xref: /kernel/linux/linux-5.10/net/rfkill/core.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL		(5 * HZ)
28
29#define RFKILL_BLOCK_HW		BIT(0)
30#define RFKILL_BLOCK_SW		BIT(1)
31#define RFKILL_BLOCK_SW_PREV	BIT(2)
32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
33				 RFKILL_BLOCK_SW |\
34				 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
36
37struct rfkill {
38	spinlock_t		lock;
39
40	enum rfkill_type	type;
41
42	unsigned long		state;
43
44	u32			idx;
45
46	bool			registered;
47	bool			persistent;
48	bool			polling_paused;
49	bool			suspended;
50
51	const struct rfkill_ops	*ops;
52	void			*data;
53
54#ifdef CONFIG_RFKILL_LEDS
55	struct led_trigger	led_trigger;
56	const char		*ledtrigname;
57#endif
58
59	struct device		dev;
60	struct list_head	node;
61
62	struct delayed_work	poll_work;
63	struct work_struct	uevent_work;
64	struct work_struct	sync_work;
65	char			name[];
66};
67#define to_rfkill(d)	container_of(d, struct rfkill, dev)
68
69struct rfkill_int_event {
70	struct list_head	list;
71	struct rfkill_event	ev;
72};
73
74struct rfkill_data {
75	struct list_head	list;
76	struct list_head	events;
77	struct mutex		mtx;
78	wait_queue_head_t	read_wait;
79	bool			input_handler;
80};
81
82
83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
85MODULE_DESCRIPTION("RF switch support");
86MODULE_LICENSE("GPL");
87
88
89/*
90 * The locking here should be made much smarter, we currently have
91 * a bit of a stupid situation because drivers might want to register
92 * the rfkill struct under their own lock, and take this lock during
93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
94 *
95 * To fix that, we need to rework this code here to be mostly lock-free
96 * and only use the mutex for list manipulations, not to protect the
97 * various other global variables. Then we can avoid holding the mutex
98 * around driver operations, and all is happy.
99 */
100static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
101static DEFINE_MUTEX(rfkill_global_mutex);
102static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
103
104static unsigned int rfkill_default_state = 1;
105module_param_named(default_state, rfkill_default_state, uint, 0444);
106MODULE_PARM_DESC(default_state,
107		 "Default initial state for all radio types, 0 = radio off");
108
109static struct {
110	bool cur, sav;
111} rfkill_global_states[NUM_RFKILL_TYPES];
112
113static bool rfkill_epo_lock_active;
114
115
116#ifdef CONFIG_RFKILL_LEDS
117static void rfkill_led_trigger_event(struct rfkill *rfkill)
118{
119	struct led_trigger *trigger;
120
121	if (!rfkill->registered)
122		return;
123
124	trigger = &rfkill->led_trigger;
125
126	if (rfkill->state & RFKILL_BLOCK_ANY)
127		led_trigger_event(trigger, LED_OFF);
128	else
129		led_trigger_event(trigger, LED_FULL);
130}
131
132static int rfkill_led_trigger_activate(struct led_classdev *led)
133{
134	struct rfkill *rfkill;
135
136	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137
138	rfkill_led_trigger_event(rfkill);
139
140	return 0;
141}
142
143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144{
145	return rfkill->led_trigger.name;
146}
147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148
149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150{
151	BUG_ON(!rfkill);
152
153	rfkill->ledtrigname = name;
154}
155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156
157static int rfkill_led_trigger_register(struct rfkill *rfkill)
158{
159	rfkill->led_trigger.name = rfkill->ledtrigname
160					? : dev_name(&rfkill->dev);
161	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162	return led_trigger_register(&rfkill->led_trigger);
163}
164
165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166{
167	led_trigger_unregister(&rfkill->led_trigger);
168}
169
170static struct led_trigger rfkill_any_led_trigger;
171static struct led_trigger rfkill_none_led_trigger;
172static struct work_struct rfkill_global_led_trigger_work;
173
174static void rfkill_global_led_trigger_worker(struct work_struct *work)
175{
176	enum led_brightness brightness = LED_OFF;
177	struct rfkill *rfkill;
178
179	mutex_lock(&rfkill_global_mutex);
180	list_for_each_entry(rfkill, &rfkill_list, node) {
181		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182			brightness = LED_FULL;
183			break;
184		}
185	}
186	mutex_unlock(&rfkill_global_mutex);
187
188	led_trigger_event(&rfkill_any_led_trigger, brightness);
189	led_trigger_event(&rfkill_none_led_trigger,
190			  brightness == LED_OFF ? LED_FULL : LED_OFF);
191}
192
193static void rfkill_global_led_trigger_event(void)
194{
195	schedule_work(&rfkill_global_led_trigger_work);
196}
197
198static int rfkill_global_led_trigger_register(void)
199{
200	int ret;
201
202	INIT_WORK(&rfkill_global_led_trigger_work,
203			rfkill_global_led_trigger_worker);
204
205	rfkill_any_led_trigger.name = "rfkill-any";
206	ret = led_trigger_register(&rfkill_any_led_trigger);
207	if (ret)
208		return ret;
209
210	rfkill_none_led_trigger.name = "rfkill-none";
211	ret = led_trigger_register(&rfkill_none_led_trigger);
212	if (ret)
213		led_trigger_unregister(&rfkill_any_led_trigger);
214	else
215		/* Delay activation until all global triggers are registered */
216		rfkill_global_led_trigger_event();
217
218	return ret;
219}
220
221static void rfkill_global_led_trigger_unregister(void)
222{
223	led_trigger_unregister(&rfkill_none_led_trigger);
224	led_trigger_unregister(&rfkill_any_led_trigger);
225	cancel_work_sync(&rfkill_global_led_trigger_work);
226}
227#else
228static void rfkill_led_trigger_event(struct rfkill *rfkill)
229{
230}
231
232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233{
234	return 0;
235}
236
237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238{
239}
240
241static void rfkill_global_led_trigger_event(void)
242{
243}
244
245static int rfkill_global_led_trigger_register(void)
246{
247	return 0;
248}
249
250static void rfkill_global_led_trigger_unregister(void)
251{
252}
253#endif /* CONFIG_RFKILL_LEDS */
254
255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256			      enum rfkill_operation op)
257{
258	unsigned long flags;
259
260	ev->idx = rfkill->idx;
261	ev->type = rfkill->type;
262	ev->op = op;
263
264	spin_lock_irqsave(&rfkill->lock, flags);
265	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267					RFKILL_BLOCK_SW_PREV));
268	spin_unlock_irqrestore(&rfkill->lock, flags);
269}
270
271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272{
273	struct rfkill_data *data;
274	struct rfkill_int_event *ev;
275
276	list_for_each_entry(data, &rfkill_fds, list) {
277		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278		if (!ev)
279			continue;
280		rfkill_fill_event(&ev->ev, rfkill, op);
281		mutex_lock(&data->mtx);
282		list_add_tail(&ev->list, &data->events);
283		mutex_unlock(&data->mtx);
284		wake_up_interruptible(&data->read_wait);
285	}
286}
287
288static void rfkill_event(struct rfkill *rfkill)
289{
290	if (!rfkill->registered)
291		return;
292
293	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294
295	/* also send event to /dev/rfkill */
296	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297}
298
299/**
300 * rfkill_set_block - wrapper for set_block method
301 *
302 * @rfkill: the rfkill struct to use
303 * @blocked: the new software state
304 *
305 * Calls the set_block method (when applicable) and handles notifications
306 * etc. as well.
307 */
308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309{
310	unsigned long flags;
311	bool prev, curr;
312	int err;
313
314	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315		return;
316
317	/*
318	 * Some platforms (...!) generate input events which affect the
319	 * _hard_ kill state -- whenever something tries to change the
320	 * current software state query the hardware state too.
321	 */
322	if (rfkill->ops->query)
323		rfkill->ops->query(rfkill, rfkill->data);
324
325	spin_lock_irqsave(&rfkill->lock, flags);
326	prev = rfkill->state & RFKILL_BLOCK_SW;
327
328	if (prev)
329		rfkill->state |= RFKILL_BLOCK_SW_PREV;
330	else
331		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332
333	if (blocked)
334		rfkill->state |= RFKILL_BLOCK_SW;
335	else
336		rfkill->state &= ~RFKILL_BLOCK_SW;
337
338	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339	spin_unlock_irqrestore(&rfkill->lock, flags);
340
341	err = rfkill->ops->set_block(rfkill->data, blocked);
342
343	spin_lock_irqsave(&rfkill->lock, flags);
344	if (err) {
345		/*
346		 * Failed -- reset status to _PREV, which may be different
347		 * from what we have set _PREV to earlier in this function
348		 * if rfkill_set_sw_state was invoked.
349		 */
350		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351			rfkill->state |= RFKILL_BLOCK_SW;
352		else
353			rfkill->state &= ~RFKILL_BLOCK_SW;
354	}
355	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357	curr = rfkill->state & RFKILL_BLOCK_SW;
358	spin_unlock_irqrestore(&rfkill->lock, flags);
359
360	rfkill_led_trigger_event(rfkill);
361	rfkill_global_led_trigger_event();
362
363	if (prev != curr)
364		rfkill_event(rfkill);
365}
366
367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368{
369	int i;
370
371	if (type != RFKILL_TYPE_ALL) {
372		rfkill_global_states[type].cur = blocked;
373		return;
374	}
375
376	for (i = 0; i < NUM_RFKILL_TYPES; i++)
377		rfkill_global_states[i].cur = blocked;
378}
379
380#ifdef CONFIG_RFKILL_INPUT
381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382
383/**
384 * __rfkill_switch_all - Toggle state of all switches of given type
385 * @type: type of interfaces to be affected
386 * @blocked: the new state
387 *
388 * This function sets the state of all switches of given type,
389 * unless a specific switch is suspended.
390 *
391 * Caller must have acquired rfkill_global_mutex.
392 */
393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394{
395	struct rfkill *rfkill;
396
397	rfkill_update_global_state(type, blocked);
398	list_for_each_entry(rfkill, &rfkill_list, node) {
399		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400			continue;
401
402		rfkill_set_block(rfkill, blocked);
403	}
404}
405
406/**
407 * rfkill_switch_all - Toggle state of all switches of given type
408 * @type: type of interfaces to be affected
409 * @blocked: the new state
410 *
411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412 * Please refer to __rfkill_switch_all() for details.
413 *
414 * Does nothing if the EPO lock is active.
415 */
416void rfkill_switch_all(enum rfkill_type type, bool blocked)
417{
418	if (atomic_read(&rfkill_input_disabled))
419		return;
420
421	mutex_lock(&rfkill_global_mutex);
422
423	if (!rfkill_epo_lock_active)
424		__rfkill_switch_all(type, blocked);
425
426	mutex_unlock(&rfkill_global_mutex);
427}
428
429/**
430 * rfkill_epo - emergency power off all transmitters
431 *
432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434 *
435 * The global state before the EPO is saved and can be restored later
436 * using rfkill_restore_states().
437 */
438void rfkill_epo(void)
439{
440	struct rfkill *rfkill;
441	int i;
442
443	if (atomic_read(&rfkill_input_disabled))
444		return;
445
446	mutex_lock(&rfkill_global_mutex);
447
448	rfkill_epo_lock_active = true;
449	list_for_each_entry(rfkill, &rfkill_list, node)
450		rfkill_set_block(rfkill, true);
451
452	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454		rfkill_global_states[i].cur = true;
455	}
456
457	mutex_unlock(&rfkill_global_mutex);
458}
459
460/**
461 * rfkill_restore_states - restore global states
462 *
463 * Restore (and sync switches to) the global state from the
464 * states in rfkill_default_states.  This can undo the effects of
465 * a call to rfkill_epo().
466 */
467void rfkill_restore_states(void)
468{
469	int i;
470
471	if (atomic_read(&rfkill_input_disabled))
472		return;
473
474	mutex_lock(&rfkill_global_mutex);
475
476	rfkill_epo_lock_active = false;
477	for (i = 0; i < NUM_RFKILL_TYPES; i++)
478		__rfkill_switch_all(i, rfkill_global_states[i].sav);
479	mutex_unlock(&rfkill_global_mutex);
480}
481
482/**
483 * rfkill_remove_epo_lock - unlock state changes
484 *
485 * Used by rfkill-input manually unlock state changes, when
486 * the EPO switch is deactivated.
487 */
488void rfkill_remove_epo_lock(void)
489{
490	if (atomic_read(&rfkill_input_disabled))
491		return;
492
493	mutex_lock(&rfkill_global_mutex);
494	rfkill_epo_lock_active = false;
495	mutex_unlock(&rfkill_global_mutex);
496}
497
498/**
499 * rfkill_is_epo_lock_active - returns true EPO is active
500 *
501 * Returns 0 (false) if there is NOT an active EPO condition,
502 * and 1 (true) if there is an active EPO condition, which
503 * locks all radios in one of the BLOCKED states.
504 *
505 * Can be called in atomic context.
506 */
507bool rfkill_is_epo_lock_active(void)
508{
509	return rfkill_epo_lock_active;
510}
511
512/**
513 * rfkill_get_global_sw_state - returns global state for a type
514 * @type: the type to get the global state of
515 *
516 * Returns the current global state for a given wireless
517 * device type.
518 */
519bool rfkill_get_global_sw_state(const enum rfkill_type type)
520{
521	return rfkill_global_states[type].cur;
522}
523#endif
524
525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526{
527	unsigned long flags;
528	bool ret, prev;
529
530	BUG_ON(!rfkill);
531
532	spin_lock_irqsave(&rfkill->lock, flags);
533	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534	if (blocked)
535		rfkill->state |= RFKILL_BLOCK_HW;
536	else
537		rfkill->state &= ~RFKILL_BLOCK_HW;
538	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539	spin_unlock_irqrestore(&rfkill->lock, flags);
540
541	rfkill_led_trigger_event(rfkill);
542	rfkill_global_led_trigger_event();
543
544	if (rfkill->registered && prev != blocked)
545		schedule_work(&rfkill->uevent_work);
546
547	return ret;
548}
549EXPORT_SYMBOL(rfkill_set_hw_state);
550
551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552{
553	u32 bit = RFKILL_BLOCK_SW;
554
555	/* if in a ops->set_block right now, use other bit */
556	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557		bit = RFKILL_BLOCK_SW_PREV;
558
559	if (blocked)
560		rfkill->state |= bit;
561	else
562		rfkill->state &= ~bit;
563}
564
565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567	unsigned long flags;
568	bool prev, hwblock;
569
570	BUG_ON(!rfkill);
571
572	spin_lock_irqsave(&rfkill->lock, flags);
573	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574	__rfkill_set_sw_state(rfkill, blocked);
575	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576	blocked = blocked || hwblock;
577	spin_unlock_irqrestore(&rfkill->lock, flags);
578
579	if (!rfkill->registered)
580		return blocked;
581
582	if (prev != blocked && !hwblock)
583		schedule_work(&rfkill->uevent_work);
584
585	rfkill_led_trigger_event(rfkill);
586	rfkill_global_led_trigger_event();
587
588	return blocked;
589}
590EXPORT_SYMBOL(rfkill_set_sw_state);
591
592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593{
594	unsigned long flags;
595
596	BUG_ON(!rfkill);
597	BUG_ON(rfkill->registered);
598
599	spin_lock_irqsave(&rfkill->lock, flags);
600	__rfkill_set_sw_state(rfkill, blocked);
601	rfkill->persistent = true;
602	spin_unlock_irqrestore(&rfkill->lock, flags);
603}
604EXPORT_SYMBOL(rfkill_init_sw_state);
605
606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607{
608	unsigned long flags;
609	bool swprev, hwprev;
610
611	BUG_ON(!rfkill);
612
613	spin_lock_irqsave(&rfkill->lock, flags);
614
615	/*
616	 * No need to care about prev/setblock ... this is for uevent only
617	 * and that will get triggered by rfkill_set_block anyway.
618	 */
619	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621	__rfkill_set_sw_state(rfkill, sw);
622	if (hw)
623		rfkill->state |= RFKILL_BLOCK_HW;
624	else
625		rfkill->state &= ~RFKILL_BLOCK_HW;
626
627	spin_unlock_irqrestore(&rfkill->lock, flags);
628
629	if (!rfkill->registered) {
630		rfkill->persistent = true;
631	} else {
632		if (swprev != sw || hwprev != hw)
633			schedule_work(&rfkill->uevent_work);
634
635		rfkill_led_trigger_event(rfkill);
636		rfkill_global_led_trigger_event();
637	}
638}
639EXPORT_SYMBOL(rfkill_set_states);
640
641static const char * const rfkill_types[] = {
642	NULL, /* RFKILL_TYPE_ALL */
643	"wlan",
644	"bluetooth",
645	"ultrawideband",
646	"wimax",
647	"wwan",
648	"gps",
649	"fm",
650	"nfc",
651};
652
653enum rfkill_type rfkill_find_type(const char *name)
654{
655	int i;
656
657	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658
659	if (!name)
660		return RFKILL_TYPE_ALL;
661
662	for (i = 1; i < NUM_RFKILL_TYPES; i++)
663		if (!strcmp(name, rfkill_types[i]))
664			return i;
665	return RFKILL_TYPE_ALL;
666}
667EXPORT_SYMBOL(rfkill_find_type);
668
669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670			 char *buf)
671{
672	struct rfkill *rfkill = to_rfkill(dev);
673
674	return sprintf(buf, "%s\n", rfkill->name);
675}
676static DEVICE_ATTR_RO(name);
677
678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679			 char *buf)
680{
681	struct rfkill *rfkill = to_rfkill(dev);
682
683	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684}
685static DEVICE_ATTR_RO(type);
686
687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688			  char *buf)
689{
690	struct rfkill *rfkill = to_rfkill(dev);
691
692	return sprintf(buf, "%d\n", rfkill->idx);
693}
694static DEVICE_ATTR_RO(index);
695
696static ssize_t persistent_show(struct device *dev,
697			       struct device_attribute *attr, char *buf)
698{
699	struct rfkill *rfkill = to_rfkill(dev);
700
701	return sprintf(buf, "%d\n", rfkill->persistent);
702}
703static DEVICE_ATTR_RO(persistent);
704
705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706			 char *buf)
707{
708	struct rfkill *rfkill = to_rfkill(dev);
709
710	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711}
712static DEVICE_ATTR_RO(hard);
713
714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715			 char *buf)
716{
717	struct rfkill *rfkill = to_rfkill(dev);
718
719	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720}
721
722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723			  const char *buf, size_t count)
724{
725	struct rfkill *rfkill = to_rfkill(dev);
726	unsigned long state;
727	int err;
728
729	if (!capable(CAP_NET_ADMIN))
730		return -EPERM;
731
732	err = kstrtoul(buf, 0, &state);
733	if (err)
734		return err;
735
736	if (state > 1 )
737		return -EINVAL;
738
739	mutex_lock(&rfkill_global_mutex);
740	rfkill_set_block(rfkill, state);
741	mutex_unlock(&rfkill_global_mutex);
742
743	return count;
744}
745static DEVICE_ATTR_RW(soft);
746
747static u8 user_state_from_blocked(unsigned long state)
748{
749	if (state & RFKILL_BLOCK_HW)
750		return RFKILL_USER_STATE_HARD_BLOCKED;
751	if (state & RFKILL_BLOCK_SW)
752		return RFKILL_USER_STATE_SOFT_BLOCKED;
753
754	return RFKILL_USER_STATE_UNBLOCKED;
755}
756
757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758			  char *buf)
759{
760	struct rfkill *rfkill = to_rfkill(dev);
761
762	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763}
764
765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766			   const char *buf, size_t count)
767{
768	struct rfkill *rfkill = to_rfkill(dev);
769	unsigned long state;
770	int err;
771
772	if (!capable(CAP_NET_ADMIN))
773		return -EPERM;
774
775	err = kstrtoul(buf, 0, &state);
776	if (err)
777		return err;
778
779	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780	    state != RFKILL_USER_STATE_UNBLOCKED)
781		return -EINVAL;
782
783	mutex_lock(&rfkill_global_mutex);
784	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785	mutex_unlock(&rfkill_global_mutex);
786
787	return count;
788}
789static DEVICE_ATTR_RW(state);
790
791static struct attribute *rfkill_dev_attrs[] = {
792	&dev_attr_name.attr,
793	&dev_attr_type.attr,
794	&dev_attr_index.attr,
795	&dev_attr_persistent.attr,
796	&dev_attr_state.attr,
797	&dev_attr_soft.attr,
798	&dev_attr_hard.attr,
799	NULL,
800};
801ATTRIBUTE_GROUPS(rfkill_dev);
802
803static void rfkill_release(struct device *dev)
804{
805	struct rfkill *rfkill = to_rfkill(dev);
806
807	kfree(rfkill);
808}
809
810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811{
812	struct rfkill *rfkill = to_rfkill(dev);
813	unsigned long flags;
814	u32 state;
815	int error;
816
817	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818	if (error)
819		return error;
820	error = add_uevent_var(env, "RFKILL_TYPE=%s",
821			       rfkill_types[rfkill->type]);
822	if (error)
823		return error;
824	spin_lock_irqsave(&rfkill->lock, flags);
825	state = rfkill->state;
826	spin_unlock_irqrestore(&rfkill->lock, flags);
827	error = add_uevent_var(env, "RFKILL_STATE=%d",
828			       user_state_from_blocked(state));
829	return error;
830}
831
832void rfkill_pause_polling(struct rfkill *rfkill)
833{
834	BUG_ON(!rfkill);
835
836	if (!rfkill->ops->poll)
837		return;
838
839	rfkill->polling_paused = true;
840	cancel_delayed_work_sync(&rfkill->poll_work);
841}
842EXPORT_SYMBOL(rfkill_pause_polling);
843
844void rfkill_resume_polling(struct rfkill *rfkill)
845{
846	BUG_ON(!rfkill);
847
848	if (!rfkill->ops->poll)
849		return;
850
851	rfkill->polling_paused = false;
852
853	if (rfkill->suspended)
854		return;
855
856	queue_delayed_work(system_power_efficient_wq,
857			   &rfkill->poll_work, 0);
858}
859EXPORT_SYMBOL(rfkill_resume_polling);
860
861#ifdef CONFIG_PM_SLEEP
862static int rfkill_suspend(struct device *dev)
863{
864	struct rfkill *rfkill = to_rfkill(dev);
865
866	rfkill->suspended = true;
867	cancel_delayed_work_sync(&rfkill->poll_work);
868
869	return 0;
870}
871
872static int rfkill_resume(struct device *dev)
873{
874	struct rfkill *rfkill = to_rfkill(dev);
875	bool cur;
876
877	rfkill->suspended = false;
878
879	if (!rfkill->registered)
880		return 0;
881
882	if (!rfkill->persistent) {
883		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
884		rfkill_set_block(rfkill, cur);
885	}
886
887	if (rfkill->ops->poll && !rfkill->polling_paused)
888		queue_delayed_work(system_power_efficient_wq,
889				   &rfkill->poll_work, 0);
890
891	return 0;
892}
893
894static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
895#define RFKILL_PM_OPS (&rfkill_pm_ops)
896#else
897#define RFKILL_PM_OPS NULL
898#endif
899
900static struct class rfkill_class = {
901	.name		= "rfkill",
902	.dev_release	= rfkill_release,
903	.dev_groups	= rfkill_dev_groups,
904	.dev_uevent	= rfkill_dev_uevent,
905	.pm		= RFKILL_PM_OPS,
906};
907
908bool rfkill_blocked(struct rfkill *rfkill)
909{
910	unsigned long flags;
911	u32 state;
912
913	spin_lock_irqsave(&rfkill->lock, flags);
914	state = rfkill->state;
915	spin_unlock_irqrestore(&rfkill->lock, flags);
916
917	return !!(state & RFKILL_BLOCK_ANY);
918}
919EXPORT_SYMBOL(rfkill_blocked);
920
921
922struct rfkill * __must_check rfkill_alloc(const char *name,
923					  struct device *parent,
924					  const enum rfkill_type type,
925					  const struct rfkill_ops *ops,
926					  void *ops_data)
927{
928	struct rfkill *rfkill;
929	struct device *dev;
930
931	if (WARN_ON(!ops))
932		return NULL;
933
934	if (WARN_ON(!ops->set_block))
935		return NULL;
936
937	if (WARN_ON(!name))
938		return NULL;
939
940	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
941		return NULL;
942
943	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
944	if (!rfkill)
945		return NULL;
946
947	spin_lock_init(&rfkill->lock);
948	INIT_LIST_HEAD(&rfkill->node);
949	rfkill->type = type;
950	strcpy(rfkill->name, name);
951	rfkill->ops = ops;
952	rfkill->data = ops_data;
953
954	dev = &rfkill->dev;
955	dev->class = &rfkill_class;
956	dev->parent = parent;
957	device_initialize(dev);
958
959	return rfkill;
960}
961EXPORT_SYMBOL(rfkill_alloc);
962
963static void rfkill_poll(struct work_struct *work)
964{
965	struct rfkill *rfkill;
966
967	rfkill = container_of(work, struct rfkill, poll_work.work);
968
969	/*
970	 * Poll hardware state -- driver will use one of the
971	 * rfkill_set{,_hw,_sw}_state functions and use its
972	 * return value to update the current status.
973	 */
974	rfkill->ops->poll(rfkill, rfkill->data);
975
976	queue_delayed_work(system_power_efficient_wq,
977		&rfkill->poll_work,
978		round_jiffies_relative(POLL_INTERVAL));
979}
980
981static void rfkill_uevent_work(struct work_struct *work)
982{
983	struct rfkill *rfkill;
984
985	rfkill = container_of(work, struct rfkill, uevent_work);
986
987	mutex_lock(&rfkill_global_mutex);
988	rfkill_event(rfkill);
989	mutex_unlock(&rfkill_global_mutex);
990}
991
992static void rfkill_sync_work(struct work_struct *work)
993{
994	struct rfkill *rfkill;
995	bool cur;
996
997	rfkill = container_of(work, struct rfkill, sync_work);
998
999	mutex_lock(&rfkill_global_mutex);
1000	cur = rfkill_global_states[rfkill->type].cur;
1001	rfkill_set_block(rfkill, cur);
1002	mutex_unlock(&rfkill_global_mutex);
1003}
1004
1005int __must_check rfkill_register(struct rfkill *rfkill)
1006{
1007	static unsigned long rfkill_no;
1008	struct device *dev;
1009	int error;
1010
1011	if (!rfkill)
1012		return -EINVAL;
1013
1014	dev = &rfkill->dev;
1015
1016	mutex_lock(&rfkill_global_mutex);
1017
1018	if (rfkill->registered) {
1019		error = -EALREADY;
1020		goto unlock;
1021	}
1022
1023	rfkill->idx = rfkill_no;
1024	dev_set_name(dev, "rfkill%lu", rfkill_no);
1025	rfkill_no++;
1026
1027	list_add_tail(&rfkill->node, &rfkill_list);
1028
1029	error = device_add(dev);
1030	if (error)
1031		goto remove;
1032
1033	error = rfkill_led_trigger_register(rfkill);
1034	if (error)
1035		goto devdel;
1036
1037	rfkill->registered = true;
1038
1039	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1040	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1041	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1042
1043	if (rfkill->ops->poll)
1044		queue_delayed_work(system_power_efficient_wq,
1045			&rfkill->poll_work,
1046			round_jiffies_relative(POLL_INTERVAL));
1047
1048	if (!rfkill->persistent || rfkill_epo_lock_active) {
1049		schedule_work(&rfkill->sync_work);
1050	} else {
1051#ifdef CONFIG_RFKILL_INPUT
1052		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1053
1054		if (!atomic_read(&rfkill_input_disabled))
1055			__rfkill_switch_all(rfkill->type, soft_blocked);
1056#endif
1057	}
1058
1059	rfkill_global_led_trigger_event();
1060	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1061
1062	mutex_unlock(&rfkill_global_mutex);
1063	return 0;
1064
1065 devdel:
1066	device_del(&rfkill->dev);
1067 remove:
1068	list_del_init(&rfkill->node);
1069 unlock:
1070	mutex_unlock(&rfkill_global_mutex);
1071	return error;
1072}
1073EXPORT_SYMBOL(rfkill_register);
1074
1075void rfkill_unregister(struct rfkill *rfkill)
1076{
1077	BUG_ON(!rfkill);
1078
1079	if (rfkill->ops->poll)
1080		cancel_delayed_work_sync(&rfkill->poll_work);
1081
1082	cancel_work_sync(&rfkill->uevent_work);
1083	cancel_work_sync(&rfkill->sync_work);
1084
1085	rfkill->registered = false;
1086
1087	device_del(&rfkill->dev);
1088
1089	mutex_lock(&rfkill_global_mutex);
1090	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1091	list_del_init(&rfkill->node);
1092	rfkill_global_led_trigger_event();
1093	mutex_unlock(&rfkill_global_mutex);
1094
1095	rfkill_led_trigger_unregister(rfkill);
1096}
1097EXPORT_SYMBOL(rfkill_unregister);
1098
1099void rfkill_destroy(struct rfkill *rfkill)
1100{
1101	if (rfkill)
1102		put_device(&rfkill->dev);
1103}
1104EXPORT_SYMBOL(rfkill_destroy);
1105
1106static int rfkill_fop_open(struct inode *inode, struct file *file)
1107{
1108	struct rfkill_data *data;
1109	struct rfkill *rfkill;
1110	struct rfkill_int_event *ev, *tmp;
1111
1112	data = kzalloc(sizeof(*data), GFP_KERNEL);
1113	if (!data)
1114		return -ENOMEM;
1115
1116	INIT_LIST_HEAD(&data->events);
1117	mutex_init(&data->mtx);
1118	init_waitqueue_head(&data->read_wait);
1119
1120	mutex_lock(&rfkill_global_mutex);
1121	mutex_lock(&data->mtx);
1122	/*
1123	 * start getting events from elsewhere but hold mtx to get
1124	 * startup events added first
1125	 */
1126
1127	list_for_each_entry(rfkill, &rfkill_list, node) {
1128		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1129		if (!ev)
1130			goto free;
1131		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1132		list_add_tail(&ev->list, &data->events);
1133	}
1134	list_add(&data->list, &rfkill_fds);
1135	mutex_unlock(&data->mtx);
1136	mutex_unlock(&rfkill_global_mutex);
1137
1138	file->private_data = data;
1139
1140	return stream_open(inode, file);
1141
1142 free:
1143	mutex_unlock(&data->mtx);
1144	mutex_unlock(&rfkill_global_mutex);
1145	mutex_destroy(&data->mtx);
1146	list_for_each_entry_safe(ev, tmp, &data->events, list)
1147		kfree(ev);
1148	kfree(data);
1149	return -ENOMEM;
1150}
1151
1152static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1153{
1154	struct rfkill_data *data = file->private_data;
1155	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1156
1157	poll_wait(file, &data->read_wait, wait);
1158
1159	mutex_lock(&data->mtx);
1160	if (!list_empty(&data->events))
1161		res = EPOLLIN | EPOLLRDNORM;
1162	mutex_unlock(&data->mtx);
1163
1164	return res;
1165}
1166
1167static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1168			       size_t count, loff_t *pos)
1169{
1170	struct rfkill_data *data = file->private_data;
1171	struct rfkill_int_event *ev;
1172	unsigned long sz;
1173	int ret;
1174
1175	mutex_lock(&data->mtx);
1176
1177	while (list_empty(&data->events)) {
1178		if (file->f_flags & O_NONBLOCK) {
1179			ret = -EAGAIN;
1180			goto out;
1181		}
1182		mutex_unlock(&data->mtx);
1183		/* since we re-check and it just compares pointers,
1184		 * using !list_empty() without locking isn't a problem
1185		 */
1186		ret = wait_event_interruptible(data->read_wait,
1187					       !list_empty(&data->events));
1188		mutex_lock(&data->mtx);
1189
1190		if (ret)
1191			goto out;
1192	}
1193
1194	ev = list_first_entry(&data->events, struct rfkill_int_event,
1195				list);
1196
1197	sz = min_t(unsigned long, sizeof(ev->ev), count);
1198	ret = sz;
1199	if (copy_to_user(buf, &ev->ev, sz))
1200		ret = -EFAULT;
1201
1202	list_del(&ev->list);
1203	kfree(ev);
1204 out:
1205	mutex_unlock(&data->mtx);
1206	return ret;
1207}
1208
1209static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1210				size_t count, loff_t *pos)
1211{
1212	struct rfkill *rfkill;
1213	struct rfkill_event ev;
1214	int ret;
1215
1216	/* we don't need the 'hard' variable but accept it */
1217	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1218		return -EINVAL;
1219
1220	/*
1221	 * Copy as much data as we can accept into our 'ev' buffer,
1222	 * but tell userspace how much we've copied so it can determine
1223	 * our API version even in a write() call, if it cares.
1224	 */
1225	count = min(count, sizeof(ev));
1226	if (copy_from_user(&ev, buf, count))
1227		return -EFAULT;
1228
1229	if (ev.type >= NUM_RFKILL_TYPES)
1230		return -EINVAL;
1231
1232	mutex_lock(&rfkill_global_mutex);
1233
1234	switch (ev.op) {
1235	case RFKILL_OP_CHANGE_ALL:
1236		rfkill_update_global_state(ev.type, ev.soft);
1237		list_for_each_entry(rfkill, &rfkill_list, node)
1238			if (rfkill->type == ev.type ||
1239			    ev.type == RFKILL_TYPE_ALL)
1240				rfkill_set_block(rfkill, ev.soft);
1241		ret = 0;
1242		break;
1243	case RFKILL_OP_CHANGE:
1244		list_for_each_entry(rfkill, &rfkill_list, node)
1245			if (rfkill->idx == ev.idx &&
1246			    (rfkill->type == ev.type ||
1247			     ev.type == RFKILL_TYPE_ALL))
1248				rfkill_set_block(rfkill, ev.soft);
1249		ret = 0;
1250		break;
1251	default:
1252		ret = -EINVAL;
1253		break;
1254	}
1255
1256	mutex_unlock(&rfkill_global_mutex);
1257
1258	return ret ?: count;
1259}
1260
1261static int rfkill_fop_release(struct inode *inode, struct file *file)
1262{
1263	struct rfkill_data *data = file->private_data;
1264	struct rfkill_int_event *ev, *tmp;
1265
1266	mutex_lock(&rfkill_global_mutex);
1267	list_del(&data->list);
1268	mutex_unlock(&rfkill_global_mutex);
1269
1270	mutex_destroy(&data->mtx);
1271	list_for_each_entry_safe(ev, tmp, &data->events, list)
1272		kfree(ev);
1273
1274#ifdef CONFIG_RFKILL_INPUT
1275	if (data->input_handler)
1276		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1277			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1278#endif
1279
1280	kfree(data);
1281
1282	return 0;
1283}
1284
1285#ifdef CONFIG_RFKILL_INPUT
1286static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1287			     unsigned long arg)
1288{
1289	struct rfkill_data *data = file->private_data;
1290
1291	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1292		return -ENOSYS;
1293
1294	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1295		return -ENOSYS;
1296
1297	mutex_lock(&data->mtx);
1298
1299	if (!data->input_handler) {
1300		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1301			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1302		data->input_handler = true;
1303	}
1304
1305	mutex_unlock(&data->mtx);
1306
1307	return 0;
1308}
1309#endif
1310
1311static const struct file_operations rfkill_fops = {
1312	.owner		= THIS_MODULE,
1313	.open		= rfkill_fop_open,
1314	.read		= rfkill_fop_read,
1315	.write		= rfkill_fop_write,
1316	.poll		= rfkill_fop_poll,
1317	.release	= rfkill_fop_release,
1318#ifdef CONFIG_RFKILL_INPUT
1319	.unlocked_ioctl	= rfkill_fop_ioctl,
1320	.compat_ioctl	= compat_ptr_ioctl,
1321#endif
1322	.llseek		= no_llseek,
1323};
1324
1325#define RFKILL_NAME "rfkill"
1326
1327static struct miscdevice rfkill_miscdev = {
1328	.fops	= &rfkill_fops,
1329	.name	= RFKILL_NAME,
1330	.minor	= RFKILL_MINOR,
1331};
1332
1333static int __init rfkill_init(void)
1334{
1335	int error;
1336
1337	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1338
1339	error = class_register(&rfkill_class);
1340	if (error)
1341		goto error_class;
1342
1343	error = misc_register(&rfkill_miscdev);
1344	if (error)
1345		goto error_misc;
1346
1347	error = rfkill_global_led_trigger_register();
1348	if (error)
1349		goto error_led_trigger;
1350
1351#ifdef CONFIG_RFKILL_INPUT
1352	error = rfkill_handler_init();
1353	if (error)
1354		goto error_input;
1355#endif
1356
1357	return 0;
1358
1359#ifdef CONFIG_RFKILL_INPUT
1360error_input:
1361	rfkill_global_led_trigger_unregister();
1362#endif
1363error_led_trigger:
1364	misc_deregister(&rfkill_miscdev);
1365error_misc:
1366	class_unregister(&rfkill_class);
1367error_class:
1368	return error;
1369}
1370subsys_initcall(rfkill_init);
1371
1372static void __exit rfkill_exit(void)
1373{
1374#ifdef CONFIG_RFKILL_INPUT
1375	rfkill_handler_exit();
1376#endif
1377	rfkill_global_led_trigger_unregister();
1378	misc_deregister(&rfkill_miscdev);
1379	class_unregister(&rfkill_class);
1380}
1381module_exit(rfkill_exit);
1382
1383MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1384MODULE_ALIAS("devname:" RFKILL_NAME);
1385