page_len;
608	}
609
610	if (xdr->tail[0].iov_len) {
611		ret = svc_rdma_send_xdr_kvec(info, &xdr->tail[0]);
612		if (ret < 0)
613			goto out_err;
614		consumed += xdr->tail[0].iov_len;
615	}
616
617	ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
618	if (ret < 0)
619		goto out_err;
620
621	trace_svcrdma_send_reply_chunk(consumed);
622	return consumed;
623
624out_err:
625	svc_rdma_write_info_free(info);
626	return ret;
627}
628
629static int svc_rdma_build_read_segment(struct svc_rdma_read_info *info,
630				       struct svc_rqst *rqstp,
631				       u32 rkey, u32 len, u64 offset)
632{
633	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
634	struct svc_rdma_chunk_ctxt *cc = &info->ri_cc;
635	struct svc_rdma_rw_ctxt *ctxt;
636	unsigned int sge_no, seg_len;
637	struct scatterlist *sg;
638	int ret;
639
640	sge_no = PAGE_ALIGN(info->ri_pageoff + len) >> PAGE_SHIFT;
641	ctxt = svc_rdma_get_rw_ctxt(cc->cc_rdma, sge_no);
642	if (!ctxt)
643		return -ENOMEM;
644	ctxt->rw_nents = sge_no;
645
646	sg = ctxt->rw_sg_table.sgl;
647	for (sge_no = 0; sge_no < ctxt->rw_nents; sge_no++) {
648		seg_len = min_t(unsigned int, len,
649				PAGE_SIZE - info->ri_pageoff);
650
651		head->rc_arg.pages[info->ri_pageno] =
652			rqstp->rq_pages[info->ri_pageno];
653		if (!info->ri_pageoff)
654			head->rc_page_count++;
655
656		sg_set_page(sg, rqstp->rq_pages[info->ri_pageno],
657			    seg_len, info->ri_pageoff);
658		sg = sg_next(sg);
659
660		info->ri_pageoff += seg_len;
661		if (info->ri_pageoff == PAGE_SIZE) {
662			info->ri_pageno++;
663			info->ri_pageoff = 0;
664		}
665		len -= seg_len;
666
667		/* Safety check */
668		if (len &&
669		    &rqstp->rq_pages[info->ri_pageno + 1] > rqstp->rq_page_end)
670			goto out_overrun;
671	}
672
673	ret = svc_rdma_rw_ctx_init(cc->cc_rdma, ctxt, offset, rkey,
674				   DMA_FROM_DEVICE);
675	if (ret < 0)
676		return -EIO;
677
678	list_add(&ctxt->rw_list, &cc->cc_rwctxts);
679	cc->cc_sqecount += ret;
680	return 0;
681
682out_overrun:
683	trace_svcrdma_page_overrun_err(cc->cc_rdma, rqstp, info->ri_pageno);
684	return -EINVAL;
685}
686
687/* Walk the segments in the Read chunk starting at @p and construct
688 * RDMA Read operations to pull the chunk to the server.
689 */
690static int svc_rdma_build_read_chunk(struct svc_rqst *rqstp,
691				     struct svc_rdma_read_info *info,
692				     __be32 *p)
693{
694	int ret;
695
696	ret = -EINVAL;
697	info->ri_chunklen = 0;
698	while (*p++ != xdr_zero && be32_to_cpup(p++) == info->ri_position) {
699		u32 handle, length;
700		u64 offset;
701
702		p = xdr_decode_rdma_segment(p, &handle, &length, &offset);
703		ret = svc_rdma_build_read_segment(info, rqstp, handle, length,
704						  offset);
705		if (ret < 0)
706			break;
707
708		trace_svcrdma_send_rseg(handle, length, offset);
709		info->ri_chunklen += length;
710	}
711
712	return ret;
713}
714
715/* Construct RDMA Reads to pull over a normal Read chunk. The chunk
716 * data lands in the page list of head->rc_arg.pages.
717 *
718 * Currently NFSD does not look at the head->rc_arg.tail[0] iovec.
719 * Therefore, XDR round-up of the Read chunk and trailing
720 * inline content must both be added at the end of the pagelist.
721 */
722static int svc_rdma_build_normal_read_chunk(struct svc_rqst *rqstp,
723					    struct svc_rdma_read_info *info,
724					    __be32 *p)
725{
726	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
727	int ret;
728
729	ret = svc_rdma_build_read_chunk(rqstp, info, p);
730	if (ret < 0)
731		goto out;
732
733	trace_svcrdma_send_read_chunk(info->ri_chunklen, info->ri_position);
734
735	head->rc_hdr_count = 0;
736
737	/* Split the Receive buffer between the head and tail
738	 * buffers at Read chunk's position. XDR roundup of the
739	 * chunk is not included in either the pagelist or in
740	 * the tail.
741	 */
742	head->rc_arg.tail[0].iov_base =
743		head->rc_arg.head[0].iov_base + info->ri_position;
744	head->rc_arg.tail[0].iov_len =
745		head->rc_arg.head[0].iov_len - info->ri_position;
746	head->rc_arg.head[0].iov_len = info->ri_position;
747
748	/* Read chunk may need XDR roundup (see RFC 8166, s. 3.4.5.2).
749	 *
750	 * If the client already rounded up the chunk length, the
751	 * length does not change. Otherwise, the length of the page
752	 * list is increased to include XDR round-up.
753	 *
754	 * Currently these chunks always start at page offset 0,
755	 * thus the rounded-up length never crosses a page boundary.
756	 */
757	info->ri_chunklen = XDR_QUADLEN(info->ri_chunklen) << 2;
758
759	head->rc_arg.page_len = info->ri_chunklen;
760	head->rc_arg.len += info->ri_chunklen;
761	head->rc_arg.buflen += info->ri_chunklen;
762
763out:
764	return ret;
765}
766
767/* Construct RDMA Reads to pull over a Position Zero Read chunk.
768 * The start of the data lands in the first page just after
769 * the Transport header, and the rest lands in the page list of
770 * head->rc_arg.pages.
771 *
772 * Assumptions:
773 *	- A PZRC has an XDR-aligned length (no implicit round-up).
774 *	- There can be no trailing inline content (IOW, we assume
775 *	  a PZRC is never sent in an RDMA_MSG message, though it's
776 *	  allowed by spec).
777 */
778static int svc_rdma_build_pz_read_chunk(struct svc_rqst *rqstp,
779					struct svc_rdma_read_info *info,
780					__be32 *p)
781{
782	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
783	int ret;
784
785	ret = svc_rdma_build_read_chunk(rqstp, info, p);
786	if (ret < 0)
787		goto out;
788
789	trace_svcrdma_send_pzr(info->ri_chunklen);
790
791	head->rc_arg.len += info->ri_chunklen;
792	head->rc_arg.buflen += info->ri_chunklen;
793
794	head->rc_hdr_count = 1;
795	head->rc_arg.head[0].iov_base = page_address(head->rc_pages[0]);
796	head->rc_arg.head[0].iov_len = min_t(size_t, PAGE_SIZE,
797					     info->ri_chunklen);
798
799	head->rc_arg.page_len = info->ri_chunklen -
800				head->rc_arg.head[0].iov_len;
801
802out:
803	return ret;
804}
805
806/* Pages under I/O have been copied to head->rc_pages. Ensure they
807 * are not released by svc_xprt_release() until the I/O is complete.
808 *
809 * This has to be done after all Read WRs are constructed to properly
810 * handle a page that is part of I/O on behalf of two different RDMA
811 * segments.
812 *
813 * Do this only if I/O has been posted. Otherwise, we do indeed want
814 * svc_xprt_release() to clean things up properly.
815 */
816static void svc_rdma_save_io_pages(struct svc_rqst *rqstp,
817				   const unsigned int start,
818				   const unsigned int num_pages)
819{
820	unsigned int i;
821
822	for (i = start; i < num_pages + start; i++)
823		rqstp->rq_pages[i] = NULL;
824}
825
826/**
827 * svc_rdma_recv_read_chunk - Pull a Read chunk from the client
828 * @rdma: controlling RDMA transport
829 * @rqstp: set of pages to use as Read sink buffers
830 * @head: pages under I/O collect here
831 * @p: pointer to start of Read chunk
832 *
833 * Returns:
834 *	%0 if all needed RDMA Reads were posted successfully,
835 *	%-EINVAL if client provided too many segments,
836 *	%-ENOMEM if rdma_rw context pool was exhausted,
837 *	%-ENOTCONN if posting failed (connection is lost),
838 *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
839 *
840 * Assumptions:
841 * - All Read segments in @p have the same Position value.
842 */
843int svc_rdma_recv_read_chunk(struct svcxprt_rdma *rdma, struct svc_rqst *rqstp,
844			     struct svc_rdma_recv_ctxt *head, __be32 *p)
845{
846	struct svc_rdma_read_info *info;
847	int ret;
848
849	/* The request (with page list) is constructed in
850	 * head->rc_arg. Pages involved with RDMA Read I/O are
851	 * transferred there.
852	 */
853	head->rc_arg.head[0] = rqstp->rq_arg.head[0];
854	head->rc_arg.tail[0] = rqstp->rq_arg.tail[0];
855	head->rc_arg.pages = head->rc_pages;
856	head->rc_arg.page_base = 0;
857	head->rc_arg.page_len = 0;
858	head->rc_arg.len = rqstp->rq_arg.len;
859	head->rc_arg.buflen = rqstp->rq_arg.buflen;
860
861	info = svc_rdma_read_info_alloc(rdma);
862	if (!info)
863		return -ENOMEM;
864	info->ri_readctxt = head;
865	info->ri_pageno = 0;
866	info->ri_pageoff = 0;
867
868	info->ri_position = be32_to_cpup(p + 1);
869	if (info->ri_position)
870		ret = svc_rdma_build_normal_read_chunk(rqstp, info, p);
871	else
872		ret = svc_rdma_build_pz_read_chunk(rqstp, info, p);
873	if (ret < 0)
874		goto out_err;
875
876	ret = svc_rdma_post_chunk_ctxt(&info->ri_cc);
877	if (ret < 0)
878		goto out_err;
879	svc_rdma_save_io_pages(rqstp, 0, head->rc_page_count);
880	return 0;
881
882out_err:
883	svc_rdma_read_info_free(info);
884	return ret;
885}
886