xref: /kernel/linux/linux-5.10/net/ipv4/udp.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		The User Datagram Protocol (UDP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 *		Alan Cox	:	verify_area() calls
17 *		Alan Cox	: 	stopped close while in use off icmp
18 *					messages. Not a fix but a botch that
19 *					for udp at least is 'valid'.
20 *		Alan Cox	:	Fixed icmp handling properly
21 *		Alan Cox	: 	Correct error for oversized datagrams
22 *		Alan Cox	:	Tidied select() semantics.
23 *		Alan Cox	:	udp_err() fixed properly, also now
24 *					select and read wake correctly on errors
25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26 *		Alan Cox	:	UDP can count its memory
27 *		Alan Cox	:	send to an unknown connection causes
28 *					an ECONNREFUSED off the icmp, but
29 *					does NOT close.
30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32 *					bug no longer crashes it.
33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34 *		Alan Cox	:	Uses skb_free_datagram
35 *		Alan Cox	:	Added get/set sockopt support.
36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38 *		Alan Cox	:	Use ip_tos and ip_ttl
39 *		Alan Cox	:	SNMP Mibs
40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41 *		Matt Dillon	:	UDP length checks.
42 *		Alan Cox	:	Smarter af_inet used properly.
43 *		Alan Cox	:	Use new kernel side addressing.
44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
46 *		Alan Cox	:	Cache last socket
47 *		Alan Cox	:	Route cache
48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
49 *		Mike Shaver	:	RFC1122 checks.
50 *		Alan Cox	:	Nonblocking error fix.
51 *	Willy Konynenberg	:	Transparent proxying support.
52 *		Mike McLagan	:	Routing by source
53 *		David S. Miller	:	New socket lookup architecture.
54 *					Last socket cache retained as it
55 *					does have a high hit rate.
56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57 *		Andi Kleen	:	Some cleanups, cache destination entry
58 *					for connect.
59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61 *					return ENOTCONN for unconnected sockets (POSIX)
62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63 *					bound-to-device socket
64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65 *					datagrams.
66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70 *					a single port at the same time.
71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 *	James Chapman		:	Add L2TP encapsulation type.
73 */
74
75#define pr_fmt(fmt) "UDP: " fmt
76
77#include <linux/uaccess.h>
78#include <asm/ioctls.h>
79#include <linux/memblock.h>
80#include <linux/highmem.h>
81#include <linux/swap.h>
82#include <linux/types.h>
83#include <linux/fcntl.h>
84#include <linux/module.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/igmp.h>
88#include <linux/inetdevice.h>
89#include <linux/in.h>
90#include <linux/errno.h>
91#include <linux/timer.h>
92#include <linux/mm.h>
93#include <linux/inet.h>
94#include <linux/netdevice.h>
95#include <linux/slab.h>
96#include <net/tcp_states.h>
97#include <linux/skbuff.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <net/net_namespace.h>
101#include <net/icmp.h>
102#include <net/inet_hashtables.h>
103#include <net/ip_tunnels.h>
104#include <net/route.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <trace/events/udp.h>
108#include <linux/static_key.h>
109#include <linux/btf_ids.h>
110#include <trace/events/skb.h>
111#include <net/busy_poll.h>
112#include "udp_impl.h"
113#include <net/sock_reuseport.h>
114#include <net/addrconf.h>
115#include <net/udp_tunnel.h>
116#if IS_ENABLED(CONFIG_IPV6)
117#include <net/ipv6_stubs.h>
118#endif
119
120struct udp_table udp_table __read_mostly;
121EXPORT_SYMBOL(udp_table);
122
123long sysctl_udp_mem[3] __read_mostly;
124EXPORT_SYMBOL(sysctl_udp_mem);
125
126atomic_long_t udp_memory_allocated;
127EXPORT_SYMBOL(udp_memory_allocated);
128
129#define MAX_UDP_PORTS 65536
130#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
132static int udp_lib_lport_inuse(struct net *net, __u16 num,
133			       const struct udp_hslot *hslot,
134			       unsigned long *bitmap,
135			       struct sock *sk, unsigned int log)
136{
137	struct sock *sk2;
138	kuid_t uid = sock_i_uid(sk);
139
140	sk_for_each(sk2, &hslot->head) {
141		if (net_eq(sock_net(sk2), net) &&
142		    sk2 != sk &&
143		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144		    (!sk2->sk_reuse || !sk->sk_reuse) &&
145		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147		    inet_rcv_saddr_equal(sk, sk2, true)) {
148			if (sk2->sk_reuseport && sk->sk_reuseport &&
149			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
150			    uid_eq(uid, sock_i_uid(sk2))) {
151				if (!bitmap)
152					return 0;
153			} else {
154				if (!bitmap)
155					return 1;
156				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
157					  bitmap);
158			}
159		}
160	}
161	return 0;
162}
163
164/*
165 * Note: we still hold spinlock of primary hash chain, so no other writer
166 * can insert/delete a socket with local_port == num
167 */
168static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169				struct udp_hslot *hslot2,
170				struct sock *sk)
171{
172	struct sock *sk2;
173	kuid_t uid = sock_i_uid(sk);
174	int res = 0;
175
176	spin_lock(&hslot2->lock);
177	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178		if (net_eq(sock_net(sk2), net) &&
179		    sk2 != sk &&
180		    (udp_sk(sk2)->udp_port_hash == num) &&
181		    (!sk2->sk_reuse || !sk->sk_reuse) &&
182		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184		    inet_rcv_saddr_equal(sk, sk2, true)) {
185			if (sk2->sk_reuseport && sk->sk_reuseport &&
186			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
187			    uid_eq(uid, sock_i_uid(sk2))) {
188				res = 0;
189			} else {
190				res = 1;
191			}
192			break;
193		}
194	}
195	spin_unlock(&hslot2->lock);
196	return res;
197}
198
199static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200{
201	struct net *net = sock_net(sk);
202	kuid_t uid = sock_i_uid(sk);
203	struct sock *sk2;
204
205	sk_for_each(sk2, &hslot->head) {
206		if (net_eq(sock_net(sk2), net) &&
207		    sk2 != sk &&
208		    sk2->sk_family == sk->sk_family &&
209		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213		    inet_rcv_saddr_equal(sk, sk2, false)) {
214			return reuseport_add_sock(sk, sk2,
215						  inet_rcv_saddr_any(sk));
216		}
217	}
218
219	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220}
221
222/**
223 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
224 *
225 *  @sk:          socket struct in question
226 *  @snum:        port number to look up
227 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228 *                   with NULL address
229 */
230int udp_lib_get_port(struct sock *sk, unsigned short snum,
231		     unsigned int hash2_nulladdr)
232{
233	struct udp_hslot *hslot, *hslot2;
234	struct udp_table *udptable = sk->sk_prot->h.udp_table;
235	int    error = 1;
236	struct net *net = sock_net(sk);
237
238	if (!snum) {
239		int low, high, remaining;
240		unsigned int rand;
241		unsigned short first, last;
242		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243
244		inet_get_local_port_range(net, &low, &high);
245		remaining = (high - low) + 1;
246
247		rand = prandom_u32();
248		first = reciprocal_scale(rand, remaining) + low;
249		/*
250		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251		 */
252		rand = (rand | 1) * (udptable->mask + 1);
253		last = first + udptable->mask + 1;
254		do {
255			hslot = udp_hashslot(udptable, net, first);
256			bitmap_zero(bitmap, PORTS_PER_CHAIN);
257			spin_lock_bh(&hslot->lock);
258			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259					    udptable->log);
260
261			snum = first;
262			/*
263			 * Iterate on all possible values of snum for this hash.
264			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265			 * give us randomization and full range coverage.
266			 */
267			do {
268				if (low <= snum && snum <= high &&
269				    !test_bit(snum >> udptable->log, bitmap) &&
270				    !inet_is_local_reserved_port(net, snum))
271					goto found;
272				snum += rand;
273			} while (snum != first);
274			spin_unlock_bh(&hslot->lock);
275			cond_resched();
276		} while (++first != last);
277		goto fail;
278	} else {
279		hslot = udp_hashslot(udptable, net, snum);
280		spin_lock_bh(&hslot->lock);
281		if (hslot->count > 10) {
282			int exist;
283			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284
285			slot2          &= udptable->mask;
286			hash2_nulladdr &= udptable->mask;
287
288			hslot2 = udp_hashslot2(udptable, slot2);
289			if (hslot->count < hslot2->count)
290				goto scan_primary_hash;
291
292			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293			if (!exist && (hash2_nulladdr != slot2)) {
294				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295				exist = udp_lib_lport_inuse2(net, snum, hslot2,
296							     sk);
297			}
298			if (exist)
299				goto fail_unlock;
300			else
301				goto found;
302		}
303scan_primary_hash:
304		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305			goto fail_unlock;
306	}
307found:
308	inet_sk(sk)->inet_num = snum;
309	udp_sk(sk)->udp_port_hash = snum;
310	udp_sk(sk)->udp_portaddr_hash ^= snum;
311	if (sk_unhashed(sk)) {
312		if (sk->sk_reuseport &&
313		    udp_reuseport_add_sock(sk, hslot)) {
314			inet_sk(sk)->inet_num = 0;
315			udp_sk(sk)->udp_port_hash = 0;
316			udp_sk(sk)->udp_portaddr_hash ^= snum;
317			goto fail_unlock;
318		}
319
320		sock_set_flag(sk, SOCK_RCU_FREE);
321
322		sk_add_node_rcu(sk, &hslot->head);
323		hslot->count++;
324		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
325
326		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
327		spin_lock(&hslot2->lock);
328		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
329		    sk->sk_family == AF_INET6)
330			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
331					   &hslot2->head);
332		else
333			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
334					   &hslot2->head);
335		hslot2->count++;
336		spin_unlock(&hslot2->lock);
337	}
338
339	error = 0;
340fail_unlock:
341	spin_unlock_bh(&hslot->lock);
342fail:
343	return error;
344}
345EXPORT_SYMBOL(udp_lib_get_port);
346
347int udp_v4_get_port(struct sock *sk, unsigned short snum)
348{
349	unsigned int hash2_nulladdr =
350		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
351	unsigned int hash2_partial =
352		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
353
354	/* precompute partial secondary hash */
355	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
356	return udp_lib_get_port(sk, snum, hash2_nulladdr);
357}
358
359static int compute_score(struct sock *sk, struct net *net,
360			 __be32 saddr, __be16 sport,
361			 __be32 daddr, unsigned short hnum,
362			 int dif, int sdif)
363{
364	int score;
365	struct inet_sock *inet;
366	bool dev_match;
367
368	if (!net_eq(sock_net(sk), net) ||
369	    udp_sk(sk)->udp_port_hash != hnum ||
370	    ipv6_only_sock(sk))
371		return -1;
372
373	if (sk->sk_rcv_saddr != daddr)
374		return -1;
375
376	score = (sk->sk_family == PF_INET) ? 2 : 1;
377
378	inet = inet_sk(sk);
379	if (inet->inet_daddr) {
380		if (inet->inet_daddr != saddr)
381			return -1;
382		score += 4;
383	}
384
385	if (inet->inet_dport) {
386		if (inet->inet_dport != sport)
387			return -1;
388		score += 4;
389	}
390
391	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
392					dif, sdif);
393	if (!dev_match)
394		return -1;
395	if (sk->sk_bound_dev_if)
396		score += 4;
397
398	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399		score++;
400	return score;
401}
402
403static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
404		       const __u16 lport, const __be32 faddr,
405		       const __be16 fport)
406{
407	static u32 udp_ehash_secret __read_mostly;
408
409	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
410
411	return __inet_ehashfn(laddr, lport, faddr, fport,
412			      udp_ehash_secret + net_hash_mix(net));
413}
414
415static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
416				     struct sk_buff *skb,
417				     __be32 saddr, __be16 sport,
418				     __be32 daddr, unsigned short hnum)
419{
420	struct sock *reuse_sk = NULL;
421	u32 hash;
422
423	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
424		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
425		reuse_sk = reuseport_select_sock(sk, hash, skb,
426						 sizeof(struct udphdr));
427	}
428	return reuse_sk;
429}
430
431/* called with rcu_read_lock() */
432static struct sock *udp4_lib_lookup2(struct net *net,
433				     __be32 saddr, __be16 sport,
434				     __be32 daddr, unsigned int hnum,
435				     int dif, int sdif,
436				     struct udp_hslot *hslot2,
437				     struct sk_buff *skb)
438{
439	struct sock *sk, *result;
440	int score, badness;
441
442	result = NULL;
443	badness = 0;
444	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
445		score = compute_score(sk, net, saddr, sport,
446				      daddr, hnum, dif, sdif);
447		if (score > badness) {
448			badness = score;
449			result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
450			if (!result) {
451				result = sk;
452				continue;
453			}
454
455			/* Fall back to scoring if group has connections */
456			if (!reuseport_has_conns(sk))
457				return result;
458
459			/* Reuseport logic returned an error, keep original score. */
460			if (IS_ERR(result))
461				continue;
462
463			badness = compute_score(result, net, saddr, sport,
464						daddr, hnum, dif, sdif);
465
466		}
467	}
468	return result;
469}
470
471static struct sock *udp4_lookup_run_bpf(struct net *net,
472					struct udp_table *udptable,
473					struct sk_buff *skb,
474					__be32 saddr, __be16 sport,
475					__be32 daddr, u16 hnum)
476{
477	struct sock *sk, *reuse_sk;
478	bool no_reuseport;
479
480	if (udptable != &udp_table)
481		return NULL; /* only UDP is supported */
482
483	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
484					    saddr, sport, daddr, hnum, &sk);
485	if (no_reuseport || IS_ERR_OR_NULL(sk))
486		return sk;
487
488	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
489	if (reuse_sk)
490		sk = reuse_sk;
491	return sk;
492}
493
494/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
495 * harder than this. -DaveM
496 */
497struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
498		__be16 sport, __be32 daddr, __be16 dport, int dif,
499		int sdif, struct udp_table *udptable, struct sk_buff *skb)
500{
501	unsigned short hnum = ntohs(dport);
502	unsigned int hash2, slot2;
503	struct udp_hslot *hslot2;
504	struct sock *result, *sk;
505
506	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
507	slot2 = hash2 & udptable->mask;
508	hslot2 = &udptable->hash2[slot2];
509
510	/* Lookup connected or non-wildcard socket */
511	result = udp4_lib_lookup2(net, saddr, sport,
512				  daddr, hnum, dif, sdif,
513				  hslot2, skb);
514	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
515		goto done;
516
517	/* Lookup redirect from BPF */
518	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
519		sk = udp4_lookup_run_bpf(net, udptable, skb,
520					 saddr, sport, daddr, hnum);
521		if (sk) {
522			result = sk;
523			goto done;
524		}
525	}
526
527	/* Got non-wildcard socket or error on first lookup */
528	if (result)
529		goto done;
530
531	/* Lookup wildcard sockets */
532	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
533	slot2 = hash2 & udptable->mask;
534	hslot2 = &udptable->hash2[slot2];
535
536	result = udp4_lib_lookup2(net, saddr, sport,
537				  htonl(INADDR_ANY), hnum, dif, sdif,
538				  hslot2, skb);
539done:
540	if (IS_ERR(result))
541		return NULL;
542	return result;
543}
544EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
545
546static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
547						 __be16 sport, __be16 dport,
548						 struct udp_table *udptable)
549{
550	const struct iphdr *iph = ip_hdr(skb);
551
552	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
553				 iph->daddr, dport, inet_iif(skb),
554				 inet_sdif(skb), udptable, skb);
555}
556
557struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
558				 __be16 sport, __be16 dport)
559{
560	const struct iphdr *iph = ip_hdr(skb);
561
562	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
563				 iph->daddr, dport, inet_iif(skb),
564				 inet_sdif(skb), &udp_table, NULL);
565}
566EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
567
568/* Must be called under rcu_read_lock().
569 * Does increment socket refcount.
570 */
571#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
572struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
573			     __be32 daddr, __be16 dport, int dif)
574{
575	struct sock *sk;
576
577	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
578			       dif, 0, &udp_table, NULL);
579	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
580		sk = NULL;
581	return sk;
582}
583EXPORT_SYMBOL_GPL(udp4_lib_lookup);
584#endif
585
586static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
587				       __be16 loc_port, __be32 loc_addr,
588				       __be16 rmt_port, __be32 rmt_addr,
589				       int dif, int sdif, unsigned short hnum)
590{
591	struct inet_sock *inet = inet_sk(sk);
592
593	if (!net_eq(sock_net(sk), net) ||
594	    udp_sk(sk)->udp_port_hash != hnum ||
595	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
596	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
597	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
598	    ipv6_only_sock(sk) ||
599	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
600		return false;
601	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
602		return false;
603	return true;
604}
605
606DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
607EXPORT_SYMBOL(udp_encap_needed_key);
608
609#if IS_ENABLED(CONFIG_IPV6)
610DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
611EXPORT_SYMBOL(udpv6_encap_needed_key);
612#endif
613
614void udp_encap_enable(void)
615{
616	static_branch_inc(&udp_encap_needed_key);
617}
618EXPORT_SYMBOL(udp_encap_enable);
619
620void udp_encap_disable(void)
621{
622	static_branch_dec(&udp_encap_needed_key);
623}
624EXPORT_SYMBOL(udp_encap_disable);
625
626/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
627 * through error handlers in encapsulations looking for a match.
628 */
629static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
630{
631	int i;
632
633	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
634		int (*handler)(struct sk_buff *skb, u32 info);
635		const struct ip_tunnel_encap_ops *encap;
636
637		encap = rcu_dereference(iptun_encaps[i]);
638		if (!encap)
639			continue;
640		handler = encap->err_handler;
641		if (handler && !handler(skb, info))
642			return 0;
643	}
644
645	return -ENOENT;
646}
647
648/* Try to match ICMP errors to UDP tunnels by looking up a socket without
649 * reversing source and destination port: this will match tunnels that force the
650 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
651 * lwtunnels might actually break this assumption by being configured with
652 * different destination ports on endpoints, in this case we won't be able to
653 * trace ICMP messages back to them.
654 *
655 * If this doesn't match any socket, probe tunnels with arbitrary destination
656 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
657 * we've sent packets to won't necessarily match the local destination port.
658 *
659 * Then ask the tunnel implementation to match the error against a valid
660 * association.
661 *
662 * Return an error if we can't find a match, the socket if we need further
663 * processing, zero otherwise.
664 */
665static struct sock *__udp4_lib_err_encap(struct net *net,
666					 const struct iphdr *iph,
667					 struct udphdr *uh,
668					 struct udp_table *udptable,
669					 struct sk_buff *skb, u32 info)
670{
671	int network_offset, transport_offset;
672	struct sock *sk;
673
674	network_offset = skb_network_offset(skb);
675	transport_offset = skb_transport_offset(skb);
676
677	/* Network header needs to point to the outer IPv4 header inside ICMP */
678	skb_reset_network_header(skb);
679
680	/* Transport header needs to point to the UDP header */
681	skb_set_transport_header(skb, iph->ihl << 2);
682
683	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
684			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
685			       udptable, NULL);
686	if (sk) {
687		int (*lookup)(struct sock *sk, struct sk_buff *skb);
688		struct udp_sock *up = udp_sk(sk);
689
690		lookup = READ_ONCE(up->encap_err_lookup);
691		if (!lookup || lookup(sk, skb))
692			sk = NULL;
693	}
694
695	if (!sk)
696		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
697
698	skb_set_transport_header(skb, transport_offset);
699	skb_set_network_header(skb, network_offset);
700
701	return sk;
702}
703
704/*
705 * This routine is called by the ICMP module when it gets some
706 * sort of error condition.  If err < 0 then the socket should
707 * be closed and the error returned to the user.  If err > 0
708 * it's just the icmp type << 8 | icmp code.
709 * Header points to the ip header of the error packet. We move
710 * on past this. Then (as it used to claim before adjustment)
711 * header points to the first 8 bytes of the udp header.  We need
712 * to find the appropriate port.
713 */
714
715int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
716{
717	struct inet_sock *inet;
718	const struct iphdr *iph = (const struct iphdr *)skb->data;
719	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
720	const int type = icmp_hdr(skb)->type;
721	const int code = icmp_hdr(skb)->code;
722	bool tunnel = false;
723	struct sock *sk;
724	int harderr;
725	int err;
726	struct net *net = dev_net(skb->dev);
727
728	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
729			       iph->saddr, uh->source, skb->dev->ifindex,
730			       inet_sdif(skb), udptable, NULL);
731	if (!sk) {
732		/* No socket for error: try tunnels before discarding */
733		sk = ERR_PTR(-ENOENT);
734		if (static_branch_unlikely(&udp_encap_needed_key)) {
735			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
736						  info);
737			if (!sk)
738				return 0;
739		}
740
741		if (IS_ERR(sk)) {
742			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
743			return PTR_ERR(sk);
744		}
745
746		tunnel = true;
747	}
748
749	err = 0;
750	harderr = 0;
751	inet = inet_sk(sk);
752
753	switch (type) {
754	default:
755	case ICMP_TIME_EXCEEDED:
756		err = EHOSTUNREACH;
757		break;
758	case ICMP_SOURCE_QUENCH:
759		goto out;
760	case ICMP_PARAMETERPROB:
761		err = EPROTO;
762		harderr = 1;
763		break;
764	case ICMP_DEST_UNREACH:
765		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
766			ipv4_sk_update_pmtu(skb, sk, info);
767			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
768				err = EMSGSIZE;
769				harderr = 1;
770				break;
771			}
772			goto out;
773		}
774		err = EHOSTUNREACH;
775		if (code <= NR_ICMP_UNREACH) {
776			harderr = icmp_err_convert[code].fatal;
777			err = icmp_err_convert[code].errno;
778		}
779		break;
780	case ICMP_REDIRECT:
781		ipv4_sk_redirect(skb, sk);
782		goto out;
783	}
784
785	/*
786	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
787	 *	4.1.3.3.
788	 */
789	if (tunnel) {
790		/* ...not for tunnels though: we don't have a sending socket */
791		goto out;
792	}
793	if (!inet->recverr) {
794		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
795			goto out;
796	} else
797		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
798
799	sk->sk_err = err;
800	sk->sk_error_report(sk);
801out:
802	return 0;
803}
804
805int udp_err(struct sk_buff *skb, u32 info)
806{
807	return __udp4_lib_err(skb, info, &udp_table);
808}
809
810/*
811 * Throw away all pending data and cancel the corking. Socket is locked.
812 */
813void udp_flush_pending_frames(struct sock *sk)
814{
815	struct udp_sock *up = udp_sk(sk);
816
817	if (up->pending) {
818		up->len = 0;
819		up->pending = 0;
820		ip_flush_pending_frames(sk);
821	}
822}
823EXPORT_SYMBOL(udp_flush_pending_frames);
824
825/**
826 * 	udp4_hwcsum  -  handle outgoing HW checksumming
827 * 	@skb: 	sk_buff containing the filled-in UDP header
828 * 	        (checksum field must be zeroed out)
829 *	@src:	source IP address
830 *	@dst:	destination IP address
831 */
832void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
833{
834	struct udphdr *uh = udp_hdr(skb);
835	int offset = skb_transport_offset(skb);
836	int len = skb->len - offset;
837	int hlen = len;
838	__wsum csum = 0;
839
840	if (!skb_has_frag_list(skb)) {
841		/*
842		 * Only one fragment on the socket.
843		 */
844		skb->csum_start = skb_transport_header(skb) - skb->head;
845		skb->csum_offset = offsetof(struct udphdr, check);
846		uh->check = ~csum_tcpudp_magic(src, dst, len,
847					       IPPROTO_UDP, 0);
848	} else {
849		struct sk_buff *frags;
850
851		/*
852		 * HW-checksum won't work as there are two or more
853		 * fragments on the socket so that all csums of sk_buffs
854		 * should be together
855		 */
856		skb_walk_frags(skb, frags) {
857			csum = csum_add(csum, frags->csum);
858			hlen -= frags->len;
859		}
860
861		csum = skb_checksum(skb, offset, hlen, csum);
862		skb->ip_summed = CHECKSUM_NONE;
863
864		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
865		if (uh->check == 0)
866			uh->check = CSUM_MANGLED_0;
867	}
868}
869EXPORT_SYMBOL_GPL(udp4_hwcsum);
870
871/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
872 * for the simple case like when setting the checksum for a UDP tunnel.
873 */
874void udp_set_csum(bool nocheck, struct sk_buff *skb,
875		  __be32 saddr, __be32 daddr, int len)
876{
877	struct udphdr *uh = udp_hdr(skb);
878
879	if (nocheck) {
880		uh->check = 0;
881	} else if (skb_is_gso(skb)) {
882		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
883	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
884		uh->check = 0;
885		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
886		if (uh->check == 0)
887			uh->check = CSUM_MANGLED_0;
888	} else {
889		skb->ip_summed = CHECKSUM_PARTIAL;
890		skb->csum_start = skb_transport_header(skb) - skb->head;
891		skb->csum_offset = offsetof(struct udphdr, check);
892		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
893	}
894}
895EXPORT_SYMBOL(udp_set_csum);
896
897static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
898			struct inet_cork *cork)
899{
900	struct sock *sk = skb->sk;
901	struct inet_sock *inet = inet_sk(sk);
902	struct udphdr *uh;
903	int err = 0;
904	int is_udplite = IS_UDPLITE(sk);
905	int offset = skb_transport_offset(skb);
906	int len = skb->len - offset;
907	int datalen = len - sizeof(*uh);
908	__wsum csum = 0;
909
910	/*
911	 * Create a UDP header
912	 */
913	uh = udp_hdr(skb);
914	uh->source = inet->inet_sport;
915	uh->dest = fl4->fl4_dport;
916	uh->len = htons(len);
917	uh->check = 0;
918
919	if (cork->gso_size) {
920		const int hlen = skb_network_header_len(skb) +
921				 sizeof(struct udphdr);
922
923		if (hlen + cork->gso_size > cork->fragsize) {
924			kfree_skb(skb);
925			return -EINVAL;
926		}
927		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
928			kfree_skb(skb);
929			return -EINVAL;
930		}
931		if (sk->sk_no_check_tx) {
932			kfree_skb(skb);
933			return -EINVAL;
934		}
935		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
936		    dst_xfrm(skb_dst(skb))) {
937			kfree_skb(skb);
938			return -EIO;
939		}
940
941		if (datalen > cork->gso_size) {
942			skb_shinfo(skb)->gso_size = cork->gso_size;
943			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
944			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
945								 cork->gso_size);
946		}
947		goto csum_partial;
948	}
949
950	if (is_udplite)  				 /*     UDP-Lite      */
951		csum = udplite_csum(skb);
952
953	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
954
955		skb->ip_summed = CHECKSUM_NONE;
956		goto send;
957
958	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
959csum_partial:
960
961		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
962		goto send;
963
964	} else
965		csum = udp_csum(skb);
966
967	/* add protocol-dependent pseudo-header */
968	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
969				      sk->sk_protocol, csum);
970	if (uh->check == 0)
971		uh->check = CSUM_MANGLED_0;
972
973send:
974	err = ip_send_skb(sock_net(sk), skb);
975	if (err) {
976		if (err == -ENOBUFS && !inet->recverr) {
977			UDP_INC_STATS(sock_net(sk),
978				      UDP_MIB_SNDBUFERRORS, is_udplite);
979			err = 0;
980		}
981	} else
982		UDP_INC_STATS(sock_net(sk),
983			      UDP_MIB_OUTDATAGRAMS, is_udplite);
984	return err;
985}
986
987/*
988 * Push out all pending data as one UDP datagram. Socket is locked.
989 */
990int udp_push_pending_frames(struct sock *sk)
991{
992	struct udp_sock  *up = udp_sk(sk);
993	struct inet_sock *inet = inet_sk(sk);
994	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
995	struct sk_buff *skb;
996	int err = 0;
997
998	skb = ip_finish_skb(sk, fl4);
999	if (!skb)
1000		goto out;
1001
1002	err = udp_send_skb(skb, fl4, &inet->cork.base);
1003
1004out:
1005	up->len = 0;
1006	up->pending = 0;
1007	return err;
1008}
1009EXPORT_SYMBOL(udp_push_pending_frames);
1010
1011static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1012{
1013	switch (cmsg->cmsg_type) {
1014	case UDP_SEGMENT:
1015		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1016			return -EINVAL;
1017		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1018		return 0;
1019	default:
1020		return -EINVAL;
1021	}
1022}
1023
1024int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1025{
1026	struct cmsghdr *cmsg;
1027	bool need_ip = false;
1028	int err;
1029
1030	for_each_cmsghdr(cmsg, msg) {
1031		if (!CMSG_OK(msg, cmsg))
1032			return -EINVAL;
1033
1034		if (cmsg->cmsg_level != SOL_UDP) {
1035			need_ip = true;
1036			continue;
1037		}
1038
1039		err = __udp_cmsg_send(cmsg, gso_size);
1040		if (err)
1041			return err;
1042	}
1043
1044	return need_ip;
1045}
1046EXPORT_SYMBOL_GPL(udp_cmsg_send);
1047
1048int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1049{
1050	struct inet_sock *inet = inet_sk(sk);
1051	struct udp_sock *up = udp_sk(sk);
1052	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1053	struct flowi4 fl4_stack;
1054	struct flowi4 *fl4;
1055	int ulen = len;
1056	struct ipcm_cookie ipc;
1057	struct rtable *rt = NULL;
1058	int free = 0;
1059	int connected = 0;
1060	__be32 daddr, faddr, saddr;
1061	__be16 dport;
1062	u8  tos;
1063	int err, is_udplite = IS_UDPLITE(sk);
1064	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1065	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1066	struct sk_buff *skb;
1067	struct ip_options_data opt_copy;
1068
1069	if (len > 0xFFFF)
1070		return -EMSGSIZE;
1071
1072	/*
1073	 *	Check the flags.
1074	 */
1075
1076	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1077		return -EOPNOTSUPP;
1078
1079	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1080
1081	fl4 = &inet->cork.fl.u.ip4;
1082	if (up->pending) {
1083		/*
1084		 * There are pending frames.
1085		 * The socket lock must be held while it's corked.
1086		 */
1087		lock_sock(sk);
1088		if (likely(up->pending)) {
1089			if (unlikely(up->pending != AF_INET)) {
1090				release_sock(sk);
1091				return -EINVAL;
1092			}
1093			goto do_append_data;
1094		}
1095		release_sock(sk);
1096	}
1097	ulen += sizeof(struct udphdr);
1098
1099	/*
1100	 *	Get and verify the address.
1101	 */
1102	if (usin) {
1103		if (msg->msg_namelen < sizeof(*usin))
1104			return -EINVAL;
1105		if (usin->sin_family != AF_INET) {
1106			if (usin->sin_family != AF_UNSPEC)
1107				return -EAFNOSUPPORT;
1108		}
1109
1110		daddr = usin->sin_addr.s_addr;
1111		dport = usin->sin_port;
1112		if (dport == 0)
1113			return -EINVAL;
1114	} else {
1115		if (sk->sk_state != TCP_ESTABLISHED)
1116			return -EDESTADDRREQ;
1117		daddr = inet->inet_daddr;
1118		dport = inet->inet_dport;
1119		/* Open fast path for connected socket.
1120		   Route will not be used, if at least one option is set.
1121		 */
1122		connected = 1;
1123	}
1124
1125	ipcm_init_sk(&ipc, inet);
1126	ipc.gso_size = READ_ONCE(up->gso_size);
1127
1128	if (msg->msg_controllen) {
1129		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1130		if (err > 0)
1131			err = ip_cmsg_send(sk, msg, &ipc,
1132					   sk->sk_family == AF_INET6);
1133		if (unlikely(err < 0)) {
1134			kfree(ipc.opt);
1135			return err;
1136		}
1137		if (ipc.opt)
1138			free = 1;
1139		connected = 0;
1140	}
1141	if (!ipc.opt) {
1142		struct ip_options_rcu *inet_opt;
1143
1144		rcu_read_lock();
1145		inet_opt = rcu_dereference(inet->inet_opt);
1146		if (inet_opt) {
1147			memcpy(&opt_copy, inet_opt,
1148			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1149			ipc.opt = &opt_copy.opt;
1150		}
1151		rcu_read_unlock();
1152	}
1153
1154	if (cgroup_bpf_enabled && !connected) {
1155		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1156					    (struct sockaddr *)usin, &ipc.addr);
1157		if (err)
1158			goto out_free;
1159		if (usin) {
1160			if (usin->sin_port == 0) {
1161				/* BPF program set invalid port. Reject it. */
1162				err = -EINVAL;
1163				goto out_free;
1164			}
1165			daddr = usin->sin_addr.s_addr;
1166			dport = usin->sin_port;
1167		}
1168	}
1169
1170	saddr = ipc.addr;
1171	ipc.addr = faddr = daddr;
1172
1173	if (ipc.opt && ipc.opt->opt.srr) {
1174		if (!daddr) {
1175			err = -EINVAL;
1176			goto out_free;
1177		}
1178		faddr = ipc.opt->opt.faddr;
1179		connected = 0;
1180	}
1181	tos = get_rttos(&ipc, inet);
1182	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1183	    (msg->msg_flags & MSG_DONTROUTE) ||
1184	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1185		tos |= RTO_ONLINK;
1186		connected = 0;
1187	}
1188
1189	if (ipv4_is_multicast(daddr)) {
1190		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1191			ipc.oif = inet->mc_index;
1192		if (!saddr)
1193			saddr = inet->mc_addr;
1194		connected = 0;
1195	} else if (!ipc.oif) {
1196		ipc.oif = inet->uc_index;
1197	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1198		/* oif is set, packet is to local broadcast and
1199		 * uc_index is set. oif is most likely set
1200		 * by sk_bound_dev_if. If uc_index != oif check if the
1201		 * oif is an L3 master and uc_index is an L3 slave.
1202		 * If so, we want to allow the send using the uc_index.
1203		 */
1204		if (ipc.oif != inet->uc_index &&
1205		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1206							      inet->uc_index)) {
1207			ipc.oif = inet->uc_index;
1208		}
1209	}
1210
1211	if (connected)
1212		rt = (struct rtable *)sk_dst_check(sk, 0);
1213
1214	if (!rt) {
1215		struct net *net = sock_net(sk);
1216		__u8 flow_flags = inet_sk_flowi_flags(sk);
1217
1218		fl4 = &fl4_stack;
1219
1220		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1221				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1222				   flow_flags,
1223				   faddr, saddr, dport, inet->inet_sport,
1224				   sk->sk_uid);
1225
1226		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1227		rt = ip_route_output_flow(net, fl4, sk);
1228		if (IS_ERR(rt)) {
1229			err = PTR_ERR(rt);
1230			rt = NULL;
1231			if (err == -ENETUNREACH)
1232				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1233			goto out;
1234		}
1235
1236		err = -EACCES;
1237		if ((rt->rt_flags & RTCF_BROADCAST) &&
1238		    !sock_flag(sk, SOCK_BROADCAST))
1239			goto out;
1240		if (connected)
1241			sk_dst_set(sk, dst_clone(&rt->dst));
1242	}
1243
1244	if (msg->msg_flags&MSG_CONFIRM)
1245		goto do_confirm;
1246back_from_confirm:
1247
1248	saddr = fl4->saddr;
1249	if (!ipc.addr)
1250		daddr = ipc.addr = fl4->daddr;
1251
1252	/* Lockless fast path for the non-corking case. */
1253	if (!corkreq) {
1254		struct inet_cork cork;
1255
1256		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1257				  sizeof(struct udphdr), &ipc, &rt,
1258				  &cork, msg->msg_flags);
1259		err = PTR_ERR(skb);
1260		if (!IS_ERR_OR_NULL(skb))
1261			err = udp_send_skb(skb, fl4, &cork);
1262		goto out;
1263	}
1264
1265	lock_sock(sk);
1266	if (unlikely(up->pending)) {
1267		/* The socket is already corked while preparing it. */
1268		/* ... which is an evident application bug. --ANK */
1269		release_sock(sk);
1270
1271		net_dbg_ratelimited("socket already corked\n");
1272		err = -EINVAL;
1273		goto out;
1274	}
1275	/*
1276	 *	Now cork the socket to pend data.
1277	 */
1278	fl4 = &inet->cork.fl.u.ip4;
1279	fl4->daddr = daddr;
1280	fl4->saddr = saddr;
1281	fl4->fl4_dport = dport;
1282	fl4->fl4_sport = inet->inet_sport;
1283	up->pending = AF_INET;
1284
1285do_append_data:
1286	up->len += ulen;
1287	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1288			     sizeof(struct udphdr), &ipc, &rt,
1289			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1290	if (err)
1291		udp_flush_pending_frames(sk);
1292	else if (!corkreq)
1293		err = udp_push_pending_frames(sk);
1294	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1295		up->pending = 0;
1296	release_sock(sk);
1297
1298out:
1299	ip_rt_put(rt);
1300out_free:
1301	if (free)
1302		kfree(ipc.opt);
1303	if (!err)
1304		return len;
1305	/*
1306	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1307	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1308	 * we don't have a good statistic (IpOutDiscards but it can be too many
1309	 * things).  We could add another new stat but at least for now that
1310	 * seems like overkill.
1311	 */
1312	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1313		UDP_INC_STATS(sock_net(sk),
1314			      UDP_MIB_SNDBUFERRORS, is_udplite);
1315	}
1316	return err;
1317
1318do_confirm:
1319	if (msg->msg_flags & MSG_PROBE)
1320		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1321	if (!(msg->msg_flags&MSG_PROBE) || len)
1322		goto back_from_confirm;
1323	err = 0;
1324	goto out;
1325}
1326EXPORT_SYMBOL(udp_sendmsg);
1327
1328int udp_sendpage(struct sock *sk, struct page *page, int offset,
1329		 size_t size, int flags)
1330{
1331	struct inet_sock *inet = inet_sk(sk);
1332	struct udp_sock *up = udp_sk(sk);
1333	int ret;
1334
1335	if (flags & MSG_SENDPAGE_NOTLAST)
1336		flags |= MSG_MORE;
1337
1338	if (!up->pending) {
1339		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1340
1341		/* Call udp_sendmsg to specify destination address which
1342		 * sendpage interface can't pass.
1343		 * This will succeed only when the socket is connected.
1344		 */
1345		ret = udp_sendmsg(sk, &msg, 0);
1346		if (ret < 0)
1347			return ret;
1348	}
1349
1350	lock_sock(sk);
1351
1352	if (unlikely(!up->pending)) {
1353		release_sock(sk);
1354
1355		net_dbg_ratelimited("cork failed\n");
1356		return -EINVAL;
1357	}
1358
1359	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1360			     page, offset, size, flags);
1361	if (ret == -EOPNOTSUPP) {
1362		release_sock(sk);
1363		return sock_no_sendpage(sk->sk_socket, page, offset,
1364					size, flags);
1365	}
1366	if (ret < 0) {
1367		udp_flush_pending_frames(sk);
1368		goto out;
1369	}
1370
1371	up->len += size;
1372	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1373		ret = udp_push_pending_frames(sk);
1374	if (!ret)
1375		ret = size;
1376out:
1377	release_sock(sk);
1378	return ret;
1379}
1380
1381#define UDP_SKB_IS_STATELESS 0x80000000
1382
1383/* all head states (dst, sk, nf conntrack) except skb extensions are
1384 * cleared by udp_rcv().
1385 *
1386 * We need to preserve secpath, if present, to eventually process
1387 * IP_CMSG_PASSSEC at recvmsg() time.
1388 *
1389 * Other extensions can be cleared.
1390 */
1391static bool udp_try_make_stateless(struct sk_buff *skb)
1392{
1393	if (!skb_has_extensions(skb))
1394		return true;
1395
1396	if (!secpath_exists(skb)) {
1397		skb_ext_reset(skb);
1398		return true;
1399	}
1400
1401	return false;
1402}
1403
1404static void udp_set_dev_scratch(struct sk_buff *skb)
1405{
1406	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1407
1408	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1409	scratch->_tsize_state = skb->truesize;
1410#if BITS_PER_LONG == 64
1411	scratch->len = skb->len;
1412	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1413	scratch->is_linear = !skb_is_nonlinear(skb);
1414#endif
1415	if (udp_try_make_stateless(skb))
1416		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1417}
1418
1419static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1420{
1421	/* We come here after udp_lib_checksum_complete() returned 0.
1422	 * This means that __skb_checksum_complete() might have
1423	 * set skb->csum_valid to 1.
1424	 * On 64bit platforms, we can set csum_unnecessary
1425	 * to true, but only if the skb is not shared.
1426	 */
1427#if BITS_PER_LONG == 64
1428	if (!skb_shared(skb))
1429		udp_skb_scratch(skb)->csum_unnecessary = true;
1430#endif
1431}
1432
1433static int udp_skb_truesize(struct sk_buff *skb)
1434{
1435	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1436}
1437
1438static bool udp_skb_has_head_state(struct sk_buff *skb)
1439{
1440	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1441}
1442
1443/* fully reclaim rmem/fwd memory allocated for skb */
1444static void udp_rmem_release(struct sock *sk, int size, int partial,
1445			     bool rx_queue_lock_held)
1446{
1447	struct udp_sock *up = udp_sk(sk);
1448	struct sk_buff_head *sk_queue;
1449	int amt;
1450
1451	if (likely(partial)) {
1452		up->forward_deficit += size;
1453		size = up->forward_deficit;
1454		if (size < (sk->sk_rcvbuf >> 2) &&
1455		    !skb_queue_empty(&up->reader_queue))
1456			return;
1457	} else {
1458		size += up->forward_deficit;
1459	}
1460	up->forward_deficit = 0;
1461
1462	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1463	 * if the called don't held it already
1464	 */
1465	sk_queue = &sk->sk_receive_queue;
1466	if (!rx_queue_lock_held)
1467		spin_lock(&sk_queue->lock);
1468
1469
1470	sk->sk_forward_alloc += size;
1471	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1472	sk->sk_forward_alloc -= amt;
1473
1474	if (amt)
1475		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1476
1477	atomic_sub(size, &sk->sk_rmem_alloc);
1478
1479	/* this can save us from acquiring the rx queue lock on next receive */
1480	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1481
1482	if (!rx_queue_lock_held)
1483		spin_unlock(&sk_queue->lock);
1484}
1485
1486/* Note: called with reader_queue.lock held.
1487 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1488 * This avoids a cache line miss while receive_queue lock is held.
1489 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1490 */
1491void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1492{
1493	prefetch(&skb->data);
1494	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1495}
1496EXPORT_SYMBOL(udp_skb_destructor);
1497
1498/* as above, but the caller held the rx queue lock, too */
1499static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1500{
1501	prefetch(&skb->data);
1502	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1503}
1504
1505/* Idea of busylocks is to let producers grab an extra spinlock
1506 * to relieve pressure on the receive_queue spinlock shared by consumer.
1507 * Under flood, this means that only one producer can be in line
1508 * trying to acquire the receive_queue spinlock.
1509 * These busylock can be allocated on a per cpu manner, instead of a
1510 * per socket one (that would consume a cache line per socket)
1511 */
1512static int udp_busylocks_log __read_mostly;
1513static spinlock_t *udp_busylocks __read_mostly;
1514
1515static spinlock_t *busylock_acquire(void *ptr)
1516{
1517	spinlock_t *busy;
1518
1519	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1520	spin_lock(busy);
1521	return busy;
1522}
1523
1524static void busylock_release(spinlock_t *busy)
1525{
1526	if (busy)
1527		spin_unlock(busy);
1528}
1529
1530int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1531{
1532	struct sk_buff_head *list = &sk->sk_receive_queue;
1533	int rmem, delta, amt, err = -ENOMEM;
1534	spinlock_t *busy = NULL;
1535	int size;
1536
1537	/* try to avoid the costly atomic add/sub pair when the receive
1538	 * queue is full; always allow at least a packet
1539	 */
1540	rmem = atomic_read(&sk->sk_rmem_alloc);
1541	if (rmem > sk->sk_rcvbuf)
1542		goto drop;
1543
1544	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1545	 * having linear skbs :
1546	 * - Reduce memory overhead and thus increase receive queue capacity
1547	 * - Less cache line misses at copyout() time
1548	 * - Less work at consume_skb() (less alien page frag freeing)
1549	 */
1550	if (rmem > (sk->sk_rcvbuf >> 1)) {
1551		skb_condense(skb);
1552
1553		busy = busylock_acquire(sk);
1554	}
1555	size = skb->truesize;
1556	udp_set_dev_scratch(skb);
1557
1558	/* we drop only if the receive buf is full and the receive
1559	 * queue contains some other skb
1560	 */
1561	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1562	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1563		goto uncharge_drop;
1564
1565	spin_lock(&list->lock);
1566	if (size >= sk->sk_forward_alloc) {
1567		amt = sk_mem_pages(size);
1568		delta = amt << SK_MEM_QUANTUM_SHIFT;
1569		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1570			err = -ENOBUFS;
1571			spin_unlock(&list->lock);
1572			goto uncharge_drop;
1573		}
1574
1575		sk->sk_forward_alloc += delta;
1576	}
1577
1578	sk->sk_forward_alloc -= size;
1579
1580	/* no need to setup a destructor, we will explicitly release the
1581	 * forward allocated memory on dequeue
1582	 */
1583	sock_skb_set_dropcount(sk, skb);
1584
1585	__skb_queue_tail(list, skb);
1586	spin_unlock(&list->lock);
1587
1588	if (!sock_flag(sk, SOCK_DEAD))
1589		sk->sk_data_ready(sk);
1590
1591	busylock_release(busy);
1592	return 0;
1593
1594uncharge_drop:
1595	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1596
1597drop:
1598	atomic_inc(&sk->sk_drops);
1599	busylock_release(busy);
1600	return err;
1601}
1602EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1603
1604void udp_destruct_common(struct sock *sk)
1605{
1606	/* reclaim completely the forward allocated memory */
1607	struct udp_sock *up = udp_sk(sk);
1608	unsigned int total = 0;
1609	struct sk_buff *skb;
1610
1611	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1612	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1613		total += skb->truesize;
1614		kfree_skb(skb);
1615	}
1616	udp_rmem_release(sk, total, 0, true);
1617}
1618EXPORT_SYMBOL_GPL(udp_destruct_common);
1619
1620static void udp_destruct_sock(struct sock *sk)
1621{
1622	udp_destruct_common(sk);
1623	inet_sock_destruct(sk);
1624}
1625
1626int udp_init_sock(struct sock *sk)
1627{
1628	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1629	sk->sk_destruct = udp_destruct_sock;
1630	return 0;
1631}
1632
1633void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1634{
1635	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1636		bool slow = lock_sock_fast(sk);
1637
1638		sk_peek_offset_bwd(sk, len);
1639		unlock_sock_fast(sk, slow);
1640	}
1641
1642	if (!skb_unref(skb))
1643		return;
1644
1645	/* In the more common cases we cleared the head states previously,
1646	 * see __udp_queue_rcv_skb().
1647	 */
1648	if (unlikely(udp_skb_has_head_state(skb)))
1649		skb_release_head_state(skb);
1650	__consume_stateless_skb(skb);
1651}
1652EXPORT_SYMBOL_GPL(skb_consume_udp);
1653
1654static struct sk_buff *__first_packet_length(struct sock *sk,
1655					     struct sk_buff_head *rcvq,
1656					     int *total)
1657{
1658	struct sk_buff *skb;
1659
1660	while ((skb = skb_peek(rcvq)) != NULL) {
1661		if (udp_lib_checksum_complete(skb)) {
1662			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1663					IS_UDPLITE(sk));
1664			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1665					IS_UDPLITE(sk));
1666			atomic_inc(&sk->sk_drops);
1667			__skb_unlink(skb, rcvq);
1668			*total += skb->truesize;
1669			kfree_skb(skb);
1670		} else {
1671			udp_skb_csum_unnecessary_set(skb);
1672			break;
1673		}
1674	}
1675	return skb;
1676}
1677
1678/**
1679 *	first_packet_length	- return length of first packet in receive queue
1680 *	@sk: socket
1681 *
1682 *	Drops all bad checksum frames, until a valid one is found.
1683 *	Returns the length of found skb, or -1 if none is found.
1684 */
1685static int first_packet_length(struct sock *sk)
1686{
1687	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1688	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1689	struct sk_buff *skb;
1690	int total = 0;
1691	int res;
1692
1693	spin_lock_bh(&rcvq->lock);
1694	skb = __first_packet_length(sk, rcvq, &total);
1695	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1696		spin_lock(&sk_queue->lock);
1697		skb_queue_splice_tail_init(sk_queue, rcvq);
1698		spin_unlock(&sk_queue->lock);
1699
1700		skb = __first_packet_length(sk, rcvq, &total);
1701	}
1702	res = skb ? skb->len : -1;
1703	if (total)
1704		udp_rmem_release(sk, total, 1, false);
1705	spin_unlock_bh(&rcvq->lock);
1706	return res;
1707}
1708
1709/*
1710 *	IOCTL requests applicable to the UDP protocol
1711 */
1712
1713int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1714{
1715	switch (cmd) {
1716	case SIOCOUTQ:
1717	{
1718		int amount = sk_wmem_alloc_get(sk);
1719
1720		return put_user(amount, (int __user *)arg);
1721	}
1722
1723	case SIOCINQ:
1724	{
1725		int amount = max_t(int, 0, first_packet_length(sk));
1726
1727		return put_user(amount, (int __user *)arg);
1728	}
1729
1730	default:
1731		return -ENOIOCTLCMD;
1732	}
1733
1734	return 0;
1735}
1736EXPORT_SYMBOL(udp_ioctl);
1737
1738struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1739			       int noblock, int *off, int *err)
1740{
1741	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1742	struct sk_buff_head *queue;
1743	struct sk_buff *last;
1744	long timeo;
1745	int error;
1746
1747	queue = &udp_sk(sk)->reader_queue;
1748	flags |= noblock ? MSG_DONTWAIT : 0;
1749	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1750	do {
1751		struct sk_buff *skb;
1752
1753		error = sock_error(sk);
1754		if (error)
1755			break;
1756
1757		error = -EAGAIN;
1758		do {
1759			spin_lock_bh(&queue->lock);
1760			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1761							err, &last);
1762			if (skb) {
1763				if (!(flags & MSG_PEEK))
1764					udp_skb_destructor(sk, skb);
1765				spin_unlock_bh(&queue->lock);
1766				return skb;
1767			}
1768
1769			if (skb_queue_empty_lockless(sk_queue)) {
1770				spin_unlock_bh(&queue->lock);
1771				goto busy_check;
1772			}
1773
1774			/* refill the reader queue and walk it again
1775			 * keep both queues locked to avoid re-acquiring
1776			 * the sk_receive_queue lock if fwd memory scheduling
1777			 * is needed.
1778			 */
1779			spin_lock(&sk_queue->lock);
1780			skb_queue_splice_tail_init(sk_queue, queue);
1781
1782			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1783							err, &last);
1784			if (skb && !(flags & MSG_PEEK))
1785				udp_skb_dtor_locked(sk, skb);
1786			spin_unlock(&sk_queue->lock);
1787			spin_unlock_bh(&queue->lock);
1788			if (skb)
1789				return skb;
1790
1791busy_check:
1792			if (!sk_can_busy_loop(sk))
1793				break;
1794
1795			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1796		} while (!skb_queue_empty_lockless(sk_queue));
1797
1798		/* sk_queue is empty, reader_queue may contain peeked packets */
1799	} while (timeo &&
1800		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1801					      &error, &timeo,
1802					      (struct sk_buff *)sk_queue));
1803
1804	*err = error;
1805	return NULL;
1806}
1807EXPORT_SYMBOL(__skb_recv_udp);
1808
1809/*
1810 * 	This should be easy, if there is something there we
1811 * 	return it, otherwise we block.
1812 */
1813
1814int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1815		int flags, int *addr_len)
1816{
1817	struct inet_sock *inet = inet_sk(sk);
1818	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1819	struct sk_buff *skb;
1820	unsigned int ulen, copied;
1821	int off, err, peeking = flags & MSG_PEEK;
1822	int is_udplite = IS_UDPLITE(sk);
1823	bool checksum_valid = false;
1824
1825	if (flags & MSG_ERRQUEUE)
1826		return ip_recv_error(sk, msg, len, addr_len);
1827
1828try_again:
1829	off = sk_peek_offset(sk, flags);
1830	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1831	if (!skb)
1832		return err;
1833
1834	ulen = udp_skb_len(skb);
1835	copied = len;
1836	if (copied > ulen - off)
1837		copied = ulen - off;
1838	else if (copied < ulen)
1839		msg->msg_flags |= MSG_TRUNC;
1840
1841	/*
1842	 * If checksum is needed at all, try to do it while copying the
1843	 * data.  If the data is truncated, or if we only want a partial
1844	 * coverage checksum (UDP-Lite), do it before the copy.
1845	 */
1846
1847	if (copied < ulen || peeking ||
1848	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1849		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1850				!__udp_lib_checksum_complete(skb);
1851		if (!checksum_valid)
1852			goto csum_copy_err;
1853	}
1854
1855	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1856		if (udp_skb_is_linear(skb))
1857			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1858		else
1859			err = skb_copy_datagram_msg(skb, off, msg, copied);
1860	} else {
1861		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1862
1863		if (err == -EINVAL)
1864			goto csum_copy_err;
1865	}
1866
1867	if (unlikely(err)) {
1868		if (!peeking) {
1869			atomic_inc(&sk->sk_drops);
1870			UDP_INC_STATS(sock_net(sk),
1871				      UDP_MIB_INERRORS, is_udplite);
1872		}
1873		kfree_skb(skb);
1874		return err;
1875	}
1876
1877	if (!peeking)
1878		UDP_INC_STATS(sock_net(sk),
1879			      UDP_MIB_INDATAGRAMS, is_udplite);
1880
1881	sock_recv_ts_and_drops(msg, sk, skb);
1882
1883	/* Copy the address. */
1884	if (sin) {
1885		sin->sin_family = AF_INET;
1886		sin->sin_port = udp_hdr(skb)->source;
1887		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1888		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1889		*addr_len = sizeof(*sin);
1890
1891		if (cgroup_bpf_enabled)
1892			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1893							(struct sockaddr *)sin);
1894	}
1895
1896	if (udp_sk(sk)->gro_enabled)
1897		udp_cmsg_recv(msg, sk, skb);
1898
1899	if (inet->cmsg_flags)
1900		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1901
1902	err = copied;
1903	if (flags & MSG_TRUNC)
1904		err = ulen;
1905
1906	skb_consume_udp(sk, skb, peeking ? -err : err);
1907	return err;
1908
1909csum_copy_err:
1910	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1911				 udp_skb_destructor)) {
1912		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1913		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1914	}
1915	kfree_skb(skb);
1916
1917	/* starting over for a new packet, but check if we need to yield */
1918	cond_resched();
1919	msg->msg_flags &= ~MSG_TRUNC;
1920	goto try_again;
1921}
1922
1923int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1924{
1925	/* This check is replicated from __ip4_datagram_connect() and
1926	 * intended to prevent BPF program called below from accessing bytes
1927	 * that are out of the bound specified by user in addr_len.
1928	 */
1929	if (addr_len < sizeof(struct sockaddr_in))
1930		return -EINVAL;
1931
1932	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1933}
1934EXPORT_SYMBOL(udp_pre_connect);
1935
1936int __udp_disconnect(struct sock *sk, int flags)
1937{
1938	struct inet_sock *inet = inet_sk(sk);
1939	/*
1940	 *	1003.1g - break association.
1941	 */
1942
1943	sk->sk_state = TCP_CLOSE;
1944	inet->inet_daddr = 0;
1945	inet->inet_dport = 0;
1946	sock_rps_reset_rxhash(sk);
1947	sk->sk_bound_dev_if = 0;
1948	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1949		inet_reset_saddr(sk);
1950		if (sk->sk_prot->rehash &&
1951		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1952			sk->sk_prot->rehash(sk);
1953	}
1954
1955	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1956		sk->sk_prot->unhash(sk);
1957		inet->inet_sport = 0;
1958	}
1959	sk_dst_reset(sk);
1960	return 0;
1961}
1962EXPORT_SYMBOL(__udp_disconnect);
1963
1964int udp_disconnect(struct sock *sk, int flags)
1965{
1966	lock_sock(sk);
1967	__udp_disconnect(sk, flags);
1968	release_sock(sk);
1969	return 0;
1970}
1971EXPORT_SYMBOL(udp_disconnect);
1972
1973void udp_lib_unhash(struct sock *sk)
1974{
1975	if (sk_hashed(sk)) {
1976		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1977		struct udp_hslot *hslot, *hslot2;
1978
1979		hslot  = udp_hashslot(udptable, sock_net(sk),
1980				      udp_sk(sk)->udp_port_hash);
1981		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1982
1983		spin_lock_bh(&hslot->lock);
1984		if (rcu_access_pointer(sk->sk_reuseport_cb))
1985			reuseport_detach_sock(sk);
1986		if (sk_del_node_init_rcu(sk)) {
1987			hslot->count--;
1988			inet_sk(sk)->inet_num = 0;
1989			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1990
1991			spin_lock(&hslot2->lock);
1992			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1993			hslot2->count--;
1994			spin_unlock(&hslot2->lock);
1995		}
1996		spin_unlock_bh(&hslot->lock);
1997	}
1998}
1999EXPORT_SYMBOL(udp_lib_unhash);
2000
2001/*
2002 * inet_rcv_saddr was changed, we must rehash secondary hash
2003 */
2004void udp_lib_rehash(struct sock *sk, u16 newhash)
2005{
2006	if (sk_hashed(sk)) {
2007		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2008		struct udp_hslot *hslot, *hslot2, *nhslot2;
2009
2010		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2011		nhslot2 = udp_hashslot2(udptable, newhash);
2012		udp_sk(sk)->udp_portaddr_hash = newhash;
2013
2014		if (hslot2 != nhslot2 ||
2015		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2016			hslot = udp_hashslot(udptable, sock_net(sk),
2017					     udp_sk(sk)->udp_port_hash);
2018			/* we must lock primary chain too */
2019			spin_lock_bh(&hslot->lock);
2020			if (rcu_access_pointer(sk->sk_reuseport_cb))
2021				reuseport_detach_sock(sk);
2022
2023			if (hslot2 != nhslot2) {
2024				spin_lock(&hslot2->lock);
2025				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2026				hslot2->count--;
2027				spin_unlock(&hslot2->lock);
2028
2029				spin_lock(&nhslot2->lock);
2030				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2031							 &nhslot2->head);
2032				nhslot2->count++;
2033				spin_unlock(&nhslot2->lock);
2034			}
2035
2036			spin_unlock_bh(&hslot->lock);
2037		}
2038	}
2039}
2040EXPORT_SYMBOL(udp_lib_rehash);
2041
2042void udp_v4_rehash(struct sock *sk)
2043{
2044	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2045					  inet_sk(sk)->inet_rcv_saddr,
2046					  inet_sk(sk)->inet_num);
2047	udp_lib_rehash(sk, new_hash);
2048}
2049
2050static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2051{
2052	int rc;
2053
2054	if (inet_sk(sk)->inet_daddr) {
2055		sock_rps_save_rxhash(sk, skb);
2056		sk_mark_napi_id(sk, skb);
2057		sk_incoming_cpu_update(sk);
2058	} else {
2059		sk_mark_napi_id_once(sk, skb);
2060	}
2061
2062	rc = __udp_enqueue_schedule_skb(sk, skb);
2063	if (rc < 0) {
2064		int is_udplite = IS_UDPLITE(sk);
2065
2066		/* Note that an ENOMEM error is charged twice */
2067		if (rc == -ENOMEM)
2068			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2069					is_udplite);
2070		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2071		kfree_skb(skb);
2072		trace_udp_fail_queue_rcv_skb(rc, sk);
2073		return -1;
2074	}
2075
2076	return 0;
2077}
2078
2079/* returns:
2080 *  -1: error
2081 *   0: success
2082 *  >0: "udp encap" protocol resubmission
2083 *
2084 * Note that in the success and error cases, the skb is assumed to
2085 * have either been requeued or freed.
2086 */
2087static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2088{
2089	struct udp_sock *up = udp_sk(sk);
2090	int is_udplite = IS_UDPLITE(sk);
2091
2092	/*
2093	 *	Charge it to the socket, dropping if the queue is full.
2094	 */
2095	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2096		goto drop;
2097	nf_reset_ct(skb);
2098
2099	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2100		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2101
2102		/*
2103		 * This is an encapsulation socket so pass the skb to
2104		 * the socket's udp_encap_rcv() hook. Otherwise, just
2105		 * fall through and pass this up the UDP socket.
2106		 * up->encap_rcv() returns the following value:
2107		 * =0 if skb was successfully passed to the encap
2108		 *    handler or was discarded by it.
2109		 * >0 if skb should be passed on to UDP.
2110		 * <0 if skb should be resubmitted as proto -N
2111		 */
2112
2113		/* if we're overly short, let UDP handle it */
2114		encap_rcv = READ_ONCE(up->encap_rcv);
2115		if (encap_rcv) {
2116			int ret;
2117
2118			/* Verify checksum before giving to encap */
2119			if (udp_lib_checksum_complete(skb))
2120				goto csum_error;
2121
2122			ret = encap_rcv(sk, skb);
2123			if (ret <= 0) {
2124				__UDP_INC_STATS(sock_net(sk),
2125						UDP_MIB_INDATAGRAMS,
2126						is_udplite);
2127				return -ret;
2128			}
2129		}
2130
2131		/* FALLTHROUGH -- it's a UDP Packet */
2132	}
2133
2134	/*
2135	 * 	UDP-Lite specific tests, ignored on UDP sockets
2136	 */
2137	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2138
2139		/*
2140		 * MIB statistics other than incrementing the error count are
2141		 * disabled for the following two types of errors: these depend
2142		 * on the application settings, not on the functioning of the
2143		 * protocol stack as such.
2144		 *
2145		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2146		 * way ... to ... at least let the receiving application block
2147		 * delivery of packets with coverage values less than a value
2148		 * provided by the application."
2149		 */
2150		if (up->pcrlen == 0) {          /* full coverage was set  */
2151			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2152					    UDP_SKB_CB(skb)->cscov, skb->len);
2153			goto drop;
2154		}
2155		/* The next case involves violating the min. coverage requested
2156		 * by the receiver. This is subtle: if receiver wants x and x is
2157		 * greater than the buffersize/MTU then receiver will complain
2158		 * that it wants x while sender emits packets of smaller size y.
2159		 * Therefore the above ...()->partial_cov statement is essential.
2160		 */
2161		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2162			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2163					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2164			goto drop;
2165		}
2166	}
2167
2168	prefetch(&sk->sk_rmem_alloc);
2169	if (rcu_access_pointer(sk->sk_filter) &&
2170	    udp_lib_checksum_complete(skb))
2171			goto csum_error;
2172
2173	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2174		goto drop;
2175
2176	udp_csum_pull_header(skb);
2177
2178	ipv4_pktinfo_prepare(sk, skb);
2179	return __udp_queue_rcv_skb(sk, skb);
2180
2181csum_error:
2182	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2183drop:
2184	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2185	atomic_inc(&sk->sk_drops);
2186	kfree_skb(skb);
2187	return -1;
2188}
2189
2190static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2191{
2192	struct sk_buff *next, *segs;
2193	int ret;
2194
2195	if (likely(!udp_unexpected_gso(sk, skb)))
2196		return udp_queue_rcv_one_skb(sk, skb);
2197
2198	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2199	__skb_push(skb, -skb_mac_offset(skb));
2200	segs = udp_rcv_segment(sk, skb, true);
2201	skb_list_walk_safe(segs, skb, next) {
2202		__skb_pull(skb, skb_transport_offset(skb));
2203		ret = udp_queue_rcv_one_skb(sk, skb);
2204		if (ret > 0)
2205			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2206	}
2207	return 0;
2208}
2209
2210/* For TCP sockets, sk_rx_dst is protected by socket lock
2211 * For UDP, we use xchg() to guard against concurrent changes.
2212 */
2213bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2214{
2215	struct dst_entry *old;
2216
2217	if (dst_hold_safe(dst)) {
2218		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2219		dst_release(old);
2220		return old != dst;
2221	}
2222	return false;
2223}
2224EXPORT_SYMBOL(udp_sk_rx_dst_set);
2225
2226/*
2227 *	Multicasts and broadcasts go to each listener.
2228 *
2229 *	Note: called only from the BH handler context.
2230 */
2231static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2232				    struct udphdr  *uh,
2233				    __be32 saddr, __be32 daddr,
2234				    struct udp_table *udptable,
2235				    int proto)
2236{
2237	struct sock *sk, *first = NULL;
2238	unsigned short hnum = ntohs(uh->dest);
2239	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2240	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2241	unsigned int offset = offsetof(typeof(*sk), sk_node);
2242	int dif = skb->dev->ifindex;
2243	int sdif = inet_sdif(skb);
2244	struct hlist_node *node;
2245	struct sk_buff *nskb;
2246
2247	if (use_hash2) {
2248		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2249			    udptable->mask;
2250		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2251start_lookup:
2252		hslot = &udptable->hash2[hash2];
2253		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2254	}
2255
2256	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2257		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2258					 uh->source, saddr, dif, sdif, hnum))
2259			continue;
2260
2261		if (!first) {
2262			first = sk;
2263			continue;
2264		}
2265		nskb = skb_clone(skb, GFP_ATOMIC);
2266
2267		if (unlikely(!nskb)) {
2268			atomic_inc(&sk->sk_drops);
2269			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2270					IS_UDPLITE(sk));
2271			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2272					IS_UDPLITE(sk));
2273			continue;
2274		}
2275		if (udp_queue_rcv_skb(sk, nskb) > 0)
2276			consume_skb(nskb);
2277	}
2278
2279	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2280	if (use_hash2 && hash2 != hash2_any) {
2281		hash2 = hash2_any;
2282		goto start_lookup;
2283	}
2284
2285	if (first) {
2286		if (udp_queue_rcv_skb(first, skb) > 0)
2287			consume_skb(skb);
2288	} else {
2289		kfree_skb(skb);
2290		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2291				proto == IPPROTO_UDPLITE);
2292	}
2293	return 0;
2294}
2295
2296/* Initialize UDP checksum. If exited with zero value (success),
2297 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2298 * Otherwise, csum completion requires checksumming packet body,
2299 * including udp header and folding it to skb->csum.
2300 */
2301static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2302				 int proto)
2303{
2304	int err;
2305
2306	UDP_SKB_CB(skb)->partial_cov = 0;
2307	UDP_SKB_CB(skb)->cscov = skb->len;
2308
2309	if (proto == IPPROTO_UDPLITE) {
2310		err = udplite_checksum_init(skb, uh);
2311		if (err)
2312			return err;
2313
2314		if (UDP_SKB_CB(skb)->partial_cov) {
2315			skb->csum = inet_compute_pseudo(skb, proto);
2316			return 0;
2317		}
2318	}
2319
2320	/* Note, we are only interested in != 0 or == 0, thus the
2321	 * force to int.
2322	 */
2323	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2324							inet_compute_pseudo);
2325	if (err)
2326		return err;
2327
2328	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2329		/* If SW calculated the value, we know it's bad */
2330		if (skb->csum_complete_sw)
2331			return 1;
2332
2333		/* HW says the value is bad. Let's validate that.
2334		 * skb->csum is no longer the full packet checksum,
2335		 * so don't treat it as such.
2336		 */
2337		skb_checksum_complete_unset(skb);
2338	}
2339
2340	return 0;
2341}
2342
2343/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2344 * return code conversion for ip layer consumption
2345 */
2346static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2347			       struct udphdr *uh)
2348{
2349	int ret;
2350
2351	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2352		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2353
2354	ret = udp_queue_rcv_skb(sk, skb);
2355
2356	/* a return value > 0 means to resubmit the input, but
2357	 * it wants the return to be -protocol, or 0
2358	 */
2359	if (ret > 0)
2360		return -ret;
2361	return 0;
2362}
2363
2364/*
2365 *	All we need to do is get the socket, and then do a checksum.
2366 */
2367
2368int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2369		   int proto)
2370{
2371	struct sock *sk;
2372	struct udphdr *uh;
2373	unsigned short ulen;
2374	struct rtable *rt = skb_rtable(skb);
2375	__be32 saddr, daddr;
2376	struct net *net = dev_net(skb->dev);
2377	bool refcounted;
2378
2379	/*
2380	 *  Validate the packet.
2381	 */
2382	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2383		goto drop;		/* No space for header. */
2384
2385	uh   = udp_hdr(skb);
2386	ulen = ntohs(uh->len);
2387	saddr = ip_hdr(skb)->saddr;
2388	daddr = ip_hdr(skb)->daddr;
2389
2390	if (ulen > skb->len)
2391		goto short_packet;
2392
2393	if (proto == IPPROTO_UDP) {
2394		/* UDP validates ulen. */
2395		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2396			goto short_packet;
2397		uh = udp_hdr(skb);
2398	}
2399
2400	if (udp4_csum_init(skb, uh, proto))
2401		goto csum_error;
2402
2403	sk = skb_steal_sock(skb, &refcounted);
2404	if (sk) {
2405		struct dst_entry *dst = skb_dst(skb);
2406		int ret;
2407
2408		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2409			udp_sk_rx_dst_set(sk, dst);
2410
2411		ret = udp_unicast_rcv_skb(sk, skb, uh);
2412		if (refcounted)
2413			sock_put(sk);
2414		return ret;
2415	}
2416
2417	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2418		return __udp4_lib_mcast_deliver(net, skb, uh,
2419						saddr, daddr, udptable, proto);
2420
2421	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2422	if (sk)
2423		return udp_unicast_rcv_skb(sk, skb, uh);
2424
2425	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2426		goto drop;
2427	nf_reset_ct(skb);
2428
2429	/* No socket. Drop packet silently, if checksum is wrong */
2430	if (udp_lib_checksum_complete(skb))
2431		goto csum_error;
2432
2433	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2434	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2435
2436	/*
2437	 * Hmm.  We got an UDP packet to a port to which we
2438	 * don't wanna listen.  Ignore it.
2439	 */
2440	kfree_skb(skb);
2441	return 0;
2442
2443short_packet:
2444	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2445			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2446			    &saddr, ntohs(uh->source),
2447			    ulen, skb->len,
2448			    &daddr, ntohs(uh->dest));
2449	goto drop;
2450
2451csum_error:
2452	/*
2453	 * RFC1122: OK.  Discards the bad packet silently (as far as
2454	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2455	 */
2456	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2457			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2458			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2459			    ulen);
2460	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2461drop:
2462	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2463	kfree_skb(skb);
2464	return 0;
2465}
2466
2467/* We can only early demux multicast if there is a single matching socket.
2468 * If more than one socket found returns NULL
2469 */
2470static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2471						  __be16 loc_port, __be32 loc_addr,
2472						  __be16 rmt_port, __be32 rmt_addr,
2473						  int dif, int sdif)
2474{
2475	struct sock *sk, *result;
2476	unsigned short hnum = ntohs(loc_port);
2477	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2478	struct udp_hslot *hslot = &udp_table.hash[slot];
2479
2480	/* Do not bother scanning a too big list */
2481	if (hslot->count > 10)
2482		return NULL;
2483
2484	result = NULL;
2485	sk_for_each_rcu(sk, &hslot->head) {
2486		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2487					rmt_port, rmt_addr, dif, sdif, hnum)) {
2488			if (result)
2489				return NULL;
2490			result = sk;
2491		}
2492	}
2493
2494	return result;
2495}
2496
2497/* For unicast we should only early demux connected sockets or we can
2498 * break forwarding setups.  The chains here can be long so only check
2499 * if the first socket is an exact match and if not move on.
2500 */
2501static struct sock *__udp4_lib_demux_lookup(struct net *net,
2502					    __be16 loc_port, __be32 loc_addr,
2503					    __be16 rmt_port, __be32 rmt_addr,
2504					    int dif, int sdif)
2505{
2506	unsigned short hnum = ntohs(loc_port);
2507	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2508	unsigned int slot2 = hash2 & udp_table.mask;
2509	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2510	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2511	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2512	struct sock *sk;
2513
2514	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2515		if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2516			return sk;
2517		/* Only check first socket in chain */
2518		break;
2519	}
2520	return NULL;
2521}
2522
2523int udp_v4_early_demux(struct sk_buff *skb)
2524{
2525	struct net *net = dev_net(skb->dev);
2526	struct in_device *in_dev = NULL;
2527	const struct iphdr *iph;
2528	const struct udphdr *uh;
2529	struct sock *sk = NULL;
2530	struct dst_entry *dst;
2531	int dif = skb->dev->ifindex;
2532	int sdif = inet_sdif(skb);
2533	int ours;
2534
2535	/* validate the packet */
2536	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2537		return 0;
2538
2539	iph = ip_hdr(skb);
2540	uh = udp_hdr(skb);
2541
2542	if (skb->pkt_type == PACKET_MULTICAST) {
2543		in_dev = __in_dev_get_rcu(skb->dev);
2544
2545		if (!in_dev)
2546			return 0;
2547
2548		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2549				       iph->protocol);
2550		if (!ours)
2551			return 0;
2552
2553		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2554						   uh->source, iph->saddr,
2555						   dif, sdif);
2556	} else if (skb->pkt_type == PACKET_HOST) {
2557		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2558					     uh->source, iph->saddr, dif, sdif);
2559	}
2560
2561	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2562		return 0;
2563
2564	skb->sk = sk;
2565	skb->destructor = sock_efree;
2566	dst = rcu_dereference(sk->sk_rx_dst);
2567
2568	if (dst)
2569		dst = dst_check(dst, 0);
2570	if (dst) {
2571		u32 itag = 0;
2572
2573		/* set noref for now.
2574		 * any place which wants to hold dst has to call
2575		 * dst_hold_safe()
2576		 */
2577		skb_dst_set_noref(skb, dst);
2578
2579		/* for unconnected multicast sockets we need to validate
2580		 * the source on each packet
2581		 */
2582		if (!inet_sk(sk)->inet_daddr && in_dev)
2583			return ip_mc_validate_source(skb, iph->daddr,
2584						     iph->saddr,
2585						     iph->tos & IPTOS_RT_MASK,
2586						     skb->dev, in_dev, &itag);
2587	}
2588	return 0;
2589}
2590
2591int udp_rcv(struct sk_buff *skb)
2592{
2593	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2594}
2595
2596void udp_destroy_sock(struct sock *sk)
2597{
2598	struct udp_sock *up = udp_sk(sk);
2599	bool slow = lock_sock_fast(sk);
2600
2601	/* protects from races with udp_abort() */
2602	sock_set_flag(sk, SOCK_DEAD);
2603	udp_flush_pending_frames(sk);
2604	unlock_sock_fast(sk, slow);
2605	if (static_branch_unlikely(&udp_encap_needed_key)) {
2606		if (up->encap_type) {
2607			void (*encap_destroy)(struct sock *sk);
2608			encap_destroy = READ_ONCE(up->encap_destroy);
2609			if (encap_destroy)
2610				encap_destroy(sk);
2611		}
2612		if (up->encap_enabled)
2613			static_branch_dec(&udp_encap_needed_key);
2614	}
2615}
2616
2617/*
2618 *	Socket option code for UDP
2619 */
2620int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2621		       sockptr_t optval, unsigned int optlen,
2622		       int (*push_pending_frames)(struct sock *))
2623{
2624	struct udp_sock *up = udp_sk(sk);
2625	int val, valbool;
2626	int err = 0;
2627	int is_udplite = IS_UDPLITE(sk);
2628
2629	if (optlen < sizeof(int))
2630		return -EINVAL;
2631
2632	if (copy_from_sockptr(&val, optval, sizeof(val)))
2633		return -EFAULT;
2634
2635	valbool = val ? 1 : 0;
2636
2637	switch (optname) {
2638	case UDP_CORK:
2639		if (val != 0) {
2640			WRITE_ONCE(up->corkflag, 1);
2641		} else {
2642			WRITE_ONCE(up->corkflag, 0);
2643			lock_sock(sk);
2644			push_pending_frames(sk);
2645			release_sock(sk);
2646		}
2647		break;
2648
2649	case UDP_ENCAP:
2650		switch (val) {
2651		case 0:
2652#ifdef CONFIG_XFRM
2653		case UDP_ENCAP_ESPINUDP:
2654		case UDP_ENCAP_ESPINUDP_NON_IKE:
2655#if IS_ENABLED(CONFIG_IPV6)
2656			if (sk->sk_family == AF_INET6)
2657				WRITE_ONCE(up->encap_rcv,
2658					   ipv6_stub->xfrm6_udp_encap_rcv);
2659			else
2660#endif
2661				WRITE_ONCE(up->encap_rcv,
2662					   xfrm4_udp_encap_rcv);
2663#endif
2664			fallthrough;
2665		case UDP_ENCAP_L2TPINUDP:
2666			up->encap_type = val;
2667			lock_sock(sk);
2668			udp_tunnel_encap_enable(sk->sk_socket);
2669			release_sock(sk);
2670			break;
2671		default:
2672			err = -ENOPROTOOPT;
2673			break;
2674		}
2675		break;
2676
2677	case UDP_NO_CHECK6_TX:
2678		up->no_check6_tx = valbool;
2679		break;
2680
2681	case UDP_NO_CHECK6_RX:
2682		up->no_check6_rx = valbool;
2683		break;
2684
2685	case UDP_SEGMENT:
2686		if (val < 0 || val > USHRT_MAX)
2687			return -EINVAL;
2688		WRITE_ONCE(up->gso_size, val);
2689		break;
2690
2691	case UDP_GRO:
2692		lock_sock(sk);
2693
2694		/* when enabling GRO, accept the related GSO packet type */
2695		if (valbool)
2696			udp_tunnel_encap_enable(sk->sk_socket);
2697		up->gro_enabled = valbool;
2698		up->accept_udp_l4 = valbool;
2699		release_sock(sk);
2700		break;
2701
2702	/*
2703	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2704	 */
2705	/* The sender sets actual checksum coverage length via this option.
2706	 * The case coverage > packet length is handled by send module. */
2707	case UDPLITE_SEND_CSCOV:
2708		if (!is_udplite)         /* Disable the option on UDP sockets */
2709			return -ENOPROTOOPT;
2710		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2711			val = 8;
2712		else if (val > USHRT_MAX)
2713			val = USHRT_MAX;
2714		up->pcslen = val;
2715		up->pcflag |= UDPLITE_SEND_CC;
2716		break;
2717
2718	/* The receiver specifies a minimum checksum coverage value. To make
2719	 * sense, this should be set to at least 8 (as done below). If zero is
2720	 * used, this again means full checksum coverage.                     */
2721	case UDPLITE_RECV_CSCOV:
2722		if (!is_udplite)         /* Disable the option on UDP sockets */
2723			return -ENOPROTOOPT;
2724		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2725			val = 8;
2726		else if (val > USHRT_MAX)
2727			val = USHRT_MAX;
2728		up->pcrlen = val;
2729		up->pcflag |= UDPLITE_RECV_CC;
2730		break;
2731
2732	default:
2733		err = -ENOPROTOOPT;
2734		break;
2735	}
2736
2737	return err;
2738}
2739EXPORT_SYMBOL(udp_lib_setsockopt);
2740
2741int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2742		   unsigned int optlen)
2743{
2744	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2745		return udp_lib_setsockopt(sk, level, optname,
2746					  optval, optlen,
2747					  udp_push_pending_frames);
2748	return ip_setsockopt(sk, level, optname, optval, optlen);
2749}
2750
2751int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2752		       char __user *optval, int __user *optlen)
2753{
2754	struct udp_sock *up = udp_sk(sk);
2755	int val, len;
2756
2757	if (get_user(len, optlen))
2758		return -EFAULT;
2759
2760	len = min_t(unsigned int, len, sizeof(int));
2761
2762	if (len < 0)
2763		return -EINVAL;
2764
2765	switch (optname) {
2766	case UDP_CORK:
2767		val = READ_ONCE(up->corkflag);
2768		break;
2769
2770	case UDP_ENCAP:
2771		val = up->encap_type;
2772		break;
2773
2774	case UDP_NO_CHECK6_TX:
2775		val = up->no_check6_tx;
2776		break;
2777
2778	case UDP_NO_CHECK6_RX:
2779		val = up->no_check6_rx;
2780		break;
2781
2782	case UDP_SEGMENT:
2783		val = READ_ONCE(up->gso_size);
2784		break;
2785
2786	case UDP_GRO:
2787		val = up->gro_enabled;
2788		break;
2789
2790	/* The following two cannot be changed on UDP sockets, the return is
2791	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2792	case UDPLITE_SEND_CSCOV:
2793		val = up->pcslen;
2794		break;
2795
2796	case UDPLITE_RECV_CSCOV:
2797		val = up->pcrlen;
2798		break;
2799
2800	default:
2801		return -ENOPROTOOPT;
2802	}
2803
2804	if (put_user(len, optlen))
2805		return -EFAULT;
2806	if (copy_to_user(optval, &val, len))
2807		return -EFAULT;
2808	return 0;
2809}
2810EXPORT_SYMBOL(udp_lib_getsockopt);
2811
2812int udp_getsockopt(struct sock *sk, int level, int optname,
2813		   char __user *optval, int __user *optlen)
2814{
2815	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2816		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2817	return ip_getsockopt(sk, level, optname, optval, optlen);
2818}
2819
2820/**
2821 * 	udp_poll - wait for a UDP event.
2822 *	@file: - file struct
2823 *	@sock: - socket
2824 *	@wait: - poll table
2825 *
2826 *	This is same as datagram poll, except for the special case of
2827 *	blocking sockets. If application is using a blocking fd
2828 *	and a packet with checksum error is in the queue;
2829 *	then it could get return from select indicating data available
2830 *	but then block when reading it. Add special case code
2831 *	to work around these arguably broken applications.
2832 */
2833__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2834{
2835	__poll_t mask = datagram_poll(file, sock, wait);
2836	struct sock *sk = sock->sk;
2837
2838	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2839		mask |= EPOLLIN | EPOLLRDNORM;
2840
2841	/* Check for false positives due to checksum errors */
2842	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2843	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2844		mask &= ~(EPOLLIN | EPOLLRDNORM);
2845
2846	return mask;
2847
2848}
2849EXPORT_SYMBOL(udp_poll);
2850
2851int udp_abort(struct sock *sk, int err)
2852{
2853	lock_sock(sk);
2854
2855	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2856	 * with close()
2857	 */
2858	if (sock_flag(sk, SOCK_DEAD))
2859		goto out;
2860
2861	sk->sk_err = err;
2862	sk->sk_error_report(sk);
2863	__udp_disconnect(sk, 0);
2864
2865out:
2866	release_sock(sk);
2867
2868	return 0;
2869}
2870EXPORT_SYMBOL_GPL(udp_abort);
2871
2872struct proto udp_prot = {
2873	.name			= "UDP",
2874	.owner			= THIS_MODULE,
2875	.close			= udp_lib_close,
2876	.pre_connect		= udp_pre_connect,
2877	.connect		= ip4_datagram_connect,
2878	.disconnect		= udp_disconnect,
2879	.ioctl			= udp_ioctl,
2880	.init			= udp_init_sock,
2881	.destroy		= udp_destroy_sock,
2882	.setsockopt		= udp_setsockopt,
2883	.getsockopt		= udp_getsockopt,
2884	.sendmsg		= udp_sendmsg,
2885	.recvmsg		= udp_recvmsg,
2886	.sendpage		= udp_sendpage,
2887	.release_cb		= ip4_datagram_release_cb,
2888	.hash			= udp_lib_hash,
2889	.unhash			= udp_lib_unhash,
2890	.rehash			= udp_v4_rehash,
2891	.get_port		= udp_v4_get_port,
2892	.memory_allocated	= &udp_memory_allocated,
2893	.sysctl_mem		= sysctl_udp_mem,
2894	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2895	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2896	.obj_size		= sizeof(struct udp_sock),
2897	.h.udp_table		= &udp_table,
2898	.diag_destroy		= udp_abort,
2899};
2900EXPORT_SYMBOL(udp_prot);
2901
2902/* ------------------------------------------------------------------------ */
2903#ifdef CONFIG_PROC_FS
2904
2905static struct sock *udp_get_first(struct seq_file *seq, int start)
2906{
2907	struct sock *sk;
2908	struct udp_seq_afinfo *afinfo;
2909	struct udp_iter_state *state = seq->private;
2910	struct net *net = seq_file_net(seq);
2911
2912	if (state->bpf_seq_afinfo)
2913		afinfo = state->bpf_seq_afinfo;
2914	else
2915		afinfo = PDE_DATA(file_inode(seq->file));
2916
2917	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2918	     ++state->bucket) {
2919		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2920
2921		if (hlist_empty(&hslot->head))
2922			continue;
2923
2924		spin_lock_bh(&hslot->lock);
2925		sk_for_each(sk, &hslot->head) {
2926			if (!net_eq(sock_net(sk), net))
2927				continue;
2928			if (afinfo->family == AF_UNSPEC ||
2929			    sk->sk_family == afinfo->family)
2930				goto found;
2931		}
2932		spin_unlock_bh(&hslot->lock);
2933	}
2934	sk = NULL;
2935found:
2936	return sk;
2937}
2938
2939static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2940{
2941	struct udp_seq_afinfo *afinfo;
2942	struct udp_iter_state *state = seq->private;
2943	struct net *net = seq_file_net(seq);
2944
2945	if (state->bpf_seq_afinfo)
2946		afinfo = state->bpf_seq_afinfo;
2947	else
2948		afinfo = PDE_DATA(file_inode(seq->file));
2949
2950	do {
2951		sk = sk_next(sk);
2952	} while (sk && (!net_eq(sock_net(sk), net) ||
2953			(afinfo->family != AF_UNSPEC &&
2954			 sk->sk_family != afinfo->family)));
2955
2956	if (!sk) {
2957		if (state->bucket <= afinfo->udp_table->mask)
2958			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2959		return udp_get_first(seq, state->bucket + 1);
2960	}
2961	return sk;
2962}
2963
2964static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2965{
2966	struct sock *sk = udp_get_first(seq, 0);
2967
2968	if (sk)
2969		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2970			--pos;
2971	return pos ? NULL : sk;
2972}
2973
2974void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2975{
2976	struct udp_iter_state *state = seq->private;
2977	state->bucket = MAX_UDP_PORTS;
2978
2979	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2980}
2981EXPORT_SYMBOL(udp_seq_start);
2982
2983void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2984{
2985	struct sock *sk;
2986
2987	if (v == SEQ_START_TOKEN)
2988		sk = udp_get_idx(seq, 0);
2989	else
2990		sk = udp_get_next(seq, v);
2991
2992	++*pos;
2993	return sk;
2994}
2995EXPORT_SYMBOL(udp_seq_next);
2996
2997void udp_seq_stop(struct seq_file *seq, void *v)
2998{
2999	struct udp_seq_afinfo *afinfo;
3000	struct udp_iter_state *state = seq->private;
3001
3002	if (state->bpf_seq_afinfo)
3003		afinfo = state->bpf_seq_afinfo;
3004	else
3005		afinfo = PDE_DATA(file_inode(seq->file));
3006
3007	if (state->bucket <= afinfo->udp_table->mask)
3008		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3009}
3010EXPORT_SYMBOL(udp_seq_stop);
3011
3012/* ------------------------------------------------------------------------ */
3013static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3014		int bucket)
3015{
3016	struct inet_sock *inet = inet_sk(sp);
3017	__be32 dest = inet->inet_daddr;
3018	__be32 src  = inet->inet_rcv_saddr;
3019	__u16 destp	  = ntohs(inet->inet_dport);
3020	__u16 srcp	  = ntohs(inet->inet_sport);
3021
3022	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3023		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3024		bucket, src, srcp, dest, destp, sp->sk_state,
3025		sk_wmem_alloc_get(sp),
3026		udp_rqueue_get(sp),
3027		0, 0L, 0,
3028		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3029		0, sock_i_ino(sp),
3030		refcount_read(&sp->sk_refcnt), sp,
3031		atomic_read(&sp->sk_drops));
3032}
3033
3034int udp4_seq_show(struct seq_file *seq, void *v)
3035{
3036	seq_setwidth(seq, 127);
3037	if (v == SEQ_START_TOKEN)
3038		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3039			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3040			   "inode ref pointer drops");
3041	else {
3042		struct udp_iter_state *state = seq->private;
3043
3044		udp4_format_sock(v, seq, state->bucket);
3045	}
3046	seq_pad(seq, '\n');
3047	return 0;
3048}
3049
3050#ifdef CONFIG_BPF_SYSCALL
3051struct bpf_iter__udp {
3052	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3053	__bpf_md_ptr(struct udp_sock *, udp_sk);
3054	uid_t uid __aligned(8);
3055	int bucket __aligned(8);
3056};
3057
3058static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3059			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3060{
3061	struct bpf_iter__udp ctx;
3062
3063	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3064	ctx.meta = meta;
3065	ctx.udp_sk = udp_sk;
3066	ctx.uid = uid;
3067	ctx.bucket = bucket;
3068	return bpf_iter_run_prog(prog, &ctx);
3069}
3070
3071static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3072{
3073	struct udp_iter_state *state = seq->private;
3074	struct bpf_iter_meta meta;
3075	struct bpf_prog *prog;
3076	struct sock *sk = v;
3077	uid_t uid;
3078
3079	if (v == SEQ_START_TOKEN)
3080		return 0;
3081
3082	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3083	meta.seq = seq;
3084	prog = bpf_iter_get_info(&meta, false);
3085	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3086}
3087
3088static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3089{
3090	struct bpf_iter_meta meta;
3091	struct bpf_prog *prog;
3092
3093	if (!v) {
3094		meta.seq = seq;
3095		prog = bpf_iter_get_info(&meta, true);
3096		if (prog)
3097			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3098	}
3099
3100	udp_seq_stop(seq, v);
3101}
3102
3103static const struct seq_operations bpf_iter_udp_seq_ops = {
3104	.start		= udp_seq_start,
3105	.next		= udp_seq_next,
3106	.stop		= bpf_iter_udp_seq_stop,
3107	.show		= bpf_iter_udp_seq_show,
3108};
3109#endif
3110
3111const struct seq_operations udp_seq_ops = {
3112	.start		= udp_seq_start,
3113	.next		= udp_seq_next,
3114	.stop		= udp_seq_stop,
3115	.show		= udp4_seq_show,
3116};
3117EXPORT_SYMBOL(udp_seq_ops);
3118
3119static struct udp_seq_afinfo udp4_seq_afinfo = {
3120	.family		= AF_INET,
3121	.udp_table	= &udp_table,
3122};
3123
3124static int __net_init udp4_proc_init_net(struct net *net)
3125{
3126	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3127			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3128		return -ENOMEM;
3129	return 0;
3130}
3131
3132static void __net_exit udp4_proc_exit_net(struct net *net)
3133{
3134	remove_proc_entry("udp", net->proc_net);
3135}
3136
3137static struct pernet_operations udp4_net_ops = {
3138	.init = udp4_proc_init_net,
3139	.exit = udp4_proc_exit_net,
3140};
3141
3142int __init udp4_proc_init(void)
3143{
3144	return register_pernet_subsys(&udp4_net_ops);
3145}
3146
3147void udp4_proc_exit(void)
3148{
3149	unregister_pernet_subsys(&udp4_net_ops);
3150}
3151#endif /* CONFIG_PROC_FS */
3152
3153static __initdata unsigned long uhash_entries;
3154static int __init set_uhash_entries(char *str)
3155{
3156	ssize_t ret;
3157
3158	if (!str)
3159		return 0;
3160
3161	ret = kstrtoul(str, 0, &uhash_entries);
3162	if (ret)
3163		return 0;
3164
3165	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3166		uhash_entries = UDP_HTABLE_SIZE_MIN;
3167	return 1;
3168}
3169__setup("uhash_entries=", set_uhash_entries);
3170
3171void __init udp_table_init(struct udp_table *table, const char *name)
3172{
3173	unsigned int i;
3174
3175	table->hash = alloc_large_system_hash(name,
3176					      2 * sizeof(struct udp_hslot),
3177					      uhash_entries,
3178					      21, /* one slot per 2 MB */
3179					      0,
3180					      &table->log,
3181					      &table->mask,
3182					      UDP_HTABLE_SIZE_MIN,
3183					      64 * 1024);
3184
3185	table->hash2 = table->hash + (table->mask + 1);
3186	for (i = 0; i <= table->mask; i++) {
3187		INIT_HLIST_HEAD(&table->hash[i].head);
3188		table->hash[i].count = 0;
3189		spin_lock_init(&table->hash[i].lock);
3190	}
3191	for (i = 0; i <= table->mask; i++) {
3192		INIT_HLIST_HEAD(&table->hash2[i].head);
3193		table->hash2[i].count = 0;
3194		spin_lock_init(&table->hash2[i].lock);
3195	}
3196}
3197
3198u32 udp_flow_hashrnd(void)
3199{
3200	static u32 hashrnd __read_mostly;
3201
3202	net_get_random_once(&hashrnd, sizeof(hashrnd));
3203
3204	return hashrnd;
3205}
3206EXPORT_SYMBOL(udp_flow_hashrnd);
3207
3208static void __udp_sysctl_init(struct net *net)
3209{
3210	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3211	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3212
3213#ifdef CONFIG_NET_L3_MASTER_DEV
3214	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3215#endif
3216}
3217
3218static int __net_init udp_sysctl_init(struct net *net)
3219{
3220	__udp_sysctl_init(net);
3221	return 0;
3222}
3223
3224static struct pernet_operations __net_initdata udp_sysctl_ops = {
3225	.init	= udp_sysctl_init,
3226};
3227
3228#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3229DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3230		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3231
3232static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3233{
3234	struct udp_iter_state *st = priv_data;
3235	struct udp_seq_afinfo *afinfo;
3236	int ret;
3237
3238	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3239	if (!afinfo)
3240		return -ENOMEM;
3241
3242	afinfo->family = AF_UNSPEC;
3243	afinfo->udp_table = &udp_table;
3244	st->bpf_seq_afinfo = afinfo;
3245	ret = bpf_iter_init_seq_net(priv_data, aux);
3246	if (ret)
3247		kfree(afinfo);
3248	return ret;
3249}
3250
3251static void bpf_iter_fini_udp(void *priv_data)
3252{
3253	struct udp_iter_state *st = priv_data;
3254
3255	kfree(st->bpf_seq_afinfo);
3256	bpf_iter_fini_seq_net(priv_data);
3257}
3258
3259static const struct bpf_iter_seq_info udp_seq_info = {
3260	.seq_ops		= &bpf_iter_udp_seq_ops,
3261	.init_seq_private	= bpf_iter_init_udp,
3262	.fini_seq_private	= bpf_iter_fini_udp,
3263	.seq_priv_size		= sizeof(struct udp_iter_state),
3264};
3265
3266static struct bpf_iter_reg udp_reg_info = {
3267	.target			= "udp",
3268	.ctx_arg_info_size	= 1,
3269	.ctx_arg_info		= {
3270		{ offsetof(struct bpf_iter__udp, udp_sk),
3271		  PTR_TO_BTF_ID_OR_NULL },
3272	},
3273	.seq_info		= &udp_seq_info,
3274};
3275
3276static void __init bpf_iter_register(void)
3277{
3278	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3279	if (bpf_iter_reg_target(&udp_reg_info))
3280		pr_warn("Warning: could not register bpf iterator udp\n");
3281}
3282#endif
3283
3284void __init udp_init(void)
3285{
3286	unsigned long limit;
3287	unsigned int i;
3288
3289	udp_table_init(&udp_table, "UDP");
3290	limit = nr_free_buffer_pages() / 8;
3291	limit = max(limit, 128UL);
3292	sysctl_udp_mem[0] = limit / 4 * 3;
3293	sysctl_udp_mem[1] = limit;
3294	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3295
3296	__udp_sysctl_init(&init_net);
3297
3298	/* 16 spinlocks per cpu */
3299	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3300	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3301				GFP_KERNEL);
3302	if (!udp_busylocks)
3303		panic("UDP: failed to alloc udp_busylocks\n");
3304	for (i = 0; i < (1U << udp_busylocks_log); i++)
3305		spin_lock_init(udp_busylocks + i);
3306
3307	if (register_pernet_subsys(&udp_sysctl_ops))
3308		panic("UDP: failed to init sysctl parameters.\n");
3309
3310#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3311	bpf_iter_register();
3312#endif
3313}
3314