1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 */
6
7/* Lightweight memory registration using Fast Registration Work
8 * Requests (FRWR).
9 *
10 * FRWR features ordered asynchronous registration and invalidation
11 * of arbitrarily-sized memory regions. This is the fastest and safest
12 * but most complex memory registration mode.
13 */
14
15/* Normal operation
16 *
17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18 * Work Request (frwr_map). When the RDMA operation is finished, this
19 * Memory Region is invalidated using a LOCAL_INV Work Request
20 * (frwr_unmap_async and frwr_unmap_sync).
21 *
22 * Typically FAST_REG Work Requests are not signaled, and neither are
23 * RDMA Send Work Requests (with the exception of signaling occasionally
24 * to prevent provider work queue overflows). This greatly reduces HCA
25 * interrupt workload.
26 */
27
28/* Transport recovery
29 *
30 * frwr_map and frwr_unmap_* cannot run at the same time the transport
31 * connect worker is running. The connect worker holds the transport
32 * send lock, just as ->send_request does. This prevents frwr_map and
33 * the connect worker from running concurrently. When a connection is
34 * closed, the Receive completion queue is drained before the allowing
35 * the connect worker to get control. This prevents frwr_unmap and the
36 * connect worker from running concurrently.
37 *
38 * When the underlying transport disconnects, MRs that are in flight
39 * are flushed and are likely unusable. Thus all MRs are destroyed.
40 * New MRs are created on demand.
41 */
42
43#include <linux/sunrpc/svc_rdma.h>
44
45#include "xprt_rdma.h"
46#include <trace/events/rpcrdma.h>
47
48#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49# define RPCDBG_FACILITY	RPCDBG_TRANS
50#endif
51
52/**
53 * frwr_release_mr - Destroy one MR
54 * @mr: MR allocated by frwr_mr_init
55 *
56 */
57void frwr_release_mr(struct rpcrdma_mr *mr)
58{
59	int rc;
60
61	rc = ib_dereg_mr(mr->frwr.fr_mr);
62	if (rc)
63		trace_xprtrdma_frwr_dereg(mr, rc);
64	kfree(mr->mr_sg);
65	kfree(mr);
66}
67
68static void frwr_mr_recycle(struct rpcrdma_mr *mr)
69{
70	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
71
72	trace_xprtrdma_mr_recycle(mr);
73
74	if (mr->mr_dir != DMA_NONE) {
75		trace_xprtrdma_mr_unmap(mr);
76		ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
77				mr->mr_sg, mr->mr_nents, mr->mr_dir);
78		mr->mr_dir = DMA_NONE;
79	}
80
81	spin_lock(&r_xprt->rx_buf.rb_lock);
82	list_del(&mr->mr_all);
83	r_xprt->rx_stats.mrs_recycled++;
84	spin_unlock(&r_xprt->rx_buf.rb_lock);
85
86	frwr_release_mr(mr);
87}
88
89/* frwr_reset - Place MRs back on the free list
90 * @req: request to reset
91 *
92 * Used after a failed marshal. For FRWR, this means the MRs
93 * don't have to be fully released and recreated.
94 *
95 * NB: This is safe only as long as none of @req's MRs are
96 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
97 * Work Request.
98 */
99void frwr_reset(struct rpcrdma_req *req)
100{
101	struct rpcrdma_mr *mr;
102
103	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
104		rpcrdma_mr_put(mr);
105}
106
107/**
108 * frwr_mr_init - Initialize one MR
109 * @r_xprt: controlling transport instance
110 * @mr: generic MR to prepare for FRWR
111 *
112 * Returns zero if successful. Otherwise a negative errno
113 * is returned.
114 */
115int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
116{
117	struct rpcrdma_ep *ep = r_xprt->rx_ep;
118	unsigned int depth = ep->re_max_fr_depth;
119	struct scatterlist *sg;
120	struct ib_mr *frmr;
121	int rc;
122
123	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
124	if (IS_ERR(frmr))
125		goto out_mr_err;
126
127	sg = kmalloc_array(depth, sizeof(*sg), GFP_NOFS);
128	if (!sg)
129		goto out_list_err;
130
131	mr->mr_xprt = r_xprt;
132	mr->frwr.fr_mr = frmr;
133	mr->mr_dir = DMA_NONE;
134	INIT_LIST_HEAD(&mr->mr_list);
135	init_completion(&mr->frwr.fr_linv_done);
136
137	sg_init_table(sg, depth);
138	mr->mr_sg = sg;
139	return 0;
140
141out_mr_err:
142	rc = PTR_ERR(frmr);
143	trace_xprtrdma_frwr_alloc(mr, rc);
144	return rc;
145
146out_list_err:
147	ib_dereg_mr(frmr);
148	return -ENOMEM;
149}
150
151/**
152 * frwr_query_device - Prepare a transport for use with FRWR
153 * @ep: endpoint to fill in
154 * @device: RDMA device to query
155 *
156 * On success, sets:
157 *	ep->re_attr
158 *	ep->re_max_requests
159 *	ep->re_max_rdma_segs
160 *	ep->re_max_fr_depth
161 *	ep->re_mrtype
162 *
163 * Return values:
164 *   On success, returns zero.
165 *   %-EINVAL - the device does not support FRWR memory registration
166 *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
167 */
168int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
169{
170	const struct ib_device_attr *attrs = &device->attrs;
171	int max_qp_wr, depth, delta;
172	unsigned int max_sge;
173
174	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
175	    attrs->max_fast_reg_page_list_len == 0) {
176		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
177		       device->name);
178		return -EINVAL;
179	}
180
181	max_sge = min_t(unsigned int, attrs->max_send_sge,
182			RPCRDMA_MAX_SEND_SGES);
183	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
184		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
185		return -ENOMEM;
186	}
187	ep->re_attr.cap.max_send_sge = max_sge;
188	ep->re_attr.cap.max_recv_sge = 1;
189
190	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
191	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
192		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
193
194	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
195	 * capability, but perform optimally when the MRs are not larger
196	 * than a page.
197	 */
198	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
199		ep->re_max_fr_depth = attrs->max_sge_rd;
200	else
201		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
202	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
203		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
204
205	/* Add room for frwr register and invalidate WRs.
206	 * 1. FRWR reg WR for head
207	 * 2. FRWR invalidate WR for head
208	 * 3. N FRWR reg WRs for pagelist
209	 * 4. N FRWR invalidate WRs for pagelist
210	 * 5. FRWR reg WR for tail
211	 * 6. FRWR invalidate WR for tail
212	 * 7. The RDMA_SEND WR
213	 */
214	depth = 7;
215
216	/* Calculate N if the device max FRWR depth is smaller than
217	 * RPCRDMA_MAX_DATA_SEGS.
218	 */
219	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
220		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
221		do {
222			depth += 2; /* FRWR reg + invalidate */
223			delta -= ep->re_max_fr_depth;
224		} while (delta > 0);
225	}
226
227	max_qp_wr = attrs->max_qp_wr;
228	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
229	max_qp_wr -= 1;
230	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
231		return -ENOMEM;
232	if (ep->re_max_requests > max_qp_wr)
233		ep->re_max_requests = max_qp_wr;
234	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
235	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
236		ep->re_max_requests = max_qp_wr / depth;
237		if (!ep->re_max_requests)
238			return -ENOMEM;
239		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
240	}
241	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
242	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
243	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
244	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
245	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
246	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
247
248	ep->re_max_rdma_segs =
249		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
250	/* Reply chunks require segments for head and tail buffers */
251	ep->re_max_rdma_segs += 2;
252	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
253		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
254
255	/* Ensure the underlying device is capable of conveying the
256	 * largest r/wsize NFS will ask for. This guarantees that
257	 * failing over from one RDMA device to another will not
258	 * break NFS I/O.
259	 */
260	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
261		return -ENOMEM;
262
263	return 0;
264}
265
266/**
267 * frwr_map - Register a memory region
268 * @r_xprt: controlling transport
269 * @seg: memory region co-ordinates
270 * @nsegs: number of segments remaining
271 * @writing: true when RDMA Write will be used
272 * @xid: XID of RPC using the registered memory
273 * @mr: MR to fill in
274 *
275 * Prepare a REG_MR Work Request to register a memory region
276 * for remote access via RDMA READ or RDMA WRITE.
277 *
278 * Returns the next segment or a negative errno pointer.
279 * On success, @mr is filled in.
280 */
281struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
282				struct rpcrdma_mr_seg *seg,
283				int nsegs, bool writing, __be32 xid,
284				struct rpcrdma_mr *mr)
285{
286	struct rpcrdma_ep *ep = r_xprt->rx_ep;
287	struct ib_reg_wr *reg_wr;
288	int i, n, dma_nents;
289	struct ib_mr *ibmr;
290	u8 key;
291
292	if (nsegs > ep->re_max_fr_depth)
293		nsegs = ep->re_max_fr_depth;
294	for (i = 0; i < nsegs;) {
295		if (seg->mr_page)
296			sg_set_page(&mr->mr_sg[i],
297				    seg->mr_page,
298				    seg->mr_len,
299				    offset_in_page(seg->mr_offset));
300		else
301			sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
302				   seg->mr_len);
303
304		++seg;
305		++i;
306		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
307			continue;
308		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
309		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
310			break;
311	}
312	mr->mr_dir = rpcrdma_data_dir(writing);
313	mr->mr_nents = i;
314
315	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
316				  mr->mr_dir);
317	if (!dma_nents)
318		goto out_dmamap_err;
319
320	ibmr = mr->frwr.fr_mr;
321	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
322	if (n != dma_nents)
323		goto out_mapmr_err;
324
325	ibmr->iova &= 0x00000000ffffffff;
326	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
327	key = (u8)(ibmr->rkey & 0x000000FF);
328	ib_update_fast_reg_key(ibmr, ++key);
329
330	reg_wr = &mr->frwr.fr_regwr;
331	reg_wr->mr = ibmr;
332	reg_wr->key = ibmr->rkey;
333	reg_wr->access = writing ?
334			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
335			 IB_ACCESS_REMOTE_READ;
336
337	mr->mr_handle = ibmr->rkey;
338	mr->mr_length = ibmr->length;
339	mr->mr_offset = ibmr->iova;
340	trace_xprtrdma_mr_map(mr);
341
342	return seg;
343
344out_dmamap_err:
345	mr->mr_dir = DMA_NONE;
346	trace_xprtrdma_frwr_sgerr(mr, i);
347	return ERR_PTR(-EIO);
348
349out_mapmr_err:
350	trace_xprtrdma_frwr_maperr(mr, n);
351	return ERR_PTR(-EIO);
352}
353
354/**
355 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
356 * @cq: completion queue
357 * @wc: WCE for a completed FastReg WR
358 *
359 */
360static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
361{
362	struct ib_cqe *cqe = wc->wr_cqe;
363	struct rpcrdma_frwr *frwr =
364		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
365
366	/* WARNING: Only wr_cqe and status are reliable at this point */
367	trace_xprtrdma_wc_fastreg(wc, frwr);
368	/* The MR will get recycled when the associated req is retransmitted */
369
370	rpcrdma_flush_disconnect(cq->cq_context, wc);
371}
372
373/**
374 * frwr_send - post Send WRs containing the RPC Call message
375 * @r_xprt: controlling transport instance
376 * @req: prepared RPC Call
377 *
378 * For FRWR, chain any FastReg WRs to the Send WR. Only a
379 * single ib_post_send call is needed to register memory
380 * and then post the Send WR.
381 *
382 * Returns the return code from ib_post_send.
383 *
384 * Caller must hold the transport send lock to ensure that the
385 * pointers to the transport's rdma_cm_id and QP are stable.
386 */
387int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
388{
389	struct ib_send_wr *post_wr;
390	struct rpcrdma_mr *mr;
391
392	post_wr = &req->rl_wr;
393	list_for_each_entry(mr, &req->rl_registered, mr_list) {
394		struct rpcrdma_frwr *frwr;
395
396		frwr = &mr->frwr;
397
398		frwr->fr_cqe.done = frwr_wc_fastreg;
399		frwr->fr_regwr.wr.next = post_wr;
400		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
401		frwr->fr_regwr.wr.num_sge = 0;
402		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
403		frwr->fr_regwr.wr.send_flags = 0;
404
405		post_wr = &frwr->fr_regwr.wr;
406	}
407
408	return ib_post_send(r_xprt->rx_ep->re_id->qp, post_wr, NULL);
409}
410
411/**
412 * frwr_reminv - handle a remotely invalidated mr on the @mrs list
413 * @rep: Received reply
414 * @mrs: list of MRs to check
415 *
416 */
417void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
418{
419	struct rpcrdma_mr *mr;
420
421	list_for_each_entry(mr, mrs, mr_list)
422		if (mr->mr_handle == rep->rr_inv_rkey) {
423			list_del_init(&mr->mr_list);
424			trace_xprtrdma_mr_reminv(mr);
425			rpcrdma_mr_put(mr);
426			break;	/* only one invalidated MR per RPC */
427		}
428}
429
430static void __frwr_release_mr(struct ib_wc *wc, struct rpcrdma_mr *mr)
431{
432	if (wc->status != IB_WC_SUCCESS)
433		frwr_mr_recycle(mr);
434	else
435		rpcrdma_mr_put(mr);
436}
437
438/**
439 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
440 * @cq: completion queue
441 * @wc: WCE for a completed LocalInv WR
442 *
443 */
444static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
445{
446	struct ib_cqe *cqe = wc->wr_cqe;
447	struct rpcrdma_frwr *frwr =
448		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
449	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
450
451	/* WARNING: Only wr_cqe and status are reliable at this point */
452	trace_xprtrdma_wc_li(wc, frwr);
453	__frwr_release_mr(wc, mr);
454
455	rpcrdma_flush_disconnect(cq->cq_context, wc);
456}
457
458/**
459 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
460 * @cq: completion queue
461 * @wc: WCE for a completed LocalInv WR
462 *
463 * Awaken anyone waiting for an MR to finish being fenced.
464 */
465static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
466{
467	struct ib_cqe *cqe = wc->wr_cqe;
468	struct rpcrdma_frwr *frwr =
469		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
470	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
471
472	/* WARNING: Only wr_cqe and status are reliable at this point */
473	trace_xprtrdma_wc_li_wake(wc, frwr);
474	__frwr_release_mr(wc, mr);
475	complete(&frwr->fr_linv_done);
476
477	rpcrdma_flush_disconnect(cq->cq_context, wc);
478}
479
480/**
481 * frwr_unmap_sync - invalidate memory regions that were registered for @req
482 * @r_xprt: controlling transport instance
483 * @req: rpcrdma_req with a non-empty list of MRs to process
484 *
485 * Sleeps until it is safe for the host CPU to access the previously mapped
486 * memory regions. This guarantees that registered MRs are properly fenced
487 * from the server before the RPC consumer accesses the data in them. It
488 * also ensures proper Send flow control: waking the next RPC waits until
489 * this RPC has relinquished all its Send Queue entries.
490 */
491void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
492{
493	struct ib_send_wr *first, **prev, *last;
494	const struct ib_send_wr *bad_wr;
495	struct rpcrdma_frwr *frwr;
496	struct rpcrdma_mr *mr;
497	int rc;
498
499	/* ORDER: Invalidate all of the MRs first
500	 *
501	 * Chain the LOCAL_INV Work Requests and post them with
502	 * a single ib_post_send() call.
503	 */
504	frwr = NULL;
505	prev = &first;
506	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
507
508		trace_xprtrdma_mr_localinv(mr);
509		r_xprt->rx_stats.local_inv_needed++;
510
511		frwr = &mr->frwr;
512		frwr->fr_cqe.done = frwr_wc_localinv;
513		last = &frwr->fr_invwr;
514		last->next = NULL;
515		last->wr_cqe = &frwr->fr_cqe;
516		last->sg_list = NULL;
517		last->num_sge = 0;
518		last->opcode = IB_WR_LOCAL_INV;
519		last->send_flags = IB_SEND_SIGNALED;
520		last->ex.invalidate_rkey = mr->mr_handle;
521
522		*prev = last;
523		prev = &last->next;
524	}
525
526	/* Strong send queue ordering guarantees that when the
527	 * last WR in the chain completes, all WRs in the chain
528	 * are complete.
529	 */
530	frwr->fr_cqe.done = frwr_wc_localinv_wake;
531	reinit_completion(&frwr->fr_linv_done);
532
533	/* Transport disconnect drains the receive CQ before it
534	 * replaces the QP. The RPC reply handler won't call us
535	 * unless re_id->qp is a valid pointer.
536	 */
537	bad_wr = NULL;
538	rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr);
539
540	/* The final LOCAL_INV WR in the chain is supposed to
541	 * do the wake. If it was never posted, the wake will
542	 * not happen, so don't wait in that case.
543	 */
544	if (bad_wr != first)
545		wait_for_completion(&frwr->fr_linv_done);
546	if (!rc)
547		return;
548
549	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
550	 */
551	trace_xprtrdma_post_linv(req, rc);
552	while (bad_wr) {
553		frwr = container_of(bad_wr, struct rpcrdma_frwr,
554				    fr_invwr);
555		mr = container_of(frwr, struct rpcrdma_mr, frwr);
556		bad_wr = bad_wr->next;
557
558		frwr_mr_recycle(mr);
559	}
560}
561
562/**
563 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
564 * @cq:	completion queue
565 * @wc:	WCE for a completed LocalInv WR
566 *
567 */
568static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
569{
570	struct ib_cqe *cqe = wc->wr_cqe;
571	struct rpcrdma_frwr *frwr =
572		container_of(cqe, struct rpcrdma_frwr, fr_cqe);
573	struct rpcrdma_mr *mr = container_of(frwr, struct rpcrdma_mr, frwr);
574	struct rpcrdma_rep *rep = mr->mr_req->rl_reply;
575
576	/* WARNING: Only wr_cqe and status are reliable at this point */
577	trace_xprtrdma_wc_li_done(wc, frwr);
578	__frwr_release_mr(wc, mr);
579
580	/* Ensure @rep is generated before __frwr_release_mr */
581	smp_rmb();
582	rpcrdma_complete_rqst(rep);
583
584	rpcrdma_flush_disconnect(cq->cq_context, wc);
585}
586
587/**
588 * frwr_unmap_async - invalidate memory regions that were registered for @req
589 * @r_xprt: controlling transport instance
590 * @req: rpcrdma_req with a non-empty list of MRs to process
591 *
592 * This guarantees that registered MRs are properly fenced from the
593 * server before the RPC consumer accesses the data in them. It also
594 * ensures proper Send flow control: waking the next RPC waits until
595 * this RPC has relinquished all its Send Queue entries.
596 */
597void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
598{
599	struct ib_send_wr *first, *last, **prev;
600	const struct ib_send_wr *bad_wr;
601	struct rpcrdma_frwr *frwr;
602	struct rpcrdma_mr *mr;
603	int rc;
604
605	/* Chain the LOCAL_INV Work Requests and post them with
606	 * a single ib_post_send() call.
607	 */
608	frwr = NULL;
609	prev = &first;
610	while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
611
612		trace_xprtrdma_mr_localinv(mr);
613		r_xprt->rx_stats.local_inv_needed++;
614
615		frwr = &mr->frwr;
616		frwr->fr_cqe.done = frwr_wc_localinv;
617		last = &frwr->fr_invwr;
618		last->next = NULL;
619		last->wr_cqe = &frwr->fr_cqe;
620		last->sg_list = NULL;
621		last->num_sge = 0;
622		last->opcode = IB_WR_LOCAL_INV;
623		last->send_flags = IB_SEND_SIGNALED;
624		last->ex.invalidate_rkey = mr->mr_handle;
625
626		*prev = last;
627		prev = &last->next;
628	}
629
630	/* Strong send queue ordering guarantees that when the
631	 * last WR in the chain completes, all WRs in the chain
632	 * are complete. The last completion will wake up the
633	 * RPC waiter.
634	 */
635	frwr->fr_cqe.done = frwr_wc_localinv_done;
636
637	/* Transport disconnect drains the receive CQ before it
638	 * replaces the QP. The RPC reply handler won't call us
639	 * unless re_id->qp is a valid pointer.
640	 */
641	bad_wr = NULL;
642	rc = ib_post_send(r_xprt->rx_ep->re_id->qp, first, &bad_wr);
643	if (!rc)
644		return;
645
646	/* Recycle MRs in the LOCAL_INV chain that did not get posted.
647	 */
648	trace_xprtrdma_post_linv(req, rc);
649	while (bad_wr) {
650		frwr = container_of(bad_wr, struct rpcrdma_frwr, fr_invwr);
651		mr = container_of(frwr, struct rpcrdma_mr, frwr);
652		bad_wr = bad_wr->next;
653
654		frwr_mr_recycle(mr);
655	}
656
657	/* The final LOCAL_INV WR in the chain is supposed to
658	 * do the wake. If it was never posted, the wake will
659	 * not happen, so wake here in that case.
660	 */
661	rpcrdma_complete_rqst(req->rl_reply);
662}
663