xref: /kernel/linux/linux-5.10/net/sctp/input.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 International Business Machines, Corp.
6 * Copyright (c) 2001 Intel Corp.
7 * Copyright (c) 2001 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions handle all input from the IP layer into SCTP.
13 *
14 * Please send any bug reports or fixes you make to the
15 * email address(es):
16 *    lksctp developers <linux-sctp@vger.kernel.org>
17 *
18 * Written or modified by:
19 *    La Monte H.P. Yarroll <piggy@acm.org>
20 *    Karl Knutson <karl@athena.chicago.il.us>
21 *    Xingang Guo <xingang.guo@intel.com>
22 *    Jon Grimm <jgrimm@us.ibm.com>
23 *    Hui Huang <hui.huang@nokia.com>
24 *    Daisy Chang <daisyc@us.ibm.com>
25 *    Sridhar Samudrala <sri@us.ibm.com>
26 *    Ardelle Fan <ardelle.fan@intel.com>
27 */
28
29#include <linux/types.h>
30#include <linux/list.h> /* For struct list_head */
31#include <linux/socket.h>
32#include <linux/ip.h>
33#include <linux/time.h> /* For struct timeval */
34#include <linux/slab.h>
35#include <net/ip.h>
36#include <net/icmp.h>
37#include <net/snmp.h>
38#include <net/sock.h>
39#include <net/xfrm.h>
40#include <net/sctp/sctp.h>
41#include <net/sctp/sm.h>
42#include <net/sctp/checksum.h>
43#include <net/net_namespace.h>
44#include <linux/rhashtable.h>
45#include <net/sock_reuseport.h>
46
47/* Forward declarations for internal helpers. */
48static int sctp_rcv_ootb(struct sk_buff *);
49static struct sctp_association *__sctp_rcv_lookup(struct net *net,
50				      struct sk_buff *skb,
51				      const union sctp_addr *paddr,
52				      const union sctp_addr *laddr,
53				      struct sctp_transport **transportp);
54static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
55					struct net *net, struct sk_buff *skb,
56					const union sctp_addr *laddr,
57					const union sctp_addr *daddr);
58static struct sctp_association *__sctp_lookup_association(
59					struct net *net,
60					const union sctp_addr *local,
61					const union sctp_addr *peer,
62					struct sctp_transport **pt);
63
64static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
65
66
67/* Calculate the SCTP checksum of an SCTP packet.  */
68static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
69{
70	struct sctphdr *sh = sctp_hdr(skb);
71	__le32 cmp = sh->checksum;
72	__le32 val = sctp_compute_cksum(skb, 0);
73
74	if (val != cmp) {
75		/* CRC failure, dump it. */
76		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
77		return -1;
78	}
79	return 0;
80}
81
82/*
83 * This is the routine which IP calls when receiving an SCTP packet.
84 */
85int sctp_rcv(struct sk_buff *skb)
86{
87	struct sock *sk;
88	struct sctp_association *asoc;
89	struct sctp_endpoint *ep = NULL;
90	struct sctp_ep_common *rcvr;
91	struct sctp_transport *transport = NULL;
92	struct sctp_chunk *chunk;
93	union sctp_addr src;
94	union sctp_addr dest;
95	int bound_dev_if;
96	int family;
97	struct sctp_af *af;
98	struct net *net = dev_net(skb->dev);
99	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
100
101	if (skb->pkt_type != PACKET_HOST)
102		goto discard_it;
103
104	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
105
106	/* If packet is too small to contain a single chunk, let's not
107	 * waste time on it anymore.
108	 */
109	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
110		       skb_transport_offset(skb))
111		goto discard_it;
112
113	/* If the packet is fragmented and we need to do crc checking,
114	 * it's better to just linearize it otherwise crc computing
115	 * takes longer.
116	 */
117	if ((!is_gso && skb_linearize(skb)) ||
118	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
119		goto discard_it;
120
121	/* Pull up the IP header. */
122	__skb_pull(skb, skb_transport_offset(skb));
123
124	skb->csum_valid = 0; /* Previous value not applicable */
125	if (skb_csum_unnecessary(skb))
126		__skb_decr_checksum_unnecessary(skb);
127	else if (!sctp_checksum_disable &&
128		 !is_gso &&
129		 sctp_rcv_checksum(net, skb) < 0)
130		goto discard_it;
131	skb->csum_valid = 1;
132
133	__skb_pull(skb, sizeof(struct sctphdr));
134
135	family = ipver2af(ip_hdr(skb)->version);
136	af = sctp_get_af_specific(family);
137	if (unlikely(!af))
138		goto discard_it;
139	SCTP_INPUT_CB(skb)->af = af;
140
141	/* Initialize local addresses for lookups. */
142	af->from_skb(&src, skb, 1);
143	af->from_skb(&dest, skb, 0);
144
145	/* If the packet is to or from a non-unicast address,
146	 * silently discard the packet.
147	 *
148	 * This is not clearly defined in the RFC except in section
149	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
150	 * Transmission Protocol" 2.1, "It is important to note that the
151	 * IP address of an SCTP transport address must be a routable
152	 * unicast address.  In other words, IP multicast addresses and
153	 * IP broadcast addresses cannot be used in an SCTP transport
154	 * address."
155	 */
156	if (!af->addr_valid(&src, NULL, skb) ||
157	    !af->addr_valid(&dest, NULL, skb))
158		goto discard_it;
159
160	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
161
162	if (!asoc)
163		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
164
165	/* Retrieve the common input handling substructure. */
166	rcvr = asoc ? &asoc->base : &ep->base;
167	sk = rcvr->sk;
168
169	/*
170	 * If a frame arrives on an interface and the receiving socket is
171	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
172	 */
173	bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
174	if (bound_dev_if && (bound_dev_if != af->skb_iif(skb))) {
175		if (transport) {
176			sctp_transport_put(transport);
177			asoc = NULL;
178			transport = NULL;
179		} else {
180			sctp_endpoint_put(ep);
181			ep = NULL;
182		}
183		sk = net->sctp.ctl_sock;
184		ep = sctp_sk(sk)->ep;
185		sctp_endpoint_hold(ep);
186		rcvr = &ep->base;
187	}
188
189	/*
190	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
191	 * An SCTP packet is called an "out of the blue" (OOTB)
192	 * packet if it is correctly formed, i.e., passed the
193	 * receiver's checksum check, but the receiver is not
194	 * able to identify the association to which this
195	 * packet belongs.
196	 */
197	if (!asoc) {
198		if (sctp_rcv_ootb(skb)) {
199			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
200			goto discard_release;
201		}
202	}
203
204	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
205		goto discard_release;
206	nf_reset_ct(skb);
207
208	if (sk_filter(sk, skb))
209		goto discard_release;
210
211	/* Create an SCTP packet structure. */
212	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
213	if (!chunk)
214		goto discard_release;
215	SCTP_INPUT_CB(skb)->chunk = chunk;
216
217	/* Remember what endpoint is to handle this packet. */
218	chunk->rcvr = rcvr;
219
220	/* Remember the SCTP header. */
221	chunk->sctp_hdr = sctp_hdr(skb);
222
223	/* Set the source and destination addresses of the incoming chunk.  */
224	sctp_init_addrs(chunk, &src, &dest);
225
226	/* Remember where we came from.  */
227	chunk->transport = transport;
228
229	/* Acquire access to the sock lock. Note: We are safe from other
230	 * bottom halves on this lock, but a user may be in the lock too,
231	 * so check if it is busy.
232	 */
233	bh_lock_sock(sk);
234
235	if (sk != rcvr->sk) {
236		/* Our cached sk is different from the rcvr->sk.  This is
237		 * because migrate()/accept() may have moved the association
238		 * to a new socket and released all the sockets.  So now we
239		 * are holding a lock on the old socket while the user may
240		 * be doing something with the new socket.  Switch our veiw
241		 * of the current sk.
242		 */
243		bh_unlock_sock(sk);
244		sk = rcvr->sk;
245		bh_lock_sock(sk);
246	}
247
248	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
249		if (sctp_add_backlog(sk, skb)) {
250			bh_unlock_sock(sk);
251			sctp_chunk_free(chunk);
252			skb = NULL; /* sctp_chunk_free already freed the skb */
253			goto discard_release;
254		}
255		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
256	} else {
257		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
258		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
259	}
260
261	bh_unlock_sock(sk);
262
263	/* Release the asoc/ep ref we took in the lookup calls. */
264	if (transport)
265		sctp_transport_put(transport);
266	else
267		sctp_endpoint_put(ep);
268
269	return 0;
270
271discard_it:
272	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
273	kfree_skb(skb);
274	return 0;
275
276discard_release:
277	/* Release the asoc/ep ref we took in the lookup calls. */
278	if (transport)
279		sctp_transport_put(transport);
280	else
281		sctp_endpoint_put(ep);
282
283	goto discard_it;
284}
285
286/* Process the backlog queue of the socket.  Every skb on
287 * the backlog holds a ref on an association or endpoint.
288 * We hold this ref throughout the state machine to make
289 * sure that the structure we need is still around.
290 */
291int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
292{
293	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
294	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
295	struct sctp_transport *t = chunk->transport;
296	struct sctp_ep_common *rcvr = NULL;
297	int backloged = 0;
298
299	rcvr = chunk->rcvr;
300
301	/* If the rcvr is dead then the association or endpoint
302	 * has been deleted and we can safely drop the chunk
303	 * and refs that we are holding.
304	 */
305	if (rcvr->dead) {
306		sctp_chunk_free(chunk);
307		goto done;
308	}
309
310	if (unlikely(rcvr->sk != sk)) {
311		/* In this case, the association moved from one socket to
312		 * another.  We are currently sitting on the backlog of the
313		 * old socket, so we need to move.
314		 * However, since we are here in the process context we
315		 * need to take make sure that the user doesn't own
316		 * the new socket when we process the packet.
317		 * If the new socket is user-owned, queue the chunk to the
318		 * backlog of the new socket without dropping any refs.
319		 * Otherwise, we can safely push the chunk on the inqueue.
320		 */
321
322		sk = rcvr->sk;
323		local_bh_disable();
324		bh_lock_sock(sk);
325
326		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
327			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
328				sctp_chunk_free(chunk);
329			else
330				backloged = 1;
331		} else
332			sctp_inq_push(inqueue, chunk);
333
334		bh_unlock_sock(sk);
335		local_bh_enable();
336
337		/* If the chunk was backloged again, don't drop refs */
338		if (backloged)
339			return 0;
340	} else {
341		if (!sctp_newsk_ready(sk)) {
342			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
343				return 0;
344			sctp_chunk_free(chunk);
345		} else {
346			sctp_inq_push(inqueue, chunk);
347		}
348	}
349
350done:
351	/* Release the refs we took in sctp_add_backlog */
352	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
353		sctp_transport_put(t);
354	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
355		sctp_endpoint_put(sctp_ep(rcvr));
356	else
357		BUG();
358
359	return 0;
360}
361
362static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
363{
364	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
365	struct sctp_transport *t = chunk->transport;
366	struct sctp_ep_common *rcvr = chunk->rcvr;
367	int ret;
368
369	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
370	if (!ret) {
371		/* Hold the assoc/ep while hanging on the backlog queue.
372		 * This way, we know structures we need will not disappear
373		 * from us
374		 */
375		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
376			sctp_transport_hold(t);
377		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
378			sctp_endpoint_hold(sctp_ep(rcvr));
379		else
380			BUG();
381	}
382	return ret;
383
384}
385
386/* Handle icmp frag needed error. */
387void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
388			   struct sctp_transport *t, __u32 pmtu)
389{
390	if (!t || (t->pathmtu <= pmtu))
391		return;
392
393	if (sock_owned_by_user(sk)) {
394		atomic_set(&t->mtu_info, pmtu);
395		asoc->pmtu_pending = 1;
396		t->pmtu_pending = 1;
397		return;
398	}
399
400	if (!(t->param_flags & SPP_PMTUD_ENABLE))
401		/* We can't allow retransmitting in such case, as the
402		 * retransmission would be sized just as before, and thus we
403		 * would get another icmp, and retransmit again.
404		 */
405		return;
406
407	/* Update transports view of the MTU. Return if no update was needed.
408	 * If an update wasn't needed/possible, it also doesn't make sense to
409	 * try to retransmit now.
410	 */
411	if (!sctp_transport_update_pmtu(t, pmtu))
412		return;
413
414	/* Update association pmtu. */
415	sctp_assoc_sync_pmtu(asoc);
416
417	/* Retransmit with the new pmtu setting. */
418	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
419}
420
421void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
422			struct sk_buff *skb)
423{
424	struct dst_entry *dst;
425
426	if (sock_owned_by_user(sk) || !t)
427		return;
428	dst = sctp_transport_dst_check(t);
429	if (dst)
430		dst->ops->redirect(dst, sk, skb);
431}
432
433/*
434 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
435 *
436 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
437 *        or a "Protocol Unreachable" treat this message as an abort
438 *        with the T bit set.
439 *
440 * This function sends an event to the state machine, which will abort the
441 * association.
442 *
443 */
444void sctp_icmp_proto_unreachable(struct sock *sk,
445			   struct sctp_association *asoc,
446			   struct sctp_transport *t)
447{
448	if (sock_owned_by_user(sk)) {
449		if (timer_pending(&t->proto_unreach_timer))
450			return;
451		else {
452			if (!mod_timer(&t->proto_unreach_timer,
453						jiffies + (HZ/20)))
454				sctp_transport_hold(t);
455		}
456	} else {
457		struct net *net = sock_net(sk);
458
459		pr_debug("%s: unrecognized next header type "
460			 "encountered!\n", __func__);
461
462		if (del_timer(&t->proto_unreach_timer))
463			sctp_transport_put(t);
464
465		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
466			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
467			   asoc->state, asoc->ep, asoc, t,
468			   GFP_ATOMIC);
469	}
470}
471
472/* Common lookup code for icmp/icmpv6 error handler. */
473struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
474			     struct sctphdr *sctphdr,
475			     struct sctp_association **app,
476			     struct sctp_transport **tpp)
477{
478	struct sctp_init_chunk *chunkhdr, _chunkhdr;
479	union sctp_addr saddr;
480	union sctp_addr daddr;
481	struct sctp_af *af;
482	struct sock *sk = NULL;
483	struct sctp_association *asoc;
484	struct sctp_transport *transport = NULL;
485	__u32 vtag = ntohl(sctphdr->vtag);
486
487	*app = NULL; *tpp = NULL;
488
489	af = sctp_get_af_specific(family);
490	if (unlikely(!af)) {
491		return NULL;
492	}
493
494	/* Initialize local addresses for lookups. */
495	af->from_skb(&saddr, skb, 1);
496	af->from_skb(&daddr, skb, 0);
497
498	/* Look for an association that matches the incoming ICMP error
499	 * packet.
500	 */
501	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
502	if (!asoc)
503		return NULL;
504
505	sk = asoc->base.sk;
506
507	/* RFC 4960, Appendix C. ICMP Handling
508	 *
509	 * ICMP6) An implementation MUST validate that the Verification Tag
510	 * contained in the ICMP message matches the Verification Tag of
511	 * the peer.  If the Verification Tag is not 0 and does NOT
512	 * match, discard the ICMP message.  If it is 0 and the ICMP
513	 * message contains enough bytes to verify that the chunk type is
514	 * an INIT chunk and that the Initiate Tag matches the tag of the
515	 * peer, continue with ICMP7.  If the ICMP message is too short
516	 * or the chunk type or the Initiate Tag does not match, silently
517	 * discard the packet.
518	 */
519	if (vtag == 0) {
520		/* chunk header + first 4 octects of init header */
521		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
522					      sizeof(struct sctphdr),
523					      sizeof(struct sctp_chunkhdr) +
524					      sizeof(__be32), &_chunkhdr);
525		if (!chunkhdr ||
526		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
527		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
528			goto out;
529
530	} else if (vtag != asoc->c.peer_vtag) {
531		goto out;
532	}
533
534	bh_lock_sock(sk);
535
536	/* If too many ICMPs get dropped on busy
537	 * servers this needs to be solved differently.
538	 */
539	if (sock_owned_by_user(sk))
540		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
541
542	*app = asoc;
543	*tpp = transport;
544	return sk;
545
546out:
547	sctp_transport_put(transport);
548	return NULL;
549}
550
551/* Common cleanup code for icmp/icmpv6 error handler. */
552void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
553	__releases(&((__sk)->sk_lock.slock))
554{
555	bh_unlock_sock(sk);
556	sctp_transport_put(t);
557}
558
559/*
560 * This routine is called by the ICMP module when it gets some
561 * sort of error condition.  If err < 0 then the socket should
562 * be closed and the error returned to the user.  If err > 0
563 * it's just the icmp type << 8 | icmp code.  After adjustment
564 * header points to the first 8 bytes of the sctp header.  We need
565 * to find the appropriate port.
566 *
567 * The locking strategy used here is very "optimistic". When
568 * someone else accesses the socket the ICMP is just dropped
569 * and for some paths there is no check at all.
570 * A more general error queue to queue errors for later handling
571 * is probably better.
572 *
573 */
574int sctp_v4_err(struct sk_buff *skb, __u32 info)
575{
576	const struct iphdr *iph = (const struct iphdr *)skb->data;
577	const int ihlen = iph->ihl * 4;
578	const int type = icmp_hdr(skb)->type;
579	const int code = icmp_hdr(skb)->code;
580	struct sock *sk;
581	struct sctp_association *asoc = NULL;
582	struct sctp_transport *transport;
583	struct inet_sock *inet;
584	__u16 saveip, savesctp;
585	int err;
586	struct net *net = dev_net(skb->dev);
587
588	/* Fix up skb to look at the embedded net header. */
589	saveip = skb->network_header;
590	savesctp = skb->transport_header;
591	skb_reset_network_header(skb);
592	skb_set_transport_header(skb, ihlen);
593	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
594	/* Put back, the original values. */
595	skb->network_header = saveip;
596	skb->transport_header = savesctp;
597	if (!sk) {
598		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
599		return -ENOENT;
600	}
601	/* Warning:  The sock lock is held.  Remember to call
602	 * sctp_err_finish!
603	 */
604
605	switch (type) {
606	case ICMP_PARAMETERPROB:
607		err = EPROTO;
608		break;
609	case ICMP_DEST_UNREACH:
610		if (code > NR_ICMP_UNREACH)
611			goto out_unlock;
612
613		/* PMTU discovery (RFC1191) */
614		if (ICMP_FRAG_NEEDED == code) {
615			sctp_icmp_frag_needed(sk, asoc, transport,
616					      SCTP_TRUNC4(info));
617			goto out_unlock;
618		} else {
619			if (ICMP_PROT_UNREACH == code) {
620				sctp_icmp_proto_unreachable(sk, asoc,
621							    transport);
622				goto out_unlock;
623			}
624		}
625		err = icmp_err_convert[code].errno;
626		break;
627	case ICMP_TIME_EXCEEDED:
628		/* Ignore any time exceeded errors due to fragment reassembly
629		 * timeouts.
630		 */
631		if (ICMP_EXC_FRAGTIME == code)
632			goto out_unlock;
633
634		err = EHOSTUNREACH;
635		break;
636	case ICMP_REDIRECT:
637		sctp_icmp_redirect(sk, transport, skb);
638		/* Fall through to out_unlock. */
639	default:
640		goto out_unlock;
641	}
642
643	inet = inet_sk(sk);
644	if (!sock_owned_by_user(sk) && inet->recverr) {
645		sk->sk_err = err;
646		sk->sk_error_report(sk);
647	} else {  /* Only an error on timeout */
648		sk->sk_err_soft = err;
649	}
650
651out_unlock:
652	sctp_err_finish(sk, transport);
653	return 0;
654}
655
656/*
657 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
658 *
659 * This function scans all the chunks in the OOTB packet to determine if
660 * the packet should be discarded right away.  If a response might be needed
661 * for this packet, or, if further processing is possible, the packet will
662 * be queued to a proper inqueue for the next phase of handling.
663 *
664 * Output:
665 * Return 0 - If further processing is needed.
666 * Return 1 - If the packet can be discarded right away.
667 */
668static int sctp_rcv_ootb(struct sk_buff *skb)
669{
670	struct sctp_chunkhdr *ch, _ch;
671	int ch_end, offset = 0;
672
673	/* Scan through all the chunks in the packet.  */
674	do {
675		/* Make sure we have at least the header there */
676		if (offset + sizeof(_ch) > skb->len)
677			break;
678
679		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
680
681		/* Break out if chunk length is less then minimal. */
682		if (!ch || ntohs(ch->length) < sizeof(_ch))
683			break;
684
685		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
686		if (ch_end > skb->len)
687			break;
688
689		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
690		 * receiver MUST silently discard the OOTB packet and take no
691		 * further action.
692		 */
693		if (SCTP_CID_ABORT == ch->type)
694			goto discard;
695
696		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
697		 * chunk, the receiver should silently discard the packet
698		 * and take no further action.
699		 */
700		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
701			goto discard;
702
703		/* RFC 4460, 2.11.2
704		 * This will discard packets with INIT chunk bundled as
705		 * subsequent chunks in the packet.  When INIT is first,
706		 * the normal INIT processing will discard the chunk.
707		 */
708		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
709			goto discard;
710
711		offset = ch_end;
712	} while (ch_end < skb->len);
713
714	return 0;
715
716discard:
717	return 1;
718}
719
720/* Insert endpoint into the hash table.  */
721static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
722{
723	struct sock *sk = ep->base.sk;
724	struct net *net = sock_net(sk);
725	struct sctp_hashbucket *head;
726	struct sctp_ep_common *epb;
727
728	epb = &ep->base;
729	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
730	head = &sctp_ep_hashtable[epb->hashent];
731
732	if (sk->sk_reuseport) {
733		bool any = sctp_is_ep_boundall(sk);
734		struct sctp_ep_common *epb2;
735		struct list_head *list;
736		int cnt = 0, err = 1;
737
738		list_for_each(list, &ep->base.bind_addr.address_list)
739			cnt++;
740
741		sctp_for_each_hentry(epb2, &head->chain) {
742			struct sock *sk2 = epb2->sk;
743
744			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
745			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
746			    !sk2->sk_reuseport)
747				continue;
748
749			err = sctp_bind_addrs_check(sctp_sk(sk2),
750						    sctp_sk(sk), cnt);
751			if (!err) {
752				err = reuseport_add_sock(sk, sk2, any);
753				if (err)
754					return err;
755				break;
756			} else if (err < 0) {
757				return err;
758			}
759		}
760
761		if (err) {
762			err = reuseport_alloc(sk, any);
763			if (err)
764				return err;
765		}
766	}
767
768	write_lock(&head->lock);
769	hlist_add_head(&epb->node, &head->chain);
770	write_unlock(&head->lock);
771	return 0;
772}
773
774/* Add an endpoint to the hash. Local BH-safe. */
775int sctp_hash_endpoint(struct sctp_endpoint *ep)
776{
777	int err;
778
779	local_bh_disable();
780	err = __sctp_hash_endpoint(ep);
781	local_bh_enable();
782
783	return err;
784}
785
786/* Remove endpoint from the hash table.  */
787static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
788{
789	struct sock *sk = ep->base.sk;
790	struct sctp_hashbucket *head;
791	struct sctp_ep_common *epb;
792
793	epb = &ep->base;
794
795	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
796
797	head = &sctp_ep_hashtable[epb->hashent];
798
799	if (rcu_access_pointer(sk->sk_reuseport_cb))
800		reuseport_detach_sock(sk);
801
802	write_lock(&head->lock);
803	hlist_del_init(&epb->node);
804	write_unlock(&head->lock);
805}
806
807/* Remove endpoint from the hash.  Local BH-safe. */
808void sctp_unhash_endpoint(struct sctp_endpoint *ep)
809{
810	local_bh_disable();
811	__sctp_unhash_endpoint(ep);
812	local_bh_enable();
813}
814
815static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
816				const union sctp_addr *paddr, __u32 seed)
817{
818	__u32 addr;
819
820	if (paddr->sa.sa_family == AF_INET6)
821		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
822	else
823		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
824
825	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
826			     (__force __u32)lport, net_hash_mix(net), seed);
827}
828
829/* Look up an endpoint. */
830static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
831					struct net *net, struct sk_buff *skb,
832					const union sctp_addr *laddr,
833					const union sctp_addr *paddr)
834{
835	struct sctp_hashbucket *head;
836	struct sctp_ep_common *epb;
837	struct sctp_endpoint *ep;
838	struct sock *sk;
839	__be16 lport;
840	int hash;
841
842	lport = laddr->v4.sin_port;
843	hash = sctp_ep_hashfn(net, ntohs(lport));
844	head = &sctp_ep_hashtable[hash];
845	read_lock(&head->lock);
846	sctp_for_each_hentry(epb, &head->chain) {
847		ep = sctp_ep(epb);
848		if (sctp_endpoint_is_match(ep, net, laddr))
849			goto hit;
850	}
851
852	ep = sctp_sk(net->sctp.ctl_sock)->ep;
853
854hit:
855	sk = ep->base.sk;
856	if (sk->sk_reuseport) {
857		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
858
859		sk = reuseport_select_sock(sk, phash, skb,
860					   sizeof(struct sctphdr));
861		if (sk)
862			ep = sctp_sk(sk)->ep;
863	}
864	sctp_endpoint_hold(ep);
865	read_unlock(&head->lock);
866	return ep;
867}
868
869/* rhashtable for transport */
870struct sctp_hash_cmp_arg {
871	const union sctp_addr	*paddr;
872	const struct net	*net;
873	__be16			lport;
874};
875
876static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
877				const void *ptr)
878{
879	struct sctp_transport *t = (struct sctp_transport *)ptr;
880	const struct sctp_hash_cmp_arg *x = arg->key;
881	int err = 1;
882
883	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
884		return err;
885	if (!sctp_transport_hold(t))
886		return err;
887
888	if (!net_eq(t->asoc->base.net, x->net))
889		goto out;
890	if (x->lport != htons(t->asoc->base.bind_addr.port))
891		goto out;
892
893	err = 0;
894out:
895	sctp_transport_put(t);
896	return err;
897}
898
899static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
900{
901	const struct sctp_transport *t = data;
902
903	return sctp_hashfn(t->asoc->base.net,
904			   htons(t->asoc->base.bind_addr.port),
905			   &t->ipaddr, seed);
906}
907
908static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
909{
910	const struct sctp_hash_cmp_arg *x = data;
911
912	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
913}
914
915static const struct rhashtable_params sctp_hash_params = {
916	.head_offset		= offsetof(struct sctp_transport, node),
917	.hashfn			= sctp_hash_key,
918	.obj_hashfn		= sctp_hash_obj,
919	.obj_cmpfn		= sctp_hash_cmp,
920	.automatic_shrinking	= true,
921};
922
923int sctp_transport_hashtable_init(void)
924{
925	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
926}
927
928void sctp_transport_hashtable_destroy(void)
929{
930	rhltable_destroy(&sctp_transport_hashtable);
931}
932
933int sctp_hash_transport(struct sctp_transport *t)
934{
935	struct sctp_transport *transport;
936	struct rhlist_head *tmp, *list;
937	struct sctp_hash_cmp_arg arg;
938	int err;
939
940	if (t->asoc->temp)
941		return 0;
942
943	arg.net   = t->asoc->base.net;
944	arg.paddr = &t->ipaddr;
945	arg.lport = htons(t->asoc->base.bind_addr.port);
946
947	rcu_read_lock();
948	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
949			       sctp_hash_params);
950
951	rhl_for_each_entry_rcu(transport, tmp, list, node)
952		if (transport->asoc->ep == t->asoc->ep) {
953			rcu_read_unlock();
954			return -EEXIST;
955		}
956	rcu_read_unlock();
957
958	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
959				  &t->node, sctp_hash_params);
960	if (err)
961		pr_err_once("insert transport fail, errno %d\n", err);
962
963	return err;
964}
965
966void sctp_unhash_transport(struct sctp_transport *t)
967{
968	if (t->asoc->temp)
969		return;
970
971	rhltable_remove(&sctp_transport_hashtable, &t->node,
972			sctp_hash_params);
973}
974
975/* return a transport with holding it */
976struct sctp_transport *sctp_addrs_lookup_transport(
977				struct net *net,
978				const union sctp_addr *laddr,
979				const union sctp_addr *paddr)
980{
981	struct rhlist_head *tmp, *list;
982	struct sctp_transport *t;
983	struct sctp_hash_cmp_arg arg = {
984		.paddr = paddr,
985		.net   = net,
986		.lport = laddr->v4.sin_port,
987	};
988
989	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
990			       sctp_hash_params);
991
992	rhl_for_each_entry_rcu(t, tmp, list, node) {
993		if (!sctp_transport_hold(t))
994			continue;
995
996		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
997					 laddr, sctp_sk(t->asoc->base.sk)))
998			return t;
999		sctp_transport_put(t);
1000	}
1001
1002	return NULL;
1003}
1004
1005/* return a transport without holding it, as it's only used under sock lock */
1006struct sctp_transport *sctp_epaddr_lookup_transport(
1007				const struct sctp_endpoint *ep,
1008				const union sctp_addr *paddr)
1009{
1010	struct rhlist_head *tmp, *list;
1011	struct sctp_transport *t;
1012	struct sctp_hash_cmp_arg arg = {
1013		.paddr = paddr,
1014		.net   = ep->base.net,
1015		.lport = htons(ep->base.bind_addr.port),
1016	};
1017
1018	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1019			       sctp_hash_params);
1020
1021	rhl_for_each_entry_rcu(t, tmp, list, node)
1022		if (ep == t->asoc->ep)
1023			return t;
1024
1025	return NULL;
1026}
1027
1028/* Look up an association. */
1029static struct sctp_association *__sctp_lookup_association(
1030					struct net *net,
1031					const union sctp_addr *local,
1032					const union sctp_addr *peer,
1033					struct sctp_transport **pt)
1034{
1035	struct sctp_transport *t;
1036	struct sctp_association *asoc = NULL;
1037
1038	t = sctp_addrs_lookup_transport(net, local, peer);
1039	if (!t)
1040		goto out;
1041
1042	asoc = t->asoc;
1043	*pt = t;
1044
1045out:
1046	return asoc;
1047}
1048
1049/* Look up an association. protected by RCU read lock */
1050static
1051struct sctp_association *sctp_lookup_association(struct net *net,
1052						 const union sctp_addr *laddr,
1053						 const union sctp_addr *paddr,
1054						 struct sctp_transport **transportp)
1055{
1056	struct sctp_association *asoc;
1057
1058	rcu_read_lock();
1059	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1060	rcu_read_unlock();
1061
1062	return asoc;
1063}
1064
1065/* Is there an association matching the given local and peer addresses? */
1066bool sctp_has_association(struct net *net,
1067			  const union sctp_addr *laddr,
1068			  const union sctp_addr *paddr)
1069{
1070	struct sctp_transport *transport;
1071
1072	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1073		sctp_transport_put(transport);
1074		return true;
1075	}
1076
1077	return false;
1078}
1079
1080/*
1081 * SCTP Implementors Guide, 2.18 Handling of address
1082 * parameters within the INIT or INIT-ACK.
1083 *
1084 * D) When searching for a matching TCB upon reception of an INIT
1085 *    or INIT-ACK chunk the receiver SHOULD use not only the
1086 *    source address of the packet (containing the INIT or
1087 *    INIT-ACK) but the receiver SHOULD also use all valid
1088 *    address parameters contained within the chunk.
1089 *
1090 * 2.18.3 Solution description
1091 *
1092 * This new text clearly specifies to an implementor the need
1093 * to look within the INIT or INIT-ACK. Any implementation that
1094 * does not do this, may not be able to establish associations
1095 * in certain circumstances.
1096 *
1097 */
1098static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1099	struct sk_buff *skb,
1100	const union sctp_addr *laddr, struct sctp_transport **transportp)
1101{
1102	struct sctp_association *asoc;
1103	union sctp_addr addr;
1104	union sctp_addr *paddr = &addr;
1105	struct sctphdr *sh = sctp_hdr(skb);
1106	union sctp_params params;
1107	struct sctp_init_chunk *init;
1108	struct sctp_af *af;
1109
1110	/*
1111	 * This code will NOT touch anything inside the chunk--it is
1112	 * strictly READ-ONLY.
1113	 *
1114	 * RFC 2960 3  SCTP packet Format
1115	 *
1116	 * Multiple chunks can be bundled into one SCTP packet up to
1117	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1118	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1119	 * other chunk in a packet.  See Section 6.10 for more details
1120	 * on chunk bundling.
1121	 */
1122
1123	/* Find the start of the TLVs and the end of the chunk.  This is
1124	 * the region we search for address parameters.
1125	 */
1126	init = (struct sctp_init_chunk *)skb->data;
1127
1128	/* Walk the parameters looking for embedded addresses. */
1129	sctp_walk_params(params, init, init_hdr.params) {
1130
1131		/* Note: Ignoring hostname addresses. */
1132		af = sctp_get_af_specific(param_type2af(params.p->type));
1133		if (!af)
1134			continue;
1135
1136		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
1137			continue;
1138
1139		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1140		if (asoc)
1141			return asoc;
1142	}
1143
1144	return NULL;
1145}
1146
1147/* ADD-IP, Section 5.2
1148 * When an endpoint receives an ASCONF Chunk from the remote peer
1149 * special procedures may be needed to identify the association the
1150 * ASCONF Chunk is associated with. To properly find the association
1151 * the following procedures SHOULD be followed:
1152 *
1153 * D2) If the association is not found, use the address found in the
1154 * Address Parameter TLV combined with the port number found in the
1155 * SCTP common header. If found proceed to rule D4.
1156 *
1157 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1158 * address found in the ASCONF Address Parameter TLV of each of the
1159 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1160 */
1161static struct sctp_association *__sctp_rcv_asconf_lookup(
1162					struct net *net,
1163					struct sctp_chunkhdr *ch,
1164					const union sctp_addr *laddr,
1165					__be16 peer_port,
1166					struct sctp_transport **transportp)
1167{
1168	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1169	struct sctp_af *af;
1170	union sctp_addr_param *param;
1171	union sctp_addr paddr;
1172
1173	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
1174		return NULL;
1175
1176	/* Skip over the ADDIP header and find the Address parameter */
1177	param = (union sctp_addr_param *)(asconf + 1);
1178
1179	af = sctp_get_af_specific(param_type2af(param->p.type));
1180	if (unlikely(!af))
1181		return NULL;
1182
1183	if (!af->from_addr_param(&paddr, param, peer_port, 0))
1184		return NULL;
1185
1186	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1187}
1188
1189
1190/* SCTP-AUTH, Section 6.3:
1191*    If the receiver does not find a STCB for a packet containing an AUTH
1192*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1193*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1194*    association.
1195*
1196* This means that any chunks that can help us identify the association need
1197* to be looked at to find this association.
1198*/
1199static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1200				      struct sk_buff *skb,
1201				      const union sctp_addr *laddr,
1202				      struct sctp_transport **transportp)
1203{
1204	struct sctp_association *asoc = NULL;
1205	struct sctp_chunkhdr *ch;
1206	int have_auth = 0;
1207	unsigned int chunk_num = 1;
1208	__u8 *ch_end;
1209
1210	/* Walk through the chunks looking for AUTH or ASCONF chunks
1211	 * to help us find the association.
1212	 */
1213	ch = (struct sctp_chunkhdr *)skb->data;
1214	do {
1215		/* Break out if chunk length is less then minimal. */
1216		if (ntohs(ch->length) < sizeof(*ch))
1217			break;
1218
1219		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1220		if (ch_end > skb_tail_pointer(skb))
1221			break;
1222
1223		switch (ch->type) {
1224		case SCTP_CID_AUTH:
1225			have_auth = chunk_num;
1226			break;
1227
1228		case SCTP_CID_COOKIE_ECHO:
1229			/* If a packet arrives containing an AUTH chunk as
1230			 * a first chunk, a COOKIE-ECHO chunk as the second
1231			 * chunk, and possibly more chunks after them, and
1232			 * the receiver does not have an STCB for that
1233			 * packet, then authentication is based on
1234			 * the contents of the COOKIE- ECHO chunk.
1235			 */
1236			if (have_auth == 1 && chunk_num == 2)
1237				return NULL;
1238			break;
1239
1240		case SCTP_CID_ASCONF:
1241			if (have_auth || net->sctp.addip_noauth)
1242				asoc = __sctp_rcv_asconf_lookup(
1243						net, ch, laddr,
1244						sctp_hdr(skb)->source,
1245						transportp);
1246		default:
1247			break;
1248		}
1249
1250		if (asoc)
1251			break;
1252
1253		ch = (struct sctp_chunkhdr *)ch_end;
1254		chunk_num++;
1255	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
1256
1257	return asoc;
1258}
1259
1260/*
1261 * There are circumstances when we need to look inside the SCTP packet
1262 * for information to help us find the association.   Examples
1263 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1264 * chunks.
1265 */
1266static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1267				      struct sk_buff *skb,
1268				      const union sctp_addr *laddr,
1269				      struct sctp_transport **transportp)
1270{
1271	struct sctp_chunkhdr *ch;
1272
1273	/* We do not allow GSO frames here as we need to linearize and
1274	 * then cannot guarantee frame boundaries. This shouldn't be an
1275	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1276	 * those cannot be on GSO-style anyway.
1277	 */
1278	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1279		return NULL;
1280
1281	ch = (struct sctp_chunkhdr *)skb->data;
1282
1283	/* The code below will attempt to walk the chunk and extract
1284	 * parameter information.  Before we do that, we need to verify
1285	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1286	 * walk off the end.
1287	 */
1288	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1289		return NULL;
1290
1291	/* If this is INIT/INIT-ACK look inside the chunk too. */
1292	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1293		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1294
1295	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1296}
1297
1298/* Lookup an association for an inbound skb. */
1299static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1300				      struct sk_buff *skb,
1301				      const union sctp_addr *paddr,
1302				      const union sctp_addr *laddr,
1303				      struct sctp_transport **transportp)
1304{
1305	struct sctp_association *asoc;
1306
1307	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1308	if (asoc)
1309		goto out;
1310
1311	/* Further lookup for INIT/INIT-ACK packets.
1312	 * SCTP Implementors Guide, 2.18 Handling of address
1313	 * parameters within the INIT or INIT-ACK.
1314	 */
1315	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1316	if (asoc)
1317		goto out;
1318
1319	if (paddr->sa.sa_family == AF_INET)
1320		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1321			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1322			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1323	else
1324		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1325			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1326			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1327
1328out:
1329	return asoc;
1330}
1331