1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2015, Sony Mobile Communications Inc. 4 * Copyright (c) 2013, The Linux Foundation. All rights reserved. 5 */ 6#include <linux/module.h> 7#include <linux/netlink.h> 8#include <linux/qrtr.h> 9#include <linux/termios.h> /* For TIOCINQ/OUTQ */ 10#include <linux/spinlock.h> 11#include <linux/wait.h> 12 13#include <net/sock.h> 14 15#include "qrtr.h" 16 17#define QRTR_PROTO_VER_1 1 18#define QRTR_PROTO_VER_2 3 19 20/* auto-bind range */ 21#define QRTR_MIN_EPH_SOCKET 0x4000 22#define QRTR_MAX_EPH_SOCKET 0x7fff 23#define QRTR_EPH_PORT_RANGE \ 24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET) 25 26/** 27 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1 28 * @version: protocol version 29 * @type: packet type; one of QRTR_TYPE_* 30 * @src_node_id: source node 31 * @src_port_id: source port 32 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply 33 * @size: length of packet, excluding this header 34 * @dst_node_id: destination node 35 * @dst_port_id: destination port 36 */ 37struct qrtr_hdr_v1 { 38 __le32 version; 39 __le32 type; 40 __le32 src_node_id; 41 __le32 src_port_id; 42 __le32 confirm_rx; 43 __le32 size; 44 __le32 dst_node_id; 45 __le32 dst_port_id; 46} __packed; 47 48/** 49 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions 50 * @version: protocol version 51 * @type: packet type; one of QRTR_TYPE_* 52 * @flags: bitmask of QRTR_FLAGS_* 53 * @optlen: length of optional header data 54 * @size: length of packet, excluding this header and optlen 55 * @src_node_id: source node 56 * @src_port_id: source port 57 * @dst_node_id: destination node 58 * @dst_port_id: destination port 59 */ 60struct qrtr_hdr_v2 { 61 u8 version; 62 u8 type; 63 u8 flags; 64 u8 optlen; 65 __le32 size; 66 __le16 src_node_id; 67 __le16 src_port_id; 68 __le16 dst_node_id; 69 __le16 dst_port_id; 70}; 71 72#define QRTR_FLAGS_CONFIRM_RX BIT(0) 73 74struct qrtr_cb { 75 u32 src_node; 76 u32 src_port; 77 u32 dst_node; 78 u32 dst_port; 79 80 u8 type; 81 u8 confirm_rx; 82}; 83 84#define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \ 85 sizeof(struct qrtr_hdr_v2)) 86 87struct qrtr_sock { 88 /* WARNING: sk must be the first member */ 89 struct sock sk; 90 struct sockaddr_qrtr us; 91 struct sockaddr_qrtr peer; 92}; 93 94static inline struct qrtr_sock *qrtr_sk(struct sock *sk) 95{ 96 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0); 97 return container_of(sk, struct qrtr_sock, sk); 98} 99 100static unsigned int qrtr_local_nid = 1; 101 102/* for node ids */ 103static RADIX_TREE(qrtr_nodes, GFP_ATOMIC); 104static DEFINE_SPINLOCK(qrtr_nodes_lock); 105/* broadcast list */ 106static LIST_HEAD(qrtr_all_nodes); 107/* lock for qrtr_all_nodes and node reference */ 108static DEFINE_MUTEX(qrtr_node_lock); 109 110/* local port allocation management */ 111static DEFINE_XARRAY_ALLOC(qrtr_ports); 112 113/** 114 * struct qrtr_node - endpoint node 115 * @ep_lock: lock for endpoint management and callbacks 116 * @ep: endpoint 117 * @ref: reference count for node 118 * @nid: node id 119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port 120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts 121 * @rx_queue: receive queue 122 * @item: list item for broadcast list 123 */ 124struct qrtr_node { 125 struct mutex ep_lock; 126 struct qrtr_endpoint *ep; 127 struct kref ref; 128 unsigned int nid; 129 130 struct radix_tree_root qrtr_tx_flow; 131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */ 132 133 struct sk_buff_head rx_queue; 134 struct list_head item; 135}; 136 137/** 138 * struct qrtr_tx_flow - tx flow control 139 * @resume_tx: waiters for a resume tx from the remote 140 * @pending: number of waiting senders 141 * @tx_failed: indicates that a message with confirm_rx flag was lost 142 */ 143struct qrtr_tx_flow { 144 struct wait_queue_head resume_tx; 145 int pending; 146 int tx_failed; 147}; 148 149#define QRTR_TX_FLOW_HIGH 10 150#define QRTR_TX_FLOW_LOW 5 151 152static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, 153 int type, struct sockaddr_qrtr *from, 154 struct sockaddr_qrtr *to); 155static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, 156 int type, struct sockaddr_qrtr *from, 157 struct sockaddr_qrtr *to); 158static struct qrtr_sock *qrtr_port_lookup(int port); 159static void qrtr_port_put(struct qrtr_sock *ipc); 160 161/* Release node resources and free the node. 162 * 163 * Do not call directly, use qrtr_node_release. To be used with 164 * kref_put_mutex. As such, the node mutex is expected to be locked on call. 165 */ 166static void __qrtr_node_release(struct kref *kref) 167{ 168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref); 169 struct radix_tree_iter iter; 170 struct qrtr_tx_flow *flow; 171 unsigned long flags; 172 void __rcu **slot; 173 174 spin_lock_irqsave(&qrtr_nodes_lock, flags); 175 if (node->nid != QRTR_EP_NID_AUTO) 176 radix_tree_delete(&qrtr_nodes, node->nid); 177 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 178 179 list_del(&node->item); 180 mutex_unlock(&qrtr_node_lock); 181 182 skb_queue_purge(&node->rx_queue); 183 184 /* Free tx flow counters */ 185 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { 186 flow = *slot; 187 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot); 188 kfree(flow); 189 } 190 kfree(node); 191} 192 193/* Increment reference to node. */ 194static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node) 195{ 196 if (node) 197 kref_get(&node->ref); 198 return node; 199} 200 201/* Decrement reference to node and release as necessary. */ 202static void qrtr_node_release(struct qrtr_node *node) 203{ 204 if (!node) 205 return; 206 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock); 207} 208 209/** 210 * qrtr_tx_resume() - reset flow control counter 211 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on 212 * @skb: resume_tx packet 213 */ 214static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb) 215{ 216 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data; 217 u64 remote_node = le32_to_cpu(pkt->client.node); 218 u32 remote_port = le32_to_cpu(pkt->client.port); 219 struct qrtr_tx_flow *flow; 220 unsigned long key; 221 222 key = remote_node << 32 | remote_port; 223 224 rcu_read_lock(); 225 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 226 rcu_read_unlock(); 227 if (flow) { 228 spin_lock(&flow->resume_tx.lock); 229 flow->pending = 0; 230 spin_unlock(&flow->resume_tx.lock); 231 wake_up_interruptible_all(&flow->resume_tx); 232 } 233 234 consume_skb(skb); 235} 236 237/** 238 * qrtr_tx_wait() - flow control for outgoing packets 239 * @node: qrtr_node that the packet is to be send to 240 * @dest_node: node id of the destination 241 * @dest_port: port number of the destination 242 * @type: type of message 243 * 244 * The flow control scheme is based around the low and high "watermarks". When 245 * the low watermark is passed the confirm_rx flag is set on the outgoing 246 * message, which will trigger the remote to send a control message of the type 247 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit 248 * further transmision should be paused. 249 * 250 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure 251 */ 252static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port, 253 int type) 254{ 255 unsigned long key = (u64)dest_node << 32 | dest_port; 256 struct qrtr_tx_flow *flow; 257 int confirm_rx = 0; 258 int ret; 259 260 /* Never set confirm_rx on non-data packets */ 261 if (type != QRTR_TYPE_DATA) 262 return 0; 263 264 mutex_lock(&node->qrtr_tx_lock); 265 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 266 if (!flow) { 267 flow = kzalloc(sizeof(*flow), GFP_KERNEL); 268 if (flow) { 269 init_waitqueue_head(&flow->resume_tx); 270 if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) { 271 kfree(flow); 272 flow = NULL; 273 } 274 } 275 } 276 mutex_unlock(&node->qrtr_tx_lock); 277 278 /* Set confirm_rx if we where unable to find and allocate a flow */ 279 if (!flow) 280 return 1; 281 282 spin_lock_irq(&flow->resume_tx.lock); 283 ret = wait_event_interruptible_locked_irq(flow->resume_tx, 284 flow->pending < QRTR_TX_FLOW_HIGH || 285 flow->tx_failed || 286 !node->ep); 287 if (ret < 0) { 288 confirm_rx = ret; 289 } else if (!node->ep) { 290 confirm_rx = -EPIPE; 291 } else if (flow->tx_failed) { 292 flow->tx_failed = 0; 293 confirm_rx = 1; 294 } else { 295 flow->pending++; 296 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW; 297 } 298 spin_unlock_irq(&flow->resume_tx.lock); 299 300 return confirm_rx; 301} 302 303/** 304 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed 305 * @node: qrtr_node that the packet is to be send to 306 * @dest_node: node id of the destination 307 * @dest_port: port number of the destination 308 * 309 * Signal that the transmission of a message with confirm_rx flag failed. The 310 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH, 311 * at which point transmission would stall forever waiting for the resume TX 312 * message associated with the dropped confirm_rx message. 313 * Work around this by marking the flow as having a failed transmission and 314 * cause the next transmission attempt to be sent with the confirm_rx. 315 */ 316static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node, 317 int dest_port) 318{ 319 unsigned long key = (u64)dest_node << 32 | dest_port; 320 struct qrtr_tx_flow *flow; 321 322 rcu_read_lock(); 323 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 324 rcu_read_unlock(); 325 if (flow) { 326 spin_lock_irq(&flow->resume_tx.lock); 327 flow->tx_failed = 1; 328 spin_unlock_irq(&flow->resume_tx.lock); 329 } 330} 331 332/* Pass an outgoing packet socket buffer to the endpoint driver. */ 333static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb, 334 int type, struct sockaddr_qrtr *from, 335 struct sockaddr_qrtr *to) 336{ 337 struct qrtr_hdr_v1 *hdr; 338 size_t len = skb->len; 339 int rc, confirm_rx; 340 341 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type); 342 if (confirm_rx < 0) { 343 kfree_skb(skb); 344 return confirm_rx; 345 } 346 347 hdr = skb_push(skb, sizeof(*hdr)); 348 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1); 349 hdr->type = cpu_to_le32(type); 350 hdr->src_node_id = cpu_to_le32(from->sq_node); 351 hdr->src_port_id = cpu_to_le32(from->sq_port); 352 if (to->sq_port == QRTR_PORT_CTRL) { 353 hdr->dst_node_id = cpu_to_le32(node->nid); 354 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL); 355 } else { 356 hdr->dst_node_id = cpu_to_le32(to->sq_node); 357 hdr->dst_port_id = cpu_to_le32(to->sq_port); 358 } 359 360 hdr->size = cpu_to_le32(len); 361 hdr->confirm_rx = !!confirm_rx; 362 363 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr)); 364 365 if (!rc) { 366 mutex_lock(&node->ep_lock); 367 rc = -ENODEV; 368 if (node->ep) 369 rc = node->ep->xmit(node->ep, skb); 370 else 371 kfree_skb(skb); 372 mutex_unlock(&node->ep_lock); 373 } 374 /* Need to ensure that a subsequent message carries the otherwise lost 375 * confirm_rx flag if we dropped this one */ 376 if (rc && confirm_rx) 377 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port); 378 379 return rc; 380} 381 382/* Lookup node by id. 383 * 384 * callers must release with qrtr_node_release() 385 */ 386static struct qrtr_node *qrtr_node_lookup(unsigned int nid) 387{ 388 struct qrtr_node *node; 389 unsigned long flags; 390 391 mutex_lock(&qrtr_node_lock); 392 spin_lock_irqsave(&qrtr_nodes_lock, flags); 393 node = radix_tree_lookup(&qrtr_nodes, nid); 394 node = qrtr_node_acquire(node); 395 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 396 mutex_unlock(&qrtr_node_lock); 397 398 return node; 399} 400 401/* Assign node id to node. 402 * 403 * This is mostly useful for automatic node id assignment, based on 404 * the source id in the incoming packet. 405 */ 406static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid) 407{ 408 unsigned long flags; 409 410 if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO) 411 return; 412 413 spin_lock_irqsave(&qrtr_nodes_lock, flags); 414 radix_tree_insert(&qrtr_nodes, nid, node); 415 node->nid = nid; 416 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 417} 418 419/** 420 * qrtr_endpoint_post() - post incoming data 421 * @ep: endpoint handle 422 * @data: data pointer 423 * @len: size of data in bytes 424 * 425 * Return: 0 on success; negative error code on failure 426 */ 427int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len) 428{ 429 struct qrtr_node *node = ep->node; 430 const struct qrtr_hdr_v1 *v1; 431 const struct qrtr_hdr_v2 *v2; 432 struct qrtr_sock *ipc; 433 struct sk_buff *skb; 434 struct qrtr_cb *cb; 435 size_t size; 436 unsigned int ver; 437 size_t hdrlen; 438 439 if (len == 0 || len & 3) 440 return -EINVAL; 441 442 skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN); 443 if (!skb) 444 return -ENOMEM; 445 446 cb = (struct qrtr_cb *)skb->cb; 447 448 /* Version field in v1 is little endian, so this works for both cases */ 449 ver = *(u8*)data; 450 451 switch (ver) { 452 case QRTR_PROTO_VER_1: 453 if (len < sizeof(*v1)) 454 goto err; 455 v1 = data; 456 hdrlen = sizeof(*v1); 457 458 cb->type = le32_to_cpu(v1->type); 459 cb->src_node = le32_to_cpu(v1->src_node_id); 460 cb->src_port = le32_to_cpu(v1->src_port_id); 461 cb->confirm_rx = !!v1->confirm_rx; 462 cb->dst_node = le32_to_cpu(v1->dst_node_id); 463 cb->dst_port = le32_to_cpu(v1->dst_port_id); 464 465 size = le32_to_cpu(v1->size); 466 break; 467 case QRTR_PROTO_VER_2: 468 if (len < sizeof(*v2)) 469 goto err; 470 v2 = data; 471 hdrlen = sizeof(*v2) + v2->optlen; 472 473 cb->type = v2->type; 474 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX); 475 cb->src_node = le16_to_cpu(v2->src_node_id); 476 cb->src_port = le16_to_cpu(v2->src_port_id); 477 cb->dst_node = le16_to_cpu(v2->dst_node_id); 478 cb->dst_port = le16_to_cpu(v2->dst_port_id); 479 480 if (cb->src_port == (u16)QRTR_PORT_CTRL) 481 cb->src_port = QRTR_PORT_CTRL; 482 if (cb->dst_port == (u16)QRTR_PORT_CTRL) 483 cb->dst_port = QRTR_PORT_CTRL; 484 485 size = le32_to_cpu(v2->size); 486 break; 487 default: 488 pr_err("qrtr: Invalid version %d\n", ver); 489 goto err; 490 } 491 492 if (!size || len != ALIGN(size, 4) + hdrlen) 493 goto err; 494 495 if ((cb->type == QRTR_TYPE_NEW_SERVER || 496 cb->type == QRTR_TYPE_RESUME_TX) && 497 size < sizeof(struct qrtr_ctrl_pkt)) 498 goto err; 499 500 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA && 501 cb->type != QRTR_TYPE_RESUME_TX) 502 goto err; 503 504 skb_put_data(skb, data + hdrlen, size); 505 506 qrtr_node_assign(node, cb->src_node); 507 508 if (cb->type == QRTR_TYPE_NEW_SERVER) { 509 /* Remote node endpoint can bridge other distant nodes */ 510 const struct qrtr_ctrl_pkt *pkt; 511 512 pkt = data + hdrlen; 513 qrtr_node_assign(node, le32_to_cpu(pkt->server.node)); 514 } 515 516 if (cb->type == QRTR_TYPE_RESUME_TX) { 517 qrtr_tx_resume(node, skb); 518 } else { 519 ipc = qrtr_port_lookup(cb->dst_port); 520 if (!ipc) 521 goto err; 522 523 if (sock_queue_rcv_skb(&ipc->sk, skb)) { 524 qrtr_port_put(ipc); 525 goto err; 526 } 527 528 qrtr_port_put(ipc); 529 } 530 531 return 0; 532 533err: 534 kfree_skb(skb); 535 return -EINVAL; 536 537} 538EXPORT_SYMBOL_GPL(qrtr_endpoint_post); 539 540/** 541 * qrtr_alloc_ctrl_packet() - allocate control packet skb 542 * @pkt: reference to qrtr_ctrl_pkt pointer 543 * 544 * Returns newly allocated sk_buff, or NULL on failure 545 * 546 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and 547 * on success returns a reference to the control packet in @pkt. 548 */ 549static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt) 550{ 551 const int pkt_len = sizeof(struct qrtr_ctrl_pkt); 552 struct sk_buff *skb; 553 554 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL); 555 if (!skb) 556 return NULL; 557 558 skb_reserve(skb, QRTR_HDR_MAX_SIZE); 559 *pkt = skb_put_zero(skb, pkt_len); 560 561 return skb; 562} 563 564/** 565 * qrtr_endpoint_register() - register a new endpoint 566 * @ep: endpoint to register 567 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment 568 * Return: 0 on success; negative error code on failure 569 * 570 * The specified endpoint must have the xmit function pointer set on call. 571 */ 572int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid) 573{ 574 struct qrtr_node *node; 575 576 if (!ep || !ep->xmit) 577 return -EINVAL; 578 579 node = kzalloc(sizeof(*node), GFP_KERNEL); 580 if (!node) 581 return -ENOMEM; 582 583 kref_init(&node->ref); 584 mutex_init(&node->ep_lock); 585 skb_queue_head_init(&node->rx_queue); 586 node->nid = QRTR_EP_NID_AUTO; 587 node->ep = ep; 588 589 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL); 590 mutex_init(&node->qrtr_tx_lock); 591 592 qrtr_node_assign(node, nid); 593 594 mutex_lock(&qrtr_node_lock); 595 list_add(&node->item, &qrtr_all_nodes); 596 mutex_unlock(&qrtr_node_lock); 597 ep->node = node; 598 599 return 0; 600} 601EXPORT_SYMBOL_GPL(qrtr_endpoint_register); 602 603/** 604 * qrtr_endpoint_unregister - unregister endpoint 605 * @ep: endpoint to unregister 606 */ 607void qrtr_endpoint_unregister(struct qrtr_endpoint *ep) 608{ 609 struct qrtr_node *node = ep->node; 610 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL}; 611 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL}; 612 struct radix_tree_iter iter; 613 struct qrtr_ctrl_pkt *pkt; 614 struct qrtr_tx_flow *flow; 615 struct sk_buff *skb; 616 void __rcu **slot; 617 618 mutex_lock(&node->ep_lock); 619 node->ep = NULL; 620 mutex_unlock(&node->ep_lock); 621 622 /* Notify the local controller about the event */ 623 skb = qrtr_alloc_ctrl_packet(&pkt); 624 if (skb) { 625 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE); 626 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst); 627 } 628 629 /* Wake up any transmitters waiting for resume-tx from the node */ 630 mutex_lock(&node->qrtr_tx_lock); 631 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { 632 flow = *slot; 633 wake_up_interruptible_all(&flow->resume_tx); 634 } 635 mutex_unlock(&node->qrtr_tx_lock); 636 637 qrtr_node_release(node); 638 ep->node = NULL; 639} 640EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister); 641 642/* Lookup socket by port. 643 * 644 * Callers must release with qrtr_port_put() 645 */ 646static struct qrtr_sock *qrtr_port_lookup(int port) 647{ 648 struct qrtr_sock *ipc; 649 650 if (port == QRTR_PORT_CTRL) 651 port = 0; 652 653 rcu_read_lock(); 654 ipc = xa_load(&qrtr_ports, port); 655 if (ipc) 656 sock_hold(&ipc->sk); 657 rcu_read_unlock(); 658 659 return ipc; 660} 661 662/* Release acquired socket. */ 663static void qrtr_port_put(struct qrtr_sock *ipc) 664{ 665 sock_put(&ipc->sk); 666} 667 668/* Remove port assignment. */ 669static void qrtr_port_remove(struct qrtr_sock *ipc) 670{ 671 struct qrtr_ctrl_pkt *pkt; 672 struct sk_buff *skb; 673 int port = ipc->us.sq_port; 674 struct sockaddr_qrtr to; 675 676 to.sq_family = AF_QIPCRTR; 677 to.sq_node = QRTR_NODE_BCAST; 678 to.sq_port = QRTR_PORT_CTRL; 679 680 skb = qrtr_alloc_ctrl_packet(&pkt); 681 if (skb) { 682 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT); 683 pkt->client.node = cpu_to_le32(ipc->us.sq_node); 684 pkt->client.port = cpu_to_le32(ipc->us.sq_port); 685 686 skb_set_owner_w(skb, &ipc->sk); 687 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us, 688 &to); 689 } 690 691 if (port == QRTR_PORT_CTRL) 692 port = 0; 693 694 __sock_put(&ipc->sk); 695 696 xa_erase(&qrtr_ports, port); 697 698 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we 699 * wait for it to up increment the refcount */ 700 synchronize_rcu(); 701} 702 703/* Assign port number to socket. 704 * 705 * Specify port in the integer pointed to by port, and it will be adjusted 706 * on return as necesssary. 707 * 708 * Port may be: 709 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET] 710 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN 711 * >QRTR_MIN_EPH_SOCKET: Specified; available to all 712 */ 713static int qrtr_port_assign(struct qrtr_sock *ipc, int *port) 714{ 715 int rc; 716 717 if (!*port) { 718 rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE, 719 GFP_KERNEL); 720 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) { 721 rc = -EACCES; 722 } else if (*port == QRTR_PORT_CTRL) { 723 rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL); 724 } else { 725 rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL); 726 } 727 728 if (rc == -EBUSY) 729 return -EADDRINUSE; 730 else if (rc < 0) 731 return rc; 732 733 sock_hold(&ipc->sk); 734 735 return 0; 736} 737 738/* Reset all non-control ports */ 739static void qrtr_reset_ports(void) 740{ 741 struct qrtr_sock *ipc; 742 unsigned long index; 743 744 rcu_read_lock(); 745 xa_for_each_start(&qrtr_ports, index, ipc, 1) { 746 sock_hold(&ipc->sk); 747 ipc->sk.sk_err = ENETRESET; 748 ipc->sk.sk_error_report(&ipc->sk); 749 sock_put(&ipc->sk); 750 } 751 rcu_read_unlock(); 752} 753 754/* Bind socket to address. 755 * 756 * Socket should be locked upon call. 757 */ 758static int __qrtr_bind(struct socket *sock, 759 const struct sockaddr_qrtr *addr, int zapped) 760{ 761 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 762 struct sock *sk = sock->sk; 763 int port; 764 int rc; 765 766 /* rebinding ok */ 767 if (!zapped && addr->sq_port == ipc->us.sq_port) 768 return 0; 769 770 port = addr->sq_port; 771 rc = qrtr_port_assign(ipc, &port); 772 if (rc) 773 return rc; 774 775 /* unbind previous, if any */ 776 if (!zapped) 777 qrtr_port_remove(ipc); 778 ipc->us.sq_port = port; 779 780 sock_reset_flag(sk, SOCK_ZAPPED); 781 782 /* Notify all open ports about the new controller */ 783 if (port == QRTR_PORT_CTRL) 784 qrtr_reset_ports(); 785 786 return 0; 787} 788 789/* Auto bind to an ephemeral port. */ 790static int qrtr_autobind(struct socket *sock) 791{ 792 struct sock *sk = sock->sk; 793 struct sockaddr_qrtr addr; 794 795 if (!sock_flag(sk, SOCK_ZAPPED)) 796 return 0; 797 798 addr.sq_family = AF_QIPCRTR; 799 addr.sq_node = qrtr_local_nid; 800 addr.sq_port = 0; 801 802 return __qrtr_bind(sock, &addr, 1); 803} 804 805/* Bind socket to specified sockaddr. */ 806static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len) 807{ 808 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); 809 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 810 struct sock *sk = sock->sk; 811 int rc; 812 813 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) 814 return -EINVAL; 815 816 if (addr->sq_node != ipc->us.sq_node) 817 return -EINVAL; 818 819 lock_sock(sk); 820 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED)); 821 release_sock(sk); 822 823 return rc; 824} 825 826/* Queue packet to local peer socket. */ 827static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, 828 int type, struct sockaddr_qrtr *from, 829 struct sockaddr_qrtr *to) 830{ 831 struct qrtr_sock *ipc; 832 struct qrtr_cb *cb; 833 834 ipc = qrtr_port_lookup(to->sq_port); 835 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */ 836 if (ipc) 837 qrtr_port_put(ipc); 838 kfree_skb(skb); 839 return -ENODEV; 840 } 841 842 cb = (struct qrtr_cb *)skb->cb; 843 cb->src_node = from->sq_node; 844 cb->src_port = from->sq_port; 845 846 if (sock_queue_rcv_skb(&ipc->sk, skb)) { 847 qrtr_port_put(ipc); 848 kfree_skb(skb); 849 return -ENOSPC; 850 } 851 852 qrtr_port_put(ipc); 853 854 return 0; 855} 856 857/* Queue packet for broadcast. */ 858static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, 859 int type, struct sockaddr_qrtr *from, 860 struct sockaddr_qrtr *to) 861{ 862 struct sk_buff *skbn; 863 864 mutex_lock(&qrtr_node_lock); 865 list_for_each_entry(node, &qrtr_all_nodes, item) { 866 skbn = skb_clone(skb, GFP_KERNEL); 867 if (!skbn) 868 break; 869 skb_set_owner_w(skbn, skb->sk); 870 qrtr_node_enqueue(node, skbn, type, from, to); 871 } 872 mutex_unlock(&qrtr_node_lock); 873 874 qrtr_local_enqueue(NULL, skb, type, from, to); 875 876 return 0; 877} 878 879static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 880{ 881 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); 882 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int, 883 struct sockaddr_qrtr *, struct sockaddr_qrtr *); 884 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA); 885 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 886 struct sock *sk = sock->sk; 887 struct qrtr_node *node; 888 struct sk_buff *skb; 889 size_t plen; 890 u32 type; 891 int rc; 892 893 if (msg->msg_flags & ~(MSG_DONTWAIT)) 894 return -EINVAL; 895 896 if (len > 65535) 897 return -EMSGSIZE; 898 899 lock_sock(sk); 900 901 if (addr) { 902 if (msg->msg_namelen < sizeof(*addr)) { 903 release_sock(sk); 904 return -EINVAL; 905 } 906 907 if (addr->sq_family != AF_QIPCRTR) { 908 release_sock(sk); 909 return -EINVAL; 910 } 911 912 rc = qrtr_autobind(sock); 913 if (rc) { 914 release_sock(sk); 915 return rc; 916 } 917 } else if (sk->sk_state == TCP_ESTABLISHED) { 918 addr = &ipc->peer; 919 } else { 920 release_sock(sk); 921 return -ENOTCONN; 922 } 923 924 node = NULL; 925 if (addr->sq_node == QRTR_NODE_BCAST) { 926 if (addr->sq_port != QRTR_PORT_CTRL && 927 qrtr_local_nid != QRTR_NODE_BCAST) { 928 release_sock(sk); 929 return -ENOTCONN; 930 } 931 enqueue_fn = qrtr_bcast_enqueue; 932 } else if (addr->sq_node == ipc->us.sq_node) { 933 enqueue_fn = qrtr_local_enqueue; 934 } else { 935 node = qrtr_node_lookup(addr->sq_node); 936 if (!node) { 937 release_sock(sk); 938 return -ECONNRESET; 939 } 940 enqueue_fn = qrtr_node_enqueue; 941 } 942 943 plen = (len + 3) & ~3; 944 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE, 945 msg->msg_flags & MSG_DONTWAIT, &rc); 946 if (!skb) { 947 rc = -ENOMEM; 948 goto out_node; 949 } 950 951 skb_reserve(skb, QRTR_HDR_MAX_SIZE); 952 953 rc = memcpy_from_msg(skb_put(skb, len), msg, len); 954 if (rc) { 955 kfree_skb(skb); 956 goto out_node; 957 } 958 959 if (ipc->us.sq_port == QRTR_PORT_CTRL) { 960 if (len < 4) { 961 rc = -EINVAL; 962 kfree_skb(skb); 963 goto out_node; 964 } 965 966 /* control messages already require the type as 'command' */ 967 skb_copy_bits(skb, 0, &qrtr_type, 4); 968 } 969 970 type = le32_to_cpu(qrtr_type); 971 rc = enqueue_fn(node, skb, type, &ipc->us, addr); 972 if (rc >= 0) 973 rc = len; 974 975out_node: 976 qrtr_node_release(node); 977 release_sock(sk); 978 979 return rc; 980} 981 982static int qrtr_send_resume_tx(struct qrtr_cb *cb) 983{ 984 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port }; 985 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port }; 986 struct qrtr_ctrl_pkt *pkt; 987 struct qrtr_node *node; 988 struct sk_buff *skb; 989 int ret; 990 991 node = qrtr_node_lookup(remote.sq_node); 992 if (!node) 993 return -EINVAL; 994 995 skb = qrtr_alloc_ctrl_packet(&pkt); 996 if (!skb) 997 return -ENOMEM; 998 999 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX); 1000 pkt->client.node = cpu_to_le32(cb->dst_node); 1001 pkt->client.port = cpu_to_le32(cb->dst_port); 1002 1003 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote); 1004 1005 qrtr_node_release(node); 1006 1007 return ret; 1008} 1009 1010static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg, 1011 size_t size, int flags) 1012{ 1013 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); 1014 struct sock *sk = sock->sk; 1015 struct sk_buff *skb; 1016 struct qrtr_cb *cb; 1017 int copied, rc; 1018 1019 lock_sock(sk); 1020 1021 if (sock_flag(sk, SOCK_ZAPPED)) { 1022 release_sock(sk); 1023 return -EADDRNOTAVAIL; 1024 } 1025 1026 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, 1027 flags & MSG_DONTWAIT, &rc); 1028 if (!skb) { 1029 release_sock(sk); 1030 return rc; 1031 } 1032 cb = (struct qrtr_cb *)skb->cb; 1033 1034 copied = skb->len; 1035 if (copied > size) { 1036 copied = size; 1037 msg->msg_flags |= MSG_TRUNC; 1038 } 1039 1040 rc = skb_copy_datagram_msg(skb, 0, msg, copied); 1041 if (rc < 0) 1042 goto out; 1043 rc = copied; 1044 1045 if (addr) { 1046 /* There is an anonymous 2-byte hole after sq_family, 1047 * make sure to clear it. 1048 */ 1049 memset(addr, 0, sizeof(*addr)); 1050 1051 addr->sq_family = AF_QIPCRTR; 1052 addr->sq_node = cb->src_node; 1053 addr->sq_port = cb->src_port; 1054 msg->msg_namelen = sizeof(*addr); 1055 } 1056 1057out: 1058 if (cb->confirm_rx) 1059 qrtr_send_resume_tx(cb); 1060 1061 skb_free_datagram(sk, skb); 1062 release_sock(sk); 1063 1064 return rc; 1065} 1066 1067static int qrtr_connect(struct socket *sock, struct sockaddr *saddr, 1068 int len, int flags) 1069{ 1070 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); 1071 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1072 struct sock *sk = sock->sk; 1073 int rc; 1074 1075 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) 1076 return -EINVAL; 1077 1078 lock_sock(sk); 1079 1080 sk->sk_state = TCP_CLOSE; 1081 sock->state = SS_UNCONNECTED; 1082 1083 rc = qrtr_autobind(sock); 1084 if (rc) { 1085 release_sock(sk); 1086 return rc; 1087 } 1088 1089 ipc->peer = *addr; 1090 sock->state = SS_CONNECTED; 1091 sk->sk_state = TCP_ESTABLISHED; 1092 1093 release_sock(sk); 1094 1095 return 0; 1096} 1097 1098static int qrtr_getname(struct socket *sock, struct sockaddr *saddr, 1099 int peer) 1100{ 1101 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1102 struct sockaddr_qrtr qaddr; 1103 struct sock *sk = sock->sk; 1104 1105 lock_sock(sk); 1106 if (peer) { 1107 if (sk->sk_state != TCP_ESTABLISHED) { 1108 release_sock(sk); 1109 return -ENOTCONN; 1110 } 1111 1112 qaddr = ipc->peer; 1113 } else { 1114 qaddr = ipc->us; 1115 } 1116 release_sock(sk); 1117 1118 qaddr.sq_family = AF_QIPCRTR; 1119 1120 memcpy(saddr, &qaddr, sizeof(qaddr)); 1121 1122 return sizeof(qaddr); 1123} 1124 1125static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1126{ 1127 void __user *argp = (void __user *)arg; 1128 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1129 struct sock *sk = sock->sk; 1130 struct sockaddr_qrtr *sq; 1131 struct sk_buff *skb; 1132 struct ifreq ifr; 1133 long len = 0; 1134 int rc = 0; 1135 1136 lock_sock(sk); 1137 1138 switch (cmd) { 1139 case TIOCOUTQ: 1140 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1141 if (len < 0) 1142 len = 0; 1143 rc = put_user(len, (int __user *)argp); 1144 break; 1145 case TIOCINQ: 1146 skb = skb_peek(&sk->sk_receive_queue); 1147 if (skb) 1148 len = skb->len; 1149 rc = put_user(len, (int __user *)argp); 1150 break; 1151 case SIOCGIFADDR: 1152 if (copy_from_user(&ifr, argp, sizeof(ifr))) { 1153 rc = -EFAULT; 1154 break; 1155 } 1156 1157 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr; 1158 *sq = ipc->us; 1159 if (copy_to_user(argp, &ifr, sizeof(ifr))) { 1160 rc = -EFAULT; 1161 break; 1162 } 1163 break; 1164 case SIOCADDRT: 1165 case SIOCDELRT: 1166 case SIOCSIFADDR: 1167 case SIOCGIFDSTADDR: 1168 case SIOCSIFDSTADDR: 1169 case SIOCGIFBRDADDR: 1170 case SIOCSIFBRDADDR: 1171 case SIOCGIFNETMASK: 1172 case SIOCSIFNETMASK: 1173 rc = -EINVAL; 1174 break; 1175 default: 1176 rc = -ENOIOCTLCMD; 1177 break; 1178 } 1179 1180 release_sock(sk); 1181 1182 return rc; 1183} 1184 1185static int qrtr_release(struct socket *sock) 1186{ 1187 struct sock *sk = sock->sk; 1188 struct qrtr_sock *ipc; 1189 1190 if (!sk) 1191 return 0; 1192 1193 lock_sock(sk); 1194 1195 ipc = qrtr_sk(sk); 1196 sk->sk_shutdown = SHUTDOWN_MASK; 1197 if (!sock_flag(sk, SOCK_DEAD)) 1198 sk->sk_state_change(sk); 1199 1200 sock_set_flag(sk, SOCK_DEAD); 1201 sock_orphan(sk); 1202 sock->sk = NULL; 1203 1204 if (!sock_flag(sk, SOCK_ZAPPED)) 1205 qrtr_port_remove(ipc); 1206 1207 skb_queue_purge(&sk->sk_receive_queue); 1208 1209 release_sock(sk); 1210 sock_put(sk); 1211 1212 return 0; 1213} 1214 1215static const struct proto_ops qrtr_proto_ops = { 1216 .owner = THIS_MODULE, 1217 .family = AF_QIPCRTR, 1218 .bind = qrtr_bind, 1219 .connect = qrtr_connect, 1220 .socketpair = sock_no_socketpair, 1221 .accept = sock_no_accept, 1222 .listen = sock_no_listen, 1223 .sendmsg = qrtr_sendmsg, 1224 .recvmsg = qrtr_recvmsg, 1225 .getname = qrtr_getname, 1226 .ioctl = qrtr_ioctl, 1227 .gettstamp = sock_gettstamp, 1228 .poll = datagram_poll, 1229 .shutdown = sock_no_shutdown, 1230 .release = qrtr_release, 1231 .mmap = sock_no_mmap, 1232 .sendpage = sock_no_sendpage, 1233}; 1234 1235static struct proto qrtr_proto = { 1236 .name = "QIPCRTR", 1237 .owner = THIS_MODULE, 1238 .obj_size = sizeof(struct qrtr_sock), 1239}; 1240 1241static int qrtr_create(struct net *net, struct socket *sock, 1242 int protocol, int kern) 1243{ 1244 struct qrtr_sock *ipc; 1245 struct sock *sk; 1246 1247 if (sock->type != SOCK_DGRAM) 1248 return -EPROTOTYPE; 1249 1250 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern); 1251 if (!sk) 1252 return -ENOMEM; 1253 1254 sock_set_flag(sk, SOCK_ZAPPED); 1255 1256 sock_init_data(sock, sk); 1257 sock->ops = &qrtr_proto_ops; 1258 1259 ipc = qrtr_sk(sk); 1260 ipc->us.sq_family = AF_QIPCRTR; 1261 ipc->us.sq_node = qrtr_local_nid; 1262 ipc->us.sq_port = 0; 1263 1264 return 0; 1265} 1266 1267static const struct net_proto_family qrtr_family = { 1268 .owner = THIS_MODULE, 1269 .family = AF_QIPCRTR, 1270 .create = qrtr_create, 1271}; 1272 1273static int __init qrtr_proto_init(void) 1274{ 1275 int rc; 1276 1277 rc = proto_register(&qrtr_proto, 1); 1278 if (rc) 1279 return rc; 1280 1281 rc = sock_register(&qrtr_family); 1282 if (rc) { 1283 proto_unregister(&qrtr_proto); 1284 return rc; 1285 } 1286 1287 qrtr_ns_init(); 1288 1289 return rc; 1290} 1291postcore_initcall(qrtr_proto_init); 1292 1293static void __exit qrtr_proto_fini(void) 1294{ 1295 qrtr_ns_remove(); 1296 sock_unregister(qrtr_family.family); 1297 proto_unregister(&qrtr_proto); 1298} 1299module_exit(qrtr_proto_fini); 1300 1301MODULE_DESCRIPTION("Qualcomm IPC-router driver"); 1302MODULE_LICENSE("GPL v2"); 1303MODULE_ALIAS_NETPROTO(PF_QIPCRTR); 1304