xref: /kernel/linux/linux-5.10/net/sched/sch_fq.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4 *
5 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6 *
7 *  Meant to be mostly used for locally generated traffic :
8 *  Fast classification depends on skb->sk being set before reaching us.
9 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10 *  All packets belonging to a socket are considered as a 'flow'.
11 *
12 *  Flows are dynamically allocated and stored in a hash table of RB trees
13 *  They are also part of one Round Robin 'queues' (new or old flows)
14 *
15 *  Burst avoidance (aka pacing) capability :
16 *
17 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18 *  bunch of packets, and this packet scheduler adds delay between
19 *  packets to respect rate limitation.
20 *
21 *  enqueue() :
22 *   - lookup one RB tree (out of 1024 or more) to find the flow.
23 *     If non existent flow, create it, add it to the tree.
24 *     Add skb to the per flow list of skb (fifo).
25 *   - Use a special fifo for high prio packets
26 *
27 *  dequeue() : serves flows in Round Robin
28 *  Note : When a flow becomes empty, we do not immediately remove it from
29 *  rb trees, for performance reasons (its expected to send additional packets,
30 *  or SLAB cache will reuse socket for another flow)
31 */
32
33#include <linux/module.h>
34#include <linux/types.h>
35#include <linux/kernel.h>
36#include <linux/jiffies.h>
37#include <linux/string.h>
38#include <linux/in.h>
39#include <linux/errno.h>
40#include <linux/init.h>
41#include <linux/skbuff.h>
42#include <linux/slab.h>
43#include <linux/rbtree.h>
44#include <linux/hash.h>
45#include <linux/prefetch.h>
46#include <linux/vmalloc.h>
47#include <net/netlink.h>
48#include <net/pkt_sched.h>
49#include <net/sock.h>
50#include <net/tcp_states.h>
51#include <net/tcp.h>
52
53struct fq_skb_cb {
54	u64	        time_to_send;
55};
56
57static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
58{
59	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
60	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
61}
62
63/*
64 * Per flow structure, dynamically allocated.
65 * If packets have monotically increasing time_to_send, they are placed in O(1)
66 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
67 */
68struct fq_flow {
69/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
70	struct rb_root	t_root;
71	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
72	union {
73		struct sk_buff *tail;	/* last skb in the list */
74		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
75	};
76	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
77	struct sock	*sk;
78	u32		socket_hash;	/* sk_hash */
79	int		qlen;		/* number of packets in flow queue */
80
81/* Second cache line, used in fq_dequeue() */
82	int		credit;
83	/* 32bit hole on 64bit arches */
84
85	struct fq_flow *next;		/* next pointer in RR lists */
86
87	struct rb_node  rate_node;	/* anchor in q->delayed tree */
88	u64		time_next_packet;
89} ____cacheline_aligned_in_smp;
90
91struct fq_flow_head {
92	struct fq_flow *first;
93	struct fq_flow *last;
94};
95
96struct fq_sched_data {
97	struct fq_flow_head new_flows;
98
99	struct fq_flow_head old_flows;
100
101	struct rb_root	delayed;	/* for rate limited flows */
102	u64		time_next_delayed_flow;
103	u64		ktime_cache;	/* copy of last ktime_get_ns() */
104	unsigned long	unthrottle_latency_ns;
105
106	struct fq_flow	internal;	/* for non classified or high prio packets */
107	u32		quantum;
108	u32		initial_quantum;
109	u32		flow_refill_delay;
110	u32		flow_plimit;	/* max packets per flow */
111	unsigned long	flow_max_rate;	/* optional max rate per flow */
112	u64		ce_threshold;
113	u64		horizon;	/* horizon in ns */
114	u32		orphan_mask;	/* mask for orphaned skb */
115	u32		low_rate_threshold;
116	struct rb_root	*fq_root;
117	u8		rate_enable;
118	u8		fq_trees_log;
119	u8		horizon_drop;
120	u32		flows;
121	u32		inactive_flows;
122	u32		throttled_flows;
123
124	u64		stat_gc_flows;
125	u64		stat_internal_packets;
126	u64		stat_throttled;
127	u64		stat_ce_mark;
128	u64		stat_horizon_drops;
129	u64		stat_horizon_caps;
130	u64		stat_flows_plimit;
131	u64		stat_pkts_too_long;
132	u64		stat_allocation_errors;
133
134	u32		timer_slack; /* hrtimer slack in ns */
135	struct qdisc_watchdog watchdog;
136};
137
138/*
139 * f->tail and f->age share the same location.
140 * We can use the low order bit to differentiate if this location points
141 * to a sk_buff or contains a jiffies value, if we force this value to be odd.
142 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
143 */
144static void fq_flow_set_detached(struct fq_flow *f)
145{
146	f->age = jiffies | 1UL;
147}
148
149static bool fq_flow_is_detached(const struct fq_flow *f)
150{
151	return !!(f->age & 1UL);
152}
153
154/* special value to mark a throttled flow (not on old/new list) */
155static struct fq_flow throttled;
156
157static bool fq_flow_is_throttled(const struct fq_flow *f)
158{
159	return f->next == &throttled;
160}
161
162static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
163{
164	if (head->first)
165		head->last->next = flow;
166	else
167		head->first = flow;
168	head->last = flow;
169	flow->next = NULL;
170}
171
172static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
173{
174	rb_erase(&f->rate_node, &q->delayed);
175	q->throttled_flows--;
176	fq_flow_add_tail(&q->old_flows, f);
177}
178
179static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
180{
181	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
182
183	while (*p) {
184		struct fq_flow *aux;
185
186		parent = *p;
187		aux = rb_entry(parent, struct fq_flow, rate_node);
188		if (f->time_next_packet >= aux->time_next_packet)
189			p = &parent->rb_right;
190		else
191			p = &parent->rb_left;
192	}
193	rb_link_node(&f->rate_node, parent, p);
194	rb_insert_color(&f->rate_node, &q->delayed);
195	q->throttled_flows++;
196	q->stat_throttled++;
197
198	f->next = &throttled;
199	if (q->time_next_delayed_flow > f->time_next_packet)
200		q->time_next_delayed_flow = f->time_next_packet;
201}
202
203
204static struct kmem_cache *fq_flow_cachep __read_mostly;
205
206
207/* limit number of collected flows per round */
208#define FQ_GC_MAX 8
209#define FQ_GC_AGE (3*HZ)
210
211static bool fq_gc_candidate(const struct fq_flow *f)
212{
213	return fq_flow_is_detached(f) &&
214	       time_after(jiffies, f->age + FQ_GC_AGE);
215}
216
217static void fq_gc(struct fq_sched_data *q,
218		  struct rb_root *root,
219		  struct sock *sk)
220{
221	struct rb_node **p, *parent;
222	void *tofree[FQ_GC_MAX];
223	struct fq_flow *f;
224	int i, fcnt = 0;
225
226	p = &root->rb_node;
227	parent = NULL;
228	while (*p) {
229		parent = *p;
230
231		f = rb_entry(parent, struct fq_flow, fq_node);
232		if (f->sk == sk)
233			break;
234
235		if (fq_gc_candidate(f)) {
236			tofree[fcnt++] = f;
237			if (fcnt == FQ_GC_MAX)
238				break;
239		}
240
241		if (f->sk > sk)
242			p = &parent->rb_right;
243		else
244			p = &parent->rb_left;
245	}
246
247	if (!fcnt)
248		return;
249
250	for (i = fcnt; i > 0; ) {
251		f = tofree[--i];
252		rb_erase(&f->fq_node, root);
253	}
254	q->flows -= fcnt;
255	q->inactive_flows -= fcnt;
256	q->stat_gc_flows += fcnt;
257
258	kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
259}
260
261static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
262{
263	struct rb_node **p, *parent;
264	struct sock *sk = skb->sk;
265	struct rb_root *root;
266	struct fq_flow *f;
267
268	/* warning: no starvation prevention... */
269	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
270		return &q->internal;
271
272	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
273	 * or a listener (SYNCOOKIE mode)
274	 * 1) request sockets are not full blown,
275	 *    they do not contain sk_pacing_rate
276	 * 2) They are not part of a 'flow' yet
277	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
278	 *    especially if the listener set SO_MAX_PACING_RATE
279	 * 4) We pretend they are orphaned
280	 */
281	if (!sk || sk_listener(sk)) {
282		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
283
284		/* By forcing low order bit to 1, we make sure to not
285		 * collide with a local flow (socket pointers are word aligned)
286		 */
287		sk = (struct sock *)((hash << 1) | 1UL);
288		skb_orphan(skb);
289	} else if (sk->sk_state == TCP_CLOSE) {
290		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
291		/*
292		 * Sockets in TCP_CLOSE are non connected.
293		 * Typical use case is UDP sockets, they can send packets
294		 * with sendto() to many different destinations.
295		 * We probably could use a generic bit advertising
296		 * non connected sockets, instead of sk_state == TCP_CLOSE,
297		 * if we care enough.
298		 */
299		sk = (struct sock *)((hash << 1) | 1UL);
300	}
301
302	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
303
304	if (q->flows >= (2U << q->fq_trees_log) &&
305	    q->inactive_flows > q->flows/2)
306		fq_gc(q, root, sk);
307
308	p = &root->rb_node;
309	parent = NULL;
310	while (*p) {
311		parent = *p;
312
313		f = rb_entry(parent, struct fq_flow, fq_node);
314		if (f->sk == sk) {
315			/* socket might have been reallocated, so check
316			 * if its sk_hash is the same.
317			 * It not, we need to refill credit with
318			 * initial quantum
319			 */
320			if (unlikely(skb->sk == sk &&
321				     f->socket_hash != sk->sk_hash)) {
322				f->credit = q->initial_quantum;
323				f->socket_hash = sk->sk_hash;
324				if (q->rate_enable)
325					smp_store_release(&sk->sk_pacing_status,
326							  SK_PACING_FQ);
327				if (fq_flow_is_throttled(f))
328					fq_flow_unset_throttled(q, f);
329				f->time_next_packet = 0ULL;
330			}
331			return f;
332		}
333		if (f->sk > sk)
334			p = &parent->rb_right;
335		else
336			p = &parent->rb_left;
337	}
338
339	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
340	if (unlikely(!f)) {
341		q->stat_allocation_errors++;
342		return &q->internal;
343	}
344	/* f->t_root is already zeroed after kmem_cache_zalloc() */
345
346	fq_flow_set_detached(f);
347	f->sk = sk;
348	if (skb->sk == sk) {
349		f->socket_hash = sk->sk_hash;
350		if (q->rate_enable)
351			smp_store_release(&sk->sk_pacing_status,
352					  SK_PACING_FQ);
353	}
354	f->credit = q->initial_quantum;
355
356	rb_link_node(&f->fq_node, parent, p);
357	rb_insert_color(&f->fq_node, root);
358
359	q->flows++;
360	q->inactive_flows++;
361	return f;
362}
363
364static struct sk_buff *fq_peek(struct fq_flow *flow)
365{
366	struct sk_buff *skb = skb_rb_first(&flow->t_root);
367	struct sk_buff *head = flow->head;
368
369	if (!skb)
370		return head;
371
372	if (!head)
373		return skb;
374
375	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
376		return skb;
377	return head;
378}
379
380static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
381			  struct sk_buff *skb)
382{
383	if (skb == flow->head) {
384		flow->head = skb->next;
385	} else {
386		rb_erase(&skb->rbnode, &flow->t_root);
387		skb->dev = qdisc_dev(sch);
388	}
389}
390
391/* Remove one skb from flow queue.
392 * This skb must be the return value of prior fq_peek().
393 */
394static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
395			   struct sk_buff *skb)
396{
397	fq_erase_head(sch, flow, skb);
398	skb_mark_not_on_list(skb);
399	flow->qlen--;
400	qdisc_qstats_backlog_dec(sch, skb);
401	sch->q.qlen--;
402}
403
404static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
405{
406	struct rb_node **p, *parent;
407	struct sk_buff *head, *aux;
408
409	head = flow->head;
410	if (!head ||
411	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
412		if (!head)
413			flow->head = skb;
414		else
415			flow->tail->next = skb;
416		flow->tail = skb;
417		skb->next = NULL;
418		return;
419	}
420
421	p = &flow->t_root.rb_node;
422	parent = NULL;
423
424	while (*p) {
425		parent = *p;
426		aux = rb_to_skb(parent);
427		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
428			p = &parent->rb_right;
429		else
430			p = &parent->rb_left;
431	}
432	rb_link_node(&skb->rbnode, parent, p);
433	rb_insert_color(&skb->rbnode, &flow->t_root);
434}
435
436static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
437				    const struct fq_sched_data *q)
438{
439	return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon));
440}
441
442static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
443		      struct sk_buff **to_free)
444{
445	struct fq_sched_data *q = qdisc_priv(sch);
446	struct fq_flow *f;
447
448	if (unlikely(sch->q.qlen >= sch->limit))
449		return qdisc_drop(skb, sch, to_free);
450
451	if (!skb->tstamp) {
452		fq_skb_cb(skb)->time_to_send = q->ktime_cache = ktime_get_ns();
453	} else {
454		/* Check if packet timestamp is too far in the future.
455		 * Try first if our cached value, to avoid ktime_get_ns()
456		 * cost in most cases.
457		 */
458		if (fq_packet_beyond_horizon(skb, q)) {
459			/* Refresh our cache and check another time */
460			q->ktime_cache = ktime_get_ns();
461			if (fq_packet_beyond_horizon(skb, q)) {
462				if (q->horizon_drop) {
463					q->stat_horizon_drops++;
464					return qdisc_drop(skb, sch, to_free);
465				}
466				q->stat_horizon_caps++;
467				skb->tstamp = q->ktime_cache + q->horizon;
468			}
469		}
470		fq_skb_cb(skb)->time_to_send = skb->tstamp;
471	}
472
473	f = fq_classify(skb, q);
474	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
475		q->stat_flows_plimit++;
476		return qdisc_drop(skb, sch, to_free);
477	}
478
479	f->qlen++;
480	qdisc_qstats_backlog_inc(sch, skb);
481	if (fq_flow_is_detached(f)) {
482		fq_flow_add_tail(&q->new_flows, f);
483		if (time_after(jiffies, f->age + q->flow_refill_delay))
484			f->credit = max_t(u32, f->credit, q->quantum);
485		q->inactive_flows--;
486	}
487
488	/* Note: this overwrites f->age */
489	flow_queue_add(f, skb);
490
491	if (unlikely(f == &q->internal)) {
492		q->stat_internal_packets++;
493	}
494	sch->q.qlen++;
495
496	return NET_XMIT_SUCCESS;
497}
498
499static void fq_check_throttled(struct fq_sched_data *q, u64 now)
500{
501	unsigned long sample;
502	struct rb_node *p;
503
504	if (q->time_next_delayed_flow > now)
505		return;
506
507	/* Update unthrottle latency EWMA.
508	 * This is cheap and can help diagnosing timer/latency problems.
509	 */
510	sample = (unsigned long)(now - q->time_next_delayed_flow);
511	q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
512	q->unthrottle_latency_ns += sample >> 3;
513
514	q->time_next_delayed_flow = ~0ULL;
515	while ((p = rb_first(&q->delayed)) != NULL) {
516		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
517
518		if (f->time_next_packet > now) {
519			q->time_next_delayed_flow = f->time_next_packet;
520			break;
521		}
522		fq_flow_unset_throttled(q, f);
523	}
524}
525
526static struct sk_buff *fq_dequeue(struct Qdisc *sch)
527{
528	struct fq_sched_data *q = qdisc_priv(sch);
529	struct fq_flow_head *head;
530	struct sk_buff *skb;
531	struct fq_flow *f;
532	unsigned long rate;
533	u32 plen;
534	u64 now;
535
536	if (!sch->q.qlen)
537		return NULL;
538
539	skb = fq_peek(&q->internal);
540	if (unlikely(skb)) {
541		fq_dequeue_skb(sch, &q->internal, skb);
542		goto out;
543	}
544
545	q->ktime_cache = now = ktime_get_ns();
546	fq_check_throttled(q, now);
547begin:
548	head = &q->new_flows;
549	if (!head->first) {
550		head = &q->old_flows;
551		if (!head->first) {
552			if (q->time_next_delayed_flow != ~0ULL)
553				qdisc_watchdog_schedule_range_ns(&q->watchdog,
554							q->time_next_delayed_flow,
555							q->timer_slack);
556			return NULL;
557		}
558	}
559	f = head->first;
560
561	if (f->credit <= 0) {
562		f->credit += q->quantum;
563		head->first = f->next;
564		fq_flow_add_tail(&q->old_flows, f);
565		goto begin;
566	}
567
568	skb = fq_peek(f);
569	if (skb) {
570		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
571					     f->time_next_packet);
572
573		if (now < time_next_packet) {
574			head->first = f->next;
575			f->time_next_packet = time_next_packet;
576			fq_flow_set_throttled(q, f);
577			goto begin;
578		}
579		prefetch(&skb->end);
580		if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
581			INET_ECN_set_ce(skb);
582			q->stat_ce_mark++;
583		}
584		fq_dequeue_skb(sch, f, skb);
585	} else {
586		head->first = f->next;
587		/* force a pass through old_flows to prevent starvation */
588		if ((head == &q->new_flows) && q->old_flows.first) {
589			fq_flow_add_tail(&q->old_flows, f);
590		} else {
591			fq_flow_set_detached(f);
592			q->inactive_flows++;
593		}
594		goto begin;
595	}
596	plen = qdisc_pkt_len(skb);
597	f->credit -= plen;
598
599	if (!q->rate_enable)
600		goto out;
601
602	rate = q->flow_max_rate;
603
604	/* If EDT time was provided for this skb, we need to
605	 * update f->time_next_packet only if this qdisc enforces
606	 * a flow max rate.
607	 */
608	if (!skb->tstamp) {
609		if (skb->sk)
610			rate = min(skb->sk->sk_pacing_rate, rate);
611
612		if (rate <= q->low_rate_threshold) {
613			f->credit = 0;
614		} else {
615			plen = max(plen, q->quantum);
616			if (f->credit > 0)
617				goto out;
618		}
619	}
620	if (rate != ~0UL) {
621		u64 len = (u64)plen * NSEC_PER_SEC;
622
623		if (likely(rate))
624			len = div64_ul(len, rate);
625		/* Since socket rate can change later,
626		 * clamp the delay to 1 second.
627		 * Really, providers of too big packets should be fixed !
628		 */
629		if (unlikely(len > NSEC_PER_SEC)) {
630			len = NSEC_PER_SEC;
631			q->stat_pkts_too_long++;
632		}
633		/* Account for schedule/timers drifts.
634		 * f->time_next_packet was set when prior packet was sent,
635		 * and current time (@now) can be too late by tens of us.
636		 */
637		if (f->time_next_packet)
638			len -= min(len/2, now - f->time_next_packet);
639		f->time_next_packet = now + len;
640	}
641out:
642	qdisc_bstats_update(sch, skb);
643	return skb;
644}
645
646static void fq_flow_purge(struct fq_flow *flow)
647{
648	struct rb_node *p = rb_first(&flow->t_root);
649
650	while (p) {
651		struct sk_buff *skb = rb_to_skb(p);
652
653		p = rb_next(p);
654		rb_erase(&skb->rbnode, &flow->t_root);
655		rtnl_kfree_skbs(skb, skb);
656	}
657	rtnl_kfree_skbs(flow->head, flow->tail);
658	flow->head = NULL;
659	flow->qlen = 0;
660}
661
662static void fq_reset(struct Qdisc *sch)
663{
664	struct fq_sched_data *q = qdisc_priv(sch);
665	struct rb_root *root;
666	struct rb_node *p;
667	struct fq_flow *f;
668	unsigned int idx;
669
670	sch->q.qlen = 0;
671	sch->qstats.backlog = 0;
672
673	fq_flow_purge(&q->internal);
674
675	if (!q->fq_root)
676		return;
677
678	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
679		root = &q->fq_root[idx];
680		while ((p = rb_first(root)) != NULL) {
681			f = rb_entry(p, struct fq_flow, fq_node);
682			rb_erase(p, root);
683
684			fq_flow_purge(f);
685
686			kmem_cache_free(fq_flow_cachep, f);
687		}
688	}
689	q->new_flows.first	= NULL;
690	q->old_flows.first	= NULL;
691	q->delayed		= RB_ROOT;
692	q->flows		= 0;
693	q->inactive_flows	= 0;
694	q->throttled_flows	= 0;
695}
696
697static void fq_rehash(struct fq_sched_data *q,
698		      struct rb_root *old_array, u32 old_log,
699		      struct rb_root *new_array, u32 new_log)
700{
701	struct rb_node *op, **np, *parent;
702	struct rb_root *oroot, *nroot;
703	struct fq_flow *of, *nf;
704	int fcnt = 0;
705	u32 idx;
706
707	for (idx = 0; idx < (1U << old_log); idx++) {
708		oroot = &old_array[idx];
709		while ((op = rb_first(oroot)) != NULL) {
710			rb_erase(op, oroot);
711			of = rb_entry(op, struct fq_flow, fq_node);
712			if (fq_gc_candidate(of)) {
713				fcnt++;
714				kmem_cache_free(fq_flow_cachep, of);
715				continue;
716			}
717			nroot = &new_array[hash_ptr(of->sk, new_log)];
718
719			np = &nroot->rb_node;
720			parent = NULL;
721			while (*np) {
722				parent = *np;
723
724				nf = rb_entry(parent, struct fq_flow, fq_node);
725				BUG_ON(nf->sk == of->sk);
726
727				if (nf->sk > of->sk)
728					np = &parent->rb_right;
729				else
730					np = &parent->rb_left;
731			}
732
733			rb_link_node(&of->fq_node, parent, np);
734			rb_insert_color(&of->fq_node, nroot);
735		}
736	}
737	q->flows -= fcnt;
738	q->inactive_flows -= fcnt;
739	q->stat_gc_flows += fcnt;
740}
741
742static void fq_free(void *addr)
743{
744	kvfree(addr);
745}
746
747static int fq_resize(struct Qdisc *sch, u32 log)
748{
749	struct fq_sched_data *q = qdisc_priv(sch);
750	struct rb_root *array;
751	void *old_fq_root;
752	u32 idx;
753
754	if (q->fq_root && log == q->fq_trees_log)
755		return 0;
756
757	/* If XPS was setup, we can allocate memory on right NUMA node */
758	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
759			      netdev_queue_numa_node_read(sch->dev_queue));
760	if (!array)
761		return -ENOMEM;
762
763	for (idx = 0; idx < (1U << log); idx++)
764		array[idx] = RB_ROOT;
765
766	sch_tree_lock(sch);
767
768	old_fq_root = q->fq_root;
769	if (old_fq_root)
770		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
771
772	q->fq_root = array;
773	q->fq_trees_log = log;
774
775	sch_tree_unlock(sch);
776
777	fq_free(old_fq_root);
778
779	return 0;
780}
781
782static struct netlink_range_validation iq_range = {
783	.max = INT_MAX,
784};
785
786static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
787	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },
788
789	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
790	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
791	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
792	[TCA_FQ_INITIAL_QUANTUM]	= NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
793	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
794	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
795	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
796	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
797	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
798	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
799	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
800	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
801	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
802	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
803	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
804};
805
806static int fq_change(struct Qdisc *sch, struct nlattr *opt,
807		     struct netlink_ext_ack *extack)
808{
809	struct fq_sched_data *q = qdisc_priv(sch);
810	struct nlattr *tb[TCA_FQ_MAX + 1];
811	int err, drop_count = 0;
812	unsigned drop_len = 0;
813	u32 fq_log;
814
815	if (!opt)
816		return -EINVAL;
817
818	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
819					  NULL);
820	if (err < 0)
821		return err;
822
823	sch_tree_lock(sch);
824
825	fq_log = q->fq_trees_log;
826
827	if (tb[TCA_FQ_BUCKETS_LOG]) {
828		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
829
830		if (nval >= 1 && nval <= ilog2(256*1024))
831			fq_log = nval;
832		else
833			err = -EINVAL;
834	}
835	if (tb[TCA_FQ_PLIMIT])
836		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
837
838	if (tb[TCA_FQ_FLOW_PLIMIT])
839		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
840
841	if (tb[TCA_FQ_QUANTUM]) {
842		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
843
844		if (quantum > 0 && quantum <= (1 << 20)) {
845			q->quantum = quantum;
846		} else {
847			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
848			err = -EINVAL;
849		}
850	}
851
852	if (tb[TCA_FQ_INITIAL_QUANTUM])
853		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
854
855	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
856		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
857				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
858
859	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
860		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
861
862		q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
863	}
864	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
865		q->low_rate_threshold =
866			nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
867
868	if (tb[TCA_FQ_RATE_ENABLE]) {
869		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
870
871		if (enable <= 1)
872			q->rate_enable = enable;
873		else
874			err = -EINVAL;
875	}
876
877	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
878		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
879
880		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
881	}
882
883	if (tb[TCA_FQ_ORPHAN_MASK])
884		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
885
886	if (tb[TCA_FQ_CE_THRESHOLD])
887		q->ce_threshold = (u64)NSEC_PER_USEC *
888				  nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
889
890	if (tb[TCA_FQ_TIMER_SLACK])
891		q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
892
893	if (tb[TCA_FQ_HORIZON])
894		q->horizon = (u64)NSEC_PER_USEC *
895				  nla_get_u32(tb[TCA_FQ_HORIZON]);
896
897	if (tb[TCA_FQ_HORIZON_DROP])
898		q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
899
900	if (!err) {
901
902		sch_tree_unlock(sch);
903		err = fq_resize(sch, fq_log);
904		sch_tree_lock(sch);
905	}
906	while (sch->q.qlen > sch->limit) {
907		struct sk_buff *skb = fq_dequeue(sch);
908
909		if (!skb)
910			break;
911		drop_len += qdisc_pkt_len(skb);
912		rtnl_kfree_skbs(skb, skb);
913		drop_count++;
914	}
915	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
916
917	sch_tree_unlock(sch);
918	return err;
919}
920
921static void fq_destroy(struct Qdisc *sch)
922{
923	struct fq_sched_data *q = qdisc_priv(sch);
924
925	fq_reset(sch);
926	fq_free(q->fq_root);
927	qdisc_watchdog_cancel(&q->watchdog);
928}
929
930static int fq_init(struct Qdisc *sch, struct nlattr *opt,
931		   struct netlink_ext_ack *extack)
932{
933	struct fq_sched_data *q = qdisc_priv(sch);
934	int err;
935
936	sch->limit		= 10000;
937	q->flow_plimit		= 100;
938	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
939	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
940	q->flow_refill_delay	= msecs_to_jiffies(40);
941	q->flow_max_rate	= ~0UL;
942	q->time_next_delayed_flow = ~0ULL;
943	q->rate_enable		= 1;
944	q->new_flows.first	= NULL;
945	q->old_flows.first	= NULL;
946	q->delayed		= RB_ROOT;
947	q->fq_root		= NULL;
948	q->fq_trees_log		= ilog2(1024);
949	q->orphan_mask		= 1024 - 1;
950	q->low_rate_threshold	= 550000 / 8;
951
952	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
953
954	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
955	q->horizon_drop = 1; /* by default, drop packets beyond horizon */
956
957	/* Default ce_threshold of 4294 seconds */
958	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
959
960	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
961
962	if (opt)
963		err = fq_change(sch, opt, extack);
964	else
965		err = fq_resize(sch, q->fq_trees_log);
966
967	return err;
968}
969
970static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
971{
972	struct fq_sched_data *q = qdisc_priv(sch);
973	u64 ce_threshold = q->ce_threshold;
974	u64 horizon = q->horizon;
975	struct nlattr *opts;
976
977	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
978	if (opts == NULL)
979		goto nla_put_failure;
980
981	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
982
983	do_div(ce_threshold, NSEC_PER_USEC);
984	do_div(horizon, NSEC_PER_USEC);
985
986	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
987	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
988	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
989	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
990	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
991	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
992			min_t(unsigned long, q->flow_max_rate, ~0U)) ||
993	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
994			jiffies_to_usecs(q->flow_refill_delay)) ||
995	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
996	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
997			q->low_rate_threshold) ||
998	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
999	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
1000	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
1001	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
1002	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
1003		goto nla_put_failure;
1004
1005	return nla_nest_end(skb, opts);
1006
1007nla_put_failure:
1008	return -1;
1009}
1010
1011static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1012{
1013	struct fq_sched_data *q = qdisc_priv(sch);
1014	struct tc_fq_qd_stats st;
1015
1016	sch_tree_lock(sch);
1017
1018	st.gc_flows		  = q->stat_gc_flows;
1019	st.highprio_packets	  = q->stat_internal_packets;
1020	st.tcp_retrans		  = 0;
1021	st.throttled		  = q->stat_throttled;
1022	st.flows_plimit		  = q->stat_flows_plimit;
1023	st.pkts_too_long	  = q->stat_pkts_too_long;
1024	st.allocation_errors	  = q->stat_allocation_errors;
1025	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1026				    ktime_get_ns();
1027	st.flows		  = q->flows;
1028	st.inactive_flows	  = q->inactive_flows;
1029	st.throttled_flows	  = q->throttled_flows;
1030	st.unthrottle_latency_ns  = min_t(unsigned long,
1031					  q->unthrottle_latency_ns, ~0U);
1032	st.ce_mark		  = q->stat_ce_mark;
1033	st.horizon_drops	  = q->stat_horizon_drops;
1034	st.horizon_caps		  = q->stat_horizon_caps;
1035	sch_tree_unlock(sch);
1036
1037	return gnet_stats_copy_app(d, &st, sizeof(st));
1038}
1039
1040static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1041	.id		=	"fq",
1042	.priv_size	=	sizeof(struct fq_sched_data),
1043
1044	.enqueue	=	fq_enqueue,
1045	.dequeue	=	fq_dequeue,
1046	.peek		=	qdisc_peek_dequeued,
1047	.init		=	fq_init,
1048	.reset		=	fq_reset,
1049	.destroy	=	fq_destroy,
1050	.change		=	fq_change,
1051	.dump		=	fq_dump,
1052	.dump_stats	=	fq_dump_stats,
1053	.owner		=	THIS_MODULE,
1054};
1055
1056static int __init fq_module_init(void)
1057{
1058	int ret;
1059
1060	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1061					   sizeof(struct fq_flow),
1062					   0, 0, NULL);
1063	if (!fq_flow_cachep)
1064		return -ENOMEM;
1065
1066	ret = register_qdisc(&fq_qdisc_ops);
1067	if (ret)
1068		kmem_cache_destroy(fq_flow_cachep);
1069	return ret;
1070}
1071
1072static void __exit fq_module_exit(void)
1073{
1074	unregister_qdisc(&fq_qdisc_ops);
1075	kmem_cache_destroy(fq_flow_cachep);
1076}
1077
1078module_init(fq_module_init)
1079module_exit(fq_module_exit)
1080MODULE_AUTHOR("Eric Dumazet");
1081MODULE_LICENSE("GPL");
1082MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
1083