1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75#define pr_fmt(fmt) "UDP: " fmt 76 77#include <linux/uaccess.h> 78#include <asm/ioctls.h> 79#include <linux/memblock.h> 80#include <linux/highmem.h> 81#include <linux/swap.h> 82#include <linux/types.h> 83#include <linux/fcntl.h> 84#include <linux/module.h> 85#include <linux/socket.h> 86#include <linux/sockios.h> 87#include <linux/igmp.h> 88#include <linux/inetdevice.h> 89#include <linux/in.h> 90#include <linux/errno.h> 91#include <linux/timer.h> 92#include <linux/mm.h> 93#include <linux/inet.h> 94#include <linux/netdevice.h> 95#include <linux/slab.h> 96#include <net/tcp_states.h> 97#include <linux/skbuff.h> 98#include <linux/proc_fs.h> 99#include <linux/seq_file.h> 100#include <net/net_namespace.h> 101#include <net/icmp.h> 102#include <net/inet_hashtables.h> 103#include <net/ip_tunnels.h> 104#include <net/route.h> 105#include <net/checksum.h> 106#include <net/xfrm.h> 107#include <trace/events/udp.h> 108#include <linux/static_key.h> 109#include <linux/btf_ids.h> 110#include <trace/events/skb.h> 111#include <net/busy_poll.h> 112#include "udp_impl.h" 113#include <net/sock_reuseport.h> 114#include <net/addrconf.h> 115#include <net/udp_tunnel.h> 116#if IS_ENABLED(CONFIG_IPV6) 117#include <net/ipv6_stubs.h> 118#endif 119 120struct udp_table udp_table __read_mostly; 121EXPORT_SYMBOL(udp_table); 122 123long sysctl_udp_mem[3] __read_mostly; 124EXPORT_SYMBOL(sysctl_udp_mem); 125 126atomic_long_t udp_memory_allocated; 127EXPORT_SYMBOL(udp_memory_allocated); 128 129#define MAX_UDP_PORTS 65536 130#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 131 132static int udp_lib_lport_inuse(struct net *net, __u16 num, 133 const struct udp_hslot *hslot, 134 unsigned long *bitmap, 135 struct sock *sk, unsigned int log) 136{ 137 struct sock *sk2; 138 kuid_t uid = sock_i_uid(sk); 139 140 sk_for_each(sk2, &hslot->head) { 141 if (net_eq(sock_net(sk2), net) && 142 sk2 != sk && 143 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 144 (!sk2->sk_reuse || !sk->sk_reuse) && 145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 147 inet_rcv_saddr_equal(sk, sk2, true)) { 148 if (sk2->sk_reuseport && sk->sk_reuseport && 149 !rcu_access_pointer(sk->sk_reuseport_cb) && 150 uid_eq(uid, sock_i_uid(sk2))) { 151 if (!bitmap) 152 return 0; 153 } else { 154 if (!bitmap) 155 return 1; 156 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 157 bitmap); 158 } 159 } 160 } 161 return 0; 162} 163 164/* 165 * Note: we still hold spinlock of primary hash chain, so no other writer 166 * can insert/delete a socket with local_port == num 167 */ 168static int udp_lib_lport_inuse2(struct net *net, __u16 num, 169 struct udp_hslot *hslot2, 170 struct sock *sk) 171{ 172 struct sock *sk2; 173 kuid_t uid = sock_i_uid(sk); 174 int res = 0; 175 176 spin_lock(&hslot2->lock); 177 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 178 if (net_eq(sock_net(sk2), net) && 179 sk2 != sk && 180 (udp_sk(sk2)->udp_port_hash == num) && 181 (!sk2->sk_reuse || !sk->sk_reuse) && 182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 184 inet_rcv_saddr_equal(sk, sk2, true)) { 185 if (sk2->sk_reuseport && sk->sk_reuseport && 186 !rcu_access_pointer(sk->sk_reuseport_cb) && 187 uid_eq(uid, sock_i_uid(sk2))) { 188 res = 0; 189 } else { 190 res = 1; 191 } 192 break; 193 } 194 } 195 spin_unlock(&hslot2->lock); 196 return res; 197} 198 199static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 200{ 201 struct net *net = sock_net(sk); 202 kuid_t uid = sock_i_uid(sk); 203 struct sock *sk2; 204 205 sk_for_each(sk2, &hslot->head) { 206 if (net_eq(sock_net(sk2), net) && 207 sk2 != sk && 208 sk2->sk_family == sk->sk_family && 209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 213 inet_rcv_saddr_equal(sk, sk2, false)) { 214 return reuseport_add_sock(sk, sk2, 215 inet_rcv_saddr_any(sk)); 216 } 217 } 218 219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 220} 221 222/** 223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 224 * 225 * @sk: socket struct in question 226 * @snum: port number to look up 227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 228 * with NULL address 229 */ 230int udp_lib_get_port(struct sock *sk, unsigned short snum, 231 unsigned int hash2_nulladdr) 232{ 233 struct udp_hslot *hslot, *hslot2; 234 struct udp_table *udptable = sk->sk_prot->h.udp_table; 235 int error = 1; 236 struct net *net = sock_net(sk); 237 238 if (!snum) { 239 int low, high, remaining; 240 unsigned int rand; 241 unsigned short first, last; 242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 243 244 inet_get_local_port_range(net, &low, &high); 245 remaining = (high - low) + 1; 246 247 rand = prandom_u32(); 248 first = reciprocal_scale(rand, remaining) + low; 249 /* 250 * force rand to be an odd multiple of UDP_HTABLE_SIZE 251 */ 252 rand = (rand | 1) * (udptable->mask + 1); 253 last = first + udptable->mask + 1; 254 do { 255 hslot = udp_hashslot(udptable, net, first); 256 bitmap_zero(bitmap, PORTS_PER_CHAIN); 257 spin_lock_bh(&hslot->lock); 258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 259 udptable->log); 260 261 snum = first; 262 /* 263 * Iterate on all possible values of snum for this hash. 264 * Using steps of an odd multiple of UDP_HTABLE_SIZE 265 * give us randomization and full range coverage. 266 */ 267 do { 268 if (low <= snum && snum <= high && 269 !test_bit(snum >> udptable->log, bitmap) && 270 !inet_is_local_reserved_port(net, snum)) 271 goto found; 272 snum += rand; 273 } while (snum != first); 274 spin_unlock_bh(&hslot->lock); 275 cond_resched(); 276 } while (++first != last); 277 goto fail; 278 } else { 279 hslot = udp_hashslot(udptable, net, snum); 280 spin_lock_bh(&hslot->lock); 281 if (hslot->count > 10) { 282 int exist; 283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 284 285 slot2 &= udptable->mask; 286 hash2_nulladdr &= udptable->mask; 287 288 hslot2 = udp_hashslot2(udptable, slot2); 289 if (hslot->count < hslot2->count) 290 goto scan_primary_hash; 291 292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 293 if (!exist && (hash2_nulladdr != slot2)) { 294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 295 exist = udp_lib_lport_inuse2(net, snum, hslot2, 296 sk); 297 } 298 if (exist) 299 goto fail_unlock; 300 else 301 goto found; 302 } 303scan_primary_hash: 304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 305 goto fail_unlock; 306 } 307found: 308 inet_sk(sk)->inet_num = snum; 309 udp_sk(sk)->udp_port_hash = snum; 310 udp_sk(sk)->udp_portaddr_hash ^= snum; 311 if (sk_unhashed(sk)) { 312 if (sk->sk_reuseport && 313 udp_reuseport_add_sock(sk, hslot)) { 314 inet_sk(sk)->inet_num = 0; 315 udp_sk(sk)->udp_port_hash = 0; 316 udp_sk(sk)->udp_portaddr_hash ^= snum; 317 goto fail_unlock; 318 } 319 320 sock_set_flag(sk, SOCK_RCU_FREE); 321 322 sk_add_node_rcu(sk, &hslot->head); 323 hslot->count++; 324 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 325 326 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 327 spin_lock(&hslot2->lock); 328 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 329 sk->sk_family == AF_INET6) 330 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 331 &hslot2->head); 332 else 333 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 334 &hslot2->head); 335 hslot2->count++; 336 spin_unlock(&hslot2->lock); 337 } 338 339 error = 0; 340fail_unlock: 341 spin_unlock_bh(&hslot->lock); 342fail: 343 return error; 344} 345EXPORT_SYMBOL(udp_lib_get_port); 346 347int udp_v4_get_port(struct sock *sk, unsigned short snum) 348{ 349 unsigned int hash2_nulladdr = 350 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 351 unsigned int hash2_partial = 352 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 353 354 /* precompute partial secondary hash */ 355 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 356 return udp_lib_get_port(sk, snum, hash2_nulladdr); 357} 358 359static int compute_score(struct sock *sk, struct net *net, 360 __be32 saddr, __be16 sport, 361 __be32 daddr, unsigned short hnum, 362 int dif, int sdif) 363{ 364 int score; 365 struct inet_sock *inet; 366 bool dev_match; 367 368 if (!net_eq(sock_net(sk), net) || 369 udp_sk(sk)->udp_port_hash != hnum || 370 ipv6_only_sock(sk)) 371 return -1; 372 373 if (sk->sk_rcv_saddr != daddr) 374 return -1; 375 376 score = (sk->sk_family == PF_INET) ? 2 : 1; 377 378 inet = inet_sk(sk); 379 if (inet->inet_daddr) { 380 if (inet->inet_daddr != saddr) 381 return -1; 382 score += 4; 383 } 384 385 if (inet->inet_dport) { 386 if (inet->inet_dport != sport) 387 return -1; 388 score += 4; 389 } 390 391 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 392 dif, sdif); 393 if (!dev_match) 394 return -1; 395 if (sk->sk_bound_dev_if) 396 score += 4; 397 398 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 399 score++; 400 return score; 401} 402 403static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 404 const __u16 lport, const __be32 faddr, 405 const __be16 fport) 406{ 407 static u32 udp_ehash_secret __read_mostly; 408 409 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 410 411 return __inet_ehashfn(laddr, lport, faddr, fport, 412 udp_ehash_secret + net_hash_mix(net)); 413} 414 415static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 416 struct sk_buff *skb, 417 __be32 saddr, __be16 sport, 418 __be32 daddr, unsigned short hnum) 419{ 420 struct sock *reuse_sk = NULL; 421 u32 hash; 422 423 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 424 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 425 reuse_sk = reuseport_select_sock(sk, hash, skb, 426 sizeof(struct udphdr)); 427 } 428 return reuse_sk; 429} 430 431/* called with rcu_read_lock() */ 432static struct sock *udp4_lib_lookup2(struct net *net, 433 __be32 saddr, __be16 sport, 434 __be32 daddr, unsigned int hnum, 435 int dif, int sdif, 436 struct udp_hslot *hslot2, 437 struct sk_buff *skb) 438{ 439 struct sock *sk, *result; 440 int score, badness; 441 442 result = NULL; 443 badness = 0; 444 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 445 score = compute_score(sk, net, saddr, sport, 446 daddr, hnum, dif, sdif); 447 if (score > badness) { 448 badness = score; 449 result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 450 if (!result) { 451 result = sk; 452 continue; 453 } 454 455 /* Fall back to scoring if group has connections */ 456 if (!reuseport_has_conns(sk)) 457 return result; 458 459 /* Reuseport logic returned an error, keep original score. */ 460 if (IS_ERR(result)) 461 continue; 462 463 badness = compute_score(result, net, saddr, sport, 464 daddr, hnum, dif, sdif); 465 466 } 467 } 468 return result; 469} 470 471static struct sock *udp4_lookup_run_bpf(struct net *net, 472 struct udp_table *udptable, 473 struct sk_buff *skb, 474 __be32 saddr, __be16 sport, 475 __be32 daddr, u16 hnum) 476{ 477 struct sock *sk, *reuse_sk; 478 bool no_reuseport; 479 480 if (udptable != &udp_table) 481 return NULL; /* only UDP is supported */ 482 483 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, 484 saddr, sport, daddr, hnum, &sk); 485 if (no_reuseport || IS_ERR_OR_NULL(sk)) 486 return sk; 487 488 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 489 if (reuse_sk) 490 sk = reuse_sk; 491 return sk; 492} 493 494/* UDP is nearly always wildcards out the wazoo, it makes no sense to try 495 * harder than this. -DaveM 496 */ 497struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 498 __be16 sport, __be32 daddr, __be16 dport, int dif, 499 int sdif, struct udp_table *udptable, struct sk_buff *skb) 500{ 501 unsigned short hnum = ntohs(dport); 502 unsigned int hash2, slot2; 503 struct udp_hslot *hslot2; 504 struct sock *result, *sk; 505 506 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 507 slot2 = hash2 & udptable->mask; 508 hslot2 = &udptable->hash2[slot2]; 509 510 /* Lookup connected or non-wildcard socket */ 511 result = udp4_lib_lookup2(net, saddr, sport, 512 daddr, hnum, dif, sdif, 513 hslot2, skb); 514 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 515 goto done; 516 517 /* Lookup redirect from BPF */ 518 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 519 sk = udp4_lookup_run_bpf(net, udptable, skb, 520 saddr, sport, daddr, hnum); 521 if (sk) { 522 result = sk; 523 goto done; 524 } 525 } 526 527 /* Got non-wildcard socket or error on first lookup */ 528 if (result) 529 goto done; 530 531 /* Lookup wildcard sockets */ 532 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 533 slot2 = hash2 & udptable->mask; 534 hslot2 = &udptable->hash2[slot2]; 535 536 result = udp4_lib_lookup2(net, saddr, sport, 537 htonl(INADDR_ANY), hnum, dif, sdif, 538 hslot2, skb); 539done: 540 if (IS_ERR(result)) 541 return NULL; 542 return result; 543} 544EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 545 546static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 547 __be16 sport, __be16 dport, 548 struct udp_table *udptable) 549{ 550 const struct iphdr *iph = ip_hdr(skb); 551 552 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 553 iph->daddr, dport, inet_iif(skb), 554 inet_sdif(skb), udptable, skb); 555} 556 557struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 558 __be16 sport, __be16 dport) 559{ 560 const struct iphdr *iph = ip_hdr(skb); 561 562 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 563 iph->daddr, dport, inet_iif(skb), 564 inet_sdif(skb), &udp_table, NULL); 565} 566EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 567 568/* Must be called under rcu_read_lock(). 569 * Does increment socket refcount. 570 */ 571#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 572struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 573 __be32 daddr, __be16 dport, int dif) 574{ 575 struct sock *sk; 576 577 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 578 dif, 0, &udp_table, NULL); 579 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 580 sk = NULL; 581 return sk; 582} 583EXPORT_SYMBOL_GPL(udp4_lib_lookup); 584#endif 585 586static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 587 __be16 loc_port, __be32 loc_addr, 588 __be16 rmt_port, __be32 rmt_addr, 589 int dif, int sdif, unsigned short hnum) 590{ 591 struct inet_sock *inet = inet_sk(sk); 592 593 if (!net_eq(sock_net(sk), net) || 594 udp_sk(sk)->udp_port_hash != hnum || 595 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 596 (inet->inet_dport != rmt_port && inet->inet_dport) || 597 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 598 ipv6_only_sock(sk) || 599 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 600 return false; 601 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 602 return false; 603 return true; 604} 605 606DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 607EXPORT_SYMBOL(udp_encap_needed_key); 608 609#if IS_ENABLED(CONFIG_IPV6) 610DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 611EXPORT_SYMBOL(udpv6_encap_needed_key); 612#endif 613 614void udp_encap_enable(void) 615{ 616 static_branch_inc(&udp_encap_needed_key); 617} 618EXPORT_SYMBOL(udp_encap_enable); 619 620void udp_encap_disable(void) 621{ 622 static_branch_dec(&udp_encap_needed_key); 623} 624EXPORT_SYMBOL(udp_encap_disable); 625 626/* Handler for tunnels with arbitrary destination ports: no socket lookup, go 627 * through error handlers in encapsulations looking for a match. 628 */ 629static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 630{ 631 int i; 632 633 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 634 int (*handler)(struct sk_buff *skb, u32 info); 635 const struct ip_tunnel_encap_ops *encap; 636 637 encap = rcu_dereference(iptun_encaps[i]); 638 if (!encap) 639 continue; 640 handler = encap->err_handler; 641 if (handler && !handler(skb, info)) 642 return 0; 643 } 644 645 return -ENOENT; 646} 647 648/* Try to match ICMP errors to UDP tunnels by looking up a socket without 649 * reversing source and destination port: this will match tunnels that force the 650 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 651 * lwtunnels might actually break this assumption by being configured with 652 * different destination ports on endpoints, in this case we won't be able to 653 * trace ICMP messages back to them. 654 * 655 * If this doesn't match any socket, probe tunnels with arbitrary destination 656 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 657 * we've sent packets to won't necessarily match the local destination port. 658 * 659 * Then ask the tunnel implementation to match the error against a valid 660 * association. 661 * 662 * Return an error if we can't find a match, the socket if we need further 663 * processing, zero otherwise. 664 */ 665static struct sock *__udp4_lib_err_encap(struct net *net, 666 const struct iphdr *iph, 667 struct udphdr *uh, 668 struct udp_table *udptable, 669 struct sk_buff *skb, u32 info) 670{ 671 int network_offset, transport_offset; 672 struct sock *sk; 673 674 network_offset = skb_network_offset(skb); 675 transport_offset = skb_transport_offset(skb); 676 677 /* Network header needs to point to the outer IPv4 header inside ICMP */ 678 skb_reset_network_header(skb); 679 680 /* Transport header needs to point to the UDP header */ 681 skb_set_transport_header(skb, iph->ihl << 2); 682 683 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 684 iph->saddr, uh->dest, skb->dev->ifindex, 0, 685 udptable, NULL); 686 if (sk) { 687 int (*lookup)(struct sock *sk, struct sk_buff *skb); 688 struct udp_sock *up = udp_sk(sk); 689 690 lookup = READ_ONCE(up->encap_err_lookup); 691 if (!lookup || lookup(sk, skb)) 692 sk = NULL; 693 } 694 695 if (!sk) 696 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 697 698 skb_set_transport_header(skb, transport_offset); 699 skb_set_network_header(skb, network_offset); 700 701 return sk; 702} 703 704/* 705 * This routine is called by the ICMP module when it gets some 706 * sort of error condition. If err < 0 then the socket should 707 * be closed and the error returned to the user. If err > 0 708 * it's just the icmp type << 8 | icmp code. 709 * Header points to the ip header of the error packet. We move 710 * on past this. Then (as it used to claim before adjustment) 711 * header points to the first 8 bytes of the udp header. We need 712 * to find the appropriate port. 713 */ 714 715int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 716{ 717 struct inet_sock *inet; 718 const struct iphdr *iph = (const struct iphdr *)skb->data; 719 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 720 const int type = icmp_hdr(skb)->type; 721 const int code = icmp_hdr(skb)->code; 722 bool tunnel = false; 723 struct sock *sk; 724 int harderr; 725 int err; 726 struct net *net = dev_net(skb->dev); 727 728 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 729 iph->saddr, uh->source, skb->dev->ifindex, 730 inet_sdif(skb), udptable, NULL); 731 if (!sk) { 732 /* No socket for error: try tunnels before discarding */ 733 sk = ERR_PTR(-ENOENT); 734 if (static_branch_unlikely(&udp_encap_needed_key)) { 735 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, 736 info); 737 if (!sk) 738 return 0; 739 } 740 741 if (IS_ERR(sk)) { 742 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 743 return PTR_ERR(sk); 744 } 745 746 tunnel = true; 747 } 748 749 err = 0; 750 harderr = 0; 751 inet = inet_sk(sk); 752 753 switch (type) { 754 default: 755 case ICMP_TIME_EXCEEDED: 756 err = EHOSTUNREACH; 757 break; 758 case ICMP_SOURCE_QUENCH: 759 goto out; 760 case ICMP_PARAMETERPROB: 761 err = EPROTO; 762 harderr = 1; 763 break; 764 case ICMP_DEST_UNREACH: 765 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 766 ipv4_sk_update_pmtu(skb, sk, info); 767 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 768 err = EMSGSIZE; 769 harderr = 1; 770 break; 771 } 772 goto out; 773 } 774 err = EHOSTUNREACH; 775 if (code <= NR_ICMP_UNREACH) { 776 harderr = icmp_err_convert[code].fatal; 777 err = icmp_err_convert[code].errno; 778 } 779 break; 780 case ICMP_REDIRECT: 781 ipv4_sk_redirect(skb, sk); 782 goto out; 783 } 784 785 /* 786 * RFC1122: OK. Passes ICMP errors back to application, as per 787 * 4.1.3.3. 788 */ 789 if (tunnel) { 790 /* ...not for tunnels though: we don't have a sending socket */ 791 goto out; 792 } 793 if (!inet->recverr) { 794 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 795 goto out; 796 } else 797 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 798 799 sk->sk_err = err; 800 sk->sk_error_report(sk); 801out: 802 return 0; 803} 804 805int udp_err(struct sk_buff *skb, u32 info) 806{ 807 return __udp4_lib_err(skb, info, &udp_table); 808} 809 810/* 811 * Throw away all pending data and cancel the corking. Socket is locked. 812 */ 813void udp_flush_pending_frames(struct sock *sk) 814{ 815 struct udp_sock *up = udp_sk(sk); 816 817 if (up->pending) { 818 up->len = 0; 819 up->pending = 0; 820 ip_flush_pending_frames(sk); 821 } 822} 823EXPORT_SYMBOL(udp_flush_pending_frames); 824 825/** 826 * udp4_hwcsum - handle outgoing HW checksumming 827 * @skb: sk_buff containing the filled-in UDP header 828 * (checksum field must be zeroed out) 829 * @src: source IP address 830 * @dst: destination IP address 831 */ 832void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 833{ 834 struct udphdr *uh = udp_hdr(skb); 835 int offset = skb_transport_offset(skb); 836 int len = skb->len - offset; 837 int hlen = len; 838 __wsum csum = 0; 839 840 if (!skb_has_frag_list(skb)) { 841 /* 842 * Only one fragment on the socket. 843 */ 844 skb->csum_start = skb_transport_header(skb) - skb->head; 845 skb->csum_offset = offsetof(struct udphdr, check); 846 uh->check = ~csum_tcpudp_magic(src, dst, len, 847 IPPROTO_UDP, 0); 848 } else { 849 struct sk_buff *frags; 850 851 /* 852 * HW-checksum won't work as there are two or more 853 * fragments on the socket so that all csums of sk_buffs 854 * should be together 855 */ 856 skb_walk_frags(skb, frags) { 857 csum = csum_add(csum, frags->csum); 858 hlen -= frags->len; 859 } 860 861 csum = skb_checksum(skb, offset, hlen, csum); 862 skb->ip_summed = CHECKSUM_NONE; 863 864 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 865 if (uh->check == 0) 866 uh->check = CSUM_MANGLED_0; 867 } 868} 869EXPORT_SYMBOL_GPL(udp4_hwcsum); 870 871/* Function to set UDP checksum for an IPv4 UDP packet. This is intended 872 * for the simple case like when setting the checksum for a UDP tunnel. 873 */ 874void udp_set_csum(bool nocheck, struct sk_buff *skb, 875 __be32 saddr, __be32 daddr, int len) 876{ 877 struct udphdr *uh = udp_hdr(skb); 878 879 if (nocheck) { 880 uh->check = 0; 881 } else if (skb_is_gso(skb)) { 882 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 883 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 884 uh->check = 0; 885 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 886 if (uh->check == 0) 887 uh->check = CSUM_MANGLED_0; 888 } else { 889 skb->ip_summed = CHECKSUM_PARTIAL; 890 skb->csum_start = skb_transport_header(skb) - skb->head; 891 skb->csum_offset = offsetof(struct udphdr, check); 892 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 893 } 894} 895EXPORT_SYMBOL(udp_set_csum); 896 897static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 898 struct inet_cork *cork) 899{ 900 struct sock *sk = skb->sk; 901 struct inet_sock *inet = inet_sk(sk); 902 struct udphdr *uh; 903 int err = 0; 904 int is_udplite = IS_UDPLITE(sk); 905 int offset = skb_transport_offset(skb); 906 int len = skb->len - offset; 907 int datalen = len - sizeof(*uh); 908 __wsum csum = 0; 909 910 /* 911 * Create a UDP header 912 */ 913 uh = udp_hdr(skb); 914 uh->source = inet->inet_sport; 915 uh->dest = fl4->fl4_dport; 916 uh->len = htons(len); 917 uh->check = 0; 918 919 if (cork->gso_size) { 920 const int hlen = skb_network_header_len(skb) + 921 sizeof(struct udphdr); 922 923 if (hlen + cork->gso_size > cork->fragsize) { 924 kfree_skb(skb); 925 return -EINVAL; 926 } 927 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 928 kfree_skb(skb); 929 return -EINVAL; 930 } 931 if (sk->sk_no_check_tx) { 932 kfree_skb(skb); 933 return -EINVAL; 934 } 935 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 936 dst_xfrm(skb_dst(skb))) { 937 kfree_skb(skb); 938 return -EIO; 939 } 940 941 if (datalen > cork->gso_size) { 942 skb_shinfo(skb)->gso_size = cork->gso_size; 943 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 944 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 945 cork->gso_size); 946 } 947 goto csum_partial; 948 } 949 950 if (is_udplite) /* UDP-Lite */ 951 csum = udplite_csum(skb); 952 953 else if (sk->sk_no_check_tx) { /* UDP csum off */ 954 955 skb->ip_summed = CHECKSUM_NONE; 956 goto send; 957 958 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 959csum_partial: 960 961 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 962 goto send; 963 964 } else 965 csum = udp_csum(skb); 966 967 /* add protocol-dependent pseudo-header */ 968 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 969 sk->sk_protocol, csum); 970 if (uh->check == 0) 971 uh->check = CSUM_MANGLED_0; 972 973send: 974 err = ip_send_skb(sock_net(sk), skb); 975 if (err) { 976 if (err == -ENOBUFS && !inet->recverr) { 977 UDP_INC_STATS(sock_net(sk), 978 UDP_MIB_SNDBUFERRORS, is_udplite); 979 err = 0; 980 } 981 } else 982 UDP_INC_STATS(sock_net(sk), 983 UDP_MIB_OUTDATAGRAMS, is_udplite); 984 return err; 985} 986 987/* 988 * Push out all pending data as one UDP datagram. Socket is locked. 989 */ 990int udp_push_pending_frames(struct sock *sk) 991{ 992 struct udp_sock *up = udp_sk(sk); 993 struct inet_sock *inet = inet_sk(sk); 994 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 995 struct sk_buff *skb; 996 int err = 0; 997 998 skb = ip_finish_skb(sk, fl4); 999 if (!skb) 1000 goto out; 1001 1002 err = udp_send_skb(skb, fl4, &inet->cork.base); 1003 1004out: 1005 up->len = 0; 1006 up->pending = 0; 1007 return err; 1008} 1009EXPORT_SYMBOL(udp_push_pending_frames); 1010 1011static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1012{ 1013 switch (cmsg->cmsg_type) { 1014 case UDP_SEGMENT: 1015 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1016 return -EINVAL; 1017 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1018 return 0; 1019 default: 1020 return -EINVAL; 1021 } 1022} 1023 1024int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1025{ 1026 struct cmsghdr *cmsg; 1027 bool need_ip = false; 1028 int err; 1029 1030 for_each_cmsghdr(cmsg, msg) { 1031 if (!CMSG_OK(msg, cmsg)) 1032 return -EINVAL; 1033 1034 if (cmsg->cmsg_level != SOL_UDP) { 1035 need_ip = true; 1036 continue; 1037 } 1038 1039 err = __udp_cmsg_send(cmsg, gso_size); 1040 if (err) 1041 return err; 1042 } 1043 1044 return need_ip; 1045} 1046EXPORT_SYMBOL_GPL(udp_cmsg_send); 1047 1048int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1049{ 1050 struct inet_sock *inet = inet_sk(sk); 1051 struct udp_sock *up = udp_sk(sk); 1052 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1053 struct flowi4 fl4_stack; 1054 struct flowi4 *fl4; 1055 int ulen = len; 1056 struct ipcm_cookie ipc; 1057 struct rtable *rt = NULL; 1058 int free = 0; 1059 int connected = 0; 1060 __be32 daddr, faddr, saddr; 1061 __be16 dport; 1062 u8 tos; 1063 int err, is_udplite = IS_UDPLITE(sk); 1064 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1065 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1066 struct sk_buff *skb; 1067 struct ip_options_data opt_copy; 1068 1069 if (len > 0xFFFF) 1070 return -EMSGSIZE; 1071 1072 /* 1073 * Check the flags. 1074 */ 1075 1076 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1077 return -EOPNOTSUPP; 1078 1079 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1080 1081 fl4 = &inet->cork.fl.u.ip4; 1082 if (up->pending) { 1083 /* 1084 * There are pending frames. 1085 * The socket lock must be held while it's corked. 1086 */ 1087 lock_sock(sk); 1088 if (likely(up->pending)) { 1089 if (unlikely(up->pending != AF_INET)) { 1090 release_sock(sk); 1091 return -EINVAL; 1092 } 1093 goto do_append_data; 1094 } 1095 release_sock(sk); 1096 } 1097 ulen += sizeof(struct udphdr); 1098 1099 /* 1100 * Get and verify the address. 1101 */ 1102 if (usin) { 1103 if (msg->msg_namelen < sizeof(*usin)) 1104 return -EINVAL; 1105 if (usin->sin_family != AF_INET) { 1106 if (usin->sin_family != AF_UNSPEC) 1107 return -EAFNOSUPPORT; 1108 } 1109 1110 daddr = usin->sin_addr.s_addr; 1111 dport = usin->sin_port; 1112 if (dport == 0) 1113 return -EINVAL; 1114 } else { 1115 if (sk->sk_state != TCP_ESTABLISHED) 1116 return -EDESTADDRREQ; 1117 daddr = inet->inet_daddr; 1118 dport = inet->inet_dport; 1119 /* Open fast path for connected socket. 1120 Route will not be used, if at least one option is set. 1121 */ 1122 connected = 1; 1123 } 1124 1125 ipcm_init_sk(&ipc, inet); 1126 ipc.gso_size = READ_ONCE(up->gso_size); 1127 1128 if (msg->msg_controllen) { 1129 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1130 if (err > 0) 1131 err = ip_cmsg_send(sk, msg, &ipc, 1132 sk->sk_family == AF_INET6); 1133 if (unlikely(err < 0)) { 1134 kfree(ipc.opt); 1135 return err; 1136 } 1137 if (ipc.opt) 1138 free = 1; 1139 connected = 0; 1140 } 1141 if (!ipc.opt) { 1142 struct ip_options_rcu *inet_opt; 1143 1144 rcu_read_lock(); 1145 inet_opt = rcu_dereference(inet->inet_opt); 1146 if (inet_opt) { 1147 memcpy(&opt_copy, inet_opt, 1148 sizeof(*inet_opt) + inet_opt->opt.optlen); 1149 ipc.opt = &opt_copy.opt; 1150 } 1151 rcu_read_unlock(); 1152 } 1153 1154 if (cgroup_bpf_enabled && !connected) { 1155 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1156 (struct sockaddr *)usin, &ipc.addr); 1157 if (err) 1158 goto out_free; 1159 if (usin) { 1160 if (usin->sin_port == 0) { 1161 /* BPF program set invalid port. Reject it. */ 1162 err = -EINVAL; 1163 goto out_free; 1164 } 1165 daddr = usin->sin_addr.s_addr; 1166 dport = usin->sin_port; 1167 } 1168 } 1169 1170 saddr = ipc.addr; 1171 ipc.addr = faddr = daddr; 1172 1173 if (ipc.opt && ipc.opt->opt.srr) { 1174 if (!daddr) { 1175 err = -EINVAL; 1176 goto out_free; 1177 } 1178 faddr = ipc.opt->opt.faddr; 1179 connected = 0; 1180 } 1181 tos = get_rttos(&ipc, inet); 1182 if (sock_flag(sk, SOCK_LOCALROUTE) || 1183 (msg->msg_flags & MSG_DONTROUTE) || 1184 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1185 tos |= RTO_ONLINK; 1186 connected = 0; 1187 } 1188 1189 if (ipv4_is_multicast(daddr)) { 1190 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1191 ipc.oif = inet->mc_index; 1192 if (!saddr) 1193 saddr = inet->mc_addr; 1194 connected = 0; 1195 } else if (!ipc.oif) { 1196 ipc.oif = inet->uc_index; 1197 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1198 /* oif is set, packet is to local broadcast and 1199 * uc_index is set. oif is most likely set 1200 * by sk_bound_dev_if. If uc_index != oif check if the 1201 * oif is an L3 master and uc_index is an L3 slave. 1202 * If so, we want to allow the send using the uc_index. 1203 */ 1204 if (ipc.oif != inet->uc_index && 1205 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1206 inet->uc_index)) { 1207 ipc.oif = inet->uc_index; 1208 } 1209 } 1210 1211 if (connected) 1212 rt = (struct rtable *)sk_dst_check(sk, 0); 1213 1214 if (!rt) { 1215 struct net *net = sock_net(sk); 1216 __u8 flow_flags = inet_sk_flowi_flags(sk); 1217 1218 fl4 = &fl4_stack; 1219 1220 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1221 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1222 flow_flags, 1223 faddr, saddr, dport, inet->inet_sport, 1224 sk->sk_uid); 1225 1226 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1227 rt = ip_route_output_flow(net, fl4, sk); 1228 if (IS_ERR(rt)) { 1229 err = PTR_ERR(rt); 1230 rt = NULL; 1231 if (err == -ENETUNREACH) 1232 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1233 goto out; 1234 } 1235 1236 err = -EACCES; 1237 if ((rt->rt_flags & RTCF_BROADCAST) && 1238 !sock_flag(sk, SOCK_BROADCAST)) 1239 goto out; 1240 if (connected) 1241 sk_dst_set(sk, dst_clone(&rt->dst)); 1242 } 1243 1244 if (msg->msg_flags&MSG_CONFIRM) 1245 goto do_confirm; 1246back_from_confirm: 1247 1248 saddr = fl4->saddr; 1249 if (!ipc.addr) 1250 daddr = ipc.addr = fl4->daddr; 1251 1252 /* Lockless fast path for the non-corking case. */ 1253 if (!corkreq) { 1254 struct inet_cork cork; 1255 1256 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1257 sizeof(struct udphdr), &ipc, &rt, 1258 &cork, msg->msg_flags); 1259 err = PTR_ERR(skb); 1260 if (!IS_ERR_OR_NULL(skb)) 1261 err = udp_send_skb(skb, fl4, &cork); 1262 goto out; 1263 } 1264 1265 lock_sock(sk); 1266 if (unlikely(up->pending)) { 1267 /* The socket is already corked while preparing it. */ 1268 /* ... which is an evident application bug. --ANK */ 1269 release_sock(sk); 1270 1271 net_dbg_ratelimited("socket already corked\n"); 1272 err = -EINVAL; 1273 goto out; 1274 } 1275 /* 1276 * Now cork the socket to pend data. 1277 */ 1278 fl4 = &inet->cork.fl.u.ip4; 1279 fl4->daddr = daddr; 1280 fl4->saddr = saddr; 1281 fl4->fl4_dport = dport; 1282 fl4->fl4_sport = inet->inet_sport; 1283 up->pending = AF_INET; 1284 1285do_append_data: 1286 up->len += ulen; 1287 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1288 sizeof(struct udphdr), &ipc, &rt, 1289 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1290 if (err) 1291 udp_flush_pending_frames(sk); 1292 else if (!corkreq) 1293 err = udp_push_pending_frames(sk); 1294 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1295 up->pending = 0; 1296 release_sock(sk); 1297 1298out: 1299 ip_rt_put(rt); 1300out_free: 1301 if (free) 1302 kfree(ipc.opt); 1303 if (!err) 1304 return len; 1305 /* 1306 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1307 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1308 * we don't have a good statistic (IpOutDiscards but it can be too many 1309 * things). We could add another new stat but at least for now that 1310 * seems like overkill. 1311 */ 1312 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1313 UDP_INC_STATS(sock_net(sk), 1314 UDP_MIB_SNDBUFERRORS, is_udplite); 1315 } 1316 return err; 1317 1318do_confirm: 1319 if (msg->msg_flags & MSG_PROBE) 1320 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1321 if (!(msg->msg_flags&MSG_PROBE) || len) 1322 goto back_from_confirm; 1323 err = 0; 1324 goto out; 1325} 1326EXPORT_SYMBOL(udp_sendmsg); 1327 1328int udp_sendpage(struct sock *sk, struct page *page, int offset, 1329 size_t size, int flags) 1330{ 1331 struct inet_sock *inet = inet_sk(sk); 1332 struct udp_sock *up = udp_sk(sk); 1333 int ret; 1334 1335 if (flags & MSG_SENDPAGE_NOTLAST) 1336 flags |= MSG_MORE; 1337 1338 if (!up->pending) { 1339 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1340 1341 /* Call udp_sendmsg to specify destination address which 1342 * sendpage interface can't pass. 1343 * This will succeed only when the socket is connected. 1344 */ 1345 ret = udp_sendmsg(sk, &msg, 0); 1346 if (ret < 0) 1347 return ret; 1348 } 1349 1350 lock_sock(sk); 1351 1352 if (unlikely(!up->pending)) { 1353 release_sock(sk); 1354 1355 net_dbg_ratelimited("cork failed\n"); 1356 return -EINVAL; 1357 } 1358 1359 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1360 page, offset, size, flags); 1361 if (ret == -EOPNOTSUPP) { 1362 release_sock(sk); 1363 return sock_no_sendpage(sk->sk_socket, page, offset, 1364 size, flags); 1365 } 1366 if (ret < 0) { 1367 udp_flush_pending_frames(sk); 1368 goto out; 1369 } 1370 1371 up->len += size; 1372 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE))) 1373 ret = udp_push_pending_frames(sk); 1374 if (!ret) 1375 ret = size; 1376out: 1377 release_sock(sk); 1378 return ret; 1379} 1380 1381#define UDP_SKB_IS_STATELESS 0x80000000 1382 1383/* all head states (dst, sk, nf conntrack) except skb extensions are 1384 * cleared by udp_rcv(). 1385 * 1386 * We need to preserve secpath, if present, to eventually process 1387 * IP_CMSG_PASSSEC at recvmsg() time. 1388 * 1389 * Other extensions can be cleared. 1390 */ 1391static bool udp_try_make_stateless(struct sk_buff *skb) 1392{ 1393 if (!skb_has_extensions(skb)) 1394 return true; 1395 1396 if (!secpath_exists(skb)) { 1397 skb_ext_reset(skb); 1398 return true; 1399 } 1400 1401 return false; 1402} 1403 1404static void udp_set_dev_scratch(struct sk_buff *skb) 1405{ 1406 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1407 1408 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1409 scratch->_tsize_state = skb->truesize; 1410#if BITS_PER_LONG == 64 1411 scratch->len = skb->len; 1412 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1413 scratch->is_linear = !skb_is_nonlinear(skb); 1414#endif 1415 if (udp_try_make_stateless(skb)) 1416 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1417} 1418 1419static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1420{ 1421 /* We come here after udp_lib_checksum_complete() returned 0. 1422 * This means that __skb_checksum_complete() might have 1423 * set skb->csum_valid to 1. 1424 * On 64bit platforms, we can set csum_unnecessary 1425 * to true, but only if the skb is not shared. 1426 */ 1427#if BITS_PER_LONG == 64 1428 if (!skb_shared(skb)) 1429 udp_skb_scratch(skb)->csum_unnecessary = true; 1430#endif 1431} 1432 1433static int udp_skb_truesize(struct sk_buff *skb) 1434{ 1435 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1436} 1437 1438static bool udp_skb_has_head_state(struct sk_buff *skb) 1439{ 1440 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1441} 1442 1443/* fully reclaim rmem/fwd memory allocated for skb */ 1444static void udp_rmem_release(struct sock *sk, int size, int partial, 1445 bool rx_queue_lock_held) 1446{ 1447 struct udp_sock *up = udp_sk(sk); 1448 struct sk_buff_head *sk_queue; 1449 int amt; 1450 1451 if (likely(partial)) { 1452 up->forward_deficit += size; 1453 size = up->forward_deficit; 1454 if (size < (sk->sk_rcvbuf >> 2) && 1455 !skb_queue_empty(&up->reader_queue)) 1456 return; 1457 } else { 1458 size += up->forward_deficit; 1459 } 1460 up->forward_deficit = 0; 1461 1462 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1463 * if the called don't held it already 1464 */ 1465 sk_queue = &sk->sk_receive_queue; 1466 if (!rx_queue_lock_held) 1467 spin_lock(&sk_queue->lock); 1468 1469 1470 sk->sk_forward_alloc += size; 1471 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1472 sk->sk_forward_alloc -= amt; 1473 1474 if (amt) 1475 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1476 1477 atomic_sub(size, &sk->sk_rmem_alloc); 1478 1479 /* this can save us from acquiring the rx queue lock on next receive */ 1480 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1481 1482 if (!rx_queue_lock_held) 1483 spin_unlock(&sk_queue->lock); 1484} 1485 1486/* Note: called with reader_queue.lock held. 1487 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1488 * This avoids a cache line miss while receive_queue lock is held. 1489 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1490 */ 1491void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1492{ 1493 prefetch(&skb->data); 1494 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1495} 1496EXPORT_SYMBOL(udp_skb_destructor); 1497 1498/* as above, but the caller held the rx queue lock, too */ 1499static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1500{ 1501 prefetch(&skb->data); 1502 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1503} 1504 1505/* Idea of busylocks is to let producers grab an extra spinlock 1506 * to relieve pressure on the receive_queue spinlock shared by consumer. 1507 * Under flood, this means that only one producer can be in line 1508 * trying to acquire the receive_queue spinlock. 1509 * These busylock can be allocated on a per cpu manner, instead of a 1510 * per socket one (that would consume a cache line per socket) 1511 */ 1512static int udp_busylocks_log __read_mostly; 1513static spinlock_t *udp_busylocks __read_mostly; 1514 1515static spinlock_t *busylock_acquire(void *ptr) 1516{ 1517 spinlock_t *busy; 1518 1519 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1520 spin_lock(busy); 1521 return busy; 1522} 1523 1524static void busylock_release(spinlock_t *busy) 1525{ 1526 if (busy) 1527 spin_unlock(busy); 1528} 1529 1530int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1531{ 1532 struct sk_buff_head *list = &sk->sk_receive_queue; 1533 int rmem, delta, amt, err = -ENOMEM; 1534 spinlock_t *busy = NULL; 1535 int size; 1536 1537 /* try to avoid the costly atomic add/sub pair when the receive 1538 * queue is full; always allow at least a packet 1539 */ 1540 rmem = atomic_read(&sk->sk_rmem_alloc); 1541 if (rmem > sk->sk_rcvbuf) 1542 goto drop; 1543 1544 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1545 * having linear skbs : 1546 * - Reduce memory overhead and thus increase receive queue capacity 1547 * - Less cache line misses at copyout() time 1548 * - Less work at consume_skb() (less alien page frag freeing) 1549 */ 1550 if (rmem > (sk->sk_rcvbuf >> 1)) { 1551 skb_condense(skb); 1552 1553 busy = busylock_acquire(sk); 1554 } 1555 size = skb->truesize; 1556 udp_set_dev_scratch(skb); 1557 1558 /* we drop only if the receive buf is full and the receive 1559 * queue contains some other skb 1560 */ 1561 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1562 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1563 goto uncharge_drop; 1564 1565 spin_lock(&list->lock); 1566 if (size >= sk->sk_forward_alloc) { 1567 amt = sk_mem_pages(size); 1568 delta = amt << SK_MEM_QUANTUM_SHIFT; 1569 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1570 err = -ENOBUFS; 1571 spin_unlock(&list->lock); 1572 goto uncharge_drop; 1573 } 1574 1575 sk->sk_forward_alloc += delta; 1576 } 1577 1578 sk->sk_forward_alloc -= size; 1579 1580 /* no need to setup a destructor, we will explicitly release the 1581 * forward allocated memory on dequeue 1582 */ 1583 sock_skb_set_dropcount(sk, skb); 1584 1585 __skb_queue_tail(list, skb); 1586 spin_unlock(&list->lock); 1587 1588 if (!sock_flag(sk, SOCK_DEAD)) 1589 sk->sk_data_ready(sk); 1590 1591 busylock_release(busy); 1592 return 0; 1593 1594uncharge_drop: 1595 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1596 1597drop: 1598 atomic_inc(&sk->sk_drops); 1599 busylock_release(busy); 1600 return err; 1601} 1602EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1603 1604void udp_destruct_common(struct sock *sk) 1605{ 1606 /* reclaim completely the forward allocated memory */ 1607 struct udp_sock *up = udp_sk(sk); 1608 unsigned int total = 0; 1609 struct sk_buff *skb; 1610 1611 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1612 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1613 total += skb->truesize; 1614 kfree_skb(skb); 1615 } 1616 udp_rmem_release(sk, total, 0, true); 1617} 1618EXPORT_SYMBOL_GPL(udp_destruct_common); 1619 1620static void udp_destruct_sock(struct sock *sk) 1621{ 1622 udp_destruct_common(sk); 1623 inet_sock_destruct(sk); 1624} 1625 1626int udp_init_sock(struct sock *sk) 1627{ 1628 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1629 sk->sk_destruct = udp_destruct_sock; 1630 return 0; 1631} 1632 1633void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1634{ 1635 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1636 bool slow = lock_sock_fast(sk); 1637 1638 sk_peek_offset_bwd(sk, len); 1639 unlock_sock_fast(sk, slow); 1640 } 1641 1642 if (!skb_unref(skb)) 1643 return; 1644 1645 /* In the more common cases we cleared the head states previously, 1646 * see __udp_queue_rcv_skb(). 1647 */ 1648 if (unlikely(udp_skb_has_head_state(skb))) 1649 skb_release_head_state(skb); 1650 __consume_stateless_skb(skb); 1651} 1652EXPORT_SYMBOL_GPL(skb_consume_udp); 1653 1654static struct sk_buff *__first_packet_length(struct sock *sk, 1655 struct sk_buff_head *rcvq, 1656 int *total) 1657{ 1658 struct sk_buff *skb; 1659 1660 while ((skb = skb_peek(rcvq)) != NULL) { 1661 if (udp_lib_checksum_complete(skb)) { 1662 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1663 IS_UDPLITE(sk)); 1664 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1665 IS_UDPLITE(sk)); 1666 atomic_inc(&sk->sk_drops); 1667 __skb_unlink(skb, rcvq); 1668 *total += skb->truesize; 1669 kfree_skb(skb); 1670 } else { 1671 udp_skb_csum_unnecessary_set(skb); 1672 break; 1673 } 1674 } 1675 return skb; 1676} 1677 1678/** 1679 * first_packet_length - return length of first packet in receive queue 1680 * @sk: socket 1681 * 1682 * Drops all bad checksum frames, until a valid one is found. 1683 * Returns the length of found skb, or -1 if none is found. 1684 */ 1685static int first_packet_length(struct sock *sk) 1686{ 1687 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1688 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1689 struct sk_buff *skb; 1690 int total = 0; 1691 int res; 1692 1693 spin_lock_bh(&rcvq->lock); 1694 skb = __first_packet_length(sk, rcvq, &total); 1695 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1696 spin_lock(&sk_queue->lock); 1697 skb_queue_splice_tail_init(sk_queue, rcvq); 1698 spin_unlock(&sk_queue->lock); 1699 1700 skb = __first_packet_length(sk, rcvq, &total); 1701 } 1702 res = skb ? skb->len : -1; 1703 if (total) 1704 udp_rmem_release(sk, total, 1, false); 1705 spin_unlock_bh(&rcvq->lock); 1706 return res; 1707} 1708 1709/* 1710 * IOCTL requests applicable to the UDP protocol 1711 */ 1712 1713int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1714{ 1715 switch (cmd) { 1716 case SIOCOUTQ: 1717 { 1718 int amount = sk_wmem_alloc_get(sk); 1719 1720 return put_user(amount, (int __user *)arg); 1721 } 1722 1723 case SIOCINQ: 1724 { 1725 int amount = max_t(int, 0, first_packet_length(sk)); 1726 1727 return put_user(amount, (int __user *)arg); 1728 } 1729 1730 default: 1731 return -ENOIOCTLCMD; 1732 } 1733 1734 return 0; 1735} 1736EXPORT_SYMBOL(udp_ioctl); 1737 1738struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1739 int noblock, int *off, int *err) 1740{ 1741 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1742 struct sk_buff_head *queue; 1743 struct sk_buff *last; 1744 long timeo; 1745 int error; 1746 1747 queue = &udp_sk(sk)->reader_queue; 1748 flags |= noblock ? MSG_DONTWAIT : 0; 1749 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1750 do { 1751 struct sk_buff *skb; 1752 1753 error = sock_error(sk); 1754 if (error) 1755 break; 1756 1757 error = -EAGAIN; 1758 do { 1759 spin_lock_bh(&queue->lock); 1760 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1761 err, &last); 1762 if (skb) { 1763 if (!(flags & MSG_PEEK)) 1764 udp_skb_destructor(sk, skb); 1765 spin_unlock_bh(&queue->lock); 1766 return skb; 1767 } 1768 1769 if (skb_queue_empty_lockless(sk_queue)) { 1770 spin_unlock_bh(&queue->lock); 1771 goto busy_check; 1772 } 1773 1774 /* refill the reader queue and walk it again 1775 * keep both queues locked to avoid re-acquiring 1776 * the sk_receive_queue lock if fwd memory scheduling 1777 * is needed. 1778 */ 1779 spin_lock(&sk_queue->lock); 1780 skb_queue_splice_tail_init(sk_queue, queue); 1781 1782 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1783 err, &last); 1784 if (skb && !(flags & MSG_PEEK)) 1785 udp_skb_dtor_locked(sk, skb); 1786 spin_unlock(&sk_queue->lock); 1787 spin_unlock_bh(&queue->lock); 1788 if (skb) 1789 return skb; 1790 1791busy_check: 1792 if (!sk_can_busy_loop(sk)) 1793 break; 1794 1795 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1796 } while (!skb_queue_empty_lockless(sk_queue)); 1797 1798 /* sk_queue is empty, reader_queue may contain peeked packets */ 1799 } while (timeo && 1800 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1801 &error, &timeo, 1802 (struct sk_buff *)sk_queue)); 1803 1804 *err = error; 1805 return NULL; 1806} 1807EXPORT_SYMBOL(__skb_recv_udp); 1808 1809/* 1810 * This should be easy, if there is something there we 1811 * return it, otherwise we block. 1812 */ 1813 1814int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1815 int flags, int *addr_len) 1816{ 1817 struct inet_sock *inet = inet_sk(sk); 1818 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1819 struct sk_buff *skb; 1820 unsigned int ulen, copied; 1821 int off, err, peeking = flags & MSG_PEEK; 1822 int is_udplite = IS_UDPLITE(sk); 1823 bool checksum_valid = false; 1824 1825 if (flags & MSG_ERRQUEUE) 1826 return ip_recv_error(sk, msg, len, addr_len); 1827 1828try_again: 1829 off = sk_peek_offset(sk, flags); 1830 skb = __skb_recv_udp(sk, flags, noblock, &off, &err); 1831 if (!skb) 1832 return err; 1833 1834 ulen = udp_skb_len(skb); 1835 copied = len; 1836 if (copied > ulen - off) 1837 copied = ulen - off; 1838 else if (copied < ulen) 1839 msg->msg_flags |= MSG_TRUNC; 1840 1841 /* 1842 * If checksum is needed at all, try to do it while copying the 1843 * data. If the data is truncated, or if we only want a partial 1844 * coverage checksum (UDP-Lite), do it before the copy. 1845 */ 1846 1847 if (copied < ulen || peeking || 1848 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1849 checksum_valid = udp_skb_csum_unnecessary(skb) || 1850 !__udp_lib_checksum_complete(skb); 1851 if (!checksum_valid) 1852 goto csum_copy_err; 1853 } 1854 1855 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1856 if (udp_skb_is_linear(skb)) 1857 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1858 else 1859 err = skb_copy_datagram_msg(skb, off, msg, copied); 1860 } else { 1861 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1862 1863 if (err == -EINVAL) 1864 goto csum_copy_err; 1865 } 1866 1867 if (unlikely(err)) { 1868 if (!peeking) { 1869 atomic_inc(&sk->sk_drops); 1870 UDP_INC_STATS(sock_net(sk), 1871 UDP_MIB_INERRORS, is_udplite); 1872 } 1873 kfree_skb(skb); 1874 return err; 1875 } 1876 1877 if (!peeking) 1878 UDP_INC_STATS(sock_net(sk), 1879 UDP_MIB_INDATAGRAMS, is_udplite); 1880 1881 sock_recv_ts_and_drops(msg, sk, skb); 1882 1883 /* Copy the address. */ 1884 if (sin) { 1885 sin->sin_family = AF_INET; 1886 sin->sin_port = udp_hdr(skb)->source; 1887 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1888 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1889 *addr_len = sizeof(*sin); 1890 1891 if (cgroup_bpf_enabled) 1892 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1893 (struct sockaddr *)sin); 1894 } 1895 1896 if (udp_sk(sk)->gro_enabled) 1897 udp_cmsg_recv(msg, sk, skb); 1898 1899 if (inet->cmsg_flags) 1900 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1901 1902 err = copied; 1903 if (flags & MSG_TRUNC) 1904 err = ulen; 1905 1906 skb_consume_udp(sk, skb, peeking ? -err : err); 1907 return err; 1908 1909csum_copy_err: 1910 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1911 udp_skb_destructor)) { 1912 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1913 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1914 } 1915 kfree_skb(skb); 1916 1917 /* starting over for a new packet, but check if we need to yield */ 1918 cond_resched(); 1919 msg->msg_flags &= ~MSG_TRUNC; 1920 goto try_again; 1921} 1922 1923int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1924{ 1925 /* This check is replicated from __ip4_datagram_connect() and 1926 * intended to prevent BPF program called below from accessing bytes 1927 * that are out of the bound specified by user in addr_len. 1928 */ 1929 if (addr_len < sizeof(struct sockaddr_in)) 1930 return -EINVAL; 1931 1932 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1933} 1934EXPORT_SYMBOL(udp_pre_connect); 1935 1936int __udp_disconnect(struct sock *sk, int flags) 1937{ 1938 struct inet_sock *inet = inet_sk(sk); 1939 /* 1940 * 1003.1g - break association. 1941 */ 1942 1943 sk->sk_state = TCP_CLOSE; 1944 inet->inet_daddr = 0; 1945 inet->inet_dport = 0; 1946 sock_rps_reset_rxhash(sk); 1947 sk->sk_bound_dev_if = 0; 1948 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1949 inet_reset_saddr(sk); 1950 if (sk->sk_prot->rehash && 1951 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1952 sk->sk_prot->rehash(sk); 1953 } 1954 1955 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1956 sk->sk_prot->unhash(sk); 1957 inet->inet_sport = 0; 1958 } 1959 sk_dst_reset(sk); 1960 return 0; 1961} 1962EXPORT_SYMBOL(__udp_disconnect); 1963 1964int udp_disconnect(struct sock *sk, int flags) 1965{ 1966 lock_sock(sk); 1967 __udp_disconnect(sk, flags); 1968 release_sock(sk); 1969 return 0; 1970} 1971EXPORT_SYMBOL(udp_disconnect); 1972 1973void udp_lib_unhash(struct sock *sk) 1974{ 1975 if (sk_hashed(sk)) { 1976 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1977 struct udp_hslot *hslot, *hslot2; 1978 1979 hslot = udp_hashslot(udptable, sock_net(sk), 1980 udp_sk(sk)->udp_port_hash); 1981 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1982 1983 spin_lock_bh(&hslot->lock); 1984 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1985 reuseport_detach_sock(sk); 1986 if (sk_del_node_init_rcu(sk)) { 1987 hslot->count--; 1988 inet_sk(sk)->inet_num = 0; 1989 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1990 1991 spin_lock(&hslot2->lock); 1992 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1993 hslot2->count--; 1994 spin_unlock(&hslot2->lock); 1995 } 1996 spin_unlock_bh(&hslot->lock); 1997 } 1998} 1999EXPORT_SYMBOL(udp_lib_unhash); 2000 2001/* 2002 * inet_rcv_saddr was changed, we must rehash secondary hash 2003 */ 2004void udp_lib_rehash(struct sock *sk, u16 newhash) 2005{ 2006 if (sk_hashed(sk)) { 2007 struct udp_table *udptable = sk->sk_prot->h.udp_table; 2008 struct udp_hslot *hslot, *hslot2, *nhslot2; 2009 2010 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2011 nhslot2 = udp_hashslot2(udptable, newhash); 2012 udp_sk(sk)->udp_portaddr_hash = newhash; 2013 2014 if (hslot2 != nhslot2 || 2015 rcu_access_pointer(sk->sk_reuseport_cb)) { 2016 hslot = udp_hashslot(udptable, sock_net(sk), 2017 udp_sk(sk)->udp_port_hash); 2018 /* we must lock primary chain too */ 2019 spin_lock_bh(&hslot->lock); 2020 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2021 reuseport_detach_sock(sk); 2022 2023 if (hslot2 != nhslot2) { 2024 spin_lock(&hslot2->lock); 2025 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2026 hslot2->count--; 2027 spin_unlock(&hslot2->lock); 2028 2029 spin_lock(&nhslot2->lock); 2030 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2031 &nhslot2->head); 2032 nhslot2->count++; 2033 spin_unlock(&nhslot2->lock); 2034 } 2035 2036 spin_unlock_bh(&hslot->lock); 2037 } 2038 } 2039} 2040EXPORT_SYMBOL(udp_lib_rehash); 2041 2042void udp_v4_rehash(struct sock *sk) 2043{ 2044 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2045 inet_sk(sk)->inet_rcv_saddr, 2046 inet_sk(sk)->inet_num); 2047 udp_lib_rehash(sk, new_hash); 2048} 2049 2050static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2051{ 2052 int rc; 2053 2054 if (inet_sk(sk)->inet_daddr) { 2055 sock_rps_save_rxhash(sk, skb); 2056 sk_mark_napi_id(sk, skb); 2057 sk_incoming_cpu_update(sk); 2058 } else { 2059 sk_mark_napi_id_once(sk, skb); 2060 } 2061 2062 rc = __udp_enqueue_schedule_skb(sk, skb); 2063 if (rc < 0) { 2064 int is_udplite = IS_UDPLITE(sk); 2065 2066 /* Note that an ENOMEM error is charged twice */ 2067 if (rc == -ENOMEM) 2068 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2069 is_udplite); 2070 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2071 kfree_skb(skb); 2072 trace_udp_fail_queue_rcv_skb(rc, sk); 2073 return -1; 2074 } 2075 2076 return 0; 2077} 2078 2079/* returns: 2080 * -1: error 2081 * 0: success 2082 * >0: "udp encap" protocol resubmission 2083 * 2084 * Note that in the success and error cases, the skb is assumed to 2085 * have either been requeued or freed. 2086 */ 2087static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2088{ 2089 struct udp_sock *up = udp_sk(sk); 2090 int is_udplite = IS_UDPLITE(sk); 2091 2092 /* 2093 * Charge it to the socket, dropping if the queue is full. 2094 */ 2095 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2096 goto drop; 2097 nf_reset_ct(skb); 2098 2099 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2100 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2101 2102 /* 2103 * This is an encapsulation socket so pass the skb to 2104 * the socket's udp_encap_rcv() hook. Otherwise, just 2105 * fall through and pass this up the UDP socket. 2106 * up->encap_rcv() returns the following value: 2107 * =0 if skb was successfully passed to the encap 2108 * handler or was discarded by it. 2109 * >0 if skb should be passed on to UDP. 2110 * <0 if skb should be resubmitted as proto -N 2111 */ 2112 2113 /* if we're overly short, let UDP handle it */ 2114 encap_rcv = READ_ONCE(up->encap_rcv); 2115 if (encap_rcv) { 2116 int ret; 2117 2118 /* Verify checksum before giving to encap */ 2119 if (udp_lib_checksum_complete(skb)) 2120 goto csum_error; 2121 2122 ret = encap_rcv(sk, skb); 2123 if (ret <= 0) { 2124 __UDP_INC_STATS(sock_net(sk), 2125 UDP_MIB_INDATAGRAMS, 2126 is_udplite); 2127 return -ret; 2128 } 2129 } 2130 2131 /* FALLTHROUGH -- it's a UDP Packet */ 2132 } 2133 2134 /* 2135 * UDP-Lite specific tests, ignored on UDP sockets 2136 */ 2137 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2138 2139 /* 2140 * MIB statistics other than incrementing the error count are 2141 * disabled for the following two types of errors: these depend 2142 * on the application settings, not on the functioning of the 2143 * protocol stack as such. 2144 * 2145 * RFC 3828 here recommends (sec 3.3): "There should also be a 2146 * way ... to ... at least let the receiving application block 2147 * delivery of packets with coverage values less than a value 2148 * provided by the application." 2149 */ 2150 if (up->pcrlen == 0) { /* full coverage was set */ 2151 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2152 UDP_SKB_CB(skb)->cscov, skb->len); 2153 goto drop; 2154 } 2155 /* The next case involves violating the min. coverage requested 2156 * by the receiver. This is subtle: if receiver wants x and x is 2157 * greater than the buffersize/MTU then receiver will complain 2158 * that it wants x while sender emits packets of smaller size y. 2159 * Therefore the above ...()->partial_cov statement is essential. 2160 */ 2161 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2162 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2163 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2164 goto drop; 2165 } 2166 } 2167 2168 prefetch(&sk->sk_rmem_alloc); 2169 if (rcu_access_pointer(sk->sk_filter) && 2170 udp_lib_checksum_complete(skb)) 2171 goto csum_error; 2172 2173 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2174 goto drop; 2175 2176 udp_csum_pull_header(skb); 2177 2178 ipv4_pktinfo_prepare(sk, skb); 2179 return __udp_queue_rcv_skb(sk, skb); 2180 2181csum_error: 2182 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2183drop: 2184 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2185 atomic_inc(&sk->sk_drops); 2186 kfree_skb(skb); 2187 return -1; 2188} 2189 2190static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2191{ 2192 struct sk_buff *next, *segs; 2193 int ret; 2194 2195 if (likely(!udp_unexpected_gso(sk, skb))) 2196 return udp_queue_rcv_one_skb(sk, skb); 2197 2198 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2199 __skb_push(skb, -skb_mac_offset(skb)); 2200 segs = udp_rcv_segment(sk, skb, true); 2201 skb_list_walk_safe(segs, skb, next) { 2202 __skb_pull(skb, skb_transport_offset(skb)); 2203 ret = udp_queue_rcv_one_skb(sk, skb); 2204 if (ret > 0) 2205 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2206 } 2207 return 0; 2208} 2209 2210/* For TCP sockets, sk_rx_dst is protected by socket lock 2211 * For UDP, we use xchg() to guard against concurrent changes. 2212 */ 2213bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2214{ 2215 struct dst_entry *old; 2216 2217 if (dst_hold_safe(dst)) { 2218 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2219 dst_release(old); 2220 return old != dst; 2221 } 2222 return false; 2223} 2224EXPORT_SYMBOL(udp_sk_rx_dst_set); 2225 2226/* 2227 * Multicasts and broadcasts go to each listener. 2228 * 2229 * Note: called only from the BH handler context. 2230 */ 2231static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2232 struct udphdr *uh, 2233 __be32 saddr, __be32 daddr, 2234 struct udp_table *udptable, 2235 int proto) 2236{ 2237 struct sock *sk, *first = NULL; 2238 unsigned short hnum = ntohs(uh->dest); 2239 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2240 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2241 unsigned int offset = offsetof(typeof(*sk), sk_node); 2242 int dif = skb->dev->ifindex; 2243 int sdif = inet_sdif(skb); 2244 struct hlist_node *node; 2245 struct sk_buff *nskb; 2246 2247 if (use_hash2) { 2248 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2249 udptable->mask; 2250 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2251start_lookup: 2252 hslot = &udptable->hash2[hash2]; 2253 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2254 } 2255 2256 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2257 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2258 uh->source, saddr, dif, sdif, hnum)) 2259 continue; 2260 2261 if (!first) { 2262 first = sk; 2263 continue; 2264 } 2265 nskb = skb_clone(skb, GFP_ATOMIC); 2266 2267 if (unlikely(!nskb)) { 2268 atomic_inc(&sk->sk_drops); 2269 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2270 IS_UDPLITE(sk)); 2271 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2272 IS_UDPLITE(sk)); 2273 continue; 2274 } 2275 if (udp_queue_rcv_skb(sk, nskb) > 0) 2276 consume_skb(nskb); 2277 } 2278 2279 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2280 if (use_hash2 && hash2 != hash2_any) { 2281 hash2 = hash2_any; 2282 goto start_lookup; 2283 } 2284 2285 if (first) { 2286 if (udp_queue_rcv_skb(first, skb) > 0) 2287 consume_skb(skb); 2288 } else { 2289 kfree_skb(skb); 2290 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2291 proto == IPPROTO_UDPLITE); 2292 } 2293 return 0; 2294} 2295 2296/* Initialize UDP checksum. If exited with zero value (success), 2297 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2298 * Otherwise, csum completion requires checksumming packet body, 2299 * including udp header and folding it to skb->csum. 2300 */ 2301static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2302 int proto) 2303{ 2304 int err; 2305 2306 UDP_SKB_CB(skb)->partial_cov = 0; 2307 UDP_SKB_CB(skb)->cscov = skb->len; 2308 2309 if (proto == IPPROTO_UDPLITE) { 2310 err = udplite_checksum_init(skb, uh); 2311 if (err) 2312 return err; 2313 2314 if (UDP_SKB_CB(skb)->partial_cov) { 2315 skb->csum = inet_compute_pseudo(skb, proto); 2316 return 0; 2317 } 2318 } 2319 2320 /* Note, we are only interested in != 0 or == 0, thus the 2321 * force to int. 2322 */ 2323 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2324 inet_compute_pseudo); 2325 if (err) 2326 return err; 2327 2328 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2329 /* If SW calculated the value, we know it's bad */ 2330 if (skb->csum_complete_sw) 2331 return 1; 2332 2333 /* HW says the value is bad. Let's validate that. 2334 * skb->csum is no longer the full packet checksum, 2335 * so don't treat it as such. 2336 */ 2337 skb_checksum_complete_unset(skb); 2338 } 2339 2340 return 0; 2341} 2342 2343/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2344 * return code conversion for ip layer consumption 2345 */ 2346static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2347 struct udphdr *uh) 2348{ 2349 int ret; 2350 2351 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2352 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2353 2354 ret = udp_queue_rcv_skb(sk, skb); 2355 2356 /* a return value > 0 means to resubmit the input, but 2357 * it wants the return to be -protocol, or 0 2358 */ 2359 if (ret > 0) 2360 return -ret; 2361 return 0; 2362} 2363 2364/* 2365 * All we need to do is get the socket, and then do a checksum. 2366 */ 2367 2368int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2369 int proto) 2370{ 2371 struct sock *sk; 2372 struct udphdr *uh; 2373 unsigned short ulen; 2374 struct rtable *rt = skb_rtable(skb); 2375 __be32 saddr, daddr; 2376 struct net *net = dev_net(skb->dev); 2377 bool refcounted; 2378 2379 /* 2380 * Validate the packet. 2381 */ 2382 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2383 goto drop; /* No space for header. */ 2384 2385 uh = udp_hdr(skb); 2386 ulen = ntohs(uh->len); 2387 saddr = ip_hdr(skb)->saddr; 2388 daddr = ip_hdr(skb)->daddr; 2389 2390 if (ulen > skb->len) 2391 goto short_packet; 2392 2393 if (proto == IPPROTO_UDP) { 2394 /* UDP validates ulen. */ 2395 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2396 goto short_packet; 2397 uh = udp_hdr(skb); 2398 } 2399 2400 if (udp4_csum_init(skb, uh, proto)) 2401 goto csum_error; 2402 2403 sk = skb_steal_sock(skb, &refcounted); 2404 if (sk) { 2405 struct dst_entry *dst = skb_dst(skb); 2406 int ret; 2407 2408 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2409 udp_sk_rx_dst_set(sk, dst); 2410 2411 ret = udp_unicast_rcv_skb(sk, skb, uh); 2412 if (refcounted) 2413 sock_put(sk); 2414 return ret; 2415 } 2416 2417 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2418 return __udp4_lib_mcast_deliver(net, skb, uh, 2419 saddr, daddr, udptable, proto); 2420 2421 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2422 if (sk) 2423 return udp_unicast_rcv_skb(sk, skb, uh); 2424 2425 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2426 goto drop; 2427 nf_reset_ct(skb); 2428 2429 /* No socket. Drop packet silently, if checksum is wrong */ 2430 if (udp_lib_checksum_complete(skb)) 2431 goto csum_error; 2432 2433 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2434 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2435 2436 /* 2437 * Hmm. We got an UDP packet to a port to which we 2438 * don't wanna listen. Ignore it. 2439 */ 2440 kfree_skb(skb); 2441 return 0; 2442 2443short_packet: 2444 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2445 proto == IPPROTO_UDPLITE ? "Lite" : "", 2446 &saddr, ntohs(uh->source), 2447 ulen, skb->len, 2448 &daddr, ntohs(uh->dest)); 2449 goto drop; 2450 2451csum_error: 2452 /* 2453 * RFC1122: OK. Discards the bad packet silently (as far as 2454 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2455 */ 2456 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2457 proto == IPPROTO_UDPLITE ? "Lite" : "", 2458 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2459 ulen); 2460 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2461drop: 2462 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2463 kfree_skb(skb); 2464 return 0; 2465} 2466 2467/* We can only early demux multicast if there is a single matching socket. 2468 * If more than one socket found returns NULL 2469 */ 2470static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2471 __be16 loc_port, __be32 loc_addr, 2472 __be16 rmt_port, __be32 rmt_addr, 2473 int dif, int sdif) 2474{ 2475 struct sock *sk, *result; 2476 unsigned short hnum = ntohs(loc_port); 2477 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2478 struct udp_hslot *hslot = &udp_table.hash[slot]; 2479 2480 /* Do not bother scanning a too big list */ 2481 if (hslot->count > 10) 2482 return NULL; 2483 2484 result = NULL; 2485 sk_for_each_rcu(sk, &hslot->head) { 2486 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2487 rmt_port, rmt_addr, dif, sdif, hnum)) { 2488 if (result) 2489 return NULL; 2490 result = sk; 2491 } 2492 } 2493 2494 return result; 2495} 2496 2497/* For unicast we should only early demux connected sockets or we can 2498 * break forwarding setups. The chains here can be long so only check 2499 * if the first socket is an exact match and if not move on. 2500 */ 2501static struct sock *__udp4_lib_demux_lookup(struct net *net, 2502 __be16 loc_port, __be32 loc_addr, 2503 __be16 rmt_port, __be32 rmt_addr, 2504 int dif, int sdif) 2505{ 2506 unsigned short hnum = ntohs(loc_port); 2507 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2508 unsigned int slot2 = hash2 & udp_table.mask; 2509 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2510 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2511 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2512 struct sock *sk; 2513 2514 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2515 if (INET_MATCH(net, sk, acookie, ports, dif, sdif)) 2516 return sk; 2517 /* Only check first socket in chain */ 2518 break; 2519 } 2520 return NULL; 2521} 2522 2523int udp_v4_early_demux(struct sk_buff *skb) 2524{ 2525 struct net *net = dev_net(skb->dev); 2526 struct in_device *in_dev = NULL; 2527 const struct iphdr *iph; 2528 const struct udphdr *uh; 2529 struct sock *sk = NULL; 2530 struct dst_entry *dst; 2531 int dif = skb->dev->ifindex; 2532 int sdif = inet_sdif(skb); 2533 int ours; 2534 2535 /* validate the packet */ 2536 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2537 return 0; 2538 2539 iph = ip_hdr(skb); 2540 uh = udp_hdr(skb); 2541 2542 if (skb->pkt_type == PACKET_MULTICAST) { 2543 in_dev = __in_dev_get_rcu(skb->dev); 2544 2545 if (!in_dev) 2546 return 0; 2547 2548 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2549 iph->protocol); 2550 if (!ours) 2551 return 0; 2552 2553 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2554 uh->source, iph->saddr, 2555 dif, sdif); 2556 } else if (skb->pkt_type == PACKET_HOST) { 2557 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2558 uh->source, iph->saddr, dif, sdif); 2559 } 2560 2561 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2562 return 0; 2563 2564 skb->sk = sk; 2565 skb->destructor = sock_efree; 2566 dst = rcu_dereference(sk->sk_rx_dst); 2567 2568 if (dst) 2569 dst = dst_check(dst, 0); 2570 if (dst) { 2571 u32 itag = 0; 2572 2573 /* set noref for now. 2574 * any place which wants to hold dst has to call 2575 * dst_hold_safe() 2576 */ 2577 skb_dst_set_noref(skb, dst); 2578 2579 /* for unconnected multicast sockets we need to validate 2580 * the source on each packet 2581 */ 2582 if (!inet_sk(sk)->inet_daddr && in_dev) 2583 return ip_mc_validate_source(skb, iph->daddr, 2584 iph->saddr, 2585 iph->tos & IPTOS_RT_MASK, 2586 skb->dev, in_dev, &itag); 2587 } 2588 return 0; 2589} 2590 2591int udp_rcv(struct sk_buff *skb) 2592{ 2593 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2594} 2595 2596void udp_destroy_sock(struct sock *sk) 2597{ 2598 struct udp_sock *up = udp_sk(sk); 2599 bool slow = lock_sock_fast(sk); 2600 2601 /* protects from races with udp_abort() */ 2602 sock_set_flag(sk, SOCK_DEAD); 2603 udp_flush_pending_frames(sk); 2604 unlock_sock_fast(sk, slow); 2605 if (static_branch_unlikely(&udp_encap_needed_key)) { 2606 if (up->encap_type) { 2607 void (*encap_destroy)(struct sock *sk); 2608 encap_destroy = READ_ONCE(up->encap_destroy); 2609 if (encap_destroy) 2610 encap_destroy(sk); 2611 } 2612 if (up->encap_enabled) 2613 static_branch_dec(&udp_encap_needed_key); 2614 } 2615} 2616 2617/* 2618 * Socket option code for UDP 2619 */ 2620int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2621 sockptr_t optval, unsigned int optlen, 2622 int (*push_pending_frames)(struct sock *)) 2623{ 2624 struct udp_sock *up = udp_sk(sk); 2625 int val, valbool; 2626 int err = 0; 2627 int is_udplite = IS_UDPLITE(sk); 2628 2629 if (optlen < sizeof(int)) 2630 return -EINVAL; 2631 2632 if (copy_from_sockptr(&val, optval, sizeof(val))) 2633 return -EFAULT; 2634 2635 valbool = val ? 1 : 0; 2636 2637 switch (optname) { 2638 case UDP_CORK: 2639 if (val != 0) { 2640 WRITE_ONCE(up->corkflag, 1); 2641 } else { 2642 WRITE_ONCE(up->corkflag, 0); 2643 lock_sock(sk); 2644 push_pending_frames(sk); 2645 release_sock(sk); 2646 } 2647 break; 2648 2649 case UDP_ENCAP: 2650 switch (val) { 2651 case 0: 2652#ifdef CONFIG_XFRM 2653 case UDP_ENCAP_ESPINUDP: 2654 case UDP_ENCAP_ESPINUDP_NON_IKE: 2655#if IS_ENABLED(CONFIG_IPV6) 2656 if (sk->sk_family == AF_INET6) 2657 WRITE_ONCE(up->encap_rcv, 2658 ipv6_stub->xfrm6_udp_encap_rcv); 2659 else 2660#endif 2661 WRITE_ONCE(up->encap_rcv, 2662 xfrm4_udp_encap_rcv); 2663#endif 2664 fallthrough; 2665 case UDP_ENCAP_L2TPINUDP: 2666 up->encap_type = val; 2667 lock_sock(sk); 2668 udp_tunnel_encap_enable(sk->sk_socket); 2669 release_sock(sk); 2670 break; 2671 default: 2672 err = -ENOPROTOOPT; 2673 break; 2674 } 2675 break; 2676 2677 case UDP_NO_CHECK6_TX: 2678 up->no_check6_tx = valbool; 2679 break; 2680 2681 case UDP_NO_CHECK6_RX: 2682 up->no_check6_rx = valbool; 2683 break; 2684 2685 case UDP_SEGMENT: 2686 if (val < 0 || val > USHRT_MAX) 2687 return -EINVAL; 2688 WRITE_ONCE(up->gso_size, val); 2689 break; 2690 2691 case UDP_GRO: 2692 lock_sock(sk); 2693 2694 /* when enabling GRO, accept the related GSO packet type */ 2695 if (valbool) 2696 udp_tunnel_encap_enable(sk->sk_socket); 2697 up->gro_enabled = valbool; 2698 up->accept_udp_l4 = valbool; 2699 release_sock(sk); 2700 break; 2701 2702 /* 2703 * UDP-Lite's partial checksum coverage (RFC 3828). 2704 */ 2705 /* The sender sets actual checksum coverage length via this option. 2706 * The case coverage > packet length is handled by send module. */ 2707 case UDPLITE_SEND_CSCOV: 2708 if (!is_udplite) /* Disable the option on UDP sockets */ 2709 return -ENOPROTOOPT; 2710 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2711 val = 8; 2712 else if (val > USHRT_MAX) 2713 val = USHRT_MAX; 2714 up->pcslen = val; 2715 up->pcflag |= UDPLITE_SEND_CC; 2716 break; 2717 2718 /* The receiver specifies a minimum checksum coverage value. To make 2719 * sense, this should be set to at least 8 (as done below). If zero is 2720 * used, this again means full checksum coverage. */ 2721 case UDPLITE_RECV_CSCOV: 2722 if (!is_udplite) /* Disable the option on UDP sockets */ 2723 return -ENOPROTOOPT; 2724 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2725 val = 8; 2726 else if (val > USHRT_MAX) 2727 val = USHRT_MAX; 2728 up->pcrlen = val; 2729 up->pcflag |= UDPLITE_RECV_CC; 2730 break; 2731 2732 default: 2733 err = -ENOPROTOOPT; 2734 break; 2735 } 2736 2737 return err; 2738} 2739EXPORT_SYMBOL(udp_lib_setsockopt); 2740 2741int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2742 unsigned int optlen) 2743{ 2744 if (level == SOL_UDP || level == SOL_UDPLITE) 2745 return udp_lib_setsockopt(sk, level, optname, 2746 optval, optlen, 2747 udp_push_pending_frames); 2748 return ip_setsockopt(sk, level, optname, optval, optlen); 2749} 2750 2751int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2752 char __user *optval, int __user *optlen) 2753{ 2754 struct udp_sock *up = udp_sk(sk); 2755 int val, len; 2756 2757 if (get_user(len, optlen)) 2758 return -EFAULT; 2759 2760 len = min_t(unsigned int, len, sizeof(int)); 2761 2762 if (len < 0) 2763 return -EINVAL; 2764 2765 switch (optname) { 2766 case UDP_CORK: 2767 val = READ_ONCE(up->corkflag); 2768 break; 2769 2770 case UDP_ENCAP: 2771 val = up->encap_type; 2772 break; 2773 2774 case UDP_NO_CHECK6_TX: 2775 val = up->no_check6_tx; 2776 break; 2777 2778 case UDP_NO_CHECK6_RX: 2779 val = up->no_check6_rx; 2780 break; 2781 2782 case UDP_SEGMENT: 2783 val = READ_ONCE(up->gso_size); 2784 break; 2785 2786 case UDP_GRO: 2787 val = up->gro_enabled; 2788 break; 2789 2790 /* The following two cannot be changed on UDP sockets, the return is 2791 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2792 case UDPLITE_SEND_CSCOV: 2793 val = up->pcslen; 2794 break; 2795 2796 case UDPLITE_RECV_CSCOV: 2797 val = up->pcrlen; 2798 break; 2799 2800 default: 2801 return -ENOPROTOOPT; 2802 } 2803 2804 if (put_user(len, optlen)) 2805 return -EFAULT; 2806 if (copy_to_user(optval, &val, len)) 2807 return -EFAULT; 2808 return 0; 2809} 2810EXPORT_SYMBOL(udp_lib_getsockopt); 2811 2812int udp_getsockopt(struct sock *sk, int level, int optname, 2813 char __user *optval, int __user *optlen) 2814{ 2815 if (level == SOL_UDP || level == SOL_UDPLITE) 2816 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2817 return ip_getsockopt(sk, level, optname, optval, optlen); 2818} 2819 2820/** 2821 * udp_poll - wait for a UDP event. 2822 * @file: - file struct 2823 * @sock: - socket 2824 * @wait: - poll table 2825 * 2826 * This is same as datagram poll, except for the special case of 2827 * blocking sockets. If application is using a blocking fd 2828 * and a packet with checksum error is in the queue; 2829 * then it could get return from select indicating data available 2830 * but then block when reading it. Add special case code 2831 * to work around these arguably broken applications. 2832 */ 2833__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2834{ 2835 __poll_t mask = datagram_poll(file, sock, wait); 2836 struct sock *sk = sock->sk; 2837 2838 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2839 mask |= EPOLLIN | EPOLLRDNORM; 2840 2841 /* Check for false positives due to checksum errors */ 2842 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2843 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2844 mask &= ~(EPOLLIN | EPOLLRDNORM); 2845 2846 return mask; 2847 2848} 2849EXPORT_SYMBOL(udp_poll); 2850 2851int udp_abort(struct sock *sk, int err) 2852{ 2853 lock_sock(sk); 2854 2855 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2856 * with close() 2857 */ 2858 if (sock_flag(sk, SOCK_DEAD)) 2859 goto out; 2860 2861 sk->sk_err = err; 2862 sk->sk_error_report(sk); 2863 __udp_disconnect(sk, 0); 2864 2865out: 2866 release_sock(sk); 2867 2868 return 0; 2869} 2870EXPORT_SYMBOL_GPL(udp_abort); 2871 2872struct proto udp_prot = { 2873 .name = "UDP", 2874 .owner = THIS_MODULE, 2875 .close = udp_lib_close, 2876 .pre_connect = udp_pre_connect, 2877 .connect = ip4_datagram_connect, 2878 .disconnect = udp_disconnect, 2879 .ioctl = udp_ioctl, 2880 .init = udp_init_sock, 2881 .destroy = udp_destroy_sock, 2882 .setsockopt = udp_setsockopt, 2883 .getsockopt = udp_getsockopt, 2884 .sendmsg = udp_sendmsg, 2885 .recvmsg = udp_recvmsg, 2886 .sendpage = udp_sendpage, 2887 .release_cb = ip4_datagram_release_cb, 2888 .hash = udp_lib_hash, 2889 .unhash = udp_lib_unhash, 2890 .rehash = udp_v4_rehash, 2891 .get_port = udp_v4_get_port, 2892 .memory_allocated = &udp_memory_allocated, 2893 .sysctl_mem = sysctl_udp_mem, 2894 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2895 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2896 .obj_size = sizeof(struct udp_sock), 2897 .h.udp_table = &udp_table, 2898 .diag_destroy = udp_abort, 2899}; 2900EXPORT_SYMBOL(udp_prot); 2901 2902/* ------------------------------------------------------------------------ */ 2903#ifdef CONFIG_PROC_FS 2904 2905static struct sock *udp_get_first(struct seq_file *seq, int start) 2906{ 2907 struct sock *sk; 2908 struct udp_seq_afinfo *afinfo; 2909 struct udp_iter_state *state = seq->private; 2910 struct net *net = seq_file_net(seq); 2911 2912 if (state->bpf_seq_afinfo) 2913 afinfo = state->bpf_seq_afinfo; 2914 else 2915 afinfo = PDE_DATA(file_inode(seq->file)); 2916 2917 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2918 ++state->bucket) { 2919 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2920 2921 if (hlist_empty(&hslot->head)) 2922 continue; 2923 2924 spin_lock_bh(&hslot->lock); 2925 sk_for_each(sk, &hslot->head) { 2926 if (!net_eq(sock_net(sk), net)) 2927 continue; 2928 if (afinfo->family == AF_UNSPEC || 2929 sk->sk_family == afinfo->family) 2930 goto found; 2931 } 2932 spin_unlock_bh(&hslot->lock); 2933 } 2934 sk = NULL; 2935found: 2936 return sk; 2937} 2938 2939static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2940{ 2941 struct udp_seq_afinfo *afinfo; 2942 struct udp_iter_state *state = seq->private; 2943 struct net *net = seq_file_net(seq); 2944 2945 if (state->bpf_seq_afinfo) 2946 afinfo = state->bpf_seq_afinfo; 2947 else 2948 afinfo = PDE_DATA(file_inode(seq->file)); 2949 2950 do { 2951 sk = sk_next(sk); 2952 } while (sk && (!net_eq(sock_net(sk), net) || 2953 (afinfo->family != AF_UNSPEC && 2954 sk->sk_family != afinfo->family))); 2955 2956 if (!sk) { 2957 if (state->bucket <= afinfo->udp_table->mask) 2958 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2959 return udp_get_first(seq, state->bucket + 1); 2960 } 2961 return sk; 2962} 2963 2964static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2965{ 2966 struct sock *sk = udp_get_first(seq, 0); 2967 2968 if (sk) 2969 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2970 --pos; 2971 return pos ? NULL : sk; 2972} 2973 2974void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2975{ 2976 struct udp_iter_state *state = seq->private; 2977 state->bucket = MAX_UDP_PORTS; 2978 2979 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2980} 2981EXPORT_SYMBOL(udp_seq_start); 2982 2983void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2984{ 2985 struct sock *sk; 2986 2987 if (v == SEQ_START_TOKEN) 2988 sk = udp_get_idx(seq, 0); 2989 else 2990 sk = udp_get_next(seq, v); 2991 2992 ++*pos; 2993 return sk; 2994} 2995EXPORT_SYMBOL(udp_seq_next); 2996 2997void udp_seq_stop(struct seq_file *seq, void *v) 2998{ 2999 struct udp_seq_afinfo *afinfo; 3000 struct udp_iter_state *state = seq->private; 3001 3002 if (state->bpf_seq_afinfo) 3003 afinfo = state->bpf_seq_afinfo; 3004 else 3005 afinfo = PDE_DATA(file_inode(seq->file)); 3006 3007 if (state->bucket <= afinfo->udp_table->mask) 3008 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 3009} 3010EXPORT_SYMBOL(udp_seq_stop); 3011 3012/* ------------------------------------------------------------------------ */ 3013static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3014 int bucket) 3015{ 3016 struct inet_sock *inet = inet_sk(sp); 3017 __be32 dest = inet->inet_daddr; 3018 __be32 src = inet->inet_rcv_saddr; 3019 __u16 destp = ntohs(inet->inet_dport); 3020 __u16 srcp = ntohs(inet->inet_sport); 3021 3022 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3023 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3024 bucket, src, srcp, dest, destp, sp->sk_state, 3025 sk_wmem_alloc_get(sp), 3026 udp_rqueue_get(sp), 3027 0, 0L, 0, 3028 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3029 0, sock_i_ino(sp), 3030 refcount_read(&sp->sk_refcnt), sp, 3031 atomic_read(&sp->sk_drops)); 3032} 3033 3034int udp4_seq_show(struct seq_file *seq, void *v) 3035{ 3036 seq_setwidth(seq, 127); 3037 if (v == SEQ_START_TOKEN) 3038 seq_puts(seq, " sl local_address rem_address st tx_queue " 3039 "rx_queue tr tm->when retrnsmt uid timeout " 3040 "inode ref pointer drops"); 3041 else { 3042 struct udp_iter_state *state = seq->private; 3043 3044 udp4_format_sock(v, seq, state->bucket); 3045 } 3046 seq_pad(seq, '\n'); 3047 return 0; 3048} 3049 3050#ifdef CONFIG_BPF_SYSCALL 3051struct bpf_iter__udp { 3052 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3053 __bpf_md_ptr(struct udp_sock *, udp_sk); 3054 uid_t uid __aligned(8); 3055 int bucket __aligned(8); 3056}; 3057 3058static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3059 struct udp_sock *udp_sk, uid_t uid, int bucket) 3060{ 3061 struct bpf_iter__udp ctx; 3062 3063 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3064 ctx.meta = meta; 3065 ctx.udp_sk = udp_sk; 3066 ctx.uid = uid; 3067 ctx.bucket = bucket; 3068 return bpf_iter_run_prog(prog, &ctx); 3069} 3070 3071static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3072{ 3073 struct udp_iter_state *state = seq->private; 3074 struct bpf_iter_meta meta; 3075 struct bpf_prog *prog; 3076 struct sock *sk = v; 3077 uid_t uid; 3078 3079 if (v == SEQ_START_TOKEN) 3080 return 0; 3081 3082 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3083 meta.seq = seq; 3084 prog = bpf_iter_get_info(&meta, false); 3085 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3086} 3087 3088static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3089{ 3090 struct bpf_iter_meta meta; 3091 struct bpf_prog *prog; 3092 3093 if (!v) { 3094 meta.seq = seq; 3095 prog = bpf_iter_get_info(&meta, true); 3096 if (prog) 3097 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3098 } 3099 3100 udp_seq_stop(seq, v); 3101} 3102 3103static const struct seq_operations bpf_iter_udp_seq_ops = { 3104 .start = udp_seq_start, 3105 .next = udp_seq_next, 3106 .stop = bpf_iter_udp_seq_stop, 3107 .show = bpf_iter_udp_seq_show, 3108}; 3109#endif 3110 3111const struct seq_operations udp_seq_ops = { 3112 .start = udp_seq_start, 3113 .next = udp_seq_next, 3114 .stop = udp_seq_stop, 3115 .show = udp4_seq_show, 3116}; 3117EXPORT_SYMBOL(udp_seq_ops); 3118 3119static struct udp_seq_afinfo udp4_seq_afinfo = { 3120 .family = AF_INET, 3121 .udp_table = &udp_table, 3122}; 3123 3124static int __net_init udp4_proc_init_net(struct net *net) 3125{ 3126 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3127 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3128 return -ENOMEM; 3129 return 0; 3130} 3131 3132static void __net_exit udp4_proc_exit_net(struct net *net) 3133{ 3134 remove_proc_entry("udp", net->proc_net); 3135} 3136 3137static struct pernet_operations udp4_net_ops = { 3138 .init = udp4_proc_init_net, 3139 .exit = udp4_proc_exit_net, 3140}; 3141 3142int __init udp4_proc_init(void) 3143{ 3144 return register_pernet_subsys(&udp4_net_ops); 3145} 3146 3147void udp4_proc_exit(void) 3148{ 3149 unregister_pernet_subsys(&udp4_net_ops); 3150} 3151#endif /* CONFIG_PROC_FS */ 3152 3153static __initdata unsigned long uhash_entries; 3154static int __init set_uhash_entries(char *str) 3155{ 3156 ssize_t ret; 3157 3158 if (!str) 3159 return 0; 3160 3161 ret = kstrtoul(str, 0, &uhash_entries); 3162 if (ret) 3163 return 0; 3164 3165 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3166 uhash_entries = UDP_HTABLE_SIZE_MIN; 3167 return 1; 3168} 3169__setup("uhash_entries=", set_uhash_entries); 3170 3171void __init udp_table_init(struct udp_table *table, const char *name) 3172{ 3173 unsigned int i; 3174 3175 table->hash = alloc_large_system_hash(name, 3176 2 * sizeof(struct udp_hslot), 3177 uhash_entries, 3178 21, /* one slot per 2 MB */ 3179 0, 3180 &table->log, 3181 &table->mask, 3182 UDP_HTABLE_SIZE_MIN, 3183 64 * 1024); 3184 3185 table->hash2 = table->hash + (table->mask + 1); 3186 for (i = 0; i <= table->mask; i++) { 3187 INIT_HLIST_HEAD(&table->hash[i].head); 3188 table->hash[i].count = 0; 3189 spin_lock_init(&table->hash[i].lock); 3190 } 3191 for (i = 0; i <= table->mask; i++) { 3192 INIT_HLIST_HEAD(&table->hash2[i].head); 3193 table->hash2[i].count = 0; 3194 spin_lock_init(&table->hash2[i].lock); 3195 } 3196} 3197 3198u32 udp_flow_hashrnd(void) 3199{ 3200 static u32 hashrnd __read_mostly; 3201 3202 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3203 3204 return hashrnd; 3205} 3206EXPORT_SYMBOL(udp_flow_hashrnd); 3207 3208static void __udp_sysctl_init(struct net *net) 3209{ 3210 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3211 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3212 3213#ifdef CONFIG_NET_L3_MASTER_DEV 3214 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3215#endif 3216} 3217 3218static int __net_init udp_sysctl_init(struct net *net) 3219{ 3220 __udp_sysctl_init(net); 3221 return 0; 3222} 3223 3224static struct pernet_operations __net_initdata udp_sysctl_ops = { 3225 .init = udp_sysctl_init, 3226}; 3227 3228#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3229DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3230 struct udp_sock *udp_sk, uid_t uid, int bucket) 3231 3232static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3233{ 3234 struct udp_iter_state *st = priv_data; 3235 struct udp_seq_afinfo *afinfo; 3236 int ret; 3237 3238 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); 3239 if (!afinfo) 3240 return -ENOMEM; 3241 3242 afinfo->family = AF_UNSPEC; 3243 afinfo->udp_table = &udp_table; 3244 st->bpf_seq_afinfo = afinfo; 3245 ret = bpf_iter_init_seq_net(priv_data, aux); 3246 if (ret) 3247 kfree(afinfo); 3248 return ret; 3249} 3250 3251static void bpf_iter_fini_udp(void *priv_data) 3252{ 3253 struct udp_iter_state *st = priv_data; 3254 3255 kfree(st->bpf_seq_afinfo); 3256 bpf_iter_fini_seq_net(priv_data); 3257} 3258 3259static const struct bpf_iter_seq_info udp_seq_info = { 3260 .seq_ops = &bpf_iter_udp_seq_ops, 3261 .init_seq_private = bpf_iter_init_udp, 3262 .fini_seq_private = bpf_iter_fini_udp, 3263 .seq_priv_size = sizeof(struct udp_iter_state), 3264}; 3265 3266static struct bpf_iter_reg udp_reg_info = { 3267 .target = "udp", 3268 .ctx_arg_info_size = 1, 3269 .ctx_arg_info = { 3270 { offsetof(struct bpf_iter__udp, udp_sk), 3271 PTR_TO_BTF_ID_OR_NULL }, 3272 }, 3273 .seq_info = &udp_seq_info, 3274}; 3275 3276static void __init bpf_iter_register(void) 3277{ 3278 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3279 if (bpf_iter_reg_target(&udp_reg_info)) 3280 pr_warn("Warning: could not register bpf iterator udp\n"); 3281} 3282#endif 3283 3284void __init udp_init(void) 3285{ 3286 unsigned long limit; 3287 unsigned int i; 3288 3289 udp_table_init(&udp_table, "UDP"); 3290 limit = nr_free_buffer_pages() / 8; 3291 limit = max(limit, 128UL); 3292 sysctl_udp_mem[0] = limit / 4 * 3; 3293 sysctl_udp_mem[1] = limit; 3294 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3295 3296 __udp_sysctl_init(&init_net); 3297 3298 /* 16 spinlocks per cpu */ 3299 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3300 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3301 GFP_KERNEL); 3302 if (!udp_busylocks) 3303 panic("UDP: failed to alloc udp_busylocks\n"); 3304 for (i = 0; i < (1U << udp_busylocks_log); i++) 3305 spin_lock_init(udp_busylocks + i); 3306 3307 if (register_pernet_subsys(&udp_sysctl_ops)) 3308 panic("UDP: failed to init sysctl parameters.\n"); 3309 3310#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3311 bpf_iter_register(); 3312#endif 3313} 3314