xref: /kernel/linux/linux-5.10/net/ipv4/tcp_input.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 *		Pedro Roque	:	Fast Retransmit/Recovery.
25 *					Two receive queues.
26 *					Retransmit queue handled by TCP.
27 *					Better retransmit timer handling.
28 *					New congestion avoidance.
29 *					Header prediction.
30 *					Variable renaming.
31 *
32 *		Eric		:	Fast Retransmit.
33 *		Randy Scott	:	MSS option defines.
34 *		Eric Schenk	:	Fixes to slow start algorithm.
35 *		Eric Schenk	:	Yet another double ACK bug.
36 *		Eric Schenk	:	Delayed ACK bug fixes.
37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38 *		David S. Miller	:	Don't allow zero congestion window.
39 *		Eric Schenk	:	Fix retransmitter so that it sends
40 *					next packet on ack of previous packet.
41 *		Andi Kleen	:	Moved open_request checking here
42 *					and process RSTs for open_requests.
43 *		Andi Kleen	:	Better prune_queue, and other fixes.
44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
45 *					timestamps.
46 *		Andrey Savochkin:	Check sequence numbers correctly when
47 *					removing SACKs due to in sequence incoming
48 *					data segments.
49 *		Andi Kleen:		Make sure we never ack data there is not
50 *					enough room for. Also make this condition
51 *					a fatal error if it might still happen.
52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53 *					connections with MSS<min(MTU,ann. MSS)
54 *					work without delayed acks.
55 *		Andi Kleen:		Process packets with PSH set in the
56 *					fast path.
57 *		J Hadi Salim:		ECN support
58 *	 	Andrei Gurtov,
59 *		Pasi Sarolahti,
60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61 *					engine. Lots of bugs are found.
62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63 */
64
65#define pr_fmt(fmt) "TCP: " fmt
66
67#include <linux/mm.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/sysctl.h>
71#include <linux/kernel.h>
72#include <linux/prefetch.h>
73#include <net/dst.h>
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
78#include <linux/errqueue.h>
79#include <trace/events/tcp.h>
80#include <linux/jump_label_ratelimit.h>
81#include <net/busy_poll.h>
82#include <net/mptcp.h>
83#ifdef CONFIG_LOWPOWER_PROTOCOL
84#include <net/lowpower_protocol.h>
85#endif /* CONFIG_LOWPOWER_PROTOCOL */
86
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88
89#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
90#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
91#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
92#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
93#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
94#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
95#define FLAG_ECE		0x40 /* ECE in this ACK				*/
96#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
97#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
98#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
99#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
101#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
102#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
103#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
104#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
105#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
106
107#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
111
112#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114
115#define REXMIT_NONE	0 /* no loss recovery to do */
116#define REXMIT_LOST	1 /* retransmit packets marked lost */
117#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
118
119#if IS_ENABLED(CONFIG_TLS_DEVICE)
120static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121
122void clean_acked_data_enable(struct inet_connection_sock *icsk,
123			     void (*cad)(struct sock *sk, u32 ack_seq))
124{
125	icsk->icsk_clean_acked = cad;
126	static_branch_deferred_inc(&clean_acked_data_enabled);
127}
128EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129
130void clean_acked_data_disable(struct inet_connection_sock *icsk)
131{
132	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133	icsk->icsk_clean_acked = NULL;
134}
135EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136
137void clean_acked_data_flush(void)
138{
139	static_key_deferred_flush(&clean_acked_data_enabled);
140}
141EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142#endif
143
144#ifdef CONFIG_CGROUP_BPF
145static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146{
147	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152	struct bpf_sock_ops_kern sock_ops;
153
154	if (likely(!unknown_opt && !parse_all_opt))
155		return;
156
157	/* The skb will be handled in the
158	 * bpf_skops_established() or
159	 * bpf_skops_write_hdr_opt().
160	 */
161	switch (sk->sk_state) {
162	case TCP_SYN_RECV:
163	case TCP_SYN_SENT:
164	case TCP_LISTEN:
165		return;
166	}
167
168	sock_owned_by_me(sk);
169
170	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172	sock_ops.is_fullsock = 1;
173	sock_ops.sk = sk;
174	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
175
176	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177}
178
179static void bpf_skops_established(struct sock *sk, int bpf_op,
180				  struct sk_buff *skb)
181{
182	struct bpf_sock_ops_kern sock_ops;
183
184	sock_owned_by_me(sk);
185
186	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
187	sock_ops.op = bpf_op;
188	sock_ops.is_fullsock = 1;
189	sock_ops.sk = sk;
190	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
191	if (skb)
192		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
193
194	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
195}
196#else
197static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198{
199}
200
201static void bpf_skops_established(struct sock *sk, int bpf_op,
202				  struct sk_buff *skb)
203{
204}
205#endif
206
207static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
208			     unsigned int len)
209{
210	static bool __once __read_mostly;
211
212	if (!__once) {
213		struct net_device *dev;
214
215		__once = true;
216
217		rcu_read_lock();
218		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
219		if (!dev || len >= dev->mtu)
220			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
221				dev ? dev->name : "Unknown driver");
222		rcu_read_unlock();
223	}
224}
225
226/* Adapt the MSS value used to make delayed ack decision to the
227 * real world.
228 */
229static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
230{
231	struct inet_connection_sock *icsk = inet_csk(sk);
232	const unsigned int lss = icsk->icsk_ack.last_seg_size;
233	unsigned int len;
234
235	icsk->icsk_ack.last_seg_size = 0;
236
237	/* skb->len may jitter because of SACKs, even if peer
238	 * sends good full-sized frames.
239	 */
240	len = skb_shinfo(skb)->gso_size ? : skb->len;
241	if (len >= icsk->icsk_ack.rcv_mss) {
242		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
243					       tcp_sk(sk)->advmss);
244		/* Account for possibly-removed options */
245		if (unlikely(len > icsk->icsk_ack.rcv_mss +
246				   MAX_TCP_OPTION_SPACE))
247			tcp_gro_dev_warn(sk, skb, len);
248		/* If the skb has a len of exactly 1*MSS and has the PSH bit
249		 * set then it is likely the end of an application write. So
250		 * more data may not be arriving soon, and yet the data sender
251		 * may be waiting for an ACK if cwnd-bound or using TX zero
252		 * copy. So we set ICSK_ACK_PUSHED here so that
253		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
254		 * reads all of the data and is not ping-pong. If len > MSS
255		 * then this logic does not matter (and does not hurt) because
256		 * tcp_cleanup_rbuf() will always ACK immediately if the app
257		 * reads data and there is more than an MSS of unACKed data.
258		 */
259		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
260			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
261	} else {
262		/* Otherwise, we make more careful check taking into account,
263		 * that SACKs block is variable.
264		 *
265		 * "len" is invariant segment length, including TCP header.
266		 */
267		len += skb->data - skb_transport_header(skb);
268		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
269		    /* If PSH is not set, packet should be
270		     * full sized, provided peer TCP is not badly broken.
271		     * This observation (if it is correct 8)) allows
272		     * to handle super-low mtu links fairly.
273		     */
274		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
275		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
276			/* Subtract also invariant (if peer is RFC compliant),
277			 * tcp header plus fixed timestamp option length.
278			 * Resulting "len" is MSS free of SACK jitter.
279			 */
280			len -= tcp_sk(sk)->tcp_header_len;
281			icsk->icsk_ack.last_seg_size = len;
282			if (len == lss) {
283				icsk->icsk_ack.rcv_mss = len;
284				return;
285			}
286		}
287		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
288			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
289		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
290	}
291}
292
293static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
294{
295	struct inet_connection_sock *icsk = inet_csk(sk);
296	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
297
298	if (quickacks == 0)
299		quickacks = 2;
300	quickacks = min(quickacks, max_quickacks);
301	if (quickacks > icsk->icsk_ack.quick)
302		icsk->icsk_ack.quick = quickacks;
303}
304
305static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
306{
307	struct inet_connection_sock *icsk = inet_csk(sk);
308
309	tcp_incr_quickack(sk, max_quickacks);
310	inet_csk_exit_pingpong_mode(sk);
311	icsk->icsk_ack.ato = TCP_ATO_MIN;
312}
313
314/* Send ACKs quickly, if "quick" count is not exhausted
315 * and the session is not interactive.
316 */
317
318static bool tcp_in_quickack_mode(struct sock *sk)
319{
320	const struct inet_connection_sock *icsk = inet_csk(sk);
321	const struct dst_entry *dst = __sk_dst_get(sk);
322
323	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
324		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
325}
326
327static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
328{
329	if (tp->ecn_flags & TCP_ECN_OK)
330		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
331}
332
333static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
334{
335	if (tcp_hdr(skb)->cwr) {
336		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
337
338		/* If the sender is telling us it has entered CWR, then its
339		 * cwnd may be very low (even just 1 packet), so we should ACK
340		 * immediately.
341		 */
342		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
343			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
344	}
345}
346
347static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
348{
349	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
350}
351
352static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
353{
354	struct tcp_sock *tp = tcp_sk(sk);
355
356	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
357	case INET_ECN_NOT_ECT:
358		/* Funny extension: if ECT is not set on a segment,
359		 * and we already seen ECT on a previous segment,
360		 * it is probably a retransmit.
361		 */
362		if (tp->ecn_flags & TCP_ECN_SEEN)
363			tcp_enter_quickack_mode(sk, 2);
364		break;
365	case INET_ECN_CE:
366		if (tcp_ca_needs_ecn(sk))
367			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
368
369		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
370			/* Better not delay acks, sender can have a very low cwnd */
371			tcp_enter_quickack_mode(sk, 2);
372			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
373		}
374		tp->ecn_flags |= TCP_ECN_SEEN;
375		break;
376	default:
377		if (tcp_ca_needs_ecn(sk))
378			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
379		tp->ecn_flags |= TCP_ECN_SEEN;
380		break;
381	}
382}
383
384static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
385{
386	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
387		__tcp_ecn_check_ce(sk, skb);
388}
389
390static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
391{
392	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
393		tp->ecn_flags &= ~TCP_ECN_OK;
394}
395
396static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
397{
398	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
399		tp->ecn_flags &= ~TCP_ECN_OK;
400}
401
402static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
403{
404	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
405		return true;
406	return false;
407}
408
409/* Buffer size and advertised window tuning.
410 *
411 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
412 */
413
414static void tcp_sndbuf_expand(struct sock *sk)
415{
416	const struct tcp_sock *tp = tcp_sk(sk);
417	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
418	int sndmem, per_mss;
419	u32 nr_segs;
420
421	/* Worst case is non GSO/TSO : each frame consumes one skb
422	 * and skb->head is kmalloced using power of two area of memory
423	 */
424	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
425		  MAX_TCP_HEADER +
426		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
427
428	per_mss = roundup_pow_of_two(per_mss) +
429		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
430
431	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
432	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
433
434	/* Fast Recovery (RFC 5681 3.2) :
435	 * Cubic needs 1.7 factor, rounded to 2 to include
436	 * extra cushion (application might react slowly to EPOLLOUT)
437	 */
438	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
439	sndmem *= nr_segs * per_mss;
440
441	if (sk->sk_sndbuf < sndmem)
442		WRITE_ONCE(sk->sk_sndbuf,
443			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
444}
445
446/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
447 *
448 * All tcp_full_space() is split to two parts: "network" buffer, allocated
449 * forward and advertised in receiver window (tp->rcv_wnd) and
450 * "application buffer", required to isolate scheduling/application
451 * latencies from network.
452 * window_clamp is maximal advertised window. It can be less than
453 * tcp_full_space(), in this case tcp_full_space() - window_clamp
454 * is reserved for "application" buffer. The less window_clamp is
455 * the smoother our behaviour from viewpoint of network, but the lower
456 * throughput and the higher sensitivity of the connection to losses. 8)
457 *
458 * rcv_ssthresh is more strict window_clamp used at "slow start"
459 * phase to predict further behaviour of this connection.
460 * It is used for two goals:
461 * - to enforce header prediction at sender, even when application
462 *   requires some significant "application buffer". It is check #1.
463 * - to prevent pruning of receive queue because of misprediction
464 *   of receiver window. Check #2.
465 *
466 * The scheme does not work when sender sends good segments opening
467 * window and then starts to feed us spaghetti. But it should work
468 * in common situations. Otherwise, we have to rely on queue collapsing.
469 */
470
471/* Slow part of check#2. */
472static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
473			     unsigned int skbtruesize)
474{
475	struct tcp_sock *tp = tcp_sk(sk);
476	/* Optimize this! */
477	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
478	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
479
480	while (tp->rcv_ssthresh <= window) {
481		if (truesize <= skb->len)
482			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
483
484		truesize >>= 1;
485		window >>= 1;
486	}
487	return 0;
488}
489
490/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
491 * can play nice with us, as sk_buff and skb->head might be either
492 * freed or shared with up to MAX_SKB_FRAGS segments.
493 * Only give a boost to drivers using page frag(s) to hold the frame(s),
494 * and if no payload was pulled in skb->head before reaching us.
495 */
496static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
497{
498	u32 truesize = skb->truesize;
499
500	if (adjust && !skb_headlen(skb)) {
501		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
502		/* paranoid check, some drivers might be buggy */
503		if (unlikely((int)truesize < (int)skb->len))
504			truesize = skb->truesize;
505	}
506	return truesize;
507}
508
509static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
510			    bool adjust)
511{
512	struct tcp_sock *tp = tcp_sk(sk);
513	int room;
514
515	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
516
517	/* Check #1 */
518	if (room > 0 && !tcp_under_memory_pressure(sk)) {
519		unsigned int truesize = truesize_adjust(adjust, skb);
520		int incr;
521
522		/* Check #2. Increase window, if skb with such overhead
523		 * will fit to rcvbuf in future.
524		 */
525		if (tcp_win_from_space(sk, truesize) <= skb->len)
526			incr = 2 * tp->advmss;
527		else
528			incr = __tcp_grow_window(sk, skb, truesize);
529
530		if (incr) {
531			incr = max_t(int, incr, 2 * skb->len);
532			tp->rcv_ssthresh += min(room, incr);
533			inet_csk(sk)->icsk_ack.quick |= 1;
534		}
535	}
536}
537
538/* 3. Try to fixup all. It is made immediately after connection enters
539 *    established state.
540 */
541static void tcp_init_buffer_space(struct sock *sk)
542{
543	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
544	struct tcp_sock *tp = tcp_sk(sk);
545	int maxwin;
546
547	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
548		tcp_sndbuf_expand(sk);
549
550	tcp_mstamp_refresh(tp);
551	tp->rcvq_space.time = tp->tcp_mstamp;
552	tp->rcvq_space.seq = tp->copied_seq;
553
554	maxwin = tcp_full_space(sk);
555
556	if (tp->window_clamp >= maxwin) {
557		tp->window_clamp = maxwin;
558
559		if (tcp_app_win && maxwin > 4 * tp->advmss)
560			tp->window_clamp = max(maxwin -
561					       (maxwin >> tcp_app_win),
562					       4 * tp->advmss);
563	}
564
565	/* Force reservation of one segment. */
566	if (tcp_app_win &&
567	    tp->window_clamp > 2 * tp->advmss &&
568	    tp->window_clamp + tp->advmss > maxwin)
569		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
570
571	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
572	tp->snd_cwnd_stamp = tcp_jiffies32;
573	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
574				    (u32)TCP_INIT_CWND * tp->advmss);
575}
576
577/* 4. Recalculate window clamp after socket hit its memory bounds. */
578static void tcp_clamp_window(struct sock *sk)
579{
580	struct tcp_sock *tp = tcp_sk(sk);
581	struct inet_connection_sock *icsk = inet_csk(sk);
582	struct net *net = sock_net(sk);
583	int rmem2;
584
585	icsk->icsk_ack.quick = 0;
586	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
587
588	if (sk->sk_rcvbuf < rmem2 &&
589	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
590	    !tcp_under_memory_pressure(sk) &&
591	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
592		WRITE_ONCE(sk->sk_rcvbuf,
593			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
594	}
595	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
596		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
597}
598
599/* Initialize RCV_MSS value.
600 * RCV_MSS is an our guess about MSS used by the peer.
601 * We haven't any direct information about the MSS.
602 * It's better to underestimate the RCV_MSS rather than overestimate.
603 * Overestimations make us ACKing less frequently than needed.
604 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
605 */
606void tcp_initialize_rcv_mss(struct sock *sk)
607{
608	const struct tcp_sock *tp = tcp_sk(sk);
609	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
610
611	hint = min(hint, tp->rcv_wnd / 2);
612	hint = min(hint, TCP_MSS_DEFAULT);
613	hint = max(hint, TCP_MIN_MSS);
614
615	inet_csk(sk)->icsk_ack.rcv_mss = hint;
616}
617EXPORT_SYMBOL(tcp_initialize_rcv_mss);
618
619/* Receiver "autotuning" code.
620 *
621 * The algorithm for RTT estimation w/o timestamps is based on
622 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
623 * <https://public.lanl.gov/radiant/pubs.html#DRS>
624 *
625 * More detail on this code can be found at
626 * <http://staff.psc.edu/jheffner/>,
627 * though this reference is out of date.  A new paper
628 * is pending.
629 */
630static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
631{
632	u32 new_sample = tp->rcv_rtt_est.rtt_us;
633	long m = sample;
634
635	if (new_sample != 0) {
636		/* If we sample in larger samples in the non-timestamp
637		 * case, we could grossly overestimate the RTT especially
638		 * with chatty applications or bulk transfer apps which
639		 * are stalled on filesystem I/O.
640		 *
641		 * Also, since we are only going for a minimum in the
642		 * non-timestamp case, we do not smooth things out
643		 * else with timestamps disabled convergence takes too
644		 * long.
645		 */
646		if (!win_dep) {
647			m -= (new_sample >> 3);
648			new_sample += m;
649		} else {
650			m <<= 3;
651			if (m < new_sample)
652				new_sample = m;
653		}
654	} else {
655		/* No previous measure. */
656		new_sample = m << 3;
657	}
658
659	tp->rcv_rtt_est.rtt_us = new_sample;
660}
661
662static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
663{
664	u32 delta_us;
665
666	if (tp->rcv_rtt_est.time == 0)
667		goto new_measure;
668	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
669		return;
670	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
671	if (!delta_us)
672		delta_us = 1;
673	tcp_rcv_rtt_update(tp, delta_us, 1);
674
675new_measure:
676	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
677	tp->rcv_rtt_est.time = tp->tcp_mstamp;
678}
679
680static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
681					  const struct sk_buff *skb)
682{
683	struct tcp_sock *tp = tcp_sk(sk);
684
685	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
686		return;
687	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
688
689	if (TCP_SKB_CB(skb)->end_seq -
690	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
691		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
692		u32 delta_us;
693
694		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
695			if (!delta)
696				delta = 1;
697			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
698			tcp_rcv_rtt_update(tp, delta_us, 0);
699		}
700	}
701}
702
703/*
704 * This function should be called every time data is copied to user space.
705 * It calculates the appropriate TCP receive buffer space.
706 */
707void tcp_rcv_space_adjust(struct sock *sk)
708{
709	struct tcp_sock *tp = tcp_sk(sk);
710	u32 copied;
711	int time;
712
713	trace_tcp_rcv_space_adjust(sk);
714
715	tcp_mstamp_refresh(tp);
716	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
717	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
718		return;
719
720	/* Number of bytes copied to user in last RTT */
721	copied = tp->copied_seq - tp->rcvq_space.seq;
722	if (copied <= tp->rcvq_space.space)
723		goto new_measure;
724
725	/* A bit of theory :
726	 * copied = bytes received in previous RTT, our base window
727	 * To cope with packet losses, we need a 2x factor
728	 * To cope with slow start, and sender growing its cwin by 100 %
729	 * every RTT, we need a 4x factor, because the ACK we are sending
730	 * now is for the next RTT, not the current one :
731	 * <prev RTT . ><current RTT .. ><next RTT .... >
732	 */
733
734	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
735	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
736		int rcvmem, rcvbuf;
737		u64 rcvwin, grow;
738
739		/* minimal window to cope with packet losses, assuming
740		 * steady state. Add some cushion because of small variations.
741		 */
742		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
743
744		/* Accommodate for sender rate increase (eg. slow start) */
745		grow = rcvwin * (copied - tp->rcvq_space.space);
746		do_div(grow, tp->rcvq_space.space);
747		rcvwin += (grow << 1);
748
749		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
750		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
751			rcvmem += 128;
752
753		do_div(rcvwin, tp->advmss);
754		rcvbuf = min_t(u64, rcvwin * rcvmem,
755			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
756		if (rcvbuf > sk->sk_rcvbuf) {
757			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
758
759			/* Make the window clamp follow along.  */
760			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
761		}
762	}
763	tp->rcvq_space.space = copied;
764
765new_measure:
766	tp->rcvq_space.seq = tp->copied_seq;
767	tp->rcvq_space.time = tp->tcp_mstamp;
768}
769
770/* There is something which you must keep in mind when you analyze the
771 * behavior of the tp->ato delayed ack timeout interval.  When a
772 * connection starts up, we want to ack as quickly as possible.  The
773 * problem is that "good" TCP's do slow start at the beginning of data
774 * transmission.  The means that until we send the first few ACK's the
775 * sender will sit on his end and only queue most of his data, because
776 * he can only send snd_cwnd unacked packets at any given time.  For
777 * each ACK we send, he increments snd_cwnd and transmits more of his
778 * queue.  -DaveM
779 */
780static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
781{
782	struct tcp_sock *tp = tcp_sk(sk);
783	struct inet_connection_sock *icsk = inet_csk(sk);
784	u32 now;
785
786	inet_csk_schedule_ack(sk);
787
788	tcp_measure_rcv_mss(sk, skb);
789
790	tcp_rcv_rtt_measure(tp);
791
792	now = tcp_jiffies32;
793
794	if (!icsk->icsk_ack.ato) {
795		/* The _first_ data packet received, initialize
796		 * delayed ACK engine.
797		 */
798		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
799		icsk->icsk_ack.ato = TCP_ATO_MIN;
800	} else {
801		int m = now - icsk->icsk_ack.lrcvtime;
802
803		if (m <= TCP_ATO_MIN / 2) {
804			/* The fastest case is the first. */
805			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
806		} else if (m < icsk->icsk_ack.ato) {
807			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
808			if (icsk->icsk_ack.ato > icsk->icsk_rto)
809				icsk->icsk_ack.ato = icsk->icsk_rto;
810		} else if (m > icsk->icsk_rto) {
811			/* Too long gap. Apparently sender failed to
812			 * restart window, so that we send ACKs quickly.
813			 */
814			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
815			sk_mem_reclaim(sk);
816		}
817	}
818	icsk->icsk_ack.lrcvtime = now;
819
820	tcp_ecn_check_ce(sk, skb);
821
822	if (skb->len >= 128)
823		tcp_grow_window(sk, skb, true);
824}
825
826/* Called to compute a smoothed rtt estimate. The data fed to this
827 * routine either comes from timestamps, or from segments that were
828 * known _not_ to have been retransmitted [see Karn/Partridge
829 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
830 * piece by Van Jacobson.
831 * NOTE: the next three routines used to be one big routine.
832 * To save cycles in the RFC 1323 implementation it was better to break
833 * it up into three procedures. -- erics
834 */
835static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
836{
837	struct tcp_sock *tp = tcp_sk(sk);
838	long m = mrtt_us; /* RTT */
839	u32 srtt = tp->srtt_us;
840
841	/*	The following amusing code comes from Jacobson's
842	 *	article in SIGCOMM '88.  Note that rtt and mdev
843	 *	are scaled versions of rtt and mean deviation.
844	 *	This is designed to be as fast as possible
845	 *	m stands for "measurement".
846	 *
847	 *	On a 1990 paper the rto value is changed to:
848	 *	RTO = rtt + 4 * mdev
849	 *
850	 * Funny. This algorithm seems to be very broken.
851	 * These formulae increase RTO, when it should be decreased, increase
852	 * too slowly, when it should be increased quickly, decrease too quickly
853	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
854	 * does not matter how to _calculate_ it. Seems, it was trap
855	 * that VJ failed to avoid. 8)
856	 */
857	if (srtt != 0) {
858		m -= (srtt >> 3);	/* m is now error in rtt est */
859		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
860		if (m < 0) {
861			m = -m;		/* m is now abs(error) */
862			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
863			/* This is similar to one of Eifel findings.
864			 * Eifel blocks mdev updates when rtt decreases.
865			 * This solution is a bit different: we use finer gain
866			 * for mdev in this case (alpha*beta).
867			 * Like Eifel it also prevents growth of rto,
868			 * but also it limits too fast rto decreases,
869			 * happening in pure Eifel.
870			 */
871			if (m > 0)
872				m >>= 3;
873		} else {
874			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
875		}
876		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
877		if (tp->mdev_us > tp->mdev_max_us) {
878			tp->mdev_max_us = tp->mdev_us;
879			if (tp->mdev_max_us > tp->rttvar_us)
880				tp->rttvar_us = tp->mdev_max_us;
881		}
882		if (after(tp->snd_una, tp->rtt_seq)) {
883			if (tp->mdev_max_us < tp->rttvar_us)
884				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
885			tp->rtt_seq = tp->snd_nxt;
886			tp->mdev_max_us = tcp_rto_min_us(sk);
887
888			tcp_bpf_rtt(sk);
889		}
890	} else {
891		/* no previous measure. */
892		srtt = m << 3;		/* take the measured time to be rtt */
893		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
894		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
895		tp->mdev_max_us = tp->rttvar_us;
896		tp->rtt_seq = tp->snd_nxt;
897
898		tcp_bpf_rtt(sk);
899	}
900	tp->srtt_us = max(1U, srtt);
901}
902
903static void tcp_update_pacing_rate(struct sock *sk)
904{
905	const struct tcp_sock *tp = tcp_sk(sk);
906	u64 rate;
907
908	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
909	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
910
911	/* current rate is (cwnd * mss) / srtt
912	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
913	 * In Congestion Avoidance phase, set it to 120 % the current rate.
914	 *
915	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
916	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
917	 *	 end of slow start and should slow down.
918	 */
919	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
920		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
921	else
922		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
923
924	rate *= max(tp->snd_cwnd, tp->packets_out);
925
926	if (likely(tp->srtt_us))
927		do_div(rate, tp->srtt_us);
928
929	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
930	 * without any lock. We want to make sure compiler wont store
931	 * intermediate values in this location.
932	 */
933	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
934					     sk->sk_max_pacing_rate));
935}
936
937/* Calculate rto without backoff.  This is the second half of Van Jacobson's
938 * routine referred to above.
939 */
940static void tcp_set_rto(struct sock *sk)
941{
942	const struct tcp_sock *tp = tcp_sk(sk);
943	/* Old crap is replaced with new one. 8)
944	 *
945	 * More seriously:
946	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
947	 *    It cannot be less due to utterly erratic ACK generation made
948	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
949	 *    to do with delayed acks, because at cwnd>2 true delack timeout
950	 *    is invisible. Actually, Linux-2.4 also generates erratic
951	 *    ACKs in some circumstances.
952	 */
953	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
954
955	/* 2. Fixups made earlier cannot be right.
956	 *    If we do not estimate RTO correctly without them,
957	 *    all the algo is pure shit and should be replaced
958	 *    with correct one. It is exactly, which we pretend to do.
959	 */
960
961	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
962	 * guarantees that rto is higher.
963	 */
964	tcp_bound_rto(sk);
965}
966
967__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
968{
969	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
970
971	if (!cwnd)
972		cwnd = TCP_INIT_CWND;
973	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
974}
975
976struct tcp_sacktag_state {
977	/* Timestamps for earliest and latest never-retransmitted segment
978	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
979	 * but congestion control should still get an accurate delay signal.
980	 */
981	u64	first_sackt;
982	u64	last_sackt;
983	u32	reord;
984	u32	sack_delivered;
985	int	flag;
986	unsigned int mss_now;
987	struct rate_sample *rate;
988};
989
990/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
991 * and spurious retransmission information if this DSACK is unlikely caused by
992 * sender's action:
993 * - DSACKed sequence range is larger than maximum receiver's window.
994 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
995 */
996static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
997			  u32 end_seq, struct tcp_sacktag_state *state)
998{
999	u32 seq_len, dup_segs = 1;
1000
1001	if (!before(start_seq, end_seq))
1002		return 0;
1003
1004	seq_len = end_seq - start_seq;
1005	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1006	if (seq_len > tp->max_window)
1007		return 0;
1008	if (seq_len > tp->mss_cache)
1009		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1010
1011	tp->dsack_dups += dup_segs;
1012	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1013	if (tp->dsack_dups > tp->total_retrans)
1014		return 0;
1015
1016	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1017	tp->rack.dsack_seen = 1;
1018
1019	state->flag |= FLAG_DSACKING_ACK;
1020	/* A spurious retransmission is delivered */
1021	state->sack_delivered += dup_segs;
1022
1023	return dup_segs;
1024}
1025
1026/* It's reordering when higher sequence was delivered (i.e. sacked) before
1027 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1028 * distance is approximated in full-mss packet distance ("reordering").
1029 */
1030static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1031				      const int ts)
1032{
1033	struct tcp_sock *tp = tcp_sk(sk);
1034	const u32 mss = tp->mss_cache;
1035	u32 fack, metric;
1036
1037	fack = tcp_highest_sack_seq(tp);
1038	if (!before(low_seq, fack))
1039		return;
1040
1041	metric = fack - low_seq;
1042	if ((metric > tp->reordering * mss) && mss) {
1043#if FASTRETRANS_DEBUG > 1
1044		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1045			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1046			 tp->reordering,
1047			 0,
1048			 tp->sacked_out,
1049			 tp->undo_marker ? tp->undo_retrans : 0);
1050#endif
1051		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1052				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1053	}
1054
1055	/* This exciting event is worth to be remembered. 8) */
1056	tp->reord_seen++;
1057	NET_INC_STATS(sock_net(sk),
1058		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1059}
1060
1061 /* This must be called before lost_out or retrans_out are updated
1062  * on a new loss, because we want to know if all skbs previously
1063  * known to be lost have already been retransmitted, indicating
1064  * that this newly lost skb is our next skb to retransmit.
1065  */
1066static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1067{
1068	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1069	    (tp->retransmit_skb_hint &&
1070	     before(TCP_SKB_CB(skb)->seq,
1071		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1072		tp->retransmit_skb_hint = skb;
1073}
1074
1075/* Sum the number of packets on the wire we have marked as lost, and
1076 * notify the congestion control module that the given skb was marked lost.
1077 */
1078static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1079{
1080	tp->lost += tcp_skb_pcount(skb);
1081}
1082
1083void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1084{
1085	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1086	struct tcp_sock *tp = tcp_sk(sk);
1087
1088	if (sacked & TCPCB_SACKED_ACKED)
1089		return;
1090
1091	tcp_verify_retransmit_hint(tp, skb);
1092	if (sacked & TCPCB_LOST) {
1093		if (sacked & TCPCB_SACKED_RETRANS) {
1094			/* Account for retransmits that are lost again */
1095			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1096			tp->retrans_out -= tcp_skb_pcount(skb);
1097			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1098				      tcp_skb_pcount(skb));
1099			tcp_notify_skb_loss_event(tp, skb);
1100		}
1101	} else {
1102		tp->lost_out += tcp_skb_pcount(skb);
1103		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1104		tcp_notify_skb_loss_event(tp, skb);
1105	}
1106}
1107
1108/* Updates the delivered and delivered_ce counts */
1109static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1110				bool ece_ack)
1111{
1112	tp->delivered += delivered;
1113	if (ece_ack)
1114		tp->delivered_ce += delivered;
1115}
1116
1117/* This procedure tags the retransmission queue when SACKs arrive.
1118 *
1119 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1120 * Packets in queue with these bits set are counted in variables
1121 * sacked_out, retrans_out and lost_out, correspondingly.
1122 *
1123 * Valid combinations are:
1124 * Tag  InFlight	Description
1125 * 0	1		- orig segment is in flight.
1126 * S	0		- nothing flies, orig reached receiver.
1127 * L	0		- nothing flies, orig lost by net.
1128 * R	2		- both orig and retransmit are in flight.
1129 * L|R	1		- orig is lost, retransmit is in flight.
1130 * S|R  1		- orig reached receiver, retrans is still in flight.
1131 * (L|S|R is logically valid, it could occur when L|R is sacked,
1132 *  but it is equivalent to plain S and code short-curcuits it to S.
1133 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1134 *
1135 * These 6 states form finite state machine, controlled by the following events:
1136 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1137 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1138 * 3. Loss detection event of two flavors:
1139 *	A. Scoreboard estimator decided the packet is lost.
1140 *	   A'. Reno "three dupacks" marks head of queue lost.
1141 *	B. SACK arrives sacking SND.NXT at the moment, when the
1142 *	   segment was retransmitted.
1143 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1144 *
1145 * It is pleasant to note, that state diagram turns out to be commutative,
1146 * so that we are allowed not to be bothered by order of our actions,
1147 * when multiple events arrive simultaneously. (see the function below).
1148 *
1149 * Reordering detection.
1150 * --------------------
1151 * Reordering metric is maximal distance, which a packet can be displaced
1152 * in packet stream. With SACKs we can estimate it:
1153 *
1154 * 1. SACK fills old hole and the corresponding segment was not
1155 *    ever retransmitted -> reordering. Alas, we cannot use it
1156 *    when segment was retransmitted.
1157 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1158 *    for retransmitted and already SACKed segment -> reordering..
1159 * Both of these heuristics are not used in Loss state, when we cannot
1160 * account for retransmits accurately.
1161 *
1162 * SACK block validation.
1163 * ----------------------
1164 *
1165 * SACK block range validation checks that the received SACK block fits to
1166 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1167 * Note that SND.UNA is not included to the range though being valid because
1168 * it means that the receiver is rather inconsistent with itself reporting
1169 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1170 * perfectly valid, however, in light of RFC2018 which explicitly states
1171 * that "SACK block MUST reflect the newest segment.  Even if the newest
1172 * segment is going to be discarded ...", not that it looks very clever
1173 * in case of head skb. Due to potentional receiver driven attacks, we
1174 * choose to avoid immediate execution of a walk in write queue due to
1175 * reneging and defer head skb's loss recovery to standard loss recovery
1176 * procedure that will eventually trigger (nothing forbids us doing this).
1177 *
1178 * Implements also blockage to start_seq wrap-around. Problem lies in the
1179 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1180 * there's no guarantee that it will be before snd_nxt (n). The problem
1181 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1182 * wrap (s_w):
1183 *
1184 *         <- outs wnd ->                          <- wrapzone ->
1185 *         u     e      n                         u_w   e_w  s n_w
1186 *         |     |      |                          |     |   |  |
1187 * |<------------+------+----- TCP seqno space --------------+---------->|
1188 * ...-- <2^31 ->|                                           |<--------...
1189 * ...---- >2^31 ------>|                                    |<--------...
1190 *
1191 * Current code wouldn't be vulnerable but it's better still to discard such
1192 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1193 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1194 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1195 * equal to the ideal case (infinite seqno space without wrap caused issues).
1196 *
1197 * With D-SACK the lower bound is extended to cover sequence space below
1198 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1199 * again, D-SACK block must not to go across snd_una (for the same reason as
1200 * for the normal SACK blocks, explained above). But there all simplicity
1201 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1202 * fully below undo_marker they do not affect behavior in anyway and can
1203 * therefore be safely ignored. In rare cases (which are more or less
1204 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1205 * fragmentation and packet reordering past skb's retransmission. To consider
1206 * them correctly, the acceptable range must be extended even more though
1207 * the exact amount is rather hard to quantify. However, tp->max_window can
1208 * be used as an exaggerated estimate.
1209 */
1210static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1211				   u32 start_seq, u32 end_seq)
1212{
1213	/* Too far in future, or reversed (interpretation is ambiguous) */
1214	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1215		return false;
1216
1217	/* Nasty start_seq wrap-around check (see comments above) */
1218	if (!before(start_seq, tp->snd_nxt))
1219		return false;
1220
1221	/* In outstanding window? ...This is valid exit for D-SACKs too.
1222	 * start_seq == snd_una is non-sensical (see comments above)
1223	 */
1224	if (after(start_seq, tp->snd_una))
1225		return true;
1226
1227	if (!is_dsack || !tp->undo_marker)
1228		return false;
1229
1230	/* ...Then it's D-SACK, and must reside below snd_una completely */
1231	if (after(end_seq, tp->snd_una))
1232		return false;
1233
1234	if (!before(start_seq, tp->undo_marker))
1235		return true;
1236
1237	/* Too old */
1238	if (!after(end_seq, tp->undo_marker))
1239		return false;
1240
1241	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1242	 *   start_seq < undo_marker and end_seq >= undo_marker.
1243	 */
1244	return !before(start_seq, end_seq - tp->max_window);
1245}
1246
1247static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1248			    struct tcp_sack_block_wire *sp, int num_sacks,
1249			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1250{
1251	struct tcp_sock *tp = tcp_sk(sk);
1252	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1253	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1254	u32 dup_segs;
1255
1256	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1257		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1258	} else if (num_sacks > 1) {
1259		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1260		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1261
1262		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1263			return false;
1264		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1265	} else {
1266		return false;
1267	}
1268
1269	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1270	if (!dup_segs) {	/* Skip dubious DSACK */
1271		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1272		return false;
1273	}
1274
1275	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1276
1277	/* D-SACK for already forgotten data... Do dumb counting. */
1278	if (tp->undo_marker && tp->undo_retrans > 0 &&
1279	    !after(end_seq_0, prior_snd_una) &&
1280	    after(end_seq_0, tp->undo_marker))
1281		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1282
1283	return true;
1284}
1285
1286/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1287 * the incoming SACK may not exactly match but we can find smaller MSS
1288 * aligned portion of it that matches. Therefore we might need to fragment
1289 * which may fail and creates some hassle (caller must handle error case
1290 * returns).
1291 *
1292 * FIXME: this could be merged to shift decision code
1293 */
1294static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1295				  u32 start_seq, u32 end_seq)
1296{
1297	int err;
1298	bool in_sack;
1299	unsigned int pkt_len;
1300	unsigned int mss;
1301
1302	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1303		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1304
1305	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1306	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1307		mss = tcp_skb_mss(skb);
1308		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1309
1310		if (!in_sack) {
1311			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1312			if (pkt_len < mss)
1313				pkt_len = mss;
1314		} else {
1315			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1316			if (pkt_len < mss)
1317				return -EINVAL;
1318		}
1319
1320		/* Round if necessary so that SACKs cover only full MSSes
1321		 * and/or the remaining small portion (if present)
1322		 */
1323		if (pkt_len > mss) {
1324			unsigned int new_len = (pkt_len / mss) * mss;
1325			if (!in_sack && new_len < pkt_len)
1326				new_len += mss;
1327			pkt_len = new_len;
1328		}
1329
1330		if (pkt_len >= skb->len && !in_sack)
1331			return 0;
1332
1333		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1334				   pkt_len, mss, GFP_ATOMIC);
1335		if (err < 0)
1336			return err;
1337	}
1338
1339	return in_sack;
1340}
1341
1342/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1343static u8 tcp_sacktag_one(struct sock *sk,
1344			  struct tcp_sacktag_state *state, u8 sacked,
1345			  u32 start_seq, u32 end_seq,
1346			  int dup_sack, int pcount,
1347			  u64 xmit_time)
1348{
1349	struct tcp_sock *tp = tcp_sk(sk);
1350
1351	/* Account D-SACK for retransmitted packet. */
1352	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1353		if (tp->undo_marker && tp->undo_retrans > 0 &&
1354		    after(end_seq, tp->undo_marker))
1355			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1356		if ((sacked & TCPCB_SACKED_ACKED) &&
1357		    before(start_seq, state->reord))
1358				state->reord = start_seq;
1359	}
1360
1361	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1362	if (!after(end_seq, tp->snd_una))
1363		return sacked;
1364
1365	if (!(sacked & TCPCB_SACKED_ACKED)) {
1366		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1367
1368		if (sacked & TCPCB_SACKED_RETRANS) {
1369			/* If the segment is not tagged as lost,
1370			 * we do not clear RETRANS, believing
1371			 * that retransmission is still in flight.
1372			 */
1373			if (sacked & TCPCB_LOST) {
1374				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1375				tp->lost_out -= pcount;
1376				tp->retrans_out -= pcount;
1377			}
1378		} else {
1379			if (!(sacked & TCPCB_RETRANS)) {
1380				/* New sack for not retransmitted frame,
1381				 * which was in hole. It is reordering.
1382				 */
1383				if (before(start_seq,
1384					   tcp_highest_sack_seq(tp)) &&
1385				    before(start_seq, state->reord))
1386					state->reord = start_seq;
1387
1388				if (!after(end_seq, tp->high_seq))
1389					state->flag |= FLAG_ORIG_SACK_ACKED;
1390				if (state->first_sackt == 0)
1391					state->first_sackt = xmit_time;
1392				state->last_sackt = xmit_time;
1393			}
1394
1395			if (sacked & TCPCB_LOST) {
1396				sacked &= ~TCPCB_LOST;
1397				tp->lost_out -= pcount;
1398			}
1399		}
1400
1401		sacked |= TCPCB_SACKED_ACKED;
1402		state->flag |= FLAG_DATA_SACKED;
1403		tp->sacked_out += pcount;
1404		/* Out-of-order packets delivered */
1405		state->sack_delivered += pcount;
1406
1407		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1408		if (tp->lost_skb_hint &&
1409		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1410			tp->lost_cnt_hint += pcount;
1411	}
1412
1413	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1414	 * frames and clear it. undo_retrans is decreased above, L|R frames
1415	 * are accounted above as well.
1416	 */
1417	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1418		sacked &= ~TCPCB_SACKED_RETRANS;
1419		tp->retrans_out -= pcount;
1420	}
1421
1422	return sacked;
1423}
1424
1425/* Shift newly-SACKed bytes from this skb to the immediately previous
1426 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1427 */
1428static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1429			    struct sk_buff *skb,
1430			    struct tcp_sacktag_state *state,
1431			    unsigned int pcount, int shifted, int mss,
1432			    bool dup_sack)
1433{
1434	struct tcp_sock *tp = tcp_sk(sk);
1435	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1436	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1437
1438	BUG_ON(!pcount);
1439
1440	/* Adjust counters and hints for the newly sacked sequence
1441	 * range but discard the return value since prev is already
1442	 * marked. We must tag the range first because the seq
1443	 * advancement below implicitly advances
1444	 * tcp_highest_sack_seq() when skb is highest_sack.
1445	 */
1446	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1447			start_seq, end_seq, dup_sack, pcount,
1448			tcp_skb_timestamp_us(skb));
1449	tcp_rate_skb_delivered(sk, skb, state->rate);
1450
1451	if (skb == tp->lost_skb_hint)
1452		tp->lost_cnt_hint += pcount;
1453
1454	TCP_SKB_CB(prev)->end_seq += shifted;
1455	TCP_SKB_CB(skb)->seq += shifted;
1456
1457	tcp_skb_pcount_add(prev, pcount);
1458	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1459	tcp_skb_pcount_add(skb, -pcount);
1460
1461	/* When we're adding to gso_segs == 1, gso_size will be zero,
1462	 * in theory this shouldn't be necessary but as long as DSACK
1463	 * code can come after this skb later on it's better to keep
1464	 * setting gso_size to something.
1465	 */
1466	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1467		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1468
1469	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1470	if (tcp_skb_pcount(skb) <= 1)
1471		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1472
1473	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1474	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1475
1476	if (skb->len > 0) {
1477		BUG_ON(!tcp_skb_pcount(skb));
1478		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1479		return false;
1480	}
1481
1482	/* Whole SKB was eaten :-) */
1483
1484	if (skb == tp->retransmit_skb_hint)
1485		tp->retransmit_skb_hint = prev;
1486	if (skb == tp->lost_skb_hint) {
1487		tp->lost_skb_hint = prev;
1488		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1489	}
1490
1491	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1492	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1493	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1494		TCP_SKB_CB(prev)->end_seq++;
1495
1496	if (skb == tcp_highest_sack(sk))
1497		tcp_advance_highest_sack(sk, skb);
1498
1499	tcp_skb_collapse_tstamp(prev, skb);
1500	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1501		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1502
1503	tcp_rtx_queue_unlink_and_free(skb, sk);
1504
1505	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1506
1507	return true;
1508}
1509
1510/* I wish gso_size would have a bit more sane initialization than
1511 * something-or-zero which complicates things
1512 */
1513static int tcp_skb_seglen(const struct sk_buff *skb)
1514{
1515	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1516}
1517
1518/* Shifting pages past head area doesn't work */
1519static int skb_can_shift(const struct sk_buff *skb)
1520{
1521	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1522}
1523
1524int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1525		  int pcount, int shiftlen)
1526{
1527	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1528	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1529	 * to make sure not storing more than 65535 * 8 bytes per skb,
1530	 * even if current MSS is bigger.
1531	 */
1532	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1533		return 0;
1534	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1535		return 0;
1536	return skb_shift(to, from, shiftlen);
1537}
1538
1539/* Try collapsing SACK blocks spanning across multiple skbs to a single
1540 * skb.
1541 */
1542static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1543					  struct tcp_sacktag_state *state,
1544					  u32 start_seq, u32 end_seq,
1545					  bool dup_sack)
1546{
1547	struct tcp_sock *tp = tcp_sk(sk);
1548	struct sk_buff *prev;
1549	int mss;
1550	int pcount = 0;
1551	int len;
1552	int in_sack;
1553
1554	/* Normally R but no L won't result in plain S */
1555	if (!dup_sack &&
1556	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1557		goto fallback;
1558	if (!skb_can_shift(skb))
1559		goto fallback;
1560	/* This frame is about to be dropped (was ACKed). */
1561	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1562		goto fallback;
1563
1564	/* Can only happen with delayed DSACK + discard craziness */
1565	prev = skb_rb_prev(skb);
1566	if (!prev)
1567		goto fallback;
1568
1569	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1570		goto fallback;
1571
1572	if (!tcp_skb_can_collapse(prev, skb))
1573		goto fallback;
1574
1575	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1576		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1577
1578	if (in_sack) {
1579		len = skb->len;
1580		pcount = tcp_skb_pcount(skb);
1581		mss = tcp_skb_seglen(skb);
1582
1583		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1584		 * drop this restriction as unnecessary
1585		 */
1586		if (mss != tcp_skb_seglen(prev))
1587			goto fallback;
1588	} else {
1589		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1590			goto noop;
1591		/* CHECKME: This is non-MSS split case only?, this will
1592		 * cause skipped skbs due to advancing loop btw, original
1593		 * has that feature too
1594		 */
1595		if (tcp_skb_pcount(skb) <= 1)
1596			goto noop;
1597
1598		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1599		if (!in_sack) {
1600			/* TODO: head merge to next could be attempted here
1601			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1602			 * though it might not be worth of the additional hassle
1603			 *
1604			 * ...we can probably just fallback to what was done
1605			 * previously. We could try merging non-SACKed ones
1606			 * as well but it probably isn't going to buy off
1607			 * because later SACKs might again split them, and
1608			 * it would make skb timestamp tracking considerably
1609			 * harder problem.
1610			 */
1611			goto fallback;
1612		}
1613
1614		len = end_seq - TCP_SKB_CB(skb)->seq;
1615		BUG_ON(len < 0);
1616		BUG_ON(len > skb->len);
1617
1618		/* MSS boundaries should be honoured or else pcount will
1619		 * severely break even though it makes things bit trickier.
1620		 * Optimize common case to avoid most of the divides
1621		 */
1622		mss = tcp_skb_mss(skb);
1623
1624		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1625		 * drop this restriction as unnecessary
1626		 */
1627		if (mss != tcp_skb_seglen(prev))
1628			goto fallback;
1629
1630		if (len == mss) {
1631			pcount = 1;
1632		} else if (len < mss) {
1633			goto noop;
1634		} else {
1635			pcount = len / mss;
1636			len = pcount * mss;
1637		}
1638	}
1639
1640	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1641	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1642		goto fallback;
1643
1644	if (!tcp_skb_shift(prev, skb, pcount, len))
1645		goto fallback;
1646	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1647		goto out;
1648
1649	/* Hole filled allows collapsing with the next as well, this is very
1650	 * useful when hole on every nth skb pattern happens
1651	 */
1652	skb = skb_rb_next(prev);
1653	if (!skb)
1654		goto out;
1655
1656	if (!skb_can_shift(skb) ||
1657	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1658	    (mss != tcp_skb_seglen(skb)))
1659		goto out;
1660
1661	if (!tcp_skb_can_collapse(prev, skb))
1662		goto out;
1663	len = skb->len;
1664	pcount = tcp_skb_pcount(skb);
1665	if (tcp_skb_shift(prev, skb, pcount, len))
1666		tcp_shifted_skb(sk, prev, skb, state, pcount,
1667				len, mss, 0);
1668
1669out:
1670	return prev;
1671
1672noop:
1673	return skb;
1674
1675fallback:
1676	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1677	return NULL;
1678}
1679
1680static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1681					struct tcp_sack_block *next_dup,
1682					struct tcp_sacktag_state *state,
1683					u32 start_seq, u32 end_seq,
1684					bool dup_sack_in)
1685{
1686	struct tcp_sock *tp = tcp_sk(sk);
1687	struct sk_buff *tmp;
1688
1689	skb_rbtree_walk_from(skb) {
1690		int in_sack = 0;
1691		bool dup_sack = dup_sack_in;
1692
1693		/* queue is in-order => we can short-circuit the walk early */
1694		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1695			break;
1696
1697		if (next_dup  &&
1698		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1699			in_sack = tcp_match_skb_to_sack(sk, skb,
1700							next_dup->start_seq,
1701							next_dup->end_seq);
1702			if (in_sack > 0)
1703				dup_sack = true;
1704		}
1705
1706		/* skb reference here is a bit tricky to get right, since
1707		 * shifting can eat and free both this skb and the next,
1708		 * so not even _safe variant of the loop is enough.
1709		 */
1710		if (in_sack <= 0) {
1711			tmp = tcp_shift_skb_data(sk, skb, state,
1712						 start_seq, end_seq, dup_sack);
1713			if (tmp) {
1714				if (tmp != skb) {
1715					skb = tmp;
1716					continue;
1717				}
1718
1719				in_sack = 0;
1720			} else {
1721				in_sack = tcp_match_skb_to_sack(sk, skb,
1722								start_seq,
1723								end_seq);
1724			}
1725		}
1726
1727		if (unlikely(in_sack < 0))
1728			break;
1729
1730		if (in_sack) {
1731			TCP_SKB_CB(skb)->sacked =
1732				tcp_sacktag_one(sk,
1733						state,
1734						TCP_SKB_CB(skb)->sacked,
1735						TCP_SKB_CB(skb)->seq,
1736						TCP_SKB_CB(skb)->end_seq,
1737						dup_sack,
1738						tcp_skb_pcount(skb),
1739						tcp_skb_timestamp_us(skb));
1740			tcp_rate_skb_delivered(sk, skb, state->rate);
1741			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1742				list_del_init(&skb->tcp_tsorted_anchor);
1743
1744			if (!before(TCP_SKB_CB(skb)->seq,
1745				    tcp_highest_sack_seq(tp)))
1746				tcp_advance_highest_sack(sk, skb);
1747		}
1748	}
1749	return skb;
1750}
1751
1752static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1753{
1754	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1755	struct sk_buff *skb;
1756
1757	while (*p) {
1758		parent = *p;
1759		skb = rb_to_skb(parent);
1760		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1761			p = &parent->rb_left;
1762			continue;
1763		}
1764		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1765			p = &parent->rb_right;
1766			continue;
1767		}
1768		return skb;
1769	}
1770	return NULL;
1771}
1772
1773static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1774					u32 skip_to_seq)
1775{
1776	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1777		return skb;
1778
1779	return tcp_sacktag_bsearch(sk, skip_to_seq);
1780}
1781
1782static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1783						struct sock *sk,
1784						struct tcp_sack_block *next_dup,
1785						struct tcp_sacktag_state *state,
1786						u32 skip_to_seq)
1787{
1788	if (!next_dup)
1789		return skb;
1790
1791	if (before(next_dup->start_seq, skip_to_seq)) {
1792		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1793		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1794				       next_dup->start_seq, next_dup->end_seq,
1795				       1);
1796	}
1797
1798	return skb;
1799}
1800
1801static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1802{
1803	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1804}
1805
1806static int
1807tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1808			u32 prior_snd_una, struct tcp_sacktag_state *state)
1809{
1810	struct tcp_sock *tp = tcp_sk(sk);
1811	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1812				    TCP_SKB_CB(ack_skb)->sacked);
1813	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1814	struct tcp_sack_block sp[TCP_NUM_SACKS];
1815	struct tcp_sack_block *cache;
1816	struct sk_buff *skb;
1817	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1818	int used_sacks;
1819	bool found_dup_sack = false;
1820	int i, j;
1821	int first_sack_index;
1822
1823	state->flag = 0;
1824	state->reord = tp->snd_nxt;
1825
1826	if (!tp->sacked_out)
1827		tcp_highest_sack_reset(sk);
1828
1829	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1830					 num_sacks, prior_snd_una, state);
1831
1832	/* Eliminate too old ACKs, but take into
1833	 * account more or less fresh ones, they can
1834	 * contain valid SACK info.
1835	 */
1836	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1837		return 0;
1838
1839	if (!tp->packets_out)
1840		goto out;
1841
1842	used_sacks = 0;
1843	first_sack_index = 0;
1844	for (i = 0; i < num_sacks; i++) {
1845		bool dup_sack = !i && found_dup_sack;
1846
1847		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1848		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1849
1850		if (!tcp_is_sackblock_valid(tp, dup_sack,
1851					    sp[used_sacks].start_seq,
1852					    sp[used_sacks].end_seq)) {
1853			int mib_idx;
1854
1855			if (dup_sack) {
1856				if (!tp->undo_marker)
1857					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1858				else
1859					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1860			} else {
1861				/* Don't count olds caused by ACK reordering */
1862				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1863				    !after(sp[used_sacks].end_seq, tp->snd_una))
1864					continue;
1865				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1866			}
1867
1868			NET_INC_STATS(sock_net(sk), mib_idx);
1869			if (i == 0)
1870				first_sack_index = -1;
1871			continue;
1872		}
1873
1874		/* Ignore very old stuff early */
1875		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1876			if (i == 0)
1877				first_sack_index = -1;
1878			continue;
1879		}
1880
1881		used_sacks++;
1882	}
1883
1884	/* order SACK blocks to allow in order walk of the retrans queue */
1885	for (i = used_sacks - 1; i > 0; i--) {
1886		for (j = 0; j < i; j++) {
1887			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1888				swap(sp[j], sp[j + 1]);
1889
1890				/* Track where the first SACK block goes to */
1891				if (j == first_sack_index)
1892					first_sack_index = j + 1;
1893			}
1894		}
1895	}
1896
1897	state->mss_now = tcp_current_mss(sk);
1898	skb = NULL;
1899	i = 0;
1900
1901	if (!tp->sacked_out) {
1902		/* It's already past, so skip checking against it */
1903		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1904	} else {
1905		cache = tp->recv_sack_cache;
1906		/* Skip empty blocks in at head of the cache */
1907		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1908		       !cache->end_seq)
1909			cache++;
1910	}
1911
1912	while (i < used_sacks) {
1913		u32 start_seq = sp[i].start_seq;
1914		u32 end_seq = sp[i].end_seq;
1915		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1916		struct tcp_sack_block *next_dup = NULL;
1917
1918		if (found_dup_sack && ((i + 1) == first_sack_index))
1919			next_dup = &sp[i + 1];
1920
1921		/* Skip too early cached blocks */
1922		while (tcp_sack_cache_ok(tp, cache) &&
1923		       !before(start_seq, cache->end_seq))
1924			cache++;
1925
1926		/* Can skip some work by looking recv_sack_cache? */
1927		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1928		    after(end_seq, cache->start_seq)) {
1929
1930			/* Head todo? */
1931			if (before(start_seq, cache->start_seq)) {
1932				skb = tcp_sacktag_skip(skb, sk, start_seq);
1933				skb = tcp_sacktag_walk(skb, sk, next_dup,
1934						       state,
1935						       start_seq,
1936						       cache->start_seq,
1937						       dup_sack);
1938			}
1939
1940			/* Rest of the block already fully processed? */
1941			if (!after(end_seq, cache->end_seq))
1942				goto advance_sp;
1943
1944			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1945						       state,
1946						       cache->end_seq);
1947
1948			/* ...tail remains todo... */
1949			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1950				/* ...but better entrypoint exists! */
1951				skb = tcp_highest_sack(sk);
1952				if (!skb)
1953					break;
1954				cache++;
1955				goto walk;
1956			}
1957
1958			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1959			/* Check overlap against next cached too (past this one already) */
1960			cache++;
1961			continue;
1962		}
1963
1964		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1965			skb = tcp_highest_sack(sk);
1966			if (!skb)
1967				break;
1968		}
1969		skb = tcp_sacktag_skip(skb, sk, start_seq);
1970
1971walk:
1972		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1973				       start_seq, end_seq, dup_sack);
1974
1975advance_sp:
1976		i++;
1977	}
1978
1979	/* Clear the head of the cache sack blocks so we can skip it next time */
1980	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1981		tp->recv_sack_cache[i].start_seq = 0;
1982		tp->recv_sack_cache[i].end_seq = 0;
1983	}
1984	for (j = 0; j < used_sacks; j++)
1985		tp->recv_sack_cache[i++] = sp[j];
1986
1987	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1988		tcp_check_sack_reordering(sk, state->reord, 0);
1989
1990	tcp_verify_left_out(tp);
1991out:
1992
1993#if FASTRETRANS_DEBUG > 0
1994	WARN_ON((int)tp->sacked_out < 0);
1995	WARN_ON((int)tp->lost_out < 0);
1996	WARN_ON((int)tp->retrans_out < 0);
1997	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1998#endif
1999	return state->flag;
2000}
2001
2002/* Limits sacked_out so that sum with lost_out isn't ever larger than
2003 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2004 */
2005static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2006{
2007	u32 holes;
2008
2009	holes = max(tp->lost_out, 1U);
2010	holes = min(holes, tp->packets_out);
2011
2012	if ((tp->sacked_out + holes) > tp->packets_out) {
2013		tp->sacked_out = tp->packets_out - holes;
2014		return true;
2015	}
2016	return false;
2017}
2018
2019/* If we receive more dupacks than we expected counting segments
2020 * in assumption of absent reordering, interpret this as reordering.
2021 * The only another reason could be bug in receiver TCP.
2022 */
2023static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2024{
2025	struct tcp_sock *tp = tcp_sk(sk);
2026
2027	if (!tcp_limit_reno_sacked(tp))
2028		return;
2029
2030	tp->reordering = min_t(u32, tp->packets_out + addend,
2031			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2032	tp->reord_seen++;
2033	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2034}
2035
2036/* Emulate SACKs for SACKless connection: account for a new dupack. */
2037
2038static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2039{
2040	if (num_dupack) {
2041		struct tcp_sock *tp = tcp_sk(sk);
2042		u32 prior_sacked = tp->sacked_out;
2043		s32 delivered;
2044
2045		tp->sacked_out += num_dupack;
2046		tcp_check_reno_reordering(sk, 0);
2047		delivered = tp->sacked_out - prior_sacked;
2048		if (delivered > 0)
2049			tcp_count_delivered(tp, delivered, ece_ack);
2050		tcp_verify_left_out(tp);
2051	}
2052}
2053
2054/* Account for ACK, ACKing some data in Reno Recovery phase. */
2055
2056static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2057{
2058	struct tcp_sock *tp = tcp_sk(sk);
2059
2060	if (acked > 0) {
2061		/* One ACK acked hole. The rest eat duplicate ACKs. */
2062		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2063				    ece_ack);
2064		if (acked - 1 >= tp->sacked_out)
2065			tp->sacked_out = 0;
2066		else
2067			tp->sacked_out -= acked - 1;
2068	}
2069	tcp_check_reno_reordering(sk, acked);
2070	tcp_verify_left_out(tp);
2071}
2072
2073static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2074{
2075	tp->sacked_out = 0;
2076}
2077
2078void tcp_clear_retrans(struct tcp_sock *tp)
2079{
2080	tp->retrans_out = 0;
2081	tp->lost_out = 0;
2082	tp->undo_marker = 0;
2083	tp->undo_retrans = -1;
2084	tp->sacked_out = 0;
2085}
2086
2087static inline void tcp_init_undo(struct tcp_sock *tp)
2088{
2089	tp->undo_marker = tp->snd_una;
2090	/* Retransmission still in flight may cause DSACKs later. */
2091	tp->undo_retrans = tp->retrans_out ? : -1;
2092}
2093
2094static bool tcp_is_rack(const struct sock *sk)
2095{
2096	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2097		TCP_RACK_LOSS_DETECTION;
2098}
2099
2100/* If we detect SACK reneging, forget all SACK information
2101 * and reset tags completely, otherwise preserve SACKs. If receiver
2102 * dropped its ofo queue, we will know this due to reneging detection.
2103 */
2104static void tcp_timeout_mark_lost(struct sock *sk)
2105{
2106	struct tcp_sock *tp = tcp_sk(sk);
2107	struct sk_buff *skb, *head;
2108	bool is_reneg;			/* is receiver reneging on SACKs? */
2109
2110	head = tcp_rtx_queue_head(sk);
2111	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2112	if (is_reneg) {
2113		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2114		tp->sacked_out = 0;
2115		/* Mark SACK reneging until we recover from this loss event. */
2116		tp->is_sack_reneg = 1;
2117	} else if (tcp_is_reno(tp)) {
2118		tcp_reset_reno_sack(tp);
2119	}
2120
2121	skb = head;
2122	skb_rbtree_walk_from(skb) {
2123		if (is_reneg)
2124			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2125		else if (tcp_is_rack(sk) && skb != head &&
2126			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2127			continue; /* Don't mark recently sent ones lost yet */
2128		tcp_mark_skb_lost(sk, skb);
2129	}
2130	tcp_verify_left_out(tp);
2131	tcp_clear_all_retrans_hints(tp);
2132}
2133
2134/* Enter Loss state. */
2135void tcp_enter_loss(struct sock *sk)
2136{
2137	const struct inet_connection_sock *icsk = inet_csk(sk);
2138	struct tcp_sock *tp = tcp_sk(sk);
2139	struct net *net = sock_net(sk);
2140	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2141	u8 reordering;
2142
2143	tcp_timeout_mark_lost(sk);
2144
2145	/* Reduce ssthresh if it has not yet been made inside this window. */
2146	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2147	    !after(tp->high_seq, tp->snd_una) ||
2148	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2149		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2150		tp->prior_cwnd = tp->snd_cwnd;
2151		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2152		tcp_ca_event(sk, CA_EVENT_LOSS);
2153		tcp_init_undo(tp);
2154	}
2155	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2156	tp->snd_cwnd_cnt   = 0;
2157	tp->snd_cwnd_stamp = tcp_jiffies32;
2158
2159	/* Timeout in disordered state after receiving substantial DUPACKs
2160	 * suggests that the degree of reordering is over-estimated.
2161	 */
2162	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2163	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2164	    tp->sacked_out >= reordering)
2165		tp->reordering = min_t(unsigned int, tp->reordering,
2166				       reordering);
2167
2168	tcp_set_ca_state(sk, TCP_CA_Loss);
2169	tp->high_seq = tp->snd_nxt;
2170	tcp_ecn_queue_cwr(tp);
2171
2172	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2173	 * loss recovery is underway except recurring timeout(s) on
2174	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2175	 */
2176	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2177		   (new_recovery || icsk->icsk_retransmits) &&
2178		   !inet_csk(sk)->icsk_mtup.probe_size;
2179}
2180
2181/* If ACK arrived pointing to a remembered SACK, it means that our
2182 * remembered SACKs do not reflect real state of receiver i.e.
2183 * receiver _host_ is heavily congested (or buggy).
2184 *
2185 * To avoid big spurious retransmission bursts due to transient SACK
2186 * scoreboard oddities that look like reneging, we give the receiver a
2187 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2188 * restore sanity to the SACK scoreboard. If the apparent reneging
2189 * persists until this RTO then we'll clear the SACK scoreboard.
2190 */
2191static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2192{
2193	if (*ack_flag & FLAG_SACK_RENEGING &&
2194	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2195		struct tcp_sock *tp = tcp_sk(sk);
2196		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2197					  msecs_to_jiffies(10));
2198
2199		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2200					  delay, TCP_RTO_MAX);
2201		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2202		return true;
2203	}
2204	return false;
2205}
2206
2207/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2208 * counter when SACK is enabled (without SACK, sacked_out is used for
2209 * that purpose).
2210 *
2211 * With reordering, holes may still be in flight, so RFC3517 recovery
2212 * uses pure sacked_out (total number of SACKed segments) even though
2213 * it violates the RFC that uses duplicate ACKs, often these are equal
2214 * but when e.g. out-of-window ACKs or packet duplication occurs,
2215 * they differ. Since neither occurs due to loss, TCP should really
2216 * ignore them.
2217 */
2218static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2219{
2220	return tp->sacked_out + 1;
2221}
2222
2223/* Linux NewReno/SACK/ECN state machine.
2224 * --------------------------------------
2225 *
2226 * "Open"	Normal state, no dubious events, fast path.
2227 * "Disorder"   In all the respects it is "Open",
2228 *		but requires a bit more attention. It is entered when
2229 *		we see some SACKs or dupacks. It is split of "Open"
2230 *		mainly to move some processing from fast path to slow one.
2231 * "CWR"	CWND was reduced due to some Congestion Notification event.
2232 *		It can be ECN, ICMP source quench, local device congestion.
2233 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2234 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2235 *
2236 * tcp_fastretrans_alert() is entered:
2237 * - each incoming ACK, if state is not "Open"
2238 * - when arrived ACK is unusual, namely:
2239 *	* SACK
2240 *	* Duplicate ACK.
2241 *	* ECN ECE.
2242 *
2243 * Counting packets in flight is pretty simple.
2244 *
2245 *	in_flight = packets_out - left_out + retrans_out
2246 *
2247 *	packets_out is SND.NXT-SND.UNA counted in packets.
2248 *
2249 *	retrans_out is number of retransmitted segments.
2250 *
2251 *	left_out is number of segments left network, but not ACKed yet.
2252 *
2253 *		left_out = sacked_out + lost_out
2254 *
2255 *     sacked_out: Packets, which arrived to receiver out of order
2256 *		   and hence not ACKed. With SACKs this number is simply
2257 *		   amount of SACKed data. Even without SACKs
2258 *		   it is easy to give pretty reliable estimate of this number,
2259 *		   counting duplicate ACKs.
2260 *
2261 *       lost_out: Packets lost by network. TCP has no explicit
2262 *		   "loss notification" feedback from network (for now).
2263 *		   It means that this number can be only _guessed_.
2264 *		   Actually, it is the heuristics to predict lossage that
2265 *		   distinguishes different algorithms.
2266 *
2267 *	F.e. after RTO, when all the queue is considered as lost,
2268 *	lost_out = packets_out and in_flight = retrans_out.
2269 *
2270 *		Essentially, we have now a few algorithms detecting
2271 *		lost packets.
2272 *
2273 *		If the receiver supports SACK:
2274 *
2275 *		RFC6675/3517: It is the conventional algorithm. A packet is
2276 *		considered lost if the number of higher sequence packets
2277 *		SACKed is greater than or equal the DUPACK thoreshold
2278 *		(reordering). This is implemented in tcp_mark_head_lost and
2279 *		tcp_update_scoreboard.
2280 *
2281 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2282 *		(2017-) that checks timing instead of counting DUPACKs.
2283 *		Essentially a packet is considered lost if it's not S/ACKed
2284 *		after RTT + reordering_window, where both metrics are
2285 *		dynamically measured and adjusted. This is implemented in
2286 *		tcp_rack_mark_lost.
2287 *
2288 *		If the receiver does not support SACK:
2289 *
2290 *		NewReno (RFC6582): in Recovery we assume that one segment
2291 *		is lost (classic Reno). While we are in Recovery and
2292 *		a partial ACK arrives, we assume that one more packet
2293 *		is lost (NewReno). This heuristics are the same in NewReno
2294 *		and SACK.
2295 *
2296 * Really tricky (and requiring careful tuning) part of algorithm
2297 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2298 * The first determines the moment _when_ we should reduce CWND and,
2299 * hence, slow down forward transmission. In fact, it determines the moment
2300 * when we decide that hole is caused by loss, rather than by a reorder.
2301 *
2302 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2303 * holes, caused by lost packets.
2304 *
2305 * And the most logically complicated part of algorithm is undo
2306 * heuristics. We detect false retransmits due to both too early
2307 * fast retransmit (reordering) and underestimated RTO, analyzing
2308 * timestamps and D-SACKs. When we detect that some segments were
2309 * retransmitted by mistake and CWND reduction was wrong, we undo
2310 * window reduction and abort recovery phase. This logic is hidden
2311 * inside several functions named tcp_try_undo_<something>.
2312 */
2313
2314/* This function decides, when we should leave Disordered state
2315 * and enter Recovery phase, reducing congestion window.
2316 *
2317 * Main question: may we further continue forward transmission
2318 * with the same cwnd?
2319 */
2320static bool tcp_time_to_recover(struct sock *sk, int flag)
2321{
2322	struct tcp_sock *tp = tcp_sk(sk);
2323
2324	/* Trick#1: The loss is proven. */
2325	if (tp->lost_out)
2326		return true;
2327
2328	/* Not-A-Trick#2 : Classic rule... */
2329	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2330		return true;
2331
2332	return false;
2333}
2334
2335/* Detect loss in event "A" above by marking head of queue up as lost.
2336 * For RFC3517 SACK, a segment is considered lost if it
2337 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2338 * the maximum SACKed segments to pass before reaching this limit.
2339 */
2340static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2341{
2342	struct tcp_sock *tp = tcp_sk(sk);
2343	struct sk_buff *skb;
2344	int cnt;
2345	/* Use SACK to deduce losses of new sequences sent during recovery */
2346	const u32 loss_high = tp->snd_nxt;
2347
2348	WARN_ON(packets > tp->packets_out);
2349	skb = tp->lost_skb_hint;
2350	if (skb) {
2351		/* Head already handled? */
2352		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2353			return;
2354		cnt = tp->lost_cnt_hint;
2355	} else {
2356		skb = tcp_rtx_queue_head(sk);
2357		cnt = 0;
2358	}
2359
2360	skb_rbtree_walk_from(skb) {
2361		/* TODO: do this better */
2362		/* this is not the most efficient way to do this... */
2363		tp->lost_skb_hint = skb;
2364		tp->lost_cnt_hint = cnt;
2365
2366		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2367			break;
2368
2369		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2370			cnt += tcp_skb_pcount(skb);
2371
2372		if (cnt > packets)
2373			break;
2374
2375		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2376			tcp_mark_skb_lost(sk, skb);
2377
2378		if (mark_head)
2379			break;
2380	}
2381	tcp_verify_left_out(tp);
2382}
2383
2384/* Account newly detected lost packet(s) */
2385
2386static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2387{
2388	struct tcp_sock *tp = tcp_sk(sk);
2389
2390	if (tcp_is_sack(tp)) {
2391		int sacked_upto = tp->sacked_out - tp->reordering;
2392		if (sacked_upto >= 0)
2393			tcp_mark_head_lost(sk, sacked_upto, 0);
2394		else if (fast_rexmit)
2395			tcp_mark_head_lost(sk, 1, 1);
2396	}
2397}
2398
2399static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2400{
2401	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2402	       before(tp->rx_opt.rcv_tsecr, when);
2403}
2404
2405/* skb is spurious retransmitted if the returned timestamp echo
2406 * reply is prior to the skb transmission time
2407 */
2408static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2409				     const struct sk_buff *skb)
2410{
2411	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2412	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2413}
2414
2415/* Nothing was retransmitted or returned timestamp is less
2416 * than timestamp of the first retransmission.
2417 */
2418static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2419{
2420	return tp->retrans_stamp &&
2421	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2422}
2423
2424/* Undo procedures. */
2425
2426/* We can clear retrans_stamp when there are no retransmissions in the
2427 * window. It would seem that it is trivially available for us in
2428 * tp->retrans_out, however, that kind of assumptions doesn't consider
2429 * what will happen if errors occur when sending retransmission for the
2430 * second time. ...It could the that such segment has only
2431 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2432 * the head skb is enough except for some reneging corner cases that
2433 * are not worth the effort.
2434 *
2435 * Main reason for all this complexity is the fact that connection dying
2436 * time now depends on the validity of the retrans_stamp, in particular,
2437 * that successive retransmissions of a segment must not advance
2438 * retrans_stamp under any conditions.
2439 */
2440static bool tcp_any_retrans_done(const struct sock *sk)
2441{
2442	const struct tcp_sock *tp = tcp_sk(sk);
2443	struct sk_buff *skb;
2444
2445	if (tp->retrans_out)
2446		return true;
2447
2448	skb = tcp_rtx_queue_head(sk);
2449	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2450		return true;
2451
2452	return false;
2453}
2454
2455static void DBGUNDO(struct sock *sk, const char *msg)
2456{
2457#if FASTRETRANS_DEBUG > 1
2458	struct tcp_sock *tp = tcp_sk(sk);
2459	struct inet_sock *inet = inet_sk(sk);
2460
2461	if (sk->sk_family == AF_INET) {
2462		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2463			 msg,
2464			 &inet->inet_daddr, ntohs(inet->inet_dport),
2465			 tp->snd_cwnd, tcp_left_out(tp),
2466			 tp->snd_ssthresh, tp->prior_ssthresh,
2467			 tp->packets_out);
2468	}
2469#if IS_ENABLED(CONFIG_IPV6)
2470	else if (sk->sk_family == AF_INET6) {
2471		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2472			 msg,
2473			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2474			 tp->snd_cwnd, tcp_left_out(tp),
2475			 tp->snd_ssthresh, tp->prior_ssthresh,
2476			 tp->packets_out);
2477	}
2478#endif
2479#endif
2480}
2481
2482static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2483{
2484	struct tcp_sock *tp = tcp_sk(sk);
2485
2486	if (unmark_loss) {
2487		struct sk_buff *skb;
2488
2489		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2490			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2491		}
2492		tp->lost_out = 0;
2493		tcp_clear_all_retrans_hints(tp);
2494	}
2495
2496	if (tp->prior_ssthresh) {
2497		const struct inet_connection_sock *icsk = inet_csk(sk);
2498
2499		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2500
2501		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2502			tp->snd_ssthresh = tp->prior_ssthresh;
2503			tcp_ecn_withdraw_cwr(tp);
2504		}
2505	}
2506	tp->snd_cwnd_stamp = tcp_jiffies32;
2507	tp->undo_marker = 0;
2508	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2509}
2510
2511static inline bool tcp_may_undo(const struct tcp_sock *tp)
2512{
2513	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2514}
2515
2516static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2517{
2518	struct tcp_sock *tp = tcp_sk(sk);
2519
2520	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2521		/* Hold old state until something *above* high_seq
2522		 * is ACKed. For Reno it is MUST to prevent false
2523		 * fast retransmits (RFC2582). SACK TCP is safe. */
2524		if (!tcp_any_retrans_done(sk))
2525			tp->retrans_stamp = 0;
2526		return true;
2527	}
2528	return false;
2529}
2530
2531/* People celebrate: "We love our President!" */
2532static bool tcp_try_undo_recovery(struct sock *sk)
2533{
2534	struct tcp_sock *tp = tcp_sk(sk);
2535
2536	if (tcp_may_undo(tp)) {
2537		int mib_idx;
2538
2539		/* Happy end! We did not retransmit anything
2540		 * or our original transmission succeeded.
2541		 */
2542		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2543		tcp_undo_cwnd_reduction(sk, false);
2544		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2545			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2546		else
2547			mib_idx = LINUX_MIB_TCPFULLUNDO;
2548
2549		NET_INC_STATS(sock_net(sk), mib_idx);
2550	} else if (tp->rack.reo_wnd_persist) {
2551		tp->rack.reo_wnd_persist--;
2552	}
2553	if (tcp_is_non_sack_preventing_reopen(sk))
2554		return true;
2555	tcp_set_ca_state(sk, TCP_CA_Open);
2556	tp->is_sack_reneg = 0;
2557	return false;
2558}
2559
2560/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2561static bool tcp_try_undo_dsack(struct sock *sk)
2562{
2563	struct tcp_sock *tp = tcp_sk(sk);
2564
2565	if (tp->undo_marker && !tp->undo_retrans) {
2566		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2567					       tp->rack.reo_wnd_persist + 1);
2568		DBGUNDO(sk, "D-SACK");
2569		tcp_undo_cwnd_reduction(sk, false);
2570		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2571		return true;
2572	}
2573	return false;
2574}
2575
2576/* Undo during loss recovery after partial ACK or using F-RTO. */
2577static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2578{
2579	struct tcp_sock *tp = tcp_sk(sk);
2580
2581	if (frto_undo || tcp_may_undo(tp)) {
2582		tcp_undo_cwnd_reduction(sk, true);
2583
2584		DBGUNDO(sk, "partial loss");
2585		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2586		if (frto_undo)
2587			NET_INC_STATS(sock_net(sk),
2588					LINUX_MIB_TCPSPURIOUSRTOS);
2589		inet_csk(sk)->icsk_retransmits = 0;
2590		if (tcp_is_non_sack_preventing_reopen(sk))
2591			return true;
2592		if (frto_undo || tcp_is_sack(tp)) {
2593			tcp_set_ca_state(sk, TCP_CA_Open);
2594			tp->is_sack_reneg = 0;
2595		}
2596		return true;
2597	}
2598	return false;
2599}
2600
2601/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2602 * It computes the number of packets to send (sndcnt) based on packets newly
2603 * delivered:
2604 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2605 *	cwnd reductions across a full RTT.
2606 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2607 *      But when the retransmits are acked without further losses, PRR
2608 *      slow starts cwnd up to ssthresh to speed up the recovery.
2609 */
2610static void tcp_init_cwnd_reduction(struct sock *sk)
2611{
2612	struct tcp_sock *tp = tcp_sk(sk);
2613
2614	tp->high_seq = tp->snd_nxt;
2615	tp->tlp_high_seq = 0;
2616	tp->snd_cwnd_cnt = 0;
2617	tp->prior_cwnd = tp->snd_cwnd;
2618	tp->prr_delivered = 0;
2619	tp->prr_out = 0;
2620	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2621	tcp_ecn_queue_cwr(tp);
2622}
2623
2624void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2625{
2626	struct tcp_sock *tp = tcp_sk(sk);
2627	int sndcnt = 0;
2628	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2629
2630	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2631		return;
2632
2633	tp->prr_delivered += newly_acked_sacked;
2634	if (delta < 0) {
2635		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2636			       tp->prior_cwnd - 1;
2637		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2638	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2639		   FLAG_RETRANS_DATA_ACKED) {
2640		sndcnt = min_t(int, delta,
2641			       max_t(int, tp->prr_delivered - tp->prr_out,
2642				     newly_acked_sacked) + 1);
2643	} else {
2644		sndcnt = min(delta, newly_acked_sacked);
2645	}
2646	/* Force a fast retransmit upon entering fast recovery */
2647	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2648	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2649}
2650
2651static inline void tcp_end_cwnd_reduction(struct sock *sk)
2652{
2653	struct tcp_sock *tp = tcp_sk(sk);
2654
2655	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2656		return;
2657
2658	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2659	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2660	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2661		tp->snd_cwnd = tp->snd_ssthresh;
2662		tp->snd_cwnd_stamp = tcp_jiffies32;
2663	}
2664	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2665}
2666
2667/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2668void tcp_enter_cwr(struct sock *sk)
2669{
2670	struct tcp_sock *tp = tcp_sk(sk);
2671
2672	tp->prior_ssthresh = 0;
2673	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2674		tp->undo_marker = 0;
2675		tcp_init_cwnd_reduction(sk);
2676		tcp_set_ca_state(sk, TCP_CA_CWR);
2677	}
2678}
2679EXPORT_SYMBOL(tcp_enter_cwr);
2680
2681static void tcp_try_keep_open(struct sock *sk)
2682{
2683	struct tcp_sock *tp = tcp_sk(sk);
2684	int state = TCP_CA_Open;
2685
2686	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2687		state = TCP_CA_Disorder;
2688
2689	if (inet_csk(sk)->icsk_ca_state != state) {
2690		tcp_set_ca_state(sk, state);
2691		tp->high_seq = tp->snd_nxt;
2692	}
2693}
2694
2695static void tcp_try_to_open(struct sock *sk, int flag)
2696{
2697	struct tcp_sock *tp = tcp_sk(sk);
2698
2699	tcp_verify_left_out(tp);
2700
2701	if (!tcp_any_retrans_done(sk))
2702		tp->retrans_stamp = 0;
2703
2704	if (flag & FLAG_ECE)
2705		tcp_enter_cwr(sk);
2706
2707	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2708		tcp_try_keep_open(sk);
2709	}
2710}
2711
2712static void tcp_mtup_probe_failed(struct sock *sk)
2713{
2714	struct inet_connection_sock *icsk = inet_csk(sk);
2715
2716	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2717	icsk->icsk_mtup.probe_size = 0;
2718	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2719}
2720
2721static void tcp_mtup_probe_success(struct sock *sk)
2722{
2723	struct tcp_sock *tp = tcp_sk(sk);
2724	struct inet_connection_sock *icsk = inet_csk(sk);
2725	u64 val;
2726
2727	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2728
2729	val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2730	do_div(val, icsk->icsk_mtup.probe_size);
2731	WARN_ON_ONCE((u32)val != val);
2732	tp->snd_cwnd = max_t(u32, 1U, val);
2733
2734	tp->snd_cwnd_cnt = 0;
2735	tp->snd_cwnd_stamp = tcp_jiffies32;
2736	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2737
2738	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2739	icsk->icsk_mtup.probe_size = 0;
2740	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2741	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2742}
2743
2744/* Do a simple retransmit without using the backoff mechanisms in
2745 * tcp_timer. This is used for path mtu discovery.
2746 * The socket is already locked here.
2747 */
2748void tcp_simple_retransmit(struct sock *sk)
2749{
2750	const struct inet_connection_sock *icsk = inet_csk(sk);
2751	struct tcp_sock *tp = tcp_sk(sk);
2752	struct sk_buff *skb;
2753	unsigned int mss = tcp_current_mss(sk);
2754
2755	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2756		if (tcp_skb_seglen(skb) > mss)
2757			tcp_mark_skb_lost(sk, skb);
2758	}
2759
2760	tcp_clear_retrans_hints_partial(tp);
2761
2762	if (!tp->lost_out)
2763		return;
2764
2765	if (tcp_is_reno(tp))
2766		tcp_limit_reno_sacked(tp);
2767
2768	tcp_verify_left_out(tp);
2769
2770	/* Don't muck with the congestion window here.
2771	 * Reason is that we do not increase amount of _data_
2772	 * in network, but units changed and effective
2773	 * cwnd/ssthresh really reduced now.
2774	 */
2775	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2776		tp->high_seq = tp->snd_nxt;
2777		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2778		tp->prior_ssthresh = 0;
2779		tp->undo_marker = 0;
2780		tcp_set_ca_state(sk, TCP_CA_Loss);
2781	}
2782	tcp_xmit_retransmit_queue(sk);
2783}
2784EXPORT_SYMBOL(tcp_simple_retransmit);
2785
2786void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2787{
2788	struct tcp_sock *tp = tcp_sk(sk);
2789	int mib_idx;
2790
2791	if (tcp_is_reno(tp))
2792		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2793	else
2794		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2795
2796	NET_INC_STATS(sock_net(sk), mib_idx);
2797
2798	tp->prior_ssthresh = 0;
2799	tcp_init_undo(tp);
2800
2801	if (!tcp_in_cwnd_reduction(sk)) {
2802		if (!ece_ack)
2803			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2804		tcp_init_cwnd_reduction(sk);
2805	}
2806	tcp_set_ca_state(sk, TCP_CA_Recovery);
2807}
2808
2809/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2810 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2811 */
2812static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2813			     int *rexmit)
2814{
2815	struct tcp_sock *tp = tcp_sk(sk);
2816	bool recovered = !before(tp->snd_una, tp->high_seq);
2817
2818	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2819	    tcp_try_undo_loss(sk, false))
2820		return;
2821
2822	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2823		/* Step 3.b. A timeout is spurious if not all data are
2824		 * lost, i.e., never-retransmitted data are (s)acked.
2825		 */
2826		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2827		    tcp_try_undo_loss(sk, true))
2828			return;
2829
2830		if (after(tp->snd_nxt, tp->high_seq)) {
2831			if (flag & FLAG_DATA_SACKED || num_dupack)
2832				tp->frto = 0; /* Step 3.a. loss was real */
2833		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2834			tp->high_seq = tp->snd_nxt;
2835			/* Step 2.b. Try send new data (but deferred until cwnd
2836			 * is updated in tcp_ack()). Otherwise fall back to
2837			 * the conventional recovery.
2838			 */
2839			if (!tcp_write_queue_empty(sk) &&
2840			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2841				*rexmit = REXMIT_NEW;
2842				return;
2843			}
2844			tp->frto = 0;
2845		}
2846	}
2847
2848	if (recovered) {
2849		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2850		tcp_try_undo_recovery(sk);
2851		return;
2852	}
2853	if (tcp_is_reno(tp)) {
2854		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2855		 * delivered. Lower inflight to clock out (re)tranmissions.
2856		 */
2857		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2858			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2859		else if (flag & FLAG_SND_UNA_ADVANCED)
2860			tcp_reset_reno_sack(tp);
2861	}
2862	*rexmit = REXMIT_LOST;
2863}
2864
2865static bool tcp_force_fast_retransmit(struct sock *sk)
2866{
2867	struct tcp_sock *tp = tcp_sk(sk);
2868
2869	return after(tcp_highest_sack_seq(tp),
2870		     tp->snd_una + tp->reordering * tp->mss_cache);
2871}
2872
2873/* Undo during fast recovery after partial ACK. */
2874static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2875				 bool *do_lost)
2876{
2877	struct tcp_sock *tp = tcp_sk(sk);
2878
2879	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2880		/* Plain luck! Hole if filled with delayed
2881		 * packet, rather than with a retransmit. Check reordering.
2882		 */
2883		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2884
2885		/* We are getting evidence that the reordering degree is higher
2886		 * than we realized. If there are no retransmits out then we
2887		 * can undo. Otherwise we clock out new packets but do not
2888		 * mark more packets lost or retransmit more.
2889		 */
2890		if (tp->retrans_out)
2891			return true;
2892
2893		if (!tcp_any_retrans_done(sk))
2894			tp->retrans_stamp = 0;
2895
2896		DBGUNDO(sk, "partial recovery");
2897		tcp_undo_cwnd_reduction(sk, true);
2898		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2899		tcp_try_keep_open(sk);
2900	} else {
2901		/* Partial ACK arrived. Force fast retransmit. */
2902		*do_lost = tcp_force_fast_retransmit(sk);
2903	}
2904	return false;
2905}
2906
2907static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2908{
2909	struct tcp_sock *tp = tcp_sk(sk);
2910
2911	if (tcp_rtx_queue_empty(sk))
2912		return;
2913
2914	if (unlikely(tcp_is_reno(tp))) {
2915		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2916	} else if (tcp_is_rack(sk)) {
2917		u32 prior_retrans = tp->retrans_out;
2918
2919		if (tcp_rack_mark_lost(sk))
2920			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2921		if (prior_retrans > tp->retrans_out)
2922			*ack_flag |= FLAG_LOST_RETRANS;
2923	}
2924}
2925
2926/* Process an event, which can update packets-in-flight not trivially.
2927 * Main goal of this function is to calculate new estimate for left_out,
2928 * taking into account both packets sitting in receiver's buffer and
2929 * packets lost by network.
2930 *
2931 * Besides that it updates the congestion state when packet loss or ECN
2932 * is detected. But it does not reduce the cwnd, it is done by the
2933 * congestion control later.
2934 *
2935 * It does _not_ decide what to send, it is made in function
2936 * tcp_xmit_retransmit_queue().
2937 */
2938static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2939				  int num_dupack, int *ack_flag, int *rexmit)
2940{
2941	struct inet_connection_sock *icsk = inet_csk(sk);
2942	struct tcp_sock *tp = tcp_sk(sk);
2943	int fast_rexmit = 0, flag = *ack_flag;
2944	bool ece_ack = flag & FLAG_ECE;
2945	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2946				      tcp_force_fast_retransmit(sk));
2947
2948	if (!tp->packets_out && tp->sacked_out)
2949		tp->sacked_out = 0;
2950
2951	/* Now state machine starts.
2952	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2953	if (ece_ack)
2954		tp->prior_ssthresh = 0;
2955
2956	/* B. In all the states check for reneging SACKs. */
2957	if (tcp_check_sack_reneging(sk, ack_flag))
2958		return;
2959
2960	/* C. Check consistency of the current state. */
2961	tcp_verify_left_out(tp);
2962
2963	/* D. Check state exit conditions. State can be terminated
2964	 *    when high_seq is ACKed. */
2965	if (icsk->icsk_ca_state == TCP_CA_Open) {
2966		WARN_ON(tp->retrans_out != 0);
2967		tp->retrans_stamp = 0;
2968	} else if (!before(tp->snd_una, tp->high_seq)) {
2969		switch (icsk->icsk_ca_state) {
2970		case TCP_CA_CWR:
2971			/* CWR is to be held something *above* high_seq
2972			 * is ACKed for CWR bit to reach receiver. */
2973			if (tp->snd_una != tp->high_seq) {
2974				tcp_end_cwnd_reduction(sk);
2975				tcp_set_ca_state(sk, TCP_CA_Open);
2976			}
2977			break;
2978
2979		case TCP_CA_Recovery:
2980			if (tcp_is_reno(tp))
2981				tcp_reset_reno_sack(tp);
2982			if (tcp_try_undo_recovery(sk))
2983				return;
2984			tcp_end_cwnd_reduction(sk);
2985			break;
2986		}
2987	}
2988
2989	/* E. Process state. */
2990	switch (icsk->icsk_ca_state) {
2991	case TCP_CA_Recovery:
2992		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2993			if (tcp_is_reno(tp))
2994				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2995		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2996			return;
2997
2998		if (tcp_try_undo_dsack(sk))
2999			tcp_try_keep_open(sk);
3000
3001		tcp_identify_packet_loss(sk, ack_flag);
3002		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3003			if (!tcp_time_to_recover(sk, flag))
3004				return;
3005			/* Undo reverts the recovery state. If loss is evident,
3006			 * starts a new recovery (e.g. reordering then loss);
3007			 */
3008			tcp_enter_recovery(sk, ece_ack);
3009		}
3010		break;
3011	case TCP_CA_Loss:
3012		tcp_process_loss(sk, flag, num_dupack, rexmit);
3013		tcp_identify_packet_loss(sk, ack_flag);
3014		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3015		      (*ack_flag & FLAG_LOST_RETRANS)))
3016			return;
3017		/* Change state if cwnd is undone or retransmits are lost */
3018		fallthrough;
3019	default:
3020		if (tcp_is_reno(tp)) {
3021			if (flag & FLAG_SND_UNA_ADVANCED)
3022				tcp_reset_reno_sack(tp);
3023			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3024		}
3025
3026		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3027			tcp_try_undo_dsack(sk);
3028
3029		tcp_identify_packet_loss(sk, ack_flag);
3030		if (!tcp_time_to_recover(sk, flag)) {
3031			tcp_try_to_open(sk, flag);
3032			return;
3033		}
3034
3035		/* MTU probe failure: don't reduce cwnd */
3036		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3037		    icsk->icsk_mtup.probe_size &&
3038		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3039			tcp_mtup_probe_failed(sk);
3040			/* Restores the reduction we did in tcp_mtup_probe() */
3041			tp->snd_cwnd++;
3042			tcp_simple_retransmit(sk);
3043			return;
3044		}
3045
3046		/* Otherwise enter Recovery state */
3047		tcp_enter_recovery(sk, ece_ack);
3048		fast_rexmit = 1;
3049	}
3050
3051	if (!tcp_is_rack(sk) && do_lost)
3052		tcp_update_scoreboard(sk, fast_rexmit);
3053	*rexmit = REXMIT_LOST;
3054}
3055
3056static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3057{
3058	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3059	struct tcp_sock *tp = tcp_sk(sk);
3060
3061	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3062		/* If the remote keeps returning delayed ACKs, eventually
3063		 * the min filter would pick it up and overestimate the
3064		 * prop. delay when it expires. Skip suspected delayed ACKs.
3065		 */
3066		return;
3067	}
3068	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3069			   rtt_us ? : jiffies_to_usecs(1));
3070}
3071
3072static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3073			       long seq_rtt_us, long sack_rtt_us,
3074			       long ca_rtt_us, struct rate_sample *rs)
3075{
3076	const struct tcp_sock *tp = tcp_sk(sk);
3077
3078	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3079	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3080	 * Karn's algorithm forbids taking RTT if some retransmitted data
3081	 * is acked (RFC6298).
3082	 */
3083	if (seq_rtt_us < 0)
3084		seq_rtt_us = sack_rtt_us;
3085
3086	/* RTTM Rule: A TSecr value received in a segment is used to
3087	 * update the averaged RTT measurement only if the segment
3088	 * acknowledges some new data, i.e., only if it advances the
3089	 * left edge of the send window.
3090	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3091	 */
3092	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3093	    flag & FLAG_ACKED) {
3094		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3095
3096		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3097			if (!delta)
3098				delta = 1;
3099			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3100			ca_rtt_us = seq_rtt_us;
3101		}
3102	}
3103	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3104	if (seq_rtt_us < 0)
3105		return false;
3106
3107	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3108	 * always taken together with ACK, SACK, or TS-opts. Any negative
3109	 * values will be skipped with the seq_rtt_us < 0 check above.
3110	 */
3111	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3112	tcp_rtt_estimator(sk, seq_rtt_us);
3113	tcp_set_rto(sk);
3114
3115	/* RFC6298: only reset backoff on valid RTT measurement. */
3116	inet_csk(sk)->icsk_backoff = 0;
3117	return true;
3118}
3119
3120/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3121void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3122{
3123	struct rate_sample rs;
3124	long rtt_us = -1L;
3125
3126	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3127		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3128
3129	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3130}
3131
3132
3133static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3134{
3135	const struct inet_connection_sock *icsk = inet_csk(sk);
3136
3137	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3138	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3139}
3140
3141/* Restart timer after forward progress on connection.
3142 * RFC2988 recommends to restart timer to now+rto.
3143 */
3144void tcp_rearm_rto(struct sock *sk)
3145{
3146	const struct inet_connection_sock *icsk = inet_csk(sk);
3147	struct tcp_sock *tp = tcp_sk(sk);
3148
3149	/* If the retrans timer is currently being used by Fast Open
3150	 * for SYN-ACK retrans purpose, stay put.
3151	 */
3152	if (rcu_access_pointer(tp->fastopen_rsk))
3153		return;
3154
3155	if (!tp->packets_out) {
3156		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3157	} else {
3158		u32 rto = inet_csk(sk)->icsk_rto;
3159		/* Offset the time elapsed after installing regular RTO */
3160		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3161		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3162			s64 delta_us = tcp_rto_delta_us(sk);
3163			/* delta_us may not be positive if the socket is locked
3164			 * when the retrans timer fires and is rescheduled.
3165			 */
3166			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3167		}
3168		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3169				     TCP_RTO_MAX);
3170	}
3171}
3172
3173/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3174static void tcp_set_xmit_timer(struct sock *sk)
3175{
3176	if (!tcp_schedule_loss_probe(sk, true))
3177		tcp_rearm_rto(sk);
3178}
3179
3180/* If we get here, the whole TSO packet has not been acked. */
3181static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3182{
3183	struct tcp_sock *tp = tcp_sk(sk);
3184	u32 packets_acked;
3185
3186	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3187
3188	packets_acked = tcp_skb_pcount(skb);
3189	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3190		return 0;
3191	packets_acked -= tcp_skb_pcount(skb);
3192
3193	if (packets_acked) {
3194		BUG_ON(tcp_skb_pcount(skb) == 0);
3195		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3196	}
3197
3198	return packets_acked;
3199}
3200
3201static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3202			   u32 prior_snd_una)
3203{
3204	const struct skb_shared_info *shinfo;
3205
3206	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3207	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3208		return;
3209
3210	shinfo = skb_shinfo(skb);
3211	if (!before(shinfo->tskey, prior_snd_una) &&
3212	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3213		tcp_skb_tsorted_save(skb) {
3214			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3215		} tcp_skb_tsorted_restore(skb);
3216	}
3217}
3218
3219/* Remove acknowledged frames from the retransmission queue. If our packet
3220 * is before the ack sequence we can discard it as it's confirmed to have
3221 * arrived at the other end.
3222 */
3223static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3224			       u32 prior_snd_una,
3225			       struct tcp_sacktag_state *sack, bool ece_ack)
3226{
3227	const struct inet_connection_sock *icsk = inet_csk(sk);
3228	u64 first_ackt, last_ackt;
3229	struct tcp_sock *tp = tcp_sk(sk);
3230	u32 prior_sacked = tp->sacked_out;
3231	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3232	struct sk_buff *skb, *next;
3233	bool fully_acked = true;
3234	long sack_rtt_us = -1L;
3235	long seq_rtt_us = -1L;
3236	long ca_rtt_us = -1L;
3237	u32 pkts_acked = 0;
3238	u32 last_in_flight = 0;
3239	bool rtt_update;
3240	int flag = 0;
3241
3242	first_ackt = 0;
3243
3244	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3245		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3246		const u32 start_seq = scb->seq;
3247		u8 sacked = scb->sacked;
3248		u32 acked_pcount;
3249
3250		/* Determine how many packets and what bytes were acked, tso and else */
3251		if (after(scb->end_seq, tp->snd_una)) {
3252			if (tcp_skb_pcount(skb) == 1 ||
3253			    !after(tp->snd_una, scb->seq))
3254				break;
3255
3256			acked_pcount = tcp_tso_acked(sk, skb);
3257			if (!acked_pcount)
3258				break;
3259			fully_acked = false;
3260		} else {
3261			acked_pcount = tcp_skb_pcount(skb);
3262		}
3263
3264		if (unlikely(sacked & TCPCB_RETRANS)) {
3265			if (sacked & TCPCB_SACKED_RETRANS)
3266				tp->retrans_out -= acked_pcount;
3267			flag |= FLAG_RETRANS_DATA_ACKED;
3268		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3269			last_ackt = tcp_skb_timestamp_us(skb);
3270			WARN_ON_ONCE(last_ackt == 0);
3271			if (!first_ackt)
3272				first_ackt = last_ackt;
3273
3274			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3275			if (before(start_seq, reord))
3276				reord = start_seq;
3277			if (!after(scb->end_seq, tp->high_seq))
3278				flag |= FLAG_ORIG_SACK_ACKED;
3279		}
3280
3281		if (sacked & TCPCB_SACKED_ACKED) {
3282			tp->sacked_out -= acked_pcount;
3283		} else if (tcp_is_sack(tp)) {
3284			tcp_count_delivered(tp, acked_pcount, ece_ack);
3285			if (!tcp_skb_spurious_retrans(tp, skb))
3286				tcp_rack_advance(tp, sacked, scb->end_seq,
3287						 tcp_skb_timestamp_us(skb));
3288		}
3289		if (sacked & TCPCB_LOST)
3290			tp->lost_out -= acked_pcount;
3291
3292		tp->packets_out -= acked_pcount;
3293		pkts_acked += acked_pcount;
3294		tcp_rate_skb_delivered(sk, skb, sack->rate);
3295
3296		/* Initial outgoing SYN's get put onto the write_queue
3297		 * just like anything else we transmit.  It is not
3298		 * true data, and if we misinform our callers that
3299		 * this ACK acks real data, we will erroneously exit
3300		 * connection startup slow start one packet too
3301		 * quickly.  This is severely frowned upon behavior.
3302		 */
3303		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3304			flag |= FLAG_DATA_ACKED;
3305		} else {
3306			flag |= FLAG_SYN_ACKED;
3307			tp->retrans_stamp = 0;
3308		}
3309
3310		if (!fully_acked)
3311			break;
3312
3313		tcp_ack_tstamp(sk, skb, prior_snd_una);
3314
3315		next = skb_rb_next(skb);
3316		if (unlikely(skb == tp->retransmit_skb_hint))
3317			tp->retransmit_skb_hint = NULL;
3318		if (unlikely(skb == tp->lost_skb_hint))
3319			tp->lost_skb_hint = NULL;
3320		tcp_highest_sack_replace(sk, skb, next);
3321		tcp_rtx_queue_unlink_and_free(skb, sk);
3322	}
3323
3324	if (!skb)
3325		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3326
3327	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3328		tp->snd_up = tp->snd_una;
3329
3330	if (skb) {
3331		tcp_ack_tstamp(sk, skb, prior_snd_una);
3332		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3333			flag |= FLAG_SACK_RENEGING;
3334	}
3335
3336	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3337		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3338		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3339
3340		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3341		    last_in_flight && !prior_sacked && fully_acked &&
3342		    sack->rate->prior_delivered + 1 == tp->delivered &&
3343		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3344			/* Conservatively mark a delayed ACK. It's typically
3345			 * from a lone runt packet over the round trip to
3346			 * a receiver w/o out-of-order or CE events.
3347			 */
3348			flag |= FLAG_ACK_MAYBE_DELAYED;
3349		}
3350	}
3351	if (sack->first_sackt) {
3352		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3353		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3354	}
3355	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3356					ca_rtt_us, sack->rate);
3357
3358	if (flag & FLAG_ACKED) {
3359		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3360		if (unlikely(icsk->icsk_mtup.probe_size &&
3361			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3362			tcp_mtup_probe_success(sk);
3363		}
3364
3365		if (tcp_is_reno(tp)) {
3366			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3367
3368			/* If any of the cumulatively ACKed segments was
3369			 * retransmitted, non-SACK case cannot confirm that
3370			 * progress was due to original transmission due to
3371			 * lack of TCPCB_SACKED_ACKED bits even if some of
3372			 * the packets may have been never retransmitted.
3373			 */
3374			if (flag & FLAG_RETRANS_DATA_ACKED)
3375				flag &= ~FLAG_ORIG_SACK_ACKED;
3376		} else {
3377			int delta;
3378
3379			/* Non-retransmitted hole got filled? That's reordering */
3380			if (before(reord, prior_fack))
3381				tcp_check_sack_reordering(sk, reord, 0);
3382
3383			delta = prior_sacked - tp->sacked_out;
3384			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3385		}
3386	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3387		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3388						    tcp_skb_timestamp_us(skb))) {
3389		/* Do not re-arm RTO if the sack RTT is measured from data sent
3390		 * after when the head was last (re)transmitted. Otherwise the
3391		 * timeout may continue to extend in loss recovery.
3392		 */
3393		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3394	}
3395
3396	if (icsk->icsk_ca_ops->pkts_acked) {
3397		struct ack_sample sample = { .pkts_acked = pkts_acked,
3398					     .rtt_us = sack->rate->rtt_us,
3399					     .in_flight = last_in_flight };
3400
3401		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3402	}
3403
3404#if FASTRETRANS_DEBUG > 0
3405	WARN_ON((int)tp->sacked_out < 0);
3406	WARN_ON((int)tp->lost_out < 0);
3407	WARN_ON((int)tp->retrans_out < 0);
3408	if (!tp->packets_out && tcp_is_sack(tp)) {
3409		icsk = inet_csk(sk);
3410		if (tp->lost_out) {
3411			pr_debug("Leak l=%u %d\n",
3412				 tp->lost_out, icsk->icsk_ca_state);
3413			tp->lost_out = 0;
3414		}
3415		if (tp->sacked_out) {
3416			pr_debug("Leak s=%u %d\n",
3417				 tp->sacked_out, icsk->icsk_ca_state);
3418			tp->sacked_out = 0;
3419		}
3420		if (tp->retrans_out) {
3421			pr_debug("Leak r=%u %d\n",
3422				 tp->retrans_out, icsk->icsk_ca_state);
3423			tp->retrans_out = 0;
3424		}
3425	}
3426#endif
3427	return flag;
3428}
3429
3430static void tcp_ack_probe(struct sock *sk)
3431{
3432	struct inet_connection_sock *icsk = inet_csk(sk);
3433	struct sk_buff *head = tcp_send_head(sk);
3434	const struct tcp_sock *tp = tcp_sk(sk);
3435
3436	/* Was it a usable window open? */
3437	if (!head)
3438		return;
3439	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3440		icsk->icsk_backoff = 0;
3441		icsk->icsk_probes_tstamp = 0;
3442		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3443		/* Socket must be waked up by subsequent tcp_data_snd_check().
3444		 * This function is not for random using!
3445		 */
3446	} else {
3447		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3448
3449		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3450		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3451	}
3452}
3453
3454static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3455{
3456	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3457		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3458}
3459
3460/* Decide wheather to run the increase function of congestion control. */
3461static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3462{
3463	/* If reordering is high then always grow cwnd whenever data is
3464	 * delivered regardless of its ordering. Otherwise stay conservative
3465	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3466	 * new SACK or ECE mark may first advance cwnd here and later reduce
3467	 * cwnd in tcp_fastretrans_alert() based on more states.
3468	 */
3469	if (tcp_sk(sk)->reordering >
3470	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3471		return flag & FLAG_FORWARD_PROGRESS;
3472
3473	return flag & FLAG_DATA_ACKED;
3474}
3475
3476/* The "ultimate" congestion control function that aims to replace the rigid
3477 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3478 * It's called toward the end of processing an ACK with precise rate
3479 * information. All transmission or retransmission are delayed afterwards.
3480 */
3481static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3482			     int flag, const struct rate_sample *rs)
3483{
3484	const struct inet_connection_sock *icsk = inet_csk(sk);
3485
3486	if (icsk->icsk_ca_ops->cong_control) {
3487		icsk->icsk_ca_ops->cong_control(sk, rs);
3488		return;
3489	}
3490
3491	if (tcp_in_cwnd_reduction(sk)) {
3492		/* Reduce cwnd if state mandates */
3493		tcp_cwnd_reduction(sk, acked_sacked, flag);
3494	} else if (tcp_may_raise_cwnd(sk, flag)) {
3495		/* Advance cwnd if state allows */
3496		tcp_cong_avoid(sk, ack, acked_sacked);
3497	}
3498	tcp_update_pacing_rate(sk);
3499}
3500
3501/* Check that window update is acceptable.
3502 * The function assumes that snd_una<=ack<=snd_next.
3503 */
3504static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3505					const u32 ack, const u32 ack_seq,
3506					const u32 nwin)
3507{
3508	return	after(ack, tp->snd_una) ||
3509		after(ack_seq, tp->snd_wl1) ||
3510		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3511}
3512
3513/* If we update tp->snd_una, also update tp->bytes_acked */
3514static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3515{
3516	u32 delta = ack - tp->snd_una;
3517
3518	sock_owned_by_me((struct sock *)tp);
3519	tp->bytes_acked += delta;
3520	tp->snd_una = ack;
3521}
3522
3523/* If we update tp->rcv_nxt, also update tp->bytes_received */
3524static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3525{
3526	u32 delta = seq - tp->rcv_nxt;
3527
3528	sock_owned_by_me((struct sock *)tp);
3529	tp->bytes_received += delta;
3530	WRITE_ONCE(tp->rcv_nxt, seq);
3531}
3532
3533/* Update our send window.
3534 *
3535 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3536 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3537 */
3538static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3539				 u32 ack_seq)
3540{
3541	struct tcp_sock *tp = tcp_sk(sk);
3542	int flag = 0;
3543	u32 nwin = ntohs(tcp_hdr(skb)->window);
3544
3545	if (likely(!tcp_hdr(skb)->syn))
3546		nwin <<= tp->rx_opt.snd_wscale;
3547
3548	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3549		flag |= FLAG_WIN_UPDATE;
3550		tcp_update_wl(tp, ack_seq);
3551
3552		if (tp->snd_wnd != nwin) {
3553			tp->snd_wnd = nwin;
3554
3555			/* Note, it is the only place, where
3556			 * fast path is recovered for sending TCP.
3557			 */
3558			tp->pred_flags = 0;
3559			tcp_fast_path_check(sk);
3560
3561			if (!tcp_write_queue_empty(sk))
3562				tcp_slow_start_after_idle_check(sk);
3563
3564			if (nwin > tp->max_window) {
3565				tp->max_window = nwin;
3566				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3567			}
3568		}
3569	}
3570
3571	tcp_snd_una_update(tp, ack);
3572
3573	return flag;
3574}
3575
3576static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3577				   u32 *last_oow_ack_time)
3578{
3579	/* Paired with the WRITE_ONCE() in this function. */
3580	u32 val = READ_ONCE(*last_oow_ack_time);
3581
3582	if (val) {
3583		s32 elapsed = (s32)(tcp_jiffies32 - val);
3584
3585		if (0 <= elapsed &&
3586		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3587			NET_INC_STATS(net, mib_idx);
3588			return true;	/* rate-limited: don't send yet! */
3589		}
3590	}
3591
3592	/* Paired with the prior READ_ONCE() and with itself,
3593	 * as we might be lockless.
3594	 */
3595	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3596
3597	return false;	/* not rate-limited: go ahead, send dupack now! */
3598}
3599
3600/* Return true if we're currently rate-limiting out-of-window ACKs and
3601 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3602 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3603 * attacks that send repeated SYNs or ACKs for the same connection. To
3604 * do this, we do not send a duplicate SYNACK or ACK if the remote
3605 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3606 */
3607bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3608			  int mib_idx, u32 *last_oow_ack_time)
3609{
3610	/* Data packets without SYNs are not likely part of an ACK loop. */
3611	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3612	    !tcp_hdr(skb)->syn)
3613		return false;
3614
3615	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3616}
3617
3618/* RFC 5961 7 [ACK Throttling] */
3619static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3620{
3621	/* unprotected vars, we dont care of overwrites */
3622	static u32 challenge_timestamp;
3623	static unsigned int challenge_count;
3624	struct tcp_sock *tp = tcp_sk(sk);
3625	struct net *net = sock_net(sk);
3626	u32 count, now;
3627
3628	/* First check our per-socket dupack rate limit. */
3629	if (__tcp_oow_rate_limited(net,
3630				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3631				   &tp->last_oow_ack_time))
3632		return;
3633
3634	/* Then check host-wide RFC 5961 rate limit. */
3635	now = jiffies / HZ;
3636	if (now != READ_ONCE(challenge_timestamp)) {
3637		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3638		u32 half = (ack_limit + 1) >> 1;
3639
3640		WRITE_ONCE(challenge_timestamp, now);
3641		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3642	}
3643	count = READ_ONCE(challenge_count);
3644	if (count > 0) {
3645		WRITE_ONCE(challenge_count, count - 1);
3646		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3647		tcp_send_ack(sk);
3648	}
3649}
3650
3651static void tcp_store_ts_recent(struct tcp_sock *tp)
3652{
3653	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3654	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3655}
3656
3657static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3658{
3659	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3660		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3661		 * extra check below makes sure this can only happen
3662		 * for pure ACK frames.  -DaveM
3663		 *
3664		 * Not only, also it occurs for expired timestamps.
3665		 */
3666
3667		if (tcp_paws_check(&tp->rx_opt, 0))
3668			tcp_store_ts_recent(tp);
3669	}
3670}
3671
3672/* This routine deals with acks during a TLP episode and ends an episode by
3673 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3674 */
3675static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3676{
3677	struct tcp_sock *tp = tcp_sk(sk);
3678
3679	if (before(ack, tp->tlp_high_seq))
3680		return;
3681
3682	if (!tp->tlp_retrans) {
3683		/* TLP of new data has been acknowledged */
3684		tp->tlp_high_seq = 0;
3685	} else if (flag & FLAG_DSACKING_ACK) {
3686		/* This DSACK means original and TLP probe arrived; no loss */
3687		tp->tlp_high_seq = 0;
3688	} else if (after(ack, tp->tlp_high_seq)) {
3689		/* ACK advances: there was a loss, so reduce cwnd. Reset
3690		 * tlp_high_seq in tcp_init_cwnd_reduction()
3691		 */
3692		tcp_init_cwnd_reduction(sk);
3693		tcp_set_ca_state(sk, TCP_CA_CWR);
3694		tcp_end_cwnd_reduction(sk);
3695		tcp_try_keep_open(sk);
3696		NET_INC_STATS(sock_net(sk),
3697				LINUX_MIB_TCPLOSSPROBERECOVERY);
3698	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3699			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3700		/* Pure dupack: original and TLP probe arrived; no loss */
3701		tp->tlp_high_seq = 0;
3702	}
3703}
3704
3705static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3706{
3707	const struct inet_connection_sock *icsk = inet_csk(sk);
3708
3709	if (icsk->icsk_ca_ops->in_ack_event)
3710		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3711}
3712
3713/* Congestion control has updated the cwnd already. So if we're in
3714 * loss recovery then now we do any new sends (for FRTO) or
3715 * retransmits (for CA_Loss or CA_recovery) that make sense.
3716 */
3717static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3718{
3719	struct tcp_sock *tp = tcp_sk(sk);
3720
3721	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3722		return;
3723
3724	if (unlikely(rexmit == REXMIT_NEW)) {
3725		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3726					  TCP_NAGLE_OFF);
3727		if (after(tp->snd_nxt, tp->high_seq))
3728			return;
3729		tp->frto = 0;
3730	}
3731	tcp_xmit_retransmit_queue(sk);
3732}
3733
3734/* Returns the number of packets newly acked or sacked by the current ACK */
3735static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3736{
3737	const struct net *net = sock_net(sk);
3738	struct tcp_sock *tp = tcp_sk(sk);
3739	u32 delivered;
3740
3741	delivered = tp->delivered - prior_delivered;
3742	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3743	if (flag & FLAG_ECE)
3744		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3745
3746	return delivered;
3747}
3748
3749/* This routine deals with incoming acks, but not outgoing ones. */
3750static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3751{
3752	struct inet_connection_sock *icsk = inet_csk(sk);
3753	struct tcp_sock *tp = tcp_sk(sk);
3754	struct tcp_sacktag_state sack_state;
3755	struct rate_sample rs = { .prior_delivered = 0 };
3756	u32 prior_snd_una = tp->snd_una;
3757	bool is_sack_reneg = tp->is_sack_reneg;
3758	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3759	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3760	int num_dupack = 0;
3761	int prior_packets = tp->packets_out;
3762	u32 delivered = tp->delivered;
3763	u32 lost = tp->lost;
3764	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3765	u32 prior_fack;
3766
3767	sack_state.first_sackt = 0;
3768	sack_state.rate = &rs;
3769	sack_state.sack_delivered = 0;
3770
3771	/* We very likely will need to access rtx queue. */
3772	prefetch(sk->tcp_rtx_queue.rb_node);
3773
3774	/* If the ack is older than previous acks
3775	 * then we can probably ignore it.
3776	 */
3777	if (before(ack, prior_snd_una)) {
3778		u32 max_window;
3779
3780		/* do not accept ACK for bytes we never sent. */
3781		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3782		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3783		if (before(ack, prior_snd_una - max_window)) {
3784			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3785				tcp_send_challenge_ack(sk, skb);
3786			return -1;
3787		}
3788		goto old_ack;
3789	}
3790
3791	/* If the ack includes data we haven't sent yet, discard
3792	 * this segment (RFC793 Section 3.9).
3793	 */
3794	if (after(ack, tp->snd_nxt))
3795		return -1;
3796
3797	if (after(ack, prior_snd_una)) {
3798		flag |= FLAG_SND_UNA_ADVANCED;
3799		icsk->icsk_retransmits = 0;
3800
3801#if IS_ENABLED(CONFIG_TLS_DEVICE)
3802		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3803			if (icsk->icsk_clean_acked)
3804				icsk->icsk_clean_acked(sk, ack);
3805#endif
3806	}
3807
3808	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3809	rs.prior_in_flight = tcp_packets_in_flight(tp);
3810
3811	/* ts_recent update must be made after we are sure that the packet
3812	 * is in window.
3813	 */
3814	if (flag & FLAG_UPDATE_TS_RECENT)
3815		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3816
3817	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3818	    FLAG_SND_UNA_ADVANCED) {
3819		/* Window is constant, pure forward advance.
3820		 * No more checks are required.
3821		 * Note, we use the fact that SND.UNA>=SND.WL2.
3822		 */
3823		tcp_update_wl(tp, ack_seq);
3824		tcp_snd_una_update(tp, ack);
3825		flag |= FLAG_WIN_UPDATE;
3826
3827		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3828
3829		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3830	} else {
3831		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3832
3833		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3834			flag |= FLAG_DATA;
3835		else
3836			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3837
3838		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3839
3840		if (TCP_SKB_CB(skb)->sacked)
3841			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3842							&sack_state);
3843
3844		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3845			flag |= FLAG_ECE;
3846			ack_ev_flags |= CA_ACK_ECE;
3847		}
3848
3849		if (sack_state.sack_delivered)
3850			tcp_count_delivered(tp, sack_state.sack_delivered,
3851					    flag & FLAG_ECE);
3852
3853		if (flag & FLAG_WIN_UPDATE)
3854			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3855
3856		tcp_in_ack_event(sk, ack_ev_flags);
3857	}
3858
3859	/* This is a deviation from RFC3168 since it states that:
3860	 * "When the TCP data sender is ready to set the CWR bit after reducing
3861	 * the congestion window, it SHOULD set the CWR bit only on the first
3862	 * new data packet that it transmits."
3863	 * We accept CWR on pure ACKs to be more robust
3864	 * with widely-deployed TCP implementations that do this.
3865	 */
3866	tcp_ecn_accept_cwr(sk, skb);
3867
3868	/* We passed data and got it acked, remove any soft error
3869	 * log. Something worked...
3870	 */
3871	sk->sk_err_soft = 0;
3872	icsk->icsk_probes_out = 0;
3873	tp->rcv_tstamp = tcp_jiffies32;
3874	if (!prior_packets)
3875		goto no_queue;
3876
3877	/* See if we can take anything off of the retransmit queue. */
3878	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3879				    flag & FLAG_ECE);
3880
3881	tcp_rack_update_reo_wnd(sk, &rs);
3882
3883	if (tp->tlp_high_seq)
3884		tcp_process_tlp_ack(sk, ack, flag);
3885
3886	if (tcp_ack_is_dubious(sk, flag)) {
3887		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3888			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3889			num_dupack = 1;
3890			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3891			if (!(flag & FLAG_DATA))
3892				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3893		}
3894		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3895				      &rexmit);
3896	}
3897
3898	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3899	if (flag & FLAG_SET_XMIT_TIMER)
3900		tcp_set_xmit_timer(sk);
3901
3902	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3903		sk_dst_confirm(sk);
3904
3905	delivered = tcp_newly_delivered(sk, delivered, flag);
3906	lost = tp->lost - lost;			/* freshly marked lost */
3907	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3908	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3909	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3910	tcp_xmit_recovery(sk, rexmit);
3911	return 1;
3912
3913no_queue:
3914	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3915	if (flag & FLAG_DSACKING_ACK) {
3916		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3917				      &rexmit);
3918		tcp_newly_delivered(sk, delivered, flag);
3919	}
3920	/* If this ack opens up a zero window, clear backoff.  It was
3921	 * being used to time the probes, and is probably far higher than
3922	 * it needs to be for normal retransmission.
3923	 */
3924	tcp_ack_probe(sk);
3925
3926	if (tp->tlp_high_seq)
3927		tcp_process_tlp_ack(sk, ack, flag);
3928	return 1;
3929
3930old_ack:
3931	/* If data was SACKed, tag it and see if we should send more data.
3932	 * If data was DSACKed, see if we can undo a cwnd reduction.
3933	 */
3934	if (TCP_SKB_CB(skb)->sacked) {
3935		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3936						&sack_state);
3937		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3938				      &rexmit);
3939		tcp_newly_delivered(sk, delivered, flag);
3940		tcp_xmit_recovery(sk, rexmit);
3941	}
3942
3943	return 0;
3944}
3945
3946static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3947				      bool syn, struct tcp_fastopen_cookie *foc,
3948				      bool exp_opt)
3949{
3950	/* Valid only in SYN or SYN-ACK with an even length.  */
3951	if (!foc || !syn || len < 0 || (len & 1))
3952		return;
3953
3954	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3955	    len <= TCP_FASTOPEN_COOKIE_MAX)
3956		memcpy(foc->val, cookie, len);
3957	else if (len != 0)
3958		len = -1;
3959	foc->len = len;
3960	foc->exp = exp_opt;
3961}
3962
3963static bool smc_parse_options(const struct tcphdr *th,
3964			      struct tcp_options_received *opt_rx,
3965			      const unsigned char *ptr,
3966			      int opsize)
3967{
3968#if IS_ENABLED(CONFIG_SMC)
3969	if (static_branch_unlikely(&tcp_have_smc)) {
3970		if (th->syn && !(opsize & 1) &&
3971		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3972		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3973			opt_rx->smc_ok = 1;
3974			return true;
3975		}
3976	}
3977#endif
3978	return false;
3979}
3980
3981/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3982 * value on success.
3983 */
3984static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3985{
3986	const unsigned char *ptr = (const unsigned char *)(th + 1);
3987	int length = (th->doff * 4) - sizeof(struct tcphdr);
3988	u16 mss = 0;
3989
3990	while (length > 0) {
3991		int opcode = *ptr++;
3992		int opsize;
3993
3994		switch (opcode) {
3995		case TCPOPT_EOL:
3996			return mss;
3997		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3998			length--;
3999			continue;
4000		default:
4001			if (length < 2)
4002				return mss;
4003			opsize = *ptr++;
4004			if (opsize < 2) /* "silly options" */
4005				return mss;
4006			if (opsize > length)
4007				return mss;	/* fail on partial options */
4008			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4009				u16 in_mss = get_unaligned_be16(ptr);
4010
4011				if (in_mss) {
4012					if (user_mss && user_mss < in_mss)
4013						in_mss = user_mss;
4014					mss = in_mss;
4015				}
4016			}
4017			ptr += opsize - 2;
4018			length -= opsize;
4019		}
4020	}
4021	return mss;
4022}
4023
4024/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4025 * But, this can also be called on packets in the established flow when
4026 * the fast version below fails.
4027 */
4028void tcp_parse_options(const struct net *net,
4029		       const struct sk_buff *skb,
4030		       struct tcp_options_received *opt_rx, int estab,
4031		       struct tcp_fastopen_cookie *foc)
4032{
4033	const unsigned char *ptr;
4034	const struct tcphdr *th = tcp_hdr(skb);
4035	int length = (th->doff * 4) - sizeof(struct tcphdr);
4036
4037	ptr = (const unsigned char *)(th + 1);
4038	opt_rx->saw_tstamp = 0;
4039	opt_rx->saw_unknown = 0;
4040
4041	while (length > 0) {
4042		int opcode = *ptr++;
4043		int opsize;
4044
4045		switch (opcode) {
4046		case TCPOPT_EOL:
4047			return;
4048		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4049			length--;
4050			continue;
4051		default:
4052			if (length < 2)
4053				return;
4054			opsize = *ptr++;
4055			if (opsize < 2) /* "silly options" */
4056				return;
4057			if (opsize > length)
4058				return;	/* don't parse partial options */
4059			switch (opcode) {
4060			case TCPOPT_MSS:
4061				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4062					u16 in_mss = get_unaligned_be16(ptr);
4063					if (in_mss) {
4064						if (opt_rx->user_mss &&
4065						    opt_rx->user_mss < in_mss)
4066							in_mss = opt_rx->user_mss;
4067						opt_rx->mss_clamp = in_mss;
4068					}
4069				}
4070				break;
4071			case TCPOPT_WINDOW:
4072				if (opsize == TCPOLEN_WINDOW && th->syn &&
4073				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4074					__u8 snd_wscale = *(__u8 *)ptr;
4075					opt_rx->wscale_ok = 1;
4076					if (snd_wscale > TCP_MAX_WSCALE) {
4077						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4078								     __func__,
4079								     snd_wscale,
4080								     TCP_MAX_WSCALE);
4081						snd_wscale = TCP_MAX_WSCALE;
4082					}
4083					opt_rx->snd_wscale = snd_wscale;
4084				}
4085				break;
4086			case TCPOPT_TIMESTAMP:
4087				if ((opsize == TCPOLEN_TIMESTAMP) &&
4088				    ((estab && opt_rx->tstamp_ok) ||
4089				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4090					opt_rx->saw_tstamp = 1;
4091					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4092					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4093				}
4094				break;
4095			case TCPOPT_SACK_PERM:
4096				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4097				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4098					opt_rx->sack_ok = TCP_SACK_SEEN;
4099					tcp_sack_reset(opt_rx);
4100				}
4101				break;
4102
4103			case TCPOPT_SACK:
4104				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4105				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4106				   opt_rx->sack_ok) {
4107					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4108				}
4109				break;
4110#ifdef CONFIG_TCP_MD5SIG
4111			case TCPOPT_MD5SIG:
4112				/*
4113				 * The MD5 Hash has already been
4114				 * checked (see tcp_v{4,6}_do_rcv()).
4115				 */
4116				break;
4117#endif
4118			case TCPOPT_FASTOPEN:
4119				tcp_parse_fastopen_option(
4120					opsize - TCPOLEN_FASTOPEN_BASE,
4121					ptr, th->syn, foc, false);
4122				break;
4123
4124			case TCPOPT_EXP:
4125				/* Fast Open option shares code 254 using a
4126				 * 16 bits magic number.
4127				 */
4128				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4129				    get_unaligned_be16(ptr) ==
4130				    TCPOPT_FASTOPEN_MAGIC) {
4131					tcp_parse_fastopen_option(opsize -
4132						TCPOLEN_EXP_FASTOPEN_BASE,
4133						ptr + 2, th->syn, foc, true);
4134					break;
4135				}
4136
4137				if (smc_parse_options(th, opt_rx, ptr, opsize))
4138					break;
4139
4140				opt_rx->saw_unknown = 1;
4141				break;
4142
4143			default:
4144				opt_rx->saw_unknown = 1;
4145			}
4146			ptr += opsize-2;
4147			length -= opsize;
4148		}
4149	}
4150}
4151EXPORT_SYMBOL(tcp_parse_options);
4152
4153static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4154{
4155	const __be32 *ptr = (const __be32 *)(th + 1);
4156
4157	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4158			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4159		tp->rx_opt.saw_tstamp = 1;
4160		++ptr;
4161		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4162		++ptr;
4163		if (*ptr)
4164			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4165		else
4166			tp->rx_opt.rcv_tsecr = 0;
4167		return true;
4168	}
4169	return false;
4170}
4171
4172/* Fast parse options. This hopes to only see timestamps.
4173 * If it is wrong it falls back on tcp_parse_options().
4174 */
4175static bool tcp_fast_parse_options(const struct net *net,
4176				   const struct sk_buff *skb,
4177				   const struct tcphdr *th, struct tcp_sock *tp)
4178{
4179	/* In the spirit of fast parsing, compare doff directly to constant
4180	 * values.  Because equality is used, short doff can be ignored here.
4181	 */
4182	if (th->doff == (sizeof(*th) / 4)) {
4183		tp->rx_opt.saw_tstamp = 0;
4184		return false;
4185	} else if (tp->rx_opt.tstamp_ok &&
4186		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4187		if (tcp_parse_aligned_timestamp(tp, th))
4188			return true;
4189	}
4190
4191	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4192	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4193		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4194
4195	return true;
4196}
4197
4198#ifdef CONFIG_TCP_MD5SIG
4199/*
4200 * Parse MD5 Signature option
4201 */
4202const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4203{
4204	int length = (th->doff << 2) - sizeof(*th);
4205	const u8 *ptr = (const u8 *)(th + 1);
4206
4207	/* If not enough data remaining, we can short cut */
4208	while (length >= TCPOLEN_MD5SIG) {
4209		int opcode = *ptr++;
4210		int opsize;
4211
4212		switch (opcode) {
4213		case TCPOPT_EOL:
4214			return NULL;
4215		case TCPOPT_NOP:
4216			length--;
4217			continue;
4218		default:
4219			opsize = *ptr++;
4220			if (opsize < 2 || opsize > length)
4221				return NULL;
4222			if (opcode == TCPOPT_MD5SIG)
4223				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4224		}
4225		ptr += opsize - 2;
4226		length -= opsize;
4227	}
4228	return NULL;
4229}
4230EXPORT_SYMBOL(tcp_parse_md5sig_option);
4231#endif
4232
4233/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4234 *
4235 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4236 * it can pass through stack. So, the following predicate verifies that
4237 * this segment is not used for anything but congestion avoidance or
4238 * fast retransmit. Moreover, we even are able to eliminate most of such
4239 * second order effects, if we apply some small "replay" window (~RTO)
4240 * to timestamp space.
4241 *
4242 * All these measures still do not guarantee that we reject wrapped ACKs
4243 * on networks with high bandwidth, when sequence space is recycled fastly,
4244 * but it guarantees that such events will be very rare and do not affect
4245 * connection seriously. This doesn't look nice, but alas, PAWS is really
4246 * buggy extension.
4247 *
4248 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4249 * states that events when retransmit arrives after original data are rare.
4250 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4251 * the biggest problem on large power networks even with minor reordering.
4252 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4253 * up to bandwidth of 18Gigabit/sec. 8) ]
4254 */
4255
4256static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4257{
4258	const struct tcp_sock *tp = tcp_sk(sk);
4259	const struct tcphdr *th = tcp_hdr(skb);
4260	u32 seq = TCP_SKB_CB(skb)->seq;
4261	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4262
4263	return (/* 1. Pure ACK with correct sequence number. */
4264		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4265
4266		/* 2. ... and duplicate ACK. */
4267		ack == tp->snd_una &&
4268
4269		/* 3. ... and does not update window. */
4270		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4271
4272		/* 4. ... and sits in replay window. */
4273		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4274}
4275
4276static inline bool tcp_paws_discard(const struct sock *sk,
4277				   const struct sk_buff *skb)
4278{
4279	const struct tcp_sock *tp = tcp_sk(sk);
4280
4281	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4282	       !tcp_disordered_ack(sk, skb);
4283}
4284
4285/* Check segment sequence number for validity.
4286 *
4287 * Segment controls are considered valid, if the segment
4288 * fits to the window after truncation to the window. Acceptability
4289 * of data (and SYN, FIN, of course) is checked separately.
4290 * See tcp_data_queue(), for example.
4291 *
4292 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4293 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4294 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4295 * (borrowed from freebsd)
4296 */
4297
4298static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4299{
4300	return	!before(end_seq, tp->rcv_wup) &&
4301		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4302}
4303
4304/* When we get a reset we do this. */
4305void tcp_reset(struct sock *sk)
4306{
4307	trace_tcp_receive_reset(sk);
4308
4309	/* We want the right error as BSD sees it (and indeed as we do). */
4310	switch (sk->sk_state) {
4311	case TCP_SYN_SENT:
4312		sk->sk_err = ECONNREFUSED;
4313		break;
4314	case TCP_CLOSE_WAIT:
4315		sk->sk_err = EPIPE;
4316		break;
4317	case TCP_CLOSE:
4318		return;
4319	default:
4320		sk->sk_err = ECONNRESET;
4321	}
4322	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4323	smp_wmb();
4324
4325	tcp_write_queue_purge(sk);
4326	tcp_done(sk);
4327
4328	if (!sock_flag(sk, SOCK_DEAD))
4329		sk->sk_error_report(sk);
4330}
4331
4332/*
4333 * 	Process the FIN bit. This now behaves as it is supposed to work
4334 *	and the FIN takes effect when it is validly part of sequence
4335 *	space. Not before when we get holes.
4336 *
4337 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4338 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4339 *	TIME-WAIT)
4340 *
4341 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4342 *	close and we go into CLOSING (and later onto TIME-WAIT)
4343 *
4344 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4345 */
4346void tcp_fin(struct sock *sk)
4347{
4348	struct tcp_sock *tp = tcp_sk(sk);
4349
4350	inet_csk_schedule_ack(sk);
4351
4352	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4353	sock_set_flag(sk, SOCK_DONE);
4354
4355	switch (sk->sk_state) {
4356	case TCP_SYN_RECV:
4357	case TCP_ESTABLISHED:
4358		/* Move to CLOSE_WAIT */
4359		tcp_set_state(sk, TCP_CLOSE_WAIT);
4360		inet_csk_enter_pingpong_mode(sk);
4361		break;
4362
4363	case TCP_CLOSE_WAIT:
4364	case TCP_CLOSING:
4365		/* Received a retransmission of the FIN, do
4366		 * nothing.
4367		 */
4368		break;
4369	case TCP_LAST_ACK:
4370		/* RFC793: Remain in the LAST-ACK state. */
4371		break;
4372
4373	case TCP_FIN_WAIT1:
4374		/* This case occurs when a simultaneous close
4375		 * happens, we must ack the received FIN and
4376		 * enter the CLOSING state.
4377		 */
4378		tcp_send_ack(sk);
4379		tcp_set_state(sk, TCP_CLOSING);
4380		break;
4381	case TCP_FIN_WAIT2:
4382		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4383		tcp_send_ack(sk);
4384		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4385		break;
4386	default:
4387		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4388		 * cases we should never reach this piece of code.
4389		 */
4390		pr_err("%s: Impossible, sk->sk_state=%d\n",
4391		       __func__, sk->sk_state);
4392		break;
4393	}
4394
4395	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4396	 * Probably, we should reset in this case. For now drop them.
4397	 */
4398	skb_rbtree_purge(&tp->out_of_order_queue);
4399	if (tcp_is_sack(tp))
4400		tcp_sack_reset(&tp->rx_opt);
4401	sk_mem_reclaim(sk);
4402
4403	if (!sock_flag(sk, SOCK_DEAD)) {
4404		sk->sk_state_change(sk);
4405
4406		/* Do not send POLL_HUP for half duplex close. */
4407		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4408		    sk->sk_state == TCP_CLOSE)
4409			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4410		else
4411			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4412	}
4413}
4414
4415static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4416				  u32 end_seq)
4417{
4418	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4419		if (before(seq, sp->start_seq))
4420			sp->start_seq = seq;
4421		if (after(end_seq, sp->end_seq))
4422			sp->end_seq = end_seq;
4423		return true;
4424	}
4425	return false;
4426}
4427
4428static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4429{
4430	struct tcp_sock *tp = tcp_sk(sk);
4431
4432	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4433		int mib_idx;
4434
4435		if (before(seq, tp->rcv_nxt))
4436			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4437		else
4438			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4439
4440		NET_INC_STATS(sock_net(sk), mib_idx);
4441
4442		tp->rx_opt.dsack = 1;
4443		tp->duplicate_sack[0].start_seq = seq;
4444		tp->duplicate_sack[0].end_seq = end_seq;
4445	}
4446}
4447
4448static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4449{
4450	struct tcp_sock *tp = tcp_sk(sk);
4451
4452	if (!tp->rx_opt.dsack)
4453		tcp_dsack_set(sk, seq, end_seq);
4454	else
4455		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4456}
4457
4458static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4459{
4460	/* When the ACK path fails or drops most ACKs, the sender would
4461	 * timeout and spuriously retransmit the same segment repeatedly.
4462	 * The receiver remembers and reflects via DSACKs. Leverage the
4463	 * DSACK state and change the txhash to re-route speculatively.
4464	 */
4465	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4466	    sk_rethink_txhash(sk))
4467		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4468}
4469
4470static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4471{
4472	struct tcp_sock *tp = tcp_sk(sk);
4473
4474	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4475	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4477		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4478
4479		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4480			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4481
4482			tcp_rcv_spurious_retrans(sk, skb);
4483			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4484				end_seq = tp->rcv_nxt;
4485			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4486		}
4487	}
4488
4489	tcp_send_ack(sk);
4490}
4491
4492/* These routines update the SACK block as out-of-order packets arrive or
4493 * in-order packets close up the sequence space.
4494 */
4495static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4496{
4497	int this_sack;
4498	struct tcp_sack_block *sp = &tp->selective_acks[0];
4499	struct tcp_sack_block *swalk = sp + 1;
4500
4501	/* See if the recent change to the first SACK eats into
4502	 * or hits the sequence space of other SACK blocks, if so coalesce.
4503	 */
4504	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4505		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4506			int i;
4507
4508			/* Zap SWALK, by moving every further SACK up by one slot.
4509			 * Decrease num_sacks.
4510			 */
4511			tp->rx_opt.num_sacks--;
4512			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4513				sp[i] = sp[i + 1];
4514			continue;
4515		}
4516		this_sack++;
4517		swalk++;
4518	}
4519}
4520
4521static void tcp_sack_compress_send_ack(struct sock *sk)
4522{
4523	struct tcp_sock *tp = tcp_sk(sk);
4524
4525	if (!tp->compressed_ack)
4526		return;
4527
4528	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4529		__sock_put(sk);
4530
4531	/* Since we have to send one ack finally,
4532	 * substract one from tp->compressed_ack to keep
4533	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4534	 */
4535	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4536		      tp->compressed_ack - 1);
4537
4538	tp->compressed_ack = 0;
4539	tcp_send_ack(sk);
4540}
4541
4542/* Reasonable amount of sack blocks included in TCP SACK option
4543 * The max is 4, but this becomes 3 if TCP timestamps are there.
4544 * Given that SACK packets might be lost, be conservative and use 2.
4545 */
4546#define TCP_SACK_BLOCKS_EXPECTED 2
4547
4548static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4549{
4550	struct tcp_sock *tp = tcp_sk(sk);
4551	struct tcp_sack_block *sp = &tp->selective_acks[0];
4552	int cur_sacks = tp->rx_opt.num_sacks;
4553	int this_sack;
4554
4555	if (!cur_sacks)
4556		goto new_sack;
4557
4558	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4559		if (tcp_sack_extend(sp, seq, end_seq)) {
4560			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4561				tcp_sack_compress_send_ack(sk);
4562			/* Rotate this_sack to the first one. */
4563			for (; this_sack > 0; this_sack--, sp--)
4564				swap(*sp, *(sp - 1));
4565			if (cur_sacks > 1)
4566				tcp_sack_maybe_coalesce(tp);
4567			return;
4568		}
4569	}
4570
4571	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4572		tcp_sack_compress_send_ack(sk);
4573
4574	/* Could not find an adjacent existing SACK, build a new one,
4575	 * put it at the front, and shift everyone else down.  We
4576	 * always know there is at least one SACK present already here.
4577	 *
4578	 * If the sack array is full, forget about the last one.
4579	 */
4580	if (this_sack >= TCP_NUM_SACKS) {
4581		this_sack--;
4582		tp->rx_opt.num_sacks--;
4583		sp--;
4584	}
4585	for (; this_sack > 0; this_sack--, sp--)
4586		*sp = *(sp - 1);
4587
4588new_sack:
4589	/* Build the new head SACK, and we're done. */
4590	sp->start_seq = seq;
4591	sp->end_seq = end_seq;
4592	tp->rx_opt.num_sacks++;
4593}
4594
4595/* RCV.NXT advances, some SACKs should be eaten. */
4596
4597static void tcp_sack_remove(struct tcp_sock *tp)
4598{
4599	struct tcp_sack_block *sp = &tp->selective_acks[0];
4600	int num_sacks = tp->rx_opt.num_sacks;
4601	int this_sack;
4602
4603	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4604	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4605		tp->rx_opt.num_sacks = 0;
4606		return;
4607	}
4608
4609	for (this_sack = 0; this_sack < num_sacks;) {
4610		/* Check if the start of the sack is covered by RCV.NXT. */
4611		if (!before(tp->rcv_nxt, sp->start_seq)) {
4612			int i;
4613
4614			/* RCV.NXT must cover all the block! */
4615			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4616
4617			/* Zap this SACK, by moving forward any other SACKS. */
4618			for (i = this_sack+1; i < num_sacks; i++)
4619				tp->selective_acks[i-1] = tp->selective_acks[i];
4620			num_sacks--;
4621			continue;
4622		}
4623		this_sack++;
4624		sp++;
4625	}
4626	tp->rx_opt.num_sacks = num_sacks;
4627}
4628
4629/**
4630 * tcp_try_coalesce - try to merge skb to prior one
4631 * @sk: socket
4632 * @to: prior buffer
4633 * @from: buffer to add in queue
4634 * @fragstolen: pointer to boolean
4635 *
4636 * Before queueing skb @from after @to, try to merge them
4637 * to reduce overall memory use and queue lengths, if cost is small.
4638 * Packets in ofo or receive queues can stay a long time.
4639 * Better try to coalesce them right now to avoid future collapses.
4640 * Returns true if caller should free @from instead of queueing it
4641 */
4642static bool tcp_try_coalesce(struct sock *sk,
4643			     struct sk_buff *to,
4644			     struct sk_buff *from,
4645			     bool *fragstolen)
4646{
4647	int delta;
4648
4649	*fragstolen = false;
4650
4651	/* Its possible this segment overlaps with prior segment in queue */
4652	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4653		return false;
4654
4655	if (!mptcp_skb_can_collapse(to, from))
4656		return false;
4657
4658#ifdef CONFIG_TLS_DEVICE
4659	if (from->decrypted != to->decrypted)
4660		return false;
4661#endif
4662
4663	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4664		return false;
4665
4666	atomic_add(delta, &sk->sk_rmem_alloc);
4667	sk_mem_charge(sk, delta);
4668	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4669	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4670	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4671	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4672
4673	if (TCP_SKB_CB(from)->has_rxtstamp) {
4674		TCP_SKB_CB(to)->has_rxtstamp = true;
4675		to->tstamp = from->tstamp;
4676		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4677	}
4678
4679	return true;
4680}
4681
4682static bool tcp_ooo_try_coalesce(struct sock *sk,
4683			     struct sk_buff *to,
4684			     struct sk_buff *from,
4685			     bool *fragstolen)
4686{
4687	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4688
4689	/* In case tcp_drop() is called later, update to->gso_segs */
4690	if (res) {
4691		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4692			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4693
4694		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4695	}
4696	return res;
4697}
4698
4699static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4700{
4701	sk_drops_add(sk, skb);
4702	__kfree_skb(skb);
4703}
4704
4705/* This one checks to see if we can put data from the
4706 * out_of_order queue into the receive_queue.
4707 */
4708static void tcp_ofo_queue(struct sock *sk)
4709{
4710	struct tcp_sock *tp = tcp_sk(sk);
4711	__u32 dsack_high = tp->rcv_nxt;
4712	bool fin, fragstolen, eaten;
4713	struct sk_buff *skb, *tail;
4714	struct rb_node *p;
4715
4716	p = rb_first(&tp->out_of_order_queue);
4717	while (p) {
4718		skb = rb_to_skb(p);
4719		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4720			break;
4721
4722		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4723			__u32 dsack = dsack_high;
4724			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4725				dsack_high = TCP_SKB_CB(skb)->end_seq;
4726			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4727		}
4728		p = rb_next(p);
4729		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4730
4731		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4732			tcp_drop(sk, skb);
4733			continue;
4734		}
4735
4736		tail = skb_peek_tail(&sk->sk_receive_queue);
4737		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4738		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4739		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4740		if (!eaten)
4741			__skb_queue_tail(&sk->sk_receive_queue, skb);
4742		else
4743			kfree_skb_partial(skb, fragstolen);
4744
4745		if (unlikely(fin)) {
4746			tcp_fin(sk);
4747			/* tcp_fin() purges tp->out_of_order_queue,
4748			 * so we must end this loop right now.
4749			 */
4750			break;
4751		}
4752	}
4753}
4754
4755static bool tcp_prune_ofo_queue(struct sock *sk);
4756static int tcp_prune_queue(struct sock *sk);
4757
4758static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4759				 unsigned int size)
4760{
4761	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4762	    !sk_rmem_schedule(sk, skb, size)) {
4763
4764		if (tcp_prune_queue(sk) < 0)
4765			return -1;
4766
4767		while (!sk_rmem_schedule(sk, skb, size)) {
4768			if (!tcp_prune_ofo_queue(sk))
4769				return -1;
4770		}
4771	}
4772	return 0;
4773}
4774
4775static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4776{
4777	struct tcp_sock *tp = tcp_sk(sk);
4778	struct rb_node **p, *parent;
4779	struct sk_buff *skb1;
4780	u32 seq, end_seq;
4781	bool fragstolen;
4782
4783	tcp_ecn_check_ce(sk, skb);
4784
4785	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4786		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4787		sk->sk_data_ready(sk);
4788		tcp_drop(sk, skb);
4789		return;
4790	}
4791
4792	/* Disable header prediction. */
4793	tp->pred_flags = 0;
4794	inet_csk_schedule_ack(sk);
4795
4796	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4797	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4798	seq = TCP_SKB_CB(skb)->seq;
4799	end_seq = TCP_SKB_CB(skb)->end_seq;
4800
4801	p = &tp->out_of_order_queue.rb_node;
4802	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4803		/* Initial out of order segment, build 1 SACK. */
4804		if (tcp_is_sack(tp)) {
4805			tp->rx_opt.num_sacks = 1;
4806			tp->selective_acks[0].start_seq = seq;
4807			tp->selective_acks[0].end_seq = end_seq;
4808		}
4809		rb_link_node(&skb->rbnode, NULL, p);
4810		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4811		tp->ooo_last_skb = skb;
4812		goto end;
4813	}
4814
4815	/* In the typical case, we are adding an skb to the end of the list.
4816	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4817	 */
4818	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4819				 skb, &fragstolen)) {
4820coalesce_done:
4821		/* For non sack flows, do not grow window to force DUPACK
4822		 * and trigger fast retransmit.
4823		 */
4824		if (tcp_is_sack(tp))
4825			tcp_grow_window(sk, skb, true);
4826		kfree_skb_partial(skb, fragstolen);
4827		skb = NULL;
4828		goto add_sack;
4829	}
4830	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4831	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4832		parent = &tp->ooo_last_skb->rbnode;
4833		p = &parent->rb_right;
4834		goto insert;
4835	}
4836
4837	/* Find place to insert this segment. Handle overlaps on the way. */
4838	parent = NULL;
4839	while (*p) {
4840		parent = *p;
4841		skb1 = rb_to_skb(parent);
4842		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4843			p = &parent->rb_left;
4844			continue;
4845		}
4846		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4847			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4848				/* All the bits are present. Drop. */
4849				NET_INC_STATS(sock_net(sk),
4850					      LINUX_MIB_TCPOFOMERGE);
4851				tcp_drop(sk, skb);
4852				skb = NULL;
4853				tcp_dsack_set(sk, seq, end_seq);
4854				goto add_sack;
4855			}
4856			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4857				/* Partial overlap. */
4858				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4859			} else {
4860				/* skb's seq == skb1's seq and skb covers skb1.
4861				 * Replace skb1 with skb.
4862				 */
4863				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4864						&tp->out_of_order_queue);
4865				tcp_dsack_extend(sk,
4866						 TCP_SKB_CB(skb1)->seq,
4867						 TCP_SKB_CB(skb1)->end_seq);
4868				NET_INC_STATS(sock_net(sk),
4869					      LINUX_MIB_TCPOFOMERGE);
4870				tcp_drop(sk, skb1);
4871				goto merge_right;
4872			}
4873		} else if (tcp_ooo_try_coalesce(sk, skb1,
4874						skb, &fragstolen)) {
4875			goto coalesce_done;
4876		}
4877		p = &parent->rb_right;
4878	}
4879insert:
4880	/* Insert segment into RB tree. */
4881	rb_link_node(&skb->rbnode, parent, p);
4882	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4883
4884merge_right:
4885	/* Remove other segments covered by skb. */
4886	while ((skb1 = skb_rb_next(skb)) != NULL) {
4887		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4888			break;
4889		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4890			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4891					 end_seq);
4892			break;
4893		}
4894		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4895		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4896				 TCP_SKB_CB(skb1)->end_seq);
4897		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4898		tcp_drop(sk, skb1);
4899	}
4900	/* If there is no skb after us, we are the last_skb ! */
4901	if (!skb1)
4902		tp->ooo_last_skb = skb;
4903
4904add_sack:
4905	if (tcp_is_sack(tp))
4906		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4907end:
4908	if (skb) {
4909		/* For non sack flows, do not grow window to force DUPACK
4910		 * and trigger fast retransmit.
4911		 */
4912		if (tcp_is_sack(tp))
4913			tcp_grow_window(sk, skb, false);
4914		skb_condense(skb);
4915		skb_set_owner_r(skb, sk);
4916	}
4917}
4918
4919static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4920				      bool *fragstolen)
4921{
4922	int eaten;
4923	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4924
4925	eaten = (tail &&
4926		 tcp_try_coalesce(sk, tail,
4927				  skb, fragstolen)) ? 1 : 0;
4928	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4929	if (!eaten) {
4930		__skb_queue_tail(&sk->sk_receive_queue, skb);
4931		skb_set_owner_r(skb, sk);
4932	}
4933	return eaten;
4934}
4935
4936int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4937{
4938	struct sk_buff *skb;
4939	int err = -ENOMEM;
4940	int data_len = 0;
4941	bool fragstolen;
4942
4943	if (size == 0)
4944		return 0;
4945
4946	if (size > PAGE_SIZE) {
4947		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4948
4949		data_len = npages << PAGE_SHIFT;
4950		size = data_len + (size & ~PAGE_MASK);
4951	}
4952	skb = alloc_skb_with_frags(size - data_len, data_len,
4953				   PAGE_ALLOC_COSTLY_ORDER,
4954				   &err, sk->sk_allocation);
4955	if (!skb)
4956		goto err;
4957
4958	skb_put(skb, size - data_len);
4959	skb->data_len = data_len;
4960	skb->len = size;
4961
4962	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4963		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4964		goto err_free;
4965	}
4966
4967	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4968	if (err)
4969		goto err_free;
4970
4971	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4972	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4973	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4974
4975	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4976		WARN_ON_ONCE(fragstolen); /* should not happen */
4977		__kfree_skb(skb);
4978	}
4979	return size;
4980
4981err_free:
4982	kfree_skb(skb);
4983err:
4984	return err;
4985
4986}
4987
4988void tcp_data_ready(struct sock *sk)
4989{
4990	const struct tcp_sock *tp = tcp_sk(sk);
4991	int avail = tp->rcv_nxt - tp->copied_seq;
4992
4993	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4994	    !sock_flag(sk, SOCK_DONE) &&
4995	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4996		return;
4997
4998	sk->sk_data_ready(sk);
4999}
5000
5001static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5002{
5003	struct tcp_sock *tp = tcp_sk(sk);
5004	bool fragstolen;
5005	int eaten;
5006
5007	if (sk_is_mptcp(sk))
5008		mptcp_incoming_options(sk, skb);
5009
5010	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5011		__kfree_skb(skb);
5012		return;
5013	}
5014	skb_dst_drop(skb);
5015	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5016
5017	tp->rx_opt.dsack = 0;
5018
5019	/*  Queue data for delivery to the user.
5020	 *  Packets in sequence go to the receive queue.
5021	 *  Out of sequence packets to the out_of_order_queue.
5022	 */
5023	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5024		if (tcp_receive_window(tp) == 0) {
5025			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5026			goto out_of_window;
5027		}
5028
5029		/* Ok. In sequence. In window. */
5030queue_and_out:
5031		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5032			sk_forced_mem_schedule(sk, skb->truesize);
5033		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5034			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5035			sk->sk_data_ready(sk);
5036			goto drop;
5037		}
5038
5039		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5040		if (skb->len)
5041			tcp_event_data_recv(sk, skb);
5042		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5043			tcp_fin(sk);
5044
5045		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5046			tcp_ofo_queue(sk);
5047
5048			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5049			 * gap in queue is filled.
5050			 */
5051			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5052				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5053		}
5054
5055		if (tp->rx_opt.num_sacks)
5056			tcp_sack_remove(tp);
5057
5058		tcp_fast_path_check(sk);
5059
5060		if (eaten > 0)
5061			kfree_skb_partial(skb, fragstolen);
5062		if (!sock_flag(sk, SOCK_DEAD))
5063			tcp_data_ready(sk);
5064		return;
5065	}
5066
5067	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5068		tcp_rcv_spurious_retrans(sk, skb);
5069		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5070		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5071		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5072
5073out_of_window:
5074		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5075		inet_csk_schedule_ack(sk);
5076drop:
5077		tcp_drop(sk, skb);
5078		return;
5079	}
5080
5081	/* Out of window. F.e. zero window probe. */
5082	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5083		goto out_of_window;
5084
5085	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5086		/* Partial packet, seq < rcv_next < end_seq */
5087		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5088
5089		/* If window is closed, drop tail of packet. But after
5090		 * remembering D-SACK for its head made in previous line.
5091		 */
5092		if (!tcp_receive_window(tp)) {
5093			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5094			goto out_of_window;
5095		}
5096		goto queue_and_out;
5097	}
5098
5099	tcp_data_queue_ofo(sk, skb);
5100}
5101
5102static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5103{
5104	if (list)
5105		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5106
5107	return skb_rb_next(skb);
5108}
5109
5110static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5111					struct sk_buff_head *list,
5112					struct rb_root *root)
5113{
5114	struct sk_buff *next = tcp_skb_next(skb, list);
5115
5116	if (list)
5117		__skb_unlink(skb, list);
5118	else
5119		rb_erase(&skb->rbnode, root);
5120
5121	__kfree_skb(skb);
5122	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5123
5124	return next;
5125}
5126
5127/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5128void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5129{
5130	struct rb_node **p = &root->rb_node;
5131	struct rb_node *parent = NULL;
5132	struct sk_buff *skb1;
5133
5134	while (*p) {
5135		parent = *p;
5136		skb1 = rb_to_skb(parent);
5137		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5138			p = &parent->rb_left;
5139		else
5140			p = &parent->rb_right;
5141	}
5142	rb_link_node(&skb->rbnode, parent, p);
5143	rb_insert_color(&skb->rbnode, root);
5144}
5145
5146/* Collapse contiguous sequence of skbs head..tail with
5147 * sequence numbers start..end.
5148 *
5149 * If tail is NULL, this means until the end of the queue.
5150 *
5151 * Segments with FIN/SYN are not collapsed (only because this
5152 * simplifies code)
5153 */
5154static void
5155tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5156	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5157{
5158	struct sk_buff *skb = head, *n;
5159	struct sk_buff_head tmp;
5160	bool end_of_skbs;
5161
5162	/* First, check that queue is collapsible and find
5163	 * the point where collapsing can be useful.
5164	 */
5165restart:
5166	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5167		n = tcp_skb_next(skb, list);
5168
5169		/* No new bits? It is possible on ofo queue. */
5170		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5171			skb = tcp_collapse_one(sk, skb, list, root);
5172			if (!skb)
5173				break;
5174			goto restart;
5175		}
5176
5177		/* The first skb to collapse is:
5178		 * - not SYN/FIN and
5179		 * - bloated or contains data before "start" or
5180		 *   overlaps to the next one and mptcp allow collapsing.
5181		 */
5182		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5183		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5184		     before(TCP_SKB_CB(skb)->seq, start))) {
5185			end_of_skbs = false;
5186			break;
5187		}
5188
5189		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5190		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5191			end_of_skbs = false;
5192			break;
5193		}
5194
5195		/* Decided to skip this, advance start seq. */
5196		start = TCP_SKB_CB(skb)->end_seq;
5197	}
5198	if (end_of_skbs ||
5199	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5200		return;
5201
5202	__skb_queue_head_init(&tmp);
5203
5204	while (before(start, end)) {
5205		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5206		struct sk_buff *nskb;
5207
5208		nskb = alloc_skb(copy, GFP_ATOMIC);
5209		if (!nskb)
5210			break;
5211
5212		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5213#ifdef CONFIG_TLS_DEVICE
5214		nskb->decrypted = skb->decrypted;
5215#endif
5216		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5217		if (list)
5218			__skb_queue_before(list, skb, nskb);
5219		else
5220			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5221		skb_set_owner_r(nskb, sk);
5222		mptcp_skb_ext_move(nskb, skb);
5223
5224		/* Copy data, releasing collapsed skbs. */
5225		while (copy > 0) {
5226			int offset = start - TCP_SKB_CB(skb)->seq;
5227			int size = TCP_SKB_CB(skb)->end_seq - start;
5228
5229			BUG_ON(offset < 0);
5230			if (size > 0) {
5231				size = min(copy, size);
5232				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5233					BUG();
5234				TCP_SKB_CB(nskb)->end_seq += size;
5235				copy -= size;
5236				start += size;
5237			}
5238			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5239				skb = tcp_collapse_one(sk, skb, list, root);
5240				if (!skb ||
5241				    skb == tail ||
5242				    !mptcp_skb_can_collapse(nskb, skb) ||
5243				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5244					goto end;
5245#ifdef CONFIG_TLS_DEVICE
5246				if (skb->decrypted != nskb->decrypted)
5247					goto end;
5248#endif
5249			}
5250		}
5251	}
5252end:
5253	skb_queue_walk_safe(&tmp, skb, n)
5254		tcp_rbtree_insert(root, skb);
5255}
5256
5257/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5258 * and tcp_collapse() them until all the queue is collapsed.
5259 */
5260static void tcp_collapse_ofo_queue(struct sock *sk)
5261{
5262	struct tcp_sock *tp = tcp_sk(sk);
5263	u32 range_truesize, sum_tiny = 0;
5264	struct sk_buff *skb, *head;
5265	u32 start, end;
5266
5267	skb = skb_rb_first(&tp->out_of_order_queue);
5268new_range:
5269	if (!skb) {
5270		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5271		return;
5272	}
5273	start = TCP_SKB_CB(skb)->seq;
5274	end = TCP_SKB_CB(skb)->end_seq;
5275	range_truesize = skb->truesize;
5276
5277	for (head = skb;;) {
5278		skb = skb_rb_next(skb);
5279
5280		/* Range is terminated when we see a gap or when
5281		 * we are at the queue end.
5282		 */
5283		if (!skb ||
5284		    after(TCP_SKB_CB(skb)->seq, end) ||
5285		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5286			/* Do not attempt collapsing tiny skbs */
5287			if (range_truesize != head->truesize ||
5288			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5289				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5290					     head, skb, start, end);
5291			} else {
5292				sum_tiny += range_truesize;
5293				if (sum_tiny > sk->sk_rcvbuf >> 3)
5294					return;
5295			}
5296			goto new_range;
5297		}
5298
5299		range_truesize += skb->truesize;
5300		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5301			start = TCP_SKB_CB(skb)->seq;
5302		if (after(TCP_SKB_CB(skb)->end_seq, end))
5303			end = TCP_SKB_CB(skb)->end_seq;
5304	}
5305}
5306
5307/*
5308 * Clean the out-of-order queue to make room.
5309 * We drop high sequences packets to :
5310 * 1) Let a chance for holes to be filled.
5311 * 2) not add too big latencies if thousands of packets sit there.
5312 *    (But if application shrinks SO_RCVBUF, we could still end up
5313 *     freeing whole queue here)
5314 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5315 *
5316 * Return true if queue has shrunk.
5317 */
5318static bool tcp_prune_ofo_queue(struct sock *sk)
5319{
5320	struct tcp_sock *tp = tcp_sk(sk);
5321	struct rb_node *node, *prev;
5322	int goal;
5323
5324	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5325		return false;
5326
5327	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5328	goal = sk->sk_rcvbuf >> 3;
5329	node = &tp->ooo_last_skb->rbnode;
5330	do {
5331		prev = rb_prev(node);
5332		rb_erase(node, &tp->out_of_order_queue);
5333		goal -= rb_to_skb(node)->truesize;
5334		tcp_drop(sk, rb_to_skb(node));
5335		if (!prev || goal <= 0) {
5336			sk_mem_reclaim(sk);
5337			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5338			    !tcp_under_memory_pressure(sk))
5339				break;
5340			goal = sk->sk_rcvbuf >> 3;
5341		}
5342		node = prev;
5343	} while (node);
5344	tp->ooo_last_skb = rb_to_skb(prev);
5345
5346	/* Reset SACK state.  A conforming SACK implementation will
5347	 * do the same at a timeout based retransmit.  When a connection
5348	 * is in a sad state like this, we care only about integrity
5349	 * of the connection not performance.
5350	 */
5351	if (tp->rx_opt.sack_ok)
5352		tcp_sack_reset(&tp->rx_opt);
5353	return true;
5354}
5355
5356/* Reduce allocated memory if we can, trying to get
5357 * the socket within its memory limits again.
5358 *
5359 * Return less than zero if we should start dropping frames
5360 * until the socket owning process reads some of the data
5361 * to stabilize the situation.
5362 */
5363static int tcp_prune_queue(struct sock *sk)
5364{
5365	struct tcp_sock *tp = tcp_sk(sk);
5366
5367	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5368
5369	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5370		tcp_clamp_window(sk);
5371	else if (tcp_under_memory_pressure(sk))
5372		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5373
5374	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5375		return 0;
5376
5377	tcp_collapse_ofo_queue(sk);
5378	if (!skb_queue_empty(&sk->sk_receive_queue))
5379		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5380			     skb_peek(&sk->sk_receive_queue),
5381			     NULL,
5382			     tp->copied_seq, tp->rcv_nxt);
5383	sk_mem_reclaim(sk);
5384
5385	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5386		return 0;
5387
5388	/* Collapsing did not help, destructive actions follow.
5389	 * This must not ever occur. */
5390
5391	tcp_prune_ofo_queue(sk);
5392
5393	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5394		return 0;
5395
5396	/* If we are really being abused, tell the caller to silently
5397	 * drop receive data on the floor.  It will get retransmitted
5398	 * and hopefully then we'll have sufficient space.
5399	 */
5400	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5401
5402	/* Massive buffer overcommit. */
5403	tp->pred_flags = 0;
5404	return -1;
5405}
5406
5407static bool tcp_should_expand_sndbuf(const struct sock *sk)
5408{
5409	const struct tcp_sock *tp = tcp_sk(sk);
5410
5411	/* If the user specified a specific send buffer setting, do
5412	 * not modify it.
5413	 */
5414	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5415		return false;
5416
5417	/* If we are under global TCP memory pressure, do not expand.  */
5418	if (tcp_under_memory_pressure(sk))
5419		return false;
5420
5421	/* If we are under soft global TCP memory pressure, do not expand.  */
5422	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5423		return false;
5424
5425	/* If we filled the congestion window, do not expand.  */
5426	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5427		return false;
5428
5429	return true;
5430}
5431
5432static void tcp_new_space(struct sock *sk)
5433{
5434	struct tcp_sock *tp = tcp_sk(sk);
5435
5436	if (tcp_should_expand_sndbuf(sk)) {
5437		tcp_sndbuf_expand(sk);
5438		tp->snd_cwnd_stamp = tcp_jiffies32;
5439	}
5440
5441	sk->sk_write_space(sk);
5442}
5443
5444/* Caller made space either from:
5445 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5446 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5447 *
5448 * We might be able to generate EPOLLOUT to the application if:
5449 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5450 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5451 *    small enough that tcp_stream_memory_free() decides it
5452 *    is time to generate EPOLLOUT.
5453 */
5454void tcp_check_space(struct sock *sk)
5455{
5456	/* pairs with tcp_poll() */
5457	smp_mb();
5458	if (sk->sk_socket &&
5459	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5460		tcp_new_space(sk);
5461		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5462			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5463	}
5464}
5465
5466static inline void tcp_data_snd_check(struct sock *sk)
5467{
5468	tcp_push_pending_frames(sk);
5469	tcp_check_space(sk);
5470}
5471
5472/*
5473 * Check if sending an ack is needed.
5474 */
5475static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5476{
5477	struct tcp_sock *tp = tcp_sk(sk);
5478	unsigned long rtt, delay;
5479	__u16 rcv_mss = inet_csk(sk)->icsk_ack.rcv_mss;
5480#ifdef CONFIG_LOWPOWER_PROTOCOL
5481	rcv_mss *= tcp_ack_num(sk);
5482#endif /* CONFIG_LOWPOWER_PROTOCOL */
5483	    /* More than one full frame received... */
5484	if (((tp->rcv_nxt - tp->rcv_wup) > rcv_mss &&
5485	     /* ... and right edge of window advances far enough.
5486	      * (tcp_recvmsg() will send ACK otherwise).
5487	      * If application uses SO_RCVLOWAT, we want send ack now if
5488	      * we have not received enough bytes to satisfy the condition.
5489	      */
5490	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5491	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5492	    /* We ACK each frame or... */
5493	    tcp_in_quickack_mode(sk) ||
5494	    /* Protocol state mandates a one-time immediate ACK */
5495	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5496send_now:
5497		tcp_send_ack(sk);
5498		return;
5499	}
5500
5501	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5502		tcp_send_delayed_ack(sk);
5503		return;
5504	}
5505
5506	if (!tcp_is_sack(tp) ||
5507	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5508		goto send_now;
5509
5510	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5511		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5512		tp->dup_ack_counter = 0;
5513	}
5514	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5515		tp->dup_ack_counter++;
5516		goto send_now;
5517	}
5518	tp->compressed_ack++;
5519	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5520		return;
5521
5522	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5523
5524	rtt = tp->rcv_rtt_est.rtt_us;
5525	if (tp->srtt_us && tp->srtt_us < rtt)
5526		rtt = tp->srtt_us;
5527
5528	delay = min_t(unsigned long,
5529		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5530		      rtt * (NSEC_PER_USEC >> 3)/20);
5531	sock_hold(sk);
5532	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5533			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5534			       HRTIMER_MODE_REL_PINNED_SOFT);
5535}
5536
5537static inline void tcp_ack_snd_check(struct sock *sk)
5538{
5539	if (!inet_csk_ack_scheduled(sk)) {
5540		/* We sent a data segment already. */
5541		return;
5542	}
5543	__tcp_ack_snd_check(sk, 1);
5544}
5545
5546/*
5547 *	This routine is only called when we have urgent data
5548 *	signaled. Its the 'slow' part of tcp_urg. It could be
5549 *	moved inline now as tcp_urg is only called from one
5550 *	place. We handle URGent data wrong. We have to - as
5551 *	BSD still doesn't use the correction from RFC961.
5552 *	For 1003.1g we should support a new option TCP_STDURG to permit
5553 *	either form (or just set the sysctl tcp_stdurg).
5554 */
5555
5556static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5557{
5558	struct tcp_sock *tp = tcp_sk(sk);
5559	u32 ptr = ntohs(th->urg_ptr);
5560
5561	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5562		ptr--;
5563	ptr += ntohl(th->seq);
5564
5565	/* Ignore urgent data that we've already seen and read. */
5566	if (after(tp->copied_seq, ptr))
5567		return;
5568
5569	/* Do not replay urg ptr.
5570	 *
5571	 * NOTE: interesting situation not covered by specs.
5572	 * Misbehaving sender may send urg ptr, pointing to segment,
5573	 * which we already have in ofo queue. We are not able to fetch
5574	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5575	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5576	 * situations. But it is worth to think about possibility of some
5577	 * DoSes using some hypothetical application level deadlock.
5578	 */
5579	if (before(ptr, tp->rcv_nxt))
5580		return;
5581
5582	/* Do we already have a newer (or duplicate) urgent pointer? */
5583	if (tp->urg_data && !after(ptr, tp->urg_seq))
5584		return;
5585
5586	/* Tell the world about our new urgent pointer. */
5587	sk_send_sigurg(sk);
5588
5589	/* We may be adding urgent data when the last byte read was
5590	 * urgent. To do this requires some care. We cannot just ignore
5591	 * tp->copied_seq since we would read the last urgent byte again
5592	 * as data, nor can we alter copied_seq until this data arrives
5593	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5594	 *
5595	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5596	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5597	 * and expect that both A and B disappear from stream. This is _wrong_.
5598	 * Though this happens in BSD with high probability, this is occasional.
5599	 * Any application relying on this is buggy. Note also, that fix "works"
5600	 * only in this artificial test. Insert some normal data between A and B and we will
5601	 * decline of BSD again. Verdict: it is better to remove to trap
5602	 * buggy users.
5603	 */
5604	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5605	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5606		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5607		tp->copied_seq++;
5608		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5609			__skb_unlink(skb, &sk->sk_receive_queue);
5610			__kfree_skb(skb);
5611		}
5612	}
5613
5614	tp->urg_data = TCP_URG_NOTYET;
5615	WRITE_ONCE(tp->urg_seq, ptr);
5616
5617	/* Disable header prediction. */
5618	tp->pred_flags = 0;
5619}
5620
5621/* This is the 'fast' part of urgent handling. */
5622static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5623{
5624	struct tcp_sock *tp = tcp_sk(sk);
5625
5626	/* Check if we get a new urgent pointer - normally not. */
5627	if (th->urg)
5628		tcp_check_urg(sk, th);
5629
5630	/* Do we wait for any urgent data? - normally not... */
5631	if (tp->urg_data == TCP_URG_NOTYET) {
5632		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5633			  th->syn;
5634
5635		/* Is the urgent pointer pointing into this packet? */
5636		if (ptr < skb->len) {
5637			u8 tmp;
5638			if (skb_copy_bits(skb, ptr, &tmp, 1))
5639				BUG();
5640			tp->urg_data = TCP_URG_VALID | tmp;
5641			if (!sock_flag(sk, SOCK_DEAD))
5642				sk->sk_data_ready(sk);
5643		}
5644	}
5645}
5646
5647/* Accept RST for rcv_nxt - 1 after a FIN.
5648 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5649 * FIN is sent followed by a RST packet. The RST is sent with the same
5650 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5651 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5652 * ACKs on the closed socket. In addition middleboxes can drop either the
5653 * challenge ACK or a subsequent RST.
5654 */
5655static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5656{
5657	struct tcp_sock *tp = tcp_sk(sk);
5658
5659	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5660			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5661					       TCPF_CLOSING));
5662}
5663
5664/* Does PAWS and seqno based validation of an incoming segment, flags will
5665 * play significant role here.
5666 */
5667static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5668				  const struct tcphdr *th, int syn_inerr)
5669{
5670	struct tcp_sock *tp = tcp_sk(sk);
5671	bool rst_seq_match = false;
5672
5673	/* RFC1323: H1. Apply PAWS check first. */
5674	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5675	    tp->rx_opt.saw_tstamp &&
5676	    tcp_paws_discard(sk, skb)) {
5677		if (!th->rst) {
5678			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5679			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5680						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5681						  &tp->last_oow_ack_time))
5682				tcp_send_dupack(sk, skb);
5683			goto discard;
5684		}
5685		/* Reset is accepted even if it did not pass PAWS. */
5686	}
5687
5688	/* Step 1: check sequence number */
5689	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5690		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5691		 * (RST) segments are validated by checking their SEQ-fields."
5692		 * And page 69: "If an incoming segment is not acceptable,
5693		 * an acknowledgment should be sent in reply (unless the RST
5694		 * bit is set, if so drop the segment and return)".
5695		 */
5696		if (!th->rst) {
5697			if (th->syn)
5698				goto syn_challenge;
5699			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5700						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5701						  &tp->last_oow_ack_time))
5702				tcp_send_dupack(sk, skb);
5703		} else if (tcp_reset_check(sk, skb)) {
5704			tcp_reset(sk);
5705		}
5706		goto discard;
5707	}
5708
5709	/* Step 2: check RST bit */
5710	if (th->rst) {
5711		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5712		 * FIN and SACK too if available):
5713		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5714		 * the right-most SACK block,
5715		 * then
5716		 *     RESET the connection
5717		 * else
5718		 *     Send a challenge ACK
5719		 */
5720		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5721		    tcp_reset_check(sk, skb)) {
5722			rst_seq_match = true;
5723		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5724			struct tcp_sack_block *sp = &tp->selective_acks[0];
5725			int max_sack = sp[0].end_seq;
5726			int this_sack;
5727
5728			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5729			     ++this_sack) {
5730				max_sack = after(sp[this_sack].end_seq,
5731						 max_sack) ?
5732					sp[this_sack].end_seq : max_sack;
5733			}
5734
5735			if (TCP_SKB_CB(skb)->seq == max_sack)
5736				rst_seq_match = true;
5737		}
5738
5739		if (rst_seq_match)
5740			tcp_reset(sk);
5741		else {
5742			/* Disable TFO if RST is out-of-order
5743			 * and no data has been received
5744			 * for current active TFO socket
5745			 */
5746			if (tp->syn_fastopen && !tp->data_segs_in &&
5747			    sk->sk_state == TCP_ESTABLISHED)
5748				tcp_fastopen_active_disable(sk);
5749			tcp_send_challenge_ack(sk, skb);
5750		}
5751		goto discard;
5752	}
5753
5754	/* step 3: check security and precedence [ignored] */
5755
5756	/* step 4: Check for a SYN
5757	 * RFC 5961 4.2 : Send a challenge ack
5758	 */
5759	if (th->syn) {
5760syn_challenge:
5761		if (syn_inerr)
5762			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5763		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5764		tcp_send_challenge_ack(sk, skb);
5765		goto discard;
5766	}
5767
5768	bpf_skops_parse_hdr(sk, skb);
5769
5770	return true;
5771
5772discard:
5773	tcp_drop(sk, skb);
5774	return false;
5775}
5776
5777/*
5778 *	TCP receive function for the ESTABLISHED state.
5779 *
5780 *	It is split into a fast path and a slow path. The fast path is
5781 * 	disabled when:
5782 *	- A zero window was announced from us - zero window probing
5783 *        is only handled properly in the slow path.
5784 *	- Out of order segments arrived.
5785 *	- Urgent data is expected.
5786 *	- There is no buffer space left
5787 *	- Unexpected TCP flags/window values/header lengths are received
5788 *	  (detected by checking the TCP header against pred_flags)
5789 *	- Data is sent in both directions. Fast path only supports pure senders
5790 *	  or pure receivers (this means either the sequence number or the ack
5791 *	  value must stay constant)
5792 *	- Unexpected TCP option.
5793 *
5794 *	When these conditions are not satisfied it drops into a standard
5795 *	receive procedure patterned after RFC793 to handle all cases.
5796 *	The first three cases are guaranteed by proper pred_flags setting,
5797 *	the rest is checked inline. Fast processing is turned on in
5798 *	tcp_data_queue when everything is OK.
5799 */
5800void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5801{
5802	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5803	struct tcp_sock *tp = tcp_sk(sk);
5804	unsigned int len = skb->len;
5805
5806	/* TCP congestion window tracking */
5807	trace_tcp_probe(sk, skb);
5808
5809	tcp_mstamp_refresh(tp);
5810	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5811		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5812	/*
5813	 *	Header prediction.
5814	 *	The code loosely follows the one in the famous
5815	 *	"30 instruction TCP receive" Van Jacobson mail.
5816	 *
5817	 *	Van's trick is to deposit buffers into socket queue
5818	 *	on a device interrupt, to call tcp_recv function
5819	 *	on the receive process context and checksum and copy
5820	 *	the buffer to user space. smart...
5821	 *
5822	 *	Our current scheme is not silly either but we take the
5823	 *	extra cost of the net_bh soft interrupt processing...
5824	 *	We do checksum and copy also but from device to kernel.
5825	 */
5826
5827	tp->rx_opt.saw_tstamp = 0;
5828
5829	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5830	 *	if header_prediction is to be made
5831	 *	'S' will always be tp->tcp_header_len >> 2
5832	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5833	 *  turn it off	(when there are holes in the receive
5834	 *	 space for instance)
5835	 *	PSH flag is ignored.
5836	 */
5837
5838	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5839	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5840	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5841		int tcp_header_len = tp->tcp_header_len;
5842
5843		/* Timestamp header prediction: tcp_header_len
5844		 * is automatically equal to th->doff*4 due to pred_flags
5845		 * match.
5846		 */
5847
5848		/* Check timestamp */
5849		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5850			/* No? Slow path! */
5851			if (!tcp_parse_aligned_timestamp(tp, th))
5852				goto slow_path;
5853
5854			/* If PAWS failed, check it more carefully in slow path */
5855			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5856				goto slow_path;
5857
5858			/* DO NOT update ts_recent here, if checksum fails
5859			 * and timestamp was corrupted part, it will result
5860			 * in a hung connection since we will drop all
5861			 * future packets due to the PAWS test.
5862			 */
5863		}
5864
5865		if (len <= tcp_header_len) {
5866			/* Bulk data transfer: sender */
5867			if (len == tcp_header_len) {
5868				/* Predicted packet is in window by definition.
5869				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5870				 * Hence, check seq<=rcv_wup reduces to:
5871				 */
5872				if (tcp_header_len ==
5873				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5874				    tp->rcv_nxt == tp->rcv_wup)
5875					tcp_store_ts_recent(tp);
5876
5877				/* We know that such packets are checksummed
5878				 * on entry.
5879				 */
5880				tcp_ack(sk, skb, 0);
5881				__kfree_skb(skb);
5882				tcp_data_snd_check(sk);
5883				/* When receiving pure ack in fast path, update
5884				 * last ts ecr directly instead of calling
5885				 * tcp_rcv_rtt_measure_ts()
5886				 */
5887				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5888				return;
5889			} else { /* Header too small */
5890				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5891				goto discard;
5892			}
5893		} else {
5894			int eaten = 0;
5895			bool fragstolen = false;
5896
5897			if (tcp_checksum_complete(skb))
5898				goto csum_error;
5899
5900			if ((int)skb->truesize > sk->sk_forward_alloc)
5901				goto step5;
5902
5903			/* Predicted packet is in window by definition.
5904			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5905			 * Hence, check seq<=rcv_wup reduces to:
5906			 */
5907			if (tcp_header_len ==
5908			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5909			    tp->rcv_nxt == tp->rcv_wup)
5910				tcp_store_ts_recent(tp);
5911
5912			tcp_rcv_rtt_measure_ts(sk, skb);
5913
5914			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5915
5916			/* Bulk data transfer: receiver */
5917			__skb_pull(skb, tcp_header_len);
5918			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5919
5920			tcp_event_data_recv(sk, skb);
5921
5922			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5923				/* Well, only one small jumplet in fast path... */
5924				tcp_ack(sk, skb, FLAG_DATA);
5925				tcp_data_snd_check(sk);
5926				if (!inet_csk_ack_scheduled(sk))
5927					goto no_ack;
5928			} else {
5929				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5930			}
5931
5932			__tcp_ack_snd_check(sk, 0);
5933no_ack:
5934			if (eaten)
5935				kfree_skb_partial(skb, fragstolen);
5936			tcp_data_ready(sk);
5937			return;
5938		}
5939	}
5940
5941slow_path:
5942	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5943		goto csum_error;
5944
5945	if (!th->ack && !th->rst && !th->syn)
5946		goto discard;
5947
5948	/*
5949	 *	Standard slow path.
5950	 */
5951
5952	if (!tcp_validate_incoming(sk, skb, th, 1))
5953		return;
5954
5955step5:
5956	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5957		goto discard;
5958
5959	tcp_rcv_rtt_measure_ts(sk, skb);
5960
5961	/* Process urgent data. */
5962	tcp_urg(sk, skb, th);
5963
5964	/* step 7: process the segment text */
5965	tcp_data_queue(sk, skb);
5966
5967	tcp_data_snd_check(sk);
5968	tcp_ack_snd_check(sk);
5969	return;
5970
5971csum_error:
5972	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5973	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5974
5975discard:
5976	tcp_drop(sk, skb);
5977}
5978EXPORT_SYMBOL(tcp_rcv_established);
5979
5980void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5981{
5982	struct inet_connection_sock *icsk = inet_csk(sk);
5983	struct tcp_sock *tp = tcp_sk(sk);
5984
5985	tcp_mtup_init(sk);
5986	icsk->icsk_af_ops->rebuild_header(sk);
5987	tcp_init_metrics(sk);
5988
5989	/* Initialize the congestion window to start the transfer.
5990	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5991	 * retransmitted. In light of RFC6298 more aggressive 1sec
5992	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5993	 * retransmission has occurred.
5994	 */
5995	if (tp->total_retrans > 1 && tp->undo_marker)
5996		tp->snd_cwnd = 1;
5997	else
5998		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5999	tp->snd_cwnd_stamp = tcp_jiffies32;
6000
6001	bpf_skops_established(sk, bpf_op, skb);
6002	/* Initialize congestion control unless BPF initialized it already: */
6003	if (!icsk->icsk_ca_initialized)
6004		tcp_init_congestion_control(sk);
6005	tcp_init_buffer_space(sk);
6006}
6007
6008void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6009{
6010	struct tcp_sock *tp = tcp_sk(sk);
6011	struct inet_connection_sock *icsk = inet_csk(sk);
6012
6013	tcp_set_state(sk, TCP_ESTABLISHED);
6014	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6015
6016	if (skb) {
6017		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6018		security_inet_conn_established(sk, skb);
6019		sk_mark_napi_id(sk, skb);
6020	}
6021
6022	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6023
6024	/* Prevent spurious tcp_cwnd_restart() on first data
6025	 * packet.
6026	 */
6027	tp->lsndtime = tcp_jiffies32;
6028
6029	if (sock_flag(sk, SOCK_KEEPOPEN))
6030		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6031
6032	if (!tp->rx_opt.snd_wscale)
6033		__tcp_fast_path_on(tp, tp->snd_wnd);
6034	else
6035		tp->pred_flags = 0;
6036}
6037
6038static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6039				    struct tcp_fastopen_cookie *cookie)
6040{
6041	struct tcp_sock *tp = tcp_sk(sk);
6042	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6043	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6044	bool syn_drop = false;
6045
6046	if (mss == tp->rx_opt.user_mss) {
6047		struct tcp_options_received opt;
6048
6049		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6050		tcp_clear_options(&opt);
6051		opt.user_mss = opt.mss_clamp = 0;
6052		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6053		mss = opt.mss_clamp;
6054	}
6055
6056	if (!tp->syn_fastopen) {
6057		/* Ignore an unsolicited cookie */
6058		cookie->len = -1;
6059	} else if (tp->total_retrans) {
6060		/* SYN timed out and the SYN-ACK neither has a cookie nor
6061		 * acknowledges data. Presumably the remote received only
6062		 * the retransmitted (regular) SYNs: either the original
6063		 * SYN-data or the corresponding SYN-ACK was dropped.
6064		 */
6065		syn_drop = (cookie->len < 0 && data);
6066	} else if (cookie->len < 0 && !tp->syn_data) {
6067		/* We requested a cookie but didn't get it. If we did not use
6068		 * the (old) exp opt format then try so next time (try_exp=1).
6069		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6070		 */
6071		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6072	}
6073
6074	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6075
6076	if (data) { /* Retransmit unacked data in SYN */
6077		if (tp->total_retrans)
6078			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6079		else
6080			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6081		skb_rbtree_walk_from(data) {
6082			if (__tcp_retransmit_skb(sk, data, 1))
6083				break;
6084		}
6085		tcp_rearm_rto(sk);
6086		NET_INC_STATS(sock_net(sk),
6087				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6088		return true;
6089	}
6090	tp->syn_data_acked = tp->syn_data;
6091	if (tp->syn_data_acked) {
6092		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6093		/* SYN-data is counted as two separate packets in tcp_ack() */
6094		if (tp->delivered > 1)
6095			--tp->delivered;
6096	}
6097
6098	tcp_fastopen_add_skb(sk, synack);
6099
6100	return false;
6101}
6102
6103static void smc_check_reset_syn(struct tcp_sock *tp)
6104{
6105#if IS_ENABLED(CONFIG_SMC)
6106	if (static_branch_unlikely(&tcp_have_smc)) {
6107		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6108			tp->syn_smc = 0;
6109	}
6110#endif
6111}
6112
6113static void tcp_try_undo_spurious_syn(struct sock *sk)
6114{
6115	struct tcp_sock *tp = tcp_sk(sk);
6116	u32 syn_stamp;
6117
6118	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6119	 * spurious if the ACK's timestamp option echo value matches the
6120	 * original SYN timestamp.
6121	 */
6122	syn_stamp = tp->retrans_stamp;
6123	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6124	    syn_stamp == tp->rx_opt.rcv_tsecr)
6125		tp->undo_marker = 0;
6126}
6127
6128static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6129					 const struct tcphdr *th)
6130{
6131	struct inet_connection_sock *icsk = inet_csk(sk);
6132	struct tcp_sock *tp = tcp_sk(sk);
6133	struct tcp_fastopen_cookie foc = { .len = -1 };
6134	int saved_clamp = tp->rx_opt.mss_clamp;
6135	bool fastopen_fail;
6136
6137	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6138	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6139		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6140
6141	if (th->ack) {
6142		/* rfc793:
6143		 * "If the state is SYN-SENT then
6144		 *    first check the ACK bit
6145		 *      If the ACK bit is set
6146		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6147		 *        a reset (unless the RST bit is set, if so drop
6148		 *        the segment and return)"
6149		 */
6150		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6151		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6152			/* Previous FIN/ACK or RST/ACK might be ignored. */
6153			if (icsk->icsk_retransmits == 0)
6154				inet_csk_reset_xmit_timer(sk,
6155						ICSK_TIME_RETRANS,
6156						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6157			goto reset_and_undo;
6158		}
6159
6160		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6161		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6162			     tcp_time_stamp(tp))) {
6163			NET_INC_STATS(sock_net(sk),
6164					LINUX_MIB_PAWSACTIVEREJECTED);
6165			goto reset_and_undo;
6166		}
6167
6168		/* Now ACK is acceptable.
6169		 *
6170		 * "If the RST bit is set
6171		 *    If the ACK was acceptable then signal the user "error:
6172		 *    connection reset", drop the segment, enter CLOSED state,
6173		 *    delete TCB, and return."
6174		 */
6175
6176		if (th->rst) {
6177			tcp_reset(sk);
6178			goto discard;
6179		}
6180
6181		/* rfc793:
6182		 *   "fifth, if neither of the SYN or RST bits is set then
6183		 *    drop the segment and return."
6184		 *
6185		 *    See note below!
6186		 *                                        --ANK(990513)
6187		 */
6188		if (!th->syn)
6189			goto discard_and_undo;
6190
6191		/* rfc793:
6192		 *   "If the SYN bit is on ...
6193		 *    are acceptable then ...
6194		 *    (our SYN has been ACKed), change the connection
6195		 *    state to ESTABLISHED..."
6196		 */
6197
6198		tcp_ecn_rcv_synack(tp, th);
6199
6200		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6201		tcp_try_undo_spurious_syn(sk);
6202		tcp_ack(sk, skb, FLAG_SLOWPATH);
6203
6204		/* Ok.. it's good. Set up sequence numbers and
6205		 * move to established.
6206		 */
6207		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6208		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6209
6210		/* RFC1323: The window in SYN & SYN/ACK segments is
6211		 * never scaled.
6212		 */
6213		tp->snd_wnd = ntohs(th->window);
6214
6215		if (!tp->rx_opt.wscale_ok) {
6216			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6217			tp->window_clamp = min(tp->window_clamp, 65535U);
6218		}
6219
6220		if (tp->rx_opt.saw_tstamp) {
6221			tp->rx_opt.tstamp_ok	   = 1;
6222			tp->tcp_header_len =
6223				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6224			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6225			tcp_store_ts_recent(tp);
6226		} else {
6227			tp->tcp_header_len = sizeof(struct tcphdr);
6228		}
6229
6230		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6231		tcp_initialize_rcv_mss(sk);
6232
6233		/* Remember, tcp_poll() does not lock socket!
6234		 * Change state from SYN-SENT only after copied_seq
6235		 * is initialized. */
6236		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6237
6238		smc_check_reset_syn(tp);
6239
6240		smp_mb();
6241
6242		tcp_finish_connect(sk, skb);
6243
6244		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6245				tcp_rcv_fastopen_synack(sk, skb, &foc);
6246
6247		if (!sock_flag(sk, SOCK_DEAD)) {
6248			sk->sk_state_change(sk);
6249			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6250		}
6251		if (fastopen_fail)
6252			return -1;
6253		if (sk->sk_write_pending ||
6254		    icsk->icsk_accept_queue.rskq_defer_accept ||
6255		    inet_csk_in_pingpong_mode(sk)) {
6256			/* Save one ACK. Data will be ready after
6257			 * several ticks, if write_pending is set.
6258			 *
6259			 * It may be deleted, but with this feature tcpdumps
6260			 * look so _wonderfully_ clever, that I was not able
6261			 * to stand against the temptation 8)     --ANK
6262			 */
6263			inet_csk_schedule_ack(sk);
6264			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6265			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6266						  TCP_DELACK_MAX, TCP_RTO_MAX);
6267
6268discard:
6269			tcp_drop(sk, skb);
6270			return 0;
6271		} else {
6272			tcp_send_ack(sk);
6273		}
6274		return -1;
6275	}
6276
6277	/* No ACK in the segment */
6278
6279	if (th->rst) {
6280		/* rfc793:
6281		 * "If the RST bit is set
6282		 *
6283		 *      Otherwise (no ACK) drop the segment and return."
6284		 */
6285
6286		goto discard_and_undo;
6287	}
6288
6289	/* PAWS check. */
6290	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6291	    tcp_paws_reject(&tp->rx_opt, 0))
6292		goto discard_and_undo;
6293
6294	if (th->syn) {
6295		/* We see SYN without ACK. It is attempt of
6296		 * simultaneous connect with crossed SYNs.
6297		 * Particularly, it can be connect to self.
6298		 */
6299		tcp_set_state(sk, TCP_SYN_RECV);
6300
6301		if (tp->rx_opt.saw_tstamp) {
6302			tp->rx_opt.tstamp_ok = 1;
6303			tcp_store_ts_recent(tp);
6304			tp->tcp_header_len =
6305				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6306		} else {
6307			tp->tcp_header_len = sizeof(struct tcphdr);
6308		}
6309
6310		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6311		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6312		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6313
6314		/* RFC1323: The window in SYN & SYN/ACK segments is
6315		 * never scaled.
6316		 */
6317		tp->snd_wnd    = ntohs(th->window);
6318		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6319		tp->max_window = tp->snd_wnd;
6320
6321		tcp_ecn_rcv_syn(tp, th);
6322
6323		tcp_mtup_init(sk);
6324		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6325		tcp_initialize_rcv_mss(sk);
6326
6327		tcp_send_synack(sk);
6328#if 0
6329		/* Note, we could accept data and URG from this segment.
6330		 * There are no obstacles to make this (except that we must
6331		 * either change tcp_recvmsg() to prevent it from returning data
6332		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6333		 *
6334		 * However, if we ignore data in ACKless segments sometimes,
6335		 * we have no reasons to accept it sometimes.
6336		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6337		 * is not flawless. So, discard packet for sanity.
6338		 * Uncomment this return to process the data.
6339		 */
6340		return -1;
6341#else
6342		goto discard;
6343#endif
6344	}
6345	/* "fifth, if neither of the SYN or RST bits is set then
6346	 * drop the segment and return."
6347	 */
6348
6349discard_and_undo:
6350	tcp_clear_options(&tp->rx_opt);
6351	tp->rx_opt.mss_clamp = saved_clamp;
6352	goto discard;
6353
6354reset_and_undo:
6355	tcp_clear_options(&tp->rx_opt);
6356	tp->rx_opt.mss_clamp = saved_clamp;
6357	return 1;
6358}
6359
6360static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6361{
6362	struct tcp_sock *tp = tcp_sk(sk);
6363	struct request_sock *req;
6364
6365	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6366	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6367	 */
6368	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6369		tcp_try_undo_recovery(sk);
6370
6371	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6372	tp->retrans_stamp = 0;
6373	inet_csk(sk)->icsk_retransmits = 0;
6374
6375	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6376	 * we no longer need req so release it.
6377	 */
6378	req = rcu_dereference_protected(tp->fastopen_rsk,
6379					lockdep_sock_is_held(sk));
6380	reqsk_fastopen_remove(sk, req, false);
6381
6382	/* Re-arm the timer because data may have been sent out.
6383	 * This is similar to the regular data transmission case
6384	 * when new data has just been ack'ed.
6385	 *
6386	 * (TFO) - we could try to be more aggressive and
6387	 * retransmitting any data sooner based on when they
6388	 * are sent out.
6389	 */
6390	tcp_rearm_rto(sk);
6391}
6392
6393/*
6394 *	This function implements the receiving procedure of RFC 793 for
6395 *	all states except ESTABLISHED and TIME_WAIT.
6396 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6397 *	address independent.
6398 */
6399
6400int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6401{
6402	struct tcp_sock *tp = tcp_sk(sk);
6403	struct inet_connection_sock *icsk = inet_csk(sk);
6404	const struct tcphdr *th = tcp_hdr(skb);
6405	struct request_sock *req;
6406	int queued = 0;
6407	bool acceptable;
6408
6409	switch (sk->sk_state) {
6410	case TCP_CLOSE:
6411		goto discard;
6412
6413	case TCP_LISTEN:
6414		if (th->ack)
6415			return 1;
6416
6417		if (th->rst)
6418			goto discard;
6419
6420		if (th->syn) {
6421			if (th->fin)
6422				goto discard;
6423			/* It is possible that we process SYN packets from backlog,
6424			 * so we need to make sure to disable BH and RCU right there.
6425			 */
6426			rcu_read_lock();
6427			local_bh_disable();
6428			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6429			local_bh_enable();
6430			rcu_read_unlock();
6431
6432			if (!acceptable)
6433				return 1;
6434			consume_skb(skb);
6435			return 0;
6436		}
6437		goto discard;
6438
6439	case TCP_SYN_SENT:
6440		tp->rx_opt.saw_tstamp = 0;
6441		tcp_mstamp_refresh(tp);
6442		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6443		if (queued >= 0)
6444			return queued;
6445
6446		/* Do step6 onward by hand. */
6447		tcp_urg(sk, skb, th);
6448		__kfree_skb(skb);
6449		tcp_data_snd_check(sk);
6450		return 0;
6451	}
6452
6453	tcp_mstamp_refresh(tp);
6454	tp->rx_opt.saw_tstamp = 0;
6455	req = rcu_dereference_protected(tp->fastopen_rsk,
6456					lockdep_sock_is_held(sk));
6457	if (req) {
6458		bool req_stolen;
6459
6460		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6461		    sk->sk_state != TCP_FIN_WAIT1);
6462
6463		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6464			goto discard;
6465	}
6466
6467	if (!th->ack && !th->rst && !th->syn)
6468		goto discard;
6469
6470	if (!tcp_validate_incoming(sk, skb, th, 0))
6471		return 0;
6472
6473	/* step 5: check the ACK field */
6474	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6475				      FLAG_UPDATE_TS_RECENT |
6476				      FLAG_NO_CHALLENGE_ACK) > 0;
6477
6478	if (!acceptable) {
6479		if (sk->sk_state == TCP_SYN_RECV)
6480			return 1;	/* send one RST */
6481		tcp_send_challenge_ack(sk, skb);
6482		goto discard;
6483	}
6484	switch (sk->sk_state) {
6485	case TCP_SYN_RECV:
6486		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6487		if (!tp->srtt_us)
6488			tcp_synack_rtt_meas(sk, req);
6489
6490		if (req) {
6491			tcp_rcv_synrecv_state_fastopen(sk);
6492		} else {
6493			tcp_try_undo_spurious_syn(sk);
6494			tp->retrans_stamp = 0;
6495			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6496					  skb);
6497			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6498		}
6499		smp_mb();
6500		tcp_set_state(sk, TCP_ESTABLISHED);
6501		sk->sk_state_change(sk);
6502
6503		/* Note, that this wakeup is only for marginal crossed SYN case.
6504		 * Passively open sockets are not waked up, because
6505		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6506		 */
6507		if (sk->sk_socket)
6508			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6509
6510		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6511		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6512		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6513
6514		if (tp->rx_opt.tstamp_ok)
6515			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6516
6517		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6518			tcp_update_pacing_rate(sk);
6519
6520		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6521		tp->lsndtime = tcp_jiffies32;
6522
6523		tcp_initialize_rcv_mss(sk);
6524		tcp_fast_path_on(tp);
6525		if (sk->sk_shutdown & SEND_SHUTDOWN)
6526			tcp_shutdown(sk, SEND_SHUTDOWN);
6527		break;
6528
6529	case TCP_FIN_WAIT1: {
6530		int tmo;
6531
6532		if (req)
6533			tcp_rcv_synrecv_state_fastopen(sk);
6534
6535		if (tp->snd_una != tp->write_seq)
6536			break;
6537
6538		tcp_set_state(sk, TCP_FIN_WAIT2);
6539		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6540
6541		sk_dst_confirm(sk);
6542
6543		if (!sock_flag(sk, SOCK_DEAD)) {
6544			/* Wake up lingering close() */
6545			sk->sk_state_change(sk);
6546			break;
6547		}
6548
6549		if (tp->linger2 < 0) {
6550			tcp_done(sk);
6551			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6552			return 1;
6553		}
6554		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6555		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6556			/* Receive out of order FIN after close() */
6557			if (tp->syn_fastopen && th->fin)
6558				tcp_fastopen_active_disable(sk);
6559			tcp_done(sk);
6560			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6561			return 1;
6562		}
6563
6564		tmo = tcp_fin_time(sk);
6565		if (tmo > TCP_TIMEWAIT_LEN) {
6566			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6567		} else if (th->fin || sock_owned_by_user(sk)) {
6568			/* Bad case. We could lose such FIN otherwise.
6569			 * It is not a big problem, but it looks confusing
6570			 * and not so rare event. We still can lose it now,
6571			 * if it spins in bh_lock_sock(), but it is really
6572			 * marginal case.
6573			 */
6574			inet_csk_reset_keepalive_timer(sk, tmo);
6575		} else {
6576			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6577			goto discard;
6578		}
6579		break;
6580	}
6581
6582	case TCP_CLOSING:
6583		if (tp->snd_una == tp->write_seq) {
6584			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6585			goto discard;
6586		}
6587		break;
6588
6589	case TCP_LAST_ACK:
6590		if (tp->snd_una == tp->write_seq) {
6591			tcp_update_metrics(sk);
6592			tcp_done(sk);
6593			goto discard;
6594		}
6595		break;
6596	}
6597
6598	/* step 6: check the URG bit */
6599	tcp_urg(sk, skb, th);
6600
6601	/* step 7: process the segment text */
6602	switch (sk->sk_state) {
6603	case TCP_CLOSE_WAIT:
6604	case TCP_CLOSING:
6605	case TCP_LAST_ACK:
6606		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6607			if (sk_is_mptcp(sk))
6608				mptcp_incoming_options(sk, skb);
6609			break;
6610		}
6611		fallthrough;
6612	case TCP_FIN_WAIT1:
6613	case TCP_FIN_WAIT2:
6614		/* RFC 793 says to queue data in these states,
6615		 * RFC 1122 says we MUST send a reset.
6616		 * BSD 4.4 also does reset.
6617		 */
6618		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6619			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6620			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6621				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6622				tcp_reset(sk);
6623				return 1;
6624			}
6625		}
6626		fallthrough;
6627	case TCP_ESTABLISHED:
6628		tcp_data_queue(sk, skb);
6629		queued = 1;
6630		break;
6631	}
6632
6633	/* tcp_data could move socket to TIME-WAIT */
6634	if (sk->sk_state != TCP_CLOSE) {
6635		tcp_data_snd_check(sk);
6636		tcp_ack_snd_check(sk);
6637	}
6638
6639	if (!queued) {
6640discard:
6641		tcp_drop(sk, skb);
6642	}
6643	return 0;
6644}
6645EXPORT_SYMBOL(tcp_rcv_state_process);
6646
6647static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6648{
6649	struct inet_request_sock *ireq = inet_rsk(req);
6650
6651	if (family == AF_INET)
6652		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6653				    &ireq->ir_rmt_addr, port);
6654#if IS_ENABLED(CONFIG_IPV6)
6655	else if (family == AF_INET6)
6656		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6657				    &ireq->ir_v6_rmt_addr, port);
6658#endif
6659}
6660
6661/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6662 *
6663 * If we receive a SYN packet with these bits set, it means a
6664 * network is playing bad games with TOS bits. In order to
6665 * avoid possible false congestion notifications, we disable
6666 * TCP ECN negotiation.
6667 *
6668 * Exception: tcp_ca wants ECN. This is required for DCTCP
6669 * congestion control: Linux DCTCP asserts ECT on all packets,
6670 * including SYN, which is most optimal solution; however,
6671 * others, such as FreeBSD do not.
6672 *
6673 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6674 * set, indicating the use of a future TCP extension (such as AccECN). See
6675 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6676 * extensions.
6677 */
6678static void tcp_ecn_create_request(struct request_sock *req,
6679				   const struct sk_buff *skb,
6680				   const struct sock *listen_sk,
6681				   const struct dst_entry *dst)
6682{
6683	const struct tcphdr *th = tcp_hdr(skb);
6684	const struct net *net = sock_net(listen_sk);
6685	bool th_ecn = th->ece && th->cwr;
6686	bool ect, ecn_ok;
6687	u32 ecn_ok_dst;
6688
6689	if (!th_ecn)
6690		return;
6691
6692	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6693	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6694	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6695
6696	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6697	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6698	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6699		inet_rsk(req)->ecn_ok = 1;
6700}
6701
6702static void tcp_openreq_init(struct request_sock *req,
6703			     const struct tcp_options_received *rx_opt,
6704			     struct sk_buff *skb, const struct sock *sk)
6705{
6706	struct inet_request_sock *ireq = inet_rsk(req);
6707
6708	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6709	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6710	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6711	tcp_rsk(req)->snt_synack = 0;
6712	tcp_rsk(req)->last_oow_ack_time = 0;
6713	req->mss = rx_opt->mss_clamp;
6714	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6715	ireq->tstamp_ok = rx_opt->tstamp_ok;
6716	ireq->sack_ok = rx_opt->sack_ok;
6717	ireq->snd_wscale = rx_opt->snd_wscale;
6718	ireq->wscale_ok = rx_opt->wscale_ok;
6719	ireq->acked = 0;
6720	ireq->ecn_ok = 0;
6721	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6722	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6723	ireq->ir_mark = inet_request_mark(sk, skb);
6724#if IS_ENABLED(CONFIG_SMC)
6725	ireq->smc_ok = rx_opt->smc_ok;
6726#endif
6727}
6728
6729struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6730				      struct sock *sk_listener,
6731				      bool attach_listener)
6732{
6733	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6734					       attach_listener);
6735
6736	if (req) {
6737		struct inet_request_sock *ireq = inet_rsk(req);
6738
6739		ireq->ireq_opt = NULL;
6740#if IS_ENABLED(CONFIG_IPV6)
6741		ireq->pktopts = NULL;
6742#endif
6743		atomic64_set(&ireq->ir_cookie, 0);
6744		ireq->ireq_state = TCP_NEW_SYN_RECV;
6745		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6746		ireq->ireq_family = sk_listener->sk_family;
6747	}
6748
6749	return req;
6750}
6751EXPORT_SYMBOL(inet_reqsk_alloc);
6752
6753/*
6754 * Return true if a syncookie should be sent
6755 */
6756static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6757{
6758	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6759	const char *msg = "Dropping request";
6760	struct net *net = sock_net(sk);
6761	bool want_cookie = false;
6762	u8 syncookies;
6763
6764	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6765
6766#ifdef CONFIG_SYN_COOKIES
6767	if (syncookies) {
6768		msg = "Sending cookies";
6769		want_cookie = true;
6770		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6771	} else
6772#endif
6773		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6774
6775	if (!queue->synflood_warned && syncookies != 2 &&
6776	    xchg(&queue->synflood_warned, 1) == 0)
6777		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6778				     proto, sk->sk_num, msg);
6779
6780	return want_cookie;
6781}
6782
6783static void tcp_reqsk_record_syn(const struct sock *sk,
6784				 struct request_sock *req,
6785				 const struct sk_buff *skb)
6786{
6787	if (tcp_sk(sk)->save_syn) {
6788		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6789		struct saved_syn *saved_syn;
6790		u32 mac_hdrlen;
6791		void *base;
6792
6793		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6794			base = skb_mac_header(skb);
6795			mac_hdrlen = skb_mac_header_len(skb);
6796			len += mac_hdrlen;
6797		} else {
6798			base = skb_network_header(skb);
6799			mac_hdrlen = 0;
6800		}
6801
6802		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6803				    GFP_ATOMIC);
6804		if (saved_syn) {
6805			saved_syn->mac_hdrlen = mac_hdrlen;
6806			saved_syn->network_hdrlen = skb_network_header_len(skb);
6807			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6808			memcpy(saved_syn->data, base, len);
6809			req->saved_syn = saved_syn;
6810		}
6811	}
6812}
6813
6814/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6815 * used for SYN cookie generation.
6816 */
6817u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6818			  const struct tcp_request_sock_ops *af_ops,
6819			  struct sock *sk, struct tcphdr *th)
6820{
6821	struct tcp_sock *tp = tcp_sk(sk);
6822	u16 mss;
6823
6824	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6825	    !inet_csk_reqsk_queue_is_full(sk))
6826		return 0;
6827
6828	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6829		return 0;
6830
6831	if (sk_acceptq_is_full(sk)) {
6832		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6833		return 0;
6834	}
6835
6836	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6837	if (!mss)
6838		mss = af_ops->mss_clamp;
6839
6840	return mss;
6841}
6842EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6843
6844int tcp_conn_request(struct request_sock_ops *rsk_ops,
6845		     const struct tcp_request_sock_ops *af_ops,
6846		     struct sock *sk, struct sk_buff *skb)
6847{
6848	struct tcp_fastopen_cookie foc = { .len = -1 };
6849	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6850	struct tcp_options_received tmp_opt;
6851	struct tcp_sock *tp = tcp_sk(sk);
6852	struct net *net = sock_net(sk);
6853	struct sock *fastopen_sk = NULL;
6854	struct request_sock *req;
6855	bool want_cookie = false;
6856	struct dst_entry *dst;
6857	struct flowi fl;
6858	u8 syncookies;
6859
6860	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6861
6862	/* TW buckets are converted to open requests without
6863	 * limitations, they conserve resources and peer is
6864	 * evidently real one.
6865	 */
6866	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6867		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6868		if (!want_cookie)
6869			goto drop;
6870	}
6871
6872	if (sk_acceptq_is_full(sk)) {
6873		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6874		goto drop;
6875	}
6876
6877	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6878	if (!req)
6879		goto drop;
6880
6881	req->syncookie = want_cookie;
6882	tcp_rsk(req)->af_specific = af_ops;
6883	tcp_rsk(req)->ts_off = 0;
6884#if IS_ENABLED(CONFIG_MPTCP)
6885	tcp_rsk(req)->is_mptcp = 0;
6886#endif
6887
6888	tcp_clear_options(&tmp_opt);
6889	tmp_opt.mss_clamp = af_ops->mss_clamp;
6890	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6891	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6892			  want_cookie ? NULL : &foc);
6893
6894	if (want_cookie && !tmp_opt.saw_tstamp)
6895		tcp_clear_options(&tmp_opt);
6896
6897	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6898		tmp_opt.smc_ok = 0;
6899
6900	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6901	tcp_openreq_init(req, &tmp_opt, skb, sk);
6902	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6903
6904	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6905	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6906
6907	af_ops->init_req(req, sk, skb);
6908
6909	if (security_inet_conn_request(sk, skb, req))
6910		goto drop_and_free;
6911
6912	if (tmp_opt.tstamp_ok)
6913		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6914
6915	dst = af_ops->route_req(sk, &fl, req);
6916	if (!dst)
6917		goto drop_and_free;
6918
6919	if (!want_cookie && !isn) {
6920		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6921
6922		/* Kill the following clause, if you dislike this way. */
6923		if (!syncookies &&
6924		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6925		     (max_syn_backlog >> 2)) &&
6926		    !tcp_peer_is_proven(req, dst)) {
6927			/* Without syncookies last quarter of
6928			 * backlog is filled with destinations,
6929			 * proven to be alive.
6930			 * It means that we continue to communicate
6931			 * to destinations, already remembered
6932			 * to the moment of synflood.
6933			 */
6934			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6935				    rsk_ops->family);
6936			goto drop_and_release;
6937		}
6938
6939		isn = af_ops->init_seq(skb);
6940	}
6941
6942	tcp_ecn_create_request(req, skb, sk, dst);
6943
6944	if (want_cookie) {
6945		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6946		if (!tmp_opt.tstamp_ok)
6947			inet_rsk(req)->ecn_ok = 0;
6948	}
6949
6950	tcp_rsk(req)->snt_isn = isn;
6951	tcp_rsk(req)->txhash = net_tx_rndhash();
6952	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6953	tcp_openreq_init_rwin(req, sk, dst);
6954	sk_rx_queue_set(req_to_sk(req), skb);
6955	if (!want_cookie) {
6956		tcp_reqsk_record_syn(sk, req, skb);
6957		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6958	}
6959	if (fastopen_sk) {
6960		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6961				    &foc, TCP_SYNACK_FASTOPEN, skb);
6962		/* Add the child socket directly into the accept queue */
6963		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6964			reqsk_fastopen_remove(fastopen_sk, req, false);
6965			bh_unlock_sock(fastopen_sk);
6966			sock_put(fastopen_sk);
6967			goto drop_and_free;
6968		}
6969		sk->sk_data_ready(sk);
6970		bh_unlock_sock(fastopen_sk);
6971		sock_put(fastopen_sk);
6972	} else {
6973		tcp_rsk(req)->tfo_listener = false;
6974		if (!want_cookie)
6975			inet_csk_reqsk_queue_hash_add(sk, req,
6976				tcp_timeout_init((struct sock *)req));
6977		af_ops->send_synack(sk, dst, &fl, req, &foc,
6978				    !want_cookie ? TCP_SYNACK_NORMAL :
6979						   TCP_SYNACK_COOKIE,
6980				    skb);
6981		if (want_cookie) {
6982			reqsk_free(req);
6983			return 0;
6984		}
6985	}
6986	reqsk_put(req);
6987	return 0;
6988
6989drop_and_release:
6990	dst_release(dst);
6991drop_and_free:
6992	__reqsk_free(req);
6993drop:
6994	tcp_listendrop(sk);
6995	return 0;
6996}
6997EXPORT_SYMBOL(tcp_conn_request);
6998