xref: /kernel/linux/linux-5.10/net/sched/sch_taprio.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3/* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4 *
5 * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6 *
7 */
8
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/string.h>
13#include <linux/list.h>
14#include <linux/errno.h>
15#include <linux/skbuff.h>
16#include <linux/math64.h>
17#include <linux/module.h>
18#include <linux/spinlock.h>
19#include <linux/rcupdate.h>
20#include <net/netlink.h>
21#include <net/pkt_sched.h>
22#include <net/pkt_cls.h>
23#include <net/sch_generic.h>
24#include <net/sock.h>
25#include <net/tcp.h>
26
27static LIST_HEAD(taprio_list);
28static DEFINE_SPINLOCK(taprio_list_lock);
29
30#define TAPRIO_ALL_GATES_OPEN -1
31
32#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34#define TAPRIO_FLAGS_INVALID U32_MAX
35
36struct sched_entry {
37	struct list_head list;
38
39	/* The instant that this entry "closes" and the next one
40	 * should open, the qdisc will make some effort so that no
41	 * packet leaves after this time.
42	 */
43	ktime_t close_time;
44	ktime_t next_txtime;
45	atomic_t budget;
46	int index;
47	u32 gate_mask;
48	u32 interval;
49	u8 command;
50};
51
52struct sched_gate_list {
53	struct rcu_head rcu;
54	struct list_head entries;
55	size_t num_entries;
56	ktime_t cycle_close_time;
57	s64 cycle_time;
58	s64 cycle_time_extension;
59	s64 base_time;
60};
61
62struct taprio_sched {
63	struct Qdisc **qdiscs;
64	struct Qdisc *root;
65	u32 flags;
66	enum tk_offsets tk_offset;
67	int clockid;
68	bool offloaded;
69	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70				    * speeds it's sub-nanoseconds per byte
71				    */
72
73	/* Protects the update side of the RCU protected current_entry */
74	spinlock_t current_entry_lock;
75	struct sched_entry __rcu *current_entry;
76	struct sched_gate_list __rcu *oper_sched;
77	struct sched_gate_list __rcu *admin_sched;
78	struct hrtimer advance_timer;
79	struct list_head taprio_list;
80	struct sk_buff *(*dequeue)(struct Qdisc *sch);
81	struct sk_buff *(*peek)(struct Qdisc *sch);
82	u32 txtime_delay;
83};
84
85struct __tc_taprio_qopt_offload {
86	refcount_t users;
87	struct tc_taprio_qopt_offload offload;
88};
89
90static ktime_t sched_base_time(const struct sched_gate_list *sched)
91{
92	if (!sched)
93		return KTIME_MAX;
94
95	return ns_to_ktime(sched->base_time);
96}
97
98static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
99{
100	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
101	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
102
103	switch (tk_offset) {
104	case TK_OFFS_MAX:
105		return mono;
106	default:
107		return ktime_mono_to_any(mono, tk_offset);
108	}
109}
110
111static ktime_t taprio_get_time(const struct taprio_sched *q)
112{
113	return taprio_mono_to_any(q, ktime_get());
114}
115
116static void taprio_free_sched_cb(struct rcu_head *head)
117{
118	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
119	struct sched_entry *entry, *n;
120
121	if (!sched)
122		return;
123
124	list_for_each_entry_safe(entry, n, &sched->entries, list) {
125		list_del(&entry->list);
126		kfree(entry);
127	}
128
129	kfree(sched);
130}
131
132static void switch_schedules(struct taprio_sched *q,
133			     struct sched_gate_list **admin,
134			     struct sched_gate_list **oper)
135{
136	rcu_assign_pointer(q->oper_sched, *admin);
137	rcu_assign_pointer(q->admin_sched, NULL);
138
139	if (*oper)
140		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
141
142	*oper = *admin;
143	*admin = NULL;
144}
145
146/* Get how much time has been already elapsed in the current cycle. */
147static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
148{
149	ktime_t time_since_sched_start;
150	s32 time_elapsed;
151
152	time_since_sched_start = ktime_sub(time, sched->base_time);
153	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
154
155	return time_elapsed;
156}
157
158static ktime_t get_interval_end_time(struct sched_gate_list *sched,
159				     struct sched_gate_list *admin,
160				     struct sched_entry *entry,
161				     ktime_t intv_start)
162{
163	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
164	ktime_t intv_end, cycle_ext_end, cycle_end;
165
166	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
167	intv_end = ktime_add_ns(intv_start, entry->interval);
168	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
169
170	if (ktime_before(intv_end, cycle_end))
171		return intv_end;
172	else if (admin && admin != sched &&
173		 ktime_after(admin->base_time, cycle_end) &&
174		 ktime_before(admin->base_time, cycle_ext_end))
175		return admin->base_time;
176	else
177		return cycle_end;
178}
179
180static int length_to_duration(struct taprio_sched *q, int len)
181{
182	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
183}
184
185/* Returns the entry corresponding to next available interval. If
186 * validate_interval is set, it only validates whether the timestamp occurs
187 * when the gate corresponding to the skb's traffic class is open.
188 */
189static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
190						  struct Qdisc *sch,
191						  struct sched_gate_list *sched,
192						  struct sched_gate_list *admin,
193						  ktime_t time,
194						  ktime_t *interval_start,
195						  ktime_t *interval_end,
196						  bool validate_interval)
197{
198	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
199	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
200	struct sched_entry *entry = NULL, *entry_found = NULL;
201	struct taprio_sched *q = qdisc_priv(sch);
202	struct net_device *dev = qdisc_dev(sch);
203	bool entry_available = false;
204	s32 cycle_elapsed;
205	int tc, n;
206
207	tc = netdev_get_prio_tc_map(dev, skb->priority);
208	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
209
210	*interval_start = 0;
211	*interval_end = 0;
212
213	if (!sched)
214		return NULL;
215
216	cycle = sched->cycle_time;
217	cycle_elapsed = get_cycle_time_elapsed(sched, time);
218	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
219	cycle_end = ktime_add_ns(curr_intv_end, cycle);
220
221	list_for_each_entry(entry, &sched->entries, list) {
222		curr_intv_start = curr_intv_end;
223		curr_intv_end = get_interval_end_time(sched, admin, entry,
224						      curr_intv_start);
225
226		if (ktime_after(curr_intv_start, cycle_end))
227			break;
228
229		if (!(entry->gate_mask & BIT(tc)) ||
230		    packet_transmit_time > entry->interval)
231			continue;
232
233		txtime = entry->next_txtime;
234
235		if (ktime_before(txtime, time) || validate_interval) {
236			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
237			if ((ktime_before(curr_intv_start, time) &&
238			     ktime_before(transmit_end_time, curr_intv_end)) ||
239			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
240				entry_found = entry;
241				*interval_start = curr_intv_start;
242				*interval_end = curr_intv_end;
243				break;
244			} else if (!entry_available && !validate_interval) {
245				/* Here, we are just trying to find out the
246				 * first available interval in the next cycle.
247				 */
248				entry_available = 1;
249				entry_found = entry;
250				*interval_start = ktime_add_ns(curr_intv_start, cycle);
251				*interval_end = ktime_add_ns(curr_intv_end, cycle);
252			}
253		} else if (ktime_before(txtime, earliest_txtime) &&
254			   !entry_available) {
255			earliest_txtime = txtime;
256			entry_found = entry;
257			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
258			*interval_start = ktime_add(curr_intv_start, n * cycle);
259			*interval_end = ktime_add(curr_intv_end, n * cycle);
260		}
261	}
262
263	return entry_found;
264}
265
266static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
267{
268	struct taprio_sched *q = qdisc_priv(sch);
269	struct sched_gate_list *sched, *admin;
270	ktime_t interval_start, interval_end;
271	struct sched_entry *entry;
272
273	rcu_read_lock();
274	sched = rcu_dereference(q->oper_sched);
275	admin = rcu_dereference(q->admin_sched);
276
277	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
278				       &interval_start, &interval_end, true);
279	rcu_read_unlock();
280
281	return entry;
282}
283
284static bool taprio_flags_valid(u32 flags)
285{
286	/* Make sure no other flag bits are set. */
287	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
288		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
289		return false;
290	/* txtime-assist and full offload are mutually exclusive */
291	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
292	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
293		return false;
294	return true;
295}
296
297/* This returns the tstamp value set by TCP in terms of the set clock. */
298static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
299{
300	unsigned int offset = skb_network_offset(skb);
301	const struct ipv6hdr *ipv6h;
302	const struct iphdr *iph;
303	struct ipv6hdr _ipv6h;
304
305	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
306	if (!ipv6h)
307		return 0;
308
309	if (ipv6h->version == 4) {
310		iph = (struct iphdr *)ipv6h;
311		offset += iph->ihl * 4;
312
313		/* special-case 6in4 tunnelling, as that is a common way to get
314		 * v6 connectivity in the home
315		 */
316		if (iph->protocol == IPPROTO_IPV6) {
317			ipv6h = skb_header_pointer(skb, offset,
318						   sizeof(_ipv6h), &_ipv6h);
319
320			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
321				return 0;
322		} else if (iph->protocol != IPPROTO_TCP) {
323			return 0;
324		}
325	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
326		return 0;
327	}
328
329	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
330}
331
332/* There are a few scenarios where we will have to modify the txtime from
333 * what is read from next_txtime in sched_entry. They are:
334 * 1. If txtime is in the past,
335 *    a. The gate for the traffic class is currently open and packet can be
336 *       transmitted before it closes, schedule the packet right away.
337 *    b. If the gate corresponding to the traffic class is going to open later
338 *       in the cycle, set the txtime of packet to the interval start.
339 * 2. If txtime is in the future, there are packets corresponding to the
340 *    current traffic class waiting to be transmitted. So, the following
341 *    possibilities exist:
342 *    a. We can transmit the packet before the window containing the txtime
343 *       closes.
344 *    b. The window might close before the transmission can be completed
345 *       successfully. So, schedule the packet in the next open window.
346 */
347static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
348{
349	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
350	struct taprio_sched *q = qdisc_priv(sch);
351	struct sched_gate_list *sched, *admin;
352	ktime_t minimum_time, now, txtime;
353	int len, packet_transmit_time;
354	struct sched_entry *entry;
355	bool sched_changed;
356
357	now = taprio_get_time(q);
358	minimum_time = ktime_add_ns(now, q->txtime_delay);
359
360	tcp_tstamp = get_tcp_tstamp(q, skb);
361	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
362
363	rcu_read_lock();
364	admin = rcu_dereference(q->admin_sched);
365	sched = rcu_dereference(q->oper_sched);
366	if (admin && ktime_after(minimum_time, admin->base_time))
367		switch_schedules(q, &admin, &sched);
368
369	/* Until the schedule starts, all the queues are open */
370	if (!sched || ktime_before(minimum_time, sched->base_time)) {
371		txtime = minimum_time;
372		goto done;
373	}
374
375	len = qdisc_pkt_len(skb);
376	packet_transmit_time = length_to_duration(q, len);
377
378	do {
379		sched_changed = 0;
380
381		entry = find_entry_to_transmit(skb, sch, sched, admin,
382					       minimum_time,
383					       &interval_start, &interval_end,
384					       false);
385		if (!entry) {
386			txtime = 0;
387			goto done;
388		}
389
390		txtime = entry->next_txtime;
391		txtime = max_t(ktime_t, txtime, minimum_time);
392		txtime = max_t(ktime_t, txtime, interval_start);
393
394		if (admin && admin != sched &&
395		    ktime_after(txtime, admin->base_time)) {
396			sched = admin;
397			sched_changed = 1;
398			continue;
399		}
400
401		transmit_end_time = ktime_add(txtime, packet_transmit_time);
402		minimum_time = transmit_end_time;
403
404		/* Update the txtime of current entry to the next time it's
405		 * interval starts.
406		 */
407		if (ktime_after(transmit_end_time, interval_end))
408			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
409	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
410
411	entry->next_txtime = transmit_end_time;
412
413done:
414	rcu_read_unlock();
415	return txtime;
416}
417
418static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
419			  struct sk_buff **to_free)
420{
421	struct taprio_sched *q = qdisc_priv(sch);
422	struct Qdisc *child;
423	int queue;
424
425	queue = skb_get_queue_mapping(skb);
426
427	child = q->qdiscs[queue];
428	if (unlikely(!child))
429		return qdisc_drop(skb, sch, to_free);
430
431	/* sk_flags are only safe to use on full sockets. */
432	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
433		if (!is_valid_interval(skb, sch))
434			return qdisc_drop(skb, sch, to_free);
435	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
436		skb->tstamp = get_packet_txtime(skb, sch);
437		if (!skb->tstamp)
438			return qdisc_drop(skb, sch, to_free);
439	}
440
441	qdisc_qstats_backlog_inc(sch, skb);
442	sch->q.qlen++;
443
444	return qdisc_enqueue(skb, child, to_free);
445}
446
447static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
448{
449	struct taprio_sched *q = qdisc_priv(sch);
450	struct net_device *dev = qdisc_dev(sch);
451	struct sched_entry *entry;
452	struct sk_buff *skb;
453	u32 gate_mask;
454	int i;
455
456	rcu_read_lock();
457	entry = rcu_dereference(q->current_entry);
458	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
459	rcu_read_unlock();
460
461	if (!gate_mask)
462		return NULL;
463
464	for (i = 0; i < dev->num_tx_queues; i++) {
465		struct Qdisc *child = q->qdiscs[i];
466		int prio;
467		u8 tc;
468
469		if (unlikely(!child))
470			continue;
471
472		skb = child->ops->peek(child);
473		if (!skb)
474			continue;
475
476		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
477			return skb;
478
479		prio = skb->priority;
480		tc = netdev_get_prio_tc_map(dev, prio);
481
482		if (!(gate_mask & BIT(tc)))
483			continue;
484
485		return skb;
486	}
487
488	return NULL;
489}
490
491static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
492{
493	struct taprio_sched *q = qdisc_priv(sch);
494	struct net_device *dev = qdisc_dev(sch);
495	struct sk_buff *skb;
496	int i;
497
498	for (i = 0; i < dev->num_tx_queues; i++) {
499		struct Qdisc *child = q->qdiscs[i];
500
501		if (unlikely(!child))
502			continue;
503
504		skb = child->ops->peek(child);
505		if (!skb)
506			continue;
507
508		return skb;
509	}
510
511	return NULL;
512}
513
514static struct sk_buff *taprio_peek(struct Qdisc *sch)
515{
516	struct taprio_sched *q = qdisc_priv(sch);
517
518	return q->peek(sch);
519}
520
521static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
522{
523	atomic_set(&entry->budget,
524		   div64_u64((u64)entry->interval * 1000,
525			     atomic64_read(&q->picos_per_byte)));
526}
527
528static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
529{
530	struct taprio_sched *q = qdisc_priv(sch);
531	struct net_device *dev = qdisc_dev(sch);
532	struct sk_buff *skb = NULL;
533	struct sched_entry *entry;
534	u32 gate_mask;
535	int i;
536
537	rcu_read_lock();
538	entry = rcu_dereference(q->current_entry);
539	/* if there's no entry, it means that the schedule didn't
540	 * start yet, so force all gates to be open, this is in
541	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
542	 * "AdminGateSates"
543	 */
544	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
545
546	if (!gate_mask)
547		goto done;
548
549	for (i = 0; i < dev->num_tx_queues; i++) {
550		struct Qdisc *child = q->qdiscs[i];
551		ktime_t guard;
552		int prio;
553		int len;
554		u8 tc;
555
556		if (unlikely(!child))
557			continue;
558
559		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
560			skb = child->ops->dequeue(child);
561			if (!skb)
562				continue;
563			goto skb_found;
564		}
565
566		skb = child->ops->peek(child);
567		if (!skb)
568			continue;
569
570		prio = skb->priority;
571		tc = netdev_get_prio_tc_map(dev, prio);
572
573		if (!(gate_mask & BIT(tc))) {
574			skb = NULL;
575			continue;
576		}
577
578		len = qdisc_pkt_len(skb);
579		guard = ktime_add_ns(taprio_get_time(q),
580				     length_to_duration(q, len));
581
582		/* In the case that there's no gate entry, there's no
583		 * guard band ...
584		 */
585		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
586		    ktime_after(guard, entry->close_time)) {
587			skb = NULL;
588			continue;
589		}
590
591		/* ... and no budget. */
592		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
593		    atomic_sub_return(len, &entry->budget) < 0) {
594			skb = NULL;
595			continue;
596		}
597
598		skb = child->ops->dequeue(child);
599		if (unlikely(!skb))
600			goto done;
601
602skb_found:
603		qdisc_bstats_update(sch, skb);
604		qdisc_qstats_backlog_dec(sch, skb);
605		sch->q.qlen--;
606
607		goto done;
608	}
609
610done:
611	rcu_read_unlock();
612
613	return skb;
614}
615
616static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
617{
618	struct taprio_sched *q = qdisc_priv(sch);
619	struct net_device *dev = qdisc_dev(sch);
620	struct sk_buff *skb;
621	int i;
622
623	for (i = 0; i < dev->num_tx_queues; i++) {
624		struct Qdisc *child = q->qdiscs[i];
625
626		if (unlikely(!child))
627			continue;
628
629		skb = child->ops->dequeue(child);
630		if (unlikely(!skb))
631			continue;
632
633		qdisc_bstats_update(sch, skb);
634		qdisc_qstats_backlog_dec(sch, skb);
635		sch->q.qlen--;
636
637		return skb;
638	}
639
640	return NULL;
641}
642
643static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
644{
645	struct taprio_sched *q = qdisc_priv(sch);
646
647	return q->dequeue(sch);
648}
649
650static bool should_restart_cycle(const struct sched_gate_list *oper,
651				 const struct sched_entry *entry)
652{
653	if (list_is_last(&entry->list, &oper->entries))
654		return true;
655
656	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
657		return true;
658
659	return false;
660}
661
662static bool should_change_schedules(const struct sched_gate_list *admin,
663				    const struct sched_gate_list *oper,
664				    ktime_t close_time)
665{
666	ktime_t next_base_time, extension_time;
667
668	if (!admin)
669		return false;
670
671	next_base_time = sched_base_time(admin);
672
673	/* This is the simple case, the close_time would fall after
674	 * the next schedule base_time.
675	 */
676	if (ktime_compare(next_base_time, close_time) <= 0)
677		return true;
678
679	/* This is the cycle_time_extension case, if the close_time
680	 * plus the amount that can be extended would fall after the
681	 * next schedule base_time, we can extend the current schedule
682	 * for that amount.
683	 */
684	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
685
686	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
687	 * how precisely the extension should be made. So after
688	 * conformance testing, this logic may change.
689	 */
690	if (ktime_compare(next_base_time, extension_time) <= 0)
691		return true;
692
693	return false;
694}
695
696static enum hrtimer_restart advance_sched(struct hrtimer *timer)
697{
698	struct taprio_sched *q = container_of(timer, struct taprio_sched,
699					      advance_timer);
700	struct sched_gate_list *oper, *admin;
701	struct sched_entry *entry, *next;
702	struct Qdisc *sch = q->root;
703	ktime_t close_time;
704
705	spin_lock(&q->current_entry_lock);
706	entry = rcu_dereference_protected(q->current_entry,
707					  lockdep_is_held(&q->current_entry_lock));
708	oper = rcu_dereference_protected(q->oper_sched,
709					 lockdep_is_held(&q->current_entry_lock));
710	admin = rcu_dereference_protected(q->admin_sched,
711					  lockdep_is_held(&q->current_entry_lock));
712
713	if (!oper)
714		switch_schedules(q, &admin, &oper);
715
716	/* This can happen in two cases: 1. this is the very first run
717	 * of this function (i.e. we weren't running any schedule
718	 * previously); 2. The previous schedule just ended. The first
719	 * entry of all schedules are pre-calculated during the
720	 * schedule initialization.
721	 */
722	if (unlikely(!entry || entry->close_time == oper->base_time)) {
723		next = list_first_entry(&oper->entries, struct sched_entry,
724					list);
725		close_time = next->close_time;
726		goto first_run;
727	}
728
729	if (should_restart_cycle(oper, entry)) {
730		next = list_first_entry(&oper->entries, struct sched_entry,
731					list);
732		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
733						      oper->cycle_time);
734	} else {
735		next = list_next_entry(entry, list);
736	}
737
738	close_time = ktime_add_ns(entry->close_time, next->interval);
739	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
740
741	if (should_change_schedules(admin, oper, close_time)) {
742		/* Set things so the next time this runs, the new
743		 * schedule runs.
744		 */
745		close_time = sched_base_time(admin);
746		switch_schedules(q, &admin, &oper);
747	}
748
749	next->close_time = close_time;
750	taprio_set_budget(q, next);
751
752first_run:
753	rcu_assign_pointer(q->current_entry, next);
754	spin_unlock(&q->current_entry_lock);
755
756	hrtimer_set_expires(&q->advance_timer, close_time);
757
758	rcu_read_lock();
759	__netif_schedule(sch);
760	rcu_read_unlock();
761
762	return HRTIMER_RESTART;
763}
764
765static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
766	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
767	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
768	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
769	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
770};
771
772static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
773	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
774		.len = sizeof(struct tc_mqprio_qopt)
775	},
776	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
777	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
778	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
779	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
780	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
781	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
782	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
783	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
784};
785
786static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
787			    struct sched_entry *entry,
788			    struct netlink_ext_ack *extack)
789{
790	int min_duration = length_to_duration(q, ETH_ZLEN);
791	u32 interval = 0;
792
793	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
794		entry->command = nla_get_u8(
795			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
796
797	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
798		entry->gate_mask = nla_get_u32(
799			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
800
801	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
802		interval = nla_get_u32(
803			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
804
805	/* The interval should allow at least the minimum ethernet
806	 * frame to go out.
807	 */
808	if (interval < min_duration) {
809		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
810		return -EINVAL;
811	}
812
813	entry->interval = interval;
814
815	return 0;
816}
817
818static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
819			     struct sched_entry *entry, int index,
820			     struct netlink_ext_ack *extack)
821{
822	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
823	int err;
824
825	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
826					  entry_policy, NULL);
827	if (err < 0) {
828		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
829		return -EINVAL;
830	}
831
832	entry->index = index;
833
834	return fill_sched_entry(q, tb, entry, extack);
835}
836
837static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
838			    struct sched_gate_list *sched,
839			    struct netlink_ext_ack *extack)
840{
841	struct nlattr *n;
842	int err, rem;
843	int i = 0;
844
845	if (!list)
846		return -EINVAL;
847
848	nla_for_each_nested(n, list, rem) {
849		struct sched_entry *entry;
850
851		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
852			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
853			continue;
854		}
855
856		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
857		if (!entry) {
858			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
859			return -ENOMEM;
860		}
861
862		err = parse_sched_entry(q, n, entry, i, extack);
863		if (err < 0) {
864			kfree(entry);
865			return err;
866		}
867
868		list_add_tail(&entry->list, &sched->entries);
869		i++;
870	}
871
872	sched->num_entries = i;
873
874	return i;
875}
876
877static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
878				 struct sched_gate_list *new,
879				 struct netlink_ext_ack *extack)
880{
881	int err = 0;
882
883	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
884		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
885		return -ENOTSUPP;
886	}
887
888	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
889		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
890
891	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
892		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
893
894	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
895		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
896
897	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
898		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
899				       new, extack);
900	if (err < 0)
901		return err;
902
903	if (!new->cycle_time) {
904		struct sched_entry *entry;
905		ktime_t cycle = 0;
906
907		list_for_each_entry(entry, &new->entries, list)
908			cycle = ktime_add_ns(cycle, entry->interval);
909
910		if (!cycle) {
911			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
912			return -EINVAL;
913		}
914
915		new->cycle_time = cycle;
916	}
917
918	return 0;
919}
920
921static int taprio_parse_mqprio_opt(struct net_device *dev,
922				   struct tc_mqprio_qopt *qopt,
923				   struct netlink_ext_ack *extack,
924				   u32 taprio_flags)
925{
926	int i, j;
927
928	if (!qopt && !dev->num_tc) {
929		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
930		return -EINVAL;
931	}
932
933	/* If num_tc is already set, it means that the user already
934	 * configured the mqprio part
935	 */
936	if (dev->num_tc)
937		return 0;
938
939	/* Verify num_tc is not out of max range */
940	if (qopt->num_tc > TC_MAX_QUEUE) {
941		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
942		return -EINVAL;
943	}
944
945	/* taprio imposes that traffic classes map 1:n to tx queues */
946	if (qopt->num_tc > dev->num_tx_queues) {
947		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
948		return -EINVAL;
949	}
950
951	/* Verify priority mapping uses valid tcs */
952	for (i = 0; i <= TC_BITMASK; i++) {
953		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
954			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
955			return -EINVAL;
956		}
957	}
958
959	for (i = 0; i < qopt->num_tc; i++) {
960		unsigned int last = qopt->offset[i] + qopt->count[i];
961
962		/* Verify the queue count is in tx range being equal to the
963		 * real_num_tx_queues indicates the last queue is in use.
964		 */
965		if (qopt->offset[i] >= dev->num_tx_queues ||
966		    !qopt->count[i] ||
967		    last > dev->real_num_tx_queues) {
968			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
969			return -EINVAL;
970		}
971
972		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
973			continue;
974
975		/* Verify that the offset and counts do not overlap */
976		for (j = i + 1; j < qopt->num_tc; j++) {
977			if (last > qopt->offset[j]) {
978				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
979				return -EINVAL;
980			}
981		}
982	}
983
984	return 0;
985}
986
987static int taprio_get_start_time(struct Qdisc *sch,
988				 struct sched_gate_list *sched,
989				 ktime_t *start)
990{
991	struct taprio_sched *q = qdisc_priv(sch);
992	ktime_t now, base, cycle;
993	s64 n;
994
995	base = sched_base_time(sched);
996	now = taprio_get_time(q);
997
998	if (ktime_after(base, now)) {
999		*start = base;
1000		return 0;
1001	}
1002
1003	cycle = sched->cycle_time;
1004
1005	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1006	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1007	 * something went really wrong. In that case, we should warn about this
1008	 * inconsistent state and return error.
1009	 */
1010	if (WARN_ON(!cycle))
1011		return -EFAULT;
1012
1013	/* Schedule the start time for the beginning of the next
1014	 * cycle.
1015	 */
1016	n = div64_s64(ktime_sub_ns(now, base), cycle);
1017	*start = ktime_add_ns(base, (n + 1) * cycle);
1018	return 0;
1019}
1020
1021static void setup_first_close_time(struct taprio_sched *q,
1022				   struct sched_gate_list *sched, ktime_t base)
1023{
1024	struct sched_entry *first;
1025	ktime_t cycle;
1026
1027	first = list_first_entry(&sched->entries,
1028				 struct sched_entry, list);
1029
1030	cycle = sched->cycle_time;
1031
1032	/* FIXME: find a better place to do this */
1033	sched->cycle_close_time = ktime_add_ns(base, cycle);
1034
1035	first->close_time = ktime_add_ns(base, first->interval);
1036	taprio_set_budget(q, first);
1037	rcu_assign_pointer(q->current_entry, NULL);
1038}
1039
1040static void taprio_start_sched(struct Qdisc *sch,
1041			       ktime_t start, struct sched_gate_list *new)
1042{
1043	struct taprio_sched *q = qdisc_priv(sch);
1044	ktime_t expires;
1045
1046	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1047		return;
1048
1049	expires = hrtimer_get_expires(&q->advance_timer);
1050	if (expires == 0)
1051		expires = KTIME_MAX;
1052
1053	/* If the new schedule starts before the next expiration, we
1054	 * reprogram it to the earliest one, so we change the admin
1055	 * schedule to the operational one at the right time.
1056	 */
1057	start = min_t(ktime_t, start, expires);
1058
1059	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1060}
1061
1062static void taprio_set_picos_per_byte(struct net_device *dev,
1063				      struct taprio_sched *q)
1064{
1065	struct ethtool_link_ksettings ecmd;
1066	int speed = SPEED_10;
1067	int picos_per_byte;
1068	int err;
1069
1070	err = __ethtool_get_link_ksettings(dev, &ecmd);
1071	if (err < 0)
1072		goto skip;
1073
1074	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1075		speed = ecmd.base.speed;
1076
1077skip:
1078	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1079
1080	atomic64_set(&q->picos_per_byte, picos_per_byte);
1081	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1082		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1083		   ecmd.base.speed);
1084}
1085
1086static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1087			       void *ptr)
1088{
1089	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1090	struct net_device *qdev;
1091	struct taprio_sched *q;
1092	bool found = false;
1093
1094	ASSERT_RTNL();
1095
1096	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1097		return NOTIFY_DONE;
1098
1099	spin_lock(&taprio_list_lock);
1100	list_for_each_entry(q, &taprio_list, taprio_list) {
1101		qdev = qdisc_dev(q->root);
1102		if (qdev == dev) {
1103			found = true;
1104			break;
1105		}
1106	}
1107	spin_unlock(&taprio_list_lock);
1108
1109	if (found)
1110		taprio_set_picos_per_byte(dev, q);
1111
1112	return NOTIFY_DONE;
1113}
1114
1115static void setup_txtime(struct taprio_sched *q,
1116			 struct sched_gate_list *sched, ktime_t base)
1117{
1118	struct sched_entry *entry;
1119	u32 interval = 0;
1120
1121	list_for_each_entry(entry, &sched->entries, list) {
1122		entry->next_txtime = ktime_add_ns(base, interval);
1123		interval += entry->interval;
1124	}
1125}
1126
1127static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1128{
1129	struct __tc_taprio_qopt_offload *__offload;
1130
1131	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1132			    GFP_KERNEL);
1133	if (!__offload)
1134		return NULL;
1135
1136	refcount_set(&__offload->users, 1);
1137
1138	return &__offload->offload;
1139}
1140
1141struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1142						  *offload)
1143{
1144	struct __tc_taprio_qopt_offload *__offload;
1145
1146	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1147				 offload);
1148
1149	refcount_inc(&__offload->users);
1150
1151	return offload;
1152}
1153EXPORT_SYMBOL_GPL(taprio_offload_get);
1154
1155void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1156{
1157	struct __tc_taprio_qopt_offload *__offload;
1158
1159	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1160				 offload);
1161
1162	if (!refcount_dec_and_test(&__offload->users))
1163		return;
1164
1165	kfree(__offload);
1166}
1167EXPORT_SYMBOL_GPL(taprio_offload_free);
1168
1169/* The function will only serve to keep the pointers to the "oper" and "admin"
1170 * schedules valid in relation to their base times, so when calling dump() the
1171 * users looks at the right schedules.
1172 * When using full offload, the admin configuration is promoted to oper at the
1173 * base_time in the PHC time domain.  But because the system time is not
1174 * necessarily in sync with that, we can't just trigger a hrtimer to call
1175 * switch_schedules at the right hardware time.
1176 * At the moment we call this by hand right away from taprio, but in the future
1177 * it will be useful to create a mechanism for drivers to notify taprio of the
1178 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1179 * This is left as TODO.
1180 */
1181static void taprio_offload_config_changed(struct taprio_sched *q)
1182{
1183	struct sched_gate_list *oper, *admin;
1184
1185	spin_lock(&q->current_entry_lock);
1186
1187	oper = rcu_dereference_protected(q->oper_sched,
1188					 lockdep_is_held(&q->current_entry_lock));
1189	admin = rcu_dereference_protected(q->admin_sched,
1190					  lockdep_is_held(&q->current_entry_lock));
1191
1192	switch_schedules(q, &admin, &oper);
1193
1194	spin_unlock(&q->current_entry_lock);
1195}
1196
1197static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1198{
1199	u32 i, queue_mask = 0;
1200
1201	for (i = 0; i < dev->num_tc; i++) {
1202		u32 offset, count;
1203
1204		if (!(tc_mask & BIT(i)))
1205			continue;
1206
1207		offset = dev->tc_to_txq[i].offset;
1208		count = dev->tc_to_txq[i].count;
1209
1210		queue_mask |= GENMASK(offset + count - 1, offset);
1211	}
1212
1213	return queue_mask;
1214}
1215
1216static void taprio_sched_to_offload(struct net_device *dev,
1217				    struct sched_gate_list *sched,
1218				    struct tc_taprio_qopt_offload *offload)
1219{
1220	struct sched_entry *entry;
1221	int i = 0;
1222
1223	offload->base_time = sched->base_time;
1224	offload->cycle_time = sched->cycle_time;
1225	offload->cycle_time_extension = sched->cycle_time_extension;
1226
1227	list_for_each_entry(entry, &sched->entries, list) {
1228		struct tc_taprio_sched_entry *e = &offload->entries[i];
1229
1230		e->command = entry->command;
1231		e->interval = entry->interval;
1232		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1233
1234		i++;
1235	}
1236
1237	offload->num_entries = i;
1238}
1239
1240static int taprio_enable_offload(struct net_device *dev,
1241				 struct taprio_sched *q,
1242				 struct sched_gate_list *sched,
1243				 struct netlink_ext_ack *extack)
1244{
1245	const struct net_device_ops *ops = dev->netdev_ops;
1246	struct tc_taprio_qopt_offload *offload;
1247	int err = 0;
1248
1249	if (!ops->ndo_setup_tc) {
1250		NL_SET_ERR_MSG(extack,
1251			       "Device does not support taprio offload");
1252		return -EOPNOTSUPP;
1253	}
1254
1255	offload = taprio_offload_alloc(sched->num_entries);
1256	if (!offload) {
1257		NL_SET_ERR_MSG(extack,
1258			       "Not enough memory for enabling offload mode");
1259		return -ENOMEM;
1260	}
1261	offload->enable = 1;
1262	taprio_sched_to_offload(dev, sched, offload);
1263
1264	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1265	if (err < 0) {
1266		NL_SET_ERR_MSG(extack,
1267			       "Device failed to setup taprio offload");
1268		goto done;
1269	}
1270
1271	q->offloaded = true;
1272
1273done:
1274	taprio_offload_free(offload);
1275
1276	return err;
1277}
1278
1279static int taprio_disable_offload(struct net_device *dev,
1280				  struct taprio_sched *q,
1281				  struct netlink_ext_ack *extack)
1282{
1283	const struct net_device_ops *ops = dev->netdev_ops;
1284	struct tc_taprio_qopt_offload *offload;
1285	int err;
1286
1287	if (!q->offloaded)
1288		return 0;
1289
1290	offload = taprio_offload_alloc(0);
1291	if (!offload) {
1292		NL_SET_ERR_MSG(extack,
1293			       "Not enough memory to disable offload mode");
1294		return -ENOMEM;
1295	}
1296	offload->enable = 0;
1297
1298	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1299	if (err < 0) {
1300		NL_SET_ERR_MSG(extack,
1301			       "Device failed to disable offload");
1302		goto out;
1303	}
1304
1305	q->offloaded = false;
1306
1307out:
1308	taprio_offload_free(offload);
1309
1310	return err;
1311}
1312
1313/* If full offload is enabled, the only possible clockid is the net device's
1314 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1315 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1316 * in sync with the specified clockid via a user space daemon such as phc2sys.
1317 * For both software taprio and txtime-assist, the clockid is used for the
1318 * hrtimer that advances the schedule and hence mandatory.
1319 */
1320static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1321				struct netlink_ext_ack *extack)
1322{
1323	struct taprio_sched *q = qdisc_priv(sch);
1324	struct net_device *dev = qdisc_dev(sch);
1325	int err = -EINVAL;
1326
1327	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1328		const struct ethtool_ops *ops = dev->ethtool_ops;
1329		struct ethtool_ts_info info = {
1330			.cmd = ETHTOOL_GET_TS_INFO,
1331			.phc_index = -1,
1332		};
1333
1334		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1335			NL_SET_ERR_MSG(extack,
1336				       "The 'clockid' cannot be specified for full offload");
1337			goto out;
1338		}
1339
1340		if (ops && ops->get_ts_info)
1341			err = ops->get_ts_info(dev, &info);
1342
1343		if (err || info.phc_index < 0) {
1344			NL_SET_ERR_MSG(extack,
1345				       "Device does not have a PTP clock");
1346			err = -ENOTSUPP;
1347			goto out;
1348		}
1349	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1350		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1351		enum tk_offsets tk_offset;
1352
1353		/* We only support static clockids and we don't allow
1354		 * for it to be modified after the first init.
1355		 */
1356		if (clockid < 0 ||
1357		    (q->clockid != -1 && q->clockid != clockid)) {
1358			NL_SET_ERR_MSG(extack,
1359				       "Changing the 'clockid' of a running schedule is not supported");
1360			err = -ENOTSUPP;
1361			goto out;
1362		}
1363
1364		switch (clockid) {
1365		case CLOCK_REALTIME:
1366			tk_offset = TK_OFFS_REAL;
1367			break;
1368		case CLOCK_MONOTONIC:
1369			tk_offset = TK_OFFS_MAX;
1370			break;
1371		case CLOCK_BOOTTIME:
1372			tk_offset = TK_OFFS_BOOT;
1373			break;
1374		case CLOCK_TAI:
1375			tk_offset = TK_OFFS_TAI;
1376			break;
1377		default:
1378			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1379			err = -EINVAL;
1380			goto out;
1381		}
1382		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1383		WRITE_ONCE(q->tk_offset, tk_offset);
1384
1385		q->clockid = clockid;
1386	} else {
1387		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1388		goto out;
1389	}
1390
1391	/* Everything went ok, return success. */
1392	err = 0;
1393
1394out:
1395	return err;
1396}
1397
1398static int taprio_mqprio_cmp(const struct net_device *dev,
1399			     const struct tc_mqprio_qopt *mqprio)
1400{
1401	int i;
1402
1403	if (!mqprio || mqprio->num_tc != dev->num_tc)
1404		return -1;
1405
1406	for (i = 0; i < mqprio->num_tc; i++)
1407		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1408		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1409			return -1;
1410
1411	for (i = 0; i <= TC_BITMASK; i++)
1412		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1413			return -1;
1414
1415	return 0;
1416}
1417
1418/* The semantics of the 'flags' argument in relation to 'change()'
1419 * requests, are interpreted following two rules (which are applied in
1420 * this order): (1) an omitted 'flags' argument is interpreted as
1421 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1422 * changed.
1423 */
1424static int taprio_new_flags(const struct nlattr *attr, u32 old,
1425			    struct netlink_ext_ack *extack)
1426{
1427	u32 new = 0;
1428
1429	if (attr)
1430		new = nla_get_u32(attr);
1431
1432	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1433		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1434		return -EOPNOTSUPP;
1435	}
1436
1437	if (!taprio_flags_valid(new)) {
1438		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1439		return -EINVAL;
1440	}
1441
1442	return new;
1443}
1444
1445static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1446			 struct netlink_ext_ack *extack)
1447{
1448	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1449	struct sched_gate_list *oper, *admin, *new_admin;
1450	struct taprio_sched *q = qdisc_priv(sch);
1451	struct net_device *dev = qdisc_dev(sch);
1452	struct tc_mqprio_qopt *mqprio = NULL;
1453	unsigned long flags;
1454	ktime_t start;
1455	int i, err;
1456
1457	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1458					  taprio_policy, extack);
1459	if (err < 0)
1460		return err;
1461
1462	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1463		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1464
1465	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1466			       q->flags, extack);
1467	if (err < 0)
1468		return err;
1469
1470	q->flags = err;
1471
1472	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1473	if (err < 0)
1474		return err;
1475
1476	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1477	if (!new_admin) {
1478		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1479		return -ENOMEM;
1480	}
1481	INIT_LIST_HEAD(&new_admin->entries);
1482
1483	rcu_read_lock();
1484	oper = rcu_dereference(q->oper_sched);
1485	admin = rcu_dereference(q->admin_sched);
1486	rcu_read_unlock();
1487
1488	/* no changes - no new mqprio settings */
1489	if (!taprio_mqprio_cmp(dev, mqprio))
1490		mqprio = NULL;
1491
1492	if (mqprio && (oper || admin)) {
1493		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1494		err = -ENOTSUPP;
1495		goto free_sched;
1496	}
1497
1498	err = parse_taprio_schedule(q, tb, new_admin, extack);
1499	if (err < 0)
1500		goto free_sched;
1501
1502	if (new_admin->num_entries == 0) {
1503		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1504		err = -EINVAL;
1505		goto free_sched;
1506	}
1507
1508	err = taprio_parse_clockid(sch, tb, extack);
1509	if (err < 0)
1510		goto free_sched;
1511
1512	taprio_set_picos_per_byte(dev, q);
1513
1514	if (mqprio) {
1515		err = netdev_set_num_tc(dev, mqprio->num_tc);
1516		if (err)
1517			goto free_sched;
1518		for (i = 0; i < mqprio->num_tc; i++)
1519			netdev_set_tc_queue(dev, i,
1520					    mqprio->count[i],
1521					    mqprio->offset[i]);
1522
1523		/* Always use supplied priority mappings */
1524		for (i = 0; i <= TC_BITMASK; i++)
1525			netdev_set_prio_tc_map(dev, i,
1526					       mqprio->prio_tc_map[i]);
1527	}
1528
1529	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1530		err = taprio_enable_offload(dev, q, new_admin, extack);
1531	else
1532		err = taprio_disable_offload(dev, q, extack);
1533	if (err)
1534		goto free_sched;
1535
1536	/* Protects against enqueue()/dequeue() */
1537	spin_lock_bh(qdisc_lock(sch));
1538
1539	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1540		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1541			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1542			err = -EINVAL;
1543			goto unlock;
1544		}
1545
1546		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1547	}
1548
1549	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1550	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1551	    !hrtimer_active(&q->advance_timer)) {
1552		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1553		q->advance_timer.function = advance_sched;
1554	}
1555
1556	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1557		q->dequeue = taprio_dequeue_offload;
1558		q->peek = taprio_peek_offload;
1559	} else {
1560		/* Be sure to always keep the function pointers
1561		 * in a consistent state.
1562		 */
1563		q->dequeue = taprio_dequeue_soft;
1564		q->peek = taprio_peek_soft;
1565	}
1566
1567	err = taprio_get_start_time(sch, new_admin, &start);
1568	if (err < 0) {
1569		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1570		goto unlock;
1571	}
1572
1573	setup_txtime(q, new_admin, start);
1574
1575	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1576		if (!oper) {
1577			rcu_assign_pointer(q->oper_sched, new_admin);
1578			err = 0;
1579			new_admin = NULL;
1580			goto unlock;
1581		}
1582
1583		rcu_assign_pointer(q->admin_sched, new_admin);
1584		if (admin)
1585			call_rcu(&admin->rcu, taprio_free_sched_cb);
1586	} else {
1587		setup_first_close_time(q, new_admin, start);
1588
1589		/* Protects against advance_sched() */
1590		spin_lock_irqsave(&q->current_entry_lock, flags);
1591
1592		taprio_start_sched(sch, start, new_admin);
1593
1594		rcu_assign_pointer(q->admin_sched, new_admin);
1595		if (admin)
1596			call_rcu(&admin->rcu, taprio_free_sched_cb);
1597
1598		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1599
1600		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1601			taprio_offload_config_changed(q);
1602	}
1603
1604	new_admin = NULL;
1605	err = 0;
1606
1607unlock:
1608	spin_unlock_bh(qdisc_lock(sch));
1609
1610free_sched:
1611	if (new_admin)
1612		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1613
1614	return err;
1615}
1616
1617static void taprio_reset(struct Qdisc *sch)
1618{
1619	struct taprio_sched *q = qdisc_priv(sch);
1620	struct net_device *dev = qdisc_dev(sch);
1621	int i;
1622
1623	hrtimer_cancel(&q->advance_timer);
1624
1625	if (q->qdiscs) {
1626		for (i = 0; i < dev->num_tx_queues; i++)
1627			if (q->qdiscs[i])
1628				qdisc_reset(q->qdiscs[i]);
1629	}
1630}
1631
1632static void taprio_destroy(struct Qdisc *sch)
1633{
1634	struct taprio_sched *q = qdisc_priv(sch);
1635	struct net_device *dev = qdisc_dev(sch);
1636	unsigned int i;
1637
1638	spin_lock(&taprio_list_lock);
1639	list_del(&q->taprio_list);
1640	spin_unlock(&taprio_list_lock);
1641
1642	/* Note that taprio_reset() might not be called if an error
1643	 * happens in qdisc_create(), after taprio_init() has been called.
1644	 */
1645	hrtimer_cancel(&q->advance_timer);
1646	qdisc_synchronize(sch);
1647
1648	taprio_disable_offload(dev, q, NULL);
1649
1650	if (q->qdiscs) {
1651		for (i = 0; i < dev->num_tx_queues; i++)
1652			qdisc_put(q->qdiscs[i]);
1653
1654		kfree(q->qdiscs);
1655	}
1656	q->qdiscs = NULL;
1657
1658	netdev_reset_tc(dev);
1659
1660	if (q->oper_sched)
1661		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1662
1663	if (q->admin_sched)
1664		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1665}
1666
1667static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1668		       struct netlink_ext_ack *extack)
1669{
1670	struct taprio_sched *q = qdisc_priv(sch);
1671	struct net_device *dev = qdisc_dev(sch);
1672	int i;
1673
1674	spin_lock_init(&q->current_entry_lock);
1675
1676	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1677	q->advance_timer.function = advance_sched;
1678
1679	q->dequeue = taprio_dequeue_soft;
1680	q->peek = taprio_peek_soft;
1681
1682	q->root = sch;
1683
1684	/* We only support static clockids. Use an invalid value as default
1685	 * and get the valid one on taprio_change().
1686	 */
1687	q->clockid = -1;
1688	q->flags = TAPRIO_FLAGS_INVALID;
1689
1690	spin_lock(&taprio_list_lock);
1691	list_add(&q->taprio_list, &taprio_list);
1692	spin_unlock(&taprio_list_lock);
1693
1694	if (sch->parent != TC_H_ROOT)
1695		return -EOPNOTSUPP;
1696
1697	if (!netif_is_multiqueue(dev))
1698		return -EOPNOTSUPP;
1699
1700	/* pre-allocate qdisc, attachment can't fail */
1701	q->qdiscs = kcalloc(dev->num_tx_queues,
1702			    sizeof(q->qdiscs[0]),
1703			    GFP_KERNEL);
1704
1705	if (!q->qdiscs)
1706		return -ENOMEM;
1707
1708	if (!opt)
1709		return -EINVAL;
1710
1711	for (i = 0; i < dev->num_tx_queues; i++) {
1712		struct netdev_queue *dev_queue;
1713		struct Qdisc *qdisc;
1714
1715		dev_queue = netdev_get_tx_queue(dev, i);
1716		qdisc = qdisc_create_dflt(dev_queue,
1717					  &pfifo_qdisc_ops,
1718					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1719						    TC_H_MIN(i + 1)),
1720					  extack);
1721		if (!qdisc)
1722			return -ENOMEM;
1723
1724		if (i < dev->real_num_tx_queues)
1725			qdisc_hash_add(qdisc, false);
1726
1727		q->qdiscs[i] = qdisc;
1728	}
1729
1730	return taprio_change(sch, opt, extack);
1731}
1732
1733static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1734					     unsigned long cl)
1735{
1736	struct net_device *dev = qdisc_dev(sch);
1737	unsigned long ntx = cl - 1;
1738
1739	if (ntx >= dev->num_tx_queues)
1740		return NULL;
1741
1742	return netdev_get_tx_queue(dev, ntx);
1743}
1744
1745static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1746			struct Qdisc *new, struct Qdisc **old,
1747			struct netlink_ext_ack *extack)
1748{
1749	struct taprio_sched *q = qdisc_priv(sch);
1750	struct net_device *dev = qdisc_dev(sch);
1751	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1752
1753	if (!dev_queue)
1754		return -EINVAL;
1755
1756	if (dev->flags & IFF_UP)
1757		dev_deactivate(dev);
1758
1759	*old = q->qdiscs[cl - 1];
1760	q->qdiscs[cl - 1] = new;
1761
1762	if (new)
1763		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1764
1765	if (dev->flags & IFF_UP)
1766		dev_activate(dev);
1767
1768	return 0;
1769}
1770
1771static int dump_entry(struct sk_buff *msg,
1772		      const struct sched_entry *entry)
1773{
1774	struct nlattr *item;
1775
1776	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1777	if (!item)
1778		return -ENOSPC;
1779
1780	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1781		goto nla_put_failure;
1782
1783	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1784		goto nla_put_failure;
1785
1786	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1787			entry->gate_mask))
1788		goto nla_put_failure;
1789
1790	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1791			entry->interval))
1792		goto nla_put_failure;
1793
1794	return nla_nest_end(msg, item);
1795
1796nla_put_failure:
1797	nla_nest_cancel(msg, item);
1798	return -1;
1799}
1800
1801static int dump_schedule(struct sk_buff *msg,
1802			 const struct sched_gate_list *root)
1803{
1804	struct nlattr *entry_list;
1805	struct sched_entry *entry;
1806
1807	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1808			root->base_time, TCA_TAPRIO_PAD))
1809		return -1;
1810
1811	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1812			root->cycle_time, TCA_TAPRIO_PAD))
1813		return -1;
1814
1815	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1816			root->cycle_time_extension, TCA_TAPRIO_PAD))
1817		return -1;
1818
1819	entry_list = nla_nest_start_noflag(msg,
1820					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1821	if (!entry_list)
1822		goto error_nest;
1823
1824	list_for_each_entry(entry, &root->entries, list) {
1825		if (dump_entry(msg, entry) < 0)
1826			goto error_nest;
1827	}
1828
1829	nla_nest_end(msg, entry_list);
1830	return 0;
1831
1832error_nest:
1833	nla_nest_cancel(msg, entry_list);
1834	return -1;
1835}
1836
1837static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1838{
1839	struct taprio_sched *q = qdisc_priv(sch);
1840	struct net_device *dev = qdisc_dev(sch);
1841	struct sched_gate_list *oper, *admin;
1842	struct tc_mqprio_qopt opt = { 0 };
1843	struct nlattr *nest, *sched_nest;
1844	unsigned int i;
1845
1846	rcu_read_lock();
1847	oper = rcu_dereference(q->oper_sched);
1848	admin = rcu_dereference(q->admin_sched);
1849
1850	opt.num_tc = netdev_get_num_tc(dev);
1851	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1852
1853	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1854		opt.count[i] = dev->tc_to_txq[i].count;
1855		opt.offset[i] = dev->tc_to_txq[i].offset;
1856	}
1857
1858	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1859	if (!nest)
1860		goto start_error;
1861
1862	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1863		goto options_error;
1864
1865	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1866	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1867		goto options_error;
1868
1869	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1870		goto options_error;
1871
1872	if (q->txtime_delay &&
1873	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1874		goto options_error;
1875
1876	if (oper && dump_schedule(skb, oper))
1877		goto options_error;
1878
1879	if (!admin)
1880		goto done;
1881
1882	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1883	if (!sched_nest)
1884		goto options_error;
1885
1886	if (dump_schedule(skb, admin))
1887		goto admin_error;
1888
1889	nla_nest_end(skb, sched_nest);
1890
1891done:
1892	rcu_read_unlock();
1893
1894	return nla_nest_end(skb, nest);
1895
1896admin_error:
1897	nla_nest_cancel(skb, sched_nest);
1898
1899options_error:
1900	nla_nest_cancel(skb, nest);
1901
1902start_error:
1903	rcu_read_unlock();
1904	return -ENOSPC;
1905}
1906
1907static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1908{
1909	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1910
1911	if (!dev_queue)
1912		return NULL;
1913
1914	return dev_queue->qdisc_sleeping;
1915}
1916
1917static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1918{
1919	unsigned int ntx = TC_H_MIN(classid);
1920
1921	if (!taprio_queue_get(sch, ntx))
1922		return 0;
1923	return ntx;
1924}
1925
1926static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1927			     struct sk_buff *skb, struct tcmsg *tcm)
1928{
1929	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1930
1931	tcm->tcm_parent = TC_H_ROOT;
1932	tcm->tcm_handle |= TC_H_MIN(cl);
1933	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1934
1935	return 0;
1936}
1937
1938static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1939				   struct gnet_dump *d)
1940	__releases(d->lock)
1941	__acquires(d->lock)
1942{
1943	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1944
1945	sch = dev_queue->qdisc_sleeping;
1946	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1947	    qdisc_qstats_copy(d, sch) < 0)
1948		return -1;
1949	return 0;
1950}
1951
1952static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1953{
1954	struct net_device *dev = qdisc_dev(sch);
1955	unsigned long ntx;
1956
1957	if (arg->stop)
1958		return;
1959
1960	arg->count = arg->skip;
1961	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1962		if (arg->fn(sch, ntx + 1, arg) < 0) {
1963			arg->stop = 1;
1964			break;
1965		}
1966		arg->count++;
1967	}
1968}
1969
1970static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1971						struct tcmsg *tcm)
1972{
1973	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1974}
1975
1976static const struct Qdisc_class_ops taprio_class_ops = {
1977	.graft		= taprio_graft,
1978	.leaf		= taprio_leaf,
1979	.find		= taprio_find,
1980	.walk		= taprio_walk,
1981	.dump		= taprio_dump_class,
1982	.dump_stats	= taprio_dump_class_stats,
1983	.select_queue	= taprio_select_queue,
1984};
1985
1986static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1987	.cl_ops		= &taprio_class_ops,
1988	.id		= "taprio",
1989	.priv_size	= sizeof(struct taprio_sched),
1990	.init		= taprio_init,
1991	.change		= taprio_change,
1992	.destroy	= taprio_destroy,
1993	.reset		= taprio_reset,
1994	.peek		= taprio_peek,
1995	.dequeue	= taprio_dequeue,
1996	.enqueue	= taprio_enqueue,
1997	.dump		= taprio_dump,
1998	.owner		= THIS_MODULE,
1999};
2000
2001static struct notifier_block taprio_device_notifier = {
2002	.notifier_call = taprio_dev_notifier,
2003};
2004
2005static int __init taprio_module_init(void)
2006{
2007	int err = register_netdevice_notifier(&taprio_device_notifier);
2008
2009	if (err)
2010		return err;
2011
2012	return register_qdisc(&taprio_qdisc_ops);
2013}
2014
2015static void __exit taprio_module_exit(void)
2016{
2017	unregister_qdisc(&taprio_qdisc_ops);
2018	unregister_netdevice_notifier(&taprio_device_notifier);
2019}
2020
2021module_init(taprio_module_init);
2022module_exit(taprio_module_exit);
2023MODULE_LICENSE("GPL");
2024