1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/sysctl.h>
26#include <linux/workqueue.h>
27#include <linux/static_key.h>
28#include <net/tcp.h>
29#include <net/inet_common.h>
30#include <net/xfrm.h>
31#include <net/busy_poll.h>
32
33static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
34{
35	if (seq == s_win)
36		return true;
37	if (after(end_seq, s_win) && before(seq, e_win))
38		return true;
39	return seq == e_win && seq == end_seq;
40}
41
42static enum tcp_tw_status
43tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
44				  const struct sk_buff *skb, int mib_idx)
45{
46	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
47
48	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
49				  &tcptw->tw_last_oow_ack_time)) {
50		/* Send ACK. Note, we do not put the bucket,
51		 * it will be released by caller.
52		 */
53		return TCP_TW_ACK;
54	}
55
56	/* We are rate-limiting, so just release the tw sock and drop skb. */
57	inet_twsk_put(tw);
58	return TCP_TW_SUCCESS;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 *
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
90 */
91enum tcp_tw_status
92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93			   const struct tcphdr *th)
94{
95	struct tcp_options_received tmp_opt;
96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97	bool paws_reject = false;
98
99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			if (tmp_opt.rcv_tsecr)
105				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109		}
110	}
111
112	if (tw->tw_substate == TCP_FIN_WAIT2) {
113		/* Just repeat all the checks of tcp_rcv_state_process() */
114
115		/* Out of window, send ACK */
116		if (paws_reject ||
117		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118				   tcptw->tw_rcv_nxt,
119				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120			return tcp_timewait_check_oow_rate_limit(
121				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122
123		if (th->rst)
124			goto kill;
125
126		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127			return TCP_TW_RST;
128
129		/* Dup ACK? */
130		if (!th->ack ||
131		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133			inet_twsk_put(tw);
134			return TCP_TW_SUCCESS;
135		}
136
137		/* New data or FIN. If new data arrive after half-duplex close,
138		 * reset.
139		 */
140		if (!th->fin ||
141		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142			return TCP_TW_RST;
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150		}
151
152		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
153		return TCP_TW_ACK;
154	}
155
156	/*
157	 *	Now real TIME-WAIT state.
158	 *
159	 *	RFC 1122:
160	 *	"When a connection is [...] on TIME-WAIT state [...]
161	 *	[a TCP] MAY accept a new SYN from the remote TCP to
162	 *	reopen the connection directly, if it:
163	 *
164	 *	(1)  assigns its initial sequence number for the new
165	 *	connection to be larger than the largest sequence
166	 *	number it used on the previous connection incarnation,
167	 *	and
168	 *
169	 *	(2)  returns to TIME-WAIT state if the SYN turns out
170	 *	to be an old duplicate".
171	 */
172
173	if (!paws_reject &&
174	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176		/* In window segment, it may be only reset or bare ack. */
177
178		if (th->rst) {
179			/* This is TIME_WAIT assassination, in two flavors.
180			 * Oh well... nobody has a sufficient solution to this
181			 * protocol bug yet.
182			 */
183			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
184kill:
185				inet_twsk_deschedule_put(tw);
186				return TCP_TW_SUCCESS;
187			}
188		} else {
189			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190		}
191
192		if (tmp_opt.saw_tstamp) {
193			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
194			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
195		}
196
197		inet_twsk_put(tw);
198		return TCP_TW_SUCCESS;
199	}
200
201	/* Out of window segment.
202
203	   All the segments are ACKed immediately.
204
205	   The only exception is new SYN. We accept it, if it is
206	   not old duplicate and we are not in danger to be killed
207	   by delayed old duplicates. RFC check is that it has
208	   newer sequence number works at rates <40Mbit/sec.
209	   However, if paws works, it is reliable AND even more,
210	   we even may relax silly seq space cutoff.
211
212	   RED-PEN: we violate main RFC requirement, if this SYN will appear
213	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
214	   we must return socket to time-wait state. It is not good,
215	   but not fatal yet.
216	 */
217
218	if (th->syn && !th->rst && !th->ack && !paws_reject &&
219	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
220	     (tmp_opt.saw_tstamp &&
221	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
222		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
223		if (isn == 0)
224			isn++;
225		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
226		return TCP_TW_SYN;
227	}
228
229	if (paws_reject)
230		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
231
232	if (!th->rst) {
233		/* In this case we must reset the TIMEWAIT timer.
234		 *
235		 * If it is ACKless SYN it may be both old duplicate
236		 * and new good SYN with random sequence number <rcv_nxt.
237		 * Do not reschedule in the last case.
238		 */
239		if (paws_reject || th->ack)
240			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
241
242		return tcp_timewait_check_oow_rate_limit(
243			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
244	}
245	inet_twsk_put(tw);
246	return TCP_TW_SUCCESS;
247}
248EXPORT_SYMBOL(tcp_timewait_state_process);
249
250/*
251 * Move a socket to time-wait or dead fin-wait-2 state.
252 */
253void tcp_time_wait(struct sock *sk, int state, int timeo)
254{
255	const struct inet_connection_sock *icsk = inet_csk(sk);
256	const struct tcp_sock *tp = tcp_sk(sk);
257	struct inet_timewait_sock *tw;
258	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
259
260	tw = inet_twsk_alloc(sk, tcp_death_row, state);
261
262	if (tw) {
263		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
264		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
265		struct inet_sock *inet = inet_sk(sk);
266
267		tw->tw_transparent	= inet->transparent;
268		tw->tw_mark		= sk->sk_mark;
269		tw->tw_priority		= sk->sk_priority;
270		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
271		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
272		tcptw->tw_snd_nxt	= tp->snd_nxt;
273		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
274		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
275		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
276		tcptw->tw_ts_offset	= tp->tsoffset;
277		tcptw->tw_last_oow_ack_time = 0;
278		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
279#if IS_ENABLED(CONFIG_IPV6)
280		if (tw->tw_family == PF_INET6) {
281			struct ipv6_pinfo *np = inet6_sk(sk);
282
283			tw->tw_v6_daddr = sk->sk_v6_daddr;
284			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
285			tw->tw_tclass = np->tclass;
286			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
287			tw->tw_txhash = sk->sk_txhash;
288			tw->tw_ipv6only = sk->sk_ipv6only;
289		}
290#endif
291
292#ifdef CONFIG_TCP_MD5SIG
293		/*
294		 * The timewait bucket does not have the key DB from the
295		 * sock structure. We just make a quick copy of the
296		 * md5 key being used (if indeed we are using one)
297		 * so the timewait ack generating code has the key.
298		 */
299		do {
300			tcptw->tw_md5_key = NULL;
301			if (static_branch_unlikely(&tcp_md5_needed)) {
302				struct tcp_md5sig_key *key;
303
304				key = tp->af_specific->md5_lookup(sk, sk);
305				if (key) {
306					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
307					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
308				}
309			}
310		} while (0);
311#endif
312
313		/* Get the TIME_WAIT timeout firing. */
314		if (timeo < rto)
315			timeo = rto;
316
317		if (state == TCP_TIME_WAIT)
318			timeo = TCP_TIMEWAIT_LEN;
319
320		/* tw_timer is pinned, so we need to make sure BH are disabled
321		 * in following section, otherwise timer handler could run before
322		 * we complete the initialization.
323		 */
324		local_bh_disable();
325		inet_twsk_schedule(tw, timeo);
326		/* Linkage updates.
327		 * Note that access to tw after this point is illegal.
328		 */
329		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
330		local_bh_enable();
331	} else {
332		/* Sorry, if we're out of memory, just CLOSE this
333		 * socket up.  We've got bigger problems than
334		 * non-graceful socket closings.
335		 */
336		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
337	}
338
339	tcp_update_metrics(sk);
340	tcp_done(sk);
341}
342EXPORT_SYMBOL(tcp_time_wait);
343
344void tcp_twsk_destructor(struct sock *sk)
345{
346#ifdef CONFIG_TCP_MD5SIG
347	if (static_branch_unlikely(&tcp_md5_needed)) {
348		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
349
350		if (twsk->tw_md5_key)
351			kfree_rcu(twsk->tw_md5_key, rcu);
352	}
353#endif
354}
355EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
356
357/* Warning : This function is called without sk_listener being locked.
358 * Be sure to read socket fields once, as their value could change under us.
359 */
360void tcp_openreq_init_rwin(struct request_sock *req,
361			   const struct sock *sk_listener,
362			   const struct dst_entry *dst)
363{
364	struct inet_request_sock *ireq = inet_rsk(req);
365	const struct tcp_sock *tp = tcp_sk(sk_listener);
366	int full_space = tcp_full_space(sk_listener);
367	u32 window_clamp;
368	__u8 rcv_wscale;
369	u32 rcv_wnd;
370	int mss;
371
372	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
373	window_clamp = READ_ONCE(tp->window_clamp);
374	/* Set this up on the first call only */
375	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
376
377	/* limit the window selection if the user enforce a smaller rx buffer */
378	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
379	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
380		req->rsk_window_clamp = full_space;
381
382	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
383	if (rcv_wnd == 0)
384		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
385	else if (full_space < rcv_wnd * mss)
386		full_space = rcv_wnd * mss;
387
388	/* tcp_full_space because it is guaranteed to be the first packet */
389	tcp_select_initial_window(sk_listener, full_space,
390		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
391		&req->rsk_rcv_wnd,
392		&req->rsk_window_clamp,
393		ireq->wscale_ok,
394		&rcv_wscale,
395		rcv_wnd);
396	ireq->rcv_wscale = rcv_wscale;
397}
398EXPORT_SYMBOL(tcp_openreq_init_rwin);
399
400static void tcp_ecn_openreq_child(struct tcp_sock *tp,
401				  const struct request_sock *req)
402{
403	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
404}
405
406void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
407{
408	struct inet_connection_sock *icsk = inet_csk(sk);
409	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
410	bool ca_got_dst = false;
411
412	if (ca_key != TCP_CA_UNSPEC) {
413		const struct tcp_congestion_ops *ca;
414
415		rcu_read_lock();
416		ca = tcp_ca_find_key(ca_key);
417		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
418			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
419			icsk->icsk_ca_ops = ca;
420			ca_got_dst = true;
421		}
422		rcu_read_unlock();
423	}
424
425	/* If no valid choice made yet, assign current system default ca. */
426	if (!ca_got_dst &&
427	    (!icsk->icsk_ca_setsockopt ||
428	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
429		tcp_assign_congestion_control(sk);
430
431	tcp_set_ca_state(sk, TCP_CA_Open);
432}
433EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
434
435static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
436				    struct request_sock *req,
437				    struct tcp_sock *newtp)
438{
439#if IS_ENABLED(CONFIG_SMC)
440	struct inet_request_sock *ireq;
441
442	if (static_branch_unlikely(&tcp_have_smc)) {
443		ireq = inet_rsk(req);
444		if (oldtp->syn_smc && !ireq->smc_ok)
445			newtp->syn_smc = 0;
446	}
447#endif
448}
449
450/* This is not only more efficient than what we used to do, it eliminates
451 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
452 *
453 * Actually, we could lots of memory writes here. tp of listening
454 * socket contains all necessary default parameters.
455 */
456struct sock *tcp_create_openreq_child(const struct sock *sk,
457				      struct request_sock *req,
458				      struct sk_buff *skb)
459{
460	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
461	const struct inet_request_sock *ireq = inet_rsk(req);
462	struct tcp_request_sock *treq = tcp_rsk(req);
463	struct inet_connection_sock *newicsk;
464	struct tcp_sock *oldtp, *newtp;
465	u32 seq;
466
467	if (!newsk)
468		return NULL;
469
470	newicsk = inet_csk(newsk);
471	newtp = tcp_sk(newsk);
472	oldtp = tcp_sk(sk);
473
474	smc_check_reset_syn_req(oldtp, req, newtp);
475
476	/* Now setup tcp_sock */
477	newtp->pred_flags = 0;
478
479	seq = treq->rcv_isn + 1;
480	newtp->rcv_wup = seq;
481	WRITE_ONCE(newtp->copied_seq, seq);
482	WRITE_ONCE(newtp->rcv_nxt, seq);
483	newtp->segs_in = 1;
484
485	seq = treq->snt_isn + 1;
486	newtp->snd_sml = newtp->snd_una = seq;
487	WRITE_ONCE(newtp->snd_nxt, seq);
488	newtp->snd_up = seq;
489
490	INIT_LIST_HEAD(&newtp->tsq_node);
491	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
492
493	tcp_init_wl(newtp, treq->rcv_isn);
494
495	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
496	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
497
498	newtp->lsndtime = tcp_jiffies32;
499	newsk->sk_txhash = treq->txhash;
500	newtp->total_retrans = req->num_retrans;
501
502	tcp_init_xmit_timers(newsk);
503	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
504
505	if (sock_flag(newsk, SOCK_KEEPOPEN))
506		inet_csk_reset_keepalive_timer(newsk,
507					       keepalive_time_when(newtp));
508
509	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
510	newtp->rx_opt.sack_ok = ireq->sack_ok;
511	newtp->window_clamp = req->rsk_window_clamp;
512	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
513	newtp->rcv_wnd = req->rsk_rcv_wnd;
514	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
515	if (newtp->rx_opt.wscale_ok) {
516		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
517		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
518	} else {
519		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
520		newtp->window_clamp = min(newtp->window_clamp, 65535U);
521	}
522	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
523	newtp->max_window = newtp->snd_wnd;
524
525	if (newtp->rx_opt.tstamp_ok) {
526		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
527		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
528		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529	} else {
530		newtp->rx_opt.ts_recent_stamp = 0;
531		newtp->tcp_header_len = sizeof(struct tcphdr);
532	}
533	if (req->num_timeout) {
534		newtp->undo_marker = treq->snt_isn;
535		newtp->retrans_stamp = div_u64(treq->snt_synack,
536					       USEC_PER_SEC / TCP_TS_HZ);
537	}
538	newtp->tsoffset = treq->ts_off;
539#ifdef CONFIG_TCP_MD5SIG
540	newtp->md5sig_info = NULL;	/*XXX*/
541	if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
542		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
543#endif
544	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
545		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
546	newtp->rx_opt.mss_clamp = req->mss;
547	tcp_ecn_openreq_child(newtp, req);
548	newtp->fastopen_req = NULL;
549	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
550
551	tcp_bpf_clone(sk, newsk);
552
553	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
554
555	return newsk;
556}
557EXPORT_SYMBOL(tcp_create_openreq_child);
558
559/*
560 * Process an incoming packet for SYN_RECV sockets represented as a
561 * request_sock. Normally sk is the listener socket but for TFO it
562 * points to the child socket.
563 *
564 * XXX (TFO) - The current impl contains a special check for ack
565 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
566 *
567 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
568 *
569 * Note: If @fastopen is true, this can be called from process context.
570 *       Otherwise, this is from BH context.
571 */
572
573struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
574			   struct request_sock *req,
575			   bool fastopen, bool *req_stolen)
576{
577	struct tcp_options_received tmp_opt;
578	struct sock *child;
579	const struct tcphdr *th = tcp_hdr(skb);
580	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
581	bool paws_reject = false;
582	bool own_req;
583
584	tmp_opt.saw_tstamp = 0;
585	if (th->doff > (sizeof(struct tcphdr)>>2)) {
586		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
587
588		if (tmp_opt.saw_tstamp) {
589			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
590			if (tmp_opt.rcv_tsecr)
591				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
592			/* We do not store true stamp, but it is not required,
593			 * it can be estimated (approximately)
594			 * from another data.
595			 */
596			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
597			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
598		}
599	}
600
601	/* Check for pure retransmitted SYN. */
602	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
603	    flg == TCP_FLAG_SYN &&
604	    !paws_reject) {
605		/*
606		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
607		 * this case on figure 6 and figure 8, but formal
608		 * protocol description says NOTHING.
609		 * To be more exact, it says that we should send ACK,
610		 * because this segment (at least, if it has no data)
611		 * is out of window.
612		 *
613		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
614		 *  describe SYN-RECV state. All the description
615		 *  is wrong, we cannot believe to it and should
616		 *  rely only on common sense and implementation
617		 *  experience.
618		 *
619		 * Enforce "SYN-ACK" according to figure 8, figure 6
620		 * of RFC793, fixed by RFC1122.
621		 *
622		 * Note that even if there is new data in the SYN packet
623		 * they will be thrown away too.
624		 *
625		 * Reset timer after retransmitting SYNACK, similar to
626		 * the idea of fast retransmit in recovery.
627		 */
628		if (!tcp_oow_rate_limited(sock_net(sk), skb,
629					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
630					  &tcp_rsk(req)->last_oow_ack_time) &&
631
632		    !inet_rtx_syn_ack(sk, req)) {
633			unsigned long expires = jiffies;
634
635			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
636				       TCP_RTO_MAX);
637			if (!fastopen)
638				mod_timer_pending(&req->rsk_timer, expires);
639			else
640				req->rsk_timer.expires = expires;
641		}
642		return NULL;
643	}
644
645	/* Further reproduces section "SEGMENT ARRIVES"
646	   for state SYN-RECEIVED of RFC793.
647	   It is broken, however, it does not work only
648	   when SYNs are crossed.
649
650	   You would think that SYN crossing is impossible here, since
651	   we should have a SYN_SENT socket (from connect()) on our end,
652	   but this is not true if the crossed SYNs were sent to both
653	   ends by a malicious third party.  We must defend against this,
654	   and to do that we first verify the ACK (as per RFC793, page
655	   36) and reset if it is invalid.  Is this a true full defense?
656	   To convince ourselves, let us consider a way in which the ACK
657	   test can still pass in this 'malicious crossed SYNs' case.
658	   Malicious sender sends identical SYNs (and thus identical sequence
659	   numbers) to both A and B:
660
661		A: gets SYN, seq=7
662		B: gets SYN, seq=7
663
664	   By our good fortune, both A and B select the same initial
665	   send sequence number of seven :-)
666
667		A: sends SYN|ACK, seq=7, ack_seq=8
668		B: sends SYN|ACK, seq=7, ack_seq=8
669
670	   So we are now A eating this SYN|ACK, ACK test passes.  So
671	   does sequence test, SYN is truncated, and thus we consider
672	   it a bare ACK.
673
674	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
675	   bare ACK.  Otherwise, we create an established connection.  Both
676	   ends (listening sockets) accept the new incoming connection and try
677	   to talk to each other. 8-)
678
679	   Note: This case is both harmless, and rare.  Possibility is about the
680	   same as us discovering intelligent life on another plant tomorrow.
681
682	   But generally, we should (RFC lies!) to accept ACK
683	   from SYNACK both here and in tcp_rcv_state_process().
684	   tcp_rcv_state_process() does not, hence, we do not too.
685
686	   Note that the case is absolutely generic:
687	   we cannot optimize anything here without
688	   violating protocol. All the checks must be made
689	   before attempt to create socket.
690	 */
691
692	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
693	 *                  and the incoming segment acknowledges something not yet
694	 *                  sent (the segment carries an unacceptable ACK) ...
695	 *                  a reset is sent."
696	 *
697	 * Invalid ACK: reset will be sent by listening socket.
698	 * Note that the ACK validity check for a Fast Open socket is done
699	 * elsewhere and is checked directly against the child socket rather
700	 * than req because user data may have been sent out.
701	 */
702	if ((flg & TCP_FLAG_ACK) && !fastopen &&
703	    (TCP_SKB_CB(skb)->ack_seq !=
704	     tcp_rsk(req)->snt_isn + 1))
705		return sk;
706
707	/* Also, it would be not so bad idea to check rcv_tsecr, which
708	 * is essentially ACK extension and too early or too late values
709	 * should cause reset in unsynchronized states.
710	 */
711
712	/* RFC793: "first check sequence number". */
713
714	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
715					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
716		/* Out of window: send ACK and drop. */
717		if (!(flg & TCP_FLAG_RST) &&
718		    !tcp_oow_rate_limited(sock_net(sk), skb,
719					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
720					  &tcp_rsk(req)->last_oow_ack_time))
721			req->rsk_ops->send_ack(sk, skb, req);
722		if (paws_reject)
723			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
724		return NULL;
725	}
726
727	/* In sequence, PAWS is OK. */
728
729	/* TODO: We probably should defer ts_recent change once
730	 * we take ownership of @req.
731	 */
732	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
733		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
734
735	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
736		/* Truncate SYN, it is out of window starting
737		   at tcp_rsk(req)->rcv_isn + 1. */
738		flg &= ~TCP_FLAG_SYN;
739	}
740
741	/* RFC793: "second check the RST bit" and
742	 *	   "fourth, check the SYN bit"
743	 */
744	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
745		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
746		goto embryonic_reset;
747	}
748
749	/* ACK sequence verified above, just make sure ACK is
750	 * set.  If ACK not set, just silently drop the packet.
751	 *
752	 * XXX (TFO) - if we ever allow "data after SYN", the
753	 * following check needs to be removed.
754	 */
755	if (!(flg & TCP_FLAG_ACK))
756		return NULL;
757
758	/* For Fast Open no more processing is needed (sk is the
759	 * child socket).
760	 */
761	if (fastopen)
762		return sk;
763
764	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
765	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
766	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
767		inet_rsk(req)->acked = 1;
768		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
769		return NULL;
770	}
771
772	/* OK, ACK is valid, create big socket and
773	 * feed this segment to it. It will repeat all
774	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
775	 * ESTABLISHED STATE. If it will be dropped after
776	 * socket is created, wait for troubles.
777	 */
778	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
779							 req, &own_req);
780	if (!child)
781		goto listen_overflow;
782
783	if (own_req && rsk_drop_req(req)) {
784		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
785		inet_csk_reqsk_queue_drop_and_put(sk, req);
786		return child;
787	}
788
789	sock_rps_save_rxhash(child, skb);
790	tcp_synack_rtt_meas(child, req);
791	*req_stolen = !own_req;
792	return inet_csk_complete_hashdance(sk, child, req, own_req);
793
794listen_overflow:
795	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
796		inet_rsk(req)->acked = 1;
797		return NULL;
798	}
799
800embryonic_reset:
801	if (!(flg & TCP_FLAG_RST)) {
802		/* Received a bad SYN pkt - for TFO We try not to reset
803		 * the local connection unless it's really necessary to
804		 * avoid becoming vulnerable to outside attack aiming at
805		 * resetting legit local connections.
806		 */
807		req->rsk_ops->send_reset(sk, skb);
808	} else if (fastopen) { /* received a valid RST pkt */
809		reqsk_fastopen_remove(sk, req, true);
810		tcp_reset(sk);
811	}
812	if (!fastopen) {
813		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
814
815		if (unlinked)
816			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
817		*req_stolen = !unlinked;
818	}
819	return NULL;
820}
821EXPORT_SYMBOL(tcp_check_req);
822
823/*
824 * Queue segment on the new socket if the new socket is active,
825 * otherwise we just shortcircuit this and continue with
826 * the new socket.
827 *
828 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
829 * when entering. But other states are possible due to a race condition
830 * where after __inet_lookup_established() fails but before the listener
831 * locked is obtained, other packets cause the same connection to
832 * be created.
833 */
834
835int tcp_child_process(struct sock *parent, struct sock *child,
836		      struct sk_buff *skb)
837	__releases(&((child)->sk_lock.slock))
838{
839	int ret = 0;
840	int state = child->sk_state;
841
842	/* record NAPI ID of child */
843	sk_mark_napi_id(child, skb);
844
845	tcp_segs_in(tcp_sk(child), skb);
846	if (!sock_owned_by_user(child)) {
847		ret = tcp_rcv_state_process(child, skb);
848		/* Wakeup parent, send SIGIO */
849		if (state == TCP_SYN_RECV && child->sk_state != state)
850			parent->sk_data_ready(parent);
851	} else {
852		/* Alas, it is possible again, because we do lookup
853		 * in main socket hash table and lock on listening
854		 * socket does not protect us more.
855		 */
856		__sk_add_backlog(child, skb);
857	}
858
859	bh_unlock_sock(child);
860	sock_put(child);
861	return ret;
862}
863EXPORT_SYMBOL(tcp_child_process);
864