1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8#include <linux/skbuff.h> 9#include <linux/in.h> 10#include <linux/ip.h> 11#include <linux/openvswitch.h> 12#include <linux/sctp.h> 13#include <linux/tcp.h> 14#include <linux/udp.h> 15#include <linux/in6.h> 16#include <linux/if_arp.h> 17#include <linux/if_vlan.h> 18 19#include <net/dst.h> 20#include <net/ip.h> 21#include <net/ipv6.h> 22#include <net/ip6_fib.h> 23#include <net/checksum.h> 24#include <net/dsfield.h> 25#include <net/mpls.h> 26#include <net/sctp/checksum.h> 27 28#include "datapath.h" 29#include "flow.h" 30#include "conntrack.h" 31#include "vport.h" 32#include "flow_netlink.h" 33 34struct deferred_action { 35 struct sk_buff *skb; 36 const struct nlattr *actions; 37 int actions_len; 38 39 /* Store pkt_key clone when creating deferred action. */ 40 struct sw_flow_key pkt_key; 41}; 42 43#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) 44struct ovs_frag_data { 45 unsigned long dst; 46 struct vport *vport; 47 struct ovs_skb_cb cb; 48 __be16 inner_protocol; 49 u16 network_offset; /* valid only for MPLS */ 50 u16 vlan_tci; 51 __be16 vlan_proto; 52 unsigned int l2_len; 53 u8 mac_proto; 54 u8 l2_data[MAX_L2_LEN]; 55}; 56 57static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); 58 59#define DEFERRED_ACTION_FIFO_SIZE 10 60#define OVS_RECURSION_LIMIT 5 61#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) 62struct action_fifo { 63 int head; 64 int tail; 65 /* Deferred action fifo queue storage. */ 66 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; 67}; 68 69struct action_flow_keys { 70 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; 71}; 72 73static struct action_fifo __percpu *action_fifos; 74static struct action_flow_keys __percpu *flow_keys; 75static DEFINE_PER_CPU(int, exec_actions_level); 76 77/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 78 * space. Return NULL if out of key spaces. 79 */ 80static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 81{ 82 struct action_flow_keys *keys = this_cpu_ptr(flow_keys); 83 int level = this_cpu_read(exec_actions_level); 84 struct sw_flow_key *key = NULL; 85 86 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 87 key = &keys->key[level - 1]; 88 *key = *key_; 89 } 90 91 return key; 92} 93 94static void action_fifo_init(struct action_fifo *fifo) 95{ 96 fifo->head = 0; 97 fifo->tail = 0; 98} 99 100static bool action_fifo_is_empty(const struct action_fifo *fifo) 101{ 102 return (fifo->head == fifo->tail); 103} 104 105static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 106{ 107 if (action_fifo_is_empty(fifo)) 108 return NULL; 109 110 return &fifo->fifo[fifo->tail++]; 111} 112 113static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 114{ 115 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 116 return NULL; 117 118 return &fifo->fifo[fifo->head++]; 119} 120 121/* Return true if fifo is not full */ 122static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 123 const struct sw_flow_key *key, 124 const struct nlattr *actions, 125 const int actions_len) 126{ 127 struct action_fifo *fifo; 128 struct deferred_action *da; 129 130 fifo = this_cpu_ptr(action_fifos); 131 da = action_fifo_put(fifo); 132 if (da) { 133 da->skb = skb; 134 da->actions = actions; 135 da->actions_len = actions_len; 136 da->pkt_key = *key; 137 } 138 139 return da; 140} 141 142static void invalidate_flow_key(struct sw_flow_key *key) 143{ 144 key->mac_proto |= SW_FLOW_KEY_INVALID; 145} 146 147static bool is_flow_key_valid(const struct sw_flow_key *key) 148{ 149 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 150} 151 152static int clone_execute(struct datapath *dp, struct sk_buff *skb, 153 struct sw_flow_key *key, 154 u32 recirc_id, 155 const struct nlattr *actions, int len, 156 bool last, bool clone_flow_key); 157 158static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 159 struct sw_flow_key *key, 160 const struct nlattr *attr, int len); 161 162static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 163 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len) 164{ 165 int err; 166 167 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len); 168 if (err) 169 return err; 170 171 if (!mac_len) 172 key->mac_proto = MAC_PROTO_NONE; 173 174 invalidate_flow_key(key); 175 return 0; 176} 177 178static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 179 const __be16 ethertype) 180{ 181 int err; 182 183 err = skb_mpls_pop(skb, ethertype, skb->mac_len, 184 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET); 185 if (err) 186 return err; 187 188 if (ethertype == htons(ETH_P_TEB)) 189 key->mac_proto = MAC_PROTO_ETHERNET; 190 191 invalidate_flow_key(key); 192 return 0; 193} 194 195static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 196 const __be32 *mpls_lse, const __be32 *mask) 197{ 198 struct mpls_shim_hdr *stack; 199 __be32 lse; 200 int err; 201 202 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 203 return -ENOMEM; 204 205 stack = mpls_hdr(skb); 206 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 207 err = skb_mpls_update_lse(skb, lse); 208 if (err) 209 return err; 210 211 flow_key->mpls.lse[0] = lse; 212 return 0; 213} 214 215static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 216{ 217 int err; 218 219 err = skb_vlan_pop(skb); 220 if (skb_vlan_tag_present(skb)) { 221 invalidate_flow_key(key); 222 } else { 223 key->eth.vlan.tci = 0; 224 key->eth.vlan.tpid = 0; 225 } 226 return err; 227} 228 229static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 230 const struct ovs_action_push_vlan *vlan) 231{ 232 if (skb_vlan_tag_present(skb)) { 233 invalidate_flow_key(key); 234 } else { 235 key->eth.vlan.tci = vlan->vlan_tci; 236 key->eth.vlan.tpid = vlan->vlan_tpid; 237 } 238 return skb_vlan_push(skb, vlan->vlan_tpid, 239 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); 240} 241 242/* 'src' is already properly masked. */ 243static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 244{ 245 u16 *dst = (u16 *)dst_; 246 const u16 *src = (const u16 *)src_; 247 const u16 *mask = (const u16 *)mask_; 248 249 OVS_SET_MASKED(dst[0], src[0], mask[0]); 250 OVS_SET_MASKED(dst[1], src[1], mask[1]); 251 OVS_SET_MASKED(dst[2], src[2], mask[2]); 252} 253 254static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 255 const struct ovs_key_ethernet *key, 256 const struct ovs_key_ethernet *mask) 257{ 258 int err; 259 260 err = skb_ensure_writable(skb, ETH_HLEN); 261 if (unlikely(err)) 262 return err; 263 264 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 265 266 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 267 mask->eth_src); 268 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 269 mask->eth_dst); 270 271 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 272 273 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 274 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 275 return 0; 276} 277 278/* pop_eth does not support VLAN packets as this action is never called 279 * for them. 280 */ 281static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 282{ 283 int err; 284 285 err = skb_eth_pop(skb); 286 if (err) 287 return err; 288 289 /* safe right before invalidate_flow_key */ 290 key->mac_proto = MAC_PROTO_NONE; 291 invalidate_flow_key(key); 292 return 0; 293} 294 295static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 296 const struct ovs_action_push_eth *ethh) 297{ 298 int err; 299 300 err = skb_eth_push(skb, ethh->addresses.eth_dst, 301 ethh->addresses.eth_src); 302 if (err) 303 return err; 304 305 /* safe right before invalidate_flow_key */ 306 key->mac_proto = MAC_PROTO_ETHERNET; 307 invalidate_flow_key(key); 308 return 0; 309} 310 311static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, 312 const struct nshhdr *nh) 313{ 314 int err; 315 316 err = nsh_push(skb, nh); 317 if (err) 318 return err; 319 320 /* safe right before invalidate_flow_key */ 321 key->mac_proto = MAC_PROTO_NONE; 322 invalidate_flow_key(key); 323 return 0; 324} 325 326static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) 327{ 328 int err; 329 330 err = nsh_pop(skb); 331 if (err) 332 return err; 333 334 /* safe right before invalidate_flow_key */ 335 if (skb->protocol == htons(ETH_P_TEB)) 336 key->mac_proto = MAC_PROTO_ETHERNET; 337 else 338 key->mac_proto = MAC_PROTO_NONE; 339 invalidate_flow_key(key); 340 return 0; 341} 342 343static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 344 __be32 addr, __be32 new_addr) 345{ 346 int transport_len = skb->len - skb_transport_offset(skb); 347 348 if (nh->frag_off & htons(IP_OFFSET)) 349 return; 350 351 if (nh->protocol == IPPROTO_TCP) { 352 if (likely(transport_len >= sizeof(struct tcphdr))) 353 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 354 addr, new_addr, true); 355 } else if (nh->protocol == IPPROTO_UDP) { 356 if (likely(transport_len >= sizeof(struct udphdr))) { 357 struct udphdr *uh = udp_hdr(skb); 358 359 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 360 inet_proto_csum_replace4(&uh->check, skb, 361 addr, new_addr, true); 362 if (!uh->check) 363 uh->check = CSUM_MANGLED_0; 364 } 365 } 366 } 367} 368 369static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 370 __be32 *addr, __be32 new_addr) 371{ 372 update_ip_l4_checksum(skb, nh, *addr, new_addr); 373 csum_replace4(&nh->check, *addr, new_addr); 374 skb_clear_hash(skb); 375 ovs_ct_clear(skb, NULL); 376 *addr = new_addr; 377} 378 379static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 380 __be32 addr[4], const __be32 new_addr[4]) 381{ 382 int transport_len = skb->len - skb_transport_offset(skb); 383 384 if (l4_proto == NEXTHDR_TCP) { 385 if (likely(transport_len >= sizeof(struct tcphdr))) 386 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 387 addr, new_addr, true); 388 } else if (l4_proto == NEXTHDR_UDP) { 389 if (likely(transport_len >= sizeof(struct udphdr))) { 390 struct udphdr *uh = udp_hdr(skb); 391 392 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 393 inet_proto_csum_replace16(&uh->check, skb, 394 addr, new_addr, true); 395 if (!uh->check) 396 uh->check = CSUM_MANGLED_0; 397 } 398 } 399 } else if (l4_proto == NEXTHDR_ICMP) { 400 if (likely(transport_len >= sizeof(struct icmp6hdr))) 401 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 402 skb, addr, new_addr, true); 403 } 404} 405 406static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 407 const __be32 mask[4], __be32 masked[4]) 408{ 409 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 410 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 411 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 412 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 413} 414 415static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 416 __be32 addr[4], const __be32 new_addr[4], 417 bool recalculate_csum) 418{ 419 if (recalculate_csum) 420 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 421 422 skb_clear_hash(skb); 423 ovs_ct_clear(skb, NULL); 424 memcpy(addr, new_addr, sizeof(__be32[4])); 425} 426 427static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask) 428{ 429 u8 old_ipv6_tclass = ipv6_get_dsfield(nh); 430 431 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask); 432 433 if (skb->ip_summed == CHECKSUM_COMPLETE) 434 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12), 435 (__force __wsum)(ipv6_tclass << 12)); 436 437 ipv6_change_dsfield(nh, ~mask, ipv6_tclass); 438} 439 440static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask) 441{ 442 u32 ofl; 443 444 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2]; 445 fl = OVS_MASKED(ofl, fl, mask); 446 447 /* Bits 21-24 are always unmasked, so this retains their values. */ 448 nh->flow_lbl[0] = (u8)(fl >> 16); 449 nh->flow_lbl[1] = (u8)(fl >> 8); 450 nh->flow_lbl[2] = (u8)fl; 451 452 if (skb->ip_summed == CHECKSUM_COMPLETE) 453 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl)); 454} 455 456static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask) 457{ 458 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask); 459 460 if (skb->ip_summed == CHECKSUM_COMPLETE) 461 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8), 462 (__force __wsum)(new_ttl << 8)); 463 nh->hop_limit = new_ttl; 464} 465 466static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 467 u8 mask) 468{ 469 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 470 471 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 472 nh->ttl = new_ttl; 473} 474 475static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 476 const struct ovs_key_ipv4 *key, 477 const struct ovs_key_ipv4 *mask) 478{ 479 struct iphdr *nh; 480 __be32 new_addr; 481 int err; 482 483 err = skb_ensure_writable(skb, skb_network_offset(skb) + 484 sizeof(struct iphdr)); 485 if (unlikely(err)) 486 return err; 487 488 nh = ip_hdr(skb); 489 490 /* Setting an IP addresses is typically only a side effect of 491 * matching on them in the current userspace implementation, so it 492 * makes sense to check if the value actually changed. 493 */ 494 if (mask->ipv4_src) { 495 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 496 497 if (unlikely(new_addr != nh->saddr)) { 498 set_ip_addr(skb, nh, &nh->saddr, new_addr); 499 flow_key->ipv4.addr.src = new_addr; 500 } 501 } 502 if (mask->ipv4_dst) { 503 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 504 505 if (unlikely(new_addr != nh->daddr)) { 506 set_ip_addr(skb, nh, &nh->daddr, new_addr); 507 flow_key->ipv4.addr.dst = new_addr; 508 } 509 } 510 if (mask->ipv4_tos) { 511 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 512 flow_key->ip.tos = nh->tos; 513 } 514 if (mask->ipv4_ttl) { 515 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 516 flow_key->ip.ttl = nh->ttl; 517 } 518 519 return 0; 520} 521 522static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 523{ 524 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 525} 526 527static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 528 const struct ovs_key_ipv6 *key, 529 const struct ovs_key_ipv6 *mask) 530{ 531 struct ipv6hdr *nh; 532 int err; 533 534 err = skb_ensure_writable(skb, skb_network_offset(skb) + 535 sizeof(struct ipv6hdr)); 536 if (unlikely(err)) 537 return err; 538 539 nh = ipv6_hdr(skb); 540 541 /* Setting an IP addresses is typically only a side effect of 542 * matching on them in the current userspace implementation, so it 543 * makes sense to check if the value actually changed. 544 */ 545 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 546 __be32 *saddr = (__be32 *)&nh->saddr; 547 __be32 masked[4]; 548 549 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 550 551 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 552 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 553 true); 554 memcpy(&flow_key->ipv6.addr.src, masked, 555 sizeof(flow_key->ipv6.addr.src)); 556 } 557 } 558 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 559 unsigned int offset = 0; 560 int flags = IP6_FH_F_SKIP_RH; 561 bool recalc_csum = true; 562 __be32 *daddr = (__be32 *)&nh->daddr; 563 __be32 masked[4]; 564 565 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 566 567 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 568 if (ipv6_ext_hdr(nh->nexthdr)) 569 recalc_csum = (ipv6_find_hdr(skb, &offset, 570 NEXTHDR_ROUTING, 571 NULL, &flags) 572 != NEXTHDR_ROUTING); 573 574 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 575 recalc_csum); 576 memcpy(&flow_key->ipv6.addr.dst, masked, 577 sizeof(flow_key->ipv6.addr.dst)); 578 } 579 } 580 if (mask->ipv6_tclass) { 581 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass); 582 flow_key->ip.tos = ipv6_get_dsfield(nh); 583 } 584 if (mask->ipv6_label) { 585 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label), 586 ntohl(mask->ipv6_label)); 587 flow_key->ipv6.label = 588 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 589 } 590 if (mask->ipv6_hlimit) { 591 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit); 592 flow_key->ip.ttl = nh->hop_limit; 593 } 594 return 0; 595} 596 597static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, 598 const struct nlattr *a) 599{ 600 struct nshhdr *nh; 601 size_t length; 602 int err; 603 u8 flags; 604 u8 ttl; 605 int i; 606 607 struct ovs_key_nsh key; 608 struct ovs_key_nsh mask; 609 610 err = nsh_key_from_nlattr(a, &key, &mask); 611 if (err) 612 return err; 613 614 /* Make sure the NSH base header is there */ 615 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) 616 return -ENOMEM; 617 618 nh = nsh_hdr(skb); 619 length = nsh_hdr_len(nh); 620 621 /* Make sure the whole NSH header is there */ 622 err = skb_ensure_writable(skb, skb_network_offset(skb) + 623 length); 624 if (unlikely(err)) 625 return err; 626 627 nh = nsh_hdr(skb); 628 skb_postpull_rcsum(skb, nh, length); 629 flags = nsh_get_flags(nh); 630 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); 631 flow_key->nsh.base.flags = flags; 632 ttl = nsh_get_ttl(nh); 633 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); 634 flow_key->nsh.base.ttl = ttl; 635 nsh_set_flags_and_ttl(nh, flags, ttl); 636 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, 637 mask.base.path_hdr); 638 flow_key->nsh.base.path_hdr = nh->path_hdr; 639 switch (nh->mdtype) { 640 case NSH_M_TYPE1: 641 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { 642 nh->md1.context[i] = 643 OVS_MASKED(nh->md1.context[i], key.context[i], 644 mask.context[i]); 645 } 646 memcpy(flow_key->nsh.context, nh->md1.context, 647 sizeof(nh->md1.context)); 648 break; 649 case NSH_M_TYPE2: 650 memset(flow_key->nsh.context, 0, 651 sizeof(flow_key->nsh.context)); 652 break; 653 default: 654 return -EINVAL; 655 } 656 skb_postpush_rcsum(skb, nh, length); 657 return 0; 658} 659 660/* Must follow skb_ensure_writable() since that can move the skb data. */ 661static void set_tp_port(struct sk_buff *skb, __be16 *port, 662 __be16 new_port, __sum16 *check) 663{ 664 ovs_ct_clear(skb, NULL); 665 inet_proto_csum_replace2(check, skb, *port, new_port, false); 666 *port = new_port; 667} 668 669static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 670 const struct ovs_key_udp *key, 671 const struct ovs_key_udp *mask) 672{ 673 struct udphdr *uh; 674 __be16 src, dst; 675 int err; 676 677 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 678 sizeof(struct udphdr)); 679 if (unlikely(err)) 680 return err; 681 682 uh = udp_hdr(skb); 683 /* Either of the masks is non-zero, so do not bother checking them. */ 684 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 685 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 686 687 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 688 if (likely(src != uh->source)) { 689 set_tp_port(skb, &uh->source, src, &uh->check); 690 flow_key->tp.src = src; 691 } 692 if (likely(dst != uh->dest)) { 693 set_tp_port(skb, &uh->dest, dst, &uh->check); 694 flow_key->tp.dst = dst; 695 } 696 697 if (unlikely(!uh->check)) 698 uh->check = CSUM_MANGLED_0; 699 } else { 700 uh->source = src; 701 uh->dest = dst; 702 flow_key->tp.src = src; 703 flow_key->tp.dst = dst; 704 ovs_ct_clear(skb, NULL); 705 } 706 707 skb_clear_hash(skb); 708 709 return 0; 710} 711 712static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 713 const struct ovs_key_tcp *key, 714 const struct ovs_key_tcp *mask) 715{ 716 struct tcphdr *th; 717 __be16 src, dst; 718 int err; 719 720 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 721 sizeof(struct tcphdr)); 722 if (unlikely(err)) 723 return err; 724 725 th = tcp_hdr(skb); 726 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 727 if (likely(src != th->source)) { 728 set_tp_port(skb, &th->source, src, &th->check); 729 flow_key->tp.src = src; 730 } 731 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 732 if (likely(dst != th->dest)) { 733 set_tp_port(skb, &th->dest, dst, &th->check); 734 flow_key->tp.dst = dst; 735 } 736 skb_clear_hash(skb); 737 738 return 0; 739} 740 741static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 742 const struct ovs_key_sctp *key, 743 const struct ovs_key_sctp *mask) 744{ 745 unsigned int sctphoff = skb_transport_offset(skb); 746 struct sctphdr *sh; 747 __le32 old_correct_csum, new_csum, old_csum; 748 int err; 749 750 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 751 if (unlikely(err)) 752 return err; 753 754 sh = sctp_hdr(skb); 755 old_csum = sh->checksum; 756 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 757 758 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 759 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 760 761 new_csum = sctp_compute_cksum(skb, sctphoff); 762 763 /* Carry any checksum errors through. */ 764 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 765 766 skb_clear_hash(skb); 767 ovs_ct_clear(skb, NULL); 768 769 flow_key->tp.src = sh->source; 770 flow_key->tp.dst = sh->dest; 771 772 return 0; 773} 774 775static int ovs_vport_output(struct net *net, struct sock *sk, 776 struct sk_buff *skb) 777{ 778 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); 779 struct vport *vport = data->vport; 780 781 if (skb_cow_head(skb, data->l2_len) < 0) { 782 kfree_skb(skb); 783 return -ENOMEM; 784 } 785 786 __skb_dst_copy(skb, data->dst); 787 *OVS_CB(skb) = data->cb; 788 skb->inner_protocol = data->inner_protocol; 789 if (data->vlan_tci & VLAN_CFI_MASK) 790 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); 791 else 792 __vlan_hwaccel_clear_tag(skb); 793 794 /* Reconstruct the MAC header. */ 795 skb_push(skb, data->l2_len); 796 memcpy(skb->data, &data->l2_data, data->l2_len); 797 skb_postpush_rcsum(skb, skb->data, data->l2_len); 798 skb_reset_mac_header(skb); 799 800 if (eth_p_mpls(skb->protocol)) { 801 skb->inner_network_header = skb->network_header; 802 skb_set_network_header(skb, data->network_offset); 803 skb_reset_mac_len(skb); 804 } 805 806 ovs_vport_send(vport, skb, data->mac_proto); 807 return 0; 808} 809 810static unsigned int 811ovs_dst_get_mtu(const struct dst_entry *dst) 812{ 813 return dst->dev->mtu; 814} 815 816static struct dst_ops ovs_dst_ops = { 817 .family = AF_UNSPEC, 818 .mtu = ovs_dst_get_mtu, 819}; 820 821/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 822 * ovs_vport_output(), which is called once per fragmented packet. 823 */ 824static void prepare_frag(struct vport *vport, struct sk_buff *skb, 825 u16 orig_network_offset, u8 mac_proto) 826{ 827 unsigned int hlen = skb_network_offset(skb); 828 struct ovs_frag_data *data; 829 830 data = this_cpu_ptr(&ovs_frag_data_storage); 831 data->dst = skb->_skb_refdst; 832 data->vport = vport; 833 data->cb = *OVS_CB(skb); 834 data->inner_protocol = skb->inner_protocol; 835 data->network_offset = orig_network_offset; 836 if (skb_vlan_tag_present(skb)) 837 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; 838 else 839 data->vlan_tci = 0; 840 data->vlan_proto = skb->vlan_proto; 841 data->mac_proto = mac_proto; 842 data->l2_len = hlen; 843 memcpy(&data->l2_data, skb->data, hlen); 844 845 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 846 skb_pull(skb, hlen); 847} 848 849static void ovs_fragment(struct net *net, struct vport *vport, 850 struct sk_buff *skb, u16 mru, 851 struct sw_flow_key *key) 852{ 853 u16 orig_network_offset = 0; 854 855 if (eth_p_mpls(skb->protocol)) { 856 orig_network_offset = skb_network_offset(skb); 857 skb->network_header = skb->inner_network_header; 858 } 859 860 if (skb_network_offset(skb) > MAX_L2_LEN) { 861 OVS_NLERR(1, "L2 header too long to fragment"); 862 goto err; 863 } 864 865 if (key->eth.type == htons(ETH_P_IP)) { 866 struct rtable ovs_rt = { 0 }; 867 unsigned long orig_dst; 868 869 prepare_frag(vport, skb, orig_network_offset, 870 ovs_key_mac_proto(key)); 871 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 872 DST_OBSOLETE_NONE, DST_NOCOUNT); 873 ovs_rt.dst.dev = vport->dev; 874 875 orig_dst = skb->_skb_refdst; 876 skb_dst_set_noref(skb, &ovs_rt.dst); 877 IPCB(skb)->frag_max_size = mru; 878 879 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 880 refdst_drop(orig_dst); 881 } else if (key->eth.type == htons(ETH_P_IPV6)) { 882 unsigned long orig_dst; 883 struct rt6_info ovs_rt; 884 885 prepare_frag(vport, skb, orig_network_offset, 886 ovs_key_mac_proto(key)); 887 memset(&ovs_rt, 0, sizeof(ovs_rt)); 888 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, 889 DST_OBSOLETE_NONE, DST_NOCOUNT); 890 ovs_rt.dst.dev = vport->dev; 891 892 orig_dst = skb->_skb_refdst; 893 skb_dst_set_noref(skb, &ovs_rt.dst); 894 IP6CB(skb)->frag_max_size = mru; 895 896 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output); 897 refdst_drop(orig_dst); 898 } else { 899 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 900 ovs_vport_name(vport), ntohs(key->eth.type), mru, 901 vport->dev->mtu); 902 goto err; 903 } 904 905 return; 906err: 907 kfree_skb(skb); 908} 909 910static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 911 struct sw_flow_key *key) 912{ 913 struct vport *vport = ovs_vport_rcu(dp, out_port); 914 915 if (likely(vport)) { 916 u16 mru = OVS_CB(skb)->mru; 917 u32 cutlen = OVS_CB(skb)->cutlen; 918 919 if (unlikely(cutlen > 0)) { 920 if (skb->len - cutlen > ovs_mac_header_len(key)) 921 pskb_trim(skb, skb->len - cutlen); 922 else 923 pskb_trim(skb, ovs_mac_header_len(key)); 924 } 925 926 if (likely(!mru || 927 (skb->len <= mru + vport->dev->hard_header_len))) { 928 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 929 } else if (mru <= vport->dev->mtu) { 930 struct net *net = read_pnet(&dp->net); 931 932 ovs_fragment(net, vport, skb, mru, key); 933 } else { 934 kfree_skb(skb); 935 } 936 } else { 937 kfree_skb(skb); 938 } 939} 940 941static int output_userspace(struct datapath *dp, struct sk_buff *skb, 942 struct sw_flow_key *key, const struct nlattr *attr, 943 const struct nlattr *actions, int actions_len, 944 uint32_t cutlen) 945{ 946 struct dp_upcall_info upcall; 947 const struct nlattr *a; 948 int rem; 949 950 memset(&upcall, 0, sizeof(upcall)); 951 upcall.cmd = OVS_PACKET_CMD_ACTION; 952 upcall.mru = OVS_CB(skb)->mru; 953 954 for (a = nla_data(attr), rem = nla_len(attr); rem > 0; 955 a = nla_next(a, &rem)) { 956 switch (nla_type(a)) { 957 case OVS_USERSPACE_ATTR_USERDATA: 958 upcall.userdata = a; 959 break; 960 961 case OVS_USERSPACE_ATTR_PID: 962 upcall.portid = nla_get_u32(a); 963 break; 964 965 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 966 /* Get out tunnel info. */ 967 struct vport *vport; 968 969 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 970 if (vport) { 971 int err; 972 973 err = dev_fill_metadata_dst(vport->dev, skb); 974 if (!err) 975 upcall.egress_tun_info = skb_tunnel_info(skb); 976 } 977 978 break; 979 } 980 981 case OVS_USERSPACE_ATTR_ACTIONS: { 982 /* Include actions. */ 983 upcall.actions = actions; 984 upcall.actions_len = actions_len; 985 break; 986 } 987 988 } /* End of switch. */ 989 } 990 991 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 992} 993 994static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb, 995 struct sw_flow_key *key, 996 const struct nlattr *attr, bool last) 997{ 998 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */ 999 struct nlattr *actions = nla_data(attr); 1000 1001 if (nla_len(actions)) 1002 return clone_execute(dp, skb, key, 0, nla_data(actions), 1003 nla_len(actions), last, false); 1004 1005 consume_skb(skb); 1006 return 0; 1007} 1008 1009/* When 'last' is true, sample() should always consume the 'skb'. 1010 * Otherwise, sample() should keep 'skb' intact regardless what 1011 * actions are executed within sample(). 1012 */ 1013static int sample(struct datapath *dp, struct sk_buff *skb, 1014 struct sw_flow_key *key, const struct nlattr *attr, 1015 bool last) 1016{ 1017 struct nlattr *actions; 1018 struct nlattr *sample_arg; 1019 int rem = nla_len(attr); 1020 const struct sample_arg *arg; 1021 bool clone_flow_key; 1022 1023 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 1024 sample_arg = nla_data(attr); 1025 arg = nla_data(sample_arg); 1026 actions = nla_next(sample_arg, &rem); 1027 1028 if ((arg->probability != U32_MAX) && 1029 (!arg->probability || prandom_u32() > arg->probability)) { 1030 if (last) 1031 consume_skb(skb); 1032 return 0; 1033 } 1034 1035 clone_flow_key = !arg->exec; 1036 return clone_execute(dp, skb, key, 0, actions, rem, last, 1037 clone_flow_key); 1038} 1039 1040/* When 'last' is true, clone() should always consume the 'skb'. 1041 * Otherwise, clone() should keep 'skb' intact regardless what 1042 * actions are executed within clone(). 1043 */ 1044static int clone(struct datapath *dp, struct sk_buff *skb, 1045 struct sw_flow_key *key, const struct nlattr *attr, 1046 bool last) 1047{ 1048 struct nlattr *actions; 1049 struct nlattr *clone_arg; 1050 int rem = nla_len(attr); 1051 bool dont_clone_flow_key; 1052 1053 /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */ 1054 clone_arg = nla_data(attr); 1055 dont_clone_flow_key = nla_get_u32(clone_arg); 1056 actions = nla_next(clone_arg, &rem); 1057 1058 return clone_execute(dp, skb, key, 0, actions, rem, last, 1059 !dont_clone_flow_key); 1060} 1061 1062static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 1063 const struct nlattr *attr) 1064{ 1065 struct ovs_action_hash *hash_act = nla_data(attr); 1066 u32 hash = 0; 1067 1068 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ 1069 hash = skb_get_hash(skb); 1070 hash = jhash_1word(hash, hash_act->hash_basis); 1071 if (!hash) 1072 hash = 0x1; 1073 1074 key->ovs_flow_hash = hash; 1075} 1076 1077static int execute_set_action(struct sk_buff *skb, 1078 struct sw_flow_key *flow_key, 1079 const struct nlattr *a) 1080{ 1081 /* Only tunnel set execution is supported without a mask. */ 1082 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1083 struct ovs_tunnel_info *tun = nla_data(a); 1084 1085 skb_dst_drop(skb); 1086 dst_hold((struct dst_entry *)tun->tun_dst); 1087 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1088 return 0; 1089 } 1090 1091 return -EINVAL; 1092} 1093 1094/* Mask is at the midpoint of the data. */ 1095#define get_mask(a, type) ((const type)nla_data(a) + 1) 1096 1097static int execute_masked_set_action(struct sk_buff *skb, 1098 struct sw_flow_key *flow_key, 1099 const struct nlattr *a) 1100{ 1101 int err = 0; 1102 1103 switch (nla_type(a)) { 1104 case OVS_KEY_ATTR_PRIORITY: 1105 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1106 *get_mask(a, u32 *)); 1107 flow_key->phy.priority = skb->priority; 1108 break; 1109 1110 case OVS_KEY_ATTR_SKB_MARK: 1111 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1112 flow_key->phy.skb_mark = skb->mark; 1113 break; 1114 1115 case OVS_KEY_ATTR_TUNNEL_INFO: 1116 /* Masked data not supported for tunnel. */ 1117 err = -EINVAL; 1118 break; 1119 1120 case OVS_KEY_ATTR_ETHERNET: 1121 err = set_eth_addr(skb, flow_key, nla_data(a), 1122 get_mask(a, struct ovs_key_ethernet *)); 1123 break; 1124 1125 case OVS_KEY_ATTR_NSH: 1126 err = set_nsh(skb, flow_key, a); 1127 break; 1128 1129 case OVS_KEY_ATTR_IPV4: 1130 err = set_ipv4(skb, flow_key, nla_data(a), 1131 get_mask(a, struct ovs_key_ipv4 *)); 1132 break; 1133 1134 case OVS_KEY_ATTR_IPV6: 1135 err = set_ipv6(skb, flow_key, nla_data(a), 1136 get_mask(a, struct ovs_key_ipv6 *)); 1137 break; 1138 1139 case OVS_KEY_ATTR_TCP: 1140 err = set_tcp(skb, flow_key, nla_data(a), 1141 get_mask(a, struct ovs_key_tcp *)); 1142 break; 1143 1144 case OVS_KEY_ATTR_UDP: 1145 err = set_udp(skb, flow_key, nla_data(a), 1146 get_mask(a, struct ovs_key_udp *)); 1147 break; 1148 1149 case OVS_KEY_ATTR_SCTP: 1150 err = set_sctp(skb, flow_key, nla_data(a), 1151 get_mask(a, struct ovs_key_sctp *)); 1152 break; 1153 1154 case OVS_KEY_ATTR_MPLS: 1155 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1156 __be32 *)); 1157 break; 1158 1159 case OVS_KEY_ATTR_CT_STATE: 1160 case OVS_KEY_ATTR_CT_ZONE: 1161 case OVS_KEY_ATTR_CT_MARK: 1162 case OVS_KEY_ATTR_CT_LABELS: 1163 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1164 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1165 err = -EINVAL; 1166 break; 1167 } 1168 1169 return err; 1170} 1171 1172static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1173 struct sw_flow_key *key, 1174 const struct nlattr *a, bool last) 1175{ 1176 u32 recirc_id; 1177 1178 if (!is_flow_key_valid(key)) { 1179 int err; 1180 1181 err = ovs_flow_key_update(skb, key); 1182 if (err) 1183 return err; 1184 } 1185 BUG_ON(!is_flow_key_valid(key)); 1186 1187 recirc_id = nla_get_u32(a); 1188 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1189} 1190 1191static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, 1192 struct sw_flow_key *key, 1193 const struct nlattr *attr, bool last) 1194{ 1195 struct ovs_skb_cb *ovs_cb = OVS_CB(skb); 1196 const struct nlattr *actions, *cpl_arg; 1197 int len, max_len, rem = nla_len(attr); 1198 const struct check_pkt_len_arg *arg; 1199 bool clone_flow_key; 1200 1201 /* The first netlink attribute in 'attr' is always 1202 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 1203 */ 1204 cpl_arg = nla_data(attr); 1205 arg = nla_data(cpl_arg); 1206 1207 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len; 1208 max_len = arg->pkt_len; 1209 1210 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) || 1211 len <= max_len) { 1212 /* Second netlink attribute in 'attr' is always 1213 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 1214 */ 1215 actions = nla_next(cpl_arg, &rem); 1216 clone_flow_key = !arg->exec_for_lesser_equal; 1217 } else { 1218 /* Third netlink attribute in 'attr' is always 1219 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. 1220 */ 1221 actions = nla_next(cpl_arg, &rem); 1222 actions = nla_next(actions, &rem); 1223 clone_flow_key = !arg->exec_for_greater; 1224 } 1225 1226 return clone_execute(dp, skb, key, 0, nla_data(actions), 1227 nla_len(actions), last, clone_flow_key); 1228} 1229 1230static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key) 1231{ 1232 int err; 1233 1234 if (skb->protocol == htons(ETH_P_IPV6)) { 1235 struct ipv6hdr *nh; 1236 1237 err = skb_ensure_writable(skb, skb_network_offset(skb) + 1238 sizeof(*nh)); 1239 if (unlikely(err)) 1240 return err; 1241 1242 nh = ipv6_hdr(skb); 1243 1244 if (nh->hop_limit <= 1) 1245 return -EHOSTUNREACH; 1246 1247 key->ip.ttl = --nh->hop_limit; 1248 } else if (skb->protocol == htons(ETH_P_IP)) { 1249 struct iphdr *nh; 1250 u8 old_ttl; 1251 1252 err = skb_ensure_writable(skb, skb_network_offset(skb) + 1253 sizeof(*nh)); 1254 if (unlikely(err)) 1255 return err; 1256 1257 nh = ip_hdr(skb); 1258 if (nh->ttl <= 1) 1259 return -EHOSTUNREACH; 1260 1261 old_ttl = nh->ttl--; 1262 csum_replace2(&nh->check, htons(old_ttl << 8), 1263 htons(nh->ttl << 8)); 1264 key->ip.ttl = nh->ttl; 1265 } 1266 return 0; 1267} 1268 1269/* Execute a list of actions against 'skb'. */ 1270static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1271 struct sw_flow_key *key, 1272 const struct nlattr *attr, int len) 1273{ 1274 const struct nlattr *a; 1275 int rem; 1276 1277 for (a = attr, rem = len; rem > 0; 1278 a = nla_next(a, &rem)) { 1279 int err = 0; 1280 1281 switch (nla_type(a)) { 1282 case OVS_ACTION_ATTR_OUTPUT: { 1283 int port = nla_get_u32(a); 1284 struct sk_buff *clone; 1285 1286 /* Every output action needs a separate clone 1287 * of 'skb', In case the output action is the 1288 * last action, cloning can be avoided. 1289 */ 1290 if (nla_is_last(a, rem)) { 1291 do_output(dp, skb, port, key); 1292 /* 'skb' has been used for output. 1293 */ 1294 return 0; 1295 } 1296 1297 clone = skb_clone(skb, GFP_ATOMIC); 1298 if (clone) 1299 do_output(dp, clone, port, key); 1300 OVS_CB(skb)->cutlen = 0; 1301 break; 1302 } 1303 1304 case OVS_ACTION_ATTR_TRUNC: { 1305 struct ovs_action_trunc *trunc = nla_data(a); 1306 1307 if (skb->len > trunc->max_len) 1308 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1309 break; 1310 } 1311 1312 case OVS_ACTION_ATTR_USERSPACE: 1313 output_userspace(dp, skb, key, a, attr, 1314 len, OVS_CB(skb)->cutlen); 1315 OVS_CB(skb)->cutlen = 0; 1316 break; 1317 1318 case OVS_ACTION_ATTR_HASH: 1319 execute_hash(skb, key, a); 1320 break; 1321 1322 case OVS_ACTION_ATTR_PUSH_MPLS: { 1323 struct ovs_action_push_mpls *mpls = nla_data(a); 1324 1325 err = push_mpls(skb, key, mpls->mpls_lse, 1326 mpls->mpls_ethertype, skb->mac_len); 1327 break; 1328 } 1329 case OVS_ACTION_ATTR_ADD_MPLS: { 1330 struct ovs_action_add_mpls *mpls = nla_data(a); 1331 __u16 mac_len = 0; 1332 1333 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) 1334 mac_len = skb->mac_len; 1335 1336 err = push_mpls(skb, key, mpls->mpls_lse, 1337 mpls->mpls_ethertype, mac_len); 1338 break; 1339 } 1340 case OVS_ACTION_ATTR_POP_MPLS: 1341 err = pop_mpls(skb, key, nla_get_be16(a)); 1342 break; 1343 1344 case OVS_ACTION_ATTR_PUSH_VLAN: 1345 err = push_vlan(skb, key, nla_data(a)); 1346 break; 1347 1348 case OVS_ACTION_ATTR_POP_VLAN: 1349 err = pop_vlan(skb, key); 1350 break; 1351 1352 case OVS_ACTION_ATTR_RECIRC: { 1353 bool last = nla_is_last(a, rem); 1354 1355 err = execute_recirc(dp, skb, key, a, last); 1356 if (last) { 1357 /* If this is the last action, the skb has 1358 * been consumed or freed. 1359 * Return immediately. 1360 */ 1361 return err; 1362 } 1363 break; 1364 } 1365 1366 case OVS_ACTION_ATTR_SET: 1367 err = execute_set_action(skb, key, nla_data(a)); 1368 break; 1369 1370 case OVS_ACTION_ATTR_SET_MASKED: 1371 case OVS_ACTION_ATTR_SET_TO_MASKED: 1372 err = execute_masked_set_action(skb, key, nla_data(a)); 1373 break; 1374 1375 case OVS_ACTION_ATTR_SAMPLE: { 1376 bool last = nla_is_last(a, rem); 1377 1378 err = sample(dp, skb, key, a, last); 1379 if (last) 1380 return err; 1381 1382 break; 1383 } 1384 1385 case OVS_ACTION_ATTR_CT: 1386 if (!is_flow_key_valid(key)) { 1387 err = ovs_flow_key_update(skb, key); 1388 if (err) 1389 return err; 1390 } 1391 1392 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1393 nla_data(a)); 1394 1395 /* Hide stolen IP fragments from user space. */ 1396 if (err) 1397 return err == -EINPROGRESS ? 0 : err; 1398 break; 1399 1400 case OVS_ACTION_ATTR_CT_CLEAR: 1401 err = ovs_ct_clear(skb, key); 1402 break; 1403 1404 case OVS_ACTION_ATTR_PUSH_ETH: 1405 err = push_eth(skb, key, nla_data(a)); 1406 break; 1407 1408 case OVS_ACTION_ATTR_POP_ETH: 1409 err = pop_eth(skb, key); 1410 break; 1411 1412 case OVS_ACTION_ATTR_PUSH_NSH: { 1413 u8 buffer[NSH_HDR_MAX_LEN]; 1414 struct nshhdr *nh = (struct nshhdr *)buffer; 1415 1416 err = nsh_hdr_from_nlattr(nla_data(a), nh, 1417 NSH_HDR_MAX_LEN); 1418 if (unlikely(err)) 1419 break; 1420 err = push_nsh(skb, key, nh); 1421 break; 1422 } 1423 1424 case OVS_ACTION_ATTR_POP_NSH: 1425 err = pop_nsh(skb, key); 1426 break; 1427 1428 case OVS_ACTION_ATTR_METER: 1429 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { 1430 consume_skb(skb); 1431 return 0; 1432 } 1433 break; 1434 1435 case OVS_ACTION_ATTR_CLONE: { 1436 bool last = nla_is_last(a, rem); 1437 1438 err = clone(dp, skb, key, a, last); 1439 if (last) 1440 return err; 1441 1442 break; 1443 } 1444 1445 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 1446 bool last = nla_is_last(a, rem); 1447 1448 err = execute_check_pkt_len(dp, skb, key, a, last); 1449 if (last) 1450 return err; 1451 1452 break; 1453 } 1454 1455 case OVS_ACTION_ATTR_DEC_TTL: 1456 err = execute_dec_ttl(skb, key); 1457 if (err == -EHOSTUNREACH) { 1458 err = dec_ttl_exception_handler(dp, skb, key, 1459 a, true); 1460 return err; 1461 } 1462 break; 1463 } 1464 1465 if (unlikely(err)) { 1466 kfree_skb(skb); 1467 return err; 1468 } 1469 } 1470 1471 consume_skb(skb); 1472 return 0; 1473} 1474 1475/* Execute the actions on the clone of the packet. The effect of the 1476 * execution does not affect the original 'skb' nor the original 'key'. 1477 * 1478 * The execution may be deferred in case the actions can not be executed 1479 * immediately. 1480 */ 1481static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1482 struct sw_flow_key *key, u32 recirc_id, 1483 const struct nlattr *actions, int len, 1484 bool last, bool clone_flow_key) 1485{ 1486 struct deferred_action *da; 1487 struct sw_flow_key *clone; 1488 1489 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1490 if (!skb) { 1491 /* Out of memory, skip this action. 1492 */ 1493 return 0; 1494 } 1495 1496 /* When clone_flow_key is false, the 'key' will not be change 1497 * by the actions, then the 'key' can be used directly. 1498 * Otherwise, try to clone key from the next recursion level of 1499 * 'flow_keys'. If clone is successful, execute the actions 1500 * without deferring. 1501 */ 1502 clone = clone_flow_key ? clone_key(key) : key; 1503 if (clone) { 1504 int err = 0; 1505 1506 if (actions) { /* Sample action */ 1507 if (clone_flow_key) 1508 __this_cpu_inc(exec_actions_level); 1509 1510 err = do_execute_actions(dp, skb, clone, 1511 actions, len); 1512 1513 if (clone_flow_key) 1514 __this_cpu_dec(exec_actions_level); 1515 } else { /* Recirc action */ 1516 clone->recirc_id = recirc_id; 1517 ovs_dp_process_packet(skb, clone); 1518 } 1519 return err; 1520 } 1521 1522 /* Out of 'flow_keys' space. Defer actions */ 1523 da = add_deferred_actions(skb, key, actions, len); 1524 if (da) { 1525 if (!actions) { /* Recirc action */ 1526 key = &da->pkt_key; 1527 key->recirc_id = recirc_id; 1528 } 1529 } else { 1530 /* Out of per CPU action FIFO space. Drop the 'skb' and 1531 * log an error. 1532 */ 1533 kfree_skb(skb); 1534 1535 if (net_ratelimit()) { 1536 if (actions) { /* Sample action */ 1537 pr_warn("%s: deferred action limit reached, drop sample action\n", 1538 ovs_dp_name(dp)); 1539 } else { /* Recirc action */ 1540 pr_warn("%s: deferred action limit reached, drop recirc action\n", 1541 ovs_dp_name(dp)); 1542 } 1543 } 1544 } 1545 return 0; 1546} 1547 1548static void process_deferred_actions(struct datapath *dp) 1549{ 1550 struct action_fifo *fifo = this_cpu_ptr(action_fifos); 1551 1552 /* Do not touch the FIFO in case there is no deferred actions. */ 1553 if (action_fifo_is_empty(fifo)) 1554 return; 1555 1556 /* Finishing executing all deferred actions. */ 1557 do { 1558 struct deferred_action *da = action_fifo_get(fifo); 1559 struct sk_buff *skb = da->skb; 1560 struct sw_flow_key *key = &da->pkt_key; 1561 const struct nlattr *actions = da->actions; 1562 int actions_len = da->actions_len; 1563 1564 if (actions) 1565 do_execute_actions(dp, skb, key, actions, actions_len); 1566 else 1567 ovs_dp_process_packet(skb, key); 1568 } while (!action_fifo_is_empty(fifo)); 1569 1570 /* Reset FIFO for the next packet. */ 1571 action_fifo_init(fifo); 1572} 1573 1574/* Execute a list of actions against 'skb'. */ 1575int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1576 const struct sw_flow_actions *acts, 1577 struct sw_flow_key *key) 1578{ 1579 int err, level; 1580 1581 level = __this_cpu_inc_return(exec_actions_level); 1582 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1583 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1584 ovs_dp_name(dp)); 1585 kfree_skb(skb); 1586 err = -ENETDOWN; 1587 goto out; 1588 } 1589 1590 OVS_CB(skb)->acts_origlen = acts->orig_len; 1591 err = do_execute_actions(dp, skb, key, 1592 acts->actions, acts->actions_len); 1593 1594 if (level == 1) 1595 process_deferred_actions(dp); 1596 1597out: 1598 __this_cpu_dec(exec_actions_level); 1599 return err; 1600} 1601 1602int action_fifos_init(void) 1603{ 1604 action_fifos = alloc_percpu(struct action_fifo); 1605 if (!action_fifos) 1606 return -ENOMEM; 1607 1608 flow_keys = alloc_percpu(struct action_flow_keys); 1609 if (!flow_keys) { 1610 free_percpu(action_fifos); 1611 return -ENOMEM; 1612 } 1613 1614 return 0; 1615} 1616 1617void action_fifos_exit(void) 1618{ 1619 free_percpu(action_fifos); 1620 free_percpu(flow_keys); 1621} 1622