xref: /kernel/linux/linux-5.10/net/sched/sch_qfq.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
8
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/bitops.h>
12#include <linux/errno.h>
13#include <linux/netdevice.h>
14#include <linux/pkt_sched.h>
15#include <net/sch_generic.h>
16#include <net/pkt_sched.h>
17#include <net/pkt_cls.h>
18
19
20/*  Quick Fair Queueing Plus
21    ========================
22
23    Sources:
24
25    [1] Paolo Valente,
26    "Reducing the Execution Time of Fair-Queueing Schedulers."
27    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29    Sources for QFQ:
30
31    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34    See also:
35    http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38/*
39
40  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41  classes. Each aggregate is timestamped with a virtual start time S
42  and a virtual finish time F, and scheduled according to its
43  timestamps. S and F are computed as a function of a system virtual
44  time function V. The classes within each aggregate are instead
45  scheduled with DRR.
46
47  To speed up operations, QFQ+ divides also aggregates into a limited
48  number of groups. Which group a class belongs to depends on the
49  ratio between the maximum packet length for the class and the weight
50  of the class. Groups have their own S and F. In the end, QFQ+
51  schedules groups, then aggregates within groups, then classes within
52  aggregates. See [1] and [2] for a full description.
53
54  Virtual time computations.
55
56  S, F and V are all computed in fixed point arithmetic with
57  FRAC_BITS decimal bits.
58
59  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60	one bit per index.
61  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63  The layout of the bits is as below:
64
65                   [ MTU_SHIFT ][      FRAC_BITS    ]
66                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
67				 ^.__grp->index = 0
68				 *.__grp->slot_shift
69
70  where MIN_SLOT_SHIFT is derived by difference from the others.
71
72  The max group index corresponds to Lmax/w_min, where
73  Lmax=1<<MTU_SHIFT, w_min = 1 .
74  From this, and knowing how many groups (MAX_INDEX) we want,
75  we can derive the shift corresponding to each group.
76
77  Because we often need to compute
78	F = S + len/w_i  and V = V + len/wsum
79  instead of storing w_i store the value
80	inv_w = (1<<FRAC_BITS)/w_i
81  so we can do F = S + len * inv_w * wsum.
82  We use W_TOT in the formulas so we can easily move between
83  static and adaptive weight sum.
84
85  The per-scheduler-instance data contain all the data structures
86  for the scheduler: bitmaps and bucket lists.
87
88 */
89
90/*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94#define QFQ_MAX_SLOTS	32
95
96/*
97 * Shifts used for aggregate<->group mapping.  We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
105#define QFQ_MAX_INDEX		24
106#define QFQ_MAX_WSHIFT		10
107
108#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109#define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
110
111#define FRAC_BITS		30	/* fixed point arithmetic */
112#define ONE_FP			(1UL << FRAC_BITS)
113
114#define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
115#define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
116#define QFQ_MAX_LMAX		(1UL << QFQ_MTU_SHIFT)
117
118#define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
119
120/*
121 * Possible group states.  These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
123 */
124enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125
126struct qfq_group;
127
128struct qfq_aggregate;
129
130struct qfq_class {
131	struct Qdisc_class_common common;
132
133	unsigned int filter_cnt;
134
135	struct gnet_stats_basic_packed bstats;
136	struct gnet_stats_queue qstats;
137	struct net_rate_estimator __rcu *rate_est;
138	struct Qdisc *qdisc;
139	struct list_head alist;		/* Link for active-classes list. */
140	struct qfq_aggregate *agg;	/* Parent aggregate. */
141	int deficit;			/* DRR deficit counter. */
142};
143
144struct qfq_aggregate {
145	struct hlist_node next;	/* Link for the slot list. */
146	u64 S, F;		/* flow timestamps (exact) */
147
148	/* group we belong to. In principle we would need the index,
149	 * which is log_2(lmax/weight), but we never reference it
150	 * directly, only the group.
151	 */
152	struct qfq_group *grp;
153
154	/* these are copied from the flowset. */
155	u32	class_weight; /* Weight of each class in this aggregate. */
156	/* Max pkt size for the classes in this aggregate, DRR quantum. */
157	int	lmax;
158
159	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
160	u32	budgetmax;  /* Max budget for this aggregate. */
161	u32	initial_budget, budget;     /* Initial and current budget. */
162
163	int		  num_classes;	/* Number of classes in this aggr. */
164	struct list_head  active;	/* DRR queue of active classes. */
165
166	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
167};
168
169struct qfq_group {
170	u64 S, F;			/* group timestamps (approx). */
171	unsigned int slot_shift;	/* Slot shift. */
172	unsigned int index;		/* Group index. */
173	unsigned int front;		/* Index of the front slot. */
174	unsigned long full_slots;	/* non-empty slots */
175
176	/* Array of RR lists of active aggregates. */
177	struct hlist_head slots[QFQ_MAX_SLOTS];
178};
179
180struct qfq_sched {
181	struct tcf_proto __rcu *filter_list;
182	struct tcf_block	*block;
183	struct Qdisc_class_hash clhash;
184
185	u64			oldV, V;	/* Precise virtual times. */
186	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
187	u32			wsum;		/* weight sum */
188	u32			iwsum;		/* inverse weight sum */
189
190	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
191	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
192	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
193
194	u32 max_agg_classes;		/* Max number of classes per aggr. */
195	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
196};
197
198/*
199 * Possible reasons why the timestamps of an aggregate are updated
200 * enqueue: the aggregate switches from idle to active and must scheduled
201 *	    for service
202 * requeue: the aggregate finishes its budget, so it stops being served and
203 *	    must be rescheduled for service
204 */
205enum update_reason {enqueue, requeue};
206
207static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
208{
209	struct qfq_sched *q = qdisc_priv(sch);
210	struct Qdisc_class_common *clc;
211
212	clc = qdisc_class_find(&q->clhash, classid);
213	if (clc == NULL)
214		return NULL;
215	return container_of(clc, struct qfq_class, common);
216}
217
218static struct netlink_range_validation lmax_range = {
219	.min = QFQ_MIN_LMAX,
220	.max = QFQ_MAX_LMAX,
221};
222
223static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
224	[TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
225	[TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
226};
227
228/*
229 * Calculate a flow index, given its weight and maximum packet length.
230 * index = log_2(maxlen/weight) but we need to apply the scaling.
231 * This is used only once at flow creation.
232 */
233static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
234{
235	u64 slot_size = (u64)maxlen * inv_w;
236	unsigned long size_map;
237	int index = 0;
238
239	size_map = slot_size >> min_slot_shift;
240	if (!size_map)
241		goto out;
242
243	index = __fls(size_map) + 1;	/* basically a log_2 */
244	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
245
246	if (index < 0)
247		index = 0;
248out:
249	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
250		 (unsigned long) ONE_FP/inv_w, maxlen, index);
251
252	return index;
253}
254
255static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
256static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
257			     enum update_reason);
258
259static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
260			 u32 lmax, u32 weight)
261{
262	INIT_LIST_HEAD(&agg->active);
263	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
264
265	agg->lmax = lmax;
266	agg->class_weight = weight;
267}
268
269static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
270					  u32 lmax, u32 weight)
271{
272	struct qfq_aggregate *agg;
273
274	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
275		if (agg->lmax == lmax && agg->class_weight == weight)
276			return agg;
277
278	return NULL;
279}
280
281
282/* Update aggregate as a function of the new number of classes. */
283static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
284			   int new_num_classes)
285{
286	u32 new_agg_weight;
287
288	if (new_num_classes == q->max_agg_classes)
289		hlist_del_init(&agg->nonfull_next);
290
291	if (agg->num_classes > new_num_classes &&
292	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
293		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
294
295	/* The next assignment may let
296	 * agg->initial_budget > agg->budgetmax
297	 * hold, we will take it into account in charge_actual_service().
298	 */
299	agg->budgetmax = new_num_classes * agg->lmax;
300	new_agg_weight = agg->class_weight * new_num_classes;
301	agg->inv_w = ONE_FP/new_agg_weight;
302
303	if (agg->grp == NULL) {
304		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
305				       q->min_slot_shift);
306		agg->grp = &q->groups[i];
307	}
308
309	q->wsum +=
310		(int) agg->class_weight * (new_num_classes - agg->num_classes);
311	q->iwsum = ONE_FP / q->wsum;
312
313	agg->num_classes = new_num_classes;
314}
315
316/* Add class to aggregate. */
317static void qfq_add_to_agg(struct qfq_sched *q,
318			   struct qfq_aggregate *agg,
319			   struct qfq_class *cl)
320{
321	cl->agg = agg;
322
323	qfq_update_agg(q, agg, agg->num_classes+1);
324	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
325		list_add_tail(&cl->alist, &agg->active);
326		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
327		    cl && q->in_serv_agg != agg) /* agg was inactive */
328			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
329	}
330}
331
332static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
333
334static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
335{
336	hlist_del_init(&agg->nonfull_next);
337	q->wsum -= agg->class_weight;
338	if (q->wsum != 0)
339		q->iwsum = ONE_FP / q->wsum;
340
341	if (q->in_serv_agg == agg)
342		q->in_serv_agg = qfq_choose_next_agg(q);
343	kfree(agg);
344}
345
346/* Deschedule class from within its parent aggregate. */
347static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
348{
349	struct qfq_aggregate *agg = cl->agg;
350
351
352	list_del(&cl->alist); /* remove from RR queue of the aggregate */
353	if (list_empty(&agg->active)) /* agg is now inactive */
354		qfq_deactivate_agg(q, agg);
355}
356
357/* Remove class from its parent aggregate. */
358static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
359{
360	struct qfq_aggregate *agg = cl->agg;
361
362	cl->agg = NULL;
363	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
364		qfq_destroy_agg(q, agg);
365		return;
366	}
367	qfq_update_agg(q, agg, agg->num_classes-1);
368}
369
370/* Deschedule class and remove it from its parent aggregate. */
371static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
372{
373	if (cl->qdisc->q.qlen > 0) /* class is active */
374		qfq_deactivate_class(q, cl);
375
376	qfq_rm_from_agg(q, cl);
377}
378
379/* Move class to a new aggregate, matching the new class weight and/or lmax */
380static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
381			   u32 lmax)
382{
383	struct qfq_sched *q = qdisc_priv(sch);
384	struct qfq_aggregate *new_agg;
385
386	/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
387	if (lmax > QFQ_MAX_LMAX)
388		return -EINVAL;
389
390	new_agg = qfq_find_agg(q, lmax, weight);
391	if (new_agg == NULL) { /* create new aggregate */
392		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
393		if (new_agg == NULL)
394			return -ENOBUFS;
395		qfq_init_agg(q, new_agg, lmax, weight);
396	}
397	qfq_deact_rm_from_agg(q, cl);
398	qfq_add_to_agg(q, new_agg, cl);
399
400	return 0;
401}
402
403static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
404			    struct nlattr **tca, unsigned long *arg,
405			    struct netlink_ext_ack *extack)
406{
407	struct qfq_sched *q = qdisc_priv(sch);
408	struct qfq_class *cl = (struct qfq_class *)*arg;
409	bool existing = false;
410	struct nlattr *tb[TCA_QFQ_MAX + 1];
411	struct qfq_aggregate *new_agg = NULL;
412	u32 weight, lmax, inv_w;
413	int err;
414	int delta_w;
415
416	if (tca[TCA_OPTIONS] == NULL) {
417		pr_notice("qfq: no options\n");
418		return -EINVAL;
419	}
420
421	err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
422					  qfq_policy, extack);
423	if (err < 0)
424		return err;
425
426	if (tb[TCA_QFQ_WEIGHT])
427		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428	else
429		weight = 1;
430
431	if (tb[TCA_QFQ_LMAX]) {
432		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
433	} else {
434		/* MTU size is user controlled */
435		lmax = psched_mtu(qdisc_dev(sch));
436		if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
437			NL_SET_ERR_MSG_MOD(extack,
438					   "MTU size out of bounds for qfq");
439			return -EINVAL;
440		}
441	}
442
443	inv_w = ONE_FP / weight;
444	weight = ONE_FP / inv_w;
445
446	if (cl != NULL &&
447	    lmax == cl->agg->lmax &&
448	    weight == cl->agg->class_weight)
449		return 0; /* nothing to change */
450
451	delta_w = weight - (cl ? cl->agg->class_weight : 0);
452
453	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454		pr_notice("qfq: total weight out of range (%d + %u)\n",
455			  delta_w, q->wsum);
456		return -EINVAL;
457	}
458
459	if (cl != NULL) { /* modify existing class */
460		if (tca[TCA_RATE]) {
461			err = gen_replace_estimator(&cl->bstats, NULL,
462						    &cl->rate_est,
463						    NULL,
464						    qdisc_root_sleeping_running(sch),
465						    tca[TCA_RATE]);
466			if (err)
467				return err;
468		}
469		existing = true;
470		goto set_change_agg;
471	}
472
473	/* create and init new class */
474	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
475	if (cl == NULL)
476		return -ENOBUFS;
477
478	cl->common.classid = classid;
479	cl->deficit = lmax;
480
481	cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
482				      classid, NULL);
483	if (cl->qdisc == NULL)
484		cl->qdisc = &noop_qdisc;
485
486	if (tca[TCA_RATE]) {
487		err = gen_new_estimator(&cl->bstats, NULL,
488					&cl->rate_est,
489					NULL,
490					qdisc_root_sleeping_running(sch),
491					tca[TCA_RATE]);
492		if (err)
493			goto destroy_class;
494	}
495
496	if (cl->qdisc != &noop_qdisc)
497		qdisc_hash_add(cl->qdisc, true);
498
499set_change_agg:
500	sch_tree_lock(sch);
501	new_agg = qfq_find_agg(q, lmax, weight);
502	if (new_agg == NULL) { /* create new aggregate */
503		sch_tree_unlock(sch);
504		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
505		if (new_agg == NULL) {
506			err = -ENOBUFS;
507			gen_kill_estimator(&cl->rate_est);
508			goto destroy_class;
509		}
510		sch_tree_lock(sch);
511		qfq_init_agg(q, new_agg, lmax, weight);
512	}
513	if (existing)
514		qfq_deact_rm_from_agg(q, cl);
515	else
516		qdisc_class_hash_insert(&q->clhash, &cl->common);
517	qfq_add_to_agg(q, new_agg, cl);
518	sch_tree_unlock(sch);
519	qdisc_class_hash_grow(sch, &q->clhash);
520
521	*arg = (unsigned long)cl;
522	return 0;
523
524destroy_class:
525	qdisc_put(cl->qdisc);
526	kfree(cl);
527	return err;
528}
529
530static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
531{
532	struct qfq_sched *q = qdisc_priv(sch);
533
534	qfq_rm_from_agg(q, cl);
535	gen_kill_estimator(&cl->rate_est);
536	qdisc_put(cl->qdisc);
537	kfree(cl);
538}
539
540static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
541{
542	struct qfq_sched *q = qdisc_priv(sch);
543	struct qfq_class *cl = (struct qfq_class *)arg;
544
545	if (cl->filter_cnt > 0)
546		return -EBUSY;
547
548	sch_tree_lock(sch);
549
550	qdisc_purge_queue(cl->qdisc);
551	qdisc_class_hash_remove(&q->clhash, &cl->common);
552
553	sch_tree_unlock(sch);
554
555	qfq_destroy_class(sch, cl);
556	return 0;
557}
558
559static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
560{
561	return (unsigned long)qfq_find_class(sch, classid);
562}
563
564static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
565				       struct netlink_ext_ack *extack)
566{
567	struct qfq_sched *q = qdisc_priv(sch);
568
569	if (cl)
570		return NULL;
571
572	return q->block;
573}
574
575static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
576				  u32 classid)
577{
578	struct qfq_class *cl = qfq_find_class(sch, classid);
579
580	if (cl != NULL)
581		cl->filter_cnt++;
582
583	return (unsigned long)cl;
584}
585
586static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
587{
588	struct qfq_class *cl = (struct qfq_class *)arg;
589
590	cl->filter_cnt--;
591}
592
593static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
594			   struct Qdisc *new, struct Qdisc **old,
595			   struct netlink_ext_ack *extack)
596{
597	struct qfq_class *cl = (struct qfq_class *)arg;
598
599	if (new == NULL) {
600		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
601					cl->common.classid, NULL);
602		if (new == NULL)
603			new = &noop_qdisc;
604	}
605
606	*old = qdisc_replace(sch, new, &cl->qdisc);
607	return 0;
608}
609
610static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
611{
612	struct qfq_class *cl = (struct qfq_class *)arg;
613
614	return cl->qdisc;
615}
616
617static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
618			  struct sk_buff *skb, struct tcmsg *tcm)
619{
620	struct qfq_class *cl = (struct qfq_class *)arg;
621	struct nlattr *nest;
622
623	tcm->tcm_parent	= TC_H_ROOT;
624	tcm->tcm_handle	= cl->common.classid;
625	tcm->tcm_info	= cl->qdisc->handle;
626
627	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
628	if (nest == NULL)
629		goto nla_put_failure;
630	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
631	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
632		goto nla_put_failure;
633	return nla_nest_end(skb, nest);
634
635nla_put_failure:
636	nla_nest_cancel(skb, nest);
637	return -EMSGSIZE;
638}
639
640static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
641				struct gnet_dump *d)
642{
643	struct qfq_class *cl = (struct qfq_class *)arg;
644	struct tc_qfq_stats xstats;
645
646	memset(&xstats, 0, sizeof(xstats));
647
648	xstats.weight = cl->agg->class_weight;
649	xstats.lmax = cl->agg->lmax;
650
651	if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
652				  d, NULL, &cl->bstats) < 0 ||
653	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
654	    qdisc_qstats_copy(d, cl->qdisc) < 0)
655		return -1;
656
657	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
658}
659
660static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
661{
662	struct qfq_sched *q = qdisc_priv(sch);
663	struct qfq_class *cl;
664	unsigned int i;
665
666	if (arg->stop)
667		return;
668
669	for (i = 0; i < q->clhash.hashsize; i++) {
670		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
671			if (arg->count < arg->skip) {
672				arg->count++;
673				continue;
674			}
675			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
676				arg->stop = 1;
677				return;
678			}
679			arg->count++;
680		}
681	}
682}
683
684static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
685				      int *qerr)
686{
687	struct qfq_sched *q = qdisc_priv(sch);
688	struct qfq_class *cl;
689	struct tcf_result res;
690	struct tcf_proto *fl;
691	int result;
692
693	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
694		pr_debug("qfq_classify: found %d\n", skb->priority);
695		cl = qfq_find_class(sch, skb->priority);
696		if (cl != NULL)
697			return cl;
698	}
699
700	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
701	fl = rcu_dereference_bh(q->filter_list);
702	result = tcf_classify(skb, fl, &res, false);
703	if (result >= 0) {
704#ifdef CONFIG_NET_CLS_ACT
705		switch (result) {
706		case TC_ACT_QUEUED:
707		case TC_ACT_STOLEN:
708		case TC_ACT_TRAP:
709			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
710			fallthrough;
711		case TC_ACT_SHOT:
712			return NULL;
713		}
714#endif
715		cl = (struct qfq_class *)res.class;
716		if (cl == NULL)
717			cl = qfq_find_class(sch, res.classid);
718		return cl;
719	}
720
721	return NULL;
722}
723
724/* Generic comparison function, handling wraparound. */
725static inline int qfq_gt(u64 a, u64 b)
726{
727	return (s64)(a - b) > 0;
728}
729
730/* Round a precise timestamp to its slotted value. */
731static inline u64 qfq_round_down(u64 ts, unsigned int shift)
732{
733	return ts & ~((1ULL << shift) - 1);
734}
735
736/* return the pointer to the group with lowest index in the bitmap */
737static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
738					unsigned long bitmap)
739{
740	int index = __ffs(bitmap);
741	return &q->groups[index];
742}
743/* Calculate a mask to mimic what would be ffs_from(). */
744static inline unsigned long mask_from(unsigned long bitmap, int from)
745{
746	return bitmap & ~((1UL << from) - 1);
747}
748
749/*
750 * The state computation relies on ER=0, IR=1, EB=2, IB=3
751 * First compute eligibility comparing grp->S, q->V,
752 * then check if someone is blocking us and possibly add EB
753 */
754static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
755{
756	/* if S > V we are not eligible */
757	unsigned int state = qfq_gt(grp->S, q->V);
758	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
759	struct qfq_group *next;
760
761	if (mask) {
762		next = qfq_ffs(q, mask);
763		if (qfq_gt(grp->F, next->F))
764			state |= EB;
765	}
766
767	return state;
768}
769
770
771/*
772 * In principle
773 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
774 *	q->bitmaps[src] &= ~mask;
775 * but we should make sure that src != dst
776 */
777static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
778				   int src, int dst)
779{
780	q->bitmaps[dst] |= q->bitmaps[src] & mask;
781	q->bitmaps[src] &= ~mask;
782}
783
784static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
785{
786	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
787	struct qfq_group *next;
788
789	if (mask) {
790		next = qfq_ffs(q, mask);
791		if (!qfq_gt(next->F, old_F))
792			return;
793	}
794
795	mask = (1UL << index) - 1;
796	qfq_move_groups(q, mask, EB, ER);
797	qfq_move_groups(q, mask, IB, IR);
798}
799
800/*
801 * perhaps
802 *
803	old_V ^= q->V;
804	old_V >>= q->min_slot_shift;
805	if (old_V) {
806		...
807	}
808 *
809 */
810static void qfq_make_eligible(struct qfq_sched *q)
811{
812	unsigned long vslot = q->V >> q->min_slot_shift;
813	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
814
815	if (vslot != old_vslot) {
816		unsigned long mask;
817		int last_flip_pos = fls(vslot ^ old_vslot);
818
819		if (last_flip_pos > 31) /* higher than the number of groups */
820			mask = ~0UL;    /* make all groups eligible */
821		else
822			mask = (1UL << last_flip_pos) - 1;
823
824		qfq_move_groups(q, mask, IR, ER);
825		qfq_move_groups(q, mask, IB, EB);
826	}
827}
828
829/*
830 * The index of the slot in which the input aggregate agg is to be
831 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
832 * and not a '-1' because the start time of the group may be moved
833 * backward by one slot after the aggregate has been inserted, and
834 * this would cause non-empty slots to be right-shifted by one
835 * position.
836 *
837 * QFQ+ fully satisfies this bound to the slot index if the parameters
838 * of the classes are not changed dynamically, and if QFQ+ never
839 * happens to postpone the service of agg unjustly, i.e., it never
840 * happens that the aggregate becomes backlogged and eligible, or just
841 * eligible, while an aggregate with a higher approximated finish time
842 * is being served. In particular, in this case QFQ+ guarantees that
843 * the timestamps of agg are low enough that the slot index is never
844 * higher than 2. Unfortunately, QFQ+ cannot provide the same
845 * guarantee if it happens to unjustly postpone the service of agg, or
846 * if the parameters of some class are changed.
847 *
848 * As for the first event, i.e., an out-of-order service, the
849 * upper bound to the slot index guaranteed by QFQ+ grows to
850 * 2 +
851 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
852 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
853 *
854 * The following function deals with this problem by backward-shifting
855 * the timestamps of agg, if needed, so as to guarantee that the slot
856 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
857 * cause the service of other aggregates to be postponed, yet the
858 * worst-case guarantees of these aggregates are not violated.  In
859 * fact, in case of no out-of-order service, the timestamps of agg
860 * would have been even lower than they are after the backward shift,
861 * because QFQ+ would have guaranteed a maximum value equal to 2 for
862 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
863 * service is postponed because of the backward-shift would have
864 * however waited for the service of agg before being served.
865 *
866 * The other event that may cause the slot index to be higher than 2
867 * for agg is a recent change of the parameters of some class. If the
868 * weight of a class is increased or the lmax (max_pkt_size) of the
869 * class is decreased, then a new aggregate with smaller slot size
870 * than the original parent aggregate of the class may happen to be
871 * activated. The activation of this aggregate should be properly
872 * delayed to when the service of the class has finished in the ideal
873 * system tracked by QFQ+. If the activation of the aggregate is not
874 * delayed to this reference time instant, then this aggregate may be
875 * unjustly served before other aggregates waiting for service. This
876 * may cause the above bound to the slot index to be violated for some
877 * of these unlucky aggregates.
878 *
879 * Instead of delaying the activation of the new aggregate, which is
880 * quite complex, the above-discussed capping of the slot index is
881 * used to handle also the consequences of a change of the parameters
882 * of a class.
883 */
884static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
885			    u64 roundedS)
886{
887	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
888	unsigned int i; /* slot index in the bucket list */
889
890	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
891		u64 deltaS = roundedS - grp->S -
892			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
893		agg->S -= deltaS;
894		agg->F -= deltaS;
895		slot = QFQ_MAX_SLOTS - 2;
896	}
897
898	i = (grp->front + slot) % QFQ_MAX_SLOTS;
899
900	hlist_add_head(&agg->next, &grp->slots[i]);
901	__set_bit(slot, &grp->full_slots);
902}
903
904/* Maybe introduce hlist_first_entry?? */
905static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
906{
907	return hlist_entry(grp->slots[grp->front].first,
908			   struct qfq_aggregate, next);
909}
910
911/*
912 * remove the entry from the slot
913 */
914static void qfq_front_slot_remove(struct qfq_group *grp)
915{
916	struct qfq_aggregate *agg = qfq_slot_head(grp);
917
918	BUG_ON(!agg);
919	hlist_del(&agg->next);
920	if (hlist_empty(&grp->slots[grp->front]))
921		__clear_bit(0, &grp->full_slots);
922}
923
924/*
925 * Returns the first aggregate in the first non-empty bucket of the
926 * group. As a side effect, adjusts the bucket list so the first
927 * non-empty bucket is at position 0 in full_slots.
928 */
929static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
930{
931	unsigned int i;
932
933	pr_debug("qfq slot_scan: grp %u full %#lx\n",
934		 grp->index, grp->full_slots);
935
936	if (grp->full_slots == 0)
937		return NULL;
938
939	i = __ffs(grp->full_slots);  /* zero based */
940	if (i > 0) {
941		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
942		grp->full_slots >>= i;
943	}
944
945	return qfq_slot_head(grp);
946}
947
948/*
949 * adjust the bucket list. When the start time of a group decreases,
950 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
951 * move the objects. The mask of occupied slots must be shifted
952 * because we use ffs() to find the first non-empty slot.
953 * This covers decreases in the group's start time, but what about
954 * increases of the start time ?
955 * Here too we should make sure that i is less than 32
956 */
957static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
958{
959	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
960
961	grp->full_slots <<= i;
962	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
963}
964
965static void qfq_update_eligible(struct qfq_sched *q)
966{
967	struct qfq_group *grp;
968	unsigned long ineligible;
969
970	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
971	if (ineligible) {
972		if (!q->bitmaps[ER]) {
973			grp = qfq_ffs(q, ineligible);
974			if (qfq_gt(grp->S, q->V))
975				q->V = grp->S;
976		}
977		qfq_make_eligible(q);
978	}
979}
980
981/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
982static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
983				   struct qfq_class *cl, unsigned int len)
984{
985	struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
986
987	if (!skb)
988		return NULL;
989
990	cl->deficit -= (int) len;
991
992	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
993		list_del(&cl->alist);
994	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
995		cl->deficit += agg->lmax;
996		list_move_tail(&cl->alist, &agg->active);
997	}
998
999	return skb;
1000}
1001
1002static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1003					   struct qfq_class **cl,
1004					   unsigned int *len)
1005{
1006	struct sk_buff *skb;
1007
1008	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1009	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1010	if (skb == NULL)
1011		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1012	else
1013		*len = qdisc_pkt_len(skb);
1014
1015	return skb;
1016}
1017
1018/* Update F according to the actual service received by the aggregate. */
1019static inline void charge_actual_service(struct qfq_aggregate *agg)
1020{
1021	/* Compute the service received by the aggregate, taking into
1022	 * account that, after decreasing the number of classes in
1023	 * agg, it may happen that
1024	 * agg->initial_budget - agg->budget > agg->bugdetmax
1025	 */
1026	u32 service_received = min(agg->budgetmax,
1027				   agg->initial_budget - agg->budget);
1028
1029	agg->F = agg->S + (u64)service_received * agg->inv_w;
1030}
1031
1032/* Assign a reasonable start time for a new aggregate in group i.
1033 * Admissible values for \hat(F) are multiples of \sigma_i
1034 * no greater than V+\sigma_i . Larger values mean that
1035 * we had a wraparound so we consider the timestamp to be stale.
1036 *
1037 * If F is not stale and F >= V then we set S = F.
1038 * Otherwise we should assign S = V, but this may violate
1039 * the ordering in EB (see [2]). So, if we have groups in ER,
1040 * set S to the F_j of the first group j which would be blocking us.
1041 * We are guaranteed not to move S backward because
1042 * otherwise our group i would still be blocked.
1043 */
1044static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1045{
1046	unsigned long mask;
1047	u64 limit, roundedF;
1048	int slot_shift = agg->grp->slot_shift;
1049
1050	roundedF = qfq_round_down(agg->F, slot_shift);
1051	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1052
1053	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1054		/* timestamp was stale */
1055		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1056		if (mask) {
1057			struct qfq_group *next = qfq_ffs(q, mask);
1058			if (qfq_gt(roundedF, next->F)) {
1059				if (qfq_gt(limit, next->F))
1060					agg->S = next->F;
1061				else /* preserve timestamp correctness */
1062					agg->S = limit;
1063				return;
1064			}
1065		}
1066		agg->S = q->V;
1067	} else  /* timestamp is not stale */
1068		agg->S = agg->F;
1069}
1070
1071/* Update the timestamps of agg before scheduling/rescheduling it for
1072 * service.  In particular, assign to agg->F its maximum possible
1073 * value, i.e., the virtual finish time with which the aggregate
1074 * should be labeled if it used all its budget once in service.
1075 */
1076static inline void
1077qfq_update_agg_ts(struct qfq_sched *q,
1078		    struct qfq_aggregate *agg, enum update_reason reason)
1079{
1080	if (reason != requeue)
1081		qfq_update_start(q, agg);
1082	else /* just charge agg for the service received */
1083		agg->S = agg->F;
1084
1085	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1086}
1087
1088static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1089
1090static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1091{
1092	struct qfq_sched *q = qdisc_priv(sch);
1093	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1094	struct qfq_class *cl;
1095	struct sk_buff *skb = NULL;
1096	/* next-packet len, 0 means no more active classes in in-service agg */
1097	unsigned int len = 0;
1098
1099	if (in_serv_agg == NULL)
1100		return NULL;
1101
1102	if (!list_empty(&in_serv_agg->active))
1103		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1104
1105	/*
1106	 * If there are no active classes in the in-service aggregate,
1107	 * or if the aggregate has not enough budget to serve its next
1108	 * class, then choose the next aggregate to serve.
1109	 */
1110	if (len == 0 || in_serv_agg->budget < len) {
1111		charge_actual_service(in_serv_agg);
1112
1113		/* recharge the budget of the aggregate */
1114		in_serv_agg->initial_budget = in_serv_agg->budget =
1115			in_serv_agg->budgetmax;
1116
1117		if (!list_empty(&in_serv_agg->active)) {
1118			/*
1119			 * Still active: reschedule for
1120			 * service. Possible optimization: if no other
1121			 * aggregate is active, then there is no point
1122			 * in rescheduling this aggregate, and we can
1123			 * just keep it as the in-service one. This
1124			 * should be however a corner case, and to
1125			 * handle it, we would need to maintain an
1126			 * extra num_active_aggs field.
1127			*/
1128			qfq_update_agg_ts(q, in_serv_agg, requeue);
1129			qfq_schedule_agg(q, in_serv_agg);
1130		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1131			q->in_serv_agg = NULL;
1132			return NULL;
1133		}
1134
1135		/*
1136		 * If we get here, there are other aggregates queued:
1137		 * choose the new aggregate to serve.
1138		 */
1139		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1140		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1141	}
1142	if (!skb)
1143		return NULL;
1144
1145	sch->q.qlen--;
1146
1147	skb = agg_dequeue(in_serv_agg, cl, len);
1148
1149	if (!skb) {
1150		sch->q.qlen++;
1151		return NULL;
1152	}
1153
1154	qdisc_qstats_backlog_dec(sch, skb);
1155	qdisc_bstats_update(sch, skb);
1156
1157	/* If lmax is lowered, through qfq_change_class, for a class
1158	 * owning pending packets with larger size than the new value
1159	 * of lmax, then the following condition may hold.
1160	 */
1161	if (unlikely(in_serv_agg->budget < len))
1162		in_serv_agg->budget = 0;
1163	else
1164		in_serv_agg->budget -= len;
1165
1166	q->V += (u64)len * q->iwsum;
1167	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1168		 len, (unsigned long long) in_serv_agg->F,
1169		 (unsigned long long) q->V);
1170
1171	return skb;
1172}
1173
1174static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1175{
1176	struct qfq_group *grp;
1177	struct qfq_aggregate *agg, *new_front_agg;
1178	u64 old_F;
1179
1180	qfq_update_eligible(q);
1181	q->oldV = q->V;
1182
1183	if (!q->bitmaps[ER])
1184		return NULL;
1185
1186	grp = qfq_ffs(q, q->bitmaps[ER]);
1187	old_F = grp->F;
1188
1189	agg = qfq_slot_head(grp);
1190
1191	/* agg starts to be served, remove it from schedule */
1192	qfq_front_slot_remove(grp);
1193
1194	new_front_agg = qfq_slot_scan(grp);
1195
1196	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1197		__clear_bit(grp->index, &q->bitmaps[ER]);
1198	else {
1199		u64 roundedS = qfq_round_down(new_front_agg->S,
1200					      grp->slot_shift);
1201		unsigned int s;
1202
1203		if (grp->S == roundedS)
1204			return agg;
1205		grp->S = roundedS;
1206		grp->F = roundedS + (2ULL << grp->slot_shift);
1207		__clear_bit(grp->index, &q->bitmaps[ER]);
1208		s = qfq_calc_state(q, grp);
1209		__set_bit(grp->index, &q->bitmaps[s]);
1210	}
1211
1212	qfq_unblock_groups(q, grp->index, old_F);
1213
1214	return agg;
1215}
1216
1217static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1218		       struct sk_buff **to_free)
1219{
1220	unsigned int len = qdisc_pkt_len(skb), gso_segs;
1221	struct qfq_sched *q = qdisc_priv(sch);
1222	struct qfq_class *cl;
1223	struct qfq_aggregate *agg;
1224	int err = 0;
1225	bool first;
1226
1227	cl = qfq_classify(skb, sch, &err);
1228	if (cl == NULL) {
1229		if (err & __NET_XMIT_BYPASS)
1230			qdisc_qstats_drop(sch);
1231		__qdisc_drop(skb, to_free);
1232		return err;
1233	}
1234	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1235
1236	if (unlikely(cl->agg->lmax < len)) {
1237		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1238			 cl->agg->lmax, len, cl->common.classid);
1239		err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1240		if (err) {
1241			cl->qstats.drops++;
1242			return qdisc_drop(skb, sch, to_free);
1243		}
1244	}
1245
1246	gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1247	first = !cl->qdisc->q.qlen;
1248	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1249	if (unlikely(err != NET_XMIT_SUCCESS)) {
1250		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1251		if (net_xmit_drop_count(err)) {
1252			cl->qstats.drops++;
1253			qdisc_qstats_drop(sch);
1254		}
1255		return err;
1256	}
1257
1258	cl->bstats.bytes += len;
1259	cl->bstats.packets += gso_segs;
1260	sch->qstats.backlog += len;
1261	++sch->q.qlen;
1262
1263	agg = cl->agg;
1264	/* if the queue was not empty, then done here */
1265	if (!first) {
1266		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1267		    list_first_entry(&agg->active, struct qfq_class, alist)
1268		    == cl && cl->deficit < len)
1269			list_move_tail(&cl->alist, &agg->active);
1270
1271		return err;
1272	}
1273
1274	/* schedule class for service within the aggregate */
1275	cl->deficit = agg->lmax;
1276	list_add_tail(&cl->alist, &agg->active);
1277
1278	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1279	    q->in_serv_agg == agg)
1280		return err; /* non-empty or in service, nothing else to do */
1281
1282	qfq_activate_agg(q, agg, enqueue);
1283
1284	return err;
1285}
1286
1287/*
1288 * Schedule aggregate according to its timestamps.
1289 */
1290static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1291{
1292	struct qfq_group *grp = agg->grp;
1293	u64 roundedS;
1294	int s;
1295
1296	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1297
1298	/*
1299	 * Insert agg in the correct bucket.
1300	 * If agg->S >= grp->S we don't need to adjust the
1301	 * bucket list and simply go to the insertion phase.
1302	 * Otherwise grp->S is decreasing, we must make room
1303	 * in the bucket list, and also recompute the group state.
1304	 * Finally, if there were no flows in this group and nobody
1305	 * was in ER make sure to adjust V.
1306	 */
1307	if (grp->full_slots) {
1308		if (!qfq_gt(grp->S, agg->S))
1309			goto skip_update;
1310
1311		/* create a slot for this agg->S */
1312		qfq_slot_rotate(grp, roundedS);
1313		/* group was surely ineligible, remove */
1314		__clear_bit(grp->index, &q->bitmaps[IR]);
1315		__clear_bit(grp->index, &q->bitmaps[IB]);
1316	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1317		   q->in_serv_agg == NULL)
1318		q->V = roundedS;
1319
1320	grp->S = roundedS;
1321	grp->F = roundedS + (2ULL << grp->slot_shift);
1322	s = qfq_calc_state(q, grp);
1323	__set_bit(grp->index, &q->bitmaps[s]);
1324
1325	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1326		 s, q->bitmaps[s],
1327		 (unsigned long long) agg->S,
1328		 (unsigned long long) agg->F,
1329		 (unsigned long long) q->V);
1330
1331skip_update:
1332	qfq_slot_insert(grp, agg, roundedS);
1333}
1334
1335
1336/* Update agg ts and schedule agg for service */
1337static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1338			     enum update_reason reason)
1339{
1340	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1341
1342	qfq_update_agg_ts(q, agg, reason);
1343	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1344		q->in_serv_agg = agg; /* start serving this aggregate */
1345		 /* update V: to be in service, agg must be eligible */
1346		q->oldV = q->V = agg->S;
1347	} else if (agg != q->in_serv_agg)
1348		qfq_schedule_agg(q, agg);
1349}
1350
1351static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1352			    struct qfq_aggregate *agg)
1353{
1354	unsigned int i, offset;
1355	u64 roundedS;
1356
1357	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1358	offset = (roundedS - grp->S) >> grp->slot_shift;
1359
1360	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1361
1362	hlist_del(&agg->next);
1363	if (hlist_empty(&grp->slots[i]))
1364		__clear_bit(offset, &grp->full_slots);
1365}
1366
1367/*
1368 * Called to forcibly deschedule an aggregate.  If the aggregate is
1369 * not in the front bucket, or if the latter has other aggregates in
1370 * the front bucket, we can simply remove the aggregate with no other
1371 * side effects.
1372 * Otherwise we must propagate the event up.
1373 */
1374static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1375{
1376	struct qfq_group *grp = agg->grp;
1377	unsigned long mask;
1378	u64 roundedS;
1379	int s;
1380
1381	if (agg == q->in_serv_agg) {
1382		charge_actual_service(agg);
1383		q->in_serv_agg = qfq_choose_next_agg(q);
1384		return;
1385	}
1386
1387	agg->F = agg->S;
1388	qfq_slot_remove(q, grp, agg);
1389
1390	if (!grp->full_slots) {
1391		__clear_bit(grp->index, &q->bitmaps[IR]);
1392		__clear_bit(grp->index, &q->bitmaps[EB]);
1393		__clear_bit(grp->index, &q->bitmaps[IB]);
1394
1395		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1396		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1397			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1398			if (mask)
1399				mask = ~((1UL << __fls(mask)) - 1);
1400			else
1401				mask = ~0UL;
1402			qfq_move_groups(q, mask, EB, ER);
1403			qfq_move_groups(q, mask, IB, IR);
1404		}
1405		__clear_bit(grp->index, &q->bitmaps[ER]);
1406	} else if (hlist_empty(&grp->slots[grp->front])) {
1407		agg = qfq_slot_scan(grp);
1408		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1409		if (grp->S != roundedS) {
1410			__clear_bit(grp->index, &q->bitmaps[ER]);
1411			__clear_bit(grp->index, &q->bitmaps[IR]);
1412			__clear_bit(grp->index, &q->bitmaps[EB]);
1413			__clear_bit(grp->index, &q->bitmaps[IB]);
1414			grp->S = roundedS;
1415			grp->F = roundedS + (2ULL << grp->slot_shift);
1416			s = qfq_calc_state(q, grp);
1417			__set_bit(grp->index, &q->bitmaps[s]);
1418		}
1419	}
1420}
1421
1422static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1423{
1424	struct qfq_sched *q = qdisc_priv(sch);
1425	struct qfq_class *cl = (struct qfq_class *)arg;
1426
1427	qfq_deactivate_class(q, cl);
1428}
1429
1430static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1431			  struct netlink_ext_ack *extack)
1432{
1433	struct qfq_sched *q = qdisc_priv(sch);
1434	struct qfq_group *grp;
1435	int i, j, err;
1436	u32 max_cl_shift, maxbudg_shift, max_classes;
1437
1438	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1439	if (err)
1440		return err;
1441
1442	err = qdisc_class_hash_init(&q->clhash);
1443	if (err < 0)
1444		return err;
1445
1446	max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1447			    QFQ_MAX_AGG_CLASSES);
1448	/* max_cl_shift = floor(log_2(max_classes)) */
1449	max_cl_shift = __fls(max_classes);
1450	q->max_agg_classes = 1<<max_cl_shift;
1451
1452	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1453	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1454	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1455
1456	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1457		grp = &q->groups[i];
1458		grp->index = i;
1459		grp->slot_shift = q->min_slot_shift + i;
1460		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1461			INIT_HLIST_HEAD(&grp->slots[j]);
1462	}
1463
1464	INIT_HLIST_HEAD(&q->nonfull_aggs);
1465
1466	return 0;
1467}
1468
1469static void qfq_reset_qdisc(struct Qdisc *sch)
1470{
1471	struct qfq_sched *q = qdisc_priv(sch);
1472	struct qfq_class *cl;
1473	unsigned int i;
1474
1475	for (i = 0; i < q->clhash.hashsize; i++) {
1476		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1477			if (cl->qdisc->q.qlen > 0)
1478				qfq_deactivate_class(q, cl);
1479
1480			qdisc_reset(cl->qdisc);
1481		}
1482	}
1483}
1484
1485static void qfq_destroy_qdisc(struct Qdisc *sch)
1486{
1487	struct qfq_sched *q = qdisc_priv(sch);
1488	struct qfq_class *cl;
1489	struct hlist_node *next;
1490	unsigned int i;
1491
1492	tcf_block_put(q->block);
1493
1494	for (i = 0; i < q->clhash.hashsize; i++) {
1495		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1496					  common.hnode) {
1497			qfq_destroy_class(sch, cl);
1498		}
1499	}
1500	qdisc_class_hash_destroy(&q->clhash);
1501}
1502
1503static const struct Qdisc_class_ops qfq_class_ops = {
1504	.change		= qfq_change_class,
1505	.delete		= qfq_delete_class,
1506	.find		= qfq_search_class,
1507	.tcf_block	= qfq_tcf_block,
1508	.bind_tcf	= qfq_bind_tcf,
1509	.unbind_tcf	= qfq_unbind_tcf,
1510	.graft		= qfq_graft_class,
1511	.leaf		= qfq_class_leaf,
1512	.qlen_notify	= qfq_qlen_notify,
1513	.dump		= qfq_dump_class,
1514	.dump_stats	= qfq_dump_class_stats,
1515	.walk		= qfq_walk,
1516};
1517
1518static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1519	.cl_ops		= &qfq_class_ops,
1520	.id		= "qfq",
1521	.priv_size	= sizeof(struct qfq_sched),
1522	.enqueue	= qfq_enqueue,
1523	.dequeue	= qfq_dequeue,
1524	.peek		= qdisc_peek_dequeued,
1525	.init		= qfq_init_qdisc,
1526	.reset		= qfq_reset_qdisc,
1527	.destroy	= qfq_destroy_qdisc,
1528	.owner		= THIS_MODULE,
1529};
1530
1531static int __init qfq_init(void)
1532{
1533	return register_qdisc(&qfq_qdisc_ops);
1534}
1535
1536static void __exit qfq_exit(void)
1537{
1538	unregister_qdisc(&qfq_qdisc_ops);
1539}
1540
1541module_init(qfq_init);
1542module_exit(qfq_exit);
1543MODULE_LICENSE("GPL");
1544