xref: /kernel/linux/linux-5.10/net/sched/sch_tbf.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/sch_tbf.c	Token Bucket Filter queue.
4 *
5 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
7 *						 original idea by Martin Devera
8 */
9
10#include <linux/module.h>
11#include <linux/types.h>
12#include <linux/kernel.h>
13#include <linux/string.h>
14#include <linux/errno.h>
15#include <linux/skbuff.h>
16#include <net/netlink.h>
17#include <net/sch_generic.h>
18#include <net/pkt_cls.h>
19#include <net/pkt_sched.h>
20
21
22/*	Simple Token Bucket Filter.
23	=======================================
24
25	SOURCE.
26	-------
27
28	None.
29
30	Description.
31	------------
32
33	A data flow obeys TBF with rate R and depth B, if for any
34	time interval t_i...t_f the number of transmitted bits
35	does not exceed B + R*(t_f-t_i).
36
37	Packetized version of this definition:
38	The sequence of packets of sizes s_i served at moments t_i
39	obeys TBF, if for any i<=k:
40
41	s_i+....+s_k <= B + R*(t_k - t_i)
42
43	Algorithm.
44	----------
45
46	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
47
48	N(t+delta) = min{B/R, N(t) + delta}
49
50	If the first packet in queue has length S, it may be
51	transmitted only at the time t_* when S/R <= N(t_*),
52	and in this case N(t) jumps:
53
54	N(t_* + 0) = N(t_* - 0) - S/R.
55
56
57
58	Actually, QoS requires two TBF to be applied to a data stream.
59	One of them controls steady state burst size, another
60	one with rate P (peak rate) and depth M (equal to link MTU)
61	limits bursts at a smaller time scale.
62
63	It is easy to see that P>R, and B>M. If P is infinity, this double
64	TBF is equivalent to a single one.
65
66	When TBF works in reshaping mode, latency is estimated as:
67
68	lat = max ((L-B)/R, (L-M)/P)
69
70
71	NOTES.
72	------
73
74	If TBF throttles, it starts a watchdog timer, which will wake it up
75	when it is ready to transmit.
76	Note that the minimal timer resolution is 1/HZ.
77	If no new packets arrive during this period,
78	or if the device is not awaken by EOI for some previous packet,
79	TBF can stop its activity for 1/HZ.
80
81
82	This means, that with depth B, the maximal rate is
83
84	R_crit = B*HZ
85
86	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
87
88	Note that the peak rate TBF is much more tough: with MTU 1500
89	P_crit = 150Kbytes/sec. So, if you need greater peak
90	rates, use alpha with HZ=1000 :-)
91
92	With classful TBF, limit is just kept for backwards compatibility.
93	It is passed to the default bfifo qdisc - if the inner qdisc is
94	changed the limit is not effective anymore.
95*/
96
97struct tbf_sched_data {
98/* Parameters */
99	u32		limit;		/* Maximal length of backlog: bytes */
100	u32		max_size;
101	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
102	s64		mtu;
103	struct psched_ratecfg rate;
104	struct psched_ratecfg peak;
105
106/* Variables */
107	s64	tokens;			/* Current number of B tokens */
108	s64	ptokens;		/* Current number of P tokens */
109	s64	t_c;			/* Time check-point */
110	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
111	struct qdisc_watchdog watchdog;	/* Watchdog timer */
112};
113
114
115/* Time to Length, convert time in ns to length in bytes
116 * to determinate how many bytes can be sent in given time.
117 */
118static u64 psched_ns_t2l(const struct psched_ratecfg *r,
119			 u64 time_in_ns)
120{
121	/* The formula is :
122	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
123	 */
124	u64 len = time_in_ns * r->rate_bytes_ps;
125
126	do_div(len, NSEC_PER_SEC);
127
128	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
129		do_div(len, 53);
130		len = len * 48;
131	}
132
133	if (len > r->overhead)
134		len -= r->overhead;
135	else
136		len = 0;
137
138	return len;
139}
140
141static void tbf_offload_change(struct Qdisc *sch)
142{
143	struct tbf_sched_data *q = qdisc_priv(sch);
144	struct net_device *dev = qdisc_dev(sch);
145	struct tc_tbf_qopt_offload qopt;
146
147	if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
148		return;
149
150	qopt.command = TC_TBF_REPLACE;
151	qopt.handle = sch->handle;
152	qopt.parent = sch->parent;
153	qopt.replace_params.rate = q->rate;
154	qopt.replace_params.max_size = q->max_size;
155	qopt.replace_params.qstats = &sch->qstats;
156
157	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
158}
159
160static void tbf_offload_destroy(struct Qdisc *sch)
161{
162	struct net_device *dev = qdisc_dev(sch);
163	struct tc_tbf_qopt_offload qopt;
164
165	if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
166		return;
167
168	qopt.command = TC_TBF_DESTROY;
169	qopt.handle = sch->handle;
170	qopt.parent = sch->parent;
171	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
172}
173
174static int tbf_offload_dump(struct Qdisc *sch)
175{
176	struct tc_tbf_qopt_offload qopt;
177
178	qopt.command = TC_TBF_STATS;
179	qopt.handle = sch->handle;
180	qopt.parent = sch->parent;
181	qopt.stats.bstats = &sch->bstats;
182	qopt.stats.qstats = &sch->qstats;
183
184	return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_TBF, &qopt);
185}
186
187/* GSO packet is too big, segment it so that tbf can transmit
188 * each segment in time
189 */
190static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
191		       struct sk_buff **to_free)
192{
193	struct tbf_sched_data *q = qdisc_priv(sch);
194	struct sk_buff *segs, *nskb;
195	netdev_features_t features = netif_skb_features(skb);
196	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
197	int ret, nb;
198
199	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
200
201	if (IS_ERR_OR_NULL(segs))
202		return qdisc_drop(skb, sch, to_free);
203
204	nb = 0;
205	skb_list_walk_safe(segs, segs, nskb) {
206		skb_mark_not_on_list(segs);
207		qdisc_skb_cb(segs)->pkt_len = segs->len;
208		len += segs->len;
209		ret = qdisc_enqueue(segs, q->qdisc, to_free);
210		if (ret != NET_XMIT_SUCCESS) {
211			if (net_xmit_drop_count(ret))
212				qdisc_qstats_drop(sch);
213		} else {
214			nb++;
215		}
216	}
217	sch->q.qlen += nb;
218	if (nb > 1)
219		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
220	consume_skb(skb);
221	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
222}
223
224static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
225		       struct sk_buff **to_free)
226{
227	struct tbf_sched_data *q = qdisc_priv(sch);
228	unsigned int len = qdisc_pkt_len(skb);
229	int ret;
230
231	if (qdisc_pkt_len(skb) > q->max_size) {
232		if (skb_is_gso(skb) &&
233		    skb_gso_validate_mac_len(skb, q->max_size))
234			return tbf_segment(skb, sch, to_free);
235		return qdisc_drop(skb, sch, to_free);
236	}
237	ret = qdisc_enqueue(skb, q->qdisc, to_free);
238	if (ret != NET_XMIT_SUCCESS) {
239		if (net_xmit_drop_count(ret))
240			qdisc_qstats_drop(sch);
241		return ret;
242	}
243
244	sch->qstats.backlog += len;
245	sch->q.qlen++;
246	return NET_XMIT_SUCCESS;
247}
248
249static bool tbf_peak_present(const struct tbf_sched_data *q)
250{
251	return q->peak.rate_bytes_ps;
252}
253
254static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
255{
256	struct tbf_sched_data *q = qdisc_priv(sch);
257	struct sk_buff *skb;
258
259	skb = q->qdisc->ops->peek(q->qdisc);
260
261	if (skb) {
262		s64 now;
263		s64 toks;
264		s64 ptoks = 0;
265		unsigned int len = qdisc_pkt_len(skb);
266
267		now = ktime_get_ns();
268		toks = min_t(s64, now - q->t_c, q->buffer);
269
270		if (tbf_peak_present(q)) {
271			ptoks = toks + q->ptokens;
272			if (ptoks > q->mtu)
273				ptoks = q->mtu;
274			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
275		}
276		toks += q->tokens;
277		if (toks > q->buffer)
278			toks = q->buffer;
279		toks -= (s64) psched_l2t_ns(&q->rate, len);
280
281		if ((toks|ptoks) >= 0) {
282			skb = qdisc_dequeue_peeked(q->qdisc);
283			if (unlikely(!skb))
284				return NULL;
285
286			q->t_c = now;
287			q->tokens = toks;
288			q->ptokens = ptoks;
289			qdisc_qstats_backlog_dec(sch, skb);
290			sch->q.qlen--;
291			qdisc_bstats_update(sch, skb);
292			return skb;
293		}
294
295		qdisc_watchdog_schedule_ns(&q->watchdog,
296					   now + max_t(long, -toks, -ptoks));
297
298		/* Maybe we have a shorter packet in the queue,
299		   which can be sent now. It sounds cool,
300		   but, however, this is wrong in principle.
301		   We MUST NOT reorder packets under these circumstances.
302
303		   Really, if we split the flow into independent
304		   subflows, it would be a very good solution.
305		   This is the main idea of all FQ algorithms
306		   (cf. CSZ, HPFQ, HFSC)
307		 */
308
309		qdisc_qstats_overlimit(sch);
310	}
311	return NULL;
312}
313
314static void tbf_reset(struct Qdisc *sch)
315{
316	struct tbf_sched_data *q = qdisc_priv(sch);
317
318	qdisc_reset(q->qdisc);
319	q->t_c = ktime_get_ns();
320	q->tokens = q->buffer;
321	q->ptokens = q->mtu;
322	qdisc_watchdog_cancel(&q->watchdog);
323}
324
325static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
326	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
327	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
328	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
329	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
330	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
331	[TCA_TBF_BURST] = { .type = NLA_U32 },
332	[TCA_TBF_PBURST] = { .type = NLA_U32 },
333};
334
335static int tbf_change(struct Qdisc *sch, struct nlattr *opt,
336		      struct netlink_ext_ack *extack)
337{
338	int err;
339	struct tbf_sched_data *q = qdisc_priv(sch);
340	struct nlattr *tb[TCA_TBF_MAX + 1];
341	struct tc_tbf_qopt *qopt;
342	struct Qdisc *child = NULL;
343	struct Qdisc *old = NULL;
344	struct psched_ratecfg rate;
345	struct psched_ratecfg peak;
346	u64 max_size;
347	s64 buffer, mtu;
348	u64 rate64 = 0, prate64 = 0;
349
350	err = nla_parse_nested_deprecated(tb, TCA_TBF_MAX, opt, tbf_policy,
351					  NULL);
352	if (err < 0)
353		return err;
354
355	err = -EINVAL;
356	if (tb[TCA_TBF_PARMS] == NULL)
357		goto done;
358
359	qopt = nla_data(tb[TCA_TBF_PARMS]);
360	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
361		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
362					      tb[TCA_TBF_RTAB],
363					      NULL));
364
365	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
366			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
367						      tb[TCA_TBF_PTAB],
368						      NULL));
369
370	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
371	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
372
373	if (tb[TCA_TBF_RATE64])
374		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
375	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
376
377	if (tb[TCA_TBF_BURST]) {
378		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
379		buffer = psched_l2t_ns(&rate, max_size);
380	} else {
381		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
382	}
383
384	if (qopt->peakrate.rate) {
385		if (tb[TCA_TBF_PRATE64])
386			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
387		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
388		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
389			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
390					peak.rate_bytes_ps, rate.rate_bytes_ps);
391			err = -EINVAL;
392			goto done;
393		}
394
395		if (tb[TCA_TBF_PBURST]) {
396			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
397			max_size = min_t(u32, max_size, pburst);
398			mtu = psched_l2t_ns(&peak, pburst);
399		} else {
400			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
401		}
402	} else {
403		memset(&peak, 0, sizeof(peak));
404	}
405
406	if (max_size < psched_mtu(qdisc_dev(sch)))
407		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
408				    max_size, qdisc_dev(sch)->name,
409				    psched_mtu(qdisc_dev(sch)));
410
411	if (!max_size) {
412		err = -EINVAL;
413		goto done;
414	}
415
416	if (q->qdisc != &noop_qdisc) {
417		err = fifo_set_limit(q->qdisc, qopt->limit);
418		if (err)
419			goto done;
420	} else if (qopt->limit > 0) {
421		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit,
422					 extack);
423		if (IS_ERR(child)) {
424			err = PTR_ERR(child);
425			goto done;
426		}
427
428		/* child is fifo, no need to check for noop_qdisc */
429		qdisc_hash_add(child, true);
430	}
431
432	sch_tree_lock(sch);
433	if (child) {
434		qdisc_tree_flush_backlog(q->qdisc);
435		old = q->qdisc;
436		q->qdisc = child;
437	}
438	q->limit = qopt->limit;
439	if (tb[TCA_TBF_PBURST])
440		q->mtu = mtu;
441	else
442		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
443	q->max_size = max_size;
444	if (tb[TCA_TBF_BURST])
445		q->buffer = buffer;
446	else
447		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
448	q->tokens = q->buffer;
449	q->ptokens = q->mtu;
450
451	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
452	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
453
454	sch_tree_unlock(sch);
455	qdisc_put(old);
456	err = 0;
457
458	tbf_offload_change(sch);
459done:
460	return err;
461}
462
463static int tbf_init(struct Qdisc *sch, struct nlattr *opt,
464		    struct netlink_ext_ack *extack)
465{
466	struct tbf_sched_data *q = qdisc_priv(sch);
467
468	qdisc_watchdog_init(&q->watchdog, sch);
469	q->qdisc = &noop_qdisc;
470
471	if (!opt)
472		return -EINVAL;
473
474	q->t_c = ktime_get_ns();
475
476	return tbf_change(sch, opt, extack);
477}
478
479static void tbf_destroy(struct Qdisc *sch)
480{
481	struct tbf_sched_data *q = qdisc_priv(sch);
482
483	qdisc_watchdog_cancel(&q->watchdog);
484	tbf_offload_destroy(sch);
485	qdisc_put(q->qdisc);
486}
487
488static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
489{
490	struct tbf_sched_data *q = qdisc_priv(sch);
491	struct nlattr *nest;
492	struct tc_tbf_qopt opt;
493	int err;
494
495	err = tbf_offload_dump(sch);
496	if (err)
497		return err;
498
499	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
500	if (nest == NULL)
501		goto nla_put_failure;
502
503	opt.limit = q->limit;
504	psched_ratecfg_getrate(&opt.rate, &q->rate);
505	if (tbf_peak_present(q))
506		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
507	else
508		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
509	opt.mtu = PSCHED_NS2TICKS(q->mtu);
510	opt.buffer = PSCHED_NS2TICKS(q->buffer);
511	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
512		goto nla_put_failure;
513	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
514	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
515			      TCA_TBF_PAD))
516		goto nla_put_failure;
517	if (tbf_peak_present(q) &&
518	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
519	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
520			      TCA_TBF_PAD))
521		goto nla_put_failure;
522
523	return nla_nest_end(skb, nest);
524
525nla_put_failure:
526	nla_nest_cancel(skb, nest);
527	return -1;
528}
529
530static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
531			  struct sk_buff *skb, struct tcmsg *tcm)
532{
533	struct tbf_sched_data *q = qdisc_priv(sch);
534
535	tcm->tcm_handle |= TC_H_MIN(1);
536	tcm->tcm_info = q->qdisc->handle;
537
538	return 0;
539}
540
541static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
542		     struct Qdisc **old, struct netlink_ext_ack *extack)
543{
544	struct tbf_sched_data *q = qdisc_priv(sch);
545
546	if (new == NULL)
547		new = &noop_qdisc;
548
549	*old = qdisc_replace(sch, new, &q->qdisc);
550	return 0;
551}
552
553static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
554{
555	struct tbf_sched_data *q = qdisc_priv(sch);
556	return q->qdisc;
557}
558
559static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
560{
561	return 1;
562}
563
564static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
565{
566	if (!walker->stop) {
567		if (walker->count >= walker->skip)
568			if (walker->fn(sch, 1, walker) < 0) {
569				walker->stop = 1;
570				return;
571			}
572		walker->count++;
573	}
574}
575
576static const struct Qdisc_class_ops tbf_class_ops = {
577	.graft		=	tbf_graft,
578	.leaf		=	tbf_leaf,
579	.find		=	tbf_find,
580	.walk		=	tbf_walk,
581	.dump		=	tbf_dump_class,
582};
583
584static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
585	.next		=	NULL,
586	.cl_ops		=	&tbf_class_ops,
587	.id		=	"tbf",
588	.priv_size	=	sizeof(struct tbf_sched_data),
589	.enqueue	=	tbf_enqueue,
590	.dequeue	=	tbf_dequeue,
591	.peek		=	qdisc_peek_dequeued,
592	.init		=	tbf_init,
593	.reset		=	tbf_reset,
594	.destroy	=	tbf_destroy,
595	.change		=	tbf_change,
596	.dump		=	tbf_dump,
597	.owner		=	THIS_MODULE,
598};
599
600static int __init tbf_module_init(void)
601{
602	return register_qdisc(&tbf_qdisc_ops);
603}
604
605static void __exit tbf_module_exit(void)
606{
607	unregister_qdisc(&tbf_qdisc_ops);
608}
609module_init(tbf_module_init)
610module_exit(tbf_module_exit)
611MODULE_LICENSE("GPL");
612