xref: /kernel/linux/linux-5.10/net/ipv4/tcp_output.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24 *				:	Fragmentation on mtu decrease
25 *				:	Segment collapse on retransmit
26 *				:	AF independence
27 *
28 *		Linus Torvalds	:	send_delayed_ack
29 *		David S. Miller	:	Charge memory using the right skb
30 *					during syn/ack processing.
31 *		David S. Miller :	Output engine completely rewritten.
32 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33 *		Cacophonix Gaul :	draft-minshall-nagle-01
34 *		J Hadi Salim	:	ECN support
35 *
36 */
37
38#define pr_fmt(fmt) "TCP: " fmt
39
40#include <net/tcp.h>
41#include <net/mptcp.h>
42
43#include <linux/compiler.h>
44#include <linux/gfp.h>
45#include <linux/module.h>
46#include <linux/static_key.h>
47#ifdef CONFIG_LOWPOWER_PROTOCOL
48#include <net/lowpower_protocol.h>
49#endif /* CONFIG_LOWPOWER_PROTOCOL */
50#include <trace/events/tcp.h>
51
52/* Refresh clocks of a TCP socket,
53 * ensuring monotically increasing values.
54 */
55void tcp_mstamp_refresh(struct tcp_sock *tp)
56{
57	u64 val = tcp_clock_ns();
58
59	tp->tcp_clock_cache = val;
60	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61}
62
63static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64			   int push_one, gfp_t gfp);
65
66/* Account for new data that has been sent to the network. */
67static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68{
69	struct inet_connection_sock *icsk = inet_csk(sk);
70	struct tcp_sock *tp = tcp_sk(sk);
71	unsigned int prior_packets = tp->packets_out;
72
73	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74
75	__skb_unlink(skb, &sk->sk_write_queue);
76	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77
78	if (tp->highest_sack == NULL)
79		tp->highest_sack = skb;
80
81	tp->packets_out += tcp_skb_pcount(skb);
82	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83		tcp_rearm_rto(sk);
84
85	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86		      tcp_skb_pcount(skb));
87	tcp_check_space(sk);
88}
89
90/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91 * window scaling factor due to loss of precision.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98{
99	const struct tcp_sock *tp = tcp_sk(sk);
100
101	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102	    (tp->rx_opt.wscale_ok &&
103	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104		return tp->snd_nxt;
105	else
106		return tcp_wnd_end(tp);
107}
108
109/* Calculate mss to advertise in SYN segment.
110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111 *
112 * 1. It is independent of path mtu.
113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115 *    attached devices, because some buggy hosts are confused by
116 *    large MSS.
117 * 4. We do not make 3, we advertise MSS, calculated from first
118 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119 *    This may be overridden via information stored in routing table.
120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121 *    probably even Jumbo".
122 */
123static __u16 tcp_advertise_mss(struct sock *sk)
124{
125	struct tcp_sock *tp = tcp_sk(sk);
126	const struct dst_entry *dst = __sk_dst_get(sk);
127	int mss = tp->advmss;
128
129	if (dst) {
130		unsigned int metric = dst_metric_advmss(dst);
131
132		if (metric < mss) {
133			mss = metric;
134			tp->advmss = mss;
135		}
136	}
137
138	return (__u16)mss;
139}
140
141/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142 * This is the first part of cwnd validation mechanism.
143 */
144void tcp_cwnd_restart(struct sock *sk, s32 delta)
145{
146	struct tcp_sock *tp = tcp_sk(sk);
147	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148	u32 cwnd = tp->snd_cwnd;
149
150	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151
152	tp->snd_ssthresh = tcp_current_ssthresh(sk);
153	restart_cwnd = min(restart_cwnd, cwnd);
154
155	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156		cwnd >>= 1;
157	tp->snd_cwnd = max(cwnd, restart_cwnd);
158	tp->snd_cwnd_stamp = tcp_jiffies32;
159	tp->snd_cwnd_used = 0;
160}
161
162/* Congestion state accounting after a packet has been sent. */
163static void tcp_event_data_sent(struct tcp_sock *tp,
164				struct sock *sk)
165{
166	struct inet_connection_sock *icsk = inet_csk(sk);
167	const u32 now = tcp_jiffies32;
168
169	if (tcp_packets_in_flight(tp) == 0)
170		tcp_ca_event(sk, CA_EVENT_TX_START);
171
172	tp->lsndtime = now;
173
174	/* If it is a reply for ato after last received
175	 * packet, enter pingpong mode.
176	 */
177	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178		inet_csk_enter_pingpong_mode(sk);
179}
180
181/* Account for an ACK we sent. */
182static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183{
184	struct tcp_sock *tp = tcp_sk(sk);
185
186	if (unlikely(tp->compressed_ack)) {
187		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188			      tp->compressed_ack);
189		tp->compressed_ack = 0;
190		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191			__sock_put(sk);
192	}
193
194	if (unlikely(rcv_nxt != tp->rcv_nxt))
195		return;  /* Special ACK sent by DCTCP to reflect ECN */
196	tcp_dec_quickack_mode(sk);
197	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198}
199
200/* Determine a window scaling and initial window to offer.
201 * Based on the assumption that the given amount of space
202 * will be offered. Store the results in the tp structure.
203 * NOTE: for smooth operation initial space offering should
204 * be a multiple of mss if possible. We assume here that mss >= 1.
205 * This MUST be enforced by all callers.
206 */
207void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208			       __u32 *rcv_wnd, __u32 *window_clamp,
209			       int wscale_ok, __u8 *rcv_wscale,
210			       __u32 init_rcv_wnd)
211{
212	unsigned int space = (__space < 0 ? 0 : __space);
213
214	/* If no clamp set the clamp to the max possible scaled window */
215	if (*window_clamp == 0)
216		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
217	space = min(*window_clamp, space);
218
219	/* Quantize space offering to a multiple of mss if possible. */
220	if (space > mss)
221		space = rounddown(space, mss);
222
223	/* NOTE: offering an initial window larger than 32767
224	 * will break some buggy TCP stacks. If the admin tells us
225	 * it is likely we could be speaking with such a buggy stack
226	 * we will truncate our initial window offering to 32K-1
227	 * unless the remote has sent us a window scaling option,
228	 * which we interpret as a sign the remote TCP is not
229	 * misinterpreting the window field as a signed quantity.
230	 */
231	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
232		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233	else
234		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235
236	if (init_rcv_wnd)
237		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238
239	*rcv_wscale = 0;
240	if (wscale_ok) {
241		/* Set window scaling on max possible window */
242		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
243		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
244		space = min_t(u32, space, *window_clamp);
245		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246				      0, TCP_MAX_WSCALE);
247	}
248	/* Set the clamp no higher than max representable value */
249	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250}
251EXPORT_SYMBOL(tcp_select_initial_window);
252
253/* Chose a new window to advertise, update state in tcp_sock for the
254 * socket, and return result with RFC1323 scaling applied.  The return
255 * value can be stuffed directly into th->window for an outgoing
256 * frame.
257 */
258static u16 tcp_select_window(struct sock *sk)
259{
260	struct tcp_sock *tp = tcp_sk(sk);
261	u32 old_win = tp->rcv_wnd;
262	u32 cur_win = tcp_receive_window(tp);
263	u32 new_win = __tcp_select_window(sk);
264
265	/* Never shrink the offered window */
266	if (new_win < cur_win) {
267		/* Danger Will Robinson!
268		 * Don't update rcv_wup/rcv_wnd here or else
269		 * we will not be able to advertise a zero
270		 * window in time.  --DaveM
271		 *
272		 * Relax Will Robinson.
273		 */
274		if (new_win == 0)
275			NET_INC_STATS(sock_net(sk),
276				      LINUX_MIB_TCPWANTZEROWINDOWADV);
277		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278	}
279	tp->rcv_wnd = new_win;
280	tp->rcv_wup = tp->rcv_nxt;
281
282	/* Make sure we do not exceed the maximum possible
283	 * scaled window.
284	 */
285	if (!tp->rx_opt.rcv_wscale &&
286	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
287		new_win = min(new_win, MAX_TCP_WINDOW);
288	else
289		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290
291	/* RFC1323 scaling applied */
292	new_win >>= tp->rx_opt.rcv_wscale;
293
294	/* If we advertise zero window, disable fast path. */
295	if (new_win == 0) {
296		tp->pred_flags = 0;
297		if (old_win)
298			NET_INC_STATS(sock_net(sk),
299				      LINUX_MIB_TCPTOZEROWINDOWADV);
300	} else if (old_win == 0) {
301		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
302	}
303
304	return new_win;
305}
306
307/* Packet ECN state for a SYN-ACK */
308static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309{
310	const struct tcp_sock *tp = tcp_sk(sk);
311
312	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
313	if (!(tp->ecn_flags & TCP_ECN_OK))
314		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
315	else if (tcp_ca_needs_ecn(sk) ||
316		 tcp_bpf_ca_needs_ecn(sk))
317		INET_ECN_xmit(sk);
318}
319
320/* Packet ECN state for a SYN.  */
321static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322{
323	struct tcp_sock *tp = tcp_sk(sk);
324	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
325	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
326		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327
328	if (!use_ecn) {
329		const struct dst_entry *dst = __sk_dst_get(sk);
330
331		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
332			use_ecn = true;
333	}
334
335	tp->ecn_flags = 0;
336
337	if (use_ecn) {
338		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
339		tp->ecn_flags = TCP_ECN_OK;
340		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
341			INET_ECN_xmit(sk);
342	}
343}
344
345static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346{
347	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
348		/* tp->ecn_flags are cleared at a later point in time when
349		 * SYN ACK is ultimatively being received.
350		 */
351		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352}
353
354static void
355tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356{
357	if (inet_rsk(req)->ecn_ok)
358		th->ece = 1;
359}
360
361/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
362 * be sent.
363 */
364static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
365			 struct tcphdr *th, int tcp_header_len)
366{
367	struct tcp_sock *tp = tcp_sk(sk);
368
369	if (tp->ecn_flags & TCP_ECN_OK) {
370		/* Not-retransmitted data segment: set ECT and inject CWR. */
371		if (skb->len != tcp_header_len &&
372		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373			INET_ECN_xmit(sk);
374			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
375				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376				th->cwr = 1;
377				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378			}
379		} else if (!tcp_ca_needs_ecn(sk)) {
380			/* ACK or retransmitted segment: clear ECT|CE */
381			INET_ECN_dontxmit(sk);
382		}
383		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
384			th->ece = 1;
385	}
386}
387
388/* Constructs common control bits of non-data skb. If SYN/FIN is present,
389 * auto increment end seqno.
390 */
391static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392{
393	skb->ip_summed = CHECKSUM_PARTIAL;
394
395	TCP_SKB_CB(skb)->tcp_flags = flags;
396	TCP_SKB_CB(skb)->sacked = 0;
397
398	tcp_skb_pcount_set(skb, 1);
399
400	TCP_SKB_CB(skb)->seq = seq;
401	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402		seq++;
403	TCP_SKB_CB(skb)->end_seq = seq;
404}
405
406static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407{
408	return tp->snd_una != tp->snd_up;
409}
410
411#define OPTION_SACK_ADVERTISE	(1 << 0)
412#define OPTION_TS		(1 << 1)
413#define OPTION_MD5		(1 << 2)
414#define OPTION_WSCALE		(1 << 3)
415#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
416#define OPTION_SMC		(1 << 9)
417#define OPTION_MPTCP		(1 << 10)
418
419static void smc_options_write(__be32 *ptr, u16 *options)
420{
421#if IS_ENABLED(CONFIG_SMC)
422	if (static_branch_unlikely(&tcp_have_smc)) {
423		if (unlikely(OPTION_SMC & *options)) {
424			*ptr++ = htonl((TCPOPT_NOP  << 24) |
425				       (TCPOPT_NOP  << 16) |
426				       (TCPOPT_EXP <<  8) |
427				       (TCPOLEN_EXP_SMC_BASE));
428			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
429		}
430	}
431#endif
432}
433
434struct tcp_out_options {
435	u16 options;		/* bit field of OPTION_* */
436	u16 mss;		/* 0 to disable */
437	u8 ws;			/* window scale, 0 to disable */
438	u8 num_sack_blocks;	/* number of SACK blocks to include */
439	u8 hash_size;		/* bytes in hash_location */
440	u8 bpf_opt_len;		/* length of BPF hdr option */
441	__u8 *hash_location;	/* temporary pointer, overloaded */
442	__u32 tsval, tsecr;	/* need to include OPTION_TS */
443	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
444	struct mptcp_out_options mptcp;
445};
446
447static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
448{
449#if IS_ENABLED(CONFIG_MPTCP)
450	if (unlikely(OPTION_MPTCP & opts->options))
451		mptcp_write_options(ptr, &opts->mptcp);
452#endif
453}
454
455#ifdef CONFIG_CGROUP_BPF
456static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
457					enum tcp_synack_type synack_type)
458{
459	if (unlikely(!skb))
460		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
461
462	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
463		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
464
465	return 0;
466}
467
468/* req, syn_skb and synack_type are used when writing synack */
469static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
470				  struct request_sock *req,
471				  struct sk_buff *syn_skb,
472				  enum tcp_synack_type synack_type,
473				  struct tcp_out_options *opts,
474				  unsigned int *remaining)
475{
476	struct bpf_sock_ops_kern sock_ops;
477	int err;
478
479	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
480					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
481	    !*remaining)
482		return;
483
484	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
485
486	/* init sock_ops */
487	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
488
489	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
490
491	if (req) {
492		/* The listen "sk" cannot be passed here because
493		 * it is not locked.  It would not make too much
494		 * sense to do bpf_setsockopt(listen_sk) based
495		 * on individual connection request also.
496		 *
497		 * Thus, "req" is passed here and the cgroup-bpf-progs
498		 * of the listen "sk" will be run.
499		 *
500		 * "req" is also used here for fastopen even the "sk" here is
501		 * a fullsock "child" sk.  It is to keep the behavior
502		 * consistent between fastopen and non-fastopen on
503		 * the bpf programming side.
504		 */
505		sock_ops.sk = (struct sock *)req;
506		sock_ops.syn_skb = syn_skb;
507	} else {
508		sock_owned_by_me(sk);
509
510		sock_ops.is_fullsock = 1;
511		sock_ops.sk = sk;
512	}
513
514	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
515	sock_ops.remaining_opt_len = *remaining;
516	/* tcp_current_mss() does not pass a skb */
517	if (skb)
518		bpf_skops_init_skb(&sock_ops, skb, 0);
519
520	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
521
522	if (err || sock_ops.remaining_opt_len == *remaining)
523		return;
524
525	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
526	/* round up to 4 bytes */
527	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
528
529	*remaining -= opts->bpf_opt_len;
530}
531
532static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
533				    struct request_sock *req,
534				    struct sk_buff *syn_skb,
535				    enum tcp_synack_type synack_type,
536				    struct tcp_out_options *opts)
537{
538	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
539	struct bpf_sock_ops_kern sock_ops;
540	int err;
541
542	if (likely(!max_opt_len))
543		return;
544
545	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
546
547	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
548
549	if (req) {
550		sock_ops.sk = (struct sock *)req;
551		sock_ops.syn_skb = syn_skb;
552	} else {
553		sock_owned_by_me(sk);
554
555		sock_ops.is_fullsock = 1;
556		sock_ops.sk = sk;
557	}
558
559	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
560	sock_ops.remaining_opt_len = max_opt_len;
561	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
562	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
563
564	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
565
566	if (err)
567		nr_written = 0;
568	else
569		nr_written = max_opt_len - sock_ops.remaining_opt_len;
570
571	if (nr_written < max_opt_len)
572		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
573		       max_opt_len - nr_written);
574}
575#else
576static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
577				  struct request_sock *req,
578				  struct sk_buff *syn_skb,
579				  enum tcp_synack_type synack_type,
580				  struct tcp_out_options *opts,
581				  unsigned int *remaining)
582{
583}
584
585static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
586				    struct request_sock *req,
587				    struct sk_buff *syn_skb,
588				    enum tcp_synack_type synack_type,
589				    struct tcp_out_options *opts)
590{
591}
592#endif
593
594/* Write previously computed TCP options to the packet.
595 *
596 * Beware: Something in the Internet is very sensitive to the ordering of
597 * TCP options, we learned this through the hard way, so be careful here.
598 * Luckily we can at least blame others for their non-compliance but from
599 * inter-operability perspective it seems that we're somewhat stuck with
600 * the ordering which we have been using if we want to keep working with
601 * those broken things (not that it currently hurts anybody as there isn't
602 * particular reason why the ordering would need to be changed).
603 *
604 * At least SACK_PERM as the first option is known to lead to a disaster
605 * (but it may well be that other scenarios fail similarly).
606 */
607static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
608			      struct tcp_out_options *opts)
609{
610	u16 options = opts->options;	/* mungable copy */
611
612	if (unlikely(OPTION_MD5 & options)) {
613		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
614			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
615		/* overload cookie hash location */
616		opts->hash_location = (__u8 *)ptr;
617		ptr += 4;
618	}
619
620	if (unlikely(opts->mss)) {
621		*ptr++ = htonl((TCPOPT_MSS << 24) |
622			       (TCPOLEN_MSS << 16) |
623			       opts->mss);
624	}
625
626	if (likely(OPTION_TS & options)) {
627		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
628			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
629				       (TCPOLEN_SACK_PERM << 16) |
630				       (TCPOPT_TIMESTAMP << 8) |
631				       TCPOLEN_TIMESTAMP);
632			options &= ~OPTION_SACK_ADVERTISE;
633		} else {
634			*ptr++ = htonl((TCPOPT_NOP << 24) |
635				       (TCPOPT_NOP << 16) |
636				       (TCPOPT_TIMESTAMP << 8) |
637				       TCPOLEN_TIMESTAMP);
638		}
639		*ptr++ = htonl(opts->tsval);
640		*ptr++ = htonl(opts->tsecr);
641	}
642
643	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
644		*ptr++ = htonl((TCPOPT_NOP << 24) |
645			       (TCPOPT_NOP << 16) |
646			       (TCPOPT_SACK_PERM << 8) |
647			       TCPOLEN_SACK_PERM);
648	}
649
650	if (unlikely(OPTION_WSCALE & options)) {
651		*ptr++ = htonl((TCPOPT_NOP << 24) |
652			       (TCPOPT_WINDOW << 16) |
653			       (TCPOLEN_WINDOW << 8) |
654			       opts->ws);
655	}
656
657	if (unlikely(opts->num_sack_blocks)) {
658		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
659			tp->duplicate_sack : tp->selective_acks;
660		int this_sack;
661
662		*ptr++ = htonl((TCPOPT_NOP  << 24) |
663			       (TCPOPT_NOP  << 16) |
664			       (TCPOPT_SACK <<  8) |
665			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
666						     TCPOLEN_SACK_PERBLOCK)));
667
668		for (this_sack = 0; this_sack < opts->num_sack_blocks;
669		     ++this_sack) {
670			*ptr++ = htonl(sp[this_sack].start_seq);
671			*ptr++ = htonl(sp[this_sack].end_seq);
672		}
673
674		tp->rx_opt.dsack = 0;
675	}
676
677	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
678		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
679		u8 *p = (u8 *)ptr;
680		u32 len; /* Fast Open option length */
681
682		if (foc->exp) {
683			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
684			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
685				     TCPOPT_FASTOPEN_MAGIC);
686			p += TCPOLEN_EXP_FASTOPEN_BASE;
687		} else {
688			len = TCPOLEN_FASTOPEN_BASE + foc->len;
689			*p++ = TCPOPT_FASTOPEN;
690			*p++ = len;
691		}
692
693		memcpy(p, foc->val, foc->len);
694		if ((len & 3) == 2) {
695			p[foc->len] = TCPOPT_NOP;
696			p[foc->len + 1] = TCPOPT_NOP;
697		}
698		ptr += (len + 3) >> 2;
699	}
700
701	smc_options_write(ptr, &options);
702
703	mptcp_options_write(ptr, opts);
704}
705
706static void smc_set_option(const struct tcp_sock *tp,
707			   struct tcp_out_options *opts,
708			   unsigned int *remaining)
709{
710#if IS_ENABLED(CONFIG_SMC)
711	if (static_branch_unlikely(&tcp_have_smc)) {
712		if (tp->syn_smc) {
713			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
714				opts->options |= OPTION_SMC;
715				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
716			}
717		}
718	}
719#endif
720}
721
722static void smc_set_option_cond(const struct tcp_sock *tp,
723				const struct inet_request_sock *ireq,
724				struct tcp_out_options *opts,
725				unsigned int *remaining)
726{
727#if IS_ENABLED(CONFIG_SMC)
728	if (static_branch_unlikely(&tcp_have_smc)) {
729		if (tp->syn_smc && ireq->smc_ok) {
730			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
731				opts->options |= OPTION_SMC;
732				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
733			}
734		}
735	}
736#endif
737}
738
739static void mptcp_set_option_cond(const struct request_sock *req,
740				  struct tcp_out_options *opts,
741				  unsigned int *remaining)
742{
743	if (rsk_is_mptcp(req)) {
744		unsigned int size;
745
746		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
747			if (*remaining >= size) {
748				opts->options |= OPTION_MPTCP;
749				*remaining -= size;
750			}
751		}
752	}
753}
754
755/* Compute TCP options for SYN packets. This is not the final
756 * network wire format yet.
757 */
758static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
759				struct tcp_out_options *opts,
760				struct tcp_md5sig_key **md5)
761{
762	struct tcp_sock *tp = tcp_sk(sk);
763	unsigned int remaining = MAX_TCP_OPTION_SPACE;
764	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
765
766	*md5 = NULL;
767#ifdef CONFIG_TCP_MD5SIG
768	if (static_branch_unlikely(&tcp_md5_needed) &&
769	    rcu_access_pointer(tp->md5sig_info)) {
770		*md5 = tp->af_specific->md5_lookup(sk, sk);
771		if (*md5) {
772			opts->options |= OPTION_MD5;
773			remaining -= TCPOLEN_MD5SIG_ALIGNED;
774		}
775	}
776#endif
777
778	/* We always get an MSS option.  The option bytes which will be seen in
779	 * normal data packets should timestamps be used, must be in the MSS
780	 * advertised.  But we subtract them from tp->mss_cache so that
781	 * calculations in tcp_sendmsg are simpler etc.  So account for this
782	 * fact here if necessary.  If we don't do this correctly, as a
783	 * receiver we won't recognize data packets as being full sized when we
784	 * should, and thus we won't abide by the delayed ACK rules correctly.
785	 * SACKs don't matter, we never delay an ACK when we have any of those
786	 * going out.  */
787	opts->mss = tcp_advertise_mss(sk);
788	remaining -= TCPOLEN_MSS_ALIGNED;
789
790	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
791		opts->options |= OPTION_TS;
792		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
793		opts->tsecr = tp->rx_opt.ts_recent;
794		remaining -= TCPOLEN_TSTAMP_ALIGNED;
795	}
796	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
797		opts->ws = tp->rx_opt.rcv_wscale;
798		opts->options |= OPTION_WSCALE;
799		remaining -= TCPOLEN_WSCALE_ALIGNED;
800	}
801	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
802		opts->options |= OPTION_SACK_ADVERTISE;
803		if (unlikely(!(OPTION_TS & opts->options)))
804			remaining -= TCPOLEN_SACKPERM_ALIGNED;
805	}
806
807	if (fastopen && fastopen->cookie.len >= 0) {
808		u32 need = fastopen->cookie.len;
809
810		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
811					       TCPOLEN_FASTOPEN_BASE;
812		need = (need + 3) & ~3U;  /* Align to 32 bits */
813		if (remaining >= need) {
814			opts->options |= OPTION_FAST_OPEN_COOKIE;
815			opts->fastopen_cookie = &fastopen->cookie;
816			remaining -= need;
817			tp->syn_fastopen = 1;
818			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
819		}
820	}
821
822	smc_set_option(tp, opts, &remaining);
823
824	if (sk_is_mptcp(sk)) {
825		unsigned int size;
826
827		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
828			opts->options |= OPTION_MPTCP;
829			remaining -= size;
830		}
831	}
832
833	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
834
835	return MAX_TCP_OPTION_SPACE - remaining;
836}
837
838/* Set up TCP options for SYN-ACKs. */
839static unsigned int tcp_synack_options(const struct sock *sk,
840				       struct request_sock *req,
841				       unsigned int mss, struct sk_buff *skb,
842				       struct tcp_out_options *opts,
843				       const struct tcp_md5sig_key *md5,
844				       struct tcp_fastopen_cookie *foc,
845				       enum tcp_synack_type synack_type,
846				       struct sk_buff *syn_skb)
847{
848	struct inet_request_sock *ireq = inet_rsk(req);
849	unsigned int remaining = MAX_TCP_OPTION_SPACE;
850
851#ifdef CONFIG_TCP_MD5SIG
852	if (md5) {
853		opts->options |= OPTION_MD5;
854		remaining -= TCPOLEN_MD5SIG_ALIGNED;
855
856		/* We can't fit any SACK blocks in a packet with MD5 + TS
857		 * options. There was discussion about disabling SACK
858		 * rather than TS in order to fit in better with old,
859		 * buggy kernels, but that was deemed to be unnecessary.
860		 */
861		if (synack_type != TCP_SYNACK_COOKIE)
862			ireq->tstamp_ok &= !ireq->sack_ok;
863	}
864#endif
865
866	/* We always send an MSS option. */
867	opts->mss = mss;
868	remaining -= TCPOLEN_MSS_ALIGNED;
869
870	if (likely(ireq->wscale_ok)) {
871		opts->ws = ireq->rcv_wscale;
872		opts->options |= OPTION_WSCALE;
873		remaining -= TCPOLEN_WSCALE_ALIGNED;
874	}
875	if (likely(ireq->tstamp_ok)) {
876		opts->options |= OPTION_TS;
877		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
878		opts->tsecr = READ_ONCE(req->ts_recent);
879		remaining -= TCPOLEN_TSTAMP_ALIGNED;
880	}
881	if (likely(ireq->sack_ok)) {
882		opts->options |= OPTION_SACK_ADVERTISE;
883		if (unlikely(!ireq->tstamp_ok))
884			remaining -= TCPOLEN_SACKPERM_ALIGNED;
885	}
886	if (foc != NULL && foc->len >= 0) {
887		u32 need = foc->len;
888
889		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
890				   TCPOLEN_FASTOPEN_BASE;
891		need = (need + 3) & ~3U;  /* Align to 32 bits */
892		if (remaining >= need) {
893			opts->options |= OPTION_FAST_OPEN_COOKIE;
894			opts->fastopen_cookie = foc;
895			remaining -= need;
896		}
897	}
898
899	mptcp_set_option_cond(req, opts, &remaining);
900
901	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
902
903	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
904			      synack_type, opts, &remaining);
905
906	return MAX_TCP_OPTION_SPACE - remaining;
907}
908
909/* Compute TCP options for ESTABLISHED sockets. This is not the
910 * final wire format yet.
911 */
912static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
913					struct tcp_out_options *opts,
914					struct tcp_md5sig_key **md5)
915{
916	struct tcp_sock *tp = tcp_sk(sk);
917	unsigned int size = 0;
918	unsigned int eff_sacks;
919
920	opts->options = 0;
921
922	*md5 = NULL;
923#ifdef CONFIG_TCP_MD5SIG
924	if (static_branch_unlikely(&tcp_md5_needed) &&
925	    rcu_access_pointer(tp->md5sig_info)) {
926		*md5 = tp->af_specific->md5_lookup(sk, sk);
927		if (*md5) {
928			opts->options |= OPTION_MD5;
929			size += TCPOLEN_MD5SIG_ALIGNED;
930		}
931	}
932#endif
933
934	if (likely(tp->rx_opt.tstamp_ok)) {
935		opts->options |= OPTION_TS;
936		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
937		opts->tsecr = tp->rx_opt.ts_recent;
938		size += TCPOLEN_TSTAMP_ALIGNED;
939	}
940
941	/* MPTCP options have precedence over SACK for the limited TCP
942	 * option space because a MPTCP connection would be forced to
943	 * fall back to regular TCP if a required multipath option is
944	 * missing. SACK still gets a chance to use whatever space is
945	 * left.
946	 */
947	if (sk_is_mptcp(sk)) {
948		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
949		unsigned int opt_size = 0;
950
951		if (mptcp_established_options(sk, skb, &opt_size, remaining,
952					      &opts->mptcp)) {
953			opts->options |= OPTION_MPTCP;
954			size += opt_size;
955		}
956	}
957
958	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
959	if (unlikely(eff_sacks)) {
960		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
961		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
962					 TCPOLEN_SACK_PERBLOCK))
963			return size;
964
965		opts->num_sack_blocks =
966			min_t(unsigned int, eff_sacks,
967			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
968			      TCPOLEN_SACK_PERBLOCK);
969
970		size += TCPOLEN_SACK_BASE_ALIGNED +
971			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
972	}
973
974	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
975					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
976		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
977
978		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
979
980		size = MAX_TCP_OPTION_SPACE - remaining;
981	}
982
983	return size;
984}
985
986
987/* TCP SMALL QUEUES (TSQ)
988 *
989 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
990 * to reduce RTT and bufferbloat.
991 * We do this using a special skb destructor (tcp_wfree).
992 *
993 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
994 * needs to be reallocated in a driver.
995 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
996 *
997 * Since transmit from skb destructor is forbidden, we use a tasklet
998 * to process all sockets that eventually need to send more skbs.
999 * We use one tasklet per cpu, with its own queue of sockets.
1000 */
1001struct tsq_tasklet {
1002	struct tasklet_struct	tasklet;
1003	struct list_head	head; /* queue of tcp sockets */
1004};
1005static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1006
1007static void tcp_tsq_write(struct sock *sk)
1008{
1009	if ((1 << sk->sk_state) &
1010	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1011	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1012		struct tcp_sock *tp = tcp_sk(sk);
1013
1014		if (tp->lost_out > tp->retrans_out &&
1015		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1016			tcp_mstamp_refresh(tp);
1017			tcp_xmit_retransmit_queue(sk);
1018		}
1019
1020		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1021			       0, GFP_ATOMIC);
1022	}
1023}
1024
1025static void tcp_tsq_handler(struct sock *sk)
1026{
1027	bh_lock_sock(sk);
1028	if (!sock_owned_by_user(sk))
1029		tcp_tsq_write(sk);
1030	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1031		sock_hold(sk);
1032	bh_unlock_sock(sk);
1033}
1034/*
1035 * One tasklet per cpu tries to send more skbs.
1036 * We run in tasklet context but need to disable irqs when
1037 * transferring tsq->head because tcp_wfree() might
1038 * interrupt us (non NAPI drivers)
1039 */
1040static void tcp_tasklet_func(unsigned long data)
1041{
1042	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1043	LIST_HEAD(list);
1044	unsigned long flags;
1045	struct list_head *q, *n;
1046	struct tcp_sock *tp;
1047	struct sock *sk;
1048
1049	local_irq_save(flags);
1050	list_splice_init(&tsq->head, &list);
1051	local_irq_restore(flags);
1052
1053	list_for_each_safe(q, n, &list) {
1054		tp = list_entry(q, struct tcp_sock, tsq_node);
1055		list_del(&tp->tsq_node);
1056
1057		sk = (struct sock *)tp;
1058		smp_mb__before_atomic();
1059		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1060
1061		tcp_tsq_handler(sk);
1062		sk_free(sk);
1063	}
1064}
1065
1066#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1067			  TCPF_WRITE_TIMER_DEFERRED |	\
1068			  TCPF_DELACK_TIMER_DEFERRED |	\
1069			  TCPF_MTU_REDUCED_DEFERRED)
1070/**
1071 * tcp_release_cb - tcp release_sock() callback
1072 * @sk: socket
1073 *
1074 * called from release_sock() to perform protocol dependent
1075 * actions before socket release.
1076 */
1077void tcp_release_cb(struct sock *sk)
1078{
1079	unsigned long flags, nflags;
1080
1081	/* perform an atomic operation only if at least one flag is set */
1082	do {
1083		flags = sk->sk_tsq_flags;
1084		if (!(flags & TCP_DEFERRED_ALL))
1085			return;
1086		nflags = flags & ~TCP_DEFERRED_ALL;
1087	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1088
1089	if (flags & TCPF_TSQ_DEFERRED) {
1090		tcp_tsq_write(sk);
1091		__sock_put(sk);
1092	}
1093	/* Here begins the tricky part :
1094	 * We are called from release_sock() with :
1095	 * 1) BH disabled
1096	 * 2) sk_lock.slock spinlock held
1097	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1098	 *
1099	 * But following code is meant to be called from BH handlers,
1100	 * so we should keep BH disabled, but early release socket ownership
1101	 */
1102	sock_release_ownership(sk);
1103
1104	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1105		tcp_write_timer_handler(sk);
1106		__sock_put(sk);
1107	}
1108	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1109		tcp_delack_timer_handler(sk);
1110		__sock_put(sk);
1111	}
1112	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1113		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1114		__sock_put(sk);
1115	}
1116}
1117EXPORT_SYMBOL(tcp_release_cb);
1118
1119void __init tcp_tasklet_init(void)
1120{
1121	int i;
1122
1123	for_each_possible_cpu(i) {
1124		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1125
1126		INIT_LIST_HEAD(&tsq->head);
1127		tasklet_init(&tsq->tasklet,
1128			     tcp_tasklet_func,
1129			     (unsigned long)tsq);
1130	}
1131}
1132
1133/*
1134 * Write buffer destructor automatically called from kfree_skb.
1135 * We can't xmit new skbs from this context, as we might already
1136 * hold qdisc lock.
1137 */
1138void tcp_wfree(struct sk_buff *skb)
1139{
1140	struct sock *sk = skb->sk;
1141	struct tcp_sock *tp = tcp_sk(sk);
1142	unsigned long flags, nval, oval;
1143
1144	/* Keep one reference on sk_wmem_alloc.
1145	 * Will be released by sk_free() from here or tcp_tasklet_func()
1146	 */
1147	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1148
1149	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1150	 * Wait until our queues (qdisc + devices) are drained.
1151	 * This gives :
1152	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1153	 * - chance for incoming ACK (processed by another cpu maybe)
1154	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1155	 */
1156	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1157		goto out;
1158
1159	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1160		struct tsq_tasklet *tsq;
1161		bool empty;
1162
1163		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1164			goto out;
1165
1166		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1167		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1168		if (nval != oval)
1169			continue;
1170
1171		/* queue this socket to tasklet queue */
1172		local_irq_save(flags);
1173		tsq = this_cpu_ptr(&tsq_tasklet);
1174		empty = list_empty(&tsq->head);
1175		list_add(&tp->tsq_node, &tsq->head);
1176		if (empty)
1177			tasklet_schedule(&tsq->tasklet);
1178		local_irq_restore(flags);
1179		return;
1180	}
1181out:
1182	sk_free(sk);
1183}
1184
1185/* Note: Called under soft irq.
1186 * We can call TCP stack right away, unless socket is owned by user.
1187 */
1188enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1189{
1190	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1191	struct sock *sk = (struct sock *)tp;
1192
1193	tcp_tsq_handler(sk);
1194	sock_put(sk);
1195
1196	return HRTIMER_NORESTART;
1197}
1198
1199static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1200				      u64 prior_wstamp)
1201{
1202	struct tcp_sock *tp = tcp_sk(sk);
1203
1204	if (sk->sk_pacing_status != SK_PACING_NONE) {
1205		unsigned long rate = sk->sk_pacing_rate;
1206
1207		/* Original sch_fq does not pace first 10 MSS
1208		 * Note that tp->data_segs_out overflows after 2^32 packets,
1209		 * this is a minor annoyance.
1210		 */
1211		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1212			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1213			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1214
1215			/* take into account OS jitter */
1216			len_ns -= min_t(u64, len_ns / 2, credit);
1217			tp->tcp_wstamp_ns += len_ns;
1218		}
1219	}
1220	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1221}
1222
1223INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1226
1227/* This routine actually transmits TCP packets queued in by
1228 * tcp_do_sendmsg().  This is used by both the initial
1229 * transmission and possible later retransmissions.
1230 * All SKB's seen here are completely headerless.  It is our
1231 * job to build the TCP header, and pass the packet down to
1232 * IP so it can do the same plus pass the packet off to the
1233 * device.
1234 *
1235 * We are working here with either a clone of the original
1236 * SKB, or a fresh unique copy made by the retransmit engine.
1237 */
1238static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1239			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1240{
1241	const struct inet_connection_sock *icsk = inet_csk(sk);
1242	struct inet_sock *inet;
1243	struct tcp_sock *tp;
1244	struct tcp_skb_cb *tcb;
1245	struct tcp_out_options opts;
1246	unsigned int tcp_options_size, tcp_header_size;
1247	struct sk_buff *oskb = NULL;
1248	struct tcp_md5sig_key *md5;
1249	struct tcphdr *th;
1250	u64 prior_wstamp;
1251	int err;
1252
1253	BUG_ON(!skb || !tcp_skb_pcount(skb));
1254	tp = tcp_sk(sk);
1255	prior_wstamp = tp->tcp_wstamp_ns;
1256	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1257	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1258	if (clone_it) {
1259		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1260			- tp->snd_una;
1261		oskb = skb;
1262
1263		tcp_skb_tsorted_save(oskb) {
1264			if (unlikely(skb_cloned(oskb)))
1265				skb = pskb_copy(oskb, gfp_mask);
1266			else
1267				skb = skb_clone(oskb, gfp_mask);
1268		} tcp_skb_tsorted_restore(oskb);
1269
1270		if (unlikely(!skb))
1271			return -ENOBUFS;
1272		/* retransmit skbs might have a non zero value in skb->dev
1273		 * because skb->dev is aliased with skb->rbnode.rb_left
1274		 */
1275		skb->dev = NULL;
1276	}
1277
1278	inet = inet_sk(sk);
1279	tcb = TCP_SKB_CB(skb);
1280	memset(&opts, 0, sizeof(opts));
1281
1282	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1283		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1284	} else {
1285		tcp_options_size = tcp_established_options(sk, skb, &opts,
1286							   &md5);
1287		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1288		 * at receiver : This slightly improve GRO performance.
1289		 * Note that we do not force the PSH flag for non GSO packets,
1290		 * because they might be sent under high congestion events,
1291		 * and in this case it is better to delay the delivery of 1-MSS
1292		 * packets and thus the corresponding ACK packet that would
1293		 * release the following packet.
1294		 */
1295		if (tcp_skb_pcount(skb) > 1)
1296			tcb->tcp_flags |= TCPHDR_PSH;
1297	}
1298	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1299
1300	/* if no packet is in qdisc/device queue, then allow XPS to select
1301	 * another queue. We can be called from tcp_tsq_handler()
1302	 * which holds one reference to sk.
1303	 *
1304	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1305	 * One way to get this would be to set skb->truesize = 2 on them.
1306	 */
1307	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1308
1309	/* If we had to use memory reserve to allocate this skb,
1310	 * this might cause drops if packet is looped back :
1311	 * Other socket might not have SOCK_MEMALLOC.
1312	 * Packets not looped back do not care about pfmemalloc.
1313	 */
1314	skb->pfmemalloc = 0;
1315
1316	skb_push(skb, tcp_header_size);
1317	skb_reset_transport_header(skb);
1318
1319	skb_orphan(skb);
1320	skb->sk = sk;
1321	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1322	skb_set_hash_from_sk(skb, sk);
1323	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1324
1325	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1326
1327	/* Build TCP header and checksum it. */
1328	th = (struct tcphdr *)skb->data;
1329	th->source		= inet->inet_sport;
1330	th->dest		= inet->inet_dport;
1331	th->seq			= htonl(tcb->seq);
1332	th->ack_seq		= htonl(rcv_nxt);
1333	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1334					tcb->tcp_flags);
1335
1336	th->check		= 0;
1337	th->urg_ptr		= 0;
1338
1339	/* The urg_mode check is necessary during a below snd_una win probe */
1340	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1341		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1342			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1343			th->urg = 1;
1344		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1345			th->urg_ptr = htons(0xFFFF);
1346			th->urg = 1;
1347		}
1348	}
1349
1350	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1351	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1352	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1353		th->window      = htons(tcp_select_window(sk));
1354		tcp_ecn_send(sk, skb, th, tcp_header_size);
1355	} else {
1356		/* RFC1323: The window in SYN & SYN/ACK segments
1357		 * is never scaled.
1358		 */
1359		th->window	= htons(min(tp->rcv_wnd, 65535U));
1360	}
1361#ifdef CONFIG_TCP_MD5SIG
1362	/* Calculate the MD5 hash, as we have all we need now */
1363	if (md5) {
1364		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1365		tp->af_specific->calc_md5_hash(opts.hash_location,
1366					       md5, sk, skb);
1367	}
1368#endif
1369
1370	/* BPF prog is the last one writing header option */
1371	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1372
1373	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1374			   tcp_v6_send_check, tcp_v4_send_check,
1375			   sk, skb);
1376
1377	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1378		tcp_event_ack_sent(sk, rcv_nxt);
1379
1380	if (skb->len != tcp_header_size) {
1381		tcp_event_data_sent(tp, sk);
1382		tp->data_segs_out += tcp_skb_pcount(skb);
1383		tp->bytes_sent += skb->len - tcp_header_size;
1384	}
1385
1386	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1387		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1388			      tcp_skb_pcount(skb));
1389
1390	tp->segs_out += tcp_skb_pcount(skb);
1391	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1392	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1393	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1394
1395	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1396
1397	/* Cleanup our debris for IP stacks */
1398	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1399			       sizeof(struct inet6_skb_parm)));
1400
1401	tcp_add_tx_delay(skb, tp);
1402
1403	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1404				 inet6_csk_xmit, ip_queue_xmit,
1405				 sk, skb, &inet->cork.fl);
1406
1407	if (unlikely(err > 0)) {
1408		tcp_enter_cwr(sk);
1409		err = net_xmit_eval(err);
1410	}
1411	if (!err && oskb) {
1412		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1413		tcp_rate_skb_sent(sk, oskb);
1414	}
1415	return err;
1416}
1417
1418static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1419			    gfp_t gfp_mask)
1420{
1421	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1422				  tcp_sk(sk)->rcv_nxt);
1423}
1424
1425/* This routine just queues the buffer for sending.
1426 *
1427 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1428 * otherwise socket can stall.
1429 */
1430static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1431{
1432	struct tcp_sock *tp = tcp_sk(sk);
1433
1434	/* Advance write_seq and place onto the write_queue. */
1435	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1436	__skb_header_release(skb);
1437	tcp_add_write_queue_tail(sk, skb);
1438	sk_wmem_queued_add(sk, skb->truesize);
1439	sk_mem_charge(sk, skb->truesize);
1440}
1441
1442/* Initialize TSO segments for a packet. */
1443static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1444{
1445	if (skb->len <= mss_now) {
1446		/* Avoid the costly divide in the normal
1447		 * non-TSO case.
1448		 */
1449		tcp_skb_pcount_set(skb, 1);
1450		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1451	} else {
1452		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1453		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1454	}
1455}
1456
1457/* Pcount in the middle of the write queue got changed, we need to do various
1458 * tweaks to fix counters
1459 */
1460static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1461{
1462	struct tcp_sock *tp = tcp_sk(sk);
1463
1464	tp->packets_out -= decr;
1465
1466	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1467		tp->sacked_out -= decr;
1468	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1469		tp->retrans_out -= decr;
1470	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1471		tp->lost_out -= decr;
1472
1473	/* Reno case is special. Sigh... */
1474	if (tcp_is_reno(tp) && decr > 0)
1475		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1476
1477	if (tp->lost_skb_hint &&
1478	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1479	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1480		tp->lost_cnt_hint -= decr;
1481
1482	tcp_verify_left_out(tp);
1483}
1484
1485static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1486{
1487	return TCP_SKB_CB(skb)->txstamp_ack ||
1488		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1489}
1490
1491static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1492{
1493	struct skb_shared_info *shinfo = skb_shinfo(skb);
1494
1495	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1496	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1497		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1498		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1499
1500		shinfo->tx_flags &= ~tsflags;
1501		shinfo2->tx_flags |= tsflags;
1502		swap(shinfo->tskey, shinfo2->tskey);
1503		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1504		TCP_SKB_CB(skb)->txstamp_ack = 0;
1505	}
1506}
1507
1508static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1509{
1510	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1511	TCP_SKB_CB(skb)->eor = 0;
1512}
1513
1514/* Insert buff after skb on the write or rtx queue of sk.  */
1515static void tcp_insert_write_queue_after(struct sk_buff *skb,
1516					 struct sk_buff *buff,
1517					 struct sock *sk,
1518					 enum tcp_queue tcp_queue)
1519{
1520	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1521		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1522	else
1523		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1524}
1525
1526/* Function to create two new TCP segments.  Shrinks the given segment
1527 * to the specified size and appends a new segment with the rest of the
1528 * packet to the list.  This won't be called frequently, I hope.
1529 * Remember, these are still headerless SKBs at this point.
1530 */
1531int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1532		 struct sk_buff *skb, u32 len,
1533		 unsigned int mss_now, gfp_t gfp)
1534{
1535	struct tcp_sock *tp = tcp_sk(sk);
1536	struct sk_buff *buff;
1537	int nsize, old_factor;
1538	long limit;
1539	int nlen;
1540	u8 flags;
1541
1542	if (WARN_ON(len > skb->len))
1543		return -EINVAL;
1544
1545	nsize = skb_headlen(skb) - len;
1546	if (nsize < 0)
1547		nsize = 0;
1548
1549	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1550	 * We need some allowance to not penalize applications setting small
1551	 * SO_SNDBUF values.
1552	 * Also allow first and last skb in retransmit queue to be split.
1553	 */
1554	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1555	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1556		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1557		     skb != tcp_rtx_queue_head(sk) &&
1558		     skb != tcp_rtx_queue_tail(sk))) {
1559		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1560		return -ENOMEM;
1561	}
1562
1563	if (skb_unclone(skb, gfp))
1564		return -ENOMEM;
1565
1566	/* Get a new skb... force flag on. */
1567	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1568	if (!buff)
1569		return -ENOMEM; /* We'll just try again later. */
1570	skb_copy_decrypted(buff, skb);
1571
1572	sk_wmem_queued_add(sk, buff->truesize);
1573	sk_mem_charge(sk, buff->truesize);
1574	nlen = skb->len - len - nsize;
1575	buff->truesize += nlen;
1576	skb->truesize -= nlen;
1577
1578	/* Correct the sequence numbers. */
1579	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1582
1583	/* PSH and FIN should only be set in the second packet. */
1584	flags = TCP_SKB_CB(skb)->tcp_flags;
1585	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586	TCP_SKB_CB(buff)->tcp_flags = flags;
1587	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588	tcp_skb_fragment_eor(skb, buff);
1589
1590	skb_split(skb, buff, len);
1591
1592	buff->ip_summed = CHECKSUM_PARTIAL;
1593
1594	buff->tstamp = skb->tstamp;
1595	tcp_fragment_tstamp(skb, buff);
1596
1597	old_factor = tcp_skb_pcount(skb);
1598
1599	/* Fix up tso_factor for both original and new SKB.  */
1600	tcp_set_skb_tso_segs(skb, mss_now);
1601	tcp_set_skb_tso_segs(buff, mss_now);
1602
1603	/* Update delivered info for the new segment */
1604	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1605
1606	/* If this packet has been sent out already, we must
1607	 * adjust the various packet counters.
1608	 */
1609	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1610		int diff = old_factor - tcp_skb_pcount(skb) -
1611			tcp_skb_pcount(buff);
1612
1613		if (diff)
1614			tcp_adjust_pcount(sk, skb, diff);
1615	}
1616
1617	/* Link BUFF into the send queue. */
1618	__skb_header_release(buff);
1619	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1620	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1621		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1622
1623	return 0;
1624}
1625
1626/* This is similar to __pskb_pull_tail(). The difference is that pulled
1627 * data is not copied, but immediately discarded.
1628 */
1629static int __pskb_trim_head(struct sk_buff *skb, int len)
1630{
1631	struct skb_shared_info *shinfo;
1632	int i, k, eat;
1633
1634	eat = min_t(int, len, skb_headlen(skb));
1635	if (eat) {
1636		__skb_pull(skb, eat);
1637		len -= eat;
1638		if (!len)
1639			return 0;
1640	}
1641	eat = len;
1642	k = 0;
1643	shinfo = skb_shinfo(skb);
1644	for (i = 0; i < shinfo->nr_frags; i++) {
1645		int size = skb_frag_size(&shinfo->frags[i]);
1646
1647		if (size <= eat) {
1648			skb_frag_unref(skb, i);
1649			eat -= size;
1650		} else {
1651			shinfo->frags[k] = shinfo->frags[i];
1652			if (eat) {
1653				skb_frag_off_add(&shinfo->frags[k], eat);
1654				skb_frag_size_sub(&shinfo->frags[k], eat);
1655				eat = 0;
1656			}
1657			k++;
1658		}
1659	}
1660	shinfo->nr_frags = k;
1661
1662	skb->data_len -= len;
1663	skb->len = skb->data_len;
1664	return len;
1665}
1666
1667/* Remove acked data from a packet in the transmit queue. */
1668int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1669{
1670	u32 delta_truesize;
1671
1672	if (skb_unclone(skb, GFP_ATOMIC))
1673		return -ENOMEM;
1674
1675	delta_truesize = __pskb_trim_head(skb, len);
1676
1677	TCP_SKB_CB(skb)->seq += len;
1678	skb->ip_summed = CHECKSUM_PARTIAL;
1679
1680	if (delta_truesize) {
1681		skb->truesize	   -= delta_truesize;
1682		sk_wmem_queued_add(sk, -delta_truesize);
1683		sk_mem_uncharge(sk, delta_truesize);
1684	}
1685
1686	/* Any change of skb->len requires recalculation of tso factor. */
1687	if (tcp_skb_pcount(skb) > 1)
1688		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1689
1690	return 0;
1691}
1692
1693/* Calculate MSS not accounting any TCP options.  */
1694static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1695{
1696	const struct tcp_sock *tp = tcp_sk(sk);
1697	const struct inet_connection_sock *icsk = inet_csk(sk);
1698	int mss_now;
1699
1700	/* Calculate base mss without TCP options:
1701	   It is MMS_S - sizeof(tcphdr) of rfc1122
1702	 */
1703	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1704
1705	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1706	if (icsk->icsk_af_ops->net_frag_header_len) {
1707		const struct dst_entry *dst = __sk_dst_get(sk);
1708
1709		if (dst && dst_allfrag(dst))
1710			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1711	}
1712
1713	/* Clamp it (mss_clamp does not include tcp options) */
1714	if (mss_now > tp->rx_opt.mss_clamp)
1715		mss_now = tp->rx_opt.mss_clamp;
1716
1717	/* Now subtract optional transport overhead */
1718	mss_now -= icsk->icsk_ext_hdr_len;
1719
1720	/* Then reserve room for full set of TCP options and 8 bytes of data */
1721	mss_now = max(mss_now,
1722		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1723	return mss_now;
1724}
1725
1726/* Calculate MSS. Not accounting for SACKs here.  */
1727int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728{
1729	/* Subtract TCP options size, not including SACKs */
1730	return __tcp_mtu_to_mss(sk, pmtu) -
1731	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732}
1733EXPORT_SYMBOL(tcp_mtu_to_mss);
1734
1735/* Inverse of above */
1736int tcp_mss_to_mtu(struct sock *sk, int mss)
1737{
1738	const struct tcp_sock *tp = tcp_sk(sk);
1739	const struct inet_connection_sock *icsk = inet_csk(sk);
1740	int mtu;
1741
1742	mtu = mss +
1743	      tp->tcp_header_len +
1744	      icsk->icsk_ext_hdr_len +
1745	      icsk->icsk_af_ops->net_header_len;
1746
1747	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1748	if (icsk->icsk_af_ops->net_frag_header_len) {
1749		const struct dst_entry *dst = __sk_dst_get(sk);
1750
1751		if (dst && dst_allfrag(dst))
1752			mtu += icsk->icsk_af_ops->net_frag_header_len;
1753	}
1754	return mtu;
1755}
1756EXPORT_SYMBOL(tcp_mss_to_mtu);
1757
1758/* MTU probing init per socket */
1759void tcp_mtup_init(struct sock *sk)
1760{
1761	struct tcp_sock *tp = tcp_sk(sk);
1762	struct inet_connection_sock *icsk = inet_csk(sk);
1763	struct net *net = sock_net(sk);
1764
1765	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1766	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1767			       icsk->icsk_af_ops->net_header_len;
1768	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1769	icsk->icsk_mtup.probe_size = 0;
1770	if (icsk->icsk_mtup.enabled)
1771		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1772}
1773EXPORT_SYMBOL(tcp_mtup_init);
1774
1775/* This function synchronize snd mss to current pmtu/exthdr set.
1776
1777   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1778   for TCP options, but includes only bare TCP header.
1779
1780   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1781   It is minimum of user_mss and mss received with SYN.
1782   It also does not include TCP options.
1783
1784   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1785
1786   tp->mss_cache is current effective sending mss, including
1787   all tcp options except for SACKs. It is evaluated,
1788   taking into account current pmtu, but never exceeds
1789   tp->rx_opt.mss_clamp.
1790
1791   NOTE1. rfc1122 clearly states that advertised MSS
1792   DOES NOT include either tcp or ip options.
1793
1794   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1795   are READ ONLY outside this function.		--ANK (980731)
1796 */
1797unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1798{
1799	struct tcp_sock *tp = tcp_sk(sk);
1800	struct inet_connection_sock *icsk = inet_csk(sk);
1801	int mss_now;
1802
1803	if (icsk->icsk_mtup.search_high > pmtu)
1804		icsk->icsk_mtup.search_high = pmtu;
1805
1806	mss_now = tcp_mtu_to_mss(sk, pmtu);
1807	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1808
1809	/* And store cached results */
1810	icsk->icsk_pmtu_cookie = pmtu;
1811	if (icsk->icsk_mtup.enabled)
1812		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1813	tp->mss_cache = mss_now;
1814
1815	return mss_now;
1816}
1817EXPORT_SYMBOL(tcp_sync_mss);
1818
1819/* Compute the current effective MSS, taking SACKs and IP options,
1820 * and even PMTU discovery events into account.
1821 */
1822unsigned int tcp_current_mss(struct sock *sk)
1823{
1824	const struct tcp_sock *tp = tcp_sk(sk);
1825	const struct dst_entry *dst = __sk_dst_get(sk);
1826	u32 mss_now;
1827	unsigned int header_len;
1828	struct tcp_out_options opts;
1829	struct tcp_md5sig_key *md5;
1830
1831	mss_now = tp->mss_cache;
1832
1833	if (dst) {
1834		u32 mtu = dst_mtu(dst);
1835		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1836			mss_now = tcp_sync_mss(sk, mtu);
1837	}
1838
1839	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1840		     sizeof(struct tcphdr);
1841	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1842	 * some common options. If this is an odd packet (because we have SACK
1843	 * blocks etc) then our calculated header_len will be different, and
1844	 * we have to adjust mss_now correspondingly */
1845	if (header_len != tp->tcp_header_len) {
1846		int delta = (int) header_len - tp->tcp_header_len;
1847		mss_now -= delta;
1848	}
1849
1850	return mss_now;
1851}
1852
1853/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1854 * As additional protections, we do not touch cwnd in retransmission phases,
1855 * and if application hit its sndbuf limit recently.
1856 */
1857static void tcp_cwnd_application_limited(struct sock *sk)
1858{
1859	struct tcp_sock *tp = tcp_sk(sk);
1860
1861	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1862	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1863		/* Limited by application or receiver window. */
1864		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1865		u32 win_used = max(tp->snd_cwnd_used, init_win);
1866		if (win_used < tp->snd_cwnd) {
1867			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1868			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1869		}
1870		tp->snd_cwnd_used = 0;
1871	}
1872	tp->snd_cwnd_stamp = tcp_jiffies32;
1873}
1874
1875static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1876{
1877	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1878	struct tcp_sock *tp = tcp_sk(sk);
1879
1880	/* Track the strongest available signal of the degree to which the cwnd
1881	 * is fully utilized. If cwnd-limited then remember that fact for the
1882	 * current window. If not cwnd-limited then track the maximum number of
1883	 * outstanding packets in the current window. (If cwnd-limited then we
1884	 * chose to not update tp->max_packets_out to avoid an extra else
1885	 * clause with no functional impact.)
1886	 */
1887	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1888	    is_cwnd_limited ||
1889	    (!tp->is_cwnd_limited &&
1890	     tp->packets_out > tp->max_packets_out)) {
1891		tp->is_cwnd_limited = is_cwnd_limited;
1892		tp->max_packets_out = tp->packets_out;
1893		tp->cwnd_usage_seq = tp->snd_nxt;
1894	}
1895
1896	if (tcp_is_cwnd_limited(sk)) {
1897		/* Network is feed fully. */
1898		tp->snd_cwnd_used = 0;
1899		tp->snd_cwnd_stamp = tcp_jiffies32;
1900	} else {
1901		/* Network starves. */
1902		if (tp->packets_out > tp->snd_cwnd_used)
1903			tp->snd_cwnd_used = tp->packets_out;
1904
1905		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1906		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1907		    !ca_ops->cong_control)
1908			tcp_cwnd_application_limited(sk);
1909
1910		/* The following conditions together indicate the starvation
1911		 * is caused by insufficient sender buffer:
1912		 * 1) just sent some data (see tcp_write_xmit)
1913		 * 2) not cwnd limited (this else condition)
1914		 * 3) no more data to send (tcp_write_queue_empty())
1915		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1916		 */
1917		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1918		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1919		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1920			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1921	}
1922}
1923
1924/* Minshall's variant of the Nagle send check. */
1925static bool tcp_minshall_check(const struct tcp_sock *tp)
1926{
1927	return after(tp->snd_sml, tp->snd_una) &&
1928		!after(tp->snd_sml, tp->snd_nxt);
1929}
1930
1931/* Update snd_sml if this skb is under mss
1932 * Note that a TSO packet might end with a sub-mss segment
1933 * The test is really :
1934 * if ((skb->len % mss) != 0)
1935 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1936 * But we can avoid doing the divide again given we already have
1937 *  skb_pcount = skb->len / mss_now
1938 */
1939static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1940				const struct sk_buff *skb)
1941{
1942	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1943		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1944}
1945
1946/* Return false, if packet can be sent now without violation Nagle's rules:
1947 * 1. It is full sized. (provided by caller in %partial bool)
1948 * 2. Or it contains FIN. (already checked by caller)
1949 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1950 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1951 *    With Minshall's modification: all sent small packets are ACKed.
1952 */
1953static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1954			    int nonagle)
1955{
1956	return partial &&
1957		((nonagle & TCP_NAGLE_CORK) ||
1958		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1959}
1960
1961/* Return how many segs we'd like on a TSO packet,
1962 * to send one TSO packet per ms
1963 */
1964static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1965			    int min_tso_segs)
1966{
1967	u32 bytes, segs;
1968
1969	bytes = min_t(unsigned long,
1970		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1971		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1972
1973	/* Goal is to send at least one packet per ms,
1974	 * not one big TSO packet every 100 ms.
1975	 * This preserves ACK clocking and is consistent
1976	 * with tcp_tso_should_defer() heuristic.
1977	 */
1978	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1979
1980	return segs;
1981}
1982
1983/* Return the number of segments we want in the skb we are transmitting.
1984 * See if congestion control module wants to decide; otherwise, autosize.
1985 */
1986static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1987{
1988	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1989	u32 min_tso, tso_segs;
1990
1991	min_tso = ca_ops->min_tso_segs ?
1992			ca_ops->min_tso_segs(sk) :
1993			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1994
1995	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1996	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1997}
1998
1999/* Returns the portion of skb which can be sent right away */
2000static unsigned int tcp_mss_split_point(const struct sock *sk,
2001					const struct sk_buff *skb,
2002					unsigned int mss_now,
2003					unsigned int max_segs,
2004					int nonagle)
2005{
2006	const struct tcp_sock *tp = tcp_sk(sk);
2007	u32 partial, needed, window, max_len;
2008
2009	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2010	max_len = mss_now * max_segs;
2011
2012	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2013		return max_len;
2014
2015	needed = min(skb->len, window);
2016
2017	if (max_len <= needed)
2018		return max_len;
2019
2020	partial = needed % mss_now;
2021	/* If last segment is not a full MSS, check if Nagle rules allow us
2022	 * to include this last segment in this skb.
2023	 * Otherwise, we'll split the skb at last MSS boundary
2024	 */
2025	if (tcp_nagle_check(partial != 0, tp, nonagle))
2026		return needed - partial;
2027
2028	return needed;
2029}
2030
2031/* Can at least one segment of SKB be sent right now, according to the
2032 * congestion window rules?  If so, return how many segments are allowed.
2033 */
2034static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2035					 const struct sk_buff *skb)
2036{
2037	u32 in_flight, cwnd, halfcwnd;
2038
2039	/* Don't be strict about the congestion window for the final FIN.  */
2040	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2041	    tcp_skb_pcount(skb) == 1)
2042		return 1;
2043
2044	in_flight = tcp_packets_in_flight(tp);
2045	cwnd = tp->snd_cwnd;
2046	if (in_flight >= cwnd)
2047		return 0;
2048
2049	/* For better scheduling, ensure we have at least
2050	 * 2 GSO packets in flight.
2051	 */
2052	halfcwnd = max(cwnd >> 1, 1U);
2053	return min(halfcwnd, cwnd - in_flight);
2054}
2055
2056/* Initialize TSO state of a skb.
2057 * This must be invoked the first time we consider transmitting
2058 * SKB onto the wire.
2059 */
2060static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2061{
2062	int tso_segs = tcp_skb_pcount(skb);
2063
2064	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2065		tcp_set_skb_tso_segs(skb, mss_now);
2066		tso_segs = tcp_skb_pcount(skb);
2067	}
2068	return tso_segs;
2069}
2070
2071
2072/* Return true if the Nagle test allows this packet to be
2073 * sent now.
2074 */
2075static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2076				  unsigned int cur_mss, int nonagle)
2077{
2078	/* Nagle rule does not apply to frames, which sit in the middle of the
2079	 * write_queue (they have no chances to get new data).
2080	 *
2081	 * This is implemented in the callers, where they modify the 'nonagle'
2082	 * argument based upon the location of SKB in the send queue.
2083	 */
2084	if (nonagle & TCP_NAGLE_PUSH)
2085		return true;
2086
2087	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2088	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2089		return true;
2090
2091	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2092		return true;
2093
2094	return false;
2095}
2096
2097/* Does at least the first segment of SKB fit into the send window? */
2098static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2099			     const struct sk_buff *skb,
2100			     unsigned int cur_mss)
2101{
2102	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2103
2104	if (skb->len > cur_mss)
2105		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2106
2107	return !after(end_seq, tcp_wnd_end(tp));
2108}
2109
2110/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2111 * which is put after SKB on the list.  It is very much like
2112 * tcp_fragment() except that it may make several kinds of assumptions
2113 * in order to speed up the splitting operation.  In particular, we
2114 * know that all the data is in scatter-gather pages, and that the
2115 * packet has never been sent out before (and thus is not cloned).
2116 */
2117static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2118			unsigned int mss_now, gfp_t gfp)
2119{
2120	int nlen = skb->len - len;
2121	struct sk_buff *buff;
2122	u8 flags;
2123
2124	/* All of a TSO frame must be composed of paged data.  */
2125	if (skb->len != skb->data_len)
2126		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2127				    skb, len, mss_now, gfp);
2128
2129	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2130	if (unlikely(!buff))
2131		return -ENOMEM;
2132	skb_copy_decrypted(buff, skb);
2133
2134	sk_wmem_queued_add(sk, buff->truesize);
2135	sk_mem_charge(sk, buff->truesize);
2136	buff->truesize += nlen;
2137	skb->truesize -= nlen;
2138
2139	/* Correct the sequence numbers. */
2140	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2141	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2142	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2143
2144	/* PSH and FIN should only be set in the second packet. */
2145	flags = TCP_SKB_CB(skb)->tcp_flags;
2146	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2147	TCP_SKB_CB(buff)->tcp_flags = flags;
2148
2149	/* This packet was never sent out yet, so no SACK bits. */
2150	TCP_SKB_CB(buff)->sacked = 0;
2151
2152	tcp_skb_fragment_eor(skb, buff);
2153
2154	buff->ip_summed = CHECKSUM_PARTIAL;
2155	skb_split(skb, buff, len);
2156	tcp_fragment_tstamp(skb, buff);
2157
2158	/* Fix up tso_factor for both original and new SKB.  */
2159	tcp_set_skb_tso_segs(skb, mss_now);
2160	tcp_set_skb_tso_segs(buff, mss_now);
2161
2162	/* Link BUFF into the send queue. */
2163	__skb_header_release(buff);
2164	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2165
2166	return 0;
2167}
2168
2169/* Try to defer sending, if possible, in order to minimize the amount
2170 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2171 *
2172 * This algorithm is from John Heffner.
2173 */
2174static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2175				 bool *is_cwnd_limited,
2176				 bool *is_rwnd_limited,
2177				 u32 max_segs)
2178{
2179	const struct inet_connection_sock *icsk = inet_csk(sk);
2180	u32 send_win, cong_win, limit, in_flight;
2181	struct tcp_sock *tp = tcp_sk(sk);
2182	struct sk_buff *head;
2183	int win_divisor;
2184	s64 delta;
2185
2186	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2187		goto send_now;
2188
2189	/* Avoid bursty behavior by allowing defer
2190	 * only if the last write was recent (1 ms).
2191	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2192	 * packets waiting in a qdisc or device for EDT delivery.
2193	 */
2194	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2195	if (delta > 0)
2196		goto send_now;
2197
2198	in_flight = tcp_packets_in_flight(tp);
2199
2200	BUG_ON(tcp_skb_pcount(skb) <= 1);
2201	BUG_ON(tp->snd_cwnd <= in_flight);
2202
2203	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2204
2205	/* From in_flight test above, we know that cwnd > in_flight.  */
2206	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2207
2208	limit = min(send_win, cong_win);
2209
2210	/* If a full-sized TSO skb can be sent, do it. */
2211	if (limit >= max_segs * tp->mss_cache)
2212		goto send_now;
2213
2214	/* Middle in queue won't get any more data, full sendable already? */
2215	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2216		goto send_now;
2217
2218	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2219	if (win_divisor) {
2220		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2221
2222		/* If at least some fraction of a window is available,
2223		 * just use it.
2224		 */
2225		chunk /= win_divisor;
2226		if (limit >= chunk)
2227			goto send_now;
2228	} else {
2229		/* Different approach, try not to defer past a single
2230		 * ACK.  Receiver should ACK every other full sized
2231		 * frame, so if we have space for more than 3 frames
2232		 * then send now.
2233		 */
2234		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2235			goto send_now;
2236	}
2237
2238	/* TODO : use tsorted_sent_queue ? */
2239	head = tcp_rtx_queue_head(sk);
2240	if (!head)
2241		goto send_now;
2242	delta = tp->tcp_clock_cache - head->tstamp;
2243	/* If next ACK is likely to come too late (half srtt), do not defer */
2244	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2245		goto send_now;
2246
2247	/* Ok, it looks like it is advisable to defer.
2248	 * Three cases are tracked :
2249	 * 1) We are cwnd-limited
2250	 * 2) We are rwnd-limited
2251	 * 3) We are application limited.
2252	 */
2253	if (cong_win < send_win) {
2254		if (cong_win <= skb->len) {
2255			*is_cwnd_limited = true;
2256			return true;
2257		}
2258	} else {
2259		if (send_win <= skb->len) {
2260			*is_rwnd_limited = true;
2261			return true;
2262		}
2263	}
2264
2265	/* If this packet won't get more data, do not wait. */
2266	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2267	    TCP_SKB_CB(skb)->eor)
2268		goto send_now;
2269
2270	return true;
2271
2272send_now:
2273	return false;
2274}
2275
2276static inline void tcp_mtu_check_reprobe(struct sock *sk)
2277{
2278	struct inet_connection_sock *icsk = inet_csk(sk);
2279	struct tcp_sock *tp = tcp_sk(sk);
2280	struct net *net = sock_net(sk);
2281	u32 interval;
2282	s32 delta;
2283
2284	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2285	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2286	if (unlikely(delta >= interval * HZ)) {
2287		int mss = tcp_current_mss(sk);
2288
2289		/* Update current search range */
2290		icsk->icsk_mtup.probe_size = 0;
2291		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2292			sizeof(struct tcphdr) +
2293			icsk->icsk_af_ops->net_header_len;
2294		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2295
2296		/* Update probe time stamp */
2297		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2298	}
2299}
2300
2301static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2302{
2303	struct sk_buff *skb, *next;
2304
2305	skb = tcp_send_head(sk);
2306	tcp_for_write_queue_from_safe(skb, next, sk) {
2307		if (len <= skb->len)
2308			break;
2309
2310		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2311			return false;
2312
2313		len -= skb->len;
2314	}
2315
2316	return true;
2317}
2318
2319/* Create a new MTU probe if we are ready.
2320 * MTU probe is regularly attempting to increase the path MTU by
2321 * deliberately sending larger packets.  This discovers routing
2322 * changes resulting in larger path MTUs.
2323 *
2324 * Returns 0 if we should wait to probe (no cwnd available),
2325 *         1 if a probe was sent,
2326 *         -1 otherwise
2327 */
2328static int tcp_mtu_probe(struct sock *sk)
2329{
2330	struct inet_connection_sock *icsk = inet_csk(sk);
2331	struct tcp_sock *tp = tcp_sk(sk);
2332	struct sk_buff *skb, *nskb, *next;
2333	struct net *net = sock_net(sk);
2334	int probe_size;
2335	int size_needed;
2336	int copy, len;
2337	int mss_now;
2338	int interval;
2339
2340	/* Not currently probing/verifying,
2341	 * not in recovery,
2342	 * have enough cwnd, and
2343	 * not SACKing (the variable headers throw things off)
2344	 */
2345	if (likely(!icsk->icsk_mtup.enabled ||
2346		   icsk->icsk_mtup.probe_size ||
2347		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2348		   tp->snd_cwnd < 11 ||
2349		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2350		return -1;
2351
2352	/* Use binary search for probe_size between tcp_mss_base,
2353	 * and current mss_clamp. if (search_high - search_low)
2354	 * smaller than a threshold, backoff from probing.
2355	 */
2356	mss_now = tcp_current_mss(sk);
2357	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2358				    icsk->icsk_mtup.search_low) >> 1);
2359	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2360	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2361	/* When misfortune happens, we are reprobing actively,
2362	 * and then reprobe timer has expired. We stick with current
2363	 * probing process by not resetting search range to its orignal.
2364	 */
2365	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2366	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2367		/* Check whether enough time has elaplased for
2368		 * another round of probing.
2369		 */
2370		tcp_mtu_check_reprobe(sk);
2371		return -1;
2372	}
2373
2374	/* Have enough data in the send queue to probe? */
2375	if (tp->write_seq - tp->snd_nxt < size_needed)
2376		return -1;
2377
2378	if (tp->snd_wnd < size_needed)
2379		return -1;
2380	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2381		return 0;
2382
2383	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2384	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2385		if (!tcp_packets_in_flight(tp))
2386			return -1;
2387		else
2388			return 0;
2389	}
2390
2391	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2392		return -1;
2393
2394	/* We're allowed to probe.  Build it now. */
2395	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2396	if (!nskb)
2397		return -1;
2398	sk_wmem_queued_add(sk, nskb->truesize);
2399	sk_mem_charge(sk, nskb->truesize);
2400
2401	skb = tcp_send_head(sk);
2402	skb_copy_decrypted(nskb, skb);
2403
2404	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2405	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2406	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2407	TCP_SKB_CB(nskb)->sacked = 0;
2408	nskb->csum = 0;
2409	nskb->ip_summed = CHECKSUM_PARTIAL;
2410
2411	tcp_insert_write_queue_before(nskb, skb, sk);
2412	tcp_highest_sack_replace(sk, skb, nskb);
2413
2414	len = 0;
2415	tcp_for_write_queue_from_safe(skb, next, sk) {
2416		copy = min_t(int, skb->len, probe_size - len);
2417		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2418
2419		if (skb->len <= copy) {
2420			/* We've eaten all the data from this skb.
2421			 * Throw it away. */
2422			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2423			/* If this is the last SKB we copy and eor is set
2424			 * we need to propagate it to the new skb.
2425			 */
2426			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2427			tcp_skb_collapse_tstamp(nskb, skb);
2428			tcp_unlink_write_queue(skb, sk);
2429			sk_wmem_free_skb(sk, skb);
2430		} else {
2431			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2432						   ~(TCPHDR_FIN|TCPHDR_PSH);
2433			if (!skb_shinfo(skb)->nr_frags) {
2434				skb_pull(skb, copy);
2435			} else {
2436				__pskb_trim_head(skb, copy);
2437				tcp_set_skb_tso_segs(skb, mss_now);
2438			}
2439			TCP_SKB_CB(skb)->seq += copy;
2440		}
2441
2442		len += copy;
2443
2444		if (len >= probe_size)
2445			break;
2446	}
2447	tcp_init_tso_segs(nskb, nskb->len);
2448
2449	/* We're ready to send.  If this fails, the probe will
2450	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2451	 */
2452	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2453		/* Decrement cwnd here because we are sending
2454		 * effectively two packets. */
2455		tp->snd_cwnd--;
2456		tcp_event_new_data_sent(sk, nskb);
2457
2458		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2459		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2460		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2461
2462		return 1;
2463	}
2464
2465	return -1;
2466}
2467
2468static bool tcp_pacing_check(struct sock *sk)
2469{
2470	struct tcp_sock *tp = tcp_sk(sk);
2471
2472	if (!tcp_needs_internal_pacing(sk))
2473		return false;
2474
2475	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2476		return false;
2477
2478	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2479		hrtimer_start(&tp->pacing_timer,
2480			      ns_to_ktime(tp->tcp_wstamp_ns),
2481			      HRTIMER_MODE_ABS_PINNED_SOFT);
2482		sock_hold(sk);
2483	}
2484	return true;
2485}
2486
2487static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2488{
2489	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2490
2491	/* No skb in the rtx queue. */
2492	if (!node)
2493		return true;
2494
2495	/* Only one skb in rtx queue. */
2496	return !node->rb_left && !node->rb_right;
2497}
2498
2499/* TCP Small Queues :
2500 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2501 * (These limits are doubled for retransmits)
2502 * This allows for :
2503 *  - better RTT estimation and ACK scheduling
2504 *  - faster recovery
2505 *  - high rates
2506 * Alas, some drivers / subsystems require a fair amount
2507 * of queued bytes to ensure line rate.
2508 * One example is wifi aggregation (802.11 AMPDU)
2509 */
2510static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2511				  unsigned int factor)
2512{
2513	unsigned long limit;
2514
2515	limit = max_t(unsigned long,
2516		      2 * skb->truesize,
2517		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2518	if (sk->sk_pacing_status == SK_PACING_NONE)
2519		limit = min_t(unsigned long, limit,
2520			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2521	limit <<= factor;
2522
2523	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2524	    tcp_sk(sk)->tcp_tx_delay) {
2525		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2526
2527		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2528		 * approximate our needs assuming an ~100% skb->truesize overhead.
2529		 * USEC_PER_SEC is approximated by 2^20.
2530		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2531		 */
2532		extra_bytes >>= (20 - 1);
2533		limit += extra_bytes;
2534	}
2535	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2536		/* Always send skb if rtx queue is empty or has one skb.
2537		 * No need to wait for TX completion to call us back,
2538		 * after softirq/tasklet schedule.
2539		 * This helps when TX completions are delayed too much.
2540		 */
2541		if (tcp_rtx_queue_empty_or_single_skb(sk))
2542			return false;
2543
2544		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2545		/* It is possible TX completion already happened
2546		 * before we set TSQ_THROTTLED, so we must
2547		 * test again the condition.
2548		 */
2549		smp_mb__after_atomic();
2550		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2551			return true;
2552	}
2553	return false;
2554}
2555
2556static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2557{
2558	const u32 now = tcp_jiffies32;
2559	enum tcp_chrono old = tp->chrono_type;
2560
2561	if (old > TCP_CHRONO_UNSPEC)
2562		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2563	tp->chrono_start = now;
2564	tp->chrono_type = new;
2565}
2566
2567void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2568{
2569	struct tcp_sock *tp = tcp_sk(sk);
2570
2571	/* If there are multiple conditions worthy of tracking in a
2572	 * chronograph then the highest priority enum takes precedence
2573	 * over the other conditions. So that if something "more interesting"
2574	 * starts happening, stop the previous chrono and start a new one.
2575	 */
2576	if (type > tp->chrono_type)
2577		tcp_chrono_set(tp, type);
2578}
2579
2580void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2581{
2582	struct tcp_sock *tp = tcp_sk(sk);
2583
2584
2585	/* There are multiple conditions worthy of tracking in a
2586	 * chronograph, so that the highest priority enum takes
2587	 * precedence over the other conditions (see tcp_chrono_start).
2588	 * If a condition stops, we only stop chrono tracking if
2589	 * it's the "most interesting" or current chrono we are
2590	 * tracking and starts busy chrono if we have pending data.
2591	 */
2592	if (tcp_rtx_and_write_queues_empty(sk))
2593		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2594	else if (type == tp->chrono_type)
2595		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2596}
2597
2598/* This routine writes packets to the network.  It advances the
2599 * send_head.  This happens as incoming acks open up the remote
2600 * window for us.
2601 *
2602 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2603 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2604 * account rare use of URG, this is not a big flaw.
2605 *
2606 * Send at most one packet when push_one > 0. Temporarily ignore
2607 * cwnd limit to force at most one packet out when push_one == 2.
2608
2609 * Returns true, if no segments are in flight and we have queued segments,
2610 * but cannot send anything now because of SWS or another problem.
2611 */
2612static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2613			   int push_one, gfp_t gfp)
2614{
2615	struct tcp_sock *tp = tcp_sk(sk);
2616	struct sk_buff *skb;
2617	unsigned int tso_segs, sent_pkts;
2618	int cwnd_quota;
2619	int result;
2620	bool is_cwnd_limited = false, is_rwnd_limited = false;
2621	u32 max_segs;
2622
2623	sent_pkts = 0;
2624
2625	tcp_mstamp_refresh(tp);
2626	if (!push_one) {
2627		/* Do MTU probing. */
2628		result = tcp_mtu_probe(sk);
2629		if (!result) {
2630			return false;
2631		} else if (result > 0) {
2632			sent_pkts = 1;
2633		}
2634	}
2635
2636	max_segs = tcp_tso_segs(sk, mss_now);
2637	while ((skb = tcp_send_head(sk))) {
2638		unsigned int limit;
2639
2640		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2641			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2642			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2643			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2644			tcp_init_tso_segs(skb, mss_now);
2645			goto repair; /* Skip network transmission */
2646		}
2647
2648		if (tcp_pacing_check(sk))
2649			break;
2650
2651		tso_segs = tcp_init_tso_segs(skb, mss_now);
2652		BUG_ON(!tso_segs);
2653
2654		cwnd_quota = tcp_cwnd_test(tp, skb);
2655		if (!cwnd_quota) {
2656			if (push_one == 2)
2657				/* Force out a loss probe pkt. */
2658				cwnd_quota = 1;
2659			else
2660				break;
2661		}
2662
2663		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2664			is_rwnd_limited = true;
2665			break;
2666		}
2667
2668		if (tso_segs == 1) {
2669			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2670						     (tcp_skb_is_last(sk, skb) ?
2671						      nonagle : TCP_NAGLE_PUSH))))
2672				break;
2673		} else {
2674			if (!push_one &&
2675			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2676						 &is_rwnd_limited, max_segs))
2677				break;
2678		}
2679
2680		limit = mss_now;
2681		if (tso_segs > 1 && !tcp_urg_mode(tp))
2682			limit = tcp_mss_split_point(sk, skb, mss_now,
2683						    min_t(unsigned int,
2684							  cwnd_quota,
2685							  max_segs),
2686						    nonagle);
2687
2688		if (skb->len > limit &&
2689		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2690			break;
2691
2692		if (tcp_small_queue_check(sk, skb, 0))
2693			break;
2694
2695		/* Argh, we hit an empty skb(), presumably a thread
2696		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2697		 * We do not want to send a pure-ack packet and have
2698		 * a strange looking rtx queue with empty packet(s).
2699		 */
2700		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2701			break;
2702
2703		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2704			break;
2705
2706repair:
2707		/* Advance the send_head.  This one is sent out.
2708		 * This call will increment packets_out.
2709		 */
2710		tcp_event_new_data_sent(sk, skb);
2711
2712		tcp_minshall_update(tp, mss_now, skb);
2713		sent_pkts += tcp_skb_pcount(skb);
2714
2715		if (push_one)
2716			break;
2717	}
2718
2719	if (is_rwnd_limited)
2720		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2721	else
2722		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2723
2724	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2725	if (likely(sent_pkts || is_cwnd_limited))
2726		tcp_cwnd_validate(sk, is_cwnd_limited);
2727
2728	if (likely(sent_pkts)) {
2729		if (tcp_in_cwnd_reduction(sk))
2730			tp->prr_out += sent_pkts;
2731
2732		/* Send one loss probe per tail loss episode. */
2733		if (push_one != 2)
2734			tcp_schedule_loss_probe(sk, false);
2735		return false;
2736	}
2737	return !tp->packets_out && !tcp_write_queue_empty(sk);
2738}
2739
2740bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2741{
2742	struct inet_connection_sock *icsk = inet_csk(sk);
2743	struct tcp_sock *tp = tcp_sk(sk);
2744	u32 timeout, timeout_us, rto_delta_us;
2745	int early_retrans;
2746
2747	/* Don't do any loss probe on a Fast Open connection before 3WHS
2748	 * finishes.
2749	 */
2750	if (rcu_access_pointer(tp->fastopen_rsk))
2751		return false;
2752
2753	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2754	/* Schedule a loss probe in 2*RTT for SACK capable connections
2755	 * not in loss recovery, that are either limited by cwnd or application.
2756	 */
2757	if ((early_retrans != 3 && early_retrans != 4) ||
2758	    !tp->packets_out || !tcp_is_sack(tp) ||
2759	    (icsk->icsk_ca_state != TCP_CA_Open &&
2760	     icsk->icsk_ca_state != TCP_CA_CWR))
2761		return false;
2762
2763	/* Probe timeout is 2*rtt. Add minimum RTO to account
2764	 * for delayed ack when there's one outstanding packet. If no RTT
2765	 * sample is available then probe after TCP_TIMEOUT_INIT.
2766	 */
2767	if (tp->srtt_us) {
2768		timeout_us = tp->srtt_us >> 2;
2769		if (tp->packets_out == 1)
2770			timeout_us += tcp_rto_min_us(sk);
2771		else
2772			timeout_us += TCP_TIMEOUT_MIN_US;
2773		timeout = usecs_to_jiffies(timeout_us);
2774	} else {
2775		timeout = TCP_TIMEOUT_INIT;
2776	}
2777
2778	/* If the RTO formula yields an earlier time, then use that time. */
2779	rto_delta_us = advancing_rto ?
2780			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2781			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2782	if (rto_delta_us > 0)
2783		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2784
2785	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2786	return true;
2787}
2788
2789/* Thanks to skb fast clones, we can detect if a prior transmit of
2790 * a packet is still in a qdisc or driver queue.
2791 * In this case, there is very little point doing a retransmit !
2792 */
2793static bool skb_still_in_host_queue(const struct sock *sk,
2794				    const struct sk_buff *skb)
2795{
2796	if (unlikely(skb_fclone_busy(sk, skb))) {
2797		NET_INC_STATS(sock_net(sk),
2798			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2799		return true;
2800	}
2801	return false;
2802}
2803
2804/* When probe timeout (PTO) fires, try send a new segment if possible, else
2805 * retransmit the last segment.
2806 */
2807void tcp_send_loss_probe(struct sock *sk)
2808{
2809	struct tcp_sock *tp = tcp_sk(sk);
2810	struct sk_buff *skb;
2811	int pcount;
2812	int mss = tcp_current_mss(sk);
2813
2814	/* At most one outstanding TLP */
2815	if (tp->tlp_high_seq)
2816		goto rearm_timer;
2817
2818	tp->tlp_retrans = 0;
2819	skb = tcp_send_head(sk);
2820	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2821		pcount = tp->packets_out;
2822		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2823		if (tp->packets_out > pcount)
2824			goto probe_sent;
2825		goto rearm_timer;
2826	}
2827	skb = skb_rb_last(&sk->tcp_rtx_queue);
2828	if (unlikely(!skb)) {
2829		WARN_ONCE(tp->packets_out,
2830			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2831			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2832		inet_csk(sk)->icsk_pending = 0;
2833		return;
2834	}
2835
2836	if (skb_still_in_host_queue(sk, skb))
2837		goto rearm_timer;
2838
2839	pcount = tcp_skb_pcount(skb);
2840	if (WARN_ON(!pcount))
2841		goto rearm_timer;
2842
2843	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2844		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2845					  (pcount - 1) * mss, mss,
2846					  GFP_ATOMIC)))
2847			goto rearm_timer;
2848		skb = skb_rb_next(skb);
2849	}
2850
2851	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2852		goto rearm_timer;
2853
2854	if (__tcp_retransmit_skb(sk, skb, 1))
2855		goto rearm_timer;
2856
2857	tp->tlp_retrans = 1;
2858
2859probe_sent:
2860	/* Record snd_nxt for loss detection. */
2861	tp->tlp_high_seq = tp->snd_nxt;
2862
2863	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2864	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2865	inet_csk(sk)->icsk_pending = 0;
2866rearm_timer:
2867	tcp_rearm_rto(sk);
2868}
2869
2870/* Push out any pending frames which were held back due to
2871 * TCP_CORK or attempt at coalescing tiny packets.
2872 * The socket must be locked by the caller.
2873 */
2874void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2875			       int nonagle)
2876{
2877	/* If we are closed, the bytes will have to remain here.
2878	 * In time closedown will finish, we empty the write queue and
2879	 * all will be happy.
2880	 */
2881	if (unlikely(sk->sk_state == TCP_CLOSE))
2882		return;
2883
2884	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2885			   sk_gfp_mask(sk, GFP_ATOMIC)))
2886		tcp_check_probe_timer(sk);
2887}
2888
2889/* Send _single_ skb sitting at the send head. This function requires
2890 * true push pending frames to setup probe timer etc.
2891 */
2892void tcp_push_one(struct sock *sk, unsigned int mss_now)
2893{
2894	struct sk_buff *skb = tcp_send_head(sk);
2895
2896	BUG_ON(!skb || skb->len < mss_now);
2897
2898	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2899}
2900
2901/* This function returns the amount that we can raise the
2902 * usable window based on the following constraints
2903 *
2904 * 1. The window can never be shrunk once it is offered (RFC 793)
2905 * 2. We limit memory per socket
2906 *
2907 * RFC 1122:
2908 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2909 *  RECV.NEXT + RCV.WIN fixed until:
2910 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2911 *
2912 * i.e. don't raise the right edge of the window until you can raise
2913 * it at least MSS bytes.
2914 *
2915 * Unfortunately, the recommended algorithm breaks header prediction,
2916 * since header prediction assumes th->window stays fixed.
2917 *
2918 * Strictly speaking, keeping th->window fixed violates the receiver
2919 * side SWS prevention criteria. The problem is that under this rule
2920 * a stream of single byte packets will cause the right side of the
2921 * window to always advance by a single byte.
2922 *
2923 * Of course, if the sender implements sender side SWS prevention
2924 * then this will not be a problem.
2925 *
2926 * BSD seems to make the following compromise:
2927 *
2928 *	If the free space is less than the 1/4 of the maximum
2929 *	space available and the free space is less than 1/2 mss,
2930 *	then set the window to 0.
2931 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2932 *	Otherwise, just prevent the window from shrinking
2933 *	and from being larger than the largest representable value.
2934 *
2935 * This prevents incremental opening of the window in the regime
2936 * where TCP is limited by the speed of the reader side taking
2937 * data out of the TCP receive queue. It does nothing about
2938 * those cases where the window is constrained on the sender side
2939 * because the pipeline is full.
2940 *
2941 * BSD also seems to "accidentally" limit itself to windows that are a
2942 * multiple of MSS, at least until the free space gets quite small.
2943 * This would appear to be a side effect of the mbuf implementation.
2944 * Combining these two algorithms results in the observed behavior
2945 * of having a fixed window size at almost all times.
2946 *
2947 * Below we obtain similar behavior by forcing the offered window to
2948 * a multiple of the mss when it is feasible to do so.
2949 *
2950 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2951 * Regular options like TIMESTAMP are taken into account.
2952 */
2953u32 __tcp_select_window(struct sock *sk)
2954{
2955	struct inet_connection_sock *icsk = inet_csk(sk);
2956	struct tcp_sock *tp = tcp_sk(sk);
2957	/* MSS for the peer's data.  Previous versions used mss_clamp
2958	 * here.  I don't know if the value based on our guesses
2959	 * of peer's MSS is better for the performance.  It's more correct
2960	 * but may be worse for the performance because of rcv_mss
2961	 * fluctuations.  --SAW  1998/11/1
2962	 */
2963	int mss = icsk->icsk_ack.rcv_mss;
2964	int free_space = tcp_space(sk);
2965	int allowed_space = tcp_full_space(sk);
2966	int full_space, window;
2967
2968	if (sk_is_mptcp(sk))
2969		mptcp_space(sk, &free_space, &allowed_space);
2970
2971	full_space = min_t(int, tp->window_clamp, allowed_space);
2972
2973	if (unlikely(mss > full_space)) {
2974		mss = full_space;
2975		if (mss <= 0)
2976			return 0;
2977	}
2978	if (free_space < (full_space >> 1)) {
2979		icsk->icsk_ack.quick = 0;
2980
2981		if (tcp_under_memory_pressure(sk))
2982			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2983					       4U * tp->advmss);
2984
2985		/* free_space might become our new window, make sure we don't
2986		 * increase it due to wscale.
2987		 */
2988		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2989
2990		/* if free space is less than mss estimate, or is below 1/16th
2991		 * of the maximum allowed, try to move to zero-window, else
2992		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2993		 * new incoming data is dropped due to memory limits.
2994		 * With large window, mss test triggers way too late in order
2995		 * to announce zero window in time before rmem limit kicks in.
2996		 */
2997		if (free_space < (allowed_space >> 4) || free_space < mss)
2998			return 0;
2999	}
3000
3001	if (free_space > tp->rcv_ssthresh)
3002		free_space = tp->rcv_ssthresh;
3003
3004	/* Don't do rounding if we are using window scaling, since the
3005	 * scaled window will not line up with the MSS boundary anyway.
3006	 */
3007	if (tp->rx_opt.rcv_wscale) {
3008		window = free_space;
3009
3010		/* Advertise enough space so that it won't get scaled away.
3011		 * Import case: prevent zero window announcement if
3012		 * 1<<rcv_wscale > mss.
3013		 */
3014		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3015	} else {
3016		window = tp->rcv_wnd;
3017		/* Get the largest window that is a nice multiple of mss.
3018		 * Window clamp already applied above.
3019		 * If our current window offering is within 1 mss of the
3020		 * free space we just keep it. This prevents the divide
3021		 * and multiply from happening most of the time.
3022		 * We also don't do any window rounding when the free space
3023		 * is too small.
3024		 */
3025		if (window <= free_space - mss || window > free_space)
3026			window = rounddown(free_space, mss);
3027		else if (mss == full_space &&
3028			 free_space > window + (full_space >> 1))
3029			window = free_space;
3030	}
3031
3032	return window;
3033}
3034
3035void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3036			     const struct sk_buff *next_skb)
3037{
3038	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3039		const struct skb_shared_info *next_shinfo =
3040			skb_shinfo(next_skb);
3041		struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3044		shinfo->tskey = next_shinfo->tskey;
3045		TCP_SKB_CB(skb)->txstamp_ack |=
3046			TCP_SKB_CB(next_skb)->txstamp_ack;
3047	}
3048}
3049
3050/* Collapses two adjacent SKB's during retransmission. */
3051static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3052{
3053	struct tcp_sock *tp = tcp_sk(sk);
3054	struct sk_buff *next_skb = skb_rb_next(skb);
3055	int next_skb_size;
3056
3057	next_skb_size = next_skb->len;
3058
3059	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3060
3061	if (next_skb_size) {
3062		if (next_skb_size <= skb_availroom(skb))
3063			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3064				      next_skb_size);
3065		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3066			return false;
3067	}
3068	tcp_highest_sack_replace(sk, next_skb, skb);
3069
3070	/* Update sequence range on original skb. */
3071	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3072
3073	/* Merge over control information. This moves PSH/FIN etc. over */
3074	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3075
3076	/* All done, get rid of second SKB and account for it so
3077	 * packet counting does not break.
3078	 */
3079	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3080	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3081
3082	/* changed transmit queue under us so clear hints */
3083	tcp_clear_retrans_hints_partial(tp);
3084	if (next_skb == tp->retransmit_skb_hint)
3085		tp->retransmit_skb_hint = skb;
3086
3087	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3088
3089	tcp_skb_collapse_tstamp(skb, next_skb);
3090
3091	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3092	return true;
3093}
3094
3095/* Check if coalescing SKBs is legal. */
3096static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3097{
3098	if (tcp_skb_pcount(skb) > 1)
3099		return false;
3100	if (skb_cloned(skb))
3101		return false;
3102	/* Some heuristics for collapsing over SACK'd could be invented */
3103	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3104		return false;
3105
3106	return true;
3107}
3108
3109/* Collapse packets in the retransmit queue to make to create
3110 * less packets on the wire. This is only done on retransmission.
3111 */
3112static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3113				     int space)
3114{
3115	struct tcp_sock *tp = tcp_sk(sk);
3116	struct sk_buff *skb = to, *tmp;
3117	bool first = true;
3118
3119	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3120		return;
3121	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3122		return;
3123
3124	skb_rbtree_walk_from_safe(skb, tmp) {
3125		if (!tcp_can_collapse(sk, skb))
3126			break;
3127
3128		if (!tcp_skb_can_collapse(to, skb))
3129			break;
3130
3131		space -= skb->len;
3132
3133		if (first) {
3134			first = false;
3135			continue;
3136		}
3137
3138		if (space < 0)
3139			break;
3140
3141		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3142			break;
3143
3144		if (!tcp_collapse_retrans(sk, to))
3145			break;
3146	}
3147}
3148
3149/* This retransmits one SKB.  Policy decisions and retransmit queue
3150 * state updates are done by the caller.  Returns non-zero if an
3151 * error occurred which prevented the send.
3152 */
3153int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3154{
3155	struct inet_connection_sock *icsk = inet_csk(sk);
3156	struct tcp_sock *tp = tcp_sk(sk);
3157	unsigned int cur_mss;
3158	int diff, len, err;
3159	int avail_wnd;
3160
3161	/* Inconclusive MTU probe */
3162	if (icsk->icsk_mtup.probe_size)
3163		icsk->icsk_mtup.probe_size = 0;
3164
3165	/* Do not sent more than we queued. 1/4 is reserved for possible
3166	 * copying overhead: fragmentation, tunneling, mangling etc.
3167	 */
3168	if (refcount_read(&sk->sk_wmem_alloc) >
3169	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3170		  sk->sk_sndbuf))
3171		return -EAGAIN;
3172
3173	if (skb_still_in_host_queue(sk, skb))
3174		return -EBUSY;
3175
3176start:
3177	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3178		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3179			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3180			TCP_SKB_CB(skb)->seq++;
3181			goto start;
3182		}
3183		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3184			WARN_ON_ONCE(1);
3185			return -EINVAL;
3186		}
3187		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3188			return -ENOMEM;
3189	}
3190
3191	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3192		return -EHOSTUNREACH; /* Routing failure or similar. */
3193
3194	cur_mss = tcp_current_mss(sk);
3195	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3196
3197	/* If receiver has shrunk his window, and skb is out of
3198	 * new window, do not retransmit it. The exception is the
3199	 * case, when window is shrunk to zero. In this case
3200	 * our retransmit of one segment serves as a zero window probe.
3201	 */
3202	if (avail_wnd <= 0) {
3203		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3204			return -EAGAIN;
3205		avail_wnd = cur_mss;
3206	}
3207
3208	len = cur_mss * segs;
3209	if (len > avail_wnd) {
3210		len = rounddown(avail_wnd, cur_mss);
3211		if (!len)
3212			len = avail_wnd;
3213	}
3214	if (skb->len > len) {
3215		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3216				 cur_mss, GFP_ATOMIC))
3217			return -ENOMEM; /* We'll try again later. */
3218	} else {
3219		if (skb_unclone(skb, GFP_ATOMIC))
3220			return -ENOMEM;
3221
3222		diff = tcp_skb_pcount(skb);
3223		tcp_set_skb_tso_segs(skb, cur_mss);
3224		diff -= tcp_skb_pcount(skb);
3225		if (diff)
3226			tcp_adjust_pcount(sk, skb, diff);
3227		avail_wnd = min_t(int, avail_wnd, cur_mss);
3228		if (skb->len < avail_wnd)
3229			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3230	}
3231
3232	/* RFC3168, section 6.1.1.1. ECN fallback */
3233	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3234		tcp_ecn_clear_syn(sk, skb);
3235
3236	/* Update global and local TCP statistics. */
3237	segs = tcp_skb_pcount(skb);
3238	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3239	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3240		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3241	tp->total_retrans += segs;
3242	tp->bytes_retrans += skb->len;
3243
3244	/* make sure skb->data is aligned on arches that require it
3245	 * and check if ack-trimming & collapsing extended the headroom
3246	 * beyond what csum_start can cover.
3247	 */
3248	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3249		     skb_headroom(skb) >= 0xFFFF)) {
3250		struct sk_buff *nskb;
3251
3252		tcp_skb_tsorted_save(skb) {
3253			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3254			if (nskb) {
3255				nskb->dev = NULL;
3256				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3257			} else {
3258				err = -ENOBUFS;
3259			}
3260		} tcp_skb_tsorted_restore(skb);
3261
3262		if (!err) {
3263			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3264			tcp_rate_skb_sent(sk, skb);
3265		}
3266	} else {
3267		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3268	}
3269
3270	/* To avoid taking spuriously low RTT samples based on a timestamp
3271	 * for a transmit that never happened, always mark EVER_RETRANS
3272	 */
3273	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3274
3275	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3276		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3277				  TCP_SKB_CB(skb)->seq, segs, err);
3278
3279	if (likely(!err)) {
3280		trace_tcp_retransmit_skb(sk, skb);
3281	} else if (err != -EBUSY) {
3282		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3283	}
3284	return err;
3285}
3286
3287int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3288{
3289	struct tcp_sock *tp = tcp_sk(sk);
3290	int err = __tcp_retransmit_skb(sk, skb, segs);
3291
3292	if (err == 0) {
3293#if FASTRETRANS_DEBUG > 0
3294		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3295			net_dbg_ratelimited("retrans_out leaked\n");
3296		}
3297#endif
3298		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3299		tp->retrans_out += tcp_skb_pcount(skb);
3300	}
3301
3302	/* Save stamp of the first (attempted) retransmit. */
3303	if (!tp->retrans_stamp)
3304		tp->retrans_stamp = tcp_skb_timestamp(skb);
3305
3306	if (tp->undo_retrans < 0)
3307		tp->undo_retrans = 0;
3308	tp->undo_retrans += tcp_skb_pcount(skb);
3309	return err;
3310}
3311
3312/* This gets called after a retransmit timeout, and the initially
3313 * retransmitted data is acknowledged.  It tries to continue
3314 * resending the rest of the retransmit queue, until either
3315 * we've sent it all or the congestion window limit is reached.
3316 */
3317void tcp_xmit_retransmit_queue(struct sock *sk)
3318{
3319	const struct inet_connection_sock *icsk = inet_csk(sk);
3320	struct sk_buff *skb, *rtx_head, *hole = NULL;
3321	struct tcp_sock *tp = tcp_sk(sk);
3322	bool rearm_timer = false;
3323	u32 max_segs;
3324	int mib_idx;
3325
3326	if (!tp->packets_out)
3327		return;
3328
3329	rtx_head = tcp_rtx_queue_head(sk);
3330	skb = tp->retransmit_skb_hint ?: rtx_head;
3331	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3332	skb_rbtree_walk_from(skb) {
3333		__u8 sacked;
3334		int segs;
3335
3336		if (tcp_pacing_check(sk))
3337			break;
3338
3339		/* we could do better than to assign each time */
3340		if (!hole)
3341			tp->retransmit_skb_hint = skb;
3342
3343		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3344		if (segs <= 0)
3345			break;
3346		sacked = TCP_SKB_CB(skb)->sacked;
3347		/* In case tcp_shift_skb_data() have aggregated large skbs,
3348		 * we need to make sure not sending too bigs TSO packets
3349		 */
3350		segs = min_t(int, segs, max_segs);
3351
3352		if (tp->retrans_out >= tp->lost_out) {
3353			break;
3354		} else if (!(sacked & TCPCB_LOST)) {
3355			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3356				hole = skb;
3357			continue;
3358
3359		} else {
3360			if (icsk->icsk_ca_state != TCP_CA_Loss)
3361				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3362			else
3363				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3364		}
3365
3366		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3367			continue;
3368
3369		if (tcp_small_queue_check(sk, skb, 1))
3370			break;
3371
3372		if (tcp_retransmit_skb(sk, skb, segs))
3373			break;
3374
3375		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3376
3377		if (tcp_in_cwnd_reduction(sk))
3378			tp->prr_out += tcp_skb_pcount(skb);
3379
3380		if (skb == rtx_head &&
3381		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3382			rearm_timer = true;
3383
3384	}
3385	if (rearm_timer)
3386		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3387				     inet_csk(sk)->icsk_rto,
3388				     TCP_RTO_MAX);
3389}
3390
3391/* We allow to exceed memory limits for FIN packets to expedite
3392 * connection tear down and (memory) recovery.
3393 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3394 * or even be forced to close flow without any FIN.
3395 * In general, we want to allow one skb per socket to avoid hangs
3396 * with edge trigger epoll()
3397 */
3398void sk_forced_mem_schedule(struct sock *sk, int size)
3399{
3400	int delta, amt;
3401
3402	delta = size - sk->sk_forward_alloc;
3403	if (delta <= 0)
3404		return;
3405	amt = sk_mem_pages(delta);
3406	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3407	sk_memory_allocated_add(sk, amt);
3408
3409	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3410		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3411}
3412
3413/* Send a FIN. The caller locks the socket for us.
3414 * We should try to send a FIN packet really hard, but eventually give up.
3415 */
3416void tcp_send_fin(struct sock *sk)
3417{
3418	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3419	struct tcp_sock *tp = tcp_sk(sk);
3420
3421	/* Optimization, tack on the FIN if we have one skb in write queue and
3422	 * this skb was not yet sent, or we are under memory pressure.
3423	 * Note: in the latter case, FIN packet will be sent after a timeout,
3424	 * as TCP stack thinks it has already been transmitted.
3425	 */
3426	tskb = tail;
3427	if (!tskb && tcp_under_memory_pressure(sk))
3428		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3429
3430	if (tskb) {
3431		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3432		TCP_SKB_CB(tskb)->end_seq++;
3433		tp->write_seq++;
3434		if (!tail) {
3435			/* This means tskb was already sent.
3436			 * Pretend we included the FIN on previous transmit.
3437			 * We need to set tp->snd_nxt to the value it would have
3438			 * if FIN had been sent. This is because retransmit path
3439			 * does not change tp->snd_nxt.
3440			 */
3441			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3442			return;
3443		}
3444	} else {
3445		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3446				       sk_gfp_mask(sk, GFP_ATOMIC |
3447						       __GFP_NOWARN));
3448		if (unlikely(!skb))
3449			return;
3450
3451		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3452		skb_reserve(skb, MAX_TCP_HEADER);
3453		sk_forced_mem_schedule(sk, skb->truesize);
3454		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3455		tcp_init_nondata_skb(skb, tp->write_seq,
3456				     TCPHDR_ACK | TCPHDR_FIN);
3457		tcp_queue_skb(sk, skb);
3458	}
3459	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3460}
3461
3462/* We get here when a process closes a file descriptor (either due to
3463 * an explicit close() or as a byproduct of exit()'ing) and there
3464 * was unread data in the receive queue.  This behavior is recommended
3465 * by RFC 2525, section 2.17.  -DaveM
3466 */
3467void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3468{
3469	struct sk_buff *skb;
3470
3471	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3472
3473	/* NOTE: No TCP options attached and we never retransmit this. */
3474	skb = alloc_skb(MAX_TCP_HEADER, priority);
3475	if (!skb) {
3476		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3477		return;
3478	}
3479
3480	/* Reserve space for headers and prepare control bits. */
3481	skb_reserve(skb, MAX_TCP_HEADER);
3482	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3483			     TCPHDR_ACK | TCPHDR_RST);
3484	tcp_mstamp_refresh(tcp_sk(sk));
3485	/* Send it off. */
3486	if (tcp_transmit_skb(sk, skb, 0, priority))
3487		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3488
3489	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3490	 * skb here is different to the troublesome skb, so use NULL
3491	 */
3492	trace_tcp_send_reset(sk, NULL);
3493}
3494
3495/* Send a crossed SYN-ACK during socket establishment.
3496 * WARNING: This routine must only be called when we have already sent
3497 * a SYN packet that crossed the incoming SYN that caused this routine
3498 * to get called. If this assumption fails then the initial rcv_wnd
3499 * and rcv_wscale values will not be correct.
3500 */
3501int tcp_send_synack(struct sock *sk)
3502{
3503	struct sk_buff *skb;
3504
3505	skb = tcp_rtx_queue_head(sk);
3506	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3507		pr_err("%s: wrong queue state\n", __func__);
3508		return -EFAULT;
3509	}
3510	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3511		if (skb_cloned(skb)) {
3512			struct sk_buff *nskb;
3513
3514			tcp_skb_tsorted_save(skb) {
3515				nskb = skb_copy(skb, GFP_ATOMIC);
3516			} tcp_skb_tsorted_restore(skb);
3517			if (!nskb)
3518				return -ENOMEM;
3519			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3520			tcp_highest_sack_replace(sk, skb, nskb);
3521			tcp_rtx_queue_unlink_and_free(skb, sk);
3522			__skb_header_release(nskb);
3523			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3524			sk_wmem_queued_add(sk, nskb->truesize);
3525			sk_mem_charge(sk, nskb->truesize);
3526			skb = nskb;
3527		}
3528
3529		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3530		tcp_ecn_send_synack(sk, skb);
3531	}
3532	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3533}
3534
3535/**
3536 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3537 * @sk: listener socket
3538 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3539 *       should not use it again.
3540 * @req: request_sock pointer
3541 * @foc: cookie for tcp fast open
3542 * @synack_type: Type of synack to prepare
3543 * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3544 */
3545struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3546				struct request_sock *req,
3547				struct tcp_fastopen_cookie *foc,
3548				enum tcp_synack_type synack_type,
3549				struct sk_buff *syn_skb)
3550{
3551	struct inet_request_sock *ireq = inet_rsk(req);
3552	const struct tcp_sock *tp = tcp_sk(sk);
3553	struct tcp_md5sig_key *md5 = NULL;
3554	struct tcp_out_options opts;
3555	struct sk_buff *skb;
3556	int tcp_header_size;
3557	struct tcphdr *th;
3558	int mss;
3559	u64 now;
3560
3561	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3562	if (unlikely(!skb)) {
3563		dst_release(dst);
3564		return NULL;
3565	}
3566	/* Reserve space for headers. */
3567	skb_reserve(skb, MAX_TCP_HEADER);
3568
3569	switch (synack_type) {
3570	case TCP_SYNACK_NORMAL:
3571		skb_set_owner_w(skb, req_to_sk(req));
3572		break;
3573	case TCP_SYNACK_COOKIE:
3574		/* Under synflood, we do not attach skb to a socket,
3575		 * to avoid false sharing.
3576		 */
3577		break;
3578	case TCP_SYNACK_FASTOPEN:
3579		/* sk is a const pointer, because we want to express multiple
3580		 * cpu might call us concurrently.
3581		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3582		 */
3583		skb_set_owner_w(skb, (struct sock *)sk);
3584		break;
3585	}
3586	skb_dst_set(skb, dst);
3587
3588	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3589
3590	memset(&opts, 0, sizeof(opts));
3591	now = tcp_clock_ns();
3592#ifdef CONFIG_SYN_COOKIES
3593	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3594		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3595	else
3596#endif
3597	{
3598		skb->skb_mstamp_ns = now;
3599		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3600			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3601	}
3602
3603#ifdef CONFIG_TCP_MD5SIG
3604	rcu_read_lock();
3605	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3606#endif
3607	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3608	/* bpf program will be interested in the tcp_flags */
3609	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3610	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3611					     foc, synack_type,
3612					     syn_skb) + sizeof(*th);
3613
3614	skb_push(skb, tcp_header_size);
3615	skb_reset_transport_header(skb);
3616
3617	th = (struct tcphdr *)skb->data;
3618	memset(th, 0, sizeof(struct tcphdr));
3619	th->syn = 1;
3620	th->ack = 1;
3621	tcp_ecn_make_synack(req, th);
3622	th->source = htons(ireq->ir_num);
3623	th->dest = ireq->ir_rmt_port;
3624	skb->mark = ireq->ir_mark;
3625	skb->ip_summed = CHECKSUM_PARTIAL;
3626	th->seq = htonl(tcp_rsk(req)->snt_isn);
3627	/* XXX data is queued and acked as is. No buffer/window check */
3628	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3629
3630	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3631	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3632	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3633	th->doff = (tcp_header_size >> 2);
3634	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3635
3636#ifdef CONFIG_TCP_MD5SIG
3637	/* Okay, we have all we need - do the md5 hash if needed */
3638	if (md5)
3639		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3640					       md5, req_to_sk(req), skb);
3641	rcu_read_unlock();
3642#endif
3643
3644	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3645				synack_type, &opts);
3646
3647	skb->skb_mstamp_ns = now;
3648	tcp_add_tx_delay(skb, tp);
3649
3650	return skb;
3651}
3652EXPORT_SYMBOL(tcp_make_synack);
3653
3654static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3655{
3656	struct inet_connection_sock *icsk = inet_csk(sk);
3657	const struct tcp_congestion_ops *ca;
3658	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3659
3660	if (ca_key == TCP_CA_UNSPEC)
3661		return;
3662
3663	rcu_read_lock();
3664	ca = tcp_ca_find_key(ca_key);
3665	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3666		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3667		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3668		icsk->icsk_ca_ops = ca;
3669	}
3670	rcu_read_unlock();
3671}
3672
3673/* Do all connect socket setups that can be done AF independent. */
3674static void tcp_connect_init(struct sock *sk)
3675{
3676	const struct dst_entry *dst = __sk_dst_get(sk);
3677	struct tcp_sock *tp = tcp_sk(sk);
3678	__u8 rcv_wscale;
3679	u32 rcv_wnd;
3680
3681	/* We'll fix this up when we get a response from the other end.
3682	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3683	 */
3684	tp->tcp_header_len = sizeof(struct tcphdr);
3685	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3686		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3687
3688#ifdef CONFIG_TCP_MD5SIG
3689	if (tp->af_specific->md5_lookup(sk, sk))
3690		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3691#endif
3692
3693	/* If user gave his TCP_MAXSEG, record it to clamp */
3694	if (tp->rx_opt.user_mss)
3695		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3696	tp->max_window = 0;
3697	tcp_mtup_init(sk);
3698	tcp_sync_mss(sk, dst_mtu(dst));
3699
3700	tcp_ca_dst_init(sk, dst);
3701
3702	if (!tp->window_clamp)
3703		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3704	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3705
3706	tcp_initialize_rcv_mss(sk);
3707
3708	/* limit the window selection if the user enforce a smaller rx buffer */
3709	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3710	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3711		tp->window_clamp = tcp_full_space(sk);
3712
3713	rcv_wnd = tcp_rwnd_init_bpf(sk);
3714	if (rcv_wnd == 0)
3715		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3716
3717	tcp_select_initial_window(sk, tcp_full_space(sk),
3718				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3719				  &tp->rcv_wnd,
3720				  &tp->window_clamp,
3721				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3722				  &rcv_wscale,
3723				  rcv_wnd);
3724
3725#ifdef CONFIG_LOWPOWER_PROTOCOL
3726	tp->rcv_wnd = TCP_RCV_WND_INIT;
3727#endif /* CONFIG_LOWPOWER_PROTOCOL */
3728	tp->rx_opt.rcv_wscale = rcv_wscale;
3729	tp->rcv_ssthresh = tp->rcv_wnd;
3730
3731	sk->sk_err = 0;
3732	sock_reset_flag(sk, SOCK_DONE);
3733	tp->snd_wnd = 0;
3734	tcp_init_wl(tp, 0);
3735	tcp_write_queue_purge(sk);
3736	tp->snd_una = tp->write_seq;
3737	tp->snd_sml = tp->write_seq;
3738	tp->snd_up = tp->write_seq;
3739	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3740
3741	if (likely(!tp->repair))
3742		tp->rcv_nxt = 0;
3743	else
3744		tp->rcv_tstamp = tcp_jiffies32;
3745	tp->rcv_wup = tp->rcv_nxt;
3746	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3747
3748	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3749	inet_csk(sk)->icsk_retransmits = 0;
3750	tcp_clear_retrans(tp);
3751}
3752
3753static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3754{
3755	struct tcp_sock *tp = tcp_sk(sk);
3756	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3757
3758	tcb->end_seq += skb->len;
3759	__skb_header_release(skb);
3760	sk_wmem_queued_add(sk, skb->truesize);
3761	sk_mem_charge(sk, skb->truesize);
3762	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3763	tp->packets_out += tcp_skb_pcount(skb);
3764}
3765
3766/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3767 * queue a data-only packet after the regular SYN, such that regular SYNs
3768 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3769 * only the SYN sequence, the data are retransmitted in the first ACK.
3770 * If cookie is not cached or other error occurs, falls back to send a
3771 * regular SYN with Fast Open cookie request option.
3772 */
3773static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3774{
3775	struct inet_connection_sock *icsk = inet_csk(sk);
3776	struct tcp_sock *tp = tcp_sk(sk);
3777	struct tcp_fastopen_request *fo = tp->fastopen_req;
3778	int space, err = 0;
3779	struct sk_buff *syn_data;
3780
3781	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3782	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3783		goto fallback;
3784
3785	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3786	 * user-MSS. Reserve maximum option space for middleboxes that add
3787	 * private TCP options. The cost is reduced data space in SYN :(
3788	 */
3789	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3790	/* Sync mss_cache after updating the mss_clamp */
3791	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3792
3793	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3794		MAX_TCP_OPTION_SPACE;
3795
3796	space = min_t(size_t, space, fo->size);
3797
3798	/* limit to order-0 allocations */
3799	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3800
3801	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3802	if (!syn_data)
3803		goto fallback;
3804	syn_data->ip_summed = CHECKSUM_PARTIAL;
3805	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3806	if (space) {
3807		int copied = copy_from_iter(skb_put(syn_data, space), space,
3808					    &fo->data->msg_iter);
3809		if (unlikely(!copied)) {
3810			tcp_skb_tsorted_anchor_cleanup(syn_data);
3811			kfree_skb(syn_data);
3812			goto fallback;
3813		}
3814		if (copied != space) {
3815			skb_trim(syn_data, copied);
3816			space = copied;
3817		}
3818		skb_zcopy_set(syn_data, fo->uarg, NULL);
3819	}
3820	/* No more data pending in inet_wait_for_connect() */
3821	if (space == fo->size)
3822		fo->data = NULL;
3823	fo->copied = space;
3824
3825	tcp_connect_queue_skb(sk, syn_data);
3826	if (syn_data->len)
3827		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3828
3829	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3830
3831	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3832
3833	/* Now full SYN+DATA was cloned and sent (or not),
3834	 * remove the SYN from the original skb (syn_data)
3835	 * we keep in write queue in case of a retransmit, as we
3836	 * also have the SYN packet (with no data) in the same queue.
3837	 */
3838	TCP_SKB_CB(syn_data)->seq++;
3839	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3840	if (!err) {
3841		tp->syn_data = (fo->copied > 0);
3842		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3843		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3844		goto done;
3845	}
3846
3847	/* data was not sent, put it in write_queue */
3848	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3849	tp->packets_out -= tcp_skb_pcount(syn_data);
3850
3851fallback:
3852	/* Send a regular SYN with Fast Open cookie request option */
3853	if (fo->cookie.len > 0)
3854		fo->cookie.len = 0;
3855	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3856	if (err)
3857		tp->syn_fastopen = 0;
3858done:
3859	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3860	return err;
3861}
3862
3863/* Build a SYN and send it off. */
3864int tcp_connect(struct sock *sk)
3865{
3866	struct tcp_sock *tp = tcp_sk(sk);
3867	struct sk_buff *buff;
3868	int err;
3869
3870	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3871
3872	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3873		return -EHOSTUNREACH; /* Routing failure or similar. */
3874
3875	tcp_connect_init(sk);
3876
3877	if (unlikely(tp->repair)) {
3878		tcp_finish_connect(sk, NULL);
3879		return 0;
3880	}
3881
3882	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3883	if (unlikely(!buff))
3884		return -ENOBUFS;
3885
3886	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3887	tcp_mstamp_refresh(tp);
3888	tp->retrans_stamp = tcp_time_stamp(tp);
3889	tcp_connect_queue_skb(sk, buff);
3890	tcp_ecn_send_syn(sk, buff);
3891	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3892
3893	/* Send off SYN; include data in Fast Open. */
3894	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3895	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3896	if (err == -ECONNREFUSED)
3897		return err;
3898
3899	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3900	 * in order to make this packet get counted in tcpOutSegs.
3901	 */
3902	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3903	tp->pushed_seq = tp->write_seq;
3904	buff = tcp_send_head(sk);
3905	if (unlikely(buff)) {
3906		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3907		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3908	}
3909	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3910
3911	/* Timer for repeating the SYN until an answer. */
3912	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3913				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3914	return 0;
3915}
3916EXPORT_SYMBOL(tcp_connect);
3917
3918/* Send out a delayed ack, the caller does the policy checking
3919 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3920 * for details.
3921 */
3922void tcp_send_delayed_ack(struct sock *sk)
3923{
3924	struct inet_connection_sock *icsk = inet_csk(sk);
3925	int ato = icsk->icsk_ack.ato;
3926	unsigned long timeout;
3927
3928	if (ato > TCP_DELACK_MIN) {
3929		const struct tcp_sock *tp = tcp_sk(sk);
3930		int max_ato = HZ / 2;
3931
3932		if (inet_csk_in_pingpong_mode(sk) ||
3933		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3934			max_ato = TCP_DELACK_MAX;
3935
3936		/* Slow path, intersegment interval is "high". */
3937
3938		/* If some rtt estimate is known, use it to bound delayed ack.
3939		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3940		 * directly.
3941		 */
3942		if (tp->srtt_us) {
3943			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3944					TCP_DELACK_MIN);
3945
3946			if (rtt < max_ato)
3947				max_ato = rtt;
3948		}
3949
3950		ato = min(ato, max_ato);
3951	}
3952
3953	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3954
3955	/* Stay within the limit we were given */
3956	timeout = jiffies + ato;
3957
3958	/* Use new timeout only if there wasn't a older one earlier. */
3959	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3960		/* If delack timer is about to expire, send ACK now. */
3961		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3962			tcp_send_ack(sk);
3963			return;
3964		}
3965
3966		if (!time_before(timeout, icsk->icsk_ack.timeout))
3967			timeout = icsk->icsk_ack.timeout;
3968	}
3969	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3970	icsk->icsk_ack.timeout = timeout;
3971	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3972}
3973
3974/* This routine sends an ack and also updates the window. */
3975void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3976{
3977	struct sk_buff *buff;
3978
3979	/* If we have been reset, we may not send again. */
3980	if (sk->sk_state == TCP_CLOSE)
3981		return;
3982
3983	/* We are not putting this on the write queue, so
3984	 * tcp_transmit_skb() will set the ownership to this
3985	 * sock.
3986	 */
3987	buff = alloc_skb(MAX_TCP_HEADER,
3988			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3989	if (unlikely(!buff)) {
3990		struct inet_connection_sock *icsk = inet_csk(sk);
3991		unsigned long delay;
3992
3993		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3994		if (delay < TCP_RTO_MAX)
3995			icsk->icsk_ack.retry++;
3996		inet_csk_schedule_ack(sk);
3997		icsk->icsk_ack.ato = TCP_ATO_MIN;
3998		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3999		return;
4000	}
4001
4002	/* Reserve space for headers and prepare control bits. */
4003	skb_reserve(buff, MAX_TCP_HEADER);
4004	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4005
4006	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4007	 * too much.
4008	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4009	 */
4010	skb_set_tcp_pure_ack(buff);
4011
4012	/* Send it off, this clears delayed acks for us. */
4013	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4014}
4015EXPORT_SYMBOL_GPL(__tcp_send_ack);
4016
4017void tcp_send_ack(struct sock *sk)
4018{
4019	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4020}
4021
4022/* This routine sends a packet with an out of date sequence
4023 * number. It assumes the other end will try to ack it.
4024 *
4025 * Question: what should we make while urgent mode?
4026 * 4.4BSD forces sending single byte of data. We cannot send
4027 * out of window data, because we have SND.NXT==SND.MAX...
4028 *
4029 * Current solution: to send TWO zero-length segments in urgent mode:
4030 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4031 * out-of-date with SND.UNA-1 to probe window.
4032 */
4033static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4034{
4035	struct tcp_sock *tp = tcp_sk(sk);
4036	struct sk_buff *skb;
4037
4038	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4039	skb = alloc_skb(MAX_TCP_HEADER,
4040			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4041	if (!skb)
4042		return -1;
4043
4044	/* Reserve space for headers and set control bits. */
4045	skb_reserve(skb, MAX_TCP_HEADER);
4046	/* Use a previous sequence.  This should cause the other
4047	 * end to send an ack.  Don't queue or clone SKB, just
4048	 * send it.
4049	 */
4050	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4051	NET_INC_STATS(sock_net(sk), mib);
4052	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4053}
4054
4055/* Called from setsockopt( ... TCP_REPAIR ) */
4056void tcp_send_window_probe(struct sock *sk)
4057{
4058	if (sk->sk_state == TCP_ESTABLISHED) {
4059		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4060		tcp_mstamp_refresh(tcp_sk(sk));
4061		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4062	}
4063}
4064
4065/* Initiate keepalive or window probe from timer. */
4066int tcp_write_wakeup(struct sock *sk, int mib)
4067{
4068	struct tcp_sock *tp = tcp_sk(sk);
4069	struct sk_buff *skb;
4070
4071	if (sk->sk_state == TCP_CLOSE)
4072		return -1;
4073
4074	skb = tcp_send_head(sk);
4075	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4076		int err;
4077		unsigned int mss = tcp_current_mss(sk);
4078		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4079
4080		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4081			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4082
4083		/* We are probing the opening of a window
4084		 * but the window size is != 0
4085		 * must have been a result SWS avoidance ( sender )
4086		 */
4087		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4088		    skb->len > mss) {
4089			seg_size = min(seg_size, mss);
4090			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4091			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4092					 skb, seg_size, mss, GFP_ATOMIC))
4093				return -1;
4094		} else if (!tcp_skb_pcount(skb))
4095			tcp_set_skb_tso_segs(skb, mss);
4096
4097		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4098		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4099		if (!err)
4100			tcp_event_new_data_sent(sk, skb);
4101		return err;
4102	} else {
4103		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4104			tcp_xmit_probe_skb(sk, 1, mib);
4105		return tcp_xmit_probe_skb(sk, 0, mib);
4106	}
4107}
4108
4109/* A window probe timeout has occurred.  If window is not closed send
4110 * a partial packet else a zero probe.
4111 */
4112void tcp_send_probe0(struct sock *sk)
4113{
4114	struct inet_connection_sock *icsk = inet_csk(sk);
4115	struct tcp_sock *tp = tcp_sk(sk);
4116	unsigned long timeout;
4117	int err;
4118
4119	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4120
4121	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4122		/* Cancel probe timer, if it is not required. */
4123		icsk->icsk_probes_out = 0;
4124		icsk->icsk_backoff = 0;
4125		icsk->icsk_probes_tstamp = 0;
4126		return;
4127	}
4128
4129	icsk->icsk_probes_out++;
4130	if (err <= 0) {
4131		if (icsk->icsk_backoff < READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retries2))
4132			icsk->icsk_backoff++;
4133		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4134	} else {
4135		/* If packet was not sent due to local congestion,
4136		 * Let senders fight for local resources conservatively.
4137		 */
4138		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4139	}
4140
4141	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4142	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4143}
4144
4145int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4146{
4147	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4148	struct flowi fl;
4149	int res;
4150
4151	tcp_rsk(req)->txhash = net_tx_rndhash();
4152	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4153				  NULL);
4154	if (!res) {
4155		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4156		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4157		if (unlikely(tcp_passive_fastopen(sk)))
4158			tcp_sk(sk)->total_retrans++;
4159		trace_tcp_retransmit_synack(sk, req);
4160	}
4161	return res;
4162}
4163EXPORT_SYMBOL(tcp_rtx_synack);
4164