xref: /kernel/linux/linux-5.10/net/rds/ib_send.c (revision 8c2ecf20)
1/*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/in.h>
35#include <linux/device.h>
36#include <linux/dmapool.h>
37#include <linux/ratelimit.h>
38
39#include "rds_single_path.h"
40#include "rds.h"
41#include "ib.h"
42#include "ib_mr.h"
43
44/*
45 * Convert IB-specific error message to RDS error message and call core
46 * completion handler.
47 */
48static void rds_ib_send_complete(struct rds_message *rm,
49				 int wc_status,
50				 void (*complete)(struct rds_message *rm, int status))
51{
52	int notify_status;
53
54	switch (wc_status) {
55	case IB_WC_WR_FLUSH_ERR:
56		return;
57
58	case IB_WC_SUCCESS:
59		notify_status = RDS_RDMA_SUCCESS;
60		break;
61
62	case IB_WC_REM_ACCESS_ERR:
63		notify_status = RDS_RDMA_REMOTE_ERROR;
64		break;
65
66	default:
67		notify_status = RDS_RDMA_OTHER_ERROR;
68		break;
69	}
70	complete(rm, notify_status);
71}
72
73static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
74				   struct rm_data_op *op,
75				   int wc_status)
76{
77	if (op->op_nents)
78		ib_dma_unmap_sg(ic->i_cm_id->device,
79				op->op_sg, op->op_nents,
80				DMA_TO_DEVICE);
81}
82
83static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
84				   struct rm_rdma_op *op,
85				   int wc_status)
86{
87	if (op->op_mapped) {
88		ib_dma_unmap_sg(ic->i_cm_id->device,
89				op->op_sg, op->op_nents,
90				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
91		op->op_mapped = 0;
92	}
93
94	/* If the user asked for a completion notification on this
95	 * message, we can implement three different semantics:
96	 *  1.	Notify when we received the ACK on the RDS message
97	 *	that was queued with the RDMA. This provides reliable
98	 *	notification of RDMA status at the expense of a one-way
99	 *	packet delay.
100	 *  2.	Notify when the IB stack gives us the completion event for
101	 *	the RDMA operation.
102	 *  3.	Notify when the IB stack gives us the completion event for
103	 *	the accompanying RDS messages.
104	 * Here, we implement approach #3. To implement approach #2,
105	 * we would need to take an event for the rdma WR. To implement #1,
106	 * don't call rds_rdma_send_complete at all, and fall back to the notify
107	 * handling in the ACK processing code.
108	 *
109	 * Note: There's no need to explicitly sync any RDMA buffers using
110	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
111	 * operation itself unmapped the RDMA buffers, which takes care
112	 * of synching.
113	 */
114	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
115			     wc_status, rds_rdma_send_complete);
116
117	if (op->op_write)
118		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
119	else
120		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
121}
122
123static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
124				     struct rm_atomic_op *op,
125				     int wc_status)
126{
127	/* unmap atomic recvbuf */
128	if (op->op_mapped) {
129		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
130				DMA_FROM_DEVICE);
131		op->op_mapped = 0;
132	}
133
134	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
135			     wc_status, rds_atomic_send_complete);
136
137	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
138		rds_ib_stats_inc(s_ib_atomic_cswp);
139	else
140		rds_ib_stats_inc(s_ib_atomic_fadd);
141}
142
143/*
144 * Unmap the resources associated with a struct send_work.
145 *
146 * Returns the rm for no good reason other than it is unobtainable
147 * other than by switching on wr.opcode, currently, and the caller,
148 * the event handler, needs it.
149 */
150static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
151						struct rds_ib_send_work *send,
152						int wc_status)
153{
154	struct rds_message *rm = NULL;
155
156	/* In the error case, wc.opcode sometimes contains garbage */
157	switch (send->s_wr.opcode) {
158	case IB_WR_SEND:
159		if (send->s_op) {
160			rm = container_of(send->s_op, struct rds_message, data);
161			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
162		}
163		break;
164	case IB_WR_RDMA_WRITE:
165	case IB_WR_RDMA_READ:
166		if (send->s_op) {
167			rm = container_of(send->s_op, struct rds_message, rdma);
168			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
169		}
170		break;
171	case IB_WR_ATOMIC_FETCH_AND_ADD:
172	case IB_WR_ATOMIC_CMP_AND_SWP:
173		if (send->s_op) {
174			rm = container_of(send->s_op, struct rds_message, atomic);
175			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
176		}
177		break;
178	default:
179		printk_ratelimited(KERN_NOTICE
180			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
181			       __func__, send->s_wr.opcode);
182		break;
183	}
184
185	send->s_wr.opcode = 0xdead;
186
187	return rm;
188}
189
190void rds_ib_send_init_ring(struct rds_ib_connection *ic)
191{
192	struct rds_ib_send_work *send;
193	u32 i;
194
195	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
196		struct ib_sge *sge;
197
198		send->s_op = NULL;
199
200		send->s_wr.wr_id = i;
201		send->s_wr.sg_list = send->s_sge;
202		send->s_wr.ex.imm_data = 0;
203
204		sge = &send->s_sge[0];
205		sge->addr = ic->i_send_hdrs_dma[i];
206
207		sge->length = sizeof(struct rds_header);
208		sge->lkey = ic->i_pd->local_dma_lkey;
209
210		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
211	}
212}
213
214void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
215{
216	struct rds_ib_send_work *send;
217	u32 i;
218
219	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
220		if (send->s_op && send->s_wr.opcode != 0xdead)
221			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
222	}
223}
224
225/*
226 * The only fast path caller always has a non-zero nr, so we don't
227 * bother testing nr before performing the atomic sub.
228 */
229static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
230{
231	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
232	    waitqueue_active(&rds_ib_ring_empty_wait))
233		wake_up(&rds_ib_ring_empty_wait);
234	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
235}
236
237/*
238 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
239 * operations performed in the send path.  As the sender allocs and potentially
240 * unallocs the next free entry in the ring it doesn't alter which is
241 * the next to be freed, which is what this is concerned with.
242 */
243void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
244{
245	struct rds_message *rm = NULL;
246	struct rds_connection *conn = ic->conn;
247	struct rds_ib_send_work *send;
248	u32 completed;
249	u32 oldest;
250	u32 i = 0;
251	int nr_sig = 0;
252
253
254	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
255		 (unsigned long long)wc->wr_id, wc->status,
256		 ib_wc_status_msg(wc->status), wc->byte_len,
257		 be32_to_cpu(wc->ex.imm_data));
258	rds_ib_stats_inc(s_ib_tx_cq_event);
259
260	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
261		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
262			rds_ib_stats_inc(s_ib_tx_stalled);
263		rds_ib_ack_send_complete(ic);
264		return;
265	}
266
267	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
268
269	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
270
271	for (i = 0; i < completed; i++) {
272		send = &ic->i_sends[oldest];
273		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
274			nr_sig++;
275
276		rm = rds_ib_send_unmap_op(ic, send, wc->status);
277
278		if (time_after(jiffies, send->s_queued + HZ / 2))
279			rds_ib_stats_inc(s_ib_tx_stalled);
280
281		if (send->s_op) {
282			if (send->s_op == rm->m_final_op) {
283				/* If anyone waited for this message to get
284				 * flushed out, wake them up now
285				 */
286				rds_message_unmapped(rm);
287			}
288			rds_message_put(rm);
289			send->s_op = NULL;
290		}
291
292		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
293	}
294
295	rds_ib_ring_free(&ic->i_send_ring, completed);
296	rds_ib_sub_signaled(ic, nr_sig);
297	nr_sig = 0;
298
299	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
300	    test_bit(0, &conn->c_map_queued))
301		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
302
303	/* We expect errors as the qp is drained during shutdown */
304	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
305		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
306				  &conn->c_laddr, &conn->c_faddr,
307				  conn->c_tos, wc->status,
308				  ib_wc_status_msg(wc->status), wc->vendor_err);
309	}
310}
311
312/*
313 * This is the main function for allocating credits when sending
314 * messages.
315 *
316 * Conceptually, we have two counters:
317 *  -	send credits: this tells us how many WRs we're allowed
318 *	to submit without overruning the receiver's queue. For
319 *	each SEND WR we post, we decrement this by one.
320 *
321 *  -	posted credits: this tells us how many WRs we recently
322 *	posted to the receive queue. This value is transferred
323 *	to the peer as a "credit update" in a RDS header field.
324 *	Every time we transmit credits to the peer, we subtract
325 *	the amount of transferred credits from this counter.
326 *
327 * It is essential that we avoid situations where both sides have
328 * exhausted their send credits, and are unable to send new credits
329 * to the peer. We achieve this by requiring that we send at least
330 * one credit update to the peer before exhausting our credits.
331 * When new credits arrive, we subtract one credit that is withheld
332 * until we've posted new buffers and are ready to transmit these
333 * credits (see rds_ib_send_add_credits below).
334 *
335 * The RDS send code is essentially single-threaded; rds_send_xmit
336 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
337 * However, the ACK sending code is independent and can race with
338 * message SENDs.
339 *
340 * In the send path, we need to update the counters for send credits
341 * and the counter of posted buffers atomically - when we use the
342 * last available credit, we cannot allow another thread to race us
343 * and grab the posted credits counter.  Hence, we have to use a
344 * spinlock to protect the credit counter, or use atomics.
345 *
346 * Spinlocks shared between the send and the receive path are bad,
347 * because they create unnecessary delays. An early implementation
348 * using a spinlock showed a 5% degradation in throughput at some
349 * loads.
350 *
351 * This implementation avoids spinlocks completely, putting both
352 * counters into a single atomic, and updating that atomic using
353 * atomic_add (in the receive path, when receiving fresh credits),
354 * and using atomic_cmpxchg when updating the two counters.
355 */
356int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
357			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
358{
359	unsigned int avail, posted, got = 0, advertise;
360	long oldval, newval;
361
362	*adv_credits = 0;
363	if (!ic->i_flowctl)
364		return wanted;
365
366try_again:
367	advertise = 0;
368	oldval = newval = atomic_read(&ic->i_credits);
369	posted = IB_GET_POST_CREDITS(oldval);
370	avail = IB_GET_SEND_CREDITS(oldval);
371
372	rdsdebug("wanted=%u credits=%u posted=%u\n",
373			wanted, avail, posted);
374
375	/* The last credit must be used to send a credit update. */
376	if (avail && !posted)
377		avail--;
378
379	if (avail < wanted) {
380		struct rds_connection *conn = ic->i_cm_id->context;
381
382		/* Oops, there aren't that many credits left! */
383		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
384		got = avail;
385	} else {
386		/* Sometimes you get what you want, lalala. */
387		got = wanted;
388	}
389	newval -= IB_SET_SEND_CREDITS(got);
390
391	/*
392	 * If need_posted is non-zero, then the caller wants
393	 * the posted regardless of whether any send credits are
394	 * available.
395	 */
396	if (posted && (got || need_posted)) {
397		advertise = min_t(unsigned int, posted, max_posted);
398		newval -= IB_SET_POST_CREDITS(advertise);
399	}
400
401	/* Finally bill everything */
402	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
403		goto try_again;
404
405	*adv_credits = advertise;
406	return got;
407}
408
409void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
410{
411	struct rds_ib_connection *ic = conn->c_transport_data;
412
413	if (credits == 0)
414		return;
415
416	rdsdebug("credits=%u current=%u%s\n",
417			credits,
418			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
419			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
420
421	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
422	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
423		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
424
425	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
426
427	rds_ib_stats_inc(s_ib_rx_credit_updates);
428}
429
430void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
431{
432	struct rds_ib_connection *ic = conn->c_transport_data;
433
434	if (posted == 0)
435		return;
436
437	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
438
439	/* Decide whether to send an update to the peer now.
440	 * If we would send a credit update for every single buffer we
441	 * post, we would end up with an ACK storm (ACK arrives,
442	 * consumes buffer, we refill the ring, send ACK to remote
443	 * advertising the newly posted buffer... ad inf)
444	 *
445	 * Performance pretty much depends on how often we send
446	 * credit updates - too frequent updates mean lots of ACKs.
447	 * Too infrequent updates, and the peer will run out of
448	 * credits and has to throttle.
449	 * For the time being, 16 seems to be a good compromise.
450	 */
451	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
452		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
453}
454
455static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
456					     struct rds_ib_send_work *send,
457					     bool notify)
458{
459	/*
460	 * We want to delay signaling completions just enough to get
461	 * the batching benefits but not so much that we create dead time
462	 * on the wire.
463	 */
464	if (ic->i_unsignaled_wrs-- == 0 || notify) {
465		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
466		send->s_wr.send_flags |= IB_SEND_SIGNALED;
467		return 1;
468	}
469	return 0;
470}
471
472/*
473 * This can be called multiple times for a given message.  The first time
474 * we see a message we map its scatterlist into the IB device so that
475 * we can provide that mapped address to the IB scatter gather entries
476 * in the IB work requests.  We translate the scatterlist into a series
477 * of work requests that fragment the message.  These work requests complete
478 * in order so we pass ownership of the message to the completion handler
479 * once we send the final fragment.
480 *
481 * The RDS core uses the c_send_lock to only enter this function once
482 * per connection.  This makes sure that the tx ring alloc/unalloc pairs
483 * don't get out of sync and confuse the ring.
484 */
485int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
486		unsigned int hdr_off, unsigned int sg, unsigned int off)
487{
488	struct rds_ib_connection *ic = conn->c_transport_data;
489	struct ib_device *dev = ic->i_cm_id->device;
490	struct rds_ib_send_work *send = NULL;
491	struct rds_ib_send_work *first;
492	struct rds_ib_send_work *prev;
493	const struct ib_send_wr *failed_wr;
494	struct scatterlist *scat;
495	u32 pos;
496	u32 i;
497	u32 work_alloc;
498	u32 credit_alloc = 0;
499	u32 posted;
500	u32 adv_credits = 0;
501	int send_flags = 0;
502	int bytes_sent = 0;
503	int ret;
504	int flow_controlled = 0;
505	int nr_sig = 0;
506
507	BUG_ON(off % RDS_FRAG_SIZE);
508	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
509
510	/* Do not send cong updates to IB loopback */
511	if (conn->c_loopback
512	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
513		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
514		scat = &rm->data.op_sg[sg];
515		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
516		return sizeof(struct rds_header) + ret;
517	}
518
519	/* FIXME we may overallocate here */
520	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
521		i = 1;
522	else
523		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
524
525	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
526	if (work_alloc == 0) {
527		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
528		rds_ib_stats_inc(s_ib_tx_ring_full);
529		ret = -ENOMEM;
530		goto out;
531	}
532
533	if (ic->i_flowctl) {
534		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
535		adv_credits += posted;
536		if (credit_alloc < work_alloc) {
537			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
538			work_alloc = credit_alloc;
539			flow_controlled = 1;
540		}
541		if (work_alloc == 0) {
542			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
543			rds_ib_stats_inc(s_ib_tx_throttle);
544			ret = -ENOMEM;
545			goto out;
546		}
547	}
548
549	/* map the message the first time we see it */
550	if (!ic->i_data_op) {
551		if (rm->data.op_nents) {
552			rm->data.op_count = ib_dma_map_sg(dev,
553							  rm->data.op_sg,
554							  rm->data.op_nents,
555							  DMA_TO_DEVICE);
556			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
557			if (rm->data.op_count == 0) {
558				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
559				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
560				ret = -ENOMEM; /* XXX ? */
561				goto out;
562			}
563		} else {
564			rm->data.op_count = 0;
565		}
566
567		rds_message_addref(rm);
568		rm->data.op_dmasg = 0;
569		rm->data.op_dmaoff = 0;
570		ic->i_data_op = &rm->data;
571
572		/* Finalize the header */
573		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
574			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
575		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
576			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
577
578		/* If it has a RDMA op, tell the peer we did it. This is
579		 * used by the peer to release use-once RDMA MRs. */
580		if (rm->rdma.op_active) {
581			struct rds_ext_header_rdma ext_hdr;
582
583			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
584			rds_message_add_extension(&rm->m_inc.i_hdr,
585					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
586		}
587		if (rm->m_rdma_cookie) {
588			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
589					rds_rdma_cookie_key(rm->m_rdma_cookie),
590					rds_rdma_cookie_offset(rm->m_rdma_cookie));
591		}
592
593		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
594		 * we should not do this unless we have a chance of at least
595		 * sticking the header into the send ring. Which is why we
596		 * should call rds_ib_ring_alloc first. */
597		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
598		rds_message_make_checksum(&rm->m_inc.i_hdr);
599
600		/*
601		 * Update adv_credits since we reset the ACK_REQUIRED bit.
602		 */
603		if (ic->i_flowctl) {
604			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
605			adv_credits += posted;
606			BUG_ON(adv_credits > 255);
607		}
608	}
609
610	/* Sometimes you want to put a fence between an RDMA
611	 * READ and the following SEND.
612	 * We could either do this all the time
613	 * or when requested by the user. Right now, we let
614	 * the application choose.
615	 */
616	if (rm->rdma.op_active && rm->rdma.op_fence)
617		send_flags = IB_SEND_FENCE;
618
619	/* Each frag gets a header. Msgs may be 0 bytes */
620	send = &ic->i_sends[pos];
621	first = send;
622	prev = NULL;
623	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
624	i = 0;
625	do {
626		unsigned int len = 0;
627
628		/* Set up the header */
629		send->s_wr.send_flags = send_flags;
630		send->s_wr.opcode = IB_WR_SEND;
631		send->s_wr.num_sge = 1;
632		send->s_wr.next = NULL;
633		send->s_queued = jiffies;
634		send->s_op = NULL;
635
636		send->s_sge[0].addr = ic->i_send_hdrs_dma[pos];
637
638		send->s_sge[0].length = sizeof(struct rds_header);
639		send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
640
641		ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev,
642					   ic->i_send_hdrs_dma[pos],
643					   sizeof(struct rds_header),
644					   DMA_TO_DEVICE);
645		memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
646		       sizeof(struct rds_header));
647
648
649		/* Set up the data, if present */
650		if (i < work_alloc
651		    && scat != &rm->data.op_sg[rm->data.op_count]) {
652			len = min(RDS_FRAG_SIZE,
653				  sg_dma_len(scat) - rm->data.op_dmaoff);
654			send->s_wr.num_sge = 2;
655
656			send->s_sge[1].addr = sg_dma_address(scat);
657			send->s_sge[1].addr += rm->data.op_dmaoff;
658			send->s_sge[1].length = len;
659			send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
660
661			bytes_sent += len;
662			rm->data.op_dmaoff += len;
663			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
664				scat++;
665				rm->data.op_dmasg++;
666				rm->data.op_dmaoff = 0;
667			}
668		}
669
670		rds_ib_set_wr_signal_state(ic, send, false);
671
672		/*
673		 * Always signal the last one if we're stopping due to flow control.
674		 */
675		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
676			rds_ib_set_wr_signal_state(ic, send, true);
677			send->s_wr.send_flags |= IB_SEND_SOLICITED;
678		}
679
680		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
681			nr_sig++;
682
683		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
684			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
685
686		if (ic->i_flowctl && adv_credits) {
687			struct rds_header *hdr = ic->i_send_hdrs[pos];
688
689			/* add credit and redo the header checksum */
690			hdr->h_credit = adv_credits;
691			rds_message_make_checksum(hdr);
692			adv_credits = 0;
693			rds_ib_stats_inc(s_ib_tx_credit_updates);
694		}
695		ib_dma_sync_single_for_device(ic->rds_ibdev->dev,
696					      ic->i_send_hdrs_dma[pos],
697					      sizeof(struct rds_header),
698					      DMA_TO_DEVICE);
699
700		if (prev)
701			prev->s_wr.next = &send->s_wr;
702		prev = send;
703
704		pos = (pos + 1) % ic->i_send_ring.w_nr;
705		send = &ic->i_sends[pos];
706		i++;
707
708	} while (i < work_alloc
709		 && scat != &rm->data.op_sg[rm->data.op_count]);
710
711	/* Account the RDS header in the number of bytes we sent, but just once.
712	 * The caller has no concept of fragmentation. */
713	if (hdr_off == 0)
714		bytes_sent += sizeof(struct rds_header);
715
716	/* if we finished the message then send completion owns it */
717	if (scat == &rm->data.op_sg[rm->data.op_count]) {
718		prev->s_op = ic->i_data_op;
719		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
720		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
721			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
722		ic->i_data_op = NULL;
723	}
724
725	/* Put back wrs & credits we didn't use */
726	if (i < work_alloc) {
727		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
728		work_alloc = i;
729	}
730	if (ic->i_flowctl && i < credit_alloc)
731		rds_ib_send_add_credits(conn, credit_alloc - i);
732
733	if (nr_sig)
734		atomic_add(nr_sig, &ic->i_signaled_sends);
735
736	/* XXX need to worry about failed_wr and partial sends. */
737	failed_wr = &first->s_wr;
738	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
739	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
740		 first, &first->s_wr, ret, failed_wr);
741	BUG_ON(failed_wr != &first->s_wr);
742	if (ret) {
743		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
744		       "returned %d\n", &conn->c_faddr, ret);
745		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
746		rds_ib_sub_signaled(ic, nr_sig);
747		if (prev->s_op) {
748			ic->i_data_op = prev->s_op;
749			prev->s_op = NULL;
750		}
751
752		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
753		goto out;
754	}
755
756	ret = bytes_sent;
757out:
758	BUG_ON(adv_credits);
759	return ret;
760}
761
762/*
763 * Issue atomic operation.
764 * A simplified version of the rdma case, we always map 1 SG, and
765 * only 8 bytes, for the return value from the atomic operation.
766 */
767int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
768{
769	struct rds_ib_connection *ic = conn->c_transport_data;
770	struct rds_ib_send_work *send = NULL;
771	const struct ib_send_wr *failed_wr;
772	u32 pos;
773	u32 work_alloc;
774	int ret;
775	int nr_sig = 0;
776
777	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
778	if (work_alloc != 1) {
779		rds_ib_stats_inc(s_ib_tx_ring_full);
780		ret = -ENOMEM;
781		goto out;
782	}
783
784	/* address of send request in ring */
785	send = &ic->i_sends[pos];
786	send->s_queued = jiffies;
787
788	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
789		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
790		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
791		send->s_atomic_wr.swap = op->op_m_cswp.swap;
792		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
793		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
794	} else { /* FADD */
795		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
796		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
797		send->s_atomic_wr.swap = 0;
798		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
799		send->s_atomic_wr.swap_mask = 0;
800	}
801	send->s_wr.send_flags = 0;
802	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
803	send->s_atomic_wr.wr.num_sge = 1;
804	send->s_atomic_wr.wr.next = NULL;
805	send->s_atomic_wr.remote_addr = op->op_remote_addr;
806	send->s_atomic_wr.rkey = op->op_rkey;
807	send->s_op = op;
808	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
809
810	/* map 8 byte retval buffer to the device */
811	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
812	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
813	if (ret != 1) {
814		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
815		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
816		ret = -ENOMEM; /* XXX ? */
817		goto out;
818	}
819
820	/* Convert our struct scatterlist to struct ib_sge */
821	send->s_sge[0].addr = sg_dma_address(op->op_sg);
822	send->s_sge[0].length = sg_dma_len(op->op_sg);
823	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
824
825	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
826		 send->s_sge[0].addr, send->s_sge[0].length);
827
828	if (nr_sig)
829		atomic_add(nr_sig, &ic->i_signaled_sends);
830
831	failed_wr = &send->s_atomic_wr.wr;
832	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
833	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
834		 send, &send->s_atomic_wr, ret, failed_wr);
835	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
836	if (ret) {
837		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
838		       "returned %d\n", &conn->c_faddr, ret);
839		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
840		rds_ib_sub_signaled(ic, nr_sig);
841		goto out;
842	}
843
844	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
845		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
846		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
847	}
848
849out:
850	return ret;
851}
852
853int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
854{
855	struct rds_ib_connection *ic = conn->c_transport_data;
856	struct rds_ib_send_work *send = NULL;
857	struct rds_ib_send_work *first;
858	struct rds_ib_send_work *prev;
859	const struct ib_send_wr *failed_wr;
860	struct scatterlist *scat;
861	unsigned long len;
862	u64 remote_addr = op->op_remote_addr;
863	u32 max_sge = ic->rds_ibdev->max_sge;
864	u32 pos;
865	u32 work_alloc;
866	u32 i;
867	u32 j;
868	int sent;
869	int ret;
870	int num_sge;
871	int nr_sig = 0;
872	u64 odp_addr = op->op_odp_addr;
873	u32 odp_lkey = 0;
874
875	/* map the op the first time we see it */
876	if (!op->op_odp_mr) {
877		if (!op->op_mapped) {
878			op->op_count =
879				ib_dma_map_sg(ic->i_cm_id->device, op->op_sg,
880					      op->op_nents,
881					      (op->op_write) ? DMA_TO_DEVICE :
882							       DMA_FROM_DEVICE);
883			rdsdebug("ic %p mapping op %p: %d\n", ic, op,
884				 op->op_count);
885			if (op->op_count == 0) {
886				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
887				ret = -ENOMEM; /* XXX ? */
888				goto out;
889			}
890			op->op_mapped = 1;
891		}
892	} else {
893		op->op_count = op->op_nents;
894		odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private);
895	}
896
897	/*
898	 * Instead of knowing how to return a partial rdma read/write we insist that there
899	 * be enough work requests to send the entire message.
900	 */
901	i = DIV_ROUND_UP(op->op_count, max_sge);
902
903	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
904	if (work_alloc != i) {
905		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
906		rds_ib_stats_inc(s_ib_tx_ring_full);
907		ret = -ENOMEM;
908		goto out;
909	}
910
911	send = &ic->i_sends[pos];
912	first = send;
913	prev = NULL;
914	scat = &op->op_sg[0];
915	sent = 0;
916	num_sge = op->op_count;
917
918	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
919		send->s_wr.send_flags = 0;
920		send->s_queued = jiffies;
921		send->s_op = NULL;
922
923		if (!op->op_notify)
924			nr_sig += rds_ib_set_wr_signal_state(ic, send,
925							     op->op_notify);
926
927		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
928		send->s_rdma_wr.remote_addr = remote_addr;
929		send->s_rdma_wr.rkey = op->op_rkey;
930
931		if (num_sge > max_sge) {
932			send->s_rdma_wr.wr.num_sge = max_sge;
933			num_sge -= max_sge;
934		} else {
935			send->s_rdma_wr.wr.num_sge = num_sge;
936		}
937
938		send->s_rdma_wr.wr.next = NULL;
939
940		if (prev)
941			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
942
943		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
944		     scat != &op->op_sg[op->op_count]; j++) {
945			len = sg_dma_len(scat);
946			if (!op->op_odp_mr) {
947				send->s_sge[j].addr = sg_dma_address(scat);
948				send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
949			} else {
950				send->s_sge[j].addr = odp_addr;
951				send->s_sge[j].lkey = odp_lkey;
952			}
953			send->s_sge[j].length = len;
954
955			sent += len;
956			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
957
958			remote_addr += len;
959			odp_addr += len;
960			scat++;
961		}
962
963		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
964			&send->s_rdma_wr.wr,
965			send->s_rdma_wr.wr.num_sge,
966			send->s_rdma_wr.wr.next);
967
968		prev = send;
969		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
970			send = ic->i_sends;
971	}
972
973	/* give a reference to the last op */
974	if (scat == &op->op_sg[op->op_count]) {
975		prev->s_op = op;
976		rds_message_addref(container_of(op, struct rds_message, rdma));
977	}
978
979	if (i < work_alloc) {
980		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
981		work_alloc = i;
982	}
983
984	if (nr_sig)
985		atomic_add(nr_sig, &ic->i_signaled_sends);
986
987	failed_wr = &first->s_rdma_wr.wr;
988	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
989	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
990		 first, &first->s_rdma_wr.wr, ret, failed_wr);
991	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
992	if (ret) {
993		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
994		       "returned %d\n", &conn->c_faddr, ret);
995		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
996		rds_ib_sub_signaled(ic, nr_sig);
997		goto out;
998	}
999
1000	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
1001		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
1002		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
1003	}
1004
1005
1006out:
1007	return ret;
1008}
1009
1010void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
1011{
1012	struct rds_connection *conn = cp->cp_conn;
1013	struct rds_ib_connection *ic = conn->c_transport_data;
1014
1015	/* We may have a pending ACK or window update we were unable
1016	 * to send previously (due to flow control). Try again. */
1017	rds_ib_attempt_ack(ic);
1018}
1019