1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 4 * 5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 6 * Copyright (c) 2012 Paolo Valente. 7 */ 8 9#include <linux/module.h> 10#include <linux/init.h> 11#include <linux/bitops.h> 12#include <linux/errno.h> 13#include <linux/netdevice.h> 14#include <linux/pkt_sched.h> 15#include <net/sch_generic.h> 16#include <net/pkt_sched.h> 17#include <net/pkt_cls.h> 18 19 20/* Quick Fair Queueing Plus 21 ======================== 22 23 Sources: 24 25 [1] Paolo Valente, 26 "Reducing the Execution Time of Fair-Queueing Schedulers." 27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 28 29 Sources for QFQ: 30 31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 33 34 See also: 35 http://retis.sssup.it/~fabio/linux/qfq/ 36 */ 37 38/* 39 40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 41 classes. Each aggregate is timestamped with a virtual start time S 42 and a virtual finish time F, and scheduled according to its 43 timestamps. S and F are computed as a function of a system virtual 44 time function V. The classes within each aggregate are instead 45 scheduled with DRR. 46 47 To speed up operations, QFQ+ divides also aggregates into a limited 48 number of groups. Which group a class belongs to depends on the 49 ratio between the maximum packet length for the class and the weight 50 of the class. Groups have their own S and F. In the end, QFQ+ 51 schedules groups, then aggregates within groups, then classes within 52 aggregates. See [1] and [2] for a full description. 53 54 Virtual time computations. 55 56 S, F and V are all computed in fixed point arithmetic with 57 FRAC_BITS decimal bits. 58 59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 60 one bit per index. 61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 62 63 The layout of the bits is as below: 64 65 [ MTU_SHIFT ][ FRAC_BITS ] 66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 67 ^.__grp->index = 0 68 *.__grp->slot_shift 69 70 where MIN_SLOT_SHIFT is derived by difference from the others. 71 72 The max group index corresponds to Lmax/w_min, where 73 Lmax=1<<MTU_SHIFT, w_min = 1 . 74 From this, and knowing how many groups (MAX_INDEX) we want, 75 we can derive the shift corresponding to each group. 76 77 Because we often need to compute 78 F = S + len/w_i and V = V + len/wsum 79 instead of storing w_i store the value 80 inv_w = (1<<FRAC_BITS)/w_i 81 so we can do F = S + len * inv_w * wsum. 82 We use W_TOT in the formulas so we can easily move between 83 static and adaptive weight sum. 84 85 The per-scheduler-instance data contain all the data structures 86 for the scheduler: bitmaps and bucket lists. 87 88 */ 89 90/* 91 * Maximum number of consecutive slots occupied by backlogged classes 92 * inside a group. 93 */ 94#define QFQ_MAX_SLOTS 32 95 96/* 97 * Shifts used for aggregate<->group mapping. We allow class weights that are 98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 99 * group with the smallest index that can support the L_i / r_i configured 100 * for the classes in the aggregate. 101 * 102 * grp->index is the index of the group; and grp->slot_shift 103 * is the shift for the corresponding (scaled) sigma_i. 104 */ 105#define QFQ_MAX_INDEX 24 106#define QFQ_MAX_WSHIFT 10 107 108#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 109#define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 110 111#define FRAC_BITS 30 /* fixed point arithmetic */ 112#define ONE_FP (1UL << FRAC_BITS) 113 114#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 115#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 116#define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT) 117 118#define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 119 120/* 121 * Possible group states. These values are used as indexes for the bitmaps 122 * array of struct qfq_queue. 123 */ 124enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 125 126struct qfq_group; 127 128struct qfq_aggregate; 129 130struct qfq_class { 131 struct Qdisc_class_common common; 132 133 unsigned int filter_cnt; 134 135 struct gnet_stats_basic_packed bstats; 136 struct gnet_stats_queue qstats; 137 struct net_rate_estimator __rcu *rate_est; 138 struct Qdisc *qdisc; 139 struct list_head alist; /* Link for active-classes list. */ 140 struct qfq_aggregate *agg; /* Parent aggregate. */ 141 int deficit; /* DRR deficit counter. */ 142}; 143 144struct qfq_aggregate { 145 struct hlist_node next; /* Link for the slot list. */ 146 u64 S, F; /* flow timestamps (exact) */ 147 148 /* group we belong to. In principle we would need the index, 149 * which is log_2(lmax/weight), but we never reference it 150 * directly, only the group. 151 */ 152 struct qfq_group *grp; 153 154 /* these are copied from the flowset. */ 155 u32 class_weight; /* Weight of each class in this aggregate. */ 156 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 157 int lmax; 158 159 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 160 u32 budgetmax; /* Max budget for this aggregate. */ 161 u32 initial_budget, budget; /* Initial and current budget. */ 162 163 int num_classes; /* Number of classes in this aggr. */ 164 struct list_head active; /* DRR queue of active classes. */ 165 166 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 167}; 168 169struct qfq_group { 170 u64 S, F; /* group timestamps (approx). */ 171 unsigned int slot_shift; /* Slot shift. */ 172 unsigned int index; /* Group index. */ 173 unsigned int front; /* Index of the front slot. */ 174 unsigned long full_slots; /* non-empty slots */ 175 176 /* Array of RR lists of active aggregates. */ 177 struct hlist_head slots[QFQ_MAX_SLOTS]; 178}; 179 180struct qfq_sched { 181 struct tcf_proto __rcu *filter_list; 182 struct tcf_block *block; 183 struct Qdisc_class_hash clhash; 184 185 u64 oldV, V; /* Precise virtual times. */ 186 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 187 u32 wsum; /* weight sum */ 188 u32 iwsum; /* inverse weight sum */ 189 190 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 191 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 192 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 193 194 u32 max_agg_classes; /* Max number of classes per aggr. */ 195 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 196}; 197 198/* 199 * Possible reasons why the timestamps of an aggregate are updated 200 * enqueue: the aggregate switches from idle to active and must scheduled 201 * for service 202 * requeue: the aggregate finishes its budget, so it stops being served and 203 * must be rescheduled for service 204 */ 205enum update_reason {enqueue, requeue}; 206 207static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 208{ 209 struct qfq_sched *q = qdisc_priv(sch); 210 struct Qdisc_class_common *clc; 211 212 clc = qdisc_class_find(&q->clhash, classid); 213 if (clc == NULL) 214 return NULL; 215 return container_of(clc, struct qfq_class, common); 216} 217 218static struct netlink_range_validation lmax_range = { 219 .min = QFQ_MIN_LMAX, 220 .max = QFQ_MAX_LMAX, 221}; 222 223static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 224 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT), 225 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range), 226}; 227 228/* 229 * Calculate a flow index, given its weight and maximum packet length. 230 * index = log_2(maxlen/weight) but we need to apply the scaling. 231 * This is used only once at flow creation. 232 */ 233static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 234{ 235 u64 slot_size = (u64)maxlen * inv_w; 236 unsigned long size_map; 237 int index = 0; 238 239 size_map = slot_size >> min_slot_shift; 240 if (!size_map) 241 goto out; 242 243 index = __fls(size_map) + 1; /* basically a log_2 */ 244 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 245 246 if (index < 0) 247 index = 0; 248out: 249 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 250 (unsigned long) ONE_FP/inv_w, maxlen, index); 251 252 return index; 253} 254 255static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 256static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 257 enum update_reason); 258 259static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 260 u32 lmax, u32 weight) 261{ 262 INIT_LIST_HEAD(&agg->active); 263 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 264 265 agg->lmax = lmax; 266 agg->class_weight = weight; 267} 268 269static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 270 u32 lmax, u32 weight) 271{ 272 struct qfq_aggregate *agg; 273 274 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 275 if (agg->lmax == lmax && agg->class_weight == weight) 276 return agg; 277 278 return NULL; 279} 280 281 282/* Update aggregate as a function of the new number of classes. */ 283static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 284 int new_num_classes) 285{ 286 u32 new_agg_weight; 287 288 if (new_num_classes == q->max_agg_classes) 289 hlist_del_init(&agg->nonfull_next); 290 291 if (agg->num_classes > new_num_classes && 292 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 293 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 294 295 /* The next assignment may let 296 * agg->initial_budget > agg->budgetmax 297 * hold, we will take it into account in charge_actual_service(). 298 */ 299 agg->budgetmax = new_num_classes * agg->lmax; 300 new_agg_weight = agg->class_weight * new_num_classes; 301 agg->inv_w = ONE_FP/new_agg_weight; 302 303 if (agg->grp == NULL) { 304 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 305 q->min_slot_shift); 306 agg->grp = &q->groups[i]; 307 } 308 309 q->wsum += 310 (int) agg->class_weight * (new_num_classes - agg->num_classes); 311 q->iwsum = ONE_FP / q->wsum; 312 313 agg->num_classes = new_num_classes; 314} 315 316/* Add class to aggregate. */ 317static void qfq_add_to_agg(struct qfq_sched *q, 318 struct qfq_aggregate *agg, 319 struct qfq_class *cl) 320{ 321 cl->agg = agg; 322 323 qfq_update_agg(q, agg, agg->num_classes+1); 324 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 325 list_add_tail(&cl->alist, &agg->active); 326 if (list_first_entry(&agg->active, struct qfq_class, alist) == 327 cl && q->in_serv_agg != agg) /* agg was inactive */ 328 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 329 } 330} 331 332static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 333 334static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 335{ 336 hlist_del_init(&agg->nonfull_next); 337 q->wsum -= agg->class_weight; 338 if (q->wsum != 0) 339 q->iwsum = ONE_FP / q->wsum; 340 341 if (q->in_serv_agg == agg) 342 q->in_serv_agg = qfq_choose_next_agg(q); 343 kfree(agg); 344} 345 346/* Deschedule class from within its parent aggregate. */ 347static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 348{ 349 struct qfq_aggregate *agg = cl->agg; 350 351 352 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 353 if (list_empty(&agg->active)) /* agg is now inactive */ 354 qfq_deactivate_agg(q, agg); 355} 356 357/* Remove class from its parent aggregate. */ 358static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 359{ 360 struct qfq_aggregate *agg = cl->agg; 361 362 cl->agg = NULL; 363 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 364 qfq_destroy_agg(q, agg); 365 return; 366 } 367 qfq_update_agg(q, agg, agg->num_classes-1); 368} 369 370/* Deschedule class and remove it from its parent aggregate. */ 371static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 372{ 373 if (cl->qdisc->q.qlen > 0) /* class is active */ 374 qfq_deactivate_class(q, cl); 375 376 qfq_rm_from_agg(q, cl); 377} 378 379/* Move class to a new aggregate, matching the new class weight and/or lmax */ 380static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 381 u32 lmax) 382{ 383 struct qfq_sched *q = qdisc_priv(sch); 384 struct qfq_aggregate *new_agg; 385 386 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */ 387 if (lmax > QFQ_MAX_LMAX) 388 return -EINVAL; 389 390 new_agg = qfq_find_agg(q, lmax, weight); 391 if (new_agg == NULL) { /* create new aggregate */ 392 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 393 if (new_agg == NULL) 394 return -ENOBUFS; 395 qfq_init_agg(q, new_agg, lmax, weight); 396 } 397 qfq_deact_rm_from_agg(q, cl); 398 qfq_add_to_agg(q, new_agg, cl); 399 400 return 0; 401} 402 403static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 404 struct nlattr **tca, unsigned long *arg, 405 struct netlink_ext_ack *extack) 406{ 407 struct qfq_sched *q = qdisc_priv(sch); 408 struct qfq_class *cl = (struct qfq_class *)*arg; 409 bool existing = false; 410 struct nlattr *tb[TCA_QFQ_MAX + 1]; 411 struct qfq_aggregate *new_agg = NULL; 412 u32 weight, lmax, inv_w; 413 int err; 414 int delta_w; 415 416 if (tca[TCA_OPTIONS] == NULL) { 417 pr_notice("qfq: no options\n"); 418 return -EINVAL; 419 } 420 421 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], 422 qfq_policy, extack); 423 if (err < 0) 424 return err; 425 426 if (tb[TCA_QFQ_WEIGHT]) 427 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 428 else 429 weight = 1; 430 431 if (tb[TCA_QFQ_LMAX]) { 432 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 433 } else { 434 /* MTU size is user controlled */ 435 lmax = psched_mtu(qdisc_dev(sch)); 436 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) { 437 NL_SET_ERR_MSG_MOD(extack, 438 "MTU size out of bounds for qfq"); 439 return -EINVAL; 440 } 441 } 442 443 inv_w = ONE_FP / weight; 444 weight = ONE_FP / inv_w; 445 446 if (cl != NULL && 447 lmax == cl->agg->lmax && 448 weight == cl->agg->class_weight) 449 return 0; /* nothing to change */ 450 451 delta_w = weight - (cl ? cl->agg->class_weight : 0); 452 453 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 454 pr_notice("qfq: total weight out of range (%d + %u)\n", 455 delta_w, q->wsum); 456 return -EINVAL; 457 } 458 459 if (cl != NULL) { /* modify existing class */ 460 if (tca[TCA_RATE]) { 461 err = gen_replace_estimator(&cl->bstats, NULL, 462 &cl->rate_est, 463 NULL, 464 qdisc_root_sleeping_running(sch), 465 tca[TCA_RATE]); 466 if (err) 467 return err; 468 } 469 existing = true; 470 goto set_change_agg; 471 } 472 473 /* create and init new class */ 474 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 475 if (cl == NULL) 476 return -ENOBUFS; 477 478 cl->common.classid = classid; 479 cl->deficit = lmax; 480 481 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 482 classid, NULL); 483 if (cl->qdisc == NULL) 484 cl->qdisc = &noop_qdisc; 485 486 if (tca[TCA_RATE]) { 487 err = gen_new_estimator(&cl->bstats, NULL, 488 &cl->rate_est, 489 NULL, 490 qdisc_root_sleeping_running(sch), 491 tca[TCA_RATE]); 492 if (err) 493 goto destroy_class; 494 } 495 496 if (cl->qdisc != &noop_qdisc) 497 qdisc_hash_add(cl->qdisc, true); 498 499set_change_agg: 500 sch_tree_lock(sch); 501 new_agg = qfq_find_agg(q, lmax, weight); 502 if (new_agg == NULL) { /* create new aggregate */ 503 sch_tree_unlock(sch); 504 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 505 if (new_agg == NULL) { 506 err = -ENOBUFS; 507 gen_kill_estimator(&cl->rate_est); 508 goto destroy_class; 509 } 510 sch_tree_lock(sch); 511 qfq_init_agg(q, new_agg, lmax, weight); 512 } 513 if (existing) 514 qfq_deact_rm_from_agg(q, cl); 515 else 516 qdisc_class_hash_insert(&q->clhash, &cl->common); 517 qfq_add_to_agg(q, new_agg, cl); 518 sch_tree_unlock(sch); 519 qdisc_class_hash_grow(sch, &q->clhash); 520 521 *arg = (unsigned long)cl; 522 return 0; 523 524destroy_class: 525 qdisc_put(cl->qdisc); 526 kfree(cl); 527 return err; 528} 529 530static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 531{ 532 struct qfq_sched *q = qdisc_priv(sch); 533 534 qfq_rm_from_agg(q, cl); 535 gen_kill_estimator(&cl->rate_est); 536 qdisc_put(cl->qdisc); 537 kfree(cl); 538} 539 540static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 541{ 542 struct qfq_sched *q = qdisc_priv(sch); 543 struct qfq_class *cl = (struct qfq_class *)arg; 544 545 if (cl->filter_cnt > 0) 546 return -EBUSY; 547 548 sch_tree_lock(sch); 549 550 qdisc_purge_queue(cl->qdisc); 551 qdisc_class_hash_remove(&q->clhash, &cl->common); 552 553 sch_tree_unlock(sch); 554 555 qfq_destroy_class(sch, cl); 556 return 0; 557} 558 559static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 560{ 561 return (unsigned long)qfq_find_class(sch, classid); 562} 563 564static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl, 565 struct netlink_ext_ack *extack) 566{ 567 struct qfq_sched *q = qdisc_priv(sch); 568 569 if (cl) 570 return NULL; 571 572 return q->block; 573} 574 575static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 576 u32 classid) 577{ 578 struct qfq_class *cl = qfq_find_class(sch, classid); 579 580 if (cl != NULL) 581 cl->filter_cnt++; 582 583 return (unsigned long)cl; 584} 585 586static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 587{ 588 struct qfq_class *cl = (struct qfq_class *)arg; 589 590 cl->filter_cnt--; 591} 592 593static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 594 struct Qdisc *new, struct Qdisc **old, 595 struct netlink_ext_ack *extack) 596{ 597 struct qfq_class *cl = (struct qfq_class *)arg; 598 599 if (new == NULL) { 600 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 601 cl->common.classid, NULL); 602 if (new == NULL) 603 new = &noop_qdisc; 604 } 605 606 *old = qdisc_replace(sch, new, &cl->qdisc); 607 return 0; 608} 609 610static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 611{ 612 struct qfq_class *cl = (struct qfq_class *)arg; 613 614 return cl->qdisc; 615} 616 617static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 618 struct sk_buff *skb, struct tcmsg *tcm) 619{ 620 struct qfq_class *cl = (struct qfq_class *)arg; 621 struct nlattr *nest; 622 623 tcm->tcm_parent = TC_H_ROOT; 624 tcm->tcm_handle = cl->common.classid; 625 tcm->tcm_info = cl->qdisc->handle; 626 627 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 628 if (nest == NULL) 629 goto nla_put_failure; 630 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 631 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 632 goto nla_put_failure; 633 return nla_nest_end(skb, nest); 634 635nla_put_failure: 636 nla_nest_cancel(skb, nest); 637 return -EMSGSIZE; 638} 639 640static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 641 struct gnet_dump *d) 642{ 643 struct qfq_class *cl = (struct qfq_class *)arg; 644 struct tc_qfq_stats xstats; 645 646 memset(&xstats, 0, sizeof(xstats)); 647 648 xstats.weight = cl->agg->class_weight; 649 xstats.lmax = cl->agg->lmax; 650 651 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), 652 d, NULL, &cl->bstats) < 0 || 653 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 654 qdisc_qstats_copy(d, cl->qdisc) < 0) 655 return -1; 656 657 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 658} 659 660static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 661{ 662 struct qfq_sched *q = qdisc_priv(sch); 663 struct qfq_class *cl; 664 unsigned int i; 665 666 if (arg->stop) 667 return; 668 669 for (i = 0; i < q->clhash.hashsize; i++) { 670 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 671 if (arg->count < arg->skip) { 672 arg->count++; 673 continue; 674 } 675 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 676 arg->stop = 1; 677 return; 678 } 679 arg->count++; 680 } 681 } 682} 683 684static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 685 int *qerr) 686{ 687 struct qfq_sched *q = qdisc_priv(sch); 688 struct qfq_class *cl; 689 struct tcf_result res; 690 struct tcf_proto *fl; 691 int result; 692 693 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 694 pr_debug("qfq_classify: found %d\n", skb->priority); 695 cl = qfq_find_class(sch, skb->priority); 696 if (cl != NULL) 697 return cl; 698 } 699 700 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 701 fl = rcu_dereference_bh(q->filter_list); 702 result = tcf_classify(skb, fl, &res, false); 703 if (result >= 0) { 704#ifdef CONFIG_NET_CLS_ACT 705 switch (result) { 706 case TC_ACT_QUEUED: 707 case TC_ACT_STOLEN: 708 case TC_ACT_TRAP: 709 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 710 fallthrough; 711 case TC_ACT_SHOT: 712 return NULL; 713 } 714#endif 715 cl = (struct qfq_class *)res.class; 716 if (cl == NULL) 717 cl = qfq_find_class(sch, res.classid); 718 return cl; 719 } 720 721 return NULL; 722} 723 724/* Generic comparison function, handling wraparound. */ 725static inline int qfq_gt(u64 a, u64 b) 726{ 727 return (s64)(a - b) > 0; 728} 729 730/* Round a precise timestamp to its slotted value. */ 731static inline u64 qfq_round_down(u64 ts, unsigned int shift) 732{ 733 return ts & ~((1ULL << shift) - 1); 734} 735 736/* return the pointer to the group with lowest index in the bitmap */ 737static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 738 unsigned long bitmap) 739{ 740 int index = __ffs(bitmap); 741 return &q->groups[index]; 742} 743/* Calculate a mask to mimic what would be ffs_from(). */ 744static inline unsigned long mask_from(unsigned long bitmap, int from) 745{ 746 return bitmap & ~((1UL << from) - 1); 747} 748 749/* 750 * The state computation relies on ER=0, IR=1, EB=2, IB=3 751 * First compute eligibility comparing grp->S, q->V, 752 * then check if someone is blocking us and possibly add EB 753 */ 754static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 755{ 756 /* if S > V we are not eligible */ 757 unsigned int state = qfq_gt(grp->S, q->V); 758 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 759 struct qfq_group *next; 760 761 if (mask) { 762 next = qfq_ffs(q, mask); 763 if (qfq_gt(grp->F, next->F)) 764 state |= EB; 765 } 766 767 return state; 768} 769 770 771/* 772 * In principle 773 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 774 * q->bitmaps[src] &= ~mask; 775 * but we should make sure that src != dst 776 */ 777static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 778 int src, int dst) 779{ 780 q->bitmaps[dst] |= q->bitmaps[src] & mask; 781 q->bitmaps[src] &= ~mask; 782} 783 784static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 785{ 786 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 787 struct qfq_group *next; 788 789 if (mask) { 790 next = qfq_ffs(q, mask); 791 if (!qfq_gt(next->F, old_F)) 792 return; 793 } 794 795 mask = (1UL << index) - 1; 796 qfq_move_groups(q, mask, EB, ER); 797 qfq_move_groups(q, mask, IB, IR); 798} 799 800/* 801 * perhaps 802 * 803 old_V ^= q->V; 804 old_V >>= q->min_slot_shift; 805 if (old_V) { 806 ... 807 } 808 * 809 */ 810static void qfq_make_eligible(struct qfq_sched *q) 811{ 812 unsigned long vslot = q->V >> q->min_slot_shift; 813 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 814 815 if (vslot != old_vslot) { 816 unsigned long mask; 817 int last_flip_pos = fls(vslot ^ old_vslot); 818 819 if (last_flip_pos > 31) /* higher than the number of groups */ 820 mask = ~0UL; /* make all groups eligible */ 821 else 822 mask = (1UL << last_flip_pos) - 1; 823 824 qfq_move_groups(q, mask, IR, ER); 825 qfq_move_groups(q, mask, IB, EB); 826 } 827} 828 829/* 830 * The index of the slot in which the input aggregate agg is to be 831 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 832 * and not a '-1' because the start time of the group may be moved 833 * backward by one slot after the aggregate has been inserted, and 834 * this would cause non-empty slots to be right-shifted by one 835 * position. 836 * 837 * QFQ+ fully satisfies this bound to the slot index if the parameters 838 * of the classes are not changed dynamically, and if QFQ+ never 839 * happens to postpone the service of agg unjustly, i.e., it never 840 * happens that the aggregate becomes backlogged and eligible, or just 841 * eligible, while an aggregate with a higher approximated finish time 842 * is being served. In particular, in this case QFQ+ guarantees that 843 * the timestamps of agg are low enough that the slot index is never 844 * higher than 2. Unfortunately, QFQ+ cannot provide the same 845 * guarantee if it happens to unjustly postpone the service of agg, or 846 * if the parameters of some class are changed. 847 * 848 * As for the first event, i.e., an out-of-order service, the 849 * upper bound to the slot index guaranteed by QFQ+ grows to 850 * 2 + 851 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 852 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 853 * 854 * The following function deals with this problem by backward-shifting 855 * the timestamps of agg, if needed, so as to guarantee that the slot 856 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 857 * cause the service of other aggregates to be postponed, yet the 858 * worst-case guarantees of these aggregates are not violated. In 859 * fact, in case of no out-of-order service, the timestamps of agg 860 * would have been even lower than they are after the backward shift, 861 * because QFQ+ would have guaranteed a maximum value equal to 2 for 862 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 863 * service is postponed because of the backward-shift would have 864 * however waited for the service of agg before being served. 865 * 866 * The other event that may cause the slot index to be higher than 2 867 * for agg is a recent change of the parameters of some class. If the 868 * weight of a class is increased or the lmax (max_pkt_size) of the 869 * class is decreased, then a new aggregate with smaller slot size 870 * than the original parent aggregate of the class may happen to be 871 * activated. The activation of this aggregate should be properly 872 * delayed to when the service of the class has finished in the ideal 873 * system tracked by QFQ+. If the activation of the aggregate is not 874 * delayed to this reference time instant, then this aggregate may be 875 * unjustly served before other aggregates waiting for service. This 876 * may cause the above bound to the slot index to be violated for some 877 * of these unlucky aggregates. 878 * 879 * Instead of delaying the activation of the new aggregate, which is 880 * quite complex, the above-discussed capping of the slot index is 881 * used to handle also the consequences of a change of the parameters 882 * of a class. 883 */ 884static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 885 u64 roundedS) 886{ 887 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 888 unsigned int i; /* slot index in the bucket list */ 889 890 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 891 u64 deltaS = roundedS - grp->S - 892 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 893 agg->S -= deltaS; 894 agg->F -= deltaS; 895 slot = QFQ_MAX_SLOTS - 2; 896 } 897 898 i = (grp->front + slot) % QFQ_MAX_SLOTS; 899 900 hlist_add_head(&agg->next, &grp->slots[i]); 901 __set_bit(slot, &grp->full_slots); 902} 903 904/* Maybe introduce hlist_first_entry?? */ 905static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 906{ 907 return hlist_entry(grp->slots[grp->front].first, 908 struct qfq_aggregate, next); 909} 910 911/* 912 * remove the entry from the slot 913 */ 914static void qfq_front_slot_remove(struct qfq_group *grp) 915{ 916 struct qfq_aggregate *agg = qfq_slot_head(grp); 917 918 BUG_ON(!agg); 919 hlist_del(&agg->next); 920 if (hlist_empty(&grp->slots[grp->front])) 921 __clear_bit(0, &grp->full_slots); 922} 923 924/* 925 * Returns the first aggregate in the first non-empty bucket of the 926 * group. As a side effect, adjusts the bucket list so the first 927 * non-empty bucket is at position 0 in full_slots. 928 */ 929static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 930{ 931 unsigned int i; 932 933 pr_debug("qfq slot_scan: grp %u full %#lx\n", 934 grp->index, grp->full_slots); 935 936 if (grp->full_slots == 0) 937 return NULL; 938 939 i = __ffs(grp->full_slots); /* zero based */ 940 if (i > 0) { 941 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 942 grp->full_slots >>= i; 943 } 944 945 return qfq_slot_head(grp); 946} 947 948/* 949 * adjust the bucket list. When the start time of a group decreases, 950 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 951 * move the objects. The mask of occupied slots must be shifted 952 * because we use ffs() to find the first non-empty slot. 953 * This covers decreases in the group's start time, but what about 954 * increases of the start time ? 955 * Here too we should make sure that i is less than 32 956 */ 957static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 958{ 959 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 960 961 grp->full_slots <<= i; 962 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 963} 964 965static void qfq_update_eligible(struct qfq_sched *q) 966{ 967 struct qfq_group *grp; 968 unsigned long ineligible; 969 970 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 971 if (ineligible) { 972 if (!q->bitmaps[ER]) { 973 grp = qfq_ffs(q, ineligible); 974 if (qfq_gt(grp->S, q->V)) 975 q->V = grp->S; 976 } 977 qfq_make_eligible(q); 978 } 979} 980 981/* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 982static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg, 983 struct qfq_class *cl, unsigned int len) 984{ 985 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc); 986 987 if (!skb) 988 return NULL; 989 990 cl->deficit -= (int) len; 991 992 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 993 list_del(&cl->alist); 994 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 995 cl->deficit += agg->lmax; 996 list_move_tail(&cl->alist, &agg->active); 997 } 998 999 return skb; 1000} 1001 1002static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1003 struct qfq_class **cl, 1004 unsigned int *len) 1005{ 1006 struct sk_buff *skb; 1007 1008 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1009 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1010 if (skb == NULL) 1011 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 1012 else 1013 *len = qdisc_pkt_len(skb); 1014 1015 return skb; 1016} 1017 1018/* Update F according to the actual service received by the aggregate. */ 1019static inline void charge_actual_service(struct qfq_aggregate *agg) 1020{ 1021 /* Compute the service received by the aggregate, taking into 1022 * account that, after decreasing the number of classes in 1023 * agg, it may happen that 1024 * agg->initial_budget - agg->budget > agg->bugdetmax 1025 */ 1026 u32 service_received = min(agg->budgetmax, 1027 agg->initial_budget - agg->budget); 1028 1029 agg->F = agg->S + (u64)service_received * agg->inv_w; 1030} 1031 1032/* Assign a reasonable start time for a new aggregate in group i. 1033 * Admissible values for \hat(F) are multiples of \sigma_i 1034 * no greater than V+\sigma_i . Larger values mean that 1035 * we had a wraparound so we consider the timestamp to be stale. 1036 * 1037 * If F is not stale and F >= V then we set S = F. 1038 * Otherwise we should assign S = V, but this may violate 1039 * the ordering in EB (see [2]). So, if we have groups in ER, 1040 * set S to the F_j of the first group j which would be blocking us. 1041 * We are guaranteed not to move S backward because 1042 * otherwise our group i would still be blocked. 1043 */ 1044static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1045{ 1046 unsigned long mask; 1047 u64 limit, roundedF; 1048 int slot_shift = agg->grp->slot_shift; 1049 1050 roundedF = qfq_round_down(agg->F, slot_shift); 1051 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1052 1053 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1054 /* timestamp was stale */ 1055 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1056 if (mask) { 1057 struct qfq_group *next = qfq_ffs(q, mask); 1058 if (qfq_gt(roundedF, next->F)) { 1059 if (qfq_gt(limit, next->F)) 1060 agg->S = next->F; 1061 else /* preserve timestamp correctness */ 1062 agg->S = limit; 1063 return; 1064 } 1065 } 1066 agg->S = q->V; 1067 } else /* timestamp is not stale */ 1068 agg->S = agg->F; 1069} 1070 1071/* Update the timestamps of agg before scheduling/rescheduling it for 1072 * service. In particular, assign to agg->F its maximum possible 1073 * value, i.e., the virtual finish time with which the aggregate 1074 * should be labeled if it used all its budget once in service. 1075 */ 1076static inline void 1077qfq_update_agg_ts(struct qfq_sched *q, 1078 struct qfq_aggregate *agg, enum update_reason reason) 1079{ 1080 if (reason != requeue) 1081 qfq_update_start(q, agg); 1082 else /* just charge agg for the service received */ 1083 agg->S = agg->F; 1084 1085 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1086} 1087 1088static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1089 1090static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1091{ 1092 struct qfq_sched *q = qdisc_priv(sch); 1093 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1094 struct qfq_class *cl; 1095 struct sk_buff *skb = NULL; 1096 /* next-packet len, 0 means no more active classes in in-service agg */ 1097 unsigned int len = 0; 1098 1099 if (in_serv_agg == NULL) 1100 return NULL; 1101 1102 if (!list_empty(&in_serv_agg->active)) 1103 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1104 1105 /* 1106 * If there are no active classes in the in-service aggregate, 1107 * or if the aggregate has not enough budget to serve its next 1108 * class, then choose the next aggregate to serve. 1109 */ 1110 if (len == 0 || in_serv_agg->budget < len) { 1111 charge_actual_service(in_serv_agg); 1112 1113 /* recharge the budget of the aggregate */ 1114 in_serv_agg->initial_budget = in_serv_agg->budget = 1115 in_serv_agg->budgetmax; 1116 1117 if (!list_empty(&in_serv_agg->active)) { 1118 /* 1119 * Still active: reschedule for 1120 * service. Possible optimization: if no other 1121 * aggregate is active, then there is no point 1122 * in rescheduling this aggregate, and we can 1123 * just keep it as the in-service one. This 1124 * should be however a corner case, and to 1125 * handle it, we would need to maintain an 1126 * extra num_active_aggs field. 1127 */ 1128 qfq_update_agg_ts(q, in_serv_agg, requeue); 1129 qfq_schedule_agg(q, in_serv_agg); 1130 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1131 q->in_serv_agg = NULL; 1132 return NULL; 1133 } 1134 1135 /* 1136 * If we get here, there are other aggregates queued: 1137 * choose the new aggregate to serve. 1138 */ 1139 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1140 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1141 } 1142 if (!skb) 1143 return NULL; 1144 1145 sch->q.qlen--; 1146 1147 skb = agg_dequeue(in_serv_agg, cl, len); 1148 1149 if (!skb) { 1150 sch->q.qlen++; 1151 return NULL; 1152 } 1153 1154 qdisc_qstats_backlog_dec(sch, skb); 1155 qdisc_bstats_update(sch, skb); 1156 1157 /* If lmax is lowered, through qfq_change_class, for a class 1158 * owning pending packets with larger size than the new value 1159 * of lmax, then the following condition may hold. 1160 */ 1161 if (unlikely(in_serv_agg->budget < len)) 1162 in_serv_agg->budget = 0; 1163 else 1164 in_serv_agg->budget -= len; 1165 1166 q->V += (u64)len * q->iwsum; 1167 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1168 len, (unsigned long long) in_serv_agg->F, 1169 (unsigned long long) q->V); 1170 1171 return skb; 1172} 1173 1174static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1175{ 1176 struct qfq_group *grp; 1177 struct qfq_aggregate *agg, *new_front_agg; 1178 u64 old_F; 1179 1180 qfq_update_eligible(q); 1181 q->oldV = q->V; 1182 1183 if (!q->bitmaps[ER]) 1184 return NULL; 1185 1186 grp = qfq_ffs(q, q->bitmaps[ER]); 1187 old_F = grp->F; 1188 1189 agg = qfq_slot_head(grp); 1190 1191 /* agg starts to be served, remove it from schedule */ 1192 qfq_front_slot_remove(grp); 1193 1194 new_front_agg = qfq_slot_scan(grp); 1195 1196 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1197 __clear_bit(grp->index, &q->bitmaps[ER]); 1198 else { 1199 u64 roundedS = qfq_round_down(new_front_agg->S, 1200 grp->slot_shift); 1201 unsigned int s; 1202 1203 if (grp->S == roundedS) 1204 return agg; 1205 grp->S = roundedS; 1206 grp->F = roundedS + (2ULL << grp->slot_shift); 1207 __clear_bit(grp->index, &q->bitmaps[ER]); 1208 s = qfq_calc_state(q, grp); 1209 __set_bit(grp->index, &q->bitmaps[s]); 1210 } 1211 1212 qfq_unblock_groups(q, grp->index, old_F); 1213 1214 return agg; 1215} 1216 1217static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1218 struct sk_buff **to_free) 1219{ 1220 unsigned int len = qdisc_pkt_len(skb), gso_segs; 1221 struct qfq_sched *q = qdisc_priv(sch); 1222 struct qfq_class *cl; 1223 struct qfq_aggregate *agg; 1224 int err = 0; 1225 bool first; 1226 1227 cl = qfq_classify(skb, sch, &err); 1228 if (cl == NULL) { 1229 if (err & __NET_XMIT_BYPASS) 1230 qdisc_qstats_drop(sch); 1231 __qdisc_drop(skb, to_free); 1232 return err; 1233 } 1234 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1235 1236 if (unlikely(cl->agg->lmax < len)) { 1237 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1238 cl->agg->lmax, len, cl->common.classid); 1239 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len); 1240 if (err) { 1241 cl->qstats.drops++; 1242 return qdisc_drop(skb, sch, to_free); 1243 } 1244 } 1245 1246 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1; 1247 first = !cl->qdisc->q.qlen; 1248 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1249 if (unlikely(err != NET_XMIT_SUCCESS)) { 1250 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1251 if (net_xmit_drop_count(err)) { 1252 cl->qstats.drops++; 1253 qdisc_qstats_drop(sch); 1254 } 1255 return err; 1256 } 1257 1258 cl->bstats.bytes += len; 1259 cl->bstats.packets += gso_segs; 1260 sch->qstats.backlog += len; 1261 ++sch->q.qlen; 1262 1263 agg = cl->agg; 1264 /* if the queue was not empty, then done here */ 1265 if (!first) { 1266 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1267 list_first_entry(&agg->active, struct qfq_class, alist) 1268 == cl && cl->deficit < len) 1269 list_move_tail(&cl->alist, &agg->active); 1270 1271 return err; 1272 } 1273 1274 /* schedule class for service within the aggregate */ 1275 cl->deficit = agg->lmax; 1276 list_add_tail(&cl->alist, &agg->active); 1277 1278 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1279 q->in_serv_agg == agg) 1280 return err; /* non-empty or in service, nothing else to do */ 1281 1282 qfq_activate_agg(q, agg, enqueue); 1283 1284 return err; 1285} 1286 1287/* 1288 * Schedule aggregate according to its timestamps. 1289 */ 1290static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1291{ 1292 struct qfq_group *grp = agg->grp; 1293 u64 roundedS; 1294 int s; 1295 1296 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1297 1298 /* 1299 * Insert agg in the correct bucket. 1300 * If agg->S >= grp->S we don't need to adjust the 1301 * bucket list and simply go to the insertion phase. 1302 * Otherwise grp->S is decreasing, we must make room 1303 * in the bucket list, and also recompute the group state. 1304 * Finally, if there were no flows in this group and nobody 1305 * was in ER make sure to adjust V. 1306 */ 1307 if (grp->full_slots) { 1308 if (!qfq_gt(grp->S, agg->S)) 1309 goto skip_update; 1310 1311 /* create a slot for this agg->S */ 1312 qfq_slot_rotate(grp, roundedS); 1313 /* group was surely ineligible, remove */ 1314 __clear_bit(grp->index, &q->bitmaps[IR]); 1315 __clear_bit(grp->index, &q->bitmaps[IB]); 1316 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1317 q->in_serv_agg == NULL) 1318 q->V = roundedS; 1319 1320 grp->S = roundedS; 1321 grp->F = roundedS + (2ULL << grp->slot_shift); 1322 s = qfq_calc_state(q, grp); 1323 __set_bit(grp->index, &q->bitmaps[s]); 1324 1325 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1326 s, q->bitmaps[s], 1327 (unsigned long long) agg->S, 1328 (unsigned long long) agg->F, 1329 (unsigned long long) q->V); 1330 1331skip_update: 1332 qfq_slot_insert(grp, agg, roundedS); 1333} 1334 1335 1336/* Update agg ts and schedule agg for service */ 1337static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1338 enum update_reason reason) 1339{ 1340 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1341 1342 qfq_update_agg_ts(q, agg, reason); 1343 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1344 q->in_serv_agg = agg; /* start serving this aggregate */ 1345 /* update V: to be in service, agg must be eligible */ 1346 q->oldV = q->V = agg->S; 1347 } else if (agg != q->in_serv_agg) 1348 qfq_schedule_agg(q, agg); 1349} 1350 1351static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1352 struct qfq_aggregate *agg) 1353{ 1354 unsigned int i, offset; 1355 u64 roundedS; 1356 1357 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1358 offset = (roundedS - grp->S) >> grp->slot_shift; 1359 1360 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1361 1362 hlist_del(&agg->next); 1363 if (hlist_empty(&grp->slots[i])) 1364 __clear_bit(offset, &grp->full_slots); 1365} 1366 1367/* 1368 * Called to forcibly deschedule an aggregate. If the aggregate is 1369 * not in the front bucket, or if the latter has other aggregates in 1370 * the front bucket, we can simply remove the aggregate with no other 1371 * side effects. 1372 * Otherwise we must propagate the event up. 1373 */ 1374static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1375{ 1376 struct qfq_group *grp = agg->grp; 1377 unsigned long mask; 1378 u64 roundedS; 1379 int s; 1380 1381 if (agg == q->in_serv_agg) { 1382 charge_actual_service(agg); 1383 q->in_serv_agg = qfq_choose_next_agg(q); 1384 return; 1385 } 1386 1387 agg->F = agg->S; 1388 qfq_slot_remove(q, grp, agg); 1389 1390 if (!grp->full_slots) { 1391 __clear_bit(grp->index, &q->bitmaps[IR]); 1392 __clear_bit(grp->index, &q->bitmaps[EB]); 1393 __clear_bit(grp->index, &q->bitmaps[IB]); 1394 1395 if (test_bit(grp->index, &q->bitmaps[ER]) && 1396 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1397 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1398 if (mask) 1399 mask = ~((1UL << __fls(mask)) - 1); 1400 else 1401 mask = ~0UL; 1402 qfq_move_groups(q, mask, EB, ER); 1403 qfq_move_groups(q, mask, IB, IR); 1404 } 1405 __clear_bit(grp->index, &q->bitmaps[ER]); 1406 } else if (hlist_empty(&grp->slots[grp->front])) { 1407 agg = qfq_slot_scan(grp); 1408 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1409 if (grp->S != roundedS) { 1410 __clear_bit(grp->index, &q->bitmaps[ER]); 1411 __clear_bit(grp->index, &q->bitmaps[IR]); 1412 __clear_bit(grp->index, &q->bitmaps[EB]); 1413 __clear_bit(grp->index, &q->bitmaps[IB]); 1414 grp->S = roundedS; 1415 grp->F = roundedS + (2ULL << grp->slot_shift); 1416 s = qfq_calc_state(q, grp); 1417 __set_bit(grp->index, &q->bitmaps[s]); 1418 } 1419 } 1420} 1421 1422static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1423{ 1424 struct qfq_sched *q = qdisc_priv(sch); 1425 struct qfq_class *cl = (struct qfq_class *)arg; 1426 1427 qfq_deactivate_class(q, cl); 1428} 1429 1430static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1431 struct netlink_ext_ack *extack) 1432{ 1433 struct qfq_sched *q = qdisc_priv(sch); 1434 struct qfq_group *grp; 1435 int i, j, err; 1436 u32 max_cl_shift, maxbudg_shift, max_classes; 1437 1438 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 1439 if (err) 1440 return err; 1441 1442 err = qdisc_class_hash_init(&q->clhash); 1443 if (err < 0) 1444 return err; 1445 1446 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1, 1447 QFQ_MAX_AGG_CLASSES); 1448 /* max_cl_shift = floor(log_2(max_classes)) */ 1449 max_cl_shift = __fls(max_classes); 1450 q->max_agg_classes = 1<<max_cl_shift; 1451 1452 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1453 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1454 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1455 1456 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1457 grp = &q->groups[i]; 1458 grp->index = i; 1459 grp->slot_shift = q->min_slot_shift + i; 1460 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1461 INIT_HLIST_HEAD(&grp->slots[j]); 1462 } 1463 1464 INIT_HLIST_HEAD(&q->nonfull_aggs); 1465 1466 return 0; 1467} 1468 1469static void qfq_reset_qdisc(struct Qdisc *sch) 1470{ 1471 struct qfq_sched *q = qdisc_priv(sch); 1472 struct qfq_class *cl; 1473 unsigned int i; 1474 1475 for (i = 0; i < q->clhash.hashsize; i++) { 1476 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1477 if (cl->qdisc->q.qlen > 0) 1478 qfq_deactivate_class(q, cl); 1479 1480 qdisc_reset(cl->qdisc); 1481 } 1482 } 1483} 1484 1485static void qfq_destroy_qdisc(struct Qdisc *sch) 1486{ 1487 struct qfq_sched *q = qdisc_priv(sch); 1488 struct qfq_class *cl; 1489 struct hlist_node *next; 1490 unsigned int i; 1491 1492 tcf_block_put(q->block); 1493 1494 for (i = 0; i < q->clhash.hashsize; i++) { 1495 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1496 common.hnode) { 1497 qfq_destroy_class(sch, cl); 1498 } 1499 } 1500 qdisc_class_hash_destroy(&q->clhash); 1501} 1502 1503static const struct Qdisc_class_ops qfq_class_ops = { 1504 .change = qfq_change_class, 1505 .delete = qfq_delete_class, 1506 .find = qfq_search_class, 1507 .tcf_block = qfq_tcf_block, 1508 .bind_tcf = qfq_bind_tcf, 1509 .unbind_tcf = qfq_unbind_tcf, 1510 .graft = qfq_graft_class, 1511 .leaf = qfq_class_leaf, 1512 .qlen_notify = qfq_qlen_notify, 1513 .dump = qfq_dump_class, 1514 .dump_stats = qfq_dump_class_stats, 1515 .walk = qfq_walk, 1516}; 1517 1518static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1519 .cl_ops = &qfq_class_ops, 1520 .id = "qfq", 1521 .priv_size = sizeof(struct qfq_sched), 1522 .enqueue = qfq_enqueue, 1523 .dequeue = qfq_dequeue, 1524 .peek = qdisc_peek_dequeued, 1525 .init = qfq_init_qdisc, 1526 .reset = qfq_reset_qdisc, 1527 .destroy = qfq_destroy_qdisc, 1528 .owner = THIS_MODULE, 1529}; 1530 1531static int __init qfq_init(void) 1532{ 1533 return register_qdisc(&qfq_qdisc_ops); 1534} 1535 1536static void __exit qfq_exit(void) 1537{ 1538 unregister_qdisc(&qfq_qdisc_ops); 1539} 1540 1541module_init(qfq_init); 1542module_exit(qfq_exit); 1543MODULE_LICENSE("GPL"); 1544