xref: /kernel/linux/linux-5.10/net/sctp/associola.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001 Intel Corp.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * This module provides the abstraction for an SCTP association.
12 *
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 *    lksctp developers <linux-sctp@vger.kernel.org>
16 *
17 * Written or modified by:
18 *    La Monte H.P. Yarroll <piggy@acm.org>
19 *    Karl Knutson          <karl@athena.chicago.il.us>
20 *    Jon Grimm             <jgrimm@us.ibm.com>
21 *    Xingang Guo           <xingang.guo@intel.com>
22 *    Hui Huang             <hui.huang@nokia.com>
23 *    Sridhar Samudrala	    <sri@us.ibm.com>
24 *    Daisy Chang	    <daisyc@us.ibm.com>
25 *    Ryan Layer	    <rmlayer@us.ibm.com>
26 *    Kevin Gao             <kevin.gao@intel.com>
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/types.h>
32#include <linux/fcntl.h>
33#include <linux/poll.h>
34#include <linux/init.h>
35
36#include <linux/slab.h>
37#include <linux/in.h>
38#include <net/ipv6.h>
39#include <net/sctp/sctp.h>
40#include <net/sctp/sm.h>
41
42/* Forward declarations for internal functions. */
43static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44static void sctp_assoc_bh_rcv(struct work_struct *work);
45static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47
48/* 1st Level Abstractions. */
49
50/* Initialize a new association from provided memory. */
51static struct sctp_association *sctp_association_init(
52					struct sctp_association *asoc,
53					const struct sctp_endpoint *ep,
54					const struct sock *sk,
55					enum sctp_scope scope, gfp_t gfp)
56{
57	struct sctp_sock *sp;
58	struct sctp_paramhdr *p;
59	int i;
60
61	/* Retrieve the SCTP per socket area.  */
62	sp = sctp_sk((struct sock *)sk);
63
64	/* Discarding const is appropriate here.  */
65	asoc->ep = (struct sctp_endpoint *)ep;
66	asoc->base.sk = (struct sock *)sk;
67	asoc->base.net = sock_net(sk);
68
69	sctp_endpoint_hold(asoc->ep);
70	sock_hold(asoc->base.sk);
71
72	/* Initialize the common base substructure.  */
73	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74
75	/* Initialize the object handling fields.  */
76	refcount_set(&asoc->base.refcnt, 1);
77
78	/* Initialize the bind addr area.  */
79	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80
81	asoc->state = SCTP_STATE_CLOSED;
82	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83	asoc->user_frag = sp->user_frag;
84
85	/* Set the association max_retrans and RTO values from the
86	 * socket values.
87	 */
88	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89	asoc->pf_retrans  = sp->pf_retrans;
90	asoc->ps_retrans  = sp->ps_retrans;
91	asoc->pf_expose   = sp->pf_expose;
92
93	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
94	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
95	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
96
97	/* Initialize the association's heartbeat interval based on the
98	 * sock configured value.
99	 */
100	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
101
102	/* Initialize path max retrans value. */
103	asoc->pathmaxrxt = sp->pathmaxrxt;
104
105	asoc->flowlabel = sp->flowlabel;
106	asoc->dscp = sp->dscp;
107
108	/* Set association default SACK delay */
109	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
110	asoc->sackfreq = sp->sackfreq;
111
112	/* Set the association default flags controlling
113	 * Heartbeat, SACK delay, and Path MTU Discovery.
114	 */
115	asoc->param_flags = sp->param_flags;
116
117	/* Initialize the maximum number of new data packets that can be sent
118	 * in a burst.
119	 */
120	asoc->max_burst = sp->max_burst;
121
122	asoc->subscribe = sp->subscribe;
123
124	/* initialize association timers */
125	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
126	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
127	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
128
129	/* sctpimpguide Section 2.12.2
130	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
131	 * recommended value of 5 times 'RTO.Max'.
132	 */
133	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
134		= 5 * asoc->rto_max;
135
136	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
137	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
138
139	/* Initializes the timers */
140	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
141		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
142
143	/* Pull default initialization values from the sock options.
144	 * Note: This assumes that the values have already been
145	 * validated in the sock.
146	 */
147	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
148	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
149	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
150
151	asoc->max_init_timeo =
152		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
153
154	/* Set the local window size for receive.
155	 * This is also the rcvbuf space per association.
156	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
157	 * 1500 bytes in one SCTP packet.
158	 */
159	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
160		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
161	else
162		asoc->rwnd = sk->sk_rcvbuf/2;
163
164	asoc->a_rwnd = asoc->rwnd;
165
166	/* Use my own max window until I learn something better.  */
167	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
168
169	/* Initialize the receive memory counter */
170	atomic_set(&asoc->rmem_alloc, 0);
171
172	init_waitqueue_head(&asoc->wait);
173
174	asoc->c.my_vtag = sctp_generate_tag(ep);
175	asoc->c.my_port = ep->base.bind_addr.port;
176
177	asoc->c.initial_tsn = sctp_generate_tsn(ep);
178
179	asoc->next_tsn = asoc->c.initial_tsn;
180
181	asoc->ctsn_ack_point = asoc->next_tsn - 1;
182	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
183	asoc->highest_sacked = asoc->ctsn_ack_point;
184	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
185
186	/* ADDIP Section 4.1 Asconf Chunk Procedures
187	 *
188	 * When an endpoint has an ASCONF signaled change to be sent to the
189	 * remote endpoint it should do the following:
190	 * ...
191	 * A2) a serial number should be assigned to the chunk. The serial
192	 * number SHOULD be a monotonically increasing number. The serial
193	 * numbers SHOULD be initialized at the start of the
194	 * association to the same value as the initial TSN.
195	 */
196	asoc->addip_serial = asoc->c.initial_tsn;
197	asoc->strreset_outseq = asoc->c.initial_tsn;
198
199	INIT_LIST_HEAD(&asoc->addip_chunk_list);
200	INIT_LIST_HEAD(&asoc->asconf_ack_list);
201
202	/* Make an empty list of remote transport addresses.  */
203	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
204
205	/* RFC 2960 5.1 Normal Establishment of an Association
206	 *
207	 * After the reception of the first data chunk in an
208	 * association the endpoint must immediately respond with a
209	 * sack to acknowledge the data chunk.  Subsequent
210	 * acknowledgements should be done as described in Section
211	 * 6.2.
212	 *
213	 * [We implement this by telling a new association that it
214	 * already received one packet.]
215	 */
216	asoc->peer.sack_needed = 1;
217	asoc->peer.sack_generation = 1;
218
219	/* Create an input queue.  */
220	sctp_inq_init(&asoc->base.inqueue);
221	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
222
223	/* Create an output queue.  */
224	sctp_outq_init(asoc, &asoc->outqueue);
225
226	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
227		goto fail_init;
228
229	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 0, gfp))
230		goto stream_free;
231
232	/* Initialize default path MTU. */
233	asoc->pathmtu = sp->pathmtu;
234	sctp_assoc_update_frag_point(asoc);
235
236	/* Assume that peer would support both address types unless we are
237	 * told otherwise.
238	 */
239	asoc->peer.ipv4_address = 1;
240	if (asoc->base.sk->sk_family == PF_INET6)
241		asoc->peer.ipv6_address = 1;
242	INIT_LIST_HEAD(&asoc->asocs);
243
244	asoc->default_stream = sp->default_stream;
245	asoc->default_ppid = sp->default_ppid;
246	asoc->default_flags = sp->default_flags;
247	asoc->default_context = sp->default_context;
248	asoc->default_timetolive = sp->default_timetolive;
249	asoc->default_rcv_context = sp->default_rcv_context;
250
251	/* AUTH related initializations */
252	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
253	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
254		goto stream_free;
255
256	asoc->active_key_id = ep->active_key_id;
257	asoc->strreset_enable = ep->strreset_enable;
258
259	/* Save the hmacs and chunks list into this association */
260	if (ep->auth_hmacs_list)
261		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
262			ntohs(ep->auth_hmacs_list->param_hdr.length));
263	if (ep->auth_chunk_list)
264		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
265			ntohs(ep->auth_chunk_list->param_hdr.length));
266
267	/* Get the AUTH random number for this association */
268	p = (struct sctp_paramhdr *)asoc->c.auth_random;
269	p->type = SCTP_PARAM_RANDOM;
270	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
271	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
272
273	return asoc;
274
275stream_free:
276	sctp_stream_free(&asoc->stream);
277fail_init:
278	sock_put(asoc->base.sk);
279	sctp_endpoint_put(asoc->ep);
280	return NULL;
281}
282
283/* Allocate and initialize a new association */
284struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
285					      const struct sock *sk,
286					      enum sctp_scope scope, gfp_t gfp)
287{
288	struct sctp_association *asoc;
289
290	asoc = kzalloc(sizeof(*asoc), gfp);
291	if (!asoc)
292		goto fail;
293
294	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
295		goto fail_init;
296
297	SCTP_DBG_OBJCNT_INC(assoc);
298
299	pr_debug("Created asoc %p\n", asoc);
300
301	return asoc;
302
303fail_init:
304	kfree(asoc);
305fail:
306	return NULL;
307}
308
309/* Free this association if possible.  There may still be users, so
310 * the actual deallocation may be delayed.
311 */
312void sctp_association_free(struct sctp_association *asoc)
313{
314	struct sock *sk = asoc->base.sk;
315	struct sctp_transport *transport;
316	struct list_head *pos, *temp;
317	int i;
318
319	/* Only real associations count against the endpoint, so
320	 * don't bother for if this is a temporary association.
321	 */
322	if (!list_empty(&asoc->asocs)) {
323		list_del(&asoc->asocs);
324
325		/* Decrement the backlog value for a TCP-style listening
326		 * socket.
327		 */
328		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
329			sk_acceptq_removed(sk);
330	}
331
332	/* Mark as dead, so other users can know this structure is
333	 * going away.
334	 */
335	asoc->base.dead = true;
336
337	/* Dispose of any data lying around in the outqueue. */
338	sctp_outq_free(&asoc->outqueue);
339
340	/* Dispose of any pending messages for the upper layer. */
341	sctp_ulpq_free(&asoc->ulpq);
342
343	/* Dispose of any pending chunks on the inqueue. */
344	sctp_inq_free(&asoc->base.inqueue);
345
346	sctp_tsnmap_free(&asoc->peer.tsn_map);
347
348	/* Free stream information. */
349	sctp_stream_free(&asoc->stream);
350
351	if (asoc->strreset_chunk)
352		sctp_chunk_free(asoc->strreset_chunk);
353
354	/* Clean up the bound address list. */
355	sctp_bind_addr_free(&asoc->base.bind_addr);
356
357	/* Do we need to go through all of our timers and
358	 * delete them?   To be safe we will try to delete all, but we
359	 * should be able to go through and make a guess based
360	 * on our state.
361	 */
362	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
363		if (del_timer(&asoc->timers[i]))
364			sctp_association_put(asoc);
365	}
366
367	/* Free peer's cached cookie. */
368	kfree(asoc->peer.cookie);
369	kfree(asoc->peer.peer_random);
370	kfree(asoc->peer.peer_chunks);
371	kfree(asoc->peer.peer_hmacs);
372
373	/* Release the transport structures. */
374	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
375		transport = list_entry(pos, struct sctp_transport, transports);
376		list_del_rcu(pos);
377		sctp_unhash_transport(transport);
378		sctp_transport_free(transport);
379	}
380
381	asoc->peer.transport_count = 0;
382
383	sctp_asconf_queue_teardown(asoc);
384
385	/* Free pending address space being deleted */
386	kfree(asoc->asconf_addr_del_pending);
387
388	/* AUTH - Free the endpoint shared keys */
389	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
390
391	/* AUTH - Free the association shared key */
392	sctp_auth_key_put(asoc->asoc_shared_key);
393
394	sctp_association_put(asoc);
395}
396
397/* Cleanup and free up an association. */
398static void sctp_association_destroy(struct sctp_association *asoc)
399{
400	if (unlikely(!asoc->base.dead)) {
401		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
402		return;
403	}
404
405	sctp_endpoint_put(asoc->ep);
406	sock_put(asoc->base.sk);
407
408	if (asoc->assoc_id != 0) {
409		spin_lock_bh(&sctp_assocs_id_lock);
410		idr_remove(&sctp_assocs_id, asoc->assoc_id);
411		spin_unlock_bh(&sctp_assocs_id_lock);
412	}
413
414	WARN_ON(atomic_read(&asoc->rmem_alloc));
415
416	kfree_rcu(asoc, rcu);
417	SCTP_DBG_OBJCNT_DEC(assoc);
418}
419
420/* Change the primary destination address for the peer. */
421void sctp_assoc_set_primary(struct sctp_association *asoc,
422			    struct sctp_transport *transport)
423{
424	int changeover = 0;
425
426	/* it's a changeover only if we already have a primary path
427	 * that we are changing
428	 */
429	if (asoc->peer.primary_path != NULL &&
430	    asoc->peer.primary_path != transport)
431		changeover = 1 ;
432
433	asoc->peer.primary_path = transport;
434	sctp_ulpevent_notify_peer_addr_change(transport,
435					      SCTP_ADDR_MADE_PRIM, 0);
436
437	/* Set a default msg_name for events. */
438	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
439	       sizeof(union sctp_addr));
440
441	/* If the primary path is changing, assume that the
442	 * user wants to use this new path.
443	 */
444	if ((transport->state == SCTP_ACTIVE) ||
445	    (transport->state == SCTP_UNKNOWN))
446		asoc->peer.active_path = transport;
447
448	/*
449	 * SFR-CACC algorithm:
450	 * Upon the receipt of a request to change the primary
451	 * destination address, on the data structure for the new
452	 * primary destination, the sender MUST do the following:
453	 *
454	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
455	 * to this destination address earlier. The sender MUST set
456	 * CYCLING_CHANGEOVER to indicate that this switch is a
457	 * double switch to the same destination address.
458	 *
459	 * Really, only bother is we have data queued or outstanding on
460	 * the association.
461	 */
462	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
463		return;
464
465	if (transport->cacc.changeover_active)
466		transport->cacc.cycling_changeover = changeover;
467
468	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
469	 * a changeover has occurred.
470	 */
471	transport->cacc.changeover_active = changeover;
472
473	/* 3) The sender MUST store the next TSN to be sent in
474	 * next_tsn_at_change.
475	 */
476	transport->cacc.next_tsn_at_change = asoc->next_tsn;
477}
478
479/* Remove a transport from an association.  */
480void sctp_assoc_rm_peer(struct sctp_association *asoc,
481			struct sctp_transport *peer)
482{
483	struct sctp_transport *transport;
484	struct list_head *pos;
485	struct sctp_chunk *ch;
486
487	pr_debug("%s: association:%p addr:%pISpc\n",
488		 __func__, asoc, &peer->ipaddr.sa);
489
490	/* If we are to remove the current retran_path, update it
491	 * to the next peer before removing this peer from the list.
492	 */
493	if (asoc->peer.retran_path == peer)
494		sctp_assoc_update_retran_path(asoc);
495
496	/* Remove this peer from the list. */
497	list_del_rcu(&peer->transports);
498	/* Remove this peer from the transport hashtable */
499	sctp_unhash_transport(peer);
500
501	/* Get the first transport of asoc. */
502	pos = asoc->peer.transport_addr_list.next;
503	transport = list_entry(pos, struct sctp_transport, transports);
504
505	/* Update any entries that match the peer to be deleted. */
506	if (asoc->peer.primary_path == peer)
507		sctp_assoc_set_primary(asoc, transport);
508	if (asoc->peer.active_path == peer)
509		asoc->peer.active_path = transport;
510	if (asoc->peer.retran_path == peer)
511		asoc->peer.retran_path = transport;
512	if (asoc->peer.last_data_from == peer)
513		asoc->peer.last_data_from = transport;
514
515	if (asoc->strreset_chunk &&
516	    asoc->strreset_chunk->transport == peer) {
517		asoc->strreset_chunk->transport = transport;
518		sctp_transport_reset_reconf_timer(transport);
519	}
520
521	/* If we remove the transport an INIT was last sent to, set it to
522	 * NULL. Combined with the update of the retran path above, this
523	 * will cause the next INIT to be sent to the next available
524	 * transport, maintaining the cycle.
525	 */
526	if (asoc->init_last_sent_to == peer)
527		asoc->init_last_sent_to = NULL;
528
529	/* If we remove the transport an SHUTDOWN was last sent to, set it
530	 * to NULL. Combined with the update of the retran path above, this
531	 * will cause the next SHUTDOWN to be sent to the next available
532	 * transport, maintaining the cycle.
533	 */
534	if (asoc->shutdown_last_sent_to == peer)
535		asoc->shutdown_last_sent_to = NULL;
536
537	/* If we remove the transport an ASCONF was last sent to, set it to
538	 * NULL.
539	 */
540	if (asoc->addip_last_asconf &&
541	    asoc->addip_last_asconf->transport == peer)
542		asoc->addip_last_asconf->transport = NULL;
543
544	/* If we have something on the transmitted list, we have to
545	 * save it off.  The best place is the active path.
546	 */
547	if (!list_empty(&peer->transmitted)) {
548		struct sctp_transport *active = asoc->peer.active_path;
549
550		/* Reset the transport of each chunk on this list */
551		list_for_each_entry(ch, &peer->transmitted,
552					transmitted_list) {
553			ch->transport = NULL;
554			ch->rtt_in_progress = 0;
555		}
556
557		list_splice_tail_init(&peer->transmitted,
558					&active->transmitted);
559
560		/* Start a T3 timer here in case it wasn't running so
561		 * that these migrated packets have a chance to get
562		 * retransmitted.
563		 */
564		if (!timer_pending(&active->T3_rtx_timer))
565			if (!mod_timer(&active->T3_rtx_timer,
566					jiffies + active->rto))
567				sctp_transport_hold(active);
568	}
569
570	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
571		if (ch->transport == peer)
572			ch->transport = NULL;
573
574	asoc->peer.transport_count--;
575
576	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
577	sctp_transport_free(peer);
578}
579
580/* Add a transport address to an association.  */
581struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
582					   const union sctp_addr *addr,
583					   const gfp_t gfp,
584					   const int peer_state)
585{
586	struct sctp_transport *peer;
587	struct sctp_sock *sp;
588	unsigned short port;
589
590	sp = sctp_sk(asoc->base.sk);
591
592	/* AF_INET and AF_INET6 share common port field. */
593	port = ntohs(addr->v4.sin_port);
594
595	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
596		 asoc, &addr->sa, peer_state);
597
598	/* Set the port if it has not been set yet.  */
599	if (0 == asoc->peer.port)
600		asoc->peer.port = port;
601
602	/* Check to see if this is a duplicate. */
603	peer = sctp_assoc_lookup_paddr(asoc, addr);
604	if (peer) {
605		/* An UNKNOWN state is only set on transports added by
606		 * user in sctp_connectx() call.  Such transports should be
607		 * considered CONFIRMED per RFC 4960, Section 5.4.
608		 */
609		if (peer->state == SCTP_UNKNOWN) {
610			peer->state = SCTP_ACTIVE;
611		}
612		return peer;
613	}
614
615	peer = sctp_transport_new(asoc->base.net, addr, gfp);
616	if (!peer)
617		return NULL;
618
619	sctp_transport_set_owner(peer, asoc);
620
621	/* Initialize the peer's heartbeat interval based on the
622	 * association configured value.
623	 */
624	peer->hbinterval = asoc->hbinterval;
625
626	/* Set the path max_retrans.  */
627	peer->pathmaxrxt = asoc->pathmaxrxt;
628
629	/* And the partial failure retrans threshold */
630	peer->pf_retrans = asoc->pf_retrans;
631	/* And the primary path switchover retrans threshold */
632	peer->ps_retrans = asoc->ps_retrans;
633
634	/* Initialize the peer's SACK delay timeout based on the
635	 * association configured value.
636	 */
637	peer->sackdelay = asoc->sackdelay;
638	peer->sackfreq = asoc->sackfreq;
639
640	if (addr->sa.sa_family == AF_INET6) {
641		__be32 info = addr->v6.sin6_flowinfo;
642
643		if (info) {
644			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
645			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
646		} else {
647			peer->flowlabel = asoc->flowlabel;
648		}
649	}
650	peer->dscp = asoc->dscp;
651
652	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
653	 * based on association setting.
654	 */
655	peer->param_flags = asoc->param_flags;
656
657	/* Initialize the pmtu of the transport. */
658	sctp_transport_route(peer, NULL, sp);
659
660	/* If this is the first transport addr on this association,
661	 * initialize the association PMTU to the peer's PMTU.
662	 * If not and the current association PMTU is higher than the new
663	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
664	 */
665	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
666				  min_t(int, peer->pathmtu, asoc->pathmtu) :
667				  peer->pathmtu);
668
669	peer->pmtu_pending = 0;
670
671	/* The asoc->peer.port might not be meaningful yet, but
672	 * initialize the packet structure anyway.
673	 */
674	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
675			 asoc->peer.port);
676
677	/* 7.2.1 Slow-Start
678	 *
679	 * o The initial cwnd before DATA transmission or after a sufficiently
680	 *   long idle period MUST be set to
681	 *      min(4*MTU, max(2*MTU, 4380 bytes))
682	 *
683	 * o The initial value of ssthresh MAY be arbitrarily high
684	 *   (for example, implementations MAY use the size of the
685	 *   receiver advertised window).
686	 */
687	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
688
689	/* At this point, we may not have the receiver's advertised window,
690	 * so initialize ssthresh to the default value and it will be set
691	 * later when we process the INIT.
692	 */
693	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
694
695	peer->partial_bytes_acked = 0;
696	peer->flight_size = 0;
697	peer->burst_limited = 0;
698
699	/* Set the transport's RTO.initial value */
700	peer->rto = asoc->rto_initial;
701	sctp_max_rto(asoc, peer);
702
703	/* Set the peer's active state. */
704	peer->state = peer_state;
705
706	/* Add this peer into the transport hashtable */
707	if (sctp_hash_transport(peer)) {
708		sctp_transport_free(peer);
709		return NULL;
710	}
711
712	/* Attach the remote transport to our asoc.  */
713	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
714	asoc->peer.transport_count++;
715
716	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
717
718	/* If we do not yet have a primary path, set one.  */
719	if (!asoc->peer.primary_path) {
720		sctp_assoc_set_primary(asoc, peer);
721		asoc->peer.retran_path = peer;
722	}
723
724	if (asoc->peer.active_path == asoc->peer.retran_path &&
725	    peer->state != SCTP_UNCONFIRMED) {
726		asoc->peer.retran_path = peer;
727	}
728
729	return peer;
730}
731
732/* Delete a transport address from an association.  */
733void sctp_assoc_del_peer(struct sctp_association *asoc,
734			 const union sctp_addr *addr)
735{
736	struct list_head	*pos;
737	struct list_head	*temp;
738	struct sctp_transport	*transport;
739
740	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
741		transport = list_entry(pos, struct sctp_transport, transports);
742		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
743			/* Do book keeping for removing the peer and free it. */
744			sctp_assoc_rm_peer(asoc, transport);
745			break;
746		}
747	}
748}
749
750/* Lookup a transport by address. */
751struct sctp_transport *sctp_assoc_lookup_paddr(
752					const struct sctp_association *asoc,
753					const union sctp_addr *address)
754{
755	struct sctp_transport *t;
756
757	/* Cycle through all transports searching for a peer address. */
758
759	list_for_each_entry(t, &asoc->peer.transport_addr_list,
760			transports) {
761		if (sctp_cmp_addr_exact(address, &t->ipaddr))
762			return t;
763	}
764
765	return NULL;
766}
767
768/* Remove all transports except a give one */
769void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
770				     struct sctp_transport *primary)
771{
772	struct sctp_transport	*temp;
773	struct sctp_transport	*t;
774
775	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
776				 transports) {
777		/* if the current transport is not the primary one, delete it */
778		if (t != primary)
779			sctp_assoc_rm_peer(asoc, t);
780	}
781}
782
783/* Engage in transport control operations.
784 * Mark the transport up or down and send a notification to the user.
785 * Select and update the new active and retran paths.
786 */
787void sctp_assoc_control_transport(struct sctp_association *asoc,
788				  struct sctp_transport *transport,
789				  enum sctp_transport_cmd command,
790				  sctp_sn_error_t error)
791{
792	int spc_state = SCTP_ADDR_AVAILABLE;
793	bool ulp_notify = true;
794
795	/* Record the transition on the transport.  */
796	switch (command) {
797	case SCTP_TRANSPORT_UP:
798		/* If we are moving from UNCONFIRMED state due
799		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
800		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
801		 */
802		if (transport->state == SCTP_PF &&
803		    asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
804			ulp_notify = false;
805		else if (transport->state == SCTP_UNCONFIRMED &&
806			 error == SCTP_HEARTBEAT_SUCCESS)
807			spc_state = SCTP_ADDR_CONFIRMED;
808
809		transport->state = SCTP_ACTIVE;
810		break;
811
812	case SCTP_TRANSPORT_DOWN:
813		/* If the transport was never confirmed, do not transition it
814		 * to inactive state.  Also, release the cached route since
815		 * there may be a better route next time.
816		 */
817		if (transport->state != SCTP_UNCONFIRMED) {
818			transport->state = SCTP_INACTIVE;
819			spc_state = SCTP_ADDR_UNREACHABLE;
820		} else {
821			sctp_transport_dst_release(transport);
822			ulp_notify = false;
823		}
824		break;
825
826	case SCTP_TRANSPORT_PF:
827		transport->state = SCTP_PF;
828		if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
829			ulp_notify = false;
830		else
831			spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
832		break;
833
834	default:
835		return;
836	}
837
838	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
839	 * to the user.
840	 */
841	if (ulp_notify)
842		sctp_ulpevent_notify_peer_addr_change(transport,
843						      spc_state, error);
844
845	/* Select new active and retran paths. */
846	sctp_select_active_and_retran_path(asoc);
847}
848
849/* Hold a reference to an association. */
850void sctp_association_hold(struct sctp_association *asoc)
851{
852	refcount_inc(&asoc->base.refcnt);
853}
854
855/* Release a reference to an association and cleanup
856 * if there are no more references.
857 */
858void sctp_association_put(struct sctp_association *asoc)
859{
860	if (refcount_dec_and_test(&asoc->base.refcnt))
861		sctp_association_destroy(asoc);
862}
863
864/* Allocate the next TSN, Transmission Sequence Number, for the given
865 * association.
866 */
867__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
868{
869	/* From Section 1.6 Serial Number Arithmetic:
870	 * Transmission Sequence Numbers wrap around when they reach
871	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
872	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
873	 */
874	__u32 retval = asoc->next_tsn;
875	asoc->next_tsn++;
876	asoc->unack_data++;
877
878	return retval;
879}
880
881/* Compare two addresses to see if they match.  Wildcard addresses
882 * only match themselves.
883 */
884int sctp_cmp_addr_exact(const union sctp_addr *ss1,
885			const union sctp_addr *ss2)
886{
887	struct sctp_af *af;
888
889	af = sctp_get_af_specific(ss1->sa.sa_family);
890	if (unlikely(!af))
891		return 0;
892
893	return af->cmp_addr(ss1, ss2);
894}
895
896/* Return an ecne chunk to get prepended to a packet.
897 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
898 * No we don't, but we could/should.
899 */
900struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
901{
902	if (!asoc->need_ecne)
903		return NULL;
904
905	/* Send ECNE if needed.
906	 * Not being able to allocate a chunk here is not deadly.
907	 */
908	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
909}
910
911/*
912 * Find which transport this TSN was sent on.
913 */
914struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
915					     __u32 tsn)
916{
917	struct sctp_transport *active;
918	struct sctp_transport *match;
919	struct sctp_transport *transport;
920	struct sctp_chunk *chunk;
921	__be32 key = htonl(tsn);
922
923	match = NULL;
924
925	/*
926	 * FIXME: In general, find a more efficient data structure for
927	 * searching.
928	 */
929
930	/*
931	 * The general strategy is to search each transport's transmitted
932	 * list.   Return which transport this TSN lives on.
933	 *
934	 * Let's be hopeful and check the active_path first.
935	 * Another optimization would be to know if there is only one
936	 * outbound path and not have to look for the TSN at all.
937	 *
938	 */
939
940	active = asoc->peer.active_path;
941
942	list_for_each_entry(chunk, &active->transmitted,
943			transmitted_list) {
944
945		if (key == chunk->subh.data_hdr->tsn) {
946			match = active;
947			goto out;
948		}
949	}
950
951	/* If not found, go search all the other transports. */
952	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
953			transports) {
954
955		if (transport == active)
956			continue;
957		list_for_each_entry(chunk, &transport->transmitted,
958				transmitted_list) {
959			if (key == chunk->subh.data_hdr->tsn) {
960				match = transport;
961				goto out;
962			}
963		}
964	}
965out:
966	return match;
967}
968
969/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
970static void sctp_assoc_bh_rcv(struct work_struct *work)
971{
972	struct sctp_association *asoc =
973		container_of(work, struct sctp_association,
974			     base.inqueue.immediate);
975	struct net *net = asoc->base.net;
976	union sctp_subtype subtype;
977	struct sctp_endpoint *ep;
978	struct sctp_chunk *chunk;
979	struct sctp_inq *inqueue;
980	int first_time = 1;	/* is this the first time through the loop */
981	int error = 0;
982	int state;
983
984	/* The association should be held so we should be safe. */
985	ep = asoc->ep;
986
987	inqueue = &asoc->base.inqueue;
988	sctp_association_hold(asoc);
989	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
990		state = asoc->state;
991		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
992
993		/* If the first chunk in the packet is AUTH, do special
994		 * processing specified in Section 6.3 of SCTP-AUTH spec
995		 */
996		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
997			struct sctp_chunkhdr *next_hdr;
998
999			next_hdr = sctp_inq_peek(inqueue);
1000			if (!next_hdr)
1001				goto normal;
1002
1003			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1004			 * chunk while saving a pointer to it so we can do
1005			 * Authentication later (during cookie-echo
1006			 * processing).
1007			 */
1008			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1009				chunk->auth_chunk = skb_clone(chunk->skb,
1010							      GFP_ATOMIC);
1011				chunk->auth = 1;
1012				continue;
1013			}
1014		}
1015
1016normal:
1017		/* SCTP-AUTH, Section 6.3:
1018		 *    The receiver has a list of chunk types which it expects
1019		 *    to be received only after an AUTH-chunk.  This list has
1020		 *    been sent to the peer during the association setup.  It
1021		 *    MUST silently discard these chunks if they are not placed
1022		 *    after an AUTH chunk in the packet.
1023		 */
1024		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1025			continue;
1026
1027		/* Remember where the last DATA chunk came from so we
1028		 * know where to send the SACK.
1029		 */
1030		if (sctp_chunk_is_data(chunk))
1031			asoc->peer.last_data_from = chunk->transport;
1032		else {
1033			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1034			asoc->stats.ictrlchunks++;
1035			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1036				asoc->stats.isacks++;
1037		}
1038
1039		if (chunk->transport)
1040			chunk->transport->last_time_heard = ktime_get();
1041
1042		/* Run through the state machine. */
1043		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1044				   state, ep, asoc, chunk, GFP_ATOMIC);
1045
1046		/* Check to see if the association is freed in response to
1047		 * the incoming chunk.  If so, get out of the while loop.
1048		 */
1049		if (asoc->base.dead)
1050			break;
1051
1052		/* If there is an error on chunk, discard this packet. */
1053		if (error && chunk)
1054			chunk->pdiscard = 1;
1055
1056		if (first_time)
1057			first_time = 0;
1058	}
1059	sctp_association_put(asoc);
1060}
1061
1062/* This routine moves an association from its old sk to a new sk.  */
1063void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1064{
1065	struct sctp_sock *newsp = sctp_sk(newsk);
1066	struct sock *oldsk = assoc->base.sk;
1067
1068	/* Delete the association from the old endpoint's list of
1069	 * associations.
1070	 */
1071	list_del_init(&assoc->asocs);
1072
1073	/* Decrement the backlog value for a TCP-style socket. */
1074	if (sctp_style(oldsk, TCP))
1075		sk_acceptq_removed(oldsk);
1076
1077	/* Release references to the old endpoint and the sock.  */
1078	sctp_endpoint_put(assoc->ep);
1079	sock_put(assoc->base.sk);
1080
1081	/* Get a reference to the new endpoint.  */
1082	assoc->ep = newsp->ep;
1083	sctp_endpoint_hold(assoc->ep);
1084
1085	/* Get a reference to the new sock.  */
1086	assoc->base.sk = newsk;
1087	sock_hold(assoc->base.sk);
1088
1089	/* Add the association to the new endpoint's list of associations.  */
1090	sctp_endpoint_add_asoc(newsp->ep, assoc);
1091}
1092
1093/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1094int sctp_assoc_update(struct sctp_association *asoc,
1095		      struct sctp_association *new)
1096{
1097	struct sctp_transport *trans;
1098	struct list_head *pos, *temp;
1099
1100	/* Copy in new parameters of peer. */
1101	asoc->c = new->c;
1102	asoc->peer.rwnd = new->peer.rwnd;
1103	asoc->peer.sack_needed = new->peer.sack_needed;
1104	asoc->peer.auth_capable = new->peer.auth_capable;
1105	asoc->peer.i = new->peer.i;
1106
1107	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1108			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1109		return -ENOMEM;
1110
1111	/* Remove any peer addresses not present in the new association. */
1112	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1113		trans = list_entry(pos, struct sctp_transport, transports);
1114		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1115			sctp_assoc_rm_peer(asoc, trans);
1116			continue;
1117		}
1118
1119		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1120			sctp_transport_reset(trans);
1121	}
1122
1123	/* If the case is A (association restart), use
1124	 * initial_tsn as next_tsn. If the case is B, use
1125	 * current next_tsn in case data sent to peer
1126	 * has been discarded and needs retransmission.
1127	 */
1128	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1129		asoc->next_tsn = new->next_tsn;
1130		asoc->ctsn_ack_point = new->ctsn_ack_point;
1131		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1132
1133		/* Reinitialize SSN for both local streams
1134		 * and peer's streams.
1135		 */
1136		sctp_stream_clear(&asoc->stream);
1137
1138		/* Flush the ULP reassembly and ordered queue.
1139		 * Any data there will now be stale and will
1140		 * cause problems.
1141		 */
1142		sctp_ulpq_flush(&asoc->ulpq);
1143
1144		/* reset the overall association error count so
1145		 * that the restarted association doesn't get torn
1146		 * down on the next retransmission timer.
1147		 */
1148		asoc->overall_error_count = 0;
1149
1150	} else {
1151		/* Add any peer addresses from the new association. */
1152		list_for_each_entry(trans, &new->peer.transport_addr_list,
1153				    transports)
1154			if (!sctp_assoc_add_peer(asoc, &trans->ipaddr,
1155						 GFP_ATOMIC, trans->state))
1156				return -ENOMEM;
1157
1158		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1159		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1160
1161		if (sctp_state(asoc, COOKIE_WAIT))
1162			sctp_stream_update(&asoc->stream, &new->stream);
1163
1164		/* get a new assoc id if we don't have one yet. */
1165		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1166			return -ENOMEM;
1167	}
1168
1169	/* SCTP-AUTH: Save the peer parameters from the new associations
1170	 * and also move the association shared keys over
1171	 */
1172	kfree(asoc->peer.peer_random);
1173	asoc->peer.peer_random = new->peer.peer_random;
1174	new->peer.peer_random = NULL;
1175
1176	kfree(asoc->peer.peer_chunks);
1177	asoc->peer.peer_chunks = new->peer.peer_chunks;
1178	new->peer.peer_chunks = NULL;
1179
1180	kfree(asoc->peer.peer_hmacs);
1181	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1182	new->peer.peer_hmacs = NULL;
1183
1184	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1185}
1186
1187/* Update the retran path for sending a retransmitted packet.
1188 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1189 *
1190 *   When there is outbound data to send and the primary path
1191 *   becomes inactive (e.g., due to failures), or where the
1192 *   SCTP user explicitly requests to send data to an
1193 *   inactive destination transport address, before reporting
1194 *   an error to its ULP, the SCTP endpoint should try to send
1195 *   the data to an alternate active destination transport
1196 *   address if one exists.
1197 *
1198 *   When retransmitting data that timed out, if the endpoint
1199 *   is multihomed, it should consider each source-destination
1200 *   address pair in its retransmission selection policy.
1201 *   When retransmitting timed-out data, the endpoint should
1202 *   attempt to pick the most divergent source-destination
1203 *   pair from the original source-destination pair to which
1204 *   the packet was transmitted.
1205 *
1206 *   Note: Rules for picking the most divergent source-destination
1207 *   pair are an implementation decision and are not specified
1208 *   within this document.
1209 *
1210 * Our basic strategy is to round-robin transports in priorities
1211 * according to sctp_trans_score() e.g., if no such
1212 * transport with state SCTP_ACTIVE exists, round-robin through
1213 * SCTP_UNKNOWN, etc. You get the picture.
1214 */
1215static u8 sctp_trans_score(const struct sctp_transport *trans)
1216{
1217	switch (trans->state) {
1218	case SCTP_ACTIVE:
1219		return 3;	/* best case */
1220	case SCTP_UNKNOWN:
1221		return 2;
1222	case SCTP_PF:
1223		return 1;
1224	default: /* case SCTP_INACTIVE */
1225		return 0;	/* worst case */
1226	}
1227}
1228
1229static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1230						   struct sctp_transport *trans2)
1231{
1232	if (trans1->error_count > trans2->error_count) {
1233		return trans2;
1234	} else if (trans1->error_count == trans2->error_count &&
1235		   ktime_after(trans2->last_time_heard,
1236			       trans1->last_time_heard)) {
1237		return trans2;
1238	} else {
1239		return trans1;
1240	}
1241}
1242
1243static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1244						    struct sctp_transport *best)
1245{
1246	u8 score_curr, score_best;
1247
1248	if (best == NULL || curr == best)
1249		return curr;
1250
1251	score_curr = sctp_trans_score(curr);
1252	score_best = sctp_trans_score(best);
1253
1254	/* First, try a score-based selection if both transport states
1255	 * differ. If we're in a tie, lets try to make a more clever
1256	 * decision here based on error counts and last time heard.
1257	 */
1258	if (score_curr > score_best)
1259		return curr;
1260	else if (score_curr == score_best)
1261		return sctp_trans_elect_tie(best, curr);
1262	else
1263		return best;
1264}
1265
1266void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1267{
1268	struct sctp_transport *trans = asoc->peer.retran_path;
1269	struct sctp_transport *trans_next = NULL;
1270
1271	/* We're done as we only have the one and only path. */
1272	if (asoc->peer.transport_count == 1)
1273		return;
1274	/* If active_path and retran_path are the same and active,
1275	 * then this is the only active path. Use it.
1276	 */
1277	if (asoc->peer.active_path == asoc->peer.retran_path &&
1278	    asoc->peer.active_path->state == SCTP_ACTIVE)
1279		return;
1280
1281	/* Iterate from retran_path's successor back to retran_path. */
1282	for (trans = list_next_entry(trans, transports); 1;
1283	     trans = list_next_entry(trans, transports)) {
1284		/* Manually skip the head element. */
1285		if (&trans->transports == &asoc->peer.transport_addr_list)
1286			continue;
1287		if (trans->state == SCTP_UNCONFIRMED)
1288			continue;
1289		trans_next = sctp_trans_elect_best(trans, trans_next);
1290		/* Active is good enough for immediate return. */
1291		if (trans_next->state == SCTP_ACTIVE)
1292			break;
1293		/* We've reached the end, time to update path. */
1294		if (trans == asoc->peer.retran_path)
1295			break;
1296	}
1297
1298	asoc->peer.retran_path = trans_next;
1299
1300	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1301		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1302}
1303
1304static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1305{
1306	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1307	struct sctp_transport *trans_pf = NULL;
1308
1309	/* Look for the two most recently used active transports. */
1310	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1311			    transports) {
1312		/* Skip uninteresting transports. */
1313		if (trans->state == SCTP_INACTIVE ||
1314		    trans->state == SCTP_UNCONFIRMED)
1315			continue;
1316		/* Keep track of the best PF transport from our
1317		 * list in case we don't find an active one.
1318		 */
1319		if (trans->state == SCTP_PF) {
1320			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1321			continue;
1322		}
1323		/* For active transports, pick the most recent ones. */
1324		if (trans_pri == NULL ||
1325		    ktime_after(trans->last_time_heard,
1326				trans_pri->last_time_heard)) {
1327			trans_sec = trans_pri;
1328			trans_pri = trans;
1329		} else if (trans_sec == NULL ||
1330			   ktime_after(trans->last_time_heard,
1331				       trans_sec->last_time_heard)) {
1332			trans_sec = trans;
1333		}
1334	}
1335
1336	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1337	 *
1338	 * By default, an endpoint should always transmit to the primary
1339	 * path, unless the SCTP user explicitly specifies the
1340	 * destination transport address (and possibly source transport
1341	 * address) to use. [If the primary is active but not most recent,
1342	 * bump the most recently used transport.]
1343	 */
1344	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1345	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1346	     asoc->peer.primary_path != trans_pri) {
1347		trans_sec = trans_pri;
1348		trans_pri = asoc->peer.primary_path;
1349	}
1350
1351	/* We did not find anything useful for a possible retransmission
1352	 * path; either primary path that we found is the same as
1353	 * the current one, or we didn't generally find an active one.
1354	 */
1355	if (trans_sec == NULL)
1356		trans_sec = trans_pri;
1357
1358	/* If we failed to find a usable transport, just camp on the
1359	 * active or pick a PF iff it's the better choice.
1360	 */
1361	if (trans_pri == NULL) {
1362		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1363		trans_sec = trans_pri;
1364	}
1365
1366	/* Set the active and retran transports. */
1367	asoc->peer.active_path = trans_pri;
1368	asoc->peer.retran_path = trans_sec;
1369}
1370
1371struct sctp_transport *
1372sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1373				  struct sctp_transport *last_sent_to)
1374{
1375	/* If this is the first time packet is sent, use the active path,
1376	 * else use the retran path. If the last packet was sent over the
1377	 * retran path, update the retran path and use it.
1378	 */
1379	if (last_sent_to == NULL) {
1380		return asoc->peer.active_path;
1381	} else {
1382		if (last_sent_to == asoc->peer.retran_path)
1383			sctp_assoc_update_retran_path(asoc);
1384
1385		return asoc->peer.retran_path;
1386	}
1387}
1388
1389void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1390{
1391	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1392				    sctp_datachk_len(&asoc->stream));
1393
1394	if (asoc->user_frag)
1395		frag = min_t(int, frag, asoc->user_frag);
1396
1397	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1398				sctp_datachk_len(&asoc->stream));
1399
1400	asoc->frag_point = SCTP_TRUNC4(frag);
1401}
1402
1403void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1404{
1405	if (asoc->pathmtu != pmtu) {
1406		asoc->pathmtu = pmtu;
1407		sctp_assoc_update_frag_point(asoc);
1408	}
1409
1410	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1411		 asoc->pathmtu, asoc->frag_point);
1412}
1413
1414/* Update the association's pmtu and frag_point by going through all the
1415 * transports. This routine is called when a transport's PMTU has changed.
1416 */
1417void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1418{
1419	struct sctp_transport *t;
1420	__u32 pmtu = 0;
1421
1422	if (!asoc)
1423		return;
1424
1425	/* Get the lowest pmtu of all the transports. */
1426	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1427		if (t->pmtu_pending && t->dst) {
1428			sctp_transport_update_pmtu(t,
1429						   atomic_read(&t->mtu_info));
1430			t->pmtu_pending = 0;
1431		}
1432		if (!pmtu || (t->pathmtu < pmtu))
1433			pmtu = t->pathmtu;
1434	}
1435
1436	sctp_assoc_set_pmtu(asoc, pmtu);
1437}
1438
1439/* Should we send a SACK to update our peer? */
1440static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1441{
1442	struct net *net = asoc->base.net;
1443
1444	switch (asoc->state) {
1445	case SCTP_STATE_ESTABLISHED:
1446	case SCTP_STATE_SHUTDOWN_PENDING:
1447	case SCTP_STATE_SHUTDOWN_RECEIVED:
1448	case SCTP_STATE_SHUTDOWN_SENT:
1449		if ((asoc->rwnd > asoc->a_rwnd) &&
1450		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1451			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1452			   asoc->pathmtu)))
1453			return true;
1454		break;
1455	default:
1456		break;
1457	}
1458	return false;
1459}
1460
1461/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1462void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1463{
1464	struct sctp_chunk *sack;
1465	struct timer_list *timer;
1466
1467	if (asoc->rwnd_over) {
1468		if (asoc->rwnd_over >= len) {
1469			asoc->rwnd_over -= len;
1470		} else {
1471			asoc->rwnd += (len - asoc->rwnd_over);
1472			asoc->rwnd_over = 0;
1473		}
1474	} else {
1475		asoc->rwnd += len;
1476	}
1477
1478	/* If we had window pressure, start recovering it
1479	 * once our rwnd had reached the accumulated pressure
1480	 * threshold.  The idea is to recover slowly, but up
1481	 * to the initial advertised window.
1482	 */
1483	if (asoc->rwnd_press) {
1484		int change = min(asoc->pathmtu, asoc->rwnd_press);
1485		asoc->rwnd += change;
1486		asoc->rwnd_press -= change;
1487	}
1488
1489	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1490		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1491		 asoc->a_rwnd);
1492
1493	/* Send a window update SACK if the rwnd has increased by at least the
1494	 * minimum of the association's PMTU and half of the receive buffer.
1495	 * The algorithm used is similar to the one described in
1496	 * Section 4.2.3.3 of RFC 1122.
1497	 */
1498	if (sctp_peer_needs_update(asoc)) {
1499		asoc->a_rwnd = asoc->rwnd;
1500
1501		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1502			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1503			 asoc->a_rwnd);
1504
1505		sack = sctp_make_sack(asoc);
1506		if (!sack)
1507			return;
1508
1509		asoc->peer.sack_needed = 0;
1510
1511		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1512
1513		/* Stop the SACK timer.  */
1514		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1515		if (del_timer(timer))
1516			sctp_association_put(asoc);
1517	}
1518}
1519
1520/* Decrease asoc's rwnd by len. */
1521void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1522{
1523	int rx_count;
1524	int over = 0;
1525
1526	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1527		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1528			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1529			 asoc->rwnd, asoc->rwnd_over);
1530
1531	if (asoc->ep->rcvbuf_policy)
1532		rx_count = atomic_read(&asoc->rmem_alloc);
1533	else
1534		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1535
1536	/* If we've reached or overflowed our receive buffer, announce
1537	 * a 0 rwnd if rwnd would still be positive.  Store the
1538	 * potential pressure overflow so that the window can be restored
1539	 * back to original value.
1540	 */
1541	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1542		over = 1;
1543
1544	if (asoc->rwnd >= len) {
1545		asoc->rwnd -= len;
1546		if (over) {
1547			asoc->rwnd_press += asoc->rwnd;
1548			asoc->rwnd = 0;
1549		}
1550	} else {
1551		asoc->rwnd_over += len - asoc->rwnd;
1552		asoc->rwnd = 0;
1553	}
1554
1555	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1556		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1557		 asoc->rwnd_press);
1558}
1559
1560/* Build the bind address list for the association based on info from the
1561 * local endpoint and the remote peer.
1562 */
1563int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1564				     enum sctp_scope scope, gfp_t gfp)
1565{
1566	struct sock *sk = asoc->base.sk;
1567	int flags;
1568
1569	/* Use scoping rules to determine the subset of addresses from
1570	 * the endpoint.
1571	 */
1572	flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1573	if (!inet_v6_ipv6only(sk))
1574		flags |= SCTP_ADDR4_ALLOWED;
1575	if (asoc->peer.ipv4_address)
1576		flags |= SCTP_ADDR4_PEERSUPP;
1577	if (asoc->peer.ipv6_address)
1578		flags |= SCTP_ADDR6_PEERSUPP;
1579
1580	return sctp_bind_addr_copy(asoc->base.net,
1581				   &asoc->base.bind_addr,
1582				   &asoc->ep->base.bind_addr,
1583				   scope, gfp, flags);
1584}
1585
1586/* Build the association's bind address list from the cookie.  */
1587int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1588					 struct sctp_cookie *cookie,
1589					 gfp_t gfp)
1590{
1591	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1592	int var_size3 = cookie->raw_addr_list_len;
1593	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1594
1595	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1596				      asoc->ep->base.bind_addr.port, gfp);
1597}
1598
1599/* Lookup laddr in the bind address list of an association. */
1600int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1601			    const union sctp_addr *laddr)
1602{
1603	int found = 0;
1604
1605	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1606	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1607				 sctp_sk(asoc->base.sk)))
1608		found = 1;
1609
1610	return found;
1611}
1612
1613/* Set an association id for a given association */
1614int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1615{
1616	bool preload = gfpflags_allow_blocking(gfp);
1617	int ret;
1618
1619	/* If the id is already assigned, keep it. */
1620	if (asoc->assoc_id)
1621		return 0;
1622
1623	if (preload)
1624		idr_preload(gfp);
1625	spin_lock_bh(&sctp_assocs_id_lock);
1626	/* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1627	 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1628	 */
1629	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1630			       GFP_NOWAIT);
1631	spin_unlock_bh(&sctp_assocs_id_lock);
1632	if (preload)
1633		idr_preload_end();
1634	if (ret < 0)
1635		return ret;
1636
1637	asoc->assoc_id = (sctp_assoc_t)ret;
1638	return 0;
1639}
1640
1641/* Free the ASCONF queue */
1642static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1643{
1644	struct sctp_chunk *asconf;
1645	struct sctp_chunk *tmp;
1646
1647	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1648		list_del_init(&asconf->list);
1649		sctp_chunk_free(asconf);
1650	}
1651}
1652
1653/* Free asconf_ack cache */
1654static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1655{
1656	struct sctp_chunk *ack;
1657	struct sctp_chunk *tmp;
1658
1659	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1660				transmitted_list) {
1661		list_del_init(&ack->transmitted_list);
1662		sctp_chunk_free(ack);
1663	}
1664}
1665
1666/* Clean up the ASCONF_ACK queue */
1667void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1668{
1669	struct sctp_chunk *ack;
1670	struct sctp_chunk *tmp;
1671
1672	/* We can remove all the entries from the queue up to
1673	 * the "Peer-Sequence-Number".
1674	 */
1675	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1676				transmitted_list) {
1677		if (ack->subh.addip_hdr->serial ==
1678				htonl(asoc->peer.addip_serial))
1679			break;
1680
1681		list_del_init(&ack->transmitted_list);
1682		sctp_chunk_free(ack);
1683	}
1684}
1685
1686/* Find the ASCONF_ACK whose serial number matches ASCONF */
1687struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1688					const struct sctp_association *asoc,
1689					__be32 serial)
1690{
1691	struct sctp_chunk *ack;
1692
1693	/* Walk through the list of cached ASCONF-ACKs and find the
1694	 * ack chunk whose serial number matches that of the request.
1695	 */
1696	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1697		if (sctp_chunk_pending(ack))
1698			continue;
1699		if (ack->subh.addip_hdr->serial == serial) {
1700			sctp_chunk_hold(ack);
1701			return ack;
1702		}
1703	}
1704
1705	return NULL;
1706}
1707
1708void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1709{
1710	/* Free any cached ASCONF_ACK chunk. */
1711	sctp_assoc_free_asconf_acks(asoc);
1712
1713	/* Free the ASCONF queue. */
1714	sctp_assoc_free_asconf_queue(asoc);
1715
1716	/* Free any cached ASCONF chunk. */
1717	if (asoc->addip_last_asconf)
1718		sctp_chunk_free(asoc->addip_last_asconf);
1719}
1720