1// SPDX-License-Identifier: GPL-2.0 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22/* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65#define pr_fmt(fmt) "TCP: " fmt 66 67#include <linux/mm.h> 68#include <linux/slab.h> 69#include <linux/module.h> 70#include <linux/sysctl.h> 71#include <linux/kernel.h> 72#include <linux/prefetch.h> 73#include <net/dst.h> 74#include <net/tcp.h> 75#include <net/inet_common.h> 76#include <linux/ipsec.h> 77#include <asm/unaligned.h> 78#include <linux/errqueue.h> 79#include <trace/events/tcp.h> 80#include <linux/jump_label_ratelimit.h> 81#include <net/busy_poll.h> 82#include <net/mptcp.h> 83#ifdef CONFIG_LOWPOWER_PROTOCOL 84#include <net/lowpower_protocol.h> 85#endif /* CONFIG_LOWPOWER_PROTOCOL */ 86 87int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 89#define FLAG_DATA 0x01 /* Incoming frame contained data. */ 90#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 91#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 92#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 93#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 94#define FLAG_DATA_SACKED 0x20 /* New SACK. */ 95#define FLAG_ECE 0x40 /* ECE in this ACK */ 96#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 97#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 98#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 99#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 100#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 101#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 102#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 103#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 104#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 105#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 106 107#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 108#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 109#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 110#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 111 112#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 113#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 114 115#define REXMIT_NONE 0 /* no loss recovery to do */ 116#define REXMIT_LOST 1 /* retransmit packets marked lost */ 117#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 118 119#if IS_ENABLED(CONFIG_TLS_DEVICE) 120static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 121 122void clean_acked_data_enable(struct inet_connection_sock *icsk, 123 void (*cad)(struct sock *sk, u32 ack_seq)) 124{ 125 icsk->icsk_clean_acked = cad; 126 static_branch_deferred_inc(&clean_acked_data_enabled); 127} 128EXPORT_SYMBOL_GPL(clean_acked_data_enable); 129 130void clean_acked_data_disable(struct inet_connection_sock *icsk) 131{ 132 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 133 icsk->icsk_clean_acked = NULL; 134} 135EXPORT_SYMBOL_GPL(clean_acked_data_disable); 136 137void clean_acked_data_flush(void) 138{ 139 static_key_deferred_flush(&clean_acked_data_enabled); 140} 141EXPORT_SYMBOL_GPL(clean_acked_data_flush); 142#endif 143 144#ifdef CONFIG_CGROUP_BPF 145static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 146{ 147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 152 struct bpf_sock_ops_kern sock_ops; 153 154 if (likely(!unknown_opt && !parse_all_opt)) 155 return; 156 157 /* The skb will be handled in the 158 * bpf_skops_established() or 159 * bpf_skops_write_hdr_opt(). 160 */ 161 switch (sk->sk_state) { 162 case TCP_SYN_RECV: 163 case TCP_SYN_SENT: 164 case TCP_LISTEN: 165 return; 166 } 167 168 sock_owned_by_me(sk); 169 170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 172 sock_ops.is_fullsock = 1; 173 sock_ops.sk = sk; 174 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 175 176 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 177} 178 179static void bpf_skops_established(struct sock *sk, int bpf_op, 180 struct sk_buff *skb) 181{ 182 struct bpf_sock_ops_kern sock_ops; 183 184 sock_owned_by_me(sk); 185 186 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 187 sock_ops.op = bpf_op; 188 sock_ops.is_fullsock = 1; 189 sock_ops.sk = sk; 190 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 191 if (skb) 192 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 193 194 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 195} 196#else 197static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 198{ 199} 200 201static void bpf_skops_established(struct sock *sk, int bpf_op, 202 struct sk_buff *skb) 203{ 204} 205#endif 206 207static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 208 unsigned int len) 209{ 210 static bool __once __read_mostly; 211 212 if (!__once) { 213 struct net_device *dev; 214 215 __once = true; 216 217 rcu_read_lock(); 218 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 219 if (!dev || len >= dev->mtu) 220 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 221 dev ? dev->name : "Unknown driver"); 222 rcu_read_unlock(); 223 } 224} 225 226/* Adapt the MSS value used to make delayed ack decision to the 227 * real world. 228 */ 229static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 230{ 231 struct inet_connection_sock *icsk = inet_csk(sk); 232 const unsigned int lss = icsk->icsk_ack.last_seg_size; 233 unsigned int len; 234 235 icsk->icsk_ack.last_seg_size = 0; 236 237 /* skb->len may jitter because of SACKs, even if peer 238 * sends good full-sized frames. 239 */ 240 len = skb_shinfo(skb)->gso_size ? : skb->len; 241 if (len >= icsk->icsk_ack.rcv_mss) { 242 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 243 tcp_sk(sk)->advmss); 244 /* Account for possibly-removed options */ 245 if (unlikely(len > icsk->icsk_ack.rcv_mss + 246 MAX_TCP_OPTION_SPACE)) 247 tcp_gro_dev_warn(sk, skb, len); 248 /* If the skb has a len of exactly 1*MSS and has the PSH bit 249 * set then it is likely the end of an application write. So 250 * more data may not be arriving soon, and yet the data sender 251 * may be waiting for an ACK if cwnd-bound or using TX zero 252 * copy. So we set ICSK_ACK_PUSHED here so that 253 * tcp_cleanup_rbuf() will send an ACK immediately if the app 254 * reads all of the data and is not ping-pong. If len > MSS 255 * then this logic does not matter (and does not hurt) because 256 * tcp_cleanup_rbuf() will always ACK immediately if the app 257 * reads data and there is more than an MSS of unACKed data. 258 */ 259 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 260 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 261 } else { 262 /* Otherwise, we make more careful check taking into account, 263 * that SACKs block is variable. 264 * 265 * "len" is invariant segment length, including TCP header. 266 */ 267 len += skb->data - skb_transport_header(skb); 268 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 269 /* If PSH is not set, packet should be 270 * full sized, provided peer TCP is not badly broken. 271 * This observation (if it is correct 8)) allows 272 * to handle super-low mtu links fairly. 273 */ 274 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 275 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 276 /* Subtract also invariant (if peer is RFC compliant), 277 * tcp header plus fixed timestamp option length. 278 * Resulting "len" is MSS free of SACK jitter. 279 */ 280 len -= tcp_sk(sk)->tcp_header_len; 281 icsk->icsk_ack.last_seg_size = len; 282 if (len == lss) { 283 icsk->icsk_ack.rcv_mss = len; 284 return; 285 } 286 } 287 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 288 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 289 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 290 } 291} 292 293static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 294{ 295 struct inet_connection_sock *icsk = inet_csk(sk); 296 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 297 298 if (quickacks == 0) 299 quickacks = 2; 300 quickacks = min(quickacks, max_quickacks); 301 if (quickacks > icsk->icsk_ack.quick) 302 icsk->icsk_ack.quick = quickacks; 303} 304 305static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 306{ 307 struct inet_connection_sock *icsk = inet_csk(sk); 308 309 tcp_incr_quickack(sk, max_quickacks); 310 inet_csk_exit_pingpong_mode(sk); 311 icsk->icsk_ack.ato = TCP_ATO_MIN; 312} 313 314/* Send ACKs quickly, if "quick" count is not exhausted 315 * and the session is not interactive. 316 */ 317 318static bool tcp_in_quickack_mode(struct sock *sk) 319{ 320 const struct inet_connection_sock *icsk = inet_csk(sk); 321 const struct dst_entry *dst = __sk_dst_get(sk); 322 323 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 324 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 325} 326 327static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 328{ 329 if (tp->ecn_flags & TCP_ECN_OK) 330 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 331} 332 333static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 334{ 335 if (tcp_hdr(skb)->cwr) { 336 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 337 338 /* If the sender is telling us it has entered CWR, then its 339 * cwnd may be very low (even just 1 packet), so we should ACK 340 * immediately. 341 */ 342 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 343 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 344 } 345} 346 347static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 348{ 349 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 350} 351 352static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 353{ 354 struct tcp_sock *tp = tcp_sk(sk); 355 356 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 357 case INET_ECN_NOT_ECT: 358 /* Funny extension: if ECT is not set on a segment, 359 * and we already seen ECT on a previous segment, 360 * it is probably a retransmit. 361 */ 362 if (tp->ecn_flags & TCP_ECN_SEEN) 363 tcp_enter_quickack_mode(sk, 2); 364 break; 365 case INET_ECN_CE: 366 if (tcp_ca_needs_ecn(sk)) 367 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 368 369 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 370 /* Better not delay acks, sender can have a very low cwnd */ 371 tcp_enter_quickack_mode(sk, 2); 372 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 373 } 374 tp->ecn_flags |= TCP_ECN_SEEN; 375 break; 376 default: 377 if (tcp_ca_needs_ecn(sk)) 378 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 379 tp->ecn_flags |= TCP_ECN_SEEN; 380 break; 381 } 382} 383 384static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 385{ 386 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 387 __tcp_ecn_check_ce(sk, skb); 388} 389 390static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 391{ 392 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 393 tp->ecn_flags &= ~TCP_ECN_OK; 394} 395 396static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 397{ 398 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 399 tp->ecn_flags &= ~TCP_ECN_OK; 400} 401 402static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 403{ 404 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 405 return true; 406 return false; 407} 408 409/* Buffer size and advertised window tuning. 410 * 411 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 412 */ 413 414static void tcp_sndbuf_expand(struct sock *sk) 415{ 416 const struct tcp_sock *tp = tcp_sk(sk); 417 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 418 int sndmem, per_mss; 419 u32 nr_segs; 420 421 /* Worst case is non GSO/TSO : each frame consumes one skb 422 * and skb->head is kmalloced using power of two area of memory 423 */ 424 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 425 MAX_TCP_HEADER + 426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 427 428 per_mss = roundup_pow_of_two(per_mss) + 429 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 430 431 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 432 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 433 434 /* Fast Recovery (RFC 5681 3.2) : 435 * Cubic needs 1.7 factor, rounded to 2 to include 436 * extra cushion (application might react slowly to EPOLLOUT) 437 */ 438 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 439 sndmem *= nr_segs * per_mss; 440 441 if (sk->sk_sndbuf < sndmem) 442 WRITE_ONCE(sk->sk_sndbuf, 443 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 444} 445 446/* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 447 * 448 * All tcp_full_space() is split to two parts: "network" buffer, allocated 449 * forward and advertised in receiver window (tp->rcv_wnd) and 450 * "application buffer", required to isolate scheduling/application 451 * latencies from network. 452 * window_clamp is maximal advertised window. It can be less than 453 * tcp_full_space(), in this case tcp_full_space() - window_clamp 454 * is reserved for "application" buffer. The less window_clamp is 455 * the smoother our behaviour from viewpoint of network, but the lower 456 * throughput and the higher sensitivity of the connection to losses. 8) 457 * 458 * rcv_ssthresh is more strict window_clamp used at "slow start" 459 * phase to predict further behaviour of this connection. 460 * It is used for two goals: 461 * - to enforce header prediction at sender, even when application 462 * requires some significant "application buffer". It is check #1. 463 * - to prevent pruning of receive queue because of misprediction 464 * of receiver window. Check #2. 465 * 466 * The scheme does not work when sender sends good segments opening 467 * window and then starts to feed us spaghetti. But it should work 468 * in common situations. Otherwise, we have to rely on queue collapsing. 469 */ 470 471/* Slow part of check#2. */ 472static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 473 unsigned int skbtruesize) 474{ 475 struct tcp_sock *tp = tcp_sk(sk); 476 /* Optimize this! */ 477 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 478 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 479 480 while (tp->rcv_ssthresh <= window) { 481 if (truesize <= skb->len) 482 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 483 484 truesize >>= 1; 485 window >>= 1; 486 } 487 return 0; 488} 489 490/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 491 * can play nice with us, as sk_buff and skb->head might be either 492 * freed or shared with up to MAX_SKB_FRAGS segments. 493 * Only give a boost to drivers using page frag(s) to hold the frame(s), 494 * and if no payload was pulled in skb->head before reaching us. 495 */ 496static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 497{ 498 u32 truesize = skb->truesize; 499 500 if (adjust && !skb_headlen(skb)) { 501 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 502 /* paranoid check, some drivers might be buggy */ 503 if (unlikely((int)truesize < (int)skb->len)) 504 truesize = skb->truesize; 505 } 506 return truesize; 507} 508 509static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 510 bool adjust) 511{ 512 struct tcp_sock *tp = tcp_sk(sk); 513 int room; 514 515 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 516 517 /* Check #1 */ 518 if (room > 0 && !tcp_under_memory_pressure(sk)) { 519 unsigned int truesize = truesize_adjust(adjust, skb); 520 int incr; 521 522 /* Check #2. Increase window, if skb with such overhead 523 * will fit to rcvbuf in future. 524 */ 525 if (tcp_win_from_space(sk, truesize) <= skb->len) 526 incr = 2 * tp->advmss; 527 else 528 incr = __tcp_grow_window(sk, skb, truesize); 529 530 if (incr) { 531 incr = max_t(int, incr, 2 * skb->len); 532 tp->rcv_ssthresh += min(room, incr); 533 inet_csk(sk)->icsk_ack.quick |= 1; 534 } 535 } 536} 537 538/* 3. Try to fixup all. It is made immediately after connection enters 539 * established state. 540 */ 541static void tcp_init_buffer_space(struct sock *sk) 542{ 543 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 544 struct tcp_sock *tp = tcp_sk(sk); 545 int maxwin; 546 547 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 548 tcp_sndbuf_expand(sk); 549 550 tcp_mstamp_refresh(tp); 551 tp->rcvq_space.time = tp->tcp_mstamp; 552 tp->rcvq_space.seq = tp->copied_seq; 553 554 maxwin = tcp_full_space(sk); 555 556 if (tp->window_clamp >= maxwin) { 557 tp->window_clamp = maxwin; 558 559 if (tcp_app_win && maxwin > 4 * tp->advmss) 560 tp->window_clamp = max(maxwin - 561 (maxwin >> tcp_app_win), 562 4 * tp->advmss); 563 } 564 565 /* Force reservation of one segment. */ 566 if (tcp_app_win && 567 tp->window_clamp > 2 * tp->advmss && 568 tp->window_clamp + tp->advmss > maxwin) 569 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 570 571 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 572 tp->snd_cwnd_stamp = tcp_jiffies32; 573 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 574 (u32)TCP_INIT_CWND * tp->advmss); 575} 576 577/* 4. Recalculate window clamp after socket hit its memory bounds. */ 578static void tcp_clamp_window(struct sock *sk) 579{ 580 struct tcp_sock *tp = tcp_sk(sk); 581 struct inet_connection_sock *icsk = inet_csk(sk); 582 struct net *net = sock_net(sk); 583 int rmem2; 584 585 icsk->icsk_ack.quick = 0; 586 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 587 588 if (sk->sk_rcvbuf < rmem2 && 589 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 590 !tcp_under_memory_pressure(sk) && 591 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 592 WRITE_ONCE(sk->sk_rcvbuf, 593 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 594 } 595 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 596 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 597} 598 599/* Initialize RCV_MSS value. 600 * RCV_MSS is an our guess about MSS used by the peer. 601 * We haven't any direct information about the MSS. 602 * It's better to underestimate the RCV_MSS rather than overestimate. 603 * Overestimations make us ACKing less frequently than needed. 604 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 605 */ 606void tcp_initialize_rcv_mss(struct sock *sk) 607{ 608 const struct tcp_sock *tp = tcp_sk(sk); 609 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 610 611 hint = min(hint, tp->rcv_wnd / 2); 612 hint = min(hint, TCP_MSS_DEFAULT); 613 hint = max(hint, TCP_MIN_MSS); 614 615 inet_csk(sk)->icsk_ack.rcv_mss = hint; 616} 617EXPORT_SYMBOL(tcp_initialize_rcv_mss); 618 619/* Receiver "autotuning" code. 620 * 621 * The algorithm for RTT estimation w/o timestamps is based on 622 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 623 * <https://public.lanl.gov/radiant/pubs.html#DRS> 624 * 625 * More detail on this code can be found at 626 * <http://staff.psc.edu/jheffner/>, 627 * though this reference is out of date. A new paper 628 * is pending. 629 */ 630static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 631{ 632 u32 new_sample = tp->rcv_rtt_est.rtt_us; 633 long m = sample; 634 635 if (new_sample != 0) { 636 /* If we sample in larger samples in the non-timestamp 637 * case, we could grossly overestimate the RTT especially 638 * with chatty applications or bulk transfer apps which 639 * are stalled on filesystem I/O. 640 * 641 * Also, since we are only going for a minimum in the 642 * non-timestamp case, we do not smooth things out 643 * else with timestamps disabled convergence takes too 644 * long. 645 */ 646 if (!win_dep) { 647 m -= (new_sample >> 3); 648 new_sample += m; 649 } else { 650 m <<= 3; 651 if (m < new_sample) 652 new_sample = m; 653 } 654 } else { 655 /* No previous measure. */ 656 new_sample = m << 3; 657 } 658 659 tp->rcv_rtt_est.rtt_us = new_sample; 660} 661 662static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 663{ 664 u32 delta_us; 665 666 if (tp->rcv_rtt_est.time == 0) 667 goto new_measure; 668 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 669 return; 670 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 671 if (!delta_us) 672 delta_us = 1; 673 tcp_rcv_rtt_update(tp, delta_us, 1); 674 675new_measure: 676 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 677 tp->rcv_rtt_est.time = tp->tcp_mstamp; 678} 679 680static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 681 const struct sk_buff *skb) 682{ 683 struct tcp_sock *tp = tcp_sk(sk); 684 685 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 686 return; 687 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 688 689 if (TCP_SKB_CB(skb)->end_seq - 690 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 691 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 692 u32 delta_us; 693 694 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 695 if (!delta) 696 delta = 1; 697 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 698 tcp_rcv_rtt_update(tp, delta_us, 0); 699 } 700 } 701} 702 703/* 704 * This function should be called every time data is copied to user space. 705 * It calculates the appropriate TCP receive buffer space. 706 */ 707void tcp_rcv_space_adjust(struct sock *sk) 708{ 709 struct tcp_sock *tp = tcp_sk(sk); 710 u32 copied; 711 int time; 712 713 trace_tcp_rcv_space_adjust(sk); 714 715 tcp_mstamp_refresh(tp); 716 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 717 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 718 return; 719 720 /* Number of bytes copied to user in last RTT */ 721 copied = tp->copied_seq - tp->rcvq_space.seq; 722 if (copied <= tp->rcvq_space.space) 723 goto new_measure; 724 725 /* A bit of theory : 726 * copied = bytes received in previous RTT, our base window 727 * To cope with packet losses, we need a 2x factor 728 * To cope with slow start, and sender growing its cwin by 100 % 729 * every RTT, we need a 4x factor, because the ACK we are sending 730 * now is for the next RTT, not the current one : 731 * <prev RTT . ><current RTT .. ><next RTT .... > 732 */ 733 734 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 735 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 736 int rcvmem, rcvbuf; 737 u64 rcvwin, grow; 738 739 /* minimal window to cope with packet losses, assuming 740 * steady state. Add some cushion because of small variations. 741 */ 742 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 743 744 /* Accommodate for sender rate increase (eg. slow start) */ 745 grow = rcvwin * (copied - tp->rcvq_space.space); 746 do_div(grow, tp->rcvq_space.space); 747 rcvwin += (grow << 1); 748 749 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 750 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 751 rcvmem += 128; 752 753 do_div(rcvwin, tp->advmss); 754 rcvbuf = min_t(u64, rcvwin * rcvmem, 755 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 756 if (rcvbuf > sk->sk_rcvbuf) { 757 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 758 759 /* Make the window clamp follow along. */ 760 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 761 } 762 } 763 tp->rcvq_space.space = copied; 764 765new_measure: 766 tp->rcvq_space.seq = tp->copied_seq; 767 tp->rcvq_space.time = tp->tcp_mstamp; 768} 769 770/* There is something which you must keep in mind when you analyze the 771 * behavior of the tp->ato delayed ack timeout interval. When a 772 * connection starts up, we want to ack as quickly as possible. The 773 * problem is that "good" TCP's do slow start at the beginning of data 774 * transmission. The means that until we send the first few ACK's the 775 * sender will sit on his end and only queue most of his data, because 776 * he can only send snd_cwnd unacked packets at any given time. For 777 * each ACK we send, he increments snd_cwnd and transmits more of his 778 * queue. -DaveM 779 */ 780static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 781{ 782 struct tcp_sock *tp = tcp_sk(sk); 783 struct inet_connection_sock *icsk = inet_csk(sk); 784 u32 now; 785 786 inet_csk_schedule_ack(sk); 787 788 tcp_measure_rcv_mss(sk, skb); 789 790 tcp_rcv_rtt_measure(tp); 791 792 now = tcp_jiffies32; 793 794 if (!icsk->icsk_ack.ato) { 795 /* The _first_ data packet received, initialize 796 * delayed ACK engine. 797 */ 798 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 799 icsk->icsk_ack.ato = TCP_ATO_MIN; 800 } else { 801 int m = now - icsk->icsk_ack.lrcvtime; 802 803 if (m <= TCP_ATO_MIN / 2) { 804 /* The fastest case is the first. */ 805 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 806 } else if (m < icsk->icsk_ack.ato) { 807 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 808 if (icsk->icsk_ack.ato > icsk->icsk_rto) 809 icsk->icsk_ack.ato = icsk->icsk_rto; 810 } else if (m > icsk->icsk_rto) { 811 /* Too long gap. Apparently sender failed to 812 * restart window, so that we send ACKs quickly. 813 */ 814 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 815 sk_mem_reclaim(sk); 816 } 817 } 818 icsk->icsk_ack.lrcvtime = now; 819 820 tcp_ecn_check_ce(sk, skb); 821 822 if (skb->len >= 128) 823 tcp_grow_window(sk, skb, true); 824} 825 826/* Called to compute a smoothed rtt estimate. The data fed to this 827 * routine either comes from timestamps, or from segments that were 828 * known _not_ to have been retransmitted [see Karn/Partridge 829 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 830 * piece by Van Jacobson. 831 * NOTE: the next three routines used to be one big routine. 832 * To save cycles in the RFC 1323 implementation it was better to break 833 * it up into three procedures. -- erics 834 */ 835static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 836{ 837 struct tcp_sock *tp = tcp_sk(sk); 838 long m = mrtt_us; /* RTT */ 839 u32 srtt = tp->srtt_us; 840 841 /* The following amusing code comes from Jacobson's 842 * article in SIGCOMM '88. Note that rtt and mdev 843 * are scaled versions of rtt and mean deviation. 844 * This is designed to be as fast as possible 845 * m stands for "measurement". 846 * 847 * On a 1990 paper the rto value is changed to: 848 * RTO = rtt + 4 * mdev 849 * 850 * Funny. This algorithm seems to be very broken. 851 * These formulae increase RTO, when it should be decreased, increase 852 * too slowly, when it should be increased quickly, decrease too quickly 853 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 854 * does not matter how to _calculate_ it. Seems, it was trap 855 * that VJ failed to avoid. 8) 856 */ 857 if (srtt != 0) { 858 m -= (srtt >> 3); /* m is now error in rtt est */ 859 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 860 if (m < 0) { 861 m = -m; /* m is now abs(error) */ 862 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 863 /* This is similar to one of Eifel findings. 864 * Eifel blocks mdev updates when rtt decreases. 865 * This solution is a bit different: we use finer gain 866 * for mdev in this case (alpha*beta). 867 * Like Eifel it also prevents growth of rto, 868 * but also it limits too fast rto decreases, 869 * happening in pure Eifel. 870 */ 871 if (m > 0) 872 m >>= 3; 873 } else { 874 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 875 } 876 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 877 if (tp->mdev_us > tp->mdev_max_us) { 878 tp->mdev_max_us = tp->mdev_us; 879 if (tp->mdev_max_us > tp->rttvar_us) 880 tp->rttvar_us = tp->mdev_max_us; 881 } 882 if (after(tp->snd_una, tp->rtt_seq)) { 883 if (tp->mdev_max_us < tp->rttvar_us) 884 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 885 tp->rtt_seq = tp->snd_nxt; 886 tp->mdev_max_us = tcp_rto_min_us(sk); 887 888 tcp_bpf_rtt(sk); 889 } 890 } else { 891 /* no previous measure. */ 892 srtt = m << 3; /* take the measured time to be rtt */ 893 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 894 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 895 tp->mdev_max_us = tp->rttvar_us; 896 tp->rtt_seq = tp->snd_nxt; 897 898 tcp_bpf_rtt(sk); 899 } 900 tp->srtt_us = max(1U, srtt); 901} 902 903static void tcp_update_pacing_rate(struct sock *sk) 904{ 905 const struct tcp_sock *tp = tcp_sk(sk); 906 u64 rate; 907 908 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 909 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 910 911 /* current rate is (cwnd * mss) / srtt 912 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 913 * In Congestion Avoidance phase, set it to 120 % the current rate. 914 * 915 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 916 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 917 * end of slow start and should slow down. 918 */ 919 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 920 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 921 else 922 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 923 924 rate *= max(tp->snd_cwnd, tp->packets_out); 925 926 if (likely(tp->srtt_us)) 927 do_div(rate, tp->srtt_us); 928 929 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 930 * without any lock. We want to make sure compiler wont store 931 * intermediate values in this location. 932 */ 933 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 934 sk->sk_max_pacing_rate)); 935} 936 937/* Calculate rto without backoff. This is the second half of Van Jacobson's 938 * routine referred to above. 939 */ 940static void tcp_set_rto(struct sock *sk) 941{ 942 const struct tcp_sock *tp = tcp_sk(sk); 943 /* Old crap is replaced with new one. 8) 944 * 945 * More seriously: 946 * 1. If rtt variance happened to be less 50msec, it is hallucination. 947 * It cannot be less due to utterly erratic ACK generation made 948 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 949 * to do with delayed acks, because at cwnd>2 true delack timeout 950 * is invisible. Actually, Linux-2.4 also generates erratic 951 * ACKs in some circumstances. 952 */ 953 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 954 955 /* 2. Fixups made earlier cannot be right. 956 * If we do not estimate RTO correctly without them, 957 * all the algo is pure shit and should be replaced 958 * with correct one. It is exactly, which we pretend to do. 959 */ 960 961 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 962 * guarantees that rto is higher. 963 */ 964 tcp_bound_rto(sk); 965} 966 967__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 968{ 969 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 970 971 if (!cwnd) 972 cwnd = TCP_INIT_CWND; 973 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 974} 975 976struct tcp_sacktag_state { 977 /* Timestamps for earliest and latest never-retransmitted segment 978 * that was SACKed. RTO needs the earliest RTT to stay conservative, 979 * but congestion control should still get an accurate delay signal. 980 */ 981 u64 first_sackt; 982 u64 last_sackt; 983 u32 reord; 984 u32 sack_delivered; 985 int flag; 986 unsigned int mss_now; 987 struct rate_sample *rate; 988}; 989 990/* Take a notice that peer is sending D-SACKs. Skip update of data delivery 991 * and spurious retransmission information if this DSACK is unlikely caused by 992 * sender's action: 993 * - DSACKed sequence range is larger than maximum receiver's window. 994 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 995 */ 996static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 997 u32 end_seq, struct tcp_sacktag_state *state) 998{ 999 u32 seq_len, dup_segs = 1; 1000 1001 if (!before(start_seq, end_seq)) 1002 return 0; 1003 1004 seq_len = end_seq - start_seq; 1005 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1006 if (seq_len > tp->max_window) 1007 return 0; 1008 if (seq_len > tp->mss_cache) 1009 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1010 1011 tp->dsack_dups += dup_segs; 1012 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1013 if (tp->dsack_dups > tp->total_retrans) 1014 return 0; 1015 1016 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1017 tp->rack.dsack_seen = 1; 1018 1019 state->flag |= FLAG_DSACKING_ACK; 1020 /* A spurious retransmission is delivered */ 1021 state->sack_delivered += dup_segs; 1022 1023 return dup_segs; 1024} 1025 1026/* It's reordering when higher sequence was delivered (i.e. sacked) before 1027 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1028 * distance is approximated in full-mss packet distance ("reordering"). 1029 */ 1030static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1031 const int ts) 1032{ 1033 struct tcp_sock *tp = tcp_sk(sk); 1034 const u32 mss = tp->mss_cache; 1035 u32 fack, metric; 1036 1037 fack = tcp_highest_sack_seq(tp); 1038 if (!before(low_seq, fack)) 1039 return; 1040 1041 metric = fack - low_seq; 1042 if ((metric > tp->reordering * mss) && mss) { 1043#if FASTRETRANS_DEBUG > 1 1044 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1045 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1046 tp->reordering, 1047 0, 1048 tp->sacked_out, 1049 tp->undo_marker ? tp->undo_retrans : 0); 1050#endif 1051 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1052 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1053 } 1054 1055 /* This exciting event is worth to be remembered. 8) */ 1056 tp->reord_seen++; 1057 NET_INC_STATS(sock_net(sk), 1058 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1059} 1060 1061 /* This must be called before lost_out or retrans_out are updated 1062 * on a new loss, because we want to know if all skbs previously 1063 * known to be lost have already been retransmitted, indicating 1064 * that this newly lost skb is our next skb to retransmit. 1065 */ 1066static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1067{ 1068 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1069 (tp->retransmit_skb_hint && 1070 before(TCP_SKB_CB(skb)->seq, 1071 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1072 tp->retransmit_skb_hint = skb; 1073} 1074 1075/* Sum the number of packets on the wire we have marked as lost, and 1076 * notify the congestion control module that the given skb was marked lost. 1077 */ 1078static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1079{ 1080 tp->lost += tcp_skb_pcount(skb); 1081} 1082 1083void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1084{ 1085 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1086 struct tcp_sock *tp = tcp_sk(sk); 1087 1088 if (sacked & TCPCB_SACKED_ACKED) 1089 return; 1090 1091 tcp_verify_retransmit_hint(tp, skb); 1092 if (sacked & TCPCB_LOST) { 1093 if (sacked & TCPCB_SACKED_RETRANS) { 1094 /* Account for retransmits that are lost again */ 1095 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1096 tp->retrans_out -= tcp_skb_pcount(skb); 1097 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1098 tcp_skb_pcount(skb)); 1099 tcp_notify_skb_loss_event(tp, skb); 1100 } 1101 } else { 1102 tp->lost_out += tcp_skb_pcount(skb); 1103 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1104 tcp_notify_skb_loss_event(tp, skb); 1105 } 1106} 1107 1108/* Updates the delivered and delivered_ce counts */ 1109static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1110 bool ece_ack) 1111{ 1112 tp->delivered += delivered; 1113 if (ece_ack) 1114 tp->delivered_ce += delivered; 1115} 1116 1117/* This procedure tags the retransmission queue when SACKs arrive. 1118 * 1119 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1120 * Packets in queue with these bits set are counted in variables 1121 * sacked_out, retrans_out and lost_out, correspondingly. 1122 * 1123 * Valid combinations are: 1124 * Tag InFlight Description 1125 * 0 1 - orig segment is in flight. 1126 * S 0 - nothing flies, orig reached receiver. 1127 * L 0 - nothing flies, orig lost by net. 1128 * R 2 - both orig and retransmit are in flight. 1129 * L|R 1 - orig is lost, retransmit is in flight. 1130 * S|R 1 - orig reached receiver, retrans is still in flight. 1131 * (L|S|R is logically valid, it could occur when L|R is sacked, 1132 * but it is equivalent to plain S and code short-curcuits it to S. 1133 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1134 * 1135 * These 6 states form finite state machine, controlled by the following events: 1136 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1137 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1138 * 3. Loss detection event of two flavors: 1139 * A. Scoreboard estimator decided the packet is lost. 1140 * A'. Reno "three dupacks" marks head of queue lost. 1141 * B. SACK arrives sacking SND.NXT at the moment, when the 1142 * segment was retransmitted. 1143 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1144 * 1145 * It is pleasant to note, that state diagram turns out to be commutative, 1146 * so that we are allowed not to be bothered by order of our actions, 1147 * when multiple events arrive simultaneously. (see the function below). 1148 * 1149 * Reordering detection. 1150 * -------------------- 1151 * Reordering metric is maximal distance, which a packet can be displaced 1152 * in packet stream. With SACKs we can estimate it: 1153 * 1154 * 1. SACK fills old hole and the corresponding segment was not 1155 * ever retransmitted -> reordering. Alas, we cannot use it 1156 * when segment was retransmitted. 1157 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1158 * for retransmitted and already SACKed segment -> reordering.. 1159 * Both of these heuristics are not used in Loss state, when we cannot 1160 * account for retransmits accurately. 1161 * 1162 * SACK block validation. 1163 * ---------------------- 1164 * 1165 * SACK block range validation checks that the received SACK block fits to 1166 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1167 * Note that SND.UNA is not included to the range though being valid because 1168 * it means that the receiver is rather inconsistent with itself reporting 1169 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1170 * perfectly valid, however, in light of RFC2018 which explicitly states 1171 * that "SACK block MUST reflect the newest segment. Even if the newest 1172 * segment is going to be discarded ...", not that it looks very clever 1173 * in case of head skb. Due to potentional receiver driven attacks, we 1174 * choose to avoid immediate execution of a walk in write queue due to 1175 * reneging and defer head skb's loss recovery to standard loss recovery 1176 * procedure that will eventually trigger (nothing forbids us doing this). 1177 * 1178 * Implements also blockage to start_seq wrap-around. Problem lies in the 1179 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1180 * there's no guarantee that it will be before snd_nxt (n). The problem 1181 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1182 * wrap (s_w): 1183 * 1184 * <- outs wnd -> <- wrapzone -> 1185 * u e n u_w e_w s n_w 1186 * | | | | | | | 1187 * |<------------+------+----- TCP seqno space --------------+---------->| 1188 * ...-- <2^31 ->| |<--------... 1189 * ...---- >2^31 ------>| |<--------... 1190 * 1191 * Current code wouldn't be vulnerable but it's better still to discard such 1192 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1193 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1194 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1195 * equal to the ideal case (infinite seqno space without wrap caused issues). 1196 * 1197 * With D-SACK the lower bound is extended to cover sequence space below 1198 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1199 * again, D-SACK block must not to go across snd_una (for the same reason as 1200 * for the normal SACK blocks, explained above). But there all simplicity 1201 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1202 * fully below undo_marker they do not affect behavior in anyway and can 1203 * therefore be safely ignored. In rare cases (which are more or less 1204 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1205 * fragmentation and packet reordering past skb's retransmission. To consider 1206 * them correctly, the acceptable range must be extended even more though 1207 * the exact amount is rather hard to quantify. However, tp->max_window can 1208 * be used as an exaggerated estimate. 1209 */ 1210static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1211 u32 start_seq, u32 end_seq) 1212{ 1213 /* Too far in future, or reversed (interpretation is ambiguous) */ 1214 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1215 return false; 1216 1217 /* Nasty start_seq wrap-around check (see comments above) */ 1218 if (!before(start_seq, tp->snd_nxt)) 1219 return false; 1220 1221 /* In outstanding window? ...This is valid exit for D-SACKs too. 1222 * start_seq == snd_una is non-sensical (see comments above) 1223 */ 1224 if (after(start_seq, tp->snd_una)) 1225 return true; 1226 1227 if (!is_dsack || !tp->undo_marker) 1228 return false; 1229 1230 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1231 if (after(end_seq, tp->snd_una)) 1232 return false; 1233 1234 if (!before(start_seq, tp->undo_marker)) 1235 return true; 1236 1237 /* Too old */ 1238 if (!after(end_seq, tp->undo_marker)) 1239 return false; 1240 1241 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1242 * start_seq < undo_marker and end_seq >= undo_marker. 1243 */ 1244 return !before(start_seq, end_seq - tp->max_window); 1245} 1246 1247static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1248 struct tcp_sack_block_wire *sp, int num_sacks, 1249 u32 prior_snd_una, struct tcp_sacktag_state *state) 1250{ 1251 struct tcp_sock *tp = tcp_sk(sk); 1252 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1253 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1254 u32 dup_segs; 1255 1256 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1257 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1258 } else if (num_sacks > 1) { 1259 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1260 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1261 1262 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1263 return false; 1264 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1265 } else { 1266 return false; 1267 } 1268 1269 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1270 if (!dup_segs) { /* Skip dubious DSACK */ 1271 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1272 return false; 1273 } 1274 1275 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1276 1277 /* D-SACK for already forgotten data... Do dumb counting. */ 1278 if (tp->undo_marker && tp->undo_retrans > 0 && 1279 !after(end_seq_0, prior_snd_una) && 1280 after(end_seq_0, tp->undo_marker)) 1281 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1282 1283 return true; 1284} 1285 1286/* Check if skb is fully within the SACK block. In presence of GSO skbs, 1287 * the incoming SACK may not exactly match but we can find smaller MSS 1288 * aligned portion of it that matches. Therefore we might need to fragment 1289 * which may fail and creates some hassle (caller must handle error case 1290 * returns). 1291 * 1292 * FIXME: this could be merged to shift decision code 1293 */ 1294static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1295 u32 start_seq, u32 end_seq) 1296{ 1297 int err; 1298 bool in_sack; 1299 unsigned int pkt_len; 1300 unsigned int mss; 1301 1302 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1303 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1304 1305 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1306 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1307 mss = tcp_skb_mss(skb); 1308 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1309 1310 if (!in_sack) { 1311 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1312 if (pkt_len < mss) 1313 pkt_len = mss; 1314 } else { 1315 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1316 if (pkt_len < mss) 1317 return -EINVAL; 1318 } 1319 1320 /* Round if necessary so that SACKs cover only full MSSes 1321 * and/or the remaining small portion (if present) 1322 */ 1323 if (pkt_len > mss) { 1324 unsigned int new_len = (pkt_len / mss) * mss; 1325 if (!in_sack && new_len < pkt_len) 1326 new_len += mss; 1327 pkt_len = new_len; 1328 } 1329 1330 if (pkt_len >= skb->len && !in_sack) 1331 return 0; 1332 1333 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1334 pkt_len, mss, GFP_ATOMIC); 1335 if (err < 0) 1336 return err; 1337 } 1338 1339 return in_sack; 1340} 1341 1342/* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1343static u8 tcp_sacktag_one(struct sock *sk, 1344 struct tcp_sacktag_state *state, u8 sacked, 1345 u32 start_seq, u32 end_seq, 1346 int dup_sack, int pcount, 1347 u64 xmit_time) 1348{ 1349 struct tcp_sock *tp = tcp_sk(sk); 1350 1351 /* Account D-SACK for retransmitted packet. */ 1352 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1353 if (tp->undo_marker && tp->undo_retrans > 0 && 1354 after(end_seq, tp->undo_marker)) 1355 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1356 if ((sacked & TCPCB_SACKED_ACKED) && 1357 before(start_seq, state->reord)) 1358 state->reord = start_seq; 1359 } 1360 1361 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1362 if (!after(end_seq, tp->snd_una)) 1363 return sacked; 1364 1365 if (!(sacked & TCPCB_SACKED_ACKED)) { 1366 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1367 1368 if (sacked & TCPCB_SACKED_RETRANS) { 1369 /* If the segment is not tagged as lost, 1370 * we do not clear RETRANS, believing 1371 * that retransmission is still in flight. 1372 */ 1373 if (sacked & TCPCB_LOST) { 1374 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1375 tp->lost_out -= pcount; 1376 tp->retrans_out -= pcount; 1377 } 1378 } else { 1379 if (!(sacked & TCPCB_RETRANS)) { 1380 /* New sack for not retransmitted frame, 1381 * which was in hole. It is reordering. 1382 */ 1383 if (before(start_seq, 1384 tcp_highest_sack_seq(tp)) && 1385 before(start_seq, state->reord)) 1386 state->reord = start_seq; 1387 1388 if (!after(end_seq, tp->high_seq)) 1389 state->flag |= FLAG_ORIG_SACK_ACKED; 1390 if (state->first_sackt == 0) 1391 state->first_sackt = xmit_time; 1392 state->last_sackt = xmit_time; 1393 } 1394 1395 if (sacked & TCPCB_LOST) { 1396 sacked &= ~TCPCB_LOST; 1397 tp->lost_out -= pcount; 1398 } 1399 } 1400 1401 sacked |= TCPCB_SACKED_ACKED; 1402 state->flag |= FLAG_DATA_SACKED; 1403 tp->sacked_out += pcount; 1404 /* Out-of-order packets delivered */ 1405 state->sack_delivered += pcount; 1406 1407 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1408 if (tp->lost_skb_hint && 1409 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1410 tp->lost_cnt_hint += pcount; 1411 } 1412 1413 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1414 * frames and clear it. undo_retrans is decreased above, L|R frames 1415 * are accounted above as well. 1416 */ 1417 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1418 sacked &= ~TCPCB_SACKED_RETRANS; 1419 tp->retrans_out -= pcount; 1420 } 1421 1422 return sacked; 1423} 1424 1425/* Shift newly-SACKed bytes from this skb to the immediately previous 1426 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1427 */ 1428static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1429 struct sk_buff *skb, 1430 struct tcp_sacktag_state *state, 1431 unsigned int pcount, int shifted, int mss, 1432 bool dup_sack) 1433{ 1434 struct tcp_sock *tp = tcp_sk(sk); 1435 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1436 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1437 1438 BUG_ON(!pcount); 1439 1440 /* Adjust counters and hints for the newly sacked sequence 1441 * range but discard the return value since prev is already 1442 * marked. We must tag the range first because the seq 1443 * advancement below implicitly advances 1444 * tcp_highest_sack_seq() when skb is highest_sack. 1445 */ 1446 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1447 start_seq, end_seq, dup_sack, pcount, 1448 tcp_skb_timestamp_us(skb)); 1449 tcp_rate_skb_delivered(sk, skb, state->rate); 1450 1451 if (skb == tp->lost_skb_hint) 1452 tp->lost_cnt_hint += pcount; 1453 1454 TCP_SKB_CB(prev)->end_seq += shifted; 1455 TCP_SKB_CB(skb)->seq += shifted; 1456 1457 tcp_skb_pcount_add(prev, pcount); 1458 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1459 tcp_skb_pcount_add(skb, -pcount); 1460 1461 /* When we're adding to gso_segs == 1, gso_size will be zero, 1462 * in theory this shouldn't be necessary but as long as DSACK 1463 * code can come after this skb later on it's better to keep 1464 * setting gso_size to something. 1465 */ 1466 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1467 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1468 1469 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1470 if (tcp_skb_pcount(skb) <= 1) 1471 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1472 1473 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1474 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1475 1476 if (skb->len > 0) { 1477 BUG_ON(!tcp_skb_pcount(skb)); 1478 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1479 return false; 1480 } 1481 1482 /* Whole SKB was eaten :-) */ 1483 1484 if (skb == tp->retransmit_skb_hint) 1485 tp->retransmit_skb_hint = prev; 1486 if (skb == tp->lost_skb_hint) { 1487 tp->lost_skb_hint = prev; 1488 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1489 } 1490 1491 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1492 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1493 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1494 TCP_SKB_CB(prev)->end_seq++; 1495 1496 if (skb == tcp_highest_sack(sk)) 1497 tcp_advance_highest_sack(sk, skb); 1498 1499 tcp_skb_collapse_tstamp(prev, skb); 1500 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1501 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1502 1503 tcp_rtx_queue_unlink_and_free(skb, sk); 1504 1505 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1506 1507 return true; 1508} 1509 1510/* I wish gso_size would have a bit more sane initialization than 1511 * something-or-zero which complicates things 1512 */ 1513static int tcp_skb_seglen(const struct sk_buff *skb) 1514{ 1515 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1516} 1517 1518/* Shifting pages past head area doesn't work */ 1519static int skb_can_shift(const struct sk_buff *skb) 1520{ 1521 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1522} 1523 1524int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1525 int pcount, int shiftlen) 1526{ 1527 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1528 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1529 * to make sure not storing more than 65535 * 8 bytes per skb, 1530 * even if current MSS is bigger. 1531 */ 1532 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1533 return 0; 1534 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1535 return 0; 1536 return skb_shift(to, from, shiftlen); 1537} 1538 1539/* Try collapsing SACK blocks spanning across multiple skbs to a single 1540 * skb. 1541 */ 1542static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1543 struct tcp_sacktag_state *state, 1544 u32 start_seq, u32 end_seq, 1545 bool dup_sack) 1546{ 1547 struct tcp_sock *tp = tcp_sk(sk); 1548 struct sk_buff *prev; 1549 int mss; 1550 int pcount = 0; 1551 int len; 1552 int in_sack; 1553 1554 /* Normally R but no L won't result in plain S */ 1555 if (!dup_sack && 1556 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1557 goto fallback; 1558 if (!skb_can_shift(skb)) 1559 goto fallback; 1560 /* This frame is about to be dropped (was ACKed). */ 1561 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1562 goto fallback; 1563 1564 /* Can only happen with delayed DSACK + discard craziness */ 1565 prev = skb_rb_prev(skb); 1566 if (!prev) 1567 goto fallback; 1568 1569 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1570 goto fallback; 1571 1572 if (!tcp_skb_can_collapse(prev, skb)) 1573 goto fallback; 1574 1575 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1576 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1577 1578 if (in_sack) { 1579 len = skb->len; 1580 pcount = tcp_skb_pcount(skb); 1581 mss = tcp_skb_seglen(skb); 1582 1583 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1584 * drop this restriction as unnecessary 1585 */ 1586 if (mss != tcp_skb_seglen(prev)) 1587 goto fallback; 1588 } else { 1589 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1590 goto noop; 1591 /* CHECKME: This is non-MSS split case only?, this will 1592 * cause skipped skbs due to advancing loop btw, original 1593 * has that feature too 1594 */ 1595 if (tcp_skb_pcount(skb) <= 1) 1596 goto noop; 1597 1598 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1599 if (!in_sack) { 1600 /* TODO: head merge to next could be attempted here 1601 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1602 * though it might not be worth of the additional hassle 1603 * 1604 * ...we can probably just fallback to what was done 1605 * previously. We could try merging non-SACKed ones 1606 * as well but it probably isn't going to buy off 1607 * because later SACKs might again split them, and 1608 * it would make skb timestamp tracking considerably 1609 * harder problem. 1610 */ 1611 goto fallback; 1612 } 1613 1614 len = end_seq - TCP_SKB_CB(skb)->seq; 1615 BUG_ON(len < 0); 1616 BUG_ON(len > skb->len); 1617 1618 /* MSS boundaries should be honoured or else pcount will 1619 * severely break even though it makes things bit trickier. 1620 * Optimize common case to avoid most of the divides 1621 */ 1622 mss = tcp_skb_mss(skb); 1623 1624 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1625 * drop this restriction as unnecessary 1626 */ 1627 if (mss != tcp_skb_seglen(prev)) 1628 goto fallback; 1629 1630 if (len == mss) { 1631 pcount = 1; 1632 } else if (len < mss) { 1633 goto noop; 1634 } else { 1635 pcount = len / mss; 1636 len = pcount * mss; 1637 } 1638 } 1639 1640 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1641 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1642 goto fallback; 1643 1644 if (!tcp_skb_shift(prev, skb, pcount, len)) 1645 goto fallback; 1646 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1647 goto out; 1648 1649 /* Hole filled allows collapsing with the next as well, this is very 1650 * useful when hole on every nth skb pattern happens 1651 */ 1652 skb = skb_rb_next(prev); 1653 if (!skb) 1654 goto out; 1655 1656 if (!skb_can_shift(skb) || 1657 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1658 (mss != tcp_skb_seglen(skb))) 1659 goto out; 1660 1661 if (!tcp_skb_can_collapse(prev, skb)) 1662 goto out; 1663 len = skb->len; 1664 pcount = tcp_skb_pcount(skb); 1665 if (tcp_skb_shift(prev, skb, pcount, len)) 1666 tcp_shifted_skb(sk, prev, skb, state, pcount, 1667 len, mss, 0); 1668 1669out: 1670 return prev; 1671 1672noop: 1673 return skb; 1674 1675fallback: 1676 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1677 return NULL; 1678} 1679 1680static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1681 struct tcp_sack_block *next_dup, 1682 struct tcp_sacktag_state *state, 1683 u32 start_seq, u32 end_seq, 1684 bool dup_sack_in) 1685{ 1686 struct tcp_sock *tp = tcp_sk(sk); 1687 struct sk_buff *tmp; 1688 1689 skb_rbtree_walk_from(skb) { 1690 int in_sack = 0; 1691 bool dup_sack = dup_sack_in; 1692 1693 /* queue is in-order => we can short-circuit the walk early */ 1694 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1695 break; 1696 1697 if (next_dup && 1698 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1699 in_sack = tcp_match_skb_to_sack(sk, skb, 1700 next_dup->start_seq, 1701 next_dup->end_seq); 1702 if (in_sack > 0) 1703 dup_sack = true; 1704 } 1705 1706 /* skb reference here is a bit tricky to get right, since 1707 * shifting can eat and free both this skb and the next, 1708 * so not even _safe variant of the loop is enough. 1709 */ 1710 if (in_sack <= 0) { 1711 tmp = tcp_shift_skb_data(sk, skb, state, 1712 start_seq, end_seq, dup_sack); 1713 if (tmp) { 1714 if (tmp != skb) { 1715 skb = tmp; 1716 continue; 1717 } 1718 1719 in_sack = 0; 1720 } else { 1721 in_sack = tcp_match_skb_to_sack(sk, skb, 1722 start_seq, 1723 end_seq); 1724 } 1725 } 1726 1727 if (unlikely(in_sack < 0)) 1728 break; 1729 1730 if (in_sack) { 1731 TCP_SKB_CB(skb)->sacked = 1732 tcp_sacktag_one(sk, 1733 state, 1734 TCP_SKB_CB(skb)->sacked, 1735 TCP_SKB_CB(skb)->seq, 1736 TCP_SKB_CB(skb)->end_seq, 1737 dup_sack, 1738 tcp_skb_pcount(skb), 1739 tcp_skb_timestamp_us(skb)); 1740 tcp_rate_skb_delivered(sk, skb, state->rate); 1741 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1742 list_del_init(&skb->tcp_tsorted_anchor); 1743 1744 if (!before(TCP_SKB_CB(skb)->seq, 1745 tcp_highest_sack_seq(tp))) 1746 tcp_advance_highest_sack(sk, skb); 1747 } 1748 } 1749 return skb; 1750} 1751 1752static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1753{ 1754 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1755 struct sk_buff *skb; 1756 1757 while (*p) { 1758 parent = *p; 1759 skb = rb_to_skb(parent); 1760 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1761 p = &parent->rb_left; 1762 continue; 1763 } 1764 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1765 p = &parent->rb_right; 1766 continue; 1767 } 1768 return skb; 1769 } 1770 return NULL; 1771} 1772 1773static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1774 u32 skip_to_seq) 1775{ 1776 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1777 return skb; 1778 1779 return tcp_sacktag_bsearch(sk, skip_to_seq); 1780} 1781 1782static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1783 struct sock *sk, 1784 struct tcp_sack_block *next_dup, 1785 struct tcp_sacktag_state *state, 1786 u32 skip_to_seq) 1787{ 1788 if (!next_dup) 1789 return skb; 1790 1791 if (before(next_dup->start_seq, skip_to_seq)) { 1792 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1793 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1794 next_dup->start_seq, next_dup->end_seq, 1795 1); 1796 } 1797 1798 return skb; 1799} 1800 1801static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1802{ 1803 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1804} 1805 1806static int 1807tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1808 u32 prior_snd_una, struct tcp_sacktag_state *state) 1809{ 1810 struct tcp_sock *tp = tcp_sk(sk); 1811 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1812 TCP_SKB_CB(ack_skb)->sacked); 1813 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1814 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1815 struct tcp_sack_block *cache; 1816 struct sk_buff *skb; 1817 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1818 int used_sacks; 1819 bool found_dup_sack = false; 1820 int i, j; 1821 int first_sack_index; 1822 1823 state->flag = 0; 1824 state->reord = tp->snd_nxt; 1825 1826 if (!tp->sacked_out) 1827 tcp_highest_sack_reset(sk); 1828 1829 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1830 num_sacks, prior_snd_una, state); 1831 1832 /* Eliminate too old ACKs, but take into 1833 * account more or less fresh ones, they can 1834 * contain valid SACK info. 1835 */ 1836 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1837 return 0; 1838 1839 if (!tp->packets_out) 1840 goto out; 1841 1842 used_sacks = 0; 1843 first_sack_index = 0; 1844 for (i = 0; i < num_sacks; i++) { 1845 bool dup_sack = !i && found_dup_sack; 1846 1847 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1848 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1849 1850 if (!tcp_is_sackblock_valid(tp, dup_sack, 1851 sp[used_sacks].start_seq, 1852 sp[used_sacks].end_seq)) { 1853 int mib_idx; 1854 1855 if (dup_sack) { 1856 if (!tp->undo_marker) 1857 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1858 else 1859 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1860 } else { 1861 /* Don't count olds caused by ACK reordering */ 1862 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1863 !after(sp[used_sacks].end_seq, tp->snd_una)) 1864 continue; 1865 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1866 } 1867 1868 NET_INC_STATS(sock_net(sk), mib_idx); 1869 if (i == 0) 1870 first_sack_index = -1; 1871 continue; 1872 } 1873 1874 /* Ignore very old stuff early */ 1875 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1876 if (i == 0) 1877 first_sack_index = -1; 1878 continue; 1879 } 1880 1881 used_sacks++; 1882 } 1883 1884 /* order SACK blocks to allow in order walk of the retrans queue */ 1885 for (i = used_sacks - 1; i > 0; i--) { 1886 for (j = 0; j < i; j++) { 1887 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1888 swap(sp[j], sp[j + 1]); 1889 1890 /* Track where the first SACK block goes to */ 1891 if (j == first_sack_index) 1892 first_sack_index = j + 1; 1893 } 1894 } 1895 } 1896 1897 state->mss_now = tcp_current_mss(sk); 1898 skb = NULL; 1899 i = 0; 1900 1901 if (!tp->sacked_out) { 1902 /* It's already past, so skip checking against it */ 1903 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1904 } else { 1905 cache = tp->recv_sack_cache; 1906 /* Skip empty blocks in at head of the cache */ 1907 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1908 !cache->end_seq) 1909 cache++; 1910 } 1911 1912 while (i < used_sacks) { 1913 u32 start_seq = sp[i].start_seq; 1914 u32 end_seq = sp[i].end_seq; 1915 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1916 struct tcp_sack_block *next_dup = NULL; 1917 1918 if (found_dup_sack && ((i + 1) == first_sack_index)) 1919 next_dup = &sp[i + 1]; 1920 1921 /* Skip too early cached blocks */ 1922 while (tcp_sack_cache_ok(tp, cache) && 1923 !before(start_seq, cache->end_seq)) 1924 cache++; 1925 1926 /* Can skip some work by looking recv_sack_cache? */ 1927 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1928 after(end_seq, cache->start_seq)) { 1929 1930 /* Head todo? */ 1931 if (before(start_seq, cache->start_seq)) { 1932 skb = tcp_sacktag_skip(skb, sk, start_seq); 1933 skb = tcp_sacktag_walk(skb, sk, next_dup, 1934 state, 1935 start_seq, 1936 cache->start_seq, 1937 dup_sack); 1938 } 1939 1940 /* Rest of the block already fully processed? */ 1941 if (!after(end_seq, cache->end_seq)) 1942 goto advance_sp; 1943 1944 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1945 state, 1946 cache->end_seq); 1947 1948 /* ...tail remains todo... */ 1949 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1950 /* ...but better entrypoint exists! */ 1951 skb = tcp_highest_sack(sk); 1952 if (!skb) 1953 break; 1954 cache++; 1955 goto walk; 1956 } 1957 1958 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1959 /* Check overlap against next cached too (past this one already) */ 1960 cache++; 1961 continue; 1962 } 1963 1964 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1965 skb = tcp_highest_sack(sk); 1966 if (!skb) 1967 break; 1968 } 1969 skb = tcp_sacktag_skip(skb, sk, start_seq); 1970 1971walk: 1972 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1973 start_seq, end_seq, dup_sack); 1974 1975advance_sp: 1976 i++; 1977 } 1978 1979 /* Clear the head of the cache sack blocks so we can skip it next time */ 1980 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1981 tp->recv_sack_cache[i].start_seq = 0; 1982 tp->recv_sack_cache[i].end_seq = 0; 1983 } 1984 for (j = 0; j < used_sacks; j++) 1985 tp->recv_sack_cache[i++] = sp[j]; 1986 1987 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1988 tcp_check_sack_reordering(sk, state->reord, 0); 1989 1990 tcp_verify_left_out(tp); 1991out: 1992 1993#if FASTRETRANS_DEBUG > 0 1994 WARN_ON((int)tp->sacked_out < 0); 1995 WARN_ON((int)tp->lost_out < 0); 1996 WARN_ON((int)tp->retrans_out < 0); 1997 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1998#endif 1999 return state->flag; 2000} 2001 2002/* Limits sacked_out so that sum with lost_out isn't ever larger than 2003 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2004 */ 2005static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2006{ 2007 u32 holes; 2008 2009 holes = max(tp->lost_out, 1U); 2010 holes = min(holes, tp->packets_out); 2011 2012 if ((tp->sacked_out + holes) > tp->packets_out) { 2013 tp->sacked_out = tp->packets_out - holes; 2014 return true; 2015 } 2016 return false; 2017} 2018 2019/* If we receive more dupacks than we expected counting segments 2020 * in assumption of absent reordering, interpret this as reordering. 2021 * The only another reason could be bug in receiver TCP. 2022 */ 2023static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2024{ 2025 struct tcp_sock *tp = tcp_sk(sk); 2026 2027 if (!tcp_limit_reno_sacked(tp)) 2028 return; 2029 2030 tp->reordering = min_t(u32, tp->packets_out + addend, 2031 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2032 tp->reord_seen++; 2033 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2034} 2035 2036/* Emulate SACKs for SACKless connection: account for a new dupack. */ 2037 2038static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2039{ 2040 if (num_dupack) { 2041 struct tcp_sock *tp = tcp_sk(sk); 2042 u32 prior_sacked = tp->sacked_out; 2043 s32 delivered; 2044 2045 tp->sacked_out += num_dupack; 2046 tcp_check_reno_reordering(sk, 0); 2047 delivered = tp->sacked_out - prior_sacked; 2048 if (delivered > 0) 2049 tcp_count_delivered(tp, delivered, ece_ack); 2050 tcp_verify_left_out(tp); 2051 } 2052} 2053 2054/* Account for ACK, ACKing some data in Reno Recovery phase. */ 2055 2056static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2057{ 2058 struct tcp_sock *tp = tcp_sk(sk); 2059 2060 if (acked > 0) { 2061 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2062 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2063 ece_ack); 2064 if (acked - 1 >= tp->sacked_out) 2065 tp->sacked_out = 0; 2066 else 2067 tp->sacked_out -= acked - 1; 2068 } 2069 tcp_check_reno_reordering(sk, acked); 2070 tcp_verify_left_out(tp); 2071} 2072 2073static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2074{ 2075 tp->sacked_out = 0; 2076} 2077 2078void tcp_clear_retrans(struct tcp_sock *tp) 2079{ 2080 tp->retrans_out = 0; 2081 tp->lost_out = 0; 2082 tp->undo_marker = 0; 2083 tp->undo_retrans = -1; 2084 tp->sacked_out = 0; 2085} 2086 2087static inline void tcp_init_undo(struct tcp_sock *tp) 2088{ 2089 tp->undo_marker = tp->snd_una; 2090 /* Retransmission still in flight may cause DSACKs later. */ 2091 tp->undo_retrans = tp->retrans_out ? : -1; 2092} 2093 2094static bool tcp_is_rack(const struct sock *sk) 2095{ 2096 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2097 TCP_RACK_LOSS_DETECTION; 2098} 2099 2100/* If we detect SACK reneging, forget all SACK information 2101 * and reset tags completely, otherwise preserve SACKs. If receiver 2102 * dropped its ofo queue, we will know this due to reneging detection. 2103 */ 2104static void tcp_timeout_mark_lost(struct sock *sk) 2105{ 2106 struct tcp_sock *tp = tcp_sk(sk); 2107 struct sk_buff *skb, *head; 2108 bool is_reneg; /* is receiver reneging on SACKs? */ 2109 2110 head = tcp_rtx_queue_head(sk); 2111 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2112 if (is_reneg) { 2113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2114 tp->sacked_out = 0; 2115 /* Mark SACK reneging until we recover from this loss event. */ 2116 tp->is_sack_reneg = 1; 2117 } else if (tcp_is_reno(tp)) { 2118 tcp_reset_reno_sack(tp); 2119 } 2120 2121 skb = head; 2122 skb_rbtree_walk_from(skb) { 2123 if (is_reneg) 2124 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2125 else if (tcp_is_rack(sk) && skb != head && 2126 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2127 continue; /* Don't mark recently sent ones lost yet */ 2128 tcp_mark_skb_lost(sk, skb); 2129 } 2130 tcp_verify_left_out(tp); 2131 tcp_clear_all_retrans_hints(tp); 2132} 2133 2134/* Enter Loss state. */ 2135void tcp_enter_loss(struct sock *sk) 2136{ 2137 const struct inet_connection_sock *icsk = inet_csk(sk); 2138 struct tcp_sock *tp = tcp_sk(sk); 2139 struct net *net = sock_net(sk); 2140 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2141 u8 reordering; 2142 2143 tcp_timeout_mark_lost(sk); 2144 2145 /* Reduce ssthresh if it has not yet been made inside this window. */ 2146 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2147 !after(tp->high_seq, tp->snd_una) || 2148 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2149 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2150 tp->prior_cwnd = tp->snd_cwnd; 2151 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2152 tcp_ca_event(sk, CA_EVENT_LOSS); 2153 tcp_init_undo(tp); 2154 } 2155 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2156 tp->snd_cwnd_cnt = 0; 2157 tp->snd_cwnd_stamp = tcp_jiffies32; 2158 2159 /* Timeout in disordered state after receiving substantial DUPACKs 2160 * suggests that the degree of reordering is over-estimated. 2161 */ 2162 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2163 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2164 tp->sacked_out >= reordering) 2165 tp->reordering = min_t(unsigned int, tp->reordering, 2166 reordering); 2167 2168 tcp_set_ca_state(sk, TCP_CA_Loss); 2169 tp->high_seq = tp->snd_nxt; 2170 tcp_ecn_queue_cwr(tp); 2171 2172 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2173 * loss recovery is underway except recurring timeout(s) on 2174 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2175 */ 2176 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2177 (new_recovery || icsk->icsk_retransmits) && 2178 !inet_csk(sk)->icsk_mtup.probe_size; 2179} 2180 2181/* If ACK arrived pointing to a remembered SACK, it means that our 2182 * remembered SACKs do not reflect real state of receiver i.e. 2183 * receiver _host_ is heavily congested (or buggy). 2184 * 2185 * To avoid big spurious retransmission bursts due to transient SACK 2186 * scoreboard oddities that look like reneging, we give the receiver a 2187 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2188 * restore sanity to the SACK scoreboard. If the apparent reneging 2189 * persists until this RTO then we'll clear the SACK scoreboard. 2190 */ 2191static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2192{ 2193 if (*ack_flag & FLAG_SACK_RENEGING && 2194 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2195 struct tcp_sock *tp = tcp_sk(sk); 2196 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2197 msecs_to_jiffies(10)); 2198 2199 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2200 delay, TCP_RTO_MAX); 2201 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2202 return true; 2203 } 2204 return false; 2205} 2206 2207/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2208 * counter when SACK is enabled (without SACK, sacked_out is used for 2209 * that purpose). 2210 * 2211 * With reordering, holes may still be in flight, so RFC3517 recovery 2212 * uses pure sacked_out (total number of SACKed segments) even though 2213 * it violates the RFC that uses duplicate ACKs, often these are equal 2214 * but when e.g. out-of-window ACKs or packet duplication occurs, 2215 * they differ. Since neither occurs due to loss, TCP should really 2216 * ignore them. 2217 */ 2218static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2219{ 2220 return tp->sacked_out + 1; 2221} 2222 2223/* Linux NewReno/SACK/ECN state machine. 2224 * -------------------------------------- 2225 * 2226 * "Open" Normal state, no dubious events, fast path. 2227 * "Disorder" In all the respects it is "Open", 2228 * but requires a bit more attention. It is entered when 2229 * we see some SACKs or dupacks. It is split of "Open" 2230 * mainly to move some processing from fast path to slow one. 2231 * "CWR" CWND was reduced due to some Congestion Notification event. 2232 * It can be ECN, ICMP source quench, local device congestion. 2233 * "Recovery" CWND was reduced, we are fast-retransmitting. 2234 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2235 * 2236 * tcp_fastretrans_alert() is entered: 2237 * - each incoming ACK, if state is not "Open" 2238 * - when arrived ACK is unusual, namely: 2239 * * SACK 2240 * * Duplicate ACK. 2241 * * ECN ECE. 2242 * 2243 * Counting packets in flight is pretty simple. 2244 * 2245 * in_flight = packets_out - left_out + retrans_out 2246 * 2247 * packets_out is SND.NXT-SND.UNA counted in packets. 2248 * 2249 * retrans_out is number of retransmitted segments. 2250 * 2251 * left_out is number of segments left network, but not ACKed yet. 2252 * 2253 * left_out = sacked_out + lost_out 2254 * 2255 * sacked_out: Packets, which arrived to receiver out of order 2256 * and hence not ACKed. With SACKs this number is simply 2257 * amount of SACKed data. Even without SACKs 2258 * it is easy to give pretty reliable estimate of this number, 2259 * counting duplicate ACKs. 2260 * 2261 * lost_out: Packets lost by network. TCP has no explicit 2262 * "loss notification" feedback from network (for now). 2263 * It means that this number can be only _guessed_. 2264 * Actually, it is the heuristics to predict lossage that 2265 * distinguishes different algorithms. 2266 * 2267 * F.e. after RTO, when all the queue is considered as lost, 2268 * lost_out = packets_out and in_flight = retrans_out. 2269 * 2270 * Essentially, we have now a few algorithms detecting 2271 * lost packets. 2272 * 2273 * If the receiver supports SACK: 2274 * 2275 * RFC6675/3517: It is the conventional algorithm. A packet is 2276 * considered lost if the number of higher sequence packets 2277 * SACKed is greater than or equal the DUPACK thoreshold 2278 * (reordering). This is implemented in tcp_mark_head_lost and 2279 * tcp_update_scoreboard. 2280 * 2281 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2282 * (2017-) that checks timing instead of counting DUPACKs. 2283 * Essentially a packet is considered lost if it's not S/ACKed 2284 * after RTT + reordering_window, where both metrics are 2285 * dynamically measured and adjusted. This is implemented in 2286 * tcp_rack_mark_lost. 2287 * 2288 * If the receiver does not support SACK: 2289 * 2290 * NewReno (RFC6582): in Recovery we assume that one segment 2291 * is lost (classic Reno). While we are in Recovery and 2292 * a partial ACK arrives, we assume that one more packet 2293 * is lost (NewReno). This heuristics are the same in NewReno 2294 * and SACK. 2295 * 2296 * Really tricky (and requiring careful tuning) part of algorithm 2297 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2298 * The first determines the moment _when_ we should reduce CWND and, 2299 * hence, slow down forward transmission. In fact, it determines the moment 2300 * when we decide that hole is caused by loss, rather than by a reorder. 2301 * 2302 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2303 * holes, caused by lost packets. 2304 * 2305 * And the most logically complicated part of algorithm is undo 2306 * heuristics. We detect false retransmits due to both too early 2307 * fast retransmit (reordering) and underestimated RTO, analyzing 2308 * timestamps and D-SACKs. When we detect that some segments were 2309 * retransmitted by mistake and CWND reduction was wrong, we undo 2310 * window reduction and abort recovery phase. This logic is hidden 2311 * inside several functions named tcp_try_undo_<something>. 2312 */ 2313 2314/* This function decides, when we should leave Disordered state 2315 * and enter Recovery phase, reducing congestion window. 2316 * 2317 * Main question: may we further continue forward transmission 2318 * with the same cwnd? 2319 */ 2320static bool tcp_time_to_recover(struct sock *sk, int flag) 2321{ 2322 struct tcp_sock *tp = tcp_sk(sk); 2323 2324 /* Trick#1: The loss is proven. */ 2325 if (tp->lost_out) 2326 return true; 2327 2328 /* Not-A-Trick#2 : Classic rule... */ 2329 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2330 return true; 2331 2332 return false; 2333} 2334 2335/* Detect loss in event "A" above by marking head of queue up as lost. 2336 * For RFC3517 SACK, a segment is considered lost if it 2337 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2338 * the maximum SACKed segments to pass before reaching this limit. 2339 */ 2340static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2341{ 2342 struct tcp_sock *tp = tcp_sk(sk); 2343 struct sk_buff *skb; 2344 int cnt; 2345 /* Use SACK to deduce losses of new sequences sent during recovery */ 2346 const u32 loss_high = tp->snd_nxt; 2347 2348 WARN_ON(packets > tp->packets_out); 2349 skb = tp->lost_skb_hint; 2350 if (skb) { 2351 /* Head already handled? */ 2352 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2353 return; 2354 cnt = tp->lost_cnt_hint; 2355 } else { 2356 skb = tcp_rtx_queue_head(sk); 2357 cnt = 0; 2358 } 2359 2360 skb_rbtree_walk_from(skb) { 2361 /* TODO: do this better */ 2362 /* this is not the most efficient way to do this... */ 2363 tp->lost_skb_hint = skb; 2364 tp->lost_cnt_hint = cnt; 2365 2366 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2367 break; 2368 2369 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2370 cnt += tcp_skb_pcount(skb); 2371 2372 if (cnt > packets) 2373 break; 2374 2375 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2376 tcp_mark_skb_lost(sk, skb); 2377 2378 if (mark_head) 2379 break; 2380 } 2381 tcp_verify_left_out(tp); 2382} 2383 2384/* Account newly detected lost packet(s) */ 2385 2386static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2387{ 2388 struct tcp_sock *tp = tcp_sk(sk); 2389 2390 if (tcp_is_sack(tp)) { 2391 int sacked_upto = tp->sacked_out - tp->reordering; 2392 if (sacked_upto >= 0) 2393 tcp_mark_head_lost(sk, sacked_upto, 0); 2394 else if (fast_rexmit) 2395 tcp_mark_head_lost(sk, 1, 1); 2396 } 2397} 2398 2399static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2400{ 2401 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2402 before(tp->rx_opt.rcv_tsecr, when); 2403} 2404 2405/* skb is spurious retransmitted if the returned timestamp echo 2406 * reply is prior to the skb transmission time 2407 */ 2408static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2409 const struct sk_buff *skb) 2410{ 2411 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2412 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2413} 2414 2415/* Nothing was retransmitted or returned timestamp is less 2416 * than timestamp of the first retransmission. 2417 */ 2418static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2419{ 2420 return tp->retrans_stamp && 2421 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2422} 2423 2424/* Undo procedures. */ 2425 2426/* We can clear retrans_stamp when there are no retransmissions in the 2427 * window. It would seem that it is trivially available for us in 2428 * tp->retrans_out, however, that kind of assumptions doesn't consider 2429 * what will happen if errors occur when sending retransmission for the 2430 * second time. ...It could the that such segment has only 2431 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2432 * the head skb is enough except for some reneging corner cases that 2433 * are not worth the effort. 2434 * 2435 * Main reason for all this complexity is the fact that connection dying 2436 * time now depends on the validity of the retrans_stamp, in particular, 2437 * that successive retransmissions of a segment must not advance 2438 * retrans_stamp under any conditions. 2439 */ 2440static bool tcp_any_retrans_done(const struct sock *sk) 2441{ 2442 const struct tcp_sock *tp = tcp_sk(sk); 2443 struct sk_buff *skb; 2444 2445 if (tp->retrans_out) 2446 return true; 2447 2448 skb = tcp_rtx_queue_head(sk); 2449 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2450 return true; 2451 2452 return false; 2453} 2454 2455static void DBGUNDO(struct sock *sk, const char *msg) 2456{ 2457#if FASTRETRANS_DEBUG > 1 2458 struct tcp_sock *tp = tcp_sk(sk); 2459 struct inet_sock *inet = inet_sk(sk); 2460 2461 if (sk->sk_family == AF_INET) { 2462 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2463 msg, 2464 &inet->inet_daddr, ntohs(inet->inet_dport), 2465 tp->snd_cwnd, tcp_left_out(tp), 2466 tp->snd_ssthresh, tp->prior_ssthresh, 2467 tp->packets_out); 2468 } 2469#if IS_ENABLED(CONFIG_IPV6) 2470 else if (sk->sk_family == AF_INET6) { 2471 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2472 msg, 2473 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2474 tp->snd_cwnd, tcp_left_out(tp), 2475 tp->snd_ssthresh, tp->prior_ssthresh, 2476 tp->packets_out); 2477 } 2478#endif 2479#endif 2480} 2481 2482static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2483{ 2484 struct tcp_sock *tp = tcp_sk(sk); 2485 2486 if (unmark_loss) { 2487 struct sk_buff *skb; 2488 2489 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2490 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2491 } 2492 tp->lost_out = 0; 2493 tcp_clear_all_retrans_hints(tp); 2494 } 2495 2496 if (tp->prior_ssthresh) { 2497 const struct inet_connection_sock *icsk = inet_csk(sk); 2498 2499 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2500 2501 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2502 tp->snd_ssthresh = tp->prior_ssthresh; 2503 tcp_ecn_withdraw_cwr(tp); 2504 } 2505 } 2506 tp->snd_cwnd_stamp = tcp_jiffies32; 2507 tp->undo_marker = 0; 2508 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2509} 2510 2511static inline bool tcp_may_undo(const struct tcp_sock *tp) 2512{ 2513 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2514} 2515 2516static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2517{ 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2521 /* Hold old state until something *above* high_seq 2522 * is ACKed. For Reno it is MUST to prevent false 2523 * fast retransmits (RFC2582). SACK TCP is safe. */ 2524 if (!tcp_any_retrans_done(sk)) 2525 tp->retrans_stamp = 0; 2526 return true; 2527 } 2528 return false; 2529} 2530 2531/* People celebrate: "We love our President!" */ 2532static bool tcp_try_undo_recovery(struct sock *sk) 2533{ 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 2536 if (tcp_may_undo(tp)) { 2537 int mib_idx; 2538 2539 /* Happy end! We did not retransmit anything 2540 * or our original transmission succeeded. 2541 */ 2542 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2543 tcp_undo_cwnd_reduction(sk, false); 2544 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2545 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2546 else 2547 mib_idx = LINUX_MIB_TCPFULLUNDO; 2548 2549 NET_INC_STATS(sock_net(sk), mib_idx); 2550 } else if (tp->rack.reo_wnd_persist) { 2551 tp->rack.reo_wnd_persist--; 2552 } 2553 if (tcp_is_non_sack_preventing_reopen(sk)) 2554 return true; 2555 tcp_set_ca_state(sk, TCP_CA_Open); 2556 tp->is_sack_reneg = 0; 2557 return false; 2558} 2559 2560/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2561static bool tcp_try_undo_dsack(struct sock *sk) 2562{ 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 2565 if (tp->undo_marker && !tp->undo_retrans) { 2566 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2567 tp->rack.reo_wnd_persist + 1); 2568 DBGUNDO(sk, "D-SACK"); 2569 tcp_undo_cwnd_reduction(sk, false); 2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2571 return true; 2572 } 2573 return false; 2574} 2575 2576/* Undo during loss recovery after partial ACK or using F-RTO. */ 2577static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2578{ 2579 struct tcp_sock *tp = tcp_sk(sk); 2580 2581 if (frto_undo || tcp_may_undo(tp)) { 2582 tcp_undo_cwnd_reduction(sk, true); 2583 2584 DBGUNDO(sk, "partial loss"); 2585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2586 if (frto_undo) 2587 NET_INC_STATS(sock_net(sk), 2588 LINUX_MIB_TCPSPURIOUSRTOS); 2589 inet_csk(sk)->icsk_retransmits = 0; 2590 if (tcp_is_non_sack_preventing_reopen(sk)) 2591 return true; 2592 if (frto_undo || tcp_is_sack(tp)) { 2593 tcp_set_ca_state(sk, TCP_CA_Open); 2594 tp->is_sack_reneg = 0; 2595 } 2596 return true; 2597 } 2598 return false; 2599} 2600 2601/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2602 * It computes the number of packets to send (sndcnt) based on packets newly 2603 * delivered: 2604 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2605 * cwnd reductions across a full RTT. 2606 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2607 * But when the retransmits are acked without further losses, PRR 2608 * slow starts cwnd up to ssthresh to speed up the recovery. 2609 */ 2610static void tcp_init_cwnd_reduction(struct sock *sk) 2611{ 2612 struct tcp_sock *tp = tcp_sk(sk); 2613 2614 tp->high_seq = tp->snd_nxt; 2615 tp->tlp_high_seq = 0; 2616 tp->snd_cwnd_cnt = 0; 2617 tp->prior_cwnd = tp->snd_cwnd; 2618 tp->prr_delivered = 0; 2619 tp->prr_out = 0; 2620 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2621 tcp_ecn_queue_cwr(tp); 2622} 2623 2624void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2625{ 2626 struct tcp_sock *tp = tcp_sk(sk); 2627 int sndcnt = 0; 2628 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2629 2630 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2631 return; 2632 2633 tp->prr_delivered += newly_acked_sacked; 2634 if (delta < 0) { 2635 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2636 tp->prior_cwnd - 1; 2637 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2638 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2639 FLAG_RETRANS_DATA_ACKED) { 2640 sndcnt = min_t(int, delta, 2641 max_t(int, tp->prr_delivered - tp->prr_out, 2642 newly_acked_sacked) + 1); 2643 } else { 2644 sndcnt = min(delta, newly_acked_sacked); 2645 } 2646 /* Force a fast retransmit upon entering fast recovery */ 2647 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2648 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2649} 2650 2651static inline void tcp_end_cwnd_reduction(struct sock *sk) 2652{ 2653 struct tcp_sock *tp = tcp_sk(sk); 2654 2655 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2656 return; 2657 2658 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2659 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2660 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2661 tp->snd_cwnd = tp->snd_ssthresh; 2662 tp->snd_cwnd_stamp = tcp_jiffies32; 2663 } 2664 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2665} 2666 2667/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2668void tcp_enter_cwr(struct sock *sk) 2669{ 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 2672 tp->prior_ssthresh = 0; 2673 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2674 tp->undo_marker = 0; 2675 tcp_init_cwnd_reduction(sk); 2676 tcp_set_ca_state(sk, TCP_CA_CWR); 2677 } 2678} 2679EXPORT_SYMBOL(tcp_enter_cwr); 2680 2681static void tcp_try_keep_open(struct sock *sk) 2682{ 2683 struct tcp_sock *tp = tcp_sk(sk); 2684 int state = TCP_CA_Open; 2685 2686 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2687 state = TCP_CA_Disorder; 2688 2689 if (inet_csk(sk)->icsk_ca_state != state) { 2690 tcp_set_ca_state(sk, state); 2691 tp->high_seq = tp->snd_nxt; 2692 } 2693} 2694 2695static void tcp_try_to_open(struct sock *sk, int flag) 2696{ 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 2699 tcp_verify_left_out(tp); 2700 2701 if (!tcp_any_retrans_done(sk)) 2702 tp->retrans_stamp = 0; 2703 2704 if (flag & FLAG_ECE) 2705 tcp_enter_cwr(sk); 2706 2707 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2708 tcp_try_keep_open(sk); 2709 } 2710} 2711 2712static void tcp_mtup_probe_failed(struct sock *sk) 2713{ 2714 struct inet_connection_sock *icsk = inet_csk(sk); 2715 2716 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2717 icsk->icsk_mtup.probe_size = 0; 2718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2719} 2720 2721static void tcp_mtup_probe_success(struct sock *sk) 2722{ 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 struct inet_connection_sock *icsk = inet_csk(sk); 2725 u64 val; 2726 2727 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2728 2729 val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache); 2730 do_div(val, icsk->icsk_mtup.probe_size); 2731 WARN_ON_ONCE((u32)val != val); 2732 tp->snd_cwnd = max_t(u32, 1U, val); 2733 2734 tp->snd_cwnd_cnt = 0; 2735 tp->snd_cwnd_stamp = tcp_jiffies32; 2736 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2737 2738 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2739 icsk->icsk_mtup.probe_size = 0; 2740 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2742} 2743 2744/* Do a simple retransmit without using the backoff mechanisms in 2745 * tcp_timer. This is used for path mtu discovery. 2746 * The socket is already locked here. 2747 */ 2748void tcp_simple_retransmit(struct sock *sk) 2749{ 2750 const struct inet_connection_sock *icsk = inet_csk(sk); 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 struct sk_buff *skb; 2753 unsigned int mss = tcp_current_mss(sk); 2754 2755 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2756 if (tcp_skb_seglen(skb) > mss) 2757 tcp_mark_skb_lost(sk, skb); 2758 } 2759 2760 tcp_clear_retrans_hints_partial(tp); 2761 2762 if (!tp->lost_out) 2763 return; 2764 2765 if (tcp_is_reno(tp)) 2766 tcp_limit_reno_sacked(tp); 2767 2768 tcp_verify_left_out(tp); 2769 2770 /* Don't muck with the congestion window here. 2771 * Reason is that we do not increase amount of _data_ 2772 * in network, but units changed and effective 2773 * cwnd/ssthresh really reduced now. 2774 */ 2775 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2776 tp->high_seq = tp->snd_nxt; 2777 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2778 tp->prior_ssthresh = 0; 2779 tp->undo_marker = 0; 2780 tcp_set_ca_state(sk, TCP_CA_Loss); 2781 } 2782 tcp_xmit_retransmit_queue(sk); 2783} 2784EXPORT_SYMBOL(tcp_simple_retransmit); 2785 2786void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2787{ 2788 struct tcp_sock *tp = tcp_sk(sk); 2789 int mib_idx; 2790 2791 if (tcp_is_reno(tp)) 2792 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2793 else 2794 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2795 2796 NET_INC_STATS(sock_net(sk), mib_idx); 2797 2798 tp->prior_ssthresh = 0; 2799 tcp_init_undo(tp); 2800 2801 if (!tcp_in_cwnd_reduction(sk)) { 2802 if (!ece_ack) 2803 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2804 tcp_init_cwnd_reduction(sk); 2805 } 2806 tcp_set_ca_state(sk, TCP_CA_Recovery); 2807} 2808 2809/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2810 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2811 */ 2812static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2813 int *rexmit) 2814{ 2815 struct tcp_sock *tp = tcp_sk(sk); 2816 bool recovered = !before(tp->snd_una, tp->high_seq); 2817 2818 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2819 tcp_try_undo_loss(sk, false)) 2820 return; 2821 2822 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2823 /* Step 3.b. A timeout is spurious if not all data are 2824 * lost, i.e., never-retransmitted data are (s)acked. 2825 */ 2826 if ((flag & FLAG_ORIG_SACK_ACKED) && 2827 tcp_try_undo_loss(sk, true)) 2828 return; 2829 2830 if (after(tp->snd_nxt, tp->high_seq)) { 2831 if (flag & FLAG_DATA_SACKED || num_dupack) 2832 tp->frto = 0; /* Step 3.a. loss was real */ 2833 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2834 tp->high_seq = tp->snd_nxt; 2835 /* Step 2.b. Try send new data (but deferred until cwnd 2836 * is updated in tcp_ack()). Otherwise fall back to 2837 * the conventional recovery. 2838 */ 2839 if (!tcp_write_queue_empty(sk) && 2840 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2841 *rexmit = REXMIT_NEW; 2842 return; 2843 } 2844 tp->frto = 0; 2845 } 2846 } 2847 2848 if (recovered) { 2849 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2850 tcp_try_undo_recovery(sk); 2851 return; 2852 } 2853 if (tcp_is_reno(tp)) { 2854 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2855 * delivered. Lower inflight to clock out (re)tranmissions. 2856 */ 2857 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2858 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2859 else if (flag & FLAG_SND_UNA_ADVANCED) 2860 tcp_reset_reno_sack(tp); 2861 } 2862 *rexmit = REXMIT_LOST; 2863} 2864 2865static bool tcp_force_fast_retransmit(struct sock *sk) 2866{ 2867 struct tcp_sock *tp = tcp_sk(sk); 2868 2869 return after(tcp_highest_sack_seq(tp), 2870 tp->snd_una + tp->reordering * tp->mss_cache); 2871} 2872 2873/* Undo during fast recovery after partial ACK. */ 2874static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2875 bool *do_lost) 2876{ 2877 struct tcp_sock *tp = tcp_sk(sk); 2878 2879 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2880 /* Plain luck! Hole if filled with delayed 2881 * packet, rather than with a retransmit. Check reordering. 2882 */ 2883 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2884 2885 /* We are getting evidence that the reordering degree is higher 2886 * than we realized. If there are no retransmits out then we 2887 * can undo. Otherwise we clock out new packets but do not 2888 * mark more packets lost or retransmit more. 2889 */ 2890 if (tp->retrans_out) 2891 return true; 2892 2893 if (!tcp_any_retrans_done(sk)) 2894 tp->retrans_stamp = 0; 2895 2896 DBGUNDO(sk, "partial recovery"); 2897 tcp_undo_cwnd_reduction(sk, true); 2898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2899 tcp_try_keep_open(sk); 2900 } else { 2901 /* Partial ACK arrived. Force fast retransmit. */ 2902 *do_lost = tcp_force_fast_retransmit(sk); 2903 } 2904 return false; 2905} 2906 2907static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2908{ 2909 struct tcp_sock *tp = tcp_sk(sk); 2910 2911 if (tcp_rtx_queue_empty(sk)) 2912 return; 2913 2914 if (unlikely(tcp_is_reno(tp))) { 2915 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2916 } else if (tcp_is_rack(sk)) { 2917 u32 prior_retrans = tp->retrans_out; 2918 2919 if (tcp_rack_mark_lost(sk)) 2920 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2921 if (prior_retrans > tp->retrans_out) 2922 *ack_flag |= FLAG_LOST_RETRANS; 2923 } 2924} 2925 2926/* Process an event, which can update packets-in-flight not trivially. 2927 * Main goal of this function is to calculate new estimate for left_out, 2928 * taking into account both packets sitting in receiver's buffer and 2929 * packets lost by network. 2930 * 2931 * Besides that it updates the congestion state when packet loss or ECN 2932 * is detected. But it does not reduce the cwnd, it is done by the 2933 * congestion control later. 2934 * 2935 * It does _not_ decide what to send, it is made in function 2936 * tcp_xmit_retransmit_queue(). 2937 */ 2938static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2939 int num_dupack, int *ack_flag, int *rexmit) 2940{ 2941 struct inet_connection_sock *icsk = inet_csk(sk); 2942 struct tcp_sock *tp = tcp_sk(sk); 2943 int fast_rexmit = 0, flag = *ack_flag; 2944 bool ece_ack = flag & FLAG_ECE; 2945 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2946 tcp_force_fast_retransmit(sk)); 2947 2948 if (!tp->packets_out && tp->sacked_out) 2949 tp->sacked_out = 0; 2950 2951 /* Now state machine starts. 2952 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2953 if (ece_ack) 2954 tp->prior_ssthresh = 0; 2955 2956 /* B. In all the states check for reneging SACKs. */ 2957 if (tcp_check_sack_reneging(sk, ack_flag)) 2958 return; 2959 2960 /* C. Check consistency of the current state. */ 2961 tcp_verify_left_out(tp); 2962 2963 /* D. Check state exit conditions. State can be terminated 2964 * when high_seq is ACKed. */ 2965 if (icsk->icsk_ca_state == TCP_CA_Open) { 2966 WARN_ON(tp->retrans_out != 0); 2967 tp->retrans_stamp = 0; 2968 } else if (!before(tp->snd_una, tp->high_seq)) { 2969 switch (icsk->icsk_ca_state) { 2970 case TCP_CA_CWR: 2971 /* CWR is to be held something *above* high_seq 2972 * is ACKed for CWR bit to reach receiver. */ 2973 if (tp->snd_una != tp->high_seq) { 2974 tcp_end_cwnd_reduction(sk); 2975 tcp_set_ca_state(sk, TCP_CA_Open); 2976 } 2977 break; 2978 2979 case TCP_CA_Recovery: 2980 if (tcp_is_reno(tp)) 2981 tcp_reset_reno_sack(tp); 2982 if (tcp_try_undo_recovery(sk)) 2983 return; 2984 tcp_end_cwnd_reduction(sk); 2985 break; 2986 } 2987 } 2988 2989 /* E. Process state. */ 2990 switch (icsk->icsk_ca_state) { 2991 case TCP_CA_Recovery: 2992 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2993 if (tcp_is_reno(tp)) 2994 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2995 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 2996 return; 2997 2998 if (tcp_try_undo_dsack(sk)) 2999 tcp_try_keep_open(sk); 3000 3001 tcp_identify_packet_loss(sk, ack_flag); 3002 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3003 if (!tcp_time_to_recover(sk, flag)) 3004 return; 3005 /* Undo reverts the recovery state. If loss is evident, 3006 * starts a new recovery (e.g. reordering then loss); 3007 */ 3008 tcp_enter_recovery(sk, ece_ack); 3009 } 3010 break; 3011 case TCP_CA_Loss: 3012 tcp_process_loss(sk, flag, num_dupack, rexmit); 3013 tcp_identify_packet_loss(sk, ack_flag); 3014 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3015 (*ack_flag & FLAG_LOST_RETRANS))) 3016 return; 3017 /* Change state if cwnd is undone or retransmits are lost */ 3018 fallthrough; 3019 default: 3020 if (tcp_is_reno(tp)) { 3021 if (flag & FLAG_SND_UNA_ADVANCED) 3022 tcp_reset_reno_sack(tp); 3023 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3024 } 3025 3026 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3027 tcp_try_undo_dsack(sk); 3028 3029 tcp_identify_packet_loss(sk, ack_flag); 3030 if (!tcp_time_to_recover(sk, flag)) { 3031 tcp_try_to_open(sk, flag); 3032 return; 3033 } 3034 3035 /* MTU probe failure: don't reduce cwnd */ 3036 if (icsk->icsk_ca_state < TCP_CA_CWR && 3037 icsk->icsk_mtup.probe_size && 3038 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3039 tcp_mtup_probe_failed(sk); 3040 /* Restores the reduction we did in tcp_mtup_probe() */ 3041 tp->snd_cwnd++; 3042 tcp_simple_retransmit(sk); 3043 return; 3044 } 3045 3046 /* Otherwise enter Recovery state */ 3047 tcp_enter_recovery(sk, ece_ack); 3048 fast_rexmit = 1; 3049 } 3050 3051 if (!tcp_is_rack(sk) && do_lost) 3052 tcp_update_scoreboard(sk, fast_rexmit); 3053 *rexmit = REXMIT_LOST; 3054} 3055 3056static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3057{ 3058 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3059 struct tcp_sock *tp = tcp_sk(sk); 3060 3061 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3062 /* If the remote keeps returning delayed ACKs, eventually 3063 * the min filter would pick it up and overestimate the 3064 * prop. delay when it expires. Skip suspected delayed ACKs. 3065 */ 3066 return; 3067 } 3068 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3069 rtt_us ? : jiffies_to_usecs(1)); 3070} 3071 3072static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3073 long seq_rtt_us, long sack_rtt_us, 3074 long ca_rtt_us, struct rate_sample *rs) 3075{ 3076 const struct tcp_sock *tp = tcp_sk(sk); 3077 3078 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3079 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3080 * Karn's algorithm forbids taking RTT if some retransmitted data 3081 * is acked (RFC6298). 3082 */ 3083 if (seq_rtt_us < 0) 3084 seq_rtt_us = sack_rtt_us; 3085 3086 /* RTTM Rule: A TSecr value received in a segment is used to 3087 * update the averaged RTT measurement only if the segment 3088 * acknowledges some new data, i.e., only if it advances the 3089 * left edge of the send window. 3090 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3091 */ 3092 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3093 flag & FLAG_ACKED) { 3094 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3095 3096 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3097 if (!delta) 3098 delta = 1; 3099 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3100 ca_rtt_us = seq_rtt_us; 3101 } 3102 } 3103 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3104 if (seq_rtt_us < 0) 3105 return false; 3106 3107 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3108 * always taken together with ACK, SACK, or TS-opts. Any negative 3109 * values will be skipped with the seq_rtt_us < 0 check above. 3110 */ 3111 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3112 tcp_rtt_estimator(sk, seq_rtt_us); 3113 tcp_set_rto(sk); 3114 3115 /* RFC6298: only reset backoff on valid RTT measurement. */ 3116 inet_csk(sk)->icsk_backoff = 0; 3117 return true; 3118} 3119 3120/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3121void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3122{ 3123 struct rate_sample rs; 3124 long rtt_us = -1L; 3125 3126 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3127 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3128 3129 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3130} 3131 3132 3133static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3134{ 3135 const struct inet_connection_sock *icsk = inet_csk(sk); 3136 3137 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3138 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3139} 3140 3141/* Restart timer after forward progress on connection. 3142 * RFC2988 recommends to restart timer to now+rto. 3143 */ 3144void tcp_rearm_rto(struct sock *sk) 3145{ 3146 const struct inet_connection_sock *icsk = inet_csk(sk); 3147 struct tcp_sock *tp = tcp_sk(sk); 3148 3149 /* If the retrans timer is currently being used by Fast Open 3150 * for SYN-ACK retrans purpose, stay put. 3151 */ 3152 if (rcu_access_pointer(tp->fastopen_rsk)) 3153 return; 3154 3155 if (!tp->packets_out) { 3156 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3157 } else { 3158 u32 rto = inet_csk(sk)->icsk_rto; 3159 /* Offset the time elapsed after installing regular RTO */ 3160 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3161 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3162 s64 delta_us = tcp_rto_delta_us(sk); 3163 /* delta_us may not be positive if the socket is locked 3164 * when the retrans timer fires and is rescheduled. 3165 */ 3166 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3167 } 3168 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3169 TCP_RTO_MAX); 3170 } 3171} 3172 3173/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3174static void tcp_set_xmit_timer(struct sock *sk) 3175{ 3176 if (!tcp_schedule_loss_probe(sk, true)) 3177 tcp_rearm_rto(sk); 3178} 3179 3180/* If we get here, the whole TSO packet has not been acked. */ 3181static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3182{ 3183 struct tcp_sock *tp = tcp_sk(sk); 3184 u32 packets_acked; 3185 3186 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3187 3188 packets_acked = tcp_skb_pcount(skb); 3189 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3190 return 0; 3191 packets_acked -= tcp_skb_pcount(skb); 3192 3193 if (packets_acked) { 3194 BUG_ON(tcp_skb_pcount(skb) == 0); 3195 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3196 } 3197 3198 return packets_acked; 3199} 3200 3201static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3202 u32 prior_snd_una) 3203{ 3204 const struct skb_shared_info *shinfo; 3205 3206 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3207 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3208 return; 3209 3210 shinfo = skb_shinfo(skb); 3211 if (!before(shinfo->tskey, prior_snd_una) && 3212 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3213 tcp_skb_tsorted_save(skb) { 3214 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3215 } tcp_skb_tsorted_restore(skb); 3216 } 3217} 3218 3219/* Remove acknowledged frames from the retransmission queue. If our packet 3220 * is before the ack sequence we can discard it as it's confirmed to have 3221 * arrived at the other end. 3222 */ 3223static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3224 u32 prior_snd_una, 3225 struct tcp_sacktag_state *sack, bool ece_ack) 3226{ 3227 const struct inet_connection_sock *icsk = inet_csk(sk); 3228 u64 first_ackt, last_ackt; 3229 struct tcp_sock *tp = tcp_sk(sk); 3230 u32 prior_sacked = tp->sacked_out; 3231 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3232 struct sk_buff *skb, *next; 3233 bool fully_acked = true; 3234 long sack_rtt_us = -1L; 3235 long seq_rtt_us = -1L; 3236 long ca_rtt_us = -1L; 3237 u32 pkts_acked = 0; 3238 u32 last_in_flight = 0; 3239 bool rtt_update; 3240 int flag = 0; 3241 3242 first_ackt = 0; 3243 3244 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3245 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3246 const u32 start_seq = scb->seq; 3247 u8 sacked = scb->sacked; 3248 u32 acked_pcount; 3249 3250 /* Determine how many packets and what bytes were acked, tso and else */ 3251 if (after(scb->end_seq, tp->snd_una)) { 3252 if (tcp_skb_pcount(skb) == 1 || 3253 !after(tp->snd_una, scb->seq)) 3254 break; 3255 3256 acked_pcount = tcp_tso_acked(sk, skb); 3257 if (!acked_pcount) 3258 break; 3259 fully_acked = false; 3260 } else { 3261 acked_pcount = tcp_skb_pcount(skb); 3262 } 3263 3264 if (unlikely(sacked & TCPCB_RETRANS)) { 3265 if (sacked & TCPCB_SACKED_RETRANS) 3266 tp->retrans_out -= acked_pcount; 3267 flag |= FLAG_RETRANS_DATA_ACKED; 3268 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3269 last_ackt = tcp_skb_timestamp_us(skb); 3270 WARN_ON_ONCE(last_ackt == 0); 3271 if (!first_ackt) 3272 first_ackt = last_ackt; 3273 3274 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3275 if (before(start_seq, reord)) 3276 reord = start_seq; 3277 if (!after(scb->end_seq, tp->high_seq)) 3278 flag |= FLAG_ORIG_SACK_ACKED; 3279 } 3280 3281 if (sacked & TCPCB_SACKED_ACKED) { 3282 tp->sacked_out -= acked_pcount; 3283 } else if (tcp_is_sack(tp)) { 3284 tcp_count_delivered(tp, acked_pcount, ece_ack); 3285 if (!tcp_skb_spurious_retrans(tp, skb)) 3286 tcp_rack_advance(tp, sacked, scb->end_seq, 3287 tcp_skb_timestamp_us(skb)); 3288 } 3289 if (sacked & TCPCB_LOST) 3290 tp->lost_out -= acked_pcount; 3291 3292 tp->packets_out -= acked_pcount; 3293 pkts_acked += acked_pcount; 3294 tcp_rate_skb_delivered(sk, skb, sack->rate); 3295 3296 /* Initial outgoing SYN's get put onto the write_queue 3297 * just like anything else we transmit. It is not 3298 * true data, and if we misinform our callers that 3299 * this ACK acks real data, we will erroneously exit 3300 * connection startup slow start one packet too 3301 * quickly. This is severely frowned upon behavior. 3302 */ 3303 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3304 flag |= FLAG_DATA_ACKED; 3305 } else { 3306 flag |= FLAG_SYN_ACKED; 3307 tp->retrans_stamp = 0; 3308 } 3309 3310 if (!fully_acked) 3311 break; 3312 3313 tcp_ack_tstamp(sk, skb, prior_snd_una); 3314 3315 next = skb_rb_next(skb); 3316 if (unlikely(skb == tp->retransmit_skb_hint)) 3317 tp->retransmit_skb_hint = NULL; 3318 if (unlikely(skb == tp->lost_skb_hint)) 3319 tp->lost_skb_hint = NULL; 3320 tcp_highest_sack_replace(sk, skb, next); 3321 tcp_rtx_queue_unlink_and_free(skb, sk); 3322 } 3323 3324 if (!skb) 3325 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3326 3327 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3328 tp->snd_up = tp->snd_una; 3329 3330 if (skb) { 3331 tcp_ack_tstamp(sk, skb, prior_snd_una); 3332 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3333 flag |= FLAG_SACK_RENEGING; 3334 } 3335 3336 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3337 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3338 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3339 3340 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3341 last_in_flight && !prior_sacked && fully_acked && 3342 sack->rate->prior_delivered + 1 == tp->delivered && 3343 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3344 /* Conservatively mark a delayed ACK. It's typically 3345 * from a lone runt packet over the round trip to 3346 * a receiver w/o out-of-order or CE events. 3347 */ 3348 flag |= FLAG_ACK_MAYBE_DELAYED; 3349 } 3350 } 3351 if (sack->first_sackt) { 3352 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3353 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3354 } 3355 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3356 ca_rtt_us, sack->rate); 3357 3358 if (flag & FLAG_ACKED) { 3359 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3360 if (unlikely(icsk->icsk_mtup.probe_size && 3361 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3362 tcp_mtup_probe_success(sk); 3363 } 3364 3365 if (tcp_is_reno(tp)) { 3366 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3367 3368 /* If any of the cumulatively ACKed segments was 3369 * retransmitted, non-SACK case cannot confirm that 3370 * progress was due to original transmission due to 3371 * lack of TCPCB_SACKED_ACKED bits even if some of 3372 * the packets may have been never retransmitted. 3373 */ 3374 if (flag & FLAG_RETRANS_DATA_ACKED) 3375 flag &= ~FLAG_ORIG_SACK_ACKED; 3376 } else { 3377 int delta; 3378 3379 /* Non-retransmitted hole got filled? That's reordering */ 3380 if (before(reord, prior_fack)) 3381 tcp_check_sack_reordering(sk, reord, 0); 3382 3383 delta = prior_sacked - tp->sacked_out; 3384 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3385 } 3386 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3387 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3388 tcp_skb_timestamp_us(skb))) { 3389 /* Do not re-arm RTO if the sack RTT is measured from data sent 3390 * after when the head was last (re)transmitted. Otherwise the 3391 * timeout may continue to extend in loss recovery. 3392 */ 3393 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3394 } 3395 3396 if (icsk->icsk_ca_ops->pkts_acked) { 3397 struct ack_sample sample = { .pkts_acked = pkts_acked, 3398 .rtt_us = sack->rate->rtt_us, 3399 .in_flight = last_in_flight }; 3400 3401 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3402 } 3403 3404#if FASTRETRANS_DEBUG > 0 3405 WARN_ON((int)tp->sacked_out < 0); 3406 WARN_ON((int)tp->lost_out < 0); 3407 WARN_ON((int)tp->retrans_out < 0); 3408 if (!tp->packets_out && tcp_is_sack(tp)) { 3409 icsk = inet_csk(sk); 3410 if (tp->lost_out) { 3411 pr_debug("Leak l=%u %d\n", 3412 tp->lost_out, icsk->icsk_ca_state); 3413 tp->lost_out = 0; 3414 } 3415 if (tp->sacked_out) { 3416 pr_debug("Leak s=%u %d\n", 3417 tp->sacked_out, icsk->icsk_ca_state); 3418 tp->sacked_out = 0; 3419 } 3420 if (tp->retrans_out) { 3421 pr_debug("Leak r=%u %d\n", 3422 tp->retrans_out, icsk->icsk_ca_state); 3423 tp->retrans_out = 0; 3424 } 3425 } 3426#endif 3427 return flag; 3428} 3429 3430static void tcp_ack_probe(struct sock *sk) 3431{ 3432 struct inet_connection_sock *icsk = inet_csk(sk); 3433 struct sk_buff *head = tcp_send_head(sk); 3434 const struct tcp_sock *tp = tcp_sk(sk); 3435 3436 /* Was it a usable window open? */ 3437 if (!head) 3438 return; 3439 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3440 icsk->icsk_backoff = 0; 3441 icsk->icsk_probes_tstamp = 0; 3442 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3443 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3444 * This function is not for random using! 3445 */ 3446 } else { 3447 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3448 3449 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3450 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3451 } 3452} 3453 3454static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3455{ 3456 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3457 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3458} 3459 3460/* Decide wheather to run the increase function of congestion control. */ 3461static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3462{ 3463 /* If reordering is high then always grow cwnd whenever data is 3464 * delivered regardless of its ordering. Otherwise stay conservative 3465 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3466 * new SACK or ECE mark may first advance cwnd here and later reduce 3467 * cwnd in tcp_fastretrans_alert() based on more states. 3468 */ 3469 if (tcp_sk(sk)->reordering > 3470 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3471 return flag & FLAG_FORWARD_PROGRESS; 3472 3473 return flag & FLAG_DATA_ACKED; 3474} 3475 3476/* The "ultimate" congestion control function that aims to replace the rigid 3477 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3478 * It's called toward the end of processing an ACK with precise rate 3479 * information. All transmission or retransmission are delayed afterwards. 3480 */ 3481static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3482 int flag, const struct rate_sample *rs) 3483{ 3484 const struct inet_connection_sock *icsk = inet_csk(sk); 3485 3486 if (icsk->icsk_ca_ops->cong_control) { 3487 icsk->icsk_ca_ops->cong_control(sk, rs); 3488 return; 3489 } 3490 3491 if (tcp_in_cwnd_reduction(sk)) { 3492 /* Reduce cwnd if state mandates */ 3493 tcp_cwnd_reduction(sk, acked_sacked, flag); 3494 } else if (tcp_may_raise_cwnd(sk, flag)) { 3495 /* Advance cwnd if state allows */ 3496 tcp_cong_avoid(sk, ack, acked_sacked); 3497 } 3498 tcp_update_pacing_rate(sk); 3499} 3500 3501/* Check that window update is acceptable. 3502 * The function assumes that snd_una<=ack<=snd_next. 3503 */ 3504static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3505 const u32 ack, const u32 ack_seq, 3506 const u32 nwin) 3507{ 3508 return after(ack, tp->snd_una) || 3509 after(ack_seq, tp->snd_wl1) || 3510 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3511} 3512 3513/* If we update tp->snd_una, also update tp->bytes_acked */ 3514static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3515{ 3516 u32 delta = ack - tp->snd_una; 3517 3518 sock_owned_by_me((struct sock *)tp); 3519 tp->bytes_acked += delta; 3520 tp->snd_una = ack; 3521} 3522 3523/* If we update tp->rcv_nxt, also update tp->bytes_received */ 3524static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3525{ 3526 u32 delta = seq - tp->rcv_nxt; 3527 3528 sock_owned_by_me((struct sock *)tp); 3529 tp->bytes_received += delta; 3530 WRITE_ONCE(tp->rcv_nxt, seq); 3531} 3532 3533/* Update our send window. 3534 * 3535 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3536 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3537 */ 3538static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3539 u32 ack_seq) 3540{ 3541 struct tcp_sock *tp = tcp_sk(sk); 3542 int flag = 0; 3543 u32 nwin = ntohs(tcp_hdr(skb)->window); 3544 3545 if (likely(!tcp_hdr(skb)->syn)) 3546 nwin <<= tp->rx_opt.snd_wscale; 3547 3548 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3549 flag |= FLAG_WIN_UPDATE; 3550 tcp_update_wl(tp, ack_seq); 3551 3552 if (tp->snd_wnd != nwin) { 3553 tp->snd_wnd = nwin; 3554 3555 /* Note, it is the only place, where 3556 * fast path is recovered for sending TCP. 3557 */ 3558 tp->pred_flags = 0; 3559 tcp_fast_path_check(sk); 3560 3561 if (!tcp_write_queue_empty(sk)) 3562 tcp_slow_start_after_idle_check(sk); 3563 3564 if (nwin > tp->max_window) { 3565 tp->max_window = nwin; 3566 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3567 } 3568 } 3569 } 3570 3571 tcp_snd_una_update(tp, ack); 3572 3573 return flag; 3574} 3575 3576static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3577 u32 *last_oow_ack_time) 3578{ 3579 /* Paired with the WRITE_ONCE() in this function. */ 3580 u32 val = READ_ONCE(*last_oow_ack_time); 3581 3582 if (val) { 3583 s32 elapsed = (s32)(tcp_jiffies32 - val); 3584 3585 if (0 <= elapsed && 3586 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3587 NET_INC_STATS(net, mib_idx); 3588 return true; /* rate-limited: don't send yet! */ 3589 } 3590 } 3591 3592 /* Paired with the prior READ_ONCE() and with itself, 3593 * as we might be lockless. 3594 */ 3595 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3596 3597 return false; /* not rate-limited: go ahead, send dupack now! */ 3598} 3599 3600/* Return true if we're currently rate-limiting out-of-window ACKs and 3601 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3602 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3603 * attacks that send repeated SYNs or ACKs for the same connection. To 3604 * do this, we do not send a duplicate SYNACK or ACK if the remote 3605 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3606 */ 3607bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3608 int mib_idx, u32 *last_oow_ack_time) 3609{ 3610 /* Data packets without SYNs are not likely part of an ACK loop. */ 3611 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3612 !tcp_hdr(skb)->syn) 3613 return false; 3614 3615 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3616} 3617 3618/* RFC 5961 7 [ACK Throttling] */ 3619static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3620{ 3621 /* unprotected vars, we dont care of overwrites */ 3622 static u32 challenge_timestamp; 3623 static unsigned int challenge_count; 3624 struct tcp_sock *tp = tcp_sk(sk); 3625 struct net *net = sock_net(sk); 3626 u32 count, now; 3627 3628 /* First check our per-socket dupack rate limit. */ 3629 if (__tcp_oow_rate_limited(net, 3630 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3631 &tp->last_oow_ack_time)) 3632 return; 3633 3634 /* Then check host-wide RFC 5961 rate limit. */ 3635 now = jiffies / HZ; 3636 if (now != READ_ONCE(challenge_timestamp)) { 3637 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3638 u32 half = (ack_limit + 1) >> 1; 3639 3640 WRITE_ONCE(challenge_timestamp, now); 3641 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3642 } 3643 count = READ_ONCE(challenge_count); 3644 if (count > 0) { 3645 WRITE_ONCE(challenge_count, count - 1); 3646 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3647 tcp_send_ack(sk); 3648 } 3649} 3650 3651static void tcp_store_ts_recent(struct tcp_sock *tp) 3652{ 3653 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3654 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3655} 3656 3657static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3658{ 3659 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3660 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3661 * extra check below makes sure this can only happen 3662 * for pure ACK frames. -DaveM 3663 * 3664 * Not only, also it occurs for expired timestamps. 3665 */ 3666 3667 if (tcp_paws_check(&tp->rx_opt, 0)) 3668 tcp_store_ts_recent(tp); 3669 } 3670} 3671 3672/* This routine deals with acks during a TLP episode and ends an episode by 3673 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3674 */ 3675static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3676{ 3677 struct tcp_sock *tp = tcp_sk(sk); 3678 3679 if (before(ack, tp->tlp_high_seq)) 3680 return; 3681 3682 if (!tp->tlp_retrans) { 3683 /* TLP of new data has been acknowledged */ 3684 tp->tlp_high_seq = 0; 3685 } else if (flag & FLAG_DSACKING_ACK) { 3686 /* This DSACK means original and TLP probe arrived; no loss */ 3687 tp->tlp_high_seq = 0; 3688 } else if (after(ack, tp->tlp_high_seq)) { 3689 /* ACK advances: there was a loss, so reduce cwnd. Reset 3690 * tlp_high_seq in tcp_init_cwnd_reduction() 3691 */ 3692 tcp_init_cwnd_reduction(sk); 3693 tcp_set_ca_state(sk, TCP_CA_CWR); 3694 tcp_end_cwnd_reduction(sk); 3695 tcp_try_keep_open(sk); 3696 NET_INC_STATS(sock_net(sk), 3697 LINUX_MIB_TCPLOSSPROBERECOVERY); 3698 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3699 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3700 /* Pure dupack: original and TLP probe arrived; no loss */ 3701 tp->tlp_high_seq = 0; 3702 } 3703} 3704 3705static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3706{ 3707 const struct inet_connection_sock *icsk = inet_csk(sk); 3708 3709 if (icsk->icsk_ca_ops->in_ack_event) 3710 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3711} 3712 3713/* Congestion control has updated the cwnd already. So if we're in 3714 * loss recovery then now we do any new sends (for FRTO) or 3715 * retransmits (for CA_Loss or CA_recovery) that make sense. 3716 */ 3717static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3718{ 3719 struct tcp_sock *tp = tcp_sk(sk); 3720 3721 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3722 return; 3723 3724 if (unlikely(rexmit == REXMIT_NEW)) { 3725 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3726 TCP_NAGLE_OFF); 3727 if (after(tp->snd_nxt, tp->high_seq)) 3728 return; 3729 tp->frto = 0; 3730 } 3731 tcp_xmit_retransmit_queue(sk); 3732} 3733 3734/* Returns the number of packets newly acked or sacked by the current ACK */ 3735static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3736{ 3737 const struct net *net = sock_net(sk); 3738 struct tcp_sock *tp = tcp_sk(sk); 3739 u32 delivered; 3740 3741 delivered = tp->delivered - prior_delivered; 3742 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3743 if (flag & FLAG_ECE) 3744 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3745 3746 return delivered; 3747} 3748 3749/* This routine deals with incoming acks, but not outgoing ones. */ 3750static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3751{ 3752 struct inet_connection_sock *icsk = inet_csk(sk); 3753 struct tcp_sock *tp = tcp_sk(sk); 3754 struct tcp_sacktag_state sack_state; 3755 struct rate_sample rs = { .prior_delivered = 0 }; 3756 u32 prior_snd_una = tp->snd_una; 3757 bool is_sack_reneg = tp->is_sack_reneg; 3758 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3759 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3760 int num_dupack = 0; 3761 int prior_packets = tp->packets_out; 3762 u32 delivered = tp->delivered; 3763 u32 lost = tp->lost; 3764 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3765 u32 prior_fack; 3766 3767 sack_state.first_sackt = 0; 3768 sack_state.rate = &rs; 3769 sack_state.sack_delivered = 0; 3770 3771 /* We very likely will need to access rtx queue. */ 3772 prefetch(sk->tcp_rtx_queue.rb_node); 3773 3774 /* If the ack is older than previous acks 3775 * then we can probably ignore it. 3776 */ 3777 if (before(ack, prior_snd_una)) { 3778 u32 max_window; 3779 3780 /* do not accept ACK for bytes we never sent. */ 3781 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3782 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3783 if (before(ack, prior_snd_una - max_window)) { 3784 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3785 tcp_send_challenge_ack(sk, skb); 3786 return -1; 3787 } 3788 goto old_ack; 3789 } 3790 3791 /* If the ack includes data we haven't sent yet, discard 3792 * this segment (RFC793 Section 3.9). 3793 */ 3794 if (after(ack, tp->snd_nxt)) 3795 return -1; 3796 3797 if (after(ack, prior_snd_una)) { 3798 flag |= FLAG_SND_UNA_ADVANCED; 3799 icsk->icsk_retransmits = 0; 3800 3801#if IS_ENABLED(CONFIG_TLS_DEVICE) 3802 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3803 if (icsk->icsk_clean_acked) 3804 icsk->icsk_clean_acked(sk, ack); 3805#endif 3806 } 3807 3808 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3809 rs.prior_in_flight = tcp_packets_in_flight(tp); 3810 3811 /* ts_recent update must be made after we are sure that the packet 3812 * is in window. 3813 */ 3814 if (flag & FLAG_UPDATE_TS_RECENT) 3815 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3816 3817 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3818 FLAG_SND_UNA_ADVANCED) { 3819 /* Window is constant, pure forward advance. 3820 * No more checks are required. 3821 * Note, we use the fact that SND.UNA>=SND.WL2. 3822 */ 3823 tcp_update_wl(tp, ack_seq); 3824 tcp_snd_una_update(tp, ack); 3825 flag |= FLAG_WIN_UPDATE; 3826 3827 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3828 3829 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3830 } else { 3831 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3832 3833 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3834 flag |= FLAG_DATA; 3835 else 3836 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3837 3838 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3839 3840 if (TCP_SKB_CB(skb)->sacked) 3841 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3842 &sack_state); 3843 3844 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3845 flag |= FLAG_ECE; 3846 ack_ev_flags |= CA_ACK_ECE; 3847 } 3848 3849 if (sack_state.sack_delivered) 3850 tcp_count_delivered(tp, sack_state.sack_delivered, 3851 flag & FLAG_ECE); 3852 3853 if (flag & FLAG_WIN_UPDATE) 3854 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3855 3856 tcp_in_ack_event(sk, ack_ev_flags); 3857 } 3858 3859 /* This is a deviation from RFC3168 since it states that: 3860 * "When the TCP data sender is ready to set the CWR bit after reducing 3861 * the congestion window, it SHOULD set the CWR bit only on the first 3862 * new data packet that it transmits." 3863 * We accept CWR on pure ACKs to be more robust 3864 * with widely-deployed TCP implementations that do this. 3865 */ 3866 tcp_ecn_accept_cwr(sk, skb); 3867 3868 /* We passed data and got it acked, remove any soft error 3869 * log. Something worked... 3870 */ 3871 sk->sk_err_soft = 0; 3872 icsk->icsk_probes_out = 0; 3873 tp->rcv_tstamp = tcp_jiffies32; 3874 if (!prior_packets) 3875 goto no_queue; 3876 3877 /* See if we can take anything off of the retransmit queue. */ 3878 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state, 3879 flag & FLAG_ECE); 3880 3881 tcp_rack_update_reo_wnd(sk, &rs); 3882 3883 if (tp->tlp_high_seq) 3884 tcp_process_tlp_ack(sk, ack, flag); 3885 3886 if (tcp_ack_is_dubious(sk, flag)) { 3887 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3888 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3889 num_dupack = 1; 3890 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3891 if (!(flag & FLAG_DATA)) 3892 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3893 } 3894 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3895 &rexmit); 3896 } 3897 3898 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3899 if (flag & FLAG_SET_XMIT_TIMER) 3900 tcp_set_xmit_timer(sk); 3901 3902 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3903 sk_dst_confirm(sk); 3904 3905 delivered = tcp_newly_delivered(sk, delivered, flag); 3906 lost = tp->lost - lost; /* freshly marked lost */ 3907 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3908 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3909 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3910 tcp_xmit_recovery(sk, rexmit); 3911 return 1; 3912 3913no_queue: 3914 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3915 if (flag & FLAG_DSACKING_ACK) { 3916 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3917 &rexmit); 3918 tcp_newly_delivered(sk, delivered, flag); 3919 } 3920 /* If this ack opens up a zero window, clear backoff. It was 3921 * being used to time the probes, and is probably far higher than 3922 * it needs to be for normal retransmission. 3923 */ 3924 tcp_ack_probe(sk); 3925 3926 if (tp->tlp_high_seq) 3927 tcp_process_tlp_ack(sk, ack, flag); 3928 return 1; 3929 3930old_ack: 3931 /* If data was SACKed, tag it and see if we should send more data. 3932 * If data was DSACKed, see if we can undo a cwnd reduction. 3933 */ 3934 if (TCP_SKB_CB(skb)->sacked) { 3935 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3936 &sack_state); 3937 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3938 &rexmit); 3939 tcp_newly_delivered(sk, delivered, flag); 3940 tcp_xmit_recovery(sk, rexmit); 3941 } 3942 3943 return 0; 3944} 3945 3946static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3947 bool syn, struct tcp_fastopen_cookie *foc, 3948 bool exp_opt) 3949{ 3950 /* Valid only in SYN or SYN-ACK with an even length. */ 3951 if (!foc || !syn || len < 0 || (len & 1)) 3952 return; 3953 3954 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3955 len <= TCP_FASTOPEN_COOKIE_MAX) 3956 memcpy(foc->val, cookie, len); 3957 else if (len != 0) 3958 len = -1; 3959 foc->len = len; 3960 foc->exp = exp_opt; 3961} 3962 3963static bool smc_parse_options(const struct tcphdr *th, 3964 struct tcp_options_received *opt_rx, 3965 const unsigned char *ptr, 3966 int opsize) 3967{ 3968#if IS_ENABLED(CONFIG_SMC) 3969 if (static_branch_unlikely(&tcp_have_smc)) { 3970 if (th->syn && !(opsize & 1) && 3971 opsize >= TCPOLEN_EXP_SMC_BASE && 3972 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3973 opt_rx->smc_ok = 1; 3974 return true; 3975 } 3976 } 3977#endif 3978 return false; 3979} 3980 3981/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3982 * value on success. 3983 */ 3984static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3985{ 3986 const unsigned char *ptr = (const unsigned char *)(th + 1); 3987 int length = (th->doff * 4) - sizeof(struct tcphdr); 3988 u16 mss = 0; 3989 3990 while (length > 0) { 3991 int opcode = *ptr++; 3992 int opsize; 3993 3994 switch (opcode) { 3995 case TCPOPT_EOL: 3996 return mss; 3997 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3998 length--; 3999 continue; 4000 default: 4001 if (length < 2) 4002 return mss; 4003 opsize = *ptr++; 4004 if (opsize < 2) /* "silly options" */ 4005 return mss; 4006 if (opsize > length) 4007 return mss; /* fail on partial options */ 4008 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4009 u16 in_mss = get_unaligned_be16(ptr); 4010 4011 if (in_mss) { 4012 if (user_mss && user_mss < in_mss) 4013 in_mss = user_mss; 4014 mss = in_mss; 4015 } 4016 } 4017 ptr += opsize - 2; 4018 length -= opsize; 4019 } 4020 } 4021 return mss; 4022} 4023 4024/* Look for tcp options. Normally only called on SYN and SYNACK packets. 4025 * But, this can also be called on packets in the established flow when 4026 * the fast version below fails. 4027 */ 4028void tcp_parse_options(const struct net *net, 4029 const struct sk_buff *skb, 4030 struct tcp_options_received *opt_rx, int estab, 4031 struct tcp_fastopen_cookie *foc) 4032{ 4033 const unsigned char *ptr; 4034 const struct tcphdr *th = tcp_hdr(skb); 4035 int length = (th->doff * 4) - sizeof(struct tcphdr); 4036 4037 ptr = (const unsigned char *)(th + 1); 4038 opt_rx->saw_tstamp = 0; 4039 opt_rx->saw_unknown = 0; 4040 4041 while (length > 0) { 4042 int opcode = *ptr++; 4043 int opsize; 4044 4045 switch (opcode) { 4046 case TCPOPT_EOL: 4047 return; 4048 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4049 length--; 4050 continue; 4051 default: 4052 if (length < 2) 4053 return; 4054 opsize = *ptr++; 4055 if (opsize < 2) /* "silly options" */ 4056 return; 4057 if (opsize > length) 4058 return; /* don't parse partial options */ 4059 switch (opcode) { 4060 case TCPOPT_MSS: 4061 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4062 u16 in_mss = get_unaligned_be16(ptr); 4063 if (in_mss) { 4064 if (opt_rx->user_mss && 4065 opt_rx->user_mss < in_mss) 4066 in_mss = opt_rx->user_mss; 4067 opt_rx->mss_clamp = in_mss; 4068 } 4069 } 4070 break; 4071 case TCPOPT_WINDOW: 4072 if (opsize == TCPOLEN_WINDOW && th->syn && 4073 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4074 __u8 snd_wscale = *(__u8 *)ptr; 4075 opt_rx->wscale_ok = 1; 4076 if (snd_wscale > TCP_MAX_WSCALE) { 4077 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4078 __func__, 4079 snd_wscale, 4080 TCP_MAX_WSCALE); 4081 snd_wscale = TCP_MAX_WSCALE; 4082 } 4083 opt_rx->snd_wscale = snd_wscale; 4084 } 4085 break; 4086 case TCPOPT_TIMESTAMP: 4087 if ((opsize == TCPOLEN_TIMESTAMP) && 4088 ((estab && opt_rx->tstamp_ok) || 4089 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4090 opt_rx->saw_tstamp = 1; 4091 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4092 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4093 } 4094 break; 4095 case TCPOPT_SACK_PERM: 4096 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4097 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4098 opt_rx->sack_ok = TCP_SACK_SEEN; 4099 tcp_sack_reset(opt_rx); 4100 } 4101 break; 4102 4103 case TCPOPT_SACK: 4104 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4105 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4106 opt_rx->sack_ok) { 4107 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4108 } 4109 break; 4110#ifdef CONFIG_TCP_MD5SIG 4111 case TCPOPT_MD5SIG: 4112 /* 4113 * The MD5 Hash has already been 4114 * checked (see tcp_v{4,6}_do_rcv()). 4115 */ 4116 break; 4117#endif 4118 case TCPOPT_FASTOPEN: 4119 tcp_parse_fastopen_option( 4120 opsize - TCPOLEN_FASTOPEN_BASE, 4121 ptr, th->syn, foc, false); 4122 break; 4123 4124 case TCPOPT_EXP: 4125 /* Fast Open option shares code 254 using a 4126 * 16 bits magic number. 4127 */ 4128 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4129 get_unaligned_be16(ptr) == 4130 TCPOPT_FASTOPEN_MAGIC) { 4131 tcp_parse_fastopen_option(opsize - 4132 TCPOLEN_EXP_FASTOPEN_BASE, 4133 ptr + 2, th->syn, foc, true); 4134 break; 4135 } 4136 4137 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4138 break; 4139 4140 opt_rx->saw_unknown = 1; 4141 break; 4142 4143 default: 4144 opt_rx->saw_unknown = 1; 4145 } 4146 ptr += opsize-2; 4147 length -= opsize; 4148 } 4149 } 4150} 4151EXPORT_SYMBOL(tcp_parse_options); 4152 4153static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4154{ 4155 const __be32 *ptr = (const __be32 *)(th + 1); 4156 4157 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4158 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4159 tp->rx_opt.saw_tstamp = 1; 4160 ++ptr; 4161 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4162 ++ptr; 4163 if (*ptr) 4164 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4165 else 4166 tp->rx_opt.rcv_tsecr = 0; 4167 return true; 4168 } 4169 return false; 4170} 4171 4172/* Fast parse options. This hopes to only see timestamps. 4173 * If it is wrong it falls back on tcp_parse_options(). 4174 */ 4175static bool tcp_fast_parse_options(const struct net *net, 4176 const struct sk_buff *skb, 4177 const struct tcphdr *th, struct tcp_sock *tp) 4178{ 4179 /* In the spirit of fast parsing, compare doff directly to constant 4180 * values. Because equality is used, short doff can be ignored here. 4181 */ 4182 if (th->doff == (sizeof(*th) / 4)) { 4183 tp->rx_opt.saw_tstamp = 0; 4184 return false; 4185 } else if (tp->rx_opt.tstamp_ok && 4186 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4187 if (tcp_parse_aligned_timestamp(tp, th)) 4188 return true; 4189 } 4190 4191 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4192 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4193 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4194 4195 return true; 4196} 4197 4198#ifdef CONFIG_TCP_MD5SIG 4199/* 4200 * Parse MD5 Signature option 4201 */ 4202const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4203{ 4204 int length = (th->doff << 2) - sizeof(*th); 4205 const u8 *ptr = (const u8 *)(th + 1); 4206 4207 /* If not enough data remaining, we can short cut */ 4208 while (length >= TCPOLEN_MD5SIG) { 4209 int opcode = *ptr++; 4210 int opsize; 4211 4212 switch (opcode) { 4213 case TCPOPT_EOL: 4214 return NULL; 4215 case TCPOPT_NOP: 4216 length--; 4217 continue; 4218 default: 4219 opsize = *ptr++; 4220 if (opsize < 2 || opsize > length) 4221 return NULL; 4222 if (opcode == TCPOPT_MD5SIG) 4223 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4224 } 4225 ptr += opsize - 2; 4226 length -= opsize; 4227 } 4228 return NULL; 4229} 4230EXPORT_SYMBOL(tcp_parse_md5sig_option); 4231#endif 4232 4233/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4234 * 4235 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4236 * it can pass through stack. So, the following predicate verifies that 4237 * this segment is not used for anything but congestion avoidance or 4238 * fast retransmit. Moreover, we even are able to eliminate most of such 4239 * second order effects, if we apply some small "replay" window (~RTO) 4240 * to timestamp space. 4241 * 4242 * All these measures still do not guarantee that we reject wrapped ACKs 4243 * on networks with high bandwidth, when sequence space is recycled fastly, 4244 * but it guarantees that such events will be very rare and do not affect 4245 * connection seriously. This doesn't look nice, but alas, PAWS is really 4246 * buggy extension. 4247 * 4248 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4249 * states that events when retransmit arrives after original data are rare. 4250 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4251 * the biggest problem on large power networks even with minor reordering. 4252 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4253 * up to bandwidth of 18Gigabit/sec. 8) ] 4254 */ 4255 4256static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4257{ 4258 const struct tcp_sock *tp = tcp_sk(sk); 4259 const struct tcphdr *th = tcp_hdr(skb); 4260 u32 seq = TCP_SKB_CB(skb)->seq; 4261 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4262 4263 return (/* 1. Pure ACK with correct sequence number. */ 4264 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4265 4266 /* 2. ... and duplicate ACK. */ 4267 ack == tp->snd_una && 4268 4269 /* 3. ... and does not update window. */ 4270 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4271 4272 /* 4. ... and sits in replay window. */ 4273 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4274} 4275 4276static inline bool tcp_paws_discard(const struct sock *sk, 4277 const struct sk_buff *skb) 4278{ 4279 const struct tcp_sock *tp = tcp_sk(sk); 4280 4281 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4282 !tcp_disordered_ack(sk, skb); 4283} 4284 4285/* Check segment sequence number for validity. 4286 * 4287 * Segment controls are considered valid, if the segment 4288 * fits to the window after truncation to the window. Acceptability 4289 * of data (and SYN, FIN, of course) is checked separately. 4290 * See tcp_data_queue(), for example. 4291 * 4292 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4293 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4294 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4295 * (borrowed from freebsd) 4296 */ 4297 4298static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4299{ 4300 return !before(end_seq, tp->rcv_wup) && 4301 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4302} 4303 4304/* When we get a reset we do this. */ 4305void tcp_reset(struct sock *sk) 4306{ 4307 trace_tcp_receive_reset(sk); 4308 4309 /* We want the right error as BSD sees it (and indeed as we do). */ 4310 switch (sk->sk_state) { 4311 case TCP_SYN_SENT: 4312 sk->sk_err = ECONNREFUSED; 4313 break; 4314 case TCP_CLOSE_WAIT: 4315 sk->sk_err = EPIPE; 4316 break; 4317 case TCP_CLOSE: 4318 return; 4319 default: 4320 sk->sk_err = ECONNRESET; 4321 } 4322 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4323 smp_wmb(); 4324 4325 tcp_write_queue_purge(sk); 4326 tcp_done(sk); 4327 4328 if (!sock_flag(sk, SOCK_DEAD)) 4329 sk->sk_error_report(sk); 4330} 4331 4332/* 4333 * Process the FIN bit. This now behaves as it is supposed to work 4334 * and the FIN takes effect when it is validly part of sequence 4335 * space. Not before when we get holes. 4336 * 4337 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4338 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4339 * TIME-WAIT) 4340 * 4341 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4342 * close and we go into CLOSING (and later onto TIME-WAIT) 4343 * 4344 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4345 */ 4346void tcp_fin(struct sock *sk) 4347{ 4348 struct tcp_sock *tp = tcp_sk(sk); 4349 4350 inet_csk_schedule_ack(sk); 4351 4352 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4353 sock_set_flag(sk, SOCK_DONE); 4354 4355 switch (sk->sk_state) { 4356 case TCP_SYN_RECV: 4357 case TCP_ESTABLISHED: 4358 /* Move to CLOSE_WAIT */ 4359 tcp_set_state(sk, TCP_CLOSE_WAIT); 4360 inet_csk_enter_pingpong_mode(sk); 4361 break; 4362 4363 case TCP_CLOSE_WAIT: 4364 case TCP_CLOSING: 4365 /* Received a retransmission of the FIN, do 4366 * nothing. 4367 */ 4368 break; 4369 case TCP_LAST_ACK: 4370 /* RFC793: Remain in the LAST-ACK state. */ 4371 break; 4372 4373 case TCP_FIN_WAIT1: 4374 /* This case occurs when a simultaneous close 4375 * happens, we must ack the received FIN and 4376 * enter the CLOSING state. 4377 */ 4378 tcp_send_ack(sk); 4379 tcp_set_state(sk, TCP_CLOSING); 4380 break; 4381 case TCP_FIN_WAIT2: 4382 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4383 tcp_send_ack(sk); 4384 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4385 break; 4386 default: 4387 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4388 * cases we should never reach this piece of code. 4389 */ 4390 pr_err("%s: Impossible, sk->sk_state=%d\n", 4391 __func__, sk->sk_state); 4392 break; 4393 } 4394 4395 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4396 * Probably, we should reset in this case. For now drop them. 4397 */ 4398 skb_rbtree_purge(&tp->out_of_order_queue); 4399 if (tcp_is_sack(tp)) 4400 tcp_sack_reset(&tp->rx_opt); 4401 sk_mem_reclaim(sk); 4402 4403 if (!sock_flag(sk, SOCK_DEAD)) { 4404 sk->sk_state_change(sk); 4405 4406 /* Do not send POLL_HUP for half duplex close. */ 4407 if (sk->sk_shutdown == SHUTDOWN_MASK || 4408 sk->sk_state == TCP_CLOSE) 4409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4410 else 4411 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4412 } 4413} 4414 4415static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4416 u32 end_seq) 4417{ 4418 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4419 if (before(seq, sp->start_seq)) 4420 sp->start_seq = seq; 4421 if (after(end_seq, sp->end_seq)) 4422 sp->end_seq = end_seq; 4423 return true; 4424 } 4425 return false; 4426} 4427 4428static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4429{ 4430 struct tcp_sock *tp = tcp_sk(sk); 4431 4432 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4433 int mib_idx; 4434 4435 if (before(seq, tp->rcv_nxt)) 4436 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4437 else 4438 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4439 4440 NET_INC_STATS(sock_net(sk), mib_idx); 4441 4442 tp->rx_opt.dsack = 1; 4443 tp->duplicate_sack[0].start_seq = seq; 4444 tp->duplicate_sack[0].end_seq = end_seq; 4445 } 4446} 4447 4448static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4449{ 4450 struct tcp_sock *tp = tcp_sk(sk); 4451 4452 if (!tp->rx_opt.dsack) 4453 tcp_dsack_set(sk, seq, end_seq); 4454 else 4455 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4456} 4457 4458static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4459{ 4460 /* When the ACK path fails or drops most ACKs, the sender would 4461 * timeout and spuriously retransmit the same segment repeatedly. 4462 * The receiver remembers and reflects via DSACKs. Leverage the 4463 * DSACK state and change the txhash to re-route speculatively. 4464 */ 4465 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4466 sk_rethink_txhash(sk)) 4467 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4468} 4469 4470static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4471{ 4472 struct tcp_sock *tp = tcp_sk(sk); 4473 4474 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4475 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4476 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4477 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4478 4479 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4480 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4481 4482 tcp_rcv_spurious_retrans(sk, skb); 4483 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4484 end_seq = tp->rcv_nxt; 4485 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4486 } 4487 } 4488 4489 tcp_send_ack(sk); 4490} 4491 4492/* These routines update the SACK block as out-of-order packets arrive or 4493 * in-order packets close up the sequence space. 4494 */ 4495static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4496{ 4497 int this_sack; 4498 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4499 struct tcp_sack_block *swalk = sp + 1; 4500 4501 /* See if the recent change to the first SACK eats into 4502 * or hits the sequence space of other SACK blocks, if so coalesce. 4503 */ 4504 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4505 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4506 int i; 4507 4508 /* Zap SWALK, by moving every further SACK up by one slot. 4509 * Decrease num_sacks. 4510 */ 4511 tp->rx_opt.num_sacks--; 4512 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4513 sp[i] = sp[i + 1]; 4514 continue; 4515 } 4516 this_sack++; 4517 swalk++; 4518 } 4519} 4520 4521static void tcp_sack_compress_send_ack(struct sock *sk) 4522{ 4523 struct tcp_sock *tp = tcp_sk(sk); 4524 4525 if (!tp->compressed_ack) 4526 return; 4527 4528 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4529 __sock_put(sk); 4530 4531 /* Since we have to send one ack finally, 4532 * substract one from tp->compressed_ack to keep 4533 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4534 */ 4535 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4536 tp->compressed_ack - 1); 4537 4538 tp->compressed_ack = 0; 4539 tcp_send_ack(sk); 4540} 4541 4542/* Reasonable amount of sack blocks included in TCP SACK option 4543 * The max is 4, but this becomes 3 if TCP timestamps are there. 4544 * Given that SACK packets might be lost, be conservative and use 2. 4545 */ 4546#define TCP_SACK_BLOCKS_EXPECTED 2 4547 4548static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4549{ 4550 struct tcp_sock *tp = tcp_sk(sk); 4551 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4552 int cur_sacks = tp->rx_opt.num_sacks; 4553 int this_sack; 4554 4555 if (!cur_sacks) 4556 goto new_sack; 4557 4558 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4559 if (tcp_sack_extend(sp, seq, end_seq)) { 4560 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4561 tcp_sack_compress_send_ack(sk); 4562 /* Rotate this_sack to the first one. */ 4563 for (; this_sack > 0; this_sack--, sp--) 4564 swap(*sp, *(sp - 1)); 4565 if (cur_sacks > 1) 4566 tcp_sack_maybe_coalesce(tp); 4567 return; 4568 } 4569 } 4570 4571 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4572 tcp_sack_compress_send_ack(sk); 4573 4574 /* Could not find an adjacent existing SACK, build a new one, 4575 * put it at the front, and shift everyone else down. We 4576 * always know there is at least one SACK present already here. 4577 * 4578 * If the sack array is full, forget about the last one. 4579 */ 4580 if (this_sack >= TCP_NUM_SACKS) { 4581 this_sack--; 4582 tp->rx_opt.num_sacks--; 4583 sp--; 4584 } 4585 for (; this_sack > 0; this_sack--, sp--) 4586 *sp = *(sp - 1); 4587 4588new_sack: 4589 /* Build the new head SACK, and we're done. */ 4590 sp->start_seq = seq; 4591 sp->end_seq = end_seq; 4592 tp->rx_opt.num_sacks++; 4593} 4594 4595/* RCV.NXT advances, some SACKs should be eaten. */ 4596 4597static void tcp_sack_remove(struct tcp_sock *tp) 4598{ 4599 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4600 int num_sacks = tp->rx_opt.num_sacks; 4601 int this_sack; 4602 4603 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4604 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4605 tp->rx_opt.num_sacks = 0; 4606 return; 4607 } 4608 4609 for (this_sack = 0; this_sack < num_sacks;) { 4610 /* Check if the start of the sack is covered by RCV.NXT. */ 4611 if (!before(tp->rcv_nxt, sp->start_seq)) { 4612 int i; 4613 4614 /* RCV.NXT must cover all the block! */ 4615 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4616 4617 /* Zap this SACK, by moving forward any other SACKS. */ 4618 for (i = this_sack+1; i < num_sacks; i++) 4619 tp->selective_acks[i-1] = tp->selective_acks[i]; 4620 num_sacks--; 4621 continue; 4622 } 4623 this_sack++; 4624 sp++; 4625 } 4626 tp->rx_opt.num_sacks = num_sacks; 4627} 4628 4629/** 4630 * tcp_try_coalesce - try to merge skb to prior one 4631 * @sk: socket 4632 * @to: prior buffer 4633 * @from: buffer to add in queue 4634 * @fragstolen: pointer to boolean 4635 * 4636 * Before queueing skb @from after @to, try to merge them 4637 * to reduce overall memory use and queue lengths, if cost is small. 4638 * Packets in ofo or receive queues can stay a long time. 4639 * Better try to coalesce them right now to avoid future collapses. 4640 * Returns true if caller should free @from instead of queueing it 4641 */ 4642static bool tcp_try_coalesce(struct sock *sk, 4643 struct sk_buff *to, 4644 struct sk_buff *from, 4645 bool *fragstolen) 4646{ 4647 int delta; 4648 4649 *fragstolen = false; 4650 4651 /* Its possible this segment overlaps with prior segment in queue */ 4652 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4653 return false; 4654 4655 if (!mptcp_skb_can_collapse(to, from)) 4656 return false; 4657 4658#ifdef CONFIG_TLS_DEVICE 4659 if (from->decrypted != to->decrypted) 4660 return false; 4661#endif 4662 4663 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4664 return false; 4665 4666 atomic_add(delta, &sk->sk_rmem_alloc); 4667 sk_mem_charge(sk, delta); 4668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4669 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4670 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4671 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4672 4673 if (TCP_SKB_CB(from)->has_rxtstamp) { 4674 TCP_SKB_CB(to)->has_rxtstamp = true; 4675 to->tstamp = from->tstamp; 4676 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4677 } 4678 4679 return true; 4680} 4681 4682static bool tcp_ooo_try_coalesce(struct sock *sk, 4683 struct sk_buff *to, 4684 struct sk_buff *from, 4685 bool *fragstolen) 4686{ 4687 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4688 4689 /* In case tcp_drop() is called later, update to->gso_segs */ 4690 if (res) { 4691 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4692 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4693 4694 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4695 } 4696 return res; 4697} 4698 4699static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4700{ 4701 sk_drops_add(sk, skb); 4702 __kfree_skb(skb); 4703} 4704 4705/* This one checks to see if we can put data from the 4706 * out_of_order queue into the receive_queue. 4707 */ 4708static void tcp_ofo_queue(struct sock *sk) 4709{ 4710 struct tcp_sock *tp = tcp_sk(sk); 4711 __u32 dsack_high = tp->rcv_nxt; 4712 bool fin, fragstolen, eaten; 4713 struct sk_buff *skb, *tail; 4714 struct rb_node *p; 4715 4716 p = rb_first(&tp->out_of_order_queue); 4717 while (p) { 4718 skb = rb_to_skb(p); 4719 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4720 break; 4721 4722 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4723 __u32 dsack = dsack_high; 4724 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4725 dsack_high = TCP_SKB_CB(skb)->end_seq; 4726 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4727 } 4728 p = rb_next(p); 4729 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4730 4731 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4732 tcp_drop(sk, skb); 4733 continue; 4734 } 4735 4736 tail = skb_peek_tail(&sk->sk_receive_queue); 4737 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4738 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4739 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4740 if (!eaten) 4741 __skb_queue_tail(&sk->sk_receive_queue, skb); 4742 else 4743 kfree_skb_partial(skb, fragstolen); 4744 4745 if (unlikely(fin)) { 4746 tcp_fin(sk); 4747 /* tcp_fin() purges tp->out_of_order_queue, 4748 * so we must end this loop right now. 4749 */ 4750 break; 4751 } 4752 } 4753} 4754 4755static bool tcp_prune_ofo_queue(struct sock *sk); 4756static int tcp_prune_queue(struct sock *sk); 4757 4758static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4759 unsigned int size) 4760{ 4761 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4762 !sk_rmem_schedule(sk, skb, size)) { 4763 4764 if (tcp_prune_queue(sk) < 0) 4765 return -1; 4766 4767 while (!sk_rmem_schedule(sk, skb, size)) { 4768 if (!tcp_prune_ofo_queue(sk)) 4769 return -1; 4770 } 4771 } 4772 return 0; 4773} 4774 4775static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4776{ 4777 struct tcp_sock *tp = tcp_sk(sk); 4778 struct rb_node **p, *parent; 4779 struct sk_buff *skb1; 4780 u32 seq, end_seq; 4781 bool fragstolen; 4782 4783 tcp_ecn_check_ce(sk, skb); 4784 4785 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4786 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4787 sk->sk_data_ready(sk); 4788 tcp_drop(sk, skb); 4789 return; 4790 } 4791 4792 /* Disable header prediction. */ 4793 tp->pred_flags = 0; 4794 inet_csk_schedule_ack(sk); 4795 4796 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4798 seq = TCP_SKB_CB(skb)->seq; 4799 end_seq = TCP_SKB_CB(skb)->end_seq; 4800 4801 p = &tp->out_of_order_queue.rb_node; 4802 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4803 /* Initial out of order segment, build 1 SACK. */ 4804 if (tcp_is_sack(tp)) { 4805 tp->rx_opt.num_sacks = 1; 4806 tp->selective_acks[0].start_seq = seq; 4807 tp->selective_acks[0].end_seq = end_seq; 4808 } 4809 rb_link_node(&skb->rbnode, NULL, p); 4810 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4811 tp->ooo_last_skb = skb; 4812 goto end; 4813 } 4814 4815 /* In the typical case, we are adding an skb to the end of the list. 4816 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4817 */ 4818 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4819 skb, &fragstolen)) { 4820coalesce_done: 4821 /* For non sack flows, do not grow window to force DUPACK 4822 * and trigger fast retransmit. 4823 */ 4824 if (tcp_is_sack(tp)) 4825 tcp_grow_window(sk, skb, true); 4826 kfree_skb_partial(skb, fragstolen); 4827 skb = NULL; 4828 goto add_sack; 4829 } 4830 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4831 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4832 parent = &tp->ooo_last_skb->rbnode; 4833 p = &parent->rb_right; 4834 goto insert; 4835 } 4836 4837 /* Find place to insert this segment. Handle overlaps on the way. */ 4838 parent = NULL; 4839 while (*p) { 4840 parent = *p; 4841 skb1 = rb_to_skb(parent); 4842 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4843 p = &parent->rb_left; 4844 continue; 4845 } 4846 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4847 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4848 /* All the bits are present. Drop. */ 4849 NET_INC_STATS(sock_net(sk), 4850 LINUX_MIB_TCPOFOMERGE); 4851 tcp_drop(sk, skb); 4852 skb = NULL; 4853 tcp_dsack_set(sk, seq, end_seq); 4854 goto add_sack; 4855 } 4856 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4857 /* Partial overlap. */ 4858 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4859 } else { 4860 /* skb's seq == skb1's seq and skb covers skb1. 4861 * Replace skb1 with skb. 4862 */ 4863 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4864 &tp->out_of_order_queue); 4865 tcp_dsack_extend(sk, 4866 TCP_SKB_CB(skb1)->seq, 4867 TCP_SKB_CB(skb1)->end_seq); 4868 NET_INC_STATS(sock_net(sk), 4869 LINUX_MIB_TCPOFOMERGE); 4870 tcp_drop(sk, skb1); 4871 goto merge_right; 4872 } 4873 } else if (tcp_ooo_try_coalesce(sk, skb1, 4874 skb, &fragstolen)) { 4875 goto coalesce_done; 4876 } 4877 p = &parent->rb_right; 4878 } 4879insert: 4880 /* Insert segment into RB tree. */ 4881 rb_link_node(&skb->rbnode, parent, p); 4882 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4883 4884merge_right: 4885 /* Remove other segments covered by skb. */ 4886 while ((skb1 = skb_rb_next(skb)) != NULL) { 4887 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4888 break; 4889 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4890 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4891 end_seq); 4892 break; 4893 } 4894 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4895 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4896 TCP_SKB_CB(skb1)->end_seq); 4897 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4898 tcp_drop(sk, skb1); 4899 } 4900 /* If there is no skb after us, we are the last_skb ! */ 4901 if (!skb1) 4902 tp->ooo_last_skb = skb; 4903 4904add_sack: 4905 if (tcp_is_sack(tp)) 4906 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4907end: 4908 if (skb) { 4909 /* For non sack flows, do not grow window to force DUPACK 4910 * and trigger fast retransmit. 4911 */ 4912 if (tcp_is_sack(tp)) 4913 tcp_grow_window(sk, skb, false); 4914 skb_condense(skb); 4915 skb_set_owner_r(skb, sk); 4916 } 4917} 4918 4919static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4920 bool *fragstolen) 4921{ 4922 int eaten; 4923 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4924 4925 eaten = (tail && 4926 tcp_try_coalesce(sk, tail, 4927 skb, fragstolen)) ? 1 : 0; 4928 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4929 if (!eaten) { 4930 __skb_queue_tail(&sk->sk_receive_queue, skb); 4931 skb_set_owner_r(skb, sk); 4932 } 4933 return eaten; 4934} 4935 4936int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4937{ 4938 struct sk_buff *skb; 4939 int err = -ENOMEM; 4940 int data_len = 0; 4941 bool fragstolen; 4942 4943 if (size == 0) 4944 return 0; 4945 4946 if (size > PAGE_SIZE) { 4947 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4948 4949 data_len = npages << PAGE_SHIFT; 4950 size = data_len + (size & ~PAGE_MASK); 4951 } 4952 skb = alloc_skb_with_frags(size - data_len, data_len, 4953 PAGE_ALLOC_COSTLY_ORDER, 4954 &err, sk->sk_allocation); 4955 if (!skb) 4956 goto err; 4957 4958 skb_put(skb, size - data_len); 4959 skb->data_len = data_len; 4960 skb->len = size; 4961 4962 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4963 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4964 goto err_free; 4965 } 4966 4967 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4968 if (err) 4969 goto err_free; 4970 4971 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4972 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4973 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4974 4975 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4976 WARN_ON_ONCE(fragstolen); /* should not happen */ 4977 __kfree_skb(skb); 4978 } 4979 return size; 4980 4981err_free: 4982 kfree_skb(skb); 4983err: 4984 return err; 4985 4986} 4987 4988void tcp_data_ready(struct sock *sk) 4989{ 4990 const struct tcp_sock *tp = tcp_sk(sk); 4991 int avail = tp->rcv_nxt - tp->copied_seq; 4992 4993 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) && 4994 !sock_flag(sk, SOCK_DONE) && 4995 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss) 4996 return; 4997 4998 sk->sk_data_ready(sk); 4999} 5000 5001static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5002{ 5003 struct tcp_sock *tp = tcp_sk(sk); 5004 bool fragstolen; 5005 int eaten; 5006 5007 if (sk_is_mptcp(sk)) 5008 mptcp_incoming_options(sk, skb); 5009 5010 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5011 __kfree_skb(skb); 5012 return; 5013 } 5014 skb_dst_drop(skb); 5015 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5016 5017 tp->rx_opt.dsack = 0; 5018 5019 /* Queue data for delivery to the user. 5020 * Packets in sequence go to the receive queue. 5021 * Out of sequence packets to the out_of_order_queue. 5022 */ 5023 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5024 if (tcp_receive_window(tp) == 0) { 5025 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5026 goto out_of_window; 5027 } 5028 5029 /* Ok. In sequence. In window. */ 5030queue_and_out: 5031 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5032 sk_forced_mem_schedule(sk, skb->truesize); 5033 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5034 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5035 sk->sk_data_ready(sk); 5036 goto drop; 5037 } 5038 5039 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5040 if (skb->len) 5041 tcp_event_data_recv(sk, skb); 5042 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5043 tcp_fin(sk); 5044 5045 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5046 tcp_ofo_queue(sk); 5047 5048 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5049 * gap in queue is filled. 5050 */ 5051 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5052 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5053 } 5054 5055 if (tp->rx_opt.num_sacks) 5056 tcp_sack_remove(tp); 5057 5058 tcp_fast_path_check(sk); 5059 5060 if (eaten > 0) 5061 kfree_skb_partial(skb, fragstolen); 5062 if (!sock_flag(sk, SOCK_DEAD)) 5063 tcp_data_ready(sk); 5064 return; 5065 } 5066 5067 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5068 tcp_rcv_spurious_retrans(sk, skb); 5069 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5070 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5071 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5072 5073out_of_window: 5074 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5075 inet_csk_schedule_ack(sk); 5076drop: 5077 tcp_drop(sk, skb); 5078 return; 5079 } 5080 5081 /* Out of window. F.e. zero window probe. */ 5082 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 5083 goto out_of_window; 5084 5085 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5086 /* Partial packet, seq < rcv_next < end_seq */ 5087 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5088 5089 /* If window is closed, drop tail of packet. But after 5090 * remembering D-SACK for its head made in previous line. 5091 */ 5092 if (!tcp_receive_window(tp)) { 5093 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5094 goto out_of_window; 5095 } 5096 goto queue_and_out; 5097 } 5098 5099 tcp_data_queue_ofo(sk, skb); 5100} 5101 5102static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5103{ 5104 if (list) 5105 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5106 5107 return skb_rb_next(skb); 5108} 5109 5110static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5111 struct sk_buff_head *list, 5112 struct rb_root *root) 5113{ 5114 struct sk_buff *next = tcp_skb_next(skb, list); 5115 5116 if (list) 5117 __skb_unlink(skb, list); 5118 else 5119 rb_erase(&skb->rbnode, root); 5120 5121 __kfree_skb(skb); 5122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5123 5124 return next; 5125} 5126 5127/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5128void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5129{ 5130 struct rb_node **p = &root->rb_node; 5131 struct rb_node *parent = NULL; 5132 struct sk_buff *skb1; 5133 5134 while (*p) { 5135 parent = *p; 5136 skb1 = rb_to_skb(parent); 5137 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5138 p = &parent->rb_left; 5139 else 5140 p = &parent->rb_right; 5141 } 5142 rb_link_node(&skb->rbnode, parent, p); 5143 rb_insert_color(&skb->rbnode, root); 5144} 5145 5146/* Collapse contiguous sequence of skbs head..tail with 5147 * sequence numbers start..end. 5148 * 5149 * If tail is NULL, this means until the end of the queue. 5150 * 5151 * Segments with FIN/SYN are not collapsed (only because this 5152 * simplifies code) 5153 */ 5154static void 5155tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5156 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5157{ 5158 struct sk_buff *skb = head, *n; 5159 struct sk_buff_head tmp; 5160 bool end_of_skbs; 5161 5162 /* First, check that queue is collapsible and find 5163 * the point where collapsing can be useful. 5164 */ 5165restart: 5166 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5167 n = tcp_skb_next(skb, list); 5168 5169 /* No new bits? It is possible on ofo queue. */ 5170 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5171 skb = tcp_collapse_one(sk, skb, list, root); 5172 if (!skb) 5173 break; 5174 goto restart; 5175 } 5176 5177 /* The first skb to collapse is: 5178 * - not SYN/FIN and 5179 * - bloated or contains data before "start" or 5180 * overlaps to the next one and mptcp allow collapsing. 5181 */ 5182 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5183 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5184 before(TCP_SKB_CB(skb)->seq, start))) { 5185 end_of_skbs = false; 5186 break; 5187 } 5188 5189 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5190 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5191 end_of_skbs = false; 5192 break; 5193 } 5194 5195 /* Decided to skip this, advance start seq. */ 5196 start = TCP_SKB_CB(skb)->end_seq; 5197 } 5198 if (end_of_skbs || 5199 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5200 return; 5201 5202 __skb_queue_head_init(&tmp); 5203 5204 while (before(start, end)) { 5205 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5206 struct sk_buff *nskb; 5207 5208 nskb = alloc_skb(copy, GFP_ATOMIC); 5209 if (!nskb) 5210 break; 5211 5212 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5213#ifdef CONFIG_TLS_DEVICE 5214 nskb->decrypted = skb->decrypted; 5215#endif 5216 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5217 if (list) 5218 __skb_queue_before(list, skb, nskb); 5219 else 5220 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5221 skb_set_owner_r(nskb, sk); 5222 mptcp_skb_ext_move(nskb, skb); 5223 5224 /* Copy data, releasing collapsed skbs. */ 5225 while (copy > 0) { 5226 int offset = start - TCP_SKB_CB(skb)->seq; 5227 int size = TCP_SKB_CB(skb)->end_seq - start; 5228 5229 BUG_ON(offset < 0); 5230 if (size > 0) { 5231 size = min(copy, size); 5232 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5233 BUG(); 5234 TCP_SKB_CB(nskb)->end_seq += size; 5235 copy -= size; 5236 start += size; 5237 } 5238 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5239 skb = tcp_collapse_one(sk, skb, list, root); 5240 if (!skb || 5241 skb == tail || 5242 !mptcp_skb_can_collapse(nskb, skb) || 5243 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5244 goto end; 5245#ifdef CONFIG_TLS_DEVICE 5246 if (skb->decrypted != nskb->decrypted) 5247 goto end; 5248#endif 5249 } 5250 } 5251 } 5252end: 5253 skb_queue_walk_safe(&tmp, skb, n) 5254 tcp_rbtree_insert(root, skb); 5255} 5256 5257/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5258 * and tcp_collapse() them until all the queue is collapsed. 5259 */ 5260static void tcp_collapse_ofo_queue(struct sock *sk) 5261{ 5262 struct tcp_sock *tp = tcp_sk(sk); 5263 u32 range_truesize, sum_tiny = 0; 5264 struct sk_buff *skb, *head; 5265 u32 start, end; 5266 5267 skb = skb_rb_first(&tp->out_of_order_queue); 5268new_range: 5269 if (!skb) { 5270 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5271 return; 5272 } 5273 start = TCP_SKB_CB(skb)->seq; 5274 end = TCP_SKB_CB(skb)->end_seq; 5275 range_truesize = skb->truesize; 5276 5277 for (head = skb;;) { 5278 skb = skb_rb_next(skb); 5279 5280 /* Range is terminated when we see a gap or when 5281 * we are at the queue end. 5282 */ 5283 if (!skb || 5284 after(TCP_SKB_CB(skb)->seq, end) || 5285 before(TCP_SKB_CB(skb)->end_seq, start)) { 5286 /* Do not attempt collapsing tiny skbs */ 5287 if (range_truesize != head->truesize || 5288 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5289 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5290 head, skb, start, end); 5291 } else { 5292 sum_tiny += range_truesize; 5293 if (sum_tiny > sk->sk_rcvbuf >> 3) 5294 return; 5295 } 5296 goto new_range; 5297 } 5298 5299 range_truesize += skb->truesize; 5300 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5301 start = TCP_SKB_CB(skb)->seq; 5302 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5303 end = TCP_SKB_CB(skb)->end_seq; 5304 } 5305} 5306 5307/* 5308 * Clean the out-of-order queue to make room. 5309 * We drop high sequences packets to : 5310 * 1) Let a chance for holes to be filled. 5311 * 2) not add too big latencies if thousands of packets sit there. 5312 * (But if application shrinks SO_RCVBUF, we could still end up 5313 * freeing whole queue here) 5314 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5315 * 5316 * Return true if queue has shrunk. 5317 */ 5318static bool tcp_prune_ofo_queue(struct sock *sk) 5319{ 5320 struct tcp_sock *tp = tcp_sk(sk); 5321 struct rb_node *node, *prev; 5322 int goal; 5323 5324 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5325 return false; 5326 5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5328 goal = sk->sk_rcvbuf >> 3; 5329 node = &tp->ooo_last_skb->rbnode; 5330 do { 5331 prev = rb_prev(node); 5332 rb_erase(node, &tp->out_of_order_queue); 5333 goal -= rb_to_skb(node)->truesize; 5334 tcp_drop(sk, rb_to_skb(node)); 5335 if (!prev || goal <= 0) { 5336 sk_mem_reclaim(sk); 5337 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5338 !tcp_under_memory_pressure(sk)) 5339 break; 5340 goal = sk->sk_rcvbuf >> 3; 5341 } 5342 node = prev; 5343 } while (node); 5344 tp->ooo_last_skb = rb_to_skb(prev); 5345 5346 /* Reset SACK state. A conforming SACK implementation will 5347 * do the same at a timeout based retransmit. When a connection 5348 * is in a sad state like this, we care only about integrity 5349 * of the connection not performance. 5350 */ 5351 if (tp->rx_opt.sack_ok) 5352 tcp_sack_reset(&tp->rx_opt); 5353 return true; 5354} 5355 5356/* Reduce allocated memory if we can, trying to get 5357 * the socket within its memory limits again. 5358 * 5359 * Return less than zero if we should start dropping frames 5360 * until the socket owning process reads some of the data 5361 * to stabilize the situation. 5362 */ 5363static int tcp_prune_queue(struct sock *sk) 5364{ 5365 struct tcp_sock *tp = tcp_sk(sk); 5366 5367 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5368 5369 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5370 tcp_clamp_window(sk); 5371 else if (tcp_under_memory_pressure(sk)) 5372 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5373 5374 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5375 return 0; 5376 5377 tcp_collapse_ofo_queue(sk); 5378 if (!skb_queue_empty(&sk->sk_receive_queue)) 5379 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5380 skb_peek(&sk->sk_receive_queue), 5381 NULL, 5382 tp->copied_seq, tp->rcv_nxt); 5383 sk_mem_reclaim(sk); 5384 5385 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5386 return 0; 5387 5388 /* Collapsing did not help, destructive actions follow. 5389 * This must not ever occur. */ 5390 5391 tcp_prune_ofo_queue(sk); 5392 5393 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5394 return 0; 5395 5396 /* If we are really being abused, tell the caller to silently 5397 * drop receive data on the floor. It will get retransmitted 5398 * and hopefully then we'll have sufficient space. 5399 */ 5400 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5401 5402 /* Massive buffer overcommit. */ 5403 tp->pred_flags = 0; 5404 return -1; 5405} 5406 5407static bool tcp_should_expand_sndbuf(const struct sock *sk) 5408{ 5409 const struct tcp_sock *tp = tcp_sk(sk); 5410 5411 /* If the user specified a specific send buffer setting, do 5412 * not modify it. 5413 */ 5414 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5415 return false; 5416 5417 /* If we are under global TCP memory pressure, do not expand. */ 5418 if (tcp_under_memory_pressure(sk)) 5419 return false; 5420 5421 /* If we are under soft global TCP memory pressure, do not expand. */ 5422 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5423 return false; 5424 5425 /* If we filled the congestion window, do not expand. */ 5426 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5427 return false; 5428 5429 return true; 5430} 5431 5432static void tcp_new_space(struct sock *sk) 5433{ 5434 struct tcp_sock *tp = tcp_sk(sk); 5435 5436 if (tcp_should_expand_sndbuf(sk)) { 5437 tcp_sndbuf_expand(sk); 5438 tp->snd_cwnd_stamp = tcp_jiffies32; 5439 } 5440 5441 sk->sk_write_space(sk); 5442} 5443 5444/* Caller made space either from: 5445 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5446 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5447 * 5448 * We might be able to generate EPOLLOUT to the application if: 5449 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5450 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5451 * small enough that tcp_stream_memory_free() decides it 5452 * is time to generate EPOLLOUT. 5453 */ 5454void tcp_check_space(struct sock *sk) 5455{ 5456 /* pairs with tcp_poll() */ 5457 smp_mb(); 5458 if (sk->sk_socket && 5459 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5460 tcp_new_space(sk); 5461 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5462 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5463 } 5464} 5465 5466static inline void tcp_data_snd_check(struct sock *sk) 5467{ 5468 tcp_push_pending_frames(sk); 5469 tcp_check_space(sk); 5470} 5471 5472/* 5473 * Check if sending an ack is needed. 5474 */ 5475static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5476{ 5477 struct tcp_sock *tp = tcp_sk(sk); 5478 unsigned long rtt, delay; 5479 __u16 rcv_mss = inet_csk(sk)->icsk_ack.rcv_mss; 5480#ifdef CONFIG_LOWPOWER_PROTOCOL 5481 rcv_mss *= tcp_ack_num(sk); 5482#endif /* CONFIG_LOWPOWER_PROTOCOL */ 5483 /* More than one full frame received... */ 5484 if (((tp->rcv_nxt - tp->rcv_wup) > rcv_mss && 5485 /* ... and right edge of window advances far enough. 5486 * (tcp_recvmsg() will send ACK otherwise). 5487 * If application uses SO_RCVLOWAT, we want send ack now if 5488 * we have not received enough bytes to satisfy the condition. 5489 */ 5490 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5491 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5492 /* We ACK each frame or... */ 5493 tcp_in_quickack_mode(sk) || 5494 /* Protocol state mandates a one-time immediate ACK */ 5495 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5496send_now: 5497 tcp_send_ack(sk); 5498 return; 5499 } 5500 5501 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5502 tcp_send_delayed_ack(sk); 5503 return; 5504 } 5505 5506 if (!tcp_is_sack(tp) || 5507 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5508 goto send_now; 5509 5510 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5511 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5512 tp->dup_ack_counter = 0; 5513 } 5514 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5515 tp->dup_ack_counter++; 5516 goto send_now; 5517 } 5518 tp->compressed_ack++; 5519 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5520 return; 5521 5522 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5523 5524 rtt = tp->rcv_rtt_est.rtt_us; 5525 if (tp->srtt_us && tp->srtt_us < rtt) 5526 rtt = tp->srtt_us; 5527 5528 delay = min_t(unsigned long, 5529 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5530 rtt * (NSEC_PER_USEC >> 3)/20); 5531 sock_hold(sk); 5532 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5533 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5534 HRTIMER_MODE_REL_PINNED_SOFT); 5535} 5536 5537static inline void tcp_ack_snd_check(struct sock *sk) 5538{ 5539 if (!inet_csk_ack_scheduled(sk)) { 5540 /* We sent a data segment already. */ 5541 return; 5542 } 5543 __tcp_ack_snd_check(sk, 1); 5544} 5545 5546/* 5547 * This routine is only called when we have urgent data 5548 * signaled. Its the 'slow' part of tcp_urg. It could be 5549 * moved inline now as tcp_urg is only called from one 5550 * place. We handle URGent data wrong. We have to - as 5551 * BSD still doesn't use the correction from RFC961. 5552 * For 1003.1g we should support a new option TCP_STDURG to permit 5553 * either form (or just set the sysctl tcp_stdurg). 5554 */ 5555 5556static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5557{ 5558 struct tcp_sock *tp = tcp_sk(sk); 5559 u32 ptr = ntohs(th->urg_ptr); 5560 5561 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5562 ptr--; 5563 ptr += ntohl(th->seq); 5564 5565 /* Ignore urgent data that we've already seen and read. */ 5566 if (after(tp->copied_seq, ptr)) 5567 return; 5568 5569 /* Do not replay urg ptr. 5570 * 5571 * NOTE: interesting situation not covered by specs. 5572 * Misbehaving sender may send urg ptr, pointing to segment, 5573 * which we already have in ofo queue. We are not able to fetch 5574 * such data and will stay in TCP_URG_NOTYET until will be eaten 5575 * by recvmsg(). Seems, we are not obliged to handle such wicked 5576 * situations. But it is worth to think about possibility of some 5577 * DoSes using some hypothetical application level deadlock. 5578 */ 5579 if (before(ptr, tp->rcv_nxt)) 5580 return; 5581 5582 /* Do we already have a newer (or duplicate) urgent pointer? */ 5583 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5584 return; 5585 5586 /* Tell the world about our new urgent pointer. */ 5587 sk_send_sigurg(sk); 5588 5589 /* We may be adding urgent data when the last byte read was 5590 * urgent. To do this requires some care. We cannot just ignore 5591 * tp->copied_seq since we would read the last urgent byte again 5592 * as data, nor can we alter copied_seq until this data arrives 5593 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5594 * 5595 * NOTE. Double Dutch. Rendering to plain English: author of comment 5596 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5597 * and expect that both A and B disappear from stream. This is _wrong_. 5598 * Though this happens in BSD with high probability, this is occasional. 5599 * Any application relying on this is buggy. Note also, that fix "works" 5600 * only in this artificial test. Insert some normal data between A and B and we will 5601 * decline of BSD again. Verdict: it is better to remove to trap 5602 * buggy users. 5603 */ 5604 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5605 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5606 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5607 tp->copied_seq++; 5608 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5609 __skb_unlink(skb, &sk->sk_receive_queue); 5610 __kfree_skb(skb); 5611 } 5612 } 5613 5614 tp->urg_data = TCP_URG_NOTYET; 5615 WRITE_ONCE(tp->urg_seq, ptr); 5616 5617 /* Disable header prediction. */ 5618 tp->pred_flags = 0; 5619} 5620 5621/* This is the 'fast' part of urgent handling. */ 5622static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5623{ 5624 struct tcp_sock *tp = tcp_sk(sk); 5625 5626 /* Check if we get a new urgent pointer - normally not. */ 5627 if (th->urg) 5628 tcp_check_urg(sk, th); 5629 5630 /* Do we wait for any urgent data? - normally not... */ 5631 if (tp->urg_data == TCP_URG_NOTYET) { 5632 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5633 th->syn; 5634 5635 /* Is the urgent pointer pointing into this packet? */ 5636 if (ptr < skb->len) { 5637 u8 tmp; 5638 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5639 BUG(); 5640 tp->urg_data = TCP_URG_VALID | tmp; 5641 if (!sock_flag(sk, SOCK_DEAD)) 5642 sk->sk_data_ready(sk); 5643 } 5644 } 5645} 5646 5647/* Accept RST for rcv_nxt - 1 after a FIN. 5648 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5649 * FIN is sent followed by a RST packet. The RST is sent with the same 5650 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5651 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5652 * ACKs on the closed socket. In addition middleboxes can drop either the 5653 * challenge ACK or a subsequent RST. 5654 */ 5655static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5656{ 5657 struct tcp_sock *tp = tcp_sk(sk); 5658 5659 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5660 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5661 TCPF_CLOSING)); 5662} 5663 5664/* Does PAWS and seqno based validation of an incoming segment, flags will 5665 * play significant role here. 5666 */ 5667static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5668 const struct tcphdr *th, int syn_inerr) 5669{ 5670 struct tcp_sock *tp = tcp_sk(sk); 5671 bool rst_seq_match = false; 5672 5673 /* RFC1323: H1. Apply PAWS check first. */ 5674 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5675 tp->rx_opt.saw_tstamp && 5676 tcp_paws_discard(sk, skb)) { 5677 if (!th->rst) { 5678 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5679 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5680 LINUX_MIB_TCPACKSKIPPEDPAWS, 5681 &tp->last_oow_ack_time)) 5682 tcp_send_dupack(sk, skb); 5683 goto discard; 5684 } 5685 /* Reset is accepted even if it did not pass PAWS. */ 5686 } 5687 5688 /* Step 1: check sequence number */ 5689 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5690 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5691 * (RST) segments are validated by checking their SEQ-fields." 5692 * And page 69: "If an incoming segment is not acceptable, 5693 * an acknowledgment should be sent in reply (unless the RST 5694 * bit is set, if so drop the segment and return)". 5695 */ 5696 if (!th->rst) { 5697 if (th->syn) 5698 goto syn_challenge; 5699 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5700 LINUX_MIB_TCPACKSKIPPEDSEQ, 5701 &tp->last_oow_ack_time)) 5702 tcp_send_dupack(sk, skb); 5703 } else if (tcp_reset_check(sk, skb)) { 5704 tcp_reset(sk); 5705 } 5706 goto discard; 5707 } 5708 5709 /* Step 2: check RST bit */ 5710 if (th->rst) { 5711 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5712 * FIN and SACK too if available): 5713 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5714 * the right-most SACK block, 5715 * then 5716 * RESET the connection 5717 * else 5718 * Send a challenge ACK 5719 */ 5720 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5721 tcp_reset_check(sk, skb)) { 5722 rst_seq_match = true; 5723 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5724 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5725 int max_sack = sp[0].end_seq; 5726 int this_sack; 5727 5728 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5729 ++this_sack) { 5730 max_sack = after(sp[this_sack].end_seq, 5731 max_sack) ? 5732 sp[this_sack].end_seq : max_sack; 5733 } 5734 5735 if (TCP_SKB_CB(skb)->seq == max_sack) 5736 rst_seq_match = true; 5737 } 5738 5739 if (rst_seq_match) 5740 tcp_reset(sk); 5741 else { 5742 /* Disable TFO if RST is out-of-order 5743 * and no data has been received 5744 * for current active TFO socket 5745 */ 5746 if (tp->syn_fastopen && !tp->data_segs_in && 5747 sk->sk_state == TCP_ESTABLISHED) 5748 tcp_fastopen_active_disable(sk); 5749 tcp_send_challenge_ack(sk, skb); 5750 } 5751 goto discard; 5752 } 5753 5754 /* step 3: check security and precedence [ignored] */ 5755 5756 /* step 4: Check for a SYN 5757 * RFC 5961 4.2 : Send a challenge ack 5758 */ 5759 if (th->syn) { 5760syn_challenge: 5761 if (syn_inerr) 5762 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5764 tcp_send_challenge_ack(sk, skb); 5765 goto discard; 5766 } 5767 5768 bpf_skops_parse_hdr(sk, skb); 5769 5770 return true; 5771 5772discard: 5773 tcp_drop(sk, skb); 5774 return false; 5775} 5776 5777/* 5778 * TCP receive function for the ESTABLISHED state. 5779 * 5780 * It is split into a fast path and a slow path. The fast path is 5781 * disabled when: 5782 * - A zero window was announced from us - zero window probing 5783 * is only handled properly in the slow path. 5784 * - Out of order segments arrived. 5785 * - Urgent data is expected. 5786 * - There is no buffer space left 5787 * - Unexpected TCP flags/window values/header lengths are received 5788 * (detected by checking the TCP header against pred_flags) 5789 * - Data is sent in both directions. Fast path only supports pure senders 5790 * or pure receivers (this means either the sequence number or the ack 5791 * value must stay constant) 5792 * - Unexpected TCP option. 5793 * 5794 * When these conditions are not satisfied it drops into a standard 5795 * receive procedure patterned after RFC793 to handle all cases. 5796 * The first three cases are guaranteed by proper pred_flags setting, 5797 * the rest is checked inline. Fast processing is turned on in 5798 * tcp_data_queue when everything is OK. 5799 */ 5800void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5801{ 5802 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5803 struct tcp_sock *tp = tcp_sk(sk); 5804 unsigned int len = skb->len; 5805 5806 /* TCP congestion window tracking */ 5807 trace_tcp_probe(sk, skb); 5808 5809 tcp_mstamp_refresh(tp); 5810 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5811 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5812 /* 5813 * Header prediction. 5814 * The code loosely follows the one in the famous 5815 * "30 instruction TCP receive" Van Jacobson mail. 5816 * 5817 * Van's trick is to deposit buffers into socket queue 5818 * on a device interrupt, to call tcp_recv function 5819 * on the receive process context and checksum and copy 5820 * the buffer to user space. smart... 5821 * 5822 * Our current scheme is not silly either but we take the 5823 * extra cost of the net_bh soft interrupt processing... 5824 * We do checksum and copy also but from device to kernel. 5825 */ 5826 5827 tp->rx_opt.saw_tstamp = 0; 5828 5829 /* pred_flags is 0xS?10 << 16 + snd_wnd 5830 * if header_prediction is to be made 5831 * 'S' will always be tp->tcp_header_len >> 2 5832 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5833 * turn it off (when there are holes in the receive 5834 * space for instance) 5835 * PSH flag is ignored. 5836 */ 5837 5838 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5839 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5840 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5841 int tcp_header_len = tp->tcp_header_len; 5842 5843 /* Timestamp header prediction: tcp_header_len 5844 * is automatically equal to th->doff*4 due to pred_flags 5845 * match. 5846 */ 5847 5848 /* Check timestamp */ 5849 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5850 /* No? Slow path! */ 5851 if (!tcp_parse_aligned_timestamp(tp, th)) 5852 goto slow_path; 5853 5854 /* If PAWS failed, check it more carefully in slow path */ 5855 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5856 goto slow_path; 5857 5858 /* DO NOT update ts_recent here, if checksum fails 5859 * and timestamp was corrupted part, it will result 5860 * in a hung connection since we will drop all 5861 * future packets due to the PAWS test. 5862 */ 5863 } 5864 5865 if (len <= tcp_header_len) { 5866 /* Bulk data transfer: sender */ 5867 if (len == tcp_header_len) { 5868 /* Predicted packet is in window by definition. 5869 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5870 * Hence, check seq<=rcv_wup reduces to: 5871 */ 5872 if (tcp_header_len == 5873 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5874 tp->rcv_nxt == tp->rcv_wup) 5875 tcp_store_ts_recent(tp); 5876 5877 /* We know that such packets are checksummed 5878 * on entry. 5879 */ 5880 tcp_ack(sk, skb, 0); 5881 __kfree_skb(skb); 5882 tcp_data_snd_check(sk); 5883 /* When receiving pure ack in fast path, update 5884 * last ts ecr directly instead of calling 5885 * tcp_rcv_rtt_measure_ts() 5886 */ 5887 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5888 return; 5889 } else { /* Header too small */ 5890 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5891 goto discard; 5892 } 5893 } else { 5894 int eaten = 0; 5895 bool fragstolen = false; 5896 5897 if (tcp_checksum_complete(skb)) 5898 goto csum_error; 5899 5900 if ((int)skb->truesize > sk->sk_forward_alloc) 5901 goto step5; 5902 5903 /* Predicted packet is in window by definition. 5904 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5905 * Hence, check seq<=rcv_wup reduces to: 5906 */ 5907 if (tcp_header_len == 5908 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5909 tp->rcv_nxt == tp->rcv_wup) 5910 tcp_store_ts_recent(tp); 5911 5912 tcp_rcv_rtt_measure_ts(sk, skb); 5913 5914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5915 5916 /* Bulk data transfer: receiver */ 5917 __skb_pull(skb, tcp_header_len); 5918 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5919 5920 tcp_event_data_recv(sk, skb); 5921 5922 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5923 /* Well, only one small jumplet in fast path... */ 5924 tcp_ack(sk, skb, FLAG_DATA); 5925 tcp_data_snd_check(sk); 5926 if (!inet_csk_ack_scheduled(sk)) 5927 goto no_ack; 5928 } else { 5929 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5930 } 5931 5932 __tcp_ack_snd_check(sk, 0); 5933no_ack: 5934 if (eaten) 5935 kfree_skb_partial(skb, fragstolen); 5936 tcp_data_ready(sk); 5937 return; 5938 } 5939 } 5940 5941slow_path: 5942 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5943 goto csum_error; 5944 5945 if (!th->ack && !th->rst && !th->syn) 5946 goto discard; 5947 5948 /* 5949 * Standard slow path. 5950 */ 5951 5952 if (!tcp_validate_incoming(sk, skb, th, 1)) 5953 return; 5954 5955step5: 5956 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5957 goto discard; 5958 5959 tcp_rcv_rtt_measure_ts(sk, skb); 5960 5961 /* Process urgent data. */ 5962 tcp_urg(sk, skb, th); 5963 5964 /* step 7: process the segment text */ 5965 tcp_data_queue(sk, skb); 5966 5967 tcp_data_snd_check(sk); 5968 tcp_ack_snd_check(sk); 5969 return; 5970 5971csum_error: 5972 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5973 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5974 5975discard: 5976 tcp_drop(sk, skb); 5977} 5978EXPORT_SYMBOL(tcp_rcv_established); 5979 5980void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 5981{ 5982 struct inet_connection_sock *icsk = inet_csk(sk); 5983 struct tcp_sock *tp = tcp_sk(sk); 5984 5985 tcp_mtup_init(sk); 5986 icsk->icsk_af_ops->rebuild_header(sk); 5987 tcp_init_metrics(sk); 5988 5989 /* Initialize the congestion window to start the transfer. 5990 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5991 * retransmitted. In light of RFC6298 more aggressive 1sec 5992 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5993 * retransmission has occurred. 5994 */ 5995 if (tp->total_retrans > 1 && tp->undo_marker) 5996 tp->snd_cwnd = 1; 5997 else 5998 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5999 tp->snd_cwnd_stamp = tcp_jiffies32; 6000 6001 bpf_skops_established(sk, bpf_op, skb); 6002 /* Initialize congestion control unless BPF initialized it already: */ 6003 if (!icsk->icsk_ca_initialized) 6004 tcp_init_congestion_control(sk); 6005 tcp_init_buffer_space(sk); 6006} 6007 6008void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6009{ 6010 struct tcp_sock *tp = tcp_sk(sk); 6011 struct inet_connection_sock *icsk = inet_csk(sk); 6012 6013 tcp_set_state(sk, TCP_ESTABLISHED); 6014 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6015 6016 if (skb) { 6017 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6018 security_inet_conn_established(sk, skb); 6019 sk_mark_napi_id(sk, skb); 6020 } 6021 6022 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6023 6024 /* Prevent spurious tcp_cwnd_restart() on first data 6025 * packet. 6026 */ 6027 tp->lsndtime = tcp_jiffies32; 6028 6029 if (sock_flag(sk, SOCK_KEEPOPEN)) 6030 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6031 6032 if (!tp->rx_opt.snd_wscale) 6033 __tcp_fast_path_on(tp, tp->snd_wnd); 6034 else 6035 tp->pred_flags = 0; 6036} 6037 6038static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6039 struct tcp_fastopen_cookie *cookie) 6040{ 6041 struct tcp_sock *tp = tcp_sk(sk); 6042 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6043 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6044 bool syn_drop = false; 6045 6046 if (mss == tp->rx_opt.user_mss) { 6047 struct tcp_options_received opt; 6048 6049 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6050 tcp_clear_options(&opt); 6051 opt.user_mss = opt.mss_clamp = 0; 6052 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6053 mss = opt.mss_clamp; 6054 } 6055 6056 if (!tp->syn_fastopen) { 6057 /* Ignore an unsolicited cookie */ 6058 cookie->len = -1; 6059 } else if (tp->total_retrans) { 6060 /* SYN timed out and the SYN-ACK neither has a cookie nor 6061 * acknowledges data. Presumably the remote received only 6062 * the retransmitted (regular) SYNs: either the original 6063 * SYN-data or the corresponding SYN-ACK was dropped. 6064 */ 6065 syn_drop = (cookie->len < 0 && data); 6066 } else if (cookie->len < 0 && !tp->syn_data) { 6067 /* We requested a cookie but didn't get it. If we did not use 6068 * the (old) exp opt format then try so next time (try_exp=1). 6069 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6070 */ 6071 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6072 } 6073 6074 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6075 6076 if (data) { /* Retransmit unacked data in SYN */ 6077 if (tp->total_retrans) 6078 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6079 else 6080 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6081 skb_rbtree_walk_from(data) { 6082 if (__tcp_retransmit_skb(sk, data, 1)) 6083 break; 6084 } 6085 tcp_rearm_rto(sk); 6086 NET_INC_STATS(sock_net(sk), 6087 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6088 return true; 6089 } 6090 tp->syn_data_acked = tp->syn_data; 6091 if (tp->syn_data_acked) { 6092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6093 /* SYN-data is counted as two separate packets in tcp_ack() */ 6094 if (tp->delivered > 1) 6095 --tp->delivered; 6096 } 6097 6098 tcp_fastopen_add_skb(sk, synack); 6099 6100 return false; 6101} 6102 6103static void smc_check_reset_syn(struct tcp_sock *tp) 6104{ 6105#if IS_ENABLED(CONFIG_SMC) 6106 if (static_branch_unlikely(&tcp_have_smc)) { 6107 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6108 tp->syn_smc = 0; 6109 } 6110#endif 6111} 6112 6113static void tcp_try_undo_spurious_syn(struct sock *sk) 6114{ 6115 struct tcp_sock *tp = tcp_sk(sk); 6116 u32 syn_stamp; 6117 6118 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6119 * spurious if the ACK's timestamp option echo value matches the 6120 * original SYN timestamp. 6121 */ 6122 syn_stamp = tp->retrans_stamp; 6123 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6124 syn_stamp == tp->rx_opt.rcv_tsecr) 6125 tp->undo_marker = 0; 6126} 6127 6128static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6129 const struct tcphdr *th) 6130{ 6131 struct inet_connection_sock *icsk = inet_csk(sk); 6132 struct tcp_sock *tp = tcp_sk(sk); 6133 struct tcp_fastopen_cookie foc = { .len = -1 }; 6134 int saved_clamp = tp->rx_opt.mss_clamp; 6135 bool fastopen_fail; 6136 6137 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6138 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6139 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6140 6141 if (th->ack) { 6142 /* rfc793: 6143 * "If the state is SYN-SENT then 6144 * first check the ACK bit 6145 * If the ACK bit is set 6146 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6147 * a reset (unless the RST bit is set, if so drop 6148 * the segment and return)" 6149 */ 6150 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6151 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6152 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6153 if (icsk->icsk_retransmits == 0) 6154 inet_csk_reset_xmit_timer(sk, 6155 ICSK_TIME_RETRANS, 6156 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6157 goto reset_and_undo; 6158 } 6159 6160 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6161 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6162 tcp_time_stamp(tp))) { 6163 NET_INC_STATS(sock_net(sk), 6164 LINUX_MIB_PAWSACTIVEREJECTED); 6165 goto reset_and_undo; 6166 } 6167 6168 /* Now ACK is acceptable. 6169 * 6170 * "If the RST bit is set 6171 * If the ACK was acceptable then signal the user "error: 6172 * connection reset", drop the segment, enter CLOSED state, 6173 * delete TCB, and return." 6174 */ 6175 6176 if (th->rst) { 6177 tcp_reset(sk); 6178 goto discard; 6179 } 6180 6181 /* rfc793: 6182 * "fifth, if neither of the SYN or RST bits is set then 6183 * drop the segment and return." 6184 * 6185 * See note below! 6186 * --ANK(990513) 6187 */ 6188 if (!th->syn) 6189 goto discard_and_undo; 6190 6191 /* rfc793: 6192 * "If the SYN bit is on ... 6193 * are acceptable then ... 6194 * (our SYN has been ACKed), change the connection 6195 * state to ESTABLISHED..." 6196 */ 6197 6198 tcp_ecn_rcv_synack(tp, th); 6199 6200 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6201 tcp_try_undo_spurious_syn(sk); 6202 tcp_ack(sk, skb, FLAG_SLOWPATH); 6203 6204 /* Ok.. it's good. Set up sequence numbers and 6205 * move to established. 6206 */ 6207 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6208 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6209 6210 /* RFC1323: The window in SYN & SYN/ACK segments is 6211 * never scaled. 6212 */ 6213 tp->snd_wnd = ntohs(th->window); 6214 6215 if (!tp->rx_opt.wscale_ok) { 6216 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6217 tp->window_clamp = min(tp->window_clamp, 65535U); 6218 } 6219 6220 if (tp->rx_opt.saw_tstamp) { 6221 tp->rx_opt.tstamp_ok = 1; 6222 tp->tcp_header_len = 6223 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6224 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6225 tcp_store_ts_recent(tp); 6226 } else { 6227 tp->tcp_header_len = sizeof(struct tcphdr); 6228 } 6229 6230 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6231 tcp_initialize_rcv_mss(sk); 6232 6233 /* Remember, tcp_poll() does not lock socket! 6234 * Change state from SYN-SENT only after copied_seq 6235 * is initialized. */ 6236 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6237 6238 smc_check_reset_syn(tp); 6239 6240 smp_mb(); 6241 6242 tcp_finish_connect(sk, skb); 6243 6244 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6245 tcp_rcv_fastopen_synack(sk, skb, &foc); 6246 6247 if (!sock_flag(sk, SOCK_DEAD)) { 6248 sk->sk_state_change(sk); 6249 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6250 } 6251 if (fastopen_fail) 6252 return -1; 6253 if (sk->sk_write_pending || 6254 icsk->icsk_accept_queue.rskq_defer_accept || 6255 inet_csk_in_pingpong_mode(sk)) { 6256 /* Save one ACK. Data will be ready after 6257 * several ticks, if write_pending is set. 6258 * 6259 * It may be deleted, but with this feature tcpdumps 6260 * look so _wonderfully_ clever, that I was not able 6261 * to stand against the temptation 8) --ANK 6262 */ 6263 inet_csk_schedule_ack(sk); 6264 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6265 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6266 TCP_DELACK_MAX, TCP_RTO_MAX); 6267 6268discard: 6269 tcp_drop(sk, skb); 6270 return 0; 6271 } else { 6272 tcp_send_ack(sk); 6273 } 6274 return -1; 6275 } 6276 6277 /* No ACK in the segment */ 6278 6279 if (th->rst) { 6280 /* rfc793: 6281 * "If the RST bit is set 6282 * 6283 * Otherwise (no ACK) drop the segment and return." 6284 */ 6285 6286 goto discard_and_undo; 6287 } 6288 6289 /* PAWS check. */ 6290 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6291 tcp_paws_reject(&tp->rx_opt, 0)) 6292 goto discard_and_undo; 6293 6294 if (th->syn) { 6295 /* We see SYN without ACK. It is attempt of 6296 * simultaneous connect with crossed SYNs. 6297 * Particularly, it can be connect to self. 6298 */ 6299 tcp_set_state(sk, TCP_SYN_RECV); 6300 6301 if (tp->rx_opt.saw_tstamp) { 6302 tp->rx_opt.tstamp_ok = 1; 6303 tcp_store_ts_recent(tp); 6304 tp->tcp_header_len = 6305 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6306 } else { 6307 tp->tcp_header_len = sizeof(struct tcphdr); 6308 } 6309 6310 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6311 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6312 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6313 6314 /* RFC1323: The window in SYN & SYN/ACK segments is 6315 * never scaled. 6316 */ 6317 tp->snd_wnd = ntohs(th->window); 6318 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6319 tp->max_window = tp->snd_wnd; 6320 6321 tcp_ecn_rcv_syn(tp, th); 6322 6323 tcp_mtup_init(sk); 6324 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6325 tcp_initialize_rcv_mss(sk); 6326 6327 tcp_send_synack(sk); 6328#if 0 6329 /* Note, we could accept data and URG from this segment. 6330 * There are no obstacles to make this (except that we must 6331 * either change tcp_recvmsg() to prevent it from returning data 6332 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6333 * 6334 * However, if we ignore data in ACKless segments sometimes, 6335 * we have no reasons to accept it sometimes. 6336 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6337 * is not flawless. So, discard packet for sanity. 6338 * Uncomment this return to process the data. 6339 */ 6340 return -1; 6341#else 6342 goto discard; 6343#endif 6344 } 6345 /* "fifth, if neither of the SYN or RST bits is set then 6346 * drop the segment and return." 6347 */ 6348 6349discard_and_undo: 6350 tcp_clear_options(&tp->rx_opt); 6351 tp->rx_opt.mss_clamp = saved_clamp; 6352 goto discard; 6353 6354reset_and_undo: 6355 tcp_clear_options(&tp->rx_opt); 6356 tp->rx_opt.mss_clamp = saved_clamp; 6357 return 1; 6358} 6359 6360static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6361{ 6362 struct tcp_sock *tp = tcp_sk(sk); 6363 struct request_sock *req; 6364 6365 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6366 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6367 */ 6368 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6369 tcp_try_undo_recovery(sk); 6370 6371 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6372 tp->retrans_stamp = 0; 6373 inet_csk(sk)->icsk_retransmits = 0; 6374 6375 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6376 * we no longer need req so release it. 6377 */ 6378 req = rcu_dereference_protected(tp->fastopen_rsk, 6379 lockdep_sock_is_held(sk)); 6380 reqsk_fastopen_remove(sk, req, false); 6381 6382 /* Re-arm the timer because data may have been sent out. 6383 * This is similar to the regular data transmission case 6384 * when new data has just been ack'ed. 6385 * 6386 * (TFO) - we could try to be more aggressive and 6387 * retransmitting any data sooner based on when they 6388 * are sent out. 6389 */ 6390 tcp_rearm_rto(sk); 6391} 6392 6393/* 6394 * This function implements the receiving procedure of RFC 793 for 6395 * all states except ESTABLISHED and TIME_WAIT. 6396 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6397 * address independent. 6398 */ 6399 6400int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6401{ 6402 struct tcp_sock *tp = tcp_sk(sk); 6403 struct inet_connection_sock *icsk = inet_csk(sk); 6404 const struct tcphdr *th = tcp_hdr(skb); 6405 struct request_sock *req; 6406 int queued = 0; 6407 bool acceptable; 6408 6409 switch (sk->sk_state) { 6410 case TCP_CLOSE: 6411 goto discard; 6412 6413 case TCP_LISTEN: 6414 if (th->ack) 6415 return 1; 6416 6417 if (th->rst) 6418 goto discard; 6419 6420 if (th->syn) { 6421 if (th->fin) 6422 goto discard; 6423 /* It is possible that we process SYN packets from backlog, 6424 * so we need to make sure to disable BH and RCU right there. 6425 */ 6426 rcu_read_lock(); 6427 local_bh_disable(); 6428 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6429 local_bh_enable(); 6430 rcu_read_unlock(); 6431 6432 if (!acceptable) 6433 return 1; 6434 consume_skb(skb); 6435 return 0; 6436 } 6437 goto discard; 6438 6439 case TCP_SYN_SENT: 6440 tp->rx_opt.saw_tstamp = 0; 6441 tcp_mstamp_refresh(tp); 6442 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6443 if (queued >= 0) 6444 return queued; 6445 6446 /* Do step6 onward by hand. */ 6447 tcp_urg(sk, skb, th); 6448 __kfree_skb(skb); 6449 tcp_data_snd_check(sk); 6450 return 0; 6451 } 6452 6453 tcp_mstamp_refresh(tp); 6454 tp->rx_opt.saw_tstamp = 0; 6455 req = rcu_dereference_protected(tp->fastopen_rsk, 6456 lockdep_sock_is_held(sk)); 6457 if (req) { 6458 bool req_stolen; 6459 6460 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6461 sk->sk_state != TCP_FIN_WAIT1); 6462 6463 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6464 goto discard; 6465 } 6466 6467 if (!th->ack && !th->rst && !th->syn) 6468 goto discard; 6469 6470 if (!tcp_validate_incoming(sk, skb, th, 0)) 6471 return 0; 6472 6473 /* step 5: check the ACK field */ 6474 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6475 FLAG_UPDATE_TS_RECENT | 6476 FLAG_NO_CHALLENGE_ACK) > 0; 6477 6478 if (!acceptable) { 6479 if (sk->sk_state == TCP_SYN_RECV) 6480 return 1; /* send one RST */ 6481 tcp_send_challenge_ack(sk, skb); 6482 goto discard; 6483 } 6484 switch (sk->sk_state) { 6485 case TCP_SYN_RECV: 6486 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6487 if (!tp->srtt_us) 6488 tcp_synack_rtt_meas(sk, req); 6489 6490 if (req) { 6491 tcp_rcv_synrecv_state_fastopen(sk); 6492 } else { 6493 tcp_try_undo_spurious_syn(sk); 6494 tp->retrans_stamp = 0; 6495 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6496 skb); 6497 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6498 } 6499 smp_mb(); 6500 tcp_set_state(sk, TCP_ESTABLISHED); 6501 sk->sk_state_change(sk); 6502 6503 /* Note, that this wakeup is only for marginal crossed SYN case. 6504 * Passively open sockets are not waked up, because 6505 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6506 */ 6507 if (sk->sk_socket) 6508 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6509 6510 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6511 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6512 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6513 6514 if (tp->rx_opt.tstamp_ok) 6515 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6516 6517 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6518 tcp_update_pacing_rate(sk); 6519 6520 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6521 tp->lsndtime = tcp_jiffies32; 6522 6523 tcp_initialize_rcv_mss(sk); 6524 tcp_fast_path_on(tp); 6525 if (sk->sk_shutdown & SEND_SHUTDOWN) 6526 tcp_shutdown(sk, SEND_SHUTDOWN); 6527 break; 6528 6529 case TCP_FIN_WAIT1: { 6530 int tmo; 6531 6532 if (req) 6533 tcp_rcv_synrecv_state_fastopen(sk); 6534 6535 if (tp->snd_una != tp->write_seq) 6536 break; 6537 6538 tcp_set_state(sk, TCP_FIN_WAIT2); 6539 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6540 6541 sk_dst_confirm(sk); 6542 6543 if (!sock_flag(sk, SOCK_DEAD)) { 6544 /* Wake up lingering close() */ 6545 sk->sk_state_change(sk); 6546 break; 6547 } 6548 6549 if (tp->linger2 < 0) { 6550 tcp_done(sk); 6551 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6552 return 1; 6553 } 6554 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6555 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6556 /* Receive out of order FIN after close() */ 6557 if (tp->syn_fastopen && th->fin) 6558 tcp_fastopen_active_disable(sk); 6559 tcp_done(sk); 6560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6561 return 1; 6562 } 6563 6564 tmo = tcp_fin_time(sk); 6565 if (tmo > TCP_TIMEWAIT_LEN) { 6566 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6567 } else if (th->fin || sock_owned_by_user(sk)) { 6568 /* Bad case. We could lose such FIN otherwise. 6569 * It is not a big problem, but it looks confusing 6570 * and not so rare event. We still can lose it now, 6571 * if it spins in bh_lock_sock(), but it is really 6572 * marginal case. 6573 */ 6574 inet_csk_reset_keepalive_timer(sk, tmo); 6575 } else { 6576 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6577 goto discard; 6578 } 6579 break; 6580 } 6581 6582 case TCP_CLOSING: 6583 if (tp->snd_una == tp->write_seq) { 6584 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6585 goto discard; 6586 } 6587 break; 6588 6589 case TCP_LAST_ACK: 6590 if (tp->snd_una == tp->write_seq) { 6591 tcp_update_metrics(sk); 6592 tcp_done(sk); 6593 goto discard; 6594 } 6595 break; 6596 } 6597 6598 /* step 6: check the URG bit */ 6599 tcp_urg(sk, skb, th); 6600 6601 /* step 7: process the segment text */ 6602 switch (sk->sk_state) { 6603 case TCP_CLOSE_WAIT: 6604 case TCP_CLOSING: 6605 case TCP_LAST_ACK: 6606 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6607 if (sk_is_mptcp(sk)) 6608 mptcp_incoming_options(sk, skb); 6609 break; 6610 } 6611 fallthrough; 6612 case TCP_FIN_WAIT1: 6613 case TCP_FIN_WAIT2: 6614 /* RFC 793 says to queue data in these states, 6615 * RFC 1122 says we MUST send a reset. 6616 * BSD 4.4 also does reset. 6617 */ 6618 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6619 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6620 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6622 tcp_reset(sk); 6623 return 1; 6624 } 6625 } 6626 fallthrough; 6627 case TCP_ESTABLISHED: 6628 tcp_data_queue(sk, skb); 6629 queued = 1; 6630 break; 6631 } 6632 6633 /* tcp_data could move socket to TIME-WAIT */ 6634 if (sk->sk_state != TCP_CLOSE) { 6635 tcp_data_snd_check(sk); 6636 tcp_ack_snd_check(sk); 6637 } 6638 6639 if (!queued) { 6640discard: 6641 tcp_drop(sk, skb); 6642 } 6643 return 0; 6644} 6645EXPORT_SYMBOL(tcp_rcv_state_process); 6646 6647static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6648{ 6649 struct inet_request_sock *ireq = inet_rsk(req); 6650 6651 if (family == AF_INET) 6652 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6653 &ireq->ir_rmt_addr, port); 6654#if IS_ENABLED(CONFIG_IPV6) 6655 else if (family == AF_INET6) 6656 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6657 &ireq->ir_v6_rmt_addr, port); 6658#endif 6659} 6660 6661/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6662 * 6663 * If we receive a SYN packet with these bits set, it means a 6664 * network is playing bad games with TOS bits. In order to 6665 * avoid possible false congestion notifications, we disable 6666 * TCP ECN negotiation. 6667 * 6668 * Exception: tcp_ca wants ECN. This is required for DCTCP 6669 * congestion control: Linux DCTCP asserts ECT on all packets, 6670 * including SYN, which is most optimal solution; however, 6671 * others, such as FreeBSD do not. 6672 * 6673 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6674 * set, indicating the use of a future TCP extension (such as AccECN). See 6675 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6676 * extensions. 6677 */ 6678static void tcp_ecn_create_request(struct request_sock *req, 6679 const struct sk_buff *skb, 6680 const struct sock *listen_sk, 6681 const struct dst_entry *dst) 6682{ 6683 const struct tcphdr *th = tcp_hdr(skb); 6684 const struct net *net = sock_net(listen_sk); 6685 bool th_ecn = th->ece && th->cwr; 6686 bool ect, ecn_ok; 6687 u32 ecn_ok_dst; 6688 6689 if (!th_ecn) 6690 return; 6691 6692 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6693 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6694 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6695 6696 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6697 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6698 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6699 inet_rsk(req)->ecn_ok = 1; 6700} 6701 6702static void tcp_openreq_init(struct request_sock *req, 6703 const struct tcp_options_received *rx_opt, 6704 struct sk_buff *skb, const struct sock *sk) 6705{ 6706 struct inet_request_sock *ireq = inet_rsk(req); 6707 6708 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6709 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6710 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6711 tcp_rsk(req)->snt_synack = 0; 6712 tcp_rsk(req)->last_oow_ack_time = 0; 6713 req->mss = rx_opt->mss_clamp; 6714 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6715 ireq->tstamp_ok = rx_opt->tstamp_ok; 6716 ireq->sack_ok = rx_opt->sack_ok; 6717 ireq->snd_wscale = rx_opt->snd_wscale; 6718 ireq->wscale_ok = rx_opt->wscale_ok; 6719 ireq->acked = 0; 6720 ireq->ecn_ok = 0; 6721 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6722 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6723 ireq->ir_mark = inet_request_mark(sk, skb); 6724#if IS_ENABLED(CONFIG_SMC) 6725 ireq->smc_ok = rx_opt->smc_ok; 6726#endif 6727} 6728 6729struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6730 struct sock *sk_listener, 6731 bool attach_listener) 6732{ 6733 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6734 attach_listener); 6735 6736 if (req) { 6737 struct inet_request_sock *ireq = inet_rsk(req); 6738 6739 ireq->ireq_opt = NULL; 6740#if IS_ENABLED(CONFIG_IPV6) 6741 ireq->pktopts = NULL; 6742#endif 6743 atomic64_set(&ireq->ir_cookie, 0); 6744 ireq->ireq_state = TCP_NEW_SYN_RECV; 6745 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6746 ireq->ireq_family = sk_listener->sk_family; 6747 } 6748 6749 return req; 6750} 6751EXPORT_SYMBOL(inet_reqsk_alloc); 6752 6753/* 6754 * Return true if a syncookie should be sent 6755 */ 6756static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6757{ 6758 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6759 const char *msg = "Dropping request"; 6760 struct net *net = sock_net(sk); 6761 bool want_cookie = false; 6762 u8 syncookies; 6763 6764 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6765 6766#ifdef CONFIG_SYN_COOKIES 6767 if (syncookies) { 6768 msg = "Sending cookies"; 6769 want_cookie = true; 6770 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6771 } else 6772#endif 6773 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6774 6775 if (!queue->synflood_warned && syncookies != 2 && 6776 xchg(&queue->synflood_warned, 1) == 0) 6777 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6778 proto, sk->sk_num, msg); 6779 6780 return want_cookie; 6781} 6782 6783static void tcp_reqsk_record_syn(const struct sock *sk, 6784 struct request_sock *req, 6785 const struct sk_buff *skb) 6786{ 6787 if (tcp_sk(sk)->save_syn) { 6788 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6789 struct saved_syn *saved_syn; 6790 u32 mac_hdrlen; 6791 void *base; 6792 6793 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6794 base = skb_mac_header(skb); 6795 mac_hdrlen = skb_mac_header_len(skb); 6796 len += mac_hdrlen; 6797 } else { 6798 base = skb_network_header(skb); 6799 mac_hdrlen = 0; 6800 } 6801 6802 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6803 GFP_ATOMIC); 6804 if (saved_syn) { 6805 saved_syn->mac_hdrlen = mac_hdrlen; 6806 saved_syn->network_hdrlen = skb_network_header_len(skb); 6807 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6808 memcpy(saved_syn->data, base, len); 6809 req->saved_syn = saved_syn; 6810 } 6811 } 6812} 6813 6814/* If a SYN cookie is required and supported, returns a clamped MSS value to be 6815 * used for SYN cookie generation. 6816 */ 6817u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6818 const struct tcp_request_sock_ops *af_ops, 6819 struct sock *sk, struct tcphdr *th) 6820{ 6821 struct tcp_sock *tp = tcp_sk(sk); 6822 u16 mss; 6823 6824 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6825 !inet_csk_reqsk_queue_is_full(sk)) 6826 return 0; 6827 6828 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6829 return 0; 6830 6831 if (sk_acceptq_is_full(sk)) { 6832 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6833 return 0; 6834 } 6835 6836 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6837 if (!mss) 6838 mss = af_ops->mss_clamp; 6839 6840 return mss; 6841} 6842EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6843 6844int tcp_conn_request(struct request_sock_ops *rsk_ops, 6845 const struct tcp_request_sock_ops *af_ops, 6846 struct sock *sk, struct sk_buff *skb) 6847{ 6848 struct tcp_fastopen_cookie foc = { .len = -1 }; 6849 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6850 struct tcp_options_received tmp_opt; 6851 struct tcp_sock *tp = tcp_sk(sk); 6852 struct net *net = sock_net(sk); 6853 struct sock *fastopen_sk = NULL; 6854 struct request_sock *req; 6855 bool want_cookie = false; 6856 struct dst_entry *dst; 6857 struct flowi fl; 6858 u8 syncookies; 6859 6860 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6861 6862 /* TW buckets are converted to open requests without 6863 * limitations, they conserve resources and peer is 6864 * evidently real one. 6865 */ 6866 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6867 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6868 if (!want_cookie) 6869 goto drop; 6870 } 6871 6872 if (sk_acceptq_is_full(sk)) { 6873 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6874 goto drop; 6875 } 6876 6877 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6878 if (!req) 6879 goto drop; 6880 6881 req->syncookie = want_cookie; 6882 tcp_rsk(req)->af_specific = af_ops; 6883 tcp_rsk(req)->ts_off = 0; 6884#if IS_ENABLED(CONFIG_MPTCP) 6885 tcp_rsk(req)->is_mptcp = 0; 6886#endif 6887 6888 tcp_clear_options(&tmp_opt); 6889 tmp_opt.mss_clamp = af_ops->mss_clamp; 6890 tmp_opt.user_mss = tp->rx_opt.user_mss; 6891 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6892 want_cookie ? NULL : &foc); 6893 6894 if (want_cookie && !tmp_opt.saw_tstamp) 6895 tcp_clear_options(&tmp_opt); 6896 6897 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6898 tmp_opt.smc_ok = 0; 6899 6900 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6901 tcp_openreq_init(req, &tmp_opt, skb, sk); 6902 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6903 6904 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6905 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6906 6907 af_ops->init_req(req, sk, skb); 6908 6909 if (security_inet_conn_request(sk, skb, req)) 6910 goto drop_and_free; 6911 6912 if (tmp_opt.tstamp_ok) 6913 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6914 6915 dst = af_ops->route_req(sk, &fl, req); 6916 if (!dst) 6917 goto drop_and_free; 6918 6919 if (!want_cookie && !isn) { 6920 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 6921 6922 /* Kill the following clause, if you dislike this way. */ 6923 if (!syncookies && 6924 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6925 (max_syn_backlog >> 2)) && 6926 !tcp_peer_is_proven(req, dst)) { 6927 /* Without syncookies last quarter of 6928 * backlog is filled with destinations, 6929 * proven to be alive. 6930 * It means that we continue to communicate 6931 * to destinations, already remembered 6932 * to the moment of synflood. 6933 */ 6934 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6935 rsk_ops->family); 6936 goto drop_and_release; 6937 } 6938 6939 isn = af_ops->init_seq(skb); 6940 } 6941 6942 tcp_ecn_create_request(req, skb, sk, dst); 6943 6944 if (want_cookie) { 6945 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6946 if (!tmp_opt.tstamp_ok) 6947 inet_rsk(req)->ecn_ok = 0; 6948 } 6949 6950 tcp_rsk(req)->snt_isn = isn; 6951 tcp_rsk(req)->txhash = net_tx_rndhash(); 6952 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6953 tcp_openreq_init_rwin(req, sk, dst); 6954 sk_rx_queue_set(req_to_sk(req), skb); 6955 if (!want_cookie) { 6956 tcp_reqsk_record_syn(sk, req, skb); 6957 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6958 } 6959 if (fastopen_sk) { 6960 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6961 &foc, TCP_SYNACK_FASTOPEN, skb); 6962 /* Add the child socket directly into the accept queue */ 6963 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6964 reqsk_fastopen_remove(fastopen_sk, req, false); 6965 bh_unlock_sock(fastopen_sk); 6966 sock_put(fastopen_sk); 6967 goto drop_and_free; 6968 } 6969 sk->sk_data_ready(sk); 6970 bh_unlock_sock(fastopen_sk); 6971 sock_put(fastopen_sk); 6972 } else { 6973 tcp_rsk(req)->tfo_listener = false; 6974 if (!want_cookie) 6975 inet_csk_reqsk_queue_hash_add(sk, req, 6976 tcp_timeout_init((struct sock *)req)); 6977 af_ops->send_synack(sk, dst, &fl, req, &foc, 6978 !want_cookie ? TCP_SYNACK_NORMAL : 6979 TCP_SYNACK_COOKIE, 6980 skb); 6981 if (want_cookie) { 6982 reqsk_free(req); 6983 return 0; 6984 } 6985 } 6986 reqsk_put(req); 6987 return 0; 6988 6989drop_and_release: 6990 dst_release(dst); 6991drop_and_free: 6992 __reqsk_free(req); 6993drop: 6994 tcp_listendrop(sk); 6995 return 0; 6996} 6997EXPORT_SYMBOL(tcp_conn_request); 6998