xref: /kernel/linux/linux-5.10/net/sched/sch_netem.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * net/sched/sch_netem.c	Network emulator
4 *
5 *  		Many of the algorithms and ideas for this came from
6 *		NIST Net which is not copyrighted.
7 *
8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
10 */
11
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/types.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/skbuff.h>
19#include <linux/vmalloc.h>
20#include <linux/rtnetlink.h>
21#include <linux/reciprocal_div.h>
22#include <linux/rbtree.h>
23
24#include <net/netlink.h>
25#include <net/pkt_sched.h>
26#include <net/inet_ecn.h>
27
28#define VERSION "1.3"
29
30/*	Network Emulation Queuing algorithm.
31	====================================
32
33	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
34		 Network Emulation Tool
35		 [2] Luigi Rizzo, DummyNet for FreeBSD
36
37	 ----------------------------------------------------------------
38
39	 This started out as a simple way to delay outgoing packets to
40	 test TCP but has grown to include most of the functionality
41	 of a full blown network emulator like NISTnet. It can delay
42	 packets and add random jitter (and correlation). The random
43	 distribution can be loaded from a table as well to provide
44	 normal, Pareto, or experimental curves. Packet loss,
45	 duplication, and reordering can also be emulated.
46
47	 This qdisc does not do classification that can be handled in
48	 layering other disciplines.  It does not need to do bandwidth
49	 control either since that can be handled by using token
50	 bucket or other rate control.
51
52     Correlated Loss Generator models
53
54	Added generation of correlated loss according to the
55	"Gilbert-Elliot" model, a 4-state markov model.
56
57	References:
58	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
59	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
60	and intuitive loss model for packet networks and its implementation
61	in the Netem module in the Linux kernel", available in [1]
62
63	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
64		 Fabio Ludovici <fabio.ludovici at yahoo.it>
65*/
66
67struct disttable {
68	u32  size;
69	s16 table[];
70};
71
72struct netem_sched_data {
73	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
74	struct rb_root t_root;
75
76	/* a linear queue; reduces rbtree rebalancing when jitter is low */
77	struct sk_buff	*t_head;
78	struct sk_buff	*t_tail;
79
80	/* optional qdisc for classful handling (NULL at netem init) */
81	struct Qdisc	*qdisc;
82
83	struct qdisc_watchdog watchdog;
84
85	s64 latency;
86	s64 jitter;
87
88	u32 loss;
89	u32 ecn;
90	u32 limit;
91	u32 counter;
92	u32 gap;
93	u32 duplicate;
94	u32 reorder;
95	u32 corrupt;
96	u64 rate;
97	s32 packet_overhead;
98	u32 cell_size;
99	struct reciprocal_value cell_size_reciprocal;
100	s32 cell_overhead;
101
102	struct crndstate {
103		u32 last;
104		u32 rho;
105	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
106
107	struct disttable *delay_dist;
108
109	enum  {
110		CLG_RANDOM,
111		CLG_4_STATES,
112		CLG_GILB_ELL,
113	} loss_model;
114
115	enum {
116		TX_IN_GAP_PERIOD = 1,
117		TX_IN_BURST_PERIOD,
118		LOST_IN_GAP_PERIOD,
119		LOST_IN_BURST_PERIOD,
120	} _4_state_model;
121
122	enum {
123		GOOD_STATE = 1,
124		BAD_STATE,
125	} GE_state_model;
126
127	/* Correlated Loss Generation models */
128	struct clgstate {
129		/* state of the Markov chain */
130		u8 state;
131
132		/* 4-states and Gilbert-Elliot models */
133		u32 a1;	/* p13 for 4-states or p for GE */
134		u32 a2;	/* p31 for 4-states or r for GE */
135		u32 a3;	/* p32 for 4-states or h for GE */
136		u32 a4;	/* p14 for 4-states or 1-k for GE */
137		u32 a5; /* p23 used only in 4-states */
138	} clg;
139
140	struct tc_netem_slot slot_config;
141	struct slotstate {
142		u64 slot_next;
143		s32 packets_left;
144		s32 bytes_left;
145	} slot;
146
147	struct disttable *slot_dist;
148};
149
150/* Time stamp put into socket buffer control block
151 * Only valid when skbs are in our internal t(ime)fifo queue.
152 *
153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
154 * and skb->next & skb->prev are scratch space for a qdisc,
155 * we save skb->tstamp value in skb->cb[] before destroying it.
156 */
157struct netem_skb_cb {
158	u64	        time_to_send;
159};
160
161static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
162{
163	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
164	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
165	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166}
167
168/* init_crandom - initialize correlated random number generator
169 * Use entropy source for initial seed.
170 */
171static void init_crandom(struct crndstate *state, unsigned long rho)
172{
173	state->rho = rho;
174	state->last = prandom_u32();
175}
176
177/* get_crandom - correlated random number generator
178 * Next number depends on last value.
179 * rho is scaled to avoid floating point.
180 */
181static u32 get_crandom(struct crndstate *state)
182{
183	u64 value, rho;
184	unsigned long answer;
185
186	if (!state || state->rho == 0)	/* no correlation */
187		return prandom_u32();
188
189	value = prandom_u32();
190	rho = (u64)state->rho + 1;
191	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
192	state->last = answer;
193	return answer;
194}
195
196/* loss_4state - 4-state model loss generator
197 * Generates losses according to the 4-state Markov chain adopted in
198 * the GI (General and Intuitive) loss model.
199 */
200static bool loss_4state(struct netem_sched_data *q)
201{
202	struct clgstate *clg = &q->clg;
203	u32 rnd = prandom_u32();
204
205	/*
206	 * Makes a comparison between rnd and the transition
207	 * probabilities outgoing from the current state, then decides the
208	 * next state and if the next packet has to be transmitted or lost.
209	 * The four states correspond to:
210	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
211	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
212	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
213	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
214	 */
215	switch (clg->state) {
216	case TX_IN_GAP_PERIOD:
217		if (rnd < clg->a4) {
218			clg->state = LOST_IN_BURST_PERIOD;
219			return true;
220		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
221			clg->state = LOST_IN_GAP_PERIOD;
222			return true;
223		} else if (clg->a1 + clg->a4 < rnd) {
224			clg->state = TX_IN_GAP_PERIOD;
225		}
226
227		break;
228	case TX_IN_BURST_PERIOD:
229		if (rnd < clg->a5) {
230			clg->state = LOST_IN_GAP_PERIOD;
231			return true;
232		} else {
233			clg->state = TX_IN_BURST_PERIOD;
234		}
235
236		break;
237	case LOST_IN_GAP_PERIOD:
238		if (rnd < clg->a3)
239			clg->state = TX_IN_BURST_PERIOD;
240		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
241			clg->state = TX_IN_GAP_PERIOD;
242		} else if (clg->a2 + clg->a3 < rnd) {
243			clg->state = LOST_IN_GAP_PERIOD;
244			return true;
245		}
246		break;
247	case LOST_IN_BURST_PERIOD:
248		clg->state = TX_IN_GAP_PERIOD;
249		break;
250	}
251
252	return false;
253}
254
255/* loss_gilb_ell - Gilbert-Elliot model loss generator
256 * Generates losses according to the Gilbert-Elliot loss model or
257 * its special cases  (Gilbert or Simple Gilbert)
258 *
259 * Makes a comparison between random number and the transition
260 * probabilities outgoing from the current state, then decides the
261 * next state. A second random number is extracted and the comparison
262 * with the loss probability of the current state decides if the next
263 * packet will be transmitted or lost.
264 */
265static bool loss_gilb_ell(struct netem_sched_data *q)
266{
267	struct clgstate *clg = &q->clg;
268
269	switch (clg->state) {
270	case GOOD_STATE:
271		if (prandom_u32() < clg->a1)
272			clg->state = BAD_STATE;
273		if (prandom_u32() < clg->a4)
274			return true;
275		break;
276	case BAD_STATE:
277		if (prandom_u32() < clg->a2)
278			clg->state = GOOD_STATE;
279		if (prandom_u32() > clg->a3)
280			return true;
281	}
282
283	return false;
284}
285
286static bool loss_event(struct netem_sched_data *q)
287{
288	switch (q->loss_model) {
289	case CLG_RANDOM:
290		/* Random packet drop 0 => none, ~0 => all */
291		return q->loss && q->loss >= get_crandom(&q->loss_cor);
292
293	case CLG_4_STATES:
294		/* 4state loss model algorithm (used also for GI model)
295		* Extracts a value from the markov 4 state loss generator,
296		* if it is 1 drops a packet and if needed writes the event in
297		* the kernel logs
298		*/
299		return loss_4state(q);
300
301	case CLG_GILB_ELL:
302		/* Gilbert-Elliot loss model algorithm
303		* Extracts a value from the Gilbert-Elliot loss generator,
304		* if it is 1 drops a packet and if needed writes the event in
305		* the kernel logs
306		*/
307		return loss_gilb_ell(q);
308	}
309
310	return false;	/* not reached */
311}
312
313
314/* tabledist - return a pseudo-randomly distributed value with mean mu and
315 * std deviation sigma.  Uses table lookup to approximate the desired
316 * distribution, and a uniformly-distributed pseudo-random source.
317 */
318static s64 tabledist(s64 mu, s32 sigma,
319		     struct crndstate *state,
320		     const struct disttable *dist)
321{
322	s64 x;
323	long t;
324	u32 rnd;
325
326	if (sigma == 0)
327		return mu;
328
329	rnd = get_crandom(state);
330
331	/* default uniform distribution */
332	if (dist == NULL)
333		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
334
335	t = dist->table[rnd % dist->size];
336	x = (sigma % NETEM_DIST_SCALE) * t;
337	if (x >= 0)
338		x += NETEM_DIST_SCALE/2;
339	else
340		x -= NETEM_DIST_SCALE/2;
341
342	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
343}
344
345static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
346{
347	len += q->packet_overhead;
348
349	if (q->cell_size) {
350		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
351
352		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
353			cells++;
354		len = cells * (q->cell_size + q->cell_overhead);
355	}
356
357	return div64_u64(len * NSEC_PER_SEC, q->rate);
358}
359
360static void tfifo_reset(struct Qdisc *sch)
361{
362	struct netem_sched_data *q = qdisc_priv(sch);
363	struct rb_node *p = rb_first(&q->t_root);
364
365	while (p) {
366		struct sk_buff *skb = rb_to_skb(p);
367
368		p = rb_next(p);
369		rb_erase(&skb->rbnode, &q->t_root);
370		rtnl_kfree_skbs(skb, skb);
371	}
372
373	rtnl_kfree_skbs(q->t_head, q->t_tail);
374	q->t_head = NULL;
375	q->t_tail = NULL;
376}
377
378static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
379{
380	struct netem_sched_data *q = qdisc_priv(sch);
381	u64 tnext = netem_skb_cb(nskb)->time_to_send;
382
383	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
384		if (q->t_tail)
385			q->t_tail->next = nskb;
386		else
387			q->t_head = nskb;
388		q->t_tail = nskb;
389	} else {
390		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
391
392		while (*p) {
393			struct sk_buff *skb;
394
395			parent = *p;
396			skb = rb_to_skb(parent);
397			if (tnext >= netem_skb_cb(skb)->time_to_send)
398				p = &parent->rb_right;
399			else
400				p = &parent->rb_left;
401		}
402		rb_link_node(&nskb->rbnode, parent, p);
403		rb_insert_color(&nskb->rbnode, &q->t_root);
404	}
405	sch->q.qlen++;
406}
407
408/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
409 * when we statistically choose to corrupt one, we instead segment it, returning
410 * the first packet to be corrupted, and re-enqueue the remaining frames
411 */
412static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
413				     struct sk_buff **to_free)
414{
415	struct sk_buff *segs;
416	netdev_features_t features = netif_skb_features(skb);
417
418	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
419
420	if (IS_ERR_OR_NULL(segs)) {
421		qdisc_drop(skb, sch, to_free);
422		return NULL;
423	}
424	consume_skb(skb);
425	return segs;
426}
427
428/*
429 * Insert one skb into qdisc.
430 * Note: parent depends on return value to account for queue length.
431 * 	NET_XMIT_DROP: queue length didn't change.
432 *      NET_XMIT_SUCCESS: one skb was queued.
433 */
434static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
435			 struct sk_buff **to_free)
436{
437	struct netem_sched_data *q = qdisc_priv(sch);
438	/* We don't fill cb now as skb_unshare() may invalidate it */
439	struct netem_skb_cb *cb;
440	struct sk_buff *skb2;
441	struct sk_buff *segs = NULL;
442	unsigned int prev_len = qdisc_pkt_len(skb);
443	int count = 1;
444	int rc = NET_XMIT_SUCCESS;
445	int rc_drop = NET_XMIT_DROP;
446
447	/* Do not fool qdisc_drop_all() */
448	skb->prev = NULL;
449
450	/* Random duplication */
451	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
452		++count;
453
454	/* Drop packet? */
455	if (loss_event(q)) {
456		if (q->ecn && INET_ECN_set_ce(skb))
457			qdisc_qstats_drop(sch); /* mark packet */
458		else
459			--count;
460	}
461	if (count == 0) {
462		qdisc_qstats_drop(sch);
463		__qdisc_drop(skb, to_free);
464		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
465	}
466
467	/* If a delay is expected, orphan the skb. (orphaning usually takes
468	 * place at TX completion time, so _before_ the link transit delay)
469	 */
470	if (q->latency || q->jitter || q->rate)
471		skb_orphan_partial(skb);
472
473	/*
474	 * If we need to duplicate packet, then re-insert at top of the
475	 * qdisc tree, since parent queuer expects that only one
476	 * skb will be queued.
477	 */
478	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
479		struct Qdisc *rootq = qdisc_root_bh(sch);
480		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
481
482		q->duplicate = 0;
483		rootq->enqueue(skb2, rootq, to_free);
484		q->duplicate = dupsave;
485		rc_drop = NET_XMIT_SUCCESS;
486	}
487
488	/*
489	 * Randomized packet corruption.
490	 * Make copy if needed since we are modifying
491	 * If packet is going to be hardware checksummed, then
492	 * do it now in software before we mangle it.
493	 */
494	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
495		if (skb_is_gso(skb)) {
496			skb = netem_segment(skb, sch, to_free);
497			if (!skb)
498				return rc_drop;
499			segs = skb->next;
500			skb_mark_not_on_list(skb);
501			qdisc_skb_cb(skb)->pkt_len = skb->len;
502		}
503
504		skb = skb_unshare(skb, GFP_ATOMIC);
505		if (unlikely(!skb)) {
506			qdisc_qstats_drop(sch);
507			goto finish_segs;
508		}
509		if (skb->ip_summed == CHECKSUM_PARTIAL &&
510		    skb_checksum_help(skb)) {
511			qdisc_drop(skb, sch, to_free);
512			skb = NULL;
513			goto finish_segs;
514		}
515
516		skb->data[prandom_u32() % skb_headlen(skb)] ^=
517			1<<(prandom_u32() % 8);
518	}
519
520	if (unlikely(sch->q.qlen >= sch->limit)) {
521		/* re-link segs, so that qdisc_drop_all() frees them all */
522		skb->next = segs;
523		qdisc_drop_all(skb, sch, to_free);
524		return rc_drop;
525	}
526
527	qdisc_qstats_backlog_inc(sch, skb);
528
529	cb = netem_skb_cb(skb);
530	if (q->gap == 0 ||		/* not doing reordering */
531	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
532	    q->reorder < get_crandom(&q->reorder_cor)) {
533		u64 now;
534		s64 delay;
535
536		delay = tabledist(q->latency, q->jitter,
537				  &q->delay_cor, q->delay_dist);
538
539		now = ktime_get_ns();
540
541		if (q->rate) {
542			struct netem_skb_cb *last = NULL;
543
544			if (sch->q.tail)
545				last = netem_skb_cb(sch->q.tail);
546			if (q->t_root.rb_node) {
547				struct sk_buff *t_skb;
548				struct netem_skb_cb *t_last;
549
550				t_skb = skb_rb_last(&q->t_root);
551				t_last = netem_skb_cb(t_skb);
552				if (!last ||
553				    t_last->time_to_send > last->time_to_send)
554					last = t_last;
555			}
556			if (q->t_tail) {
557				struct netem_skb_cb *t_last =
558					netem_skb_cb(q->t_tail);
559
560				if (!last ||
561				    t_last->time_to_send > last->time_to_send)
562					last = t_last;
563			}
564
565			if (last) {
566				/*
567				 * Last packet in queue is reference point (now),
568				 * calculate this time bonus and subtract
569				 * from delay.
570				 */
571				delay -= last->time_to_send - now;
572				delay = max_t(s64, 0, delay);
573				now = last->time_to_send;
574			}
575
576			delay += packet_time_ns(qdisc_pkt_len(skb), q);
577		}
578
579		cb->time_to_send = now + delay;
580		++q->counter;
581		tfifo_enqueue(skb, sch);
582	} else {
583		/*
584		 * Do re-ordering by putting one out of N packets at the front
585		 * of the queue.
586		 */
587		cb->time_to_send = ktime_get_ns();
588		q->counter = 0;
589
590		__qdisc_enqueue_head(skb, &sch->q);
591		sch->qstats.requeues++;
592	}
593
594finish_segs:
595	if (segs) {
596		unsigned int len, last_len;
597		int nb;
598
599		len = skb ? skb->len : 0;
600		nb = skb ? 1 : 0;
601
602		while (segs) {
603			skb2 = segs->next;
604			skb_mark_not_on_list(segs);
605			qdisc_skb_cb(segs)->pkt_len = segs->len;
606			last_len = segs->len;
607			rc = qdisc_enqueue(segs, sch, to_free);
608			if (rc != NET_XMIT_SUCCESS) {
609				if (net_xmit_drop_count(rc))
610					qdisc_qstats_drop(sch);
611			} else {
612				nb++;
613				len += last_len;
614			}
615			segs = skb2;
616		}
617		/* Parent qdiscs accounted for 1 skb of size @prev_len */
618		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
619	} else if (!skb) {
620		return NET_XMIT_DROP;
621	}
622	return NET_XMIT_SUCCESS;
623}
624
625/* Delay the next round with a new future slot with a
626 * correct number of bytes and packets.
627 */
628
629static void get_slot_next(struct netem_sched_data *q, u64 now)
630{
631	s64 next_delay;
632
633	if (!q->slot_dist)
634		next_delay = q->slot_config.min_delay +
635				(prandom_u32() *
636				 (q->slot_config.max_delay -
637				  q->slot_config.min_delay) >> 32);
638	else
639		next_delay = tabledist(q->slot_config.dist_delay,
640				       (s32)(q->slot_config.dist_jitter),
641				       NULL, q->slot_dist);
642
643	q->slot.slot_next = now + next_delay;
644	q->slot.packets_left = q->slot_config.max_packets;
645	q->slot.bytes_left = q->slot_config.max_bytes;
646}
647
648static struct sk_buff *netem_peek(struct netem_sched_data *q)
649{
650	struct sk_buff *skb = skb_rb_first(&q->t_root);
651	u64 t1, t2;
652
653	if (!skb)
654		return q->t_head;
655	if (!q->t_head)
656		return skb;
657
658	t1 = netem_skb_cb(skb)->time_to_send;
659	t2 = netem_skb_cb(q->t_head)->time_to_send;
660	if (t1 < t2)
661		return skb;
662	return q->t_head;
663}
664
665static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
666{
667	if (skb == q->t_head) {
668		q->t_head = skb->next;
669		if (!q->t_head)
670			q->t_tail = NULL;
671	} else {
672		rb_erase(&skb->rbnode, &q->t_root);
673	}
674}
675
676static struct sk_buff *netem_dequeue(struct Qdisc *sch)
677{
678	struct netem_sched_data *q = qdisc_priv(sch);
679	struct sk_buff *skb;
680
681tfifo_dequeue:
682	skb = __qdisc_dequeue_head(&sch->q);
683	if (skb) {
684		qdisc_qstats_backlog_dec(sch, skb);
685deliver:
686		qdisc_bstats_update(sch, skb);
687		return skb;
688	}
689	skb = netem_peek(q);
690	if (skb) {
691		u64 time_to_send;
692		u64 now = ktime_get_ns();
693
694		/* if more time remaining? */
695		time_to_send = netem_skb_cb(skb)->time_to_send;
696		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
697			get_slot_next(q, now);
698
699		if (time_to_send <= now && q->slot.slot_next <= now) {
700			netem_erase_head(q, skb);
701			sch->q.qlen--;
702			qdisc_qstats_backlog_dec(sch, skb);
703			skb->next = NULL;
704			skb->prev = NULL;
705			/* skb->dev shares skb->rbnode area,
706			 * we need to restore its value.
707			 */
708			skb->dev = qdisc_dev(sch);
709
710			if (q->slot.slot_next) {
711				q->slot.packets_left--;
712				q->slot.bytes_left -= qdisc_pkt_len(skb);
713				if (q->slot.packets_left <= 0 ||
714				    q->slot.bytes_left <= 0)
715					get_slot_next(q, now);
716			}
717
718			if (q->qdisc) {
719				unsigned int pkt_len = qdisc_pkt_len(skb);
720				struct sk_buff *to_free = NULL;
721				int err;
722
723				err = qdisc_enqueue(skb, q->qdisc, &to_free);
724				kfree_skb_list(to_free);
725				if (err != NET_XMIT_SUCCESS) {
726					if (net_xmit_drop_count(err))
727						qdisc_qstats_drop(sch);
728					qdisc_tree_reduce_backlog(sch, 1, pkt_len);
729				}
730				goto tfifo_dequeue;
731			}
732			goto deliver;
733		}
734
735		if (q->qdisc) {
736			skb = q->qdisc->ops->dequeue(q->qdisc);
737			if (skb)
738				goto deliver;
739		}
740
741		qdisc_watchdog_schedule_ns(&q->watchdog,
742					   max(time_to_send,
743					       q->slot.slot_next));
744	}
745
746	if (q->qdisc) {
747		skb = q->qdisc->ops->dequeue(q->qdisc);
748		if (skb)
749			goto deliver;
750	}
751	return NULL;
752}
753
754static void netem_reset(struct Qdisc *sch)
755{
756	struct netem_sched_data *q = qdisc_priv(sch);
757
758	qdisc_reset_queue(sch);
759	tfifo_reset(sch);
760	if (q->qdisc)
761		qdisc_reset(q->qdisc);
762	qdisc_watchdog_cancel(&q->watchdog);
763}
764
765static void dist_free(struct disttable *d)
766{
767	kvfree(d);
768}
769
770/*
771 * Distribution data is a variable size payload containing
772 * signed 16 bit values.
773 */
774
775static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
776{
777	size_t n = nla_len(attr)/sizeof(__s16);
778	const __s16 *data = nla_data(attr);
779	struct disttable *d;
780	int i;
781
782	if (!n || n > NETEM_DIST_MAX)
783		return -EINVAL;
784
785	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
786	if (!d)
787		return -ENOMEM;
788
789	d->size = n;
790	for (i = 0; i < n; i++)
791		d->table[i] = data[i];
792
793	*tbl = d;
794	return 0;
795}
796
797static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
798{
799	const struct tc_netem_slot *c = nla_data(attr);
800
801	q->slot_config = *c;
802	if (q->slot_config.max_packets == 0)
803		q->slot_config.max_packets = INT_MAX;
804	if (q->slot_config.max_bytes == 0)
805		q->slot_config.max_bytes = INT_MAX;
806
807	/* capping dist_jitter to the range acceptable by tabledist() */
808	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
809
810	q->slot.packets_left = q->slot_config.max_packets;
811	q->slot.bytes_left = q->slot_config.max_bytes;
812	if (q->slot_config.min_delay | q->slot_config.max_delay |
813	    q->slot_config.dist_jitter)
814		q->slot.slot_next = ktime_get_ns();
815	else
816		q->slot.slot_next = 0;
817}
818
819static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
820{
821	const struct tc_netem_corr *c = nla_data(attr);
822
823	init_crandom(&q->delay_cor, c->delay_corr);
824	init_crandom(&q->loss_cor, c->loss_corr);
825	init_crandom(&q->dup_cor, c->dup_corr);
826}
827
828static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
829{
830	const struct tc_netem_reorder *r = nla_data(attr);
831
832	q->reorder = r->probability;
833	init_crandom(&q->reorder_cor, r->correlation);
834}
835
836static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
837{
838	const struct tc_netem_corrupt *r = nla_data(attr);
839
840	q->corrupt = r->probability;
841	init_crandom(&q->corrupt_cor, r->correlation);
842}
843
844static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
845{
846	const struct tc_netem_rate *r = nla_data(attr);
847
848	q->rate = r->rate;
849	q->packet_overhead = r->packet_overhead;
850	q->cell_size = r->cell_size;
851	q->cell_overhead = r->cell_overhead;
852	if (q->cell_size)
853		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
854	else
855		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
856}
857
858static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
859{
860	const struct nlattr *la;
861	int rem;
862
863	nla_for_each_nested(la, attr, rem) {
864		u16 type = nla_type(la);
865
866		switch (type) {
867		case NETEM_LOSS_GI: {
868			const struct tc_netem_gimodel *gi = nla_data(la);
869
870			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
871				pr_info("netem: incorrect gi model size\n");
872				return -EINVAL;
873			}
874
875			q->loss_model = CLG_4_STATES;
876
877			q->clg.state = TX_IN_GAP_PERIOD;
878			q->clg.a1 = gi->p13;
879			q->clg.a2 = gi->p31;
880			q->clg.a3 = gi->p32;
881			q->clg.a4 = gi->p14;
882			q->clg.a5 = gi->p23;
883			break;
884		}
885
886		case NETEM_LOSS_GE: {
887			const struct tc_netem_gemodel *ge = nla_data(la);
888
889			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
890				pr_info("netem: incorrect ge model size\n");
891				return -EINVAL;
892			}
893
894			q->loss_model = CLG_GILB_ELL;
895			q->clg.state = GOOD_STATE;
896			q->clg.a1 = ge->p;
897			q->clg.a2 = ge->r;
898			q->clg.a3 = ge->h;
899			q->clg.a4 = ge->k1;
900			break;
901		}
902
903		default:
904			pr_info("netem: unknown loss type %u\n", type);
905			return -EINVAL;
906		}
907	}
908
909	return 0;
910}
911
912static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
913	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
914	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
915	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
916	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
917	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
918	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
919	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
920	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
921	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
922	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
923};
924
925static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
926		      const struct nla_policy *policy, int len)
927{
928	int nested_len = nla_len(nla) - NLA_ALIGN(len);
929
930	if (nested_len < 0) {
931		pr_info("netem: invalid attributes len %d\n", nested_len);
932		return -EINVAL;
933	}
934
935	if (nested_len >= nla_attr_size(0))
936		return nla_parse_deprecated(tb, maxtype,
937					    nla_data(nla) + NLA_ALIGN(len),
938					    nested_len, policy, NULL);
939
940	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
941	return 0;
942}
943
944/* Parse netlink message to set options */
945static int netem_change(struct Qdisc *sch, struct nlattr *opt,
946			struct netlink_ext_ack *extack)
947{
948	struct netem_sched_data *q = qdisc_priv(sch);
949	struct nlattr *tb[TCA_NETEM_MAX + 1];
950	struct disttable *delay_dist = NULL;
951	struct disttable *slot_dist = NULL;
952	struct tc_netem_qopt *qopt;
953	struct clgstate old_clg;
954	int old_loss_model = CLG_RANDOM;
955	int ret;
956
957	if (opt == NULL)
958		return -EINVAL;
959
960	qopt = nla_data(opt);
961	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
962	if (ret < 0)
963		return ret;
964
965	if (tb[TCA_NETEM_DELAY_DIST]) {
966		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
967		if (ret)
968			goto table_free;
969	}
970
971	if (tb[TCA_NETEM_SLOT_DIST]) {
972		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
973		if (ret)
974			goto table_free;
975	}
976
977	sch_tree_lock(sch);
978	/* backup q->clg and q->loss_model */
979	old_clg = q->clg;
980	old_loss_model = q->loss_model;
981
982	if (tb[TCA_NETEM_LOSS]) {
983		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
984		if (ret) {
985			q->loss_model = old_loss_model;
986			q->clg = old_clg;
987			goto unlock;
988		}
989	} else {
990		q->loss_model = CLG_RANDOM;
991	}
992
993	if (delay_dist)
994		swap(q->delay_dist, delay_dist);
995	if (slot_dist)
996		swap(q->slot_dist, slot_dist);
997	sch->limit = qopt->limit;
998
999	q->latency = PSCHED_TICKS2NS(qopt->latency);
1000	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1001	q->limit = qopt->limit;
1002	q->gap = qopt->gap;
1003	q->counter = 0;
1004	q->loss = qopt->loss;
1005	q->duplicate = qopt->duplicate;
1006
1007	/* for compatibility with earlier versions.
1008	 * if gap is set, need to assume 100% probability
1009	 */
1010	if (q->gap)
1011		q->reorder = ~0;
1012
1013	if (tb[TCA_NETEM_CORR])
1014		get_correlation(q, tb[TCA_NETEM_CORR]);
1015
1016	if (tb[TCA_NETEM_REORDER])
1017		get_reorder(q, tb[TCA_NETEM_REORDER]);
1018
1019	if (tb[TCA_NETEM_CORRUPT])
1020		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1021
1022	if (tb[TCA_NETEM_RATE])
1023		get_rate(q, tb[TCA_NETEM_RATE]);
1024
1025	if (tb[TCA_NETEM_RATE64])
1026		q->rate = max_t(u64, q->rate,
1027				nla_get_u64(tb[TCA_NETEM_RATE64]));
1028
1029	if (tb[TCA_NETEM_LATENCY64])
1030		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1031
1032	if (tb[TCA_NETEM_JITTER64])
1033		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1034
1035	if (tb[TCA_NETEM_ECN])
1036		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1037
1038	if (tb[TCA_NETEM_SLOT])
1039		get_slot(q, tb[TCA_NETEM_SLOT]);
1040
1041	/* capping jitter to the range acceptable by tabledist() */
1042	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1043
1044unlock:
1045	sch_tree_unlock(sch);
1046
1047table_free:
1048	dist_free(delay_dist);
1049	dist_free(slot_dist);
1050	return ret;
1051}
1052
1053static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1054		      struct netlink_ext_ack *extack)
1055{
1056	struct netem_sched_data *q = qdisc_priv(sch);
1057	int ret;
1058
1059	qdisc_watchdog_init(&q->watchdog, sch);
1060
1061	if (!opt)
1062		return -EINVAL;
1063
1064	q->loss_model = CLG_RANDOM;
1065	ret = netem_change(sch, opt, extack);
1066	if (ret)
1067		pr_info("netem: change failed\n");
1068	return ret;
1069}
1070
1071static void netem_destroy(struct Qdisc *sch)
1072{
1073	struct netem_sched_data *q = qdisc_priv(sch);
1074
1075	qdisc_watchdog_cancel(&q->watchdog);
1076	if (q->qdisc)
1077		qdisc_put(q->qdisc);
1078	dist_free(q->delay_dist);
1079	dist_free(q->slot_dist);
1080}
1081
1082static int dump_loss_model(const struct netem_sched_data *q,
1083			   struct sk_buff *skb)
1084{
1085	struct nlattr *nest;
1086
1087	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1088	if (nest == NULL)
1089		goto nla_put_failure;
1090
1091	switch (q->loss_model) {
1092	case CLG_RANDOM:
1093		/* legacy loss model */
1094		nla_nest_cancel(skb, nest);
1095		return 0;	/* no data */
1096
1097	case CLG_4_STATES: {
1098		struct tc_netem_gimodel gi = {
1099			.p13 = q->clg.a1,
1100			.p31 = q->clg.a2,
1101			.p32 = q->clg.a3,
1102			.p14 = q->clg.a4,
1103			.p23 = q->clg.a5,
1104		};
1105
1106		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1107			goto nla_put_failure;
1108		break;
1109	}
1110	case CLG_GILB_ELL: {
1111		struct tc_netem_gemodel ge = {
1112			.p = q->clg.a1,
1113			.r = q->clg.a2,
1114			.h = q->clg.a3,
1115			.k1 = q->clg.a4,
1116		};
1117
1118		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1119			goto nla_put_failure;
1120		break;
1121	}
1122	}
1123
1124	nla_nest_end(skb, nest);
1125	return 0;
1126
1127nla_put_failure:
1128	nla_nest_cancel(skb, nest);
1129	return -1;
1130}
1131
1132static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1133{
1134	const struct netem_sched_data *q = qdisc_priv(sch);
1135	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1136	struct tc_netem_qopt qopt;
1137	struct tc_netem_corr cor;
1138	struct tc_netem_reorder reorder;
1139	struct tc_netem_corrupt corrupt;
1140	struct tc_netem_rate rate;
1141	struct tc_netem_slot slot;
1142
1143	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1144			     UINT_MAX);
1145	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1146			    UINT_MAX);
1147	qopt.limit = q->limit;
1148	qopt.loss = q->loss;
1149	qopt.gap = q->gap;
1150	qopt.duplicate = q->duplicate;
1151	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1152		goto nla_put_failure;
1153
1154	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1155		goto nla_put_failure;
1156
1157	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1158		goto nla_put_failure;
1159
1160	cor.delay_corr = q->delay_cor.rho;
1161	cor.loss_corr = q->loss_cor.rho;
1162	cor.dup_corr = q->dup_cor.rho;
1163	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1164		goto nla_put_failure;
1165
1166	reorder.probability = q->reorder;
1167	reorder.correlation = q->reorder_cor.rho;
1168	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1169		goto nla_put_failure;
1170
1171	corrupt.probability = q->corrupt;
1172	corrupt.correlation = q->corrupt_cor.rho;
1173	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1174		goto nla_put_failure;
1175
1176	if (q->rate >= (1ULL << 32)) {
1177		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1178				      TCA_NETEM_PAD))
1179			goto nla_put_failure;
1180		rate.rate = ~0U;
1181	} else {
1182		rate.rate = q->rate;
1183	}
1184	rate.packet_overhead = q->packet_overhead;
1185	rate.cell_size = q->cell_size;
1186	rate.cell_overhead = q->cell_overhead;
1187	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1188		goto nla_put_failure;
1189
1190	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1191		goto nla_put_failure;
1192
1193	if (dump_loss_model(q, skb) != 0)
1194		goto nla_put_failure;
1195
1196	if (q->slot_config.min_delay | q->slot_config.max_delay |
1197	    q->slot_config.dist_jitter) {
1198		slot = q->slot_config;
1199		if (slot.max_packets == INT_MAX)
1200			slot.max_packets = 0;
1201		if (slot.max_bytes == INT_MAX)
1202			slot.max_bytes = 0;
1203		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1204			goto nla_put_failure;
1205	}
1206
1207	return nla_nest_end(skb, nla);
1208
1209nla_put_failure:
1210	nlmsg_trim(skb, nla);
1211	return -1;
1212}
1213
1214static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1215			  struct sk_buff *skb, struct tcmsg *tcm)
1216{
1217	struct netem_sched_data *q = qdisc_priv(sch);
1218
1219	if (cl != 1 || !q->qdisc) 	/* only one class */
1220		return -ENOENT;
1221
1222	tcm->tcm_handle |= TC_H_MIN(1);
1223	tcm->tcm_info = q->qdisc->handle;
1224
1225	return 0;
1226}
1227
1228static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1229		     struct Qdisc **old, struct netlink_ext_ack *extack)
1230{
1231	struct netem_sched_data *q = qdisc_priv(sch);
1232
1233	*old = qdisc_replace(sch, new, &q->qdisc);
1234	return 0;
1235}
1236
1237static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1238{
1239	struct netem_sched_data *q = qdisc_priv(sch);
1240	return q->qdisc;
1241}
1242
1243static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1244{
1245	return 1;
1246}
1247
1248static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1249{
1250	if (!walker->stop) {
1251		if (walker->count >= walker->skip)
1252			if (walker->fn(sch, 1, walker) < 0) {
1253				walker->stop = 1;
1254				return;
1255			}
1256		walker->count++;
1257	}
1258}
1259
1260static const struct Qdisc_class_ops netem_class_ops = {
1261	.graft		=	netem_graft,
1262	.leaf		=	netem_leaf,
1263	.find		=	netem_find,
1264	.walk		=	netem_walk,
1265	.dump		=	netem_dump_class,
1266};
1267
1268static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1269	.id		=	"netem",
1270	.cl_ops		=	&netem_class_ops,
1271	.priv_size	=	sizeof(struct netem_sched_data),
1272	.enqueue	=	netem_enqueue,
1273	.dequeue	=	netem_dequeue,
1274	.peek		=	qdisc_peek_dequeued,
1275	.init		=	netem_init,
1276	.reset		=	netem_reset,
1277	.destroy	=	netem_destroy,
1278	.change		=	netem_change,
1279	.dump		=	netem_dump,
1280	.owner		=	THIS_MODULE,
1281};
1282
1283
1284static int __init netem_module_init(void)
1285{
1286	pr_info("netem: version " VERSION "\n");
1287	return register_qdisc(&netem_qdisc_ops);
1288}
1289static void __exit netem_module_exit(void)
1290{
1291	unregister_qdisc(&netem_qdisc_ops);
1292}
1293module_init(netem_module_init)
1294module_exit(netem_module_exit)
1295MODULE_LICENSE("GPL");
1296