xref: /kernel/linux/linux-5.10/net/ipv4/tcp_bbr.c (revision 8c2ecf20)
1/* Bottleneck Bandwidth and RTT (BBR) congestion control
2 *
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
5 *
6 *   On each ACK, update our model of the network path:
7 *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 *      min_rtt = windowed_min(rtt, 10 seconds)
9 *   pacing_rate = pacing_gain * bottleneck_bandwidth
10 *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11 *
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
16 *
17 * Here is a state transition diagram for BBR:
18 *
19 *             |
20 *             V
21 *    +---> STARTUP  ----+
22 *    |        |         |
23 *    |        V         |
24 *    |      DRAIN   ----+
25 *    |        |         |
26 *    |        V         |
27 *    +---> PROBE_BW ----+
28 *    |      ^    |      |
29 *    |      |    |      |
30 *    |      +----+      |
31 *    |                  |
32 *    +---- PROBE_RTT <--+
33 *
34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37 * A long-lived BBR flow spends the vast majority of its time remaining
38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39 * in a fair manner, with a small, bounded queue. *If* a flow has been
40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45 * otherwise we enter STARTUP to try to fill the pipe.
46 *
47 * BBR is described in detail in:
48 *   "BBR: Congestion-Based Congestion Control",
49 *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50 *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51 *
52 * There is a public e-mail list for discussing BBR development and testing:
53 *   https://groups.google.com/forum/#!forum/bbr-dev
54 *
55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56 * otherwise TCP stack falls back to an internal pacing using one high
57 * resolution timer per TCP socket and may use more resources.
58 */
59#include <linux/module.h>
60#include <net/tcp.h>
61#include <linux/inet_diag.h>
62#include <linux/inet.h>
63#include <linux/random.h>
64#include <linux/win_minmax.h>
65
66/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69 * Since the minimum window is >=4 packets, the lower bound isn't
70 * an issue. The upper bound isn't an issue with existing technologies.
71 */
72#define BW_SCALE 24
73#define BW_UNIT (1 << BW_SCALE)
74
75#define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
76#define BBR_UNIT (1 << BBR_SCALE)
77
78/* BBR has the following modes for deciding how fast to send: */
79enum bbr_mode {
80	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
81	BBR_DRAIN,	/* drain any queue created during startup */
82	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
83	BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
84};
85
86/* BBR congestion control block */
87struct bbr {
88	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
89	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
90	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
91	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
92	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
93	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
94	u64	cycle_mstamp;	     /* time of this cycle phase start */
95	u32     mode:3,		     /* current bbr_mode in state machine */
96		prev_ca_state:3,     /* CA state on previous ACK */
97		packet_conservation:1,  /* use packet conservation? */
98		round_start:1,	     /* start of packet-timed tx->ack round? */
99		idle_restart:1,	     /* restarting after idle? */
100		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
101		unused:13,
102		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
103		lt_rtt_cnt:7,	     /* round trips in long-term interval */
104		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
105	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
106	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
107	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
108	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
109	u32	pacing_gain:10,	/* current gain for setting pacing rate */
110		cwnd_gain:10,	/* current gain for setting cwnd */
111		full_bw_reached:1,   /* reached full bw in Startup? */
112		full_bw_cnt:2,	/* number of rounds without large bw gains */
113		cycle_idx:3,	/* current index in pacing_gain cycle array */
114		has_seen_rtt:1, /* have we seen an RTT sample yet? */
115		unused_b:5;
116	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
117	u32	full_bw;	/* recent bw, to estimate if pipe is full */
118
119	/* For tracking ACK aggregation: */
120	u64	ack_epoch_mstamp;	/* start of ACK sampling epoch */
121	u16	extra_acked[2];		/* max excess data ACKed in epoch */
122	u32	ack_epoch_acked:20,	/* packets (S)ACKed in sampling epoch */
123		extra_acked_win_rtts:5,	/* age of extra_acked, in round trips */
124		extra_acked_win_idx:1,	/* current index in extra_acked array */
125		unused_c:6;
126};
127
128#define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
129
130/* Window length of bw filter (in rounds): */
131static const int bbr_bw_rtts = CYCLE_LEN + 2;
132/* Window length of min_rtt filter (in sec): */
133static const u32 bbr_min_rtt_win_sec = 10;
134/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
135static const u32 bbr_probe_rtt_mode_ms = 200;
136/* Skip TSO below the following bandwidth (bits/sec): */
137static const int bbr_min_tso_rate = 1200000;
138
139/* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
140 * In order to help drive the network toward lower queues and low latency while
141 * maintaining high utilization, the average pacing rate aims to be slightly
142 * lower than the estimated bandwidth. This is an important aspect of the
143 * design.
144 */
145static const int bbr_pacing_margin_percent = 1;
146
147/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
148 * that will allow a smoothly increasing pacing rate that will double each RTT
149 * and send the same number of packets per RTT that an un-paced, slow-starting
150 * Reno or CUBIC flow would:
151 */
152static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
153/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
154 * the queue created in BBR_STARTUP in a single round:
155 */
156static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
157/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
158static const int bbr_cwnd_gain  = BBR_UNIT * 2;
159/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
160static const int bbr_pacing_gain[] = {
161	BBR_UNIT * 5 / 4,	/* probe for more available bw */
162	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
163	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
164	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
165};
166/* Randomize the starting gain cycling phase over N phases: */
167static const u32 bbr_cycle_rand = 7;
168
169/* Try to keep at least this many packets in flight, if things go smoothly. For
170 * smooth functioning, a sliding window protocol ACKing every other packet
171 * needs at least 4 packets in flight:
172 */
173static const u32 bbr_cwnd_min_target = 4;
174
175/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
176/* If bw has increased significantly (1.25x), there may be more bw available: */
177static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
178/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
179static const u32 bbr_full_bw_cnt = 3;
180
181/* "long-term" ("LT") bandwidth estimator parameters... */
182/* The minimum number of rounds in an LT bw sampling interval: */
183static const u32 bbr_lt_intvl_min_rtts = 4;
184/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
185static const u32 bbr_lt_loss_thresh = 50;
186/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
187static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
188/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
189static const u32 bbr_lt_bw_diff = 4000 / 8;
190/* If we estimate we're policed, use lt_bw for this many round trips: */
191static const u32 bbr_lt_bw_max_rtts = 48;
192
193/* Gain factor for adding extra_acked to target cwnd: */
194static const int bbr_extra_acked_gain = BBR_UNIT;
195/* Window length of extra_acked window. */
196static const u32 bbr_extra_acked_win_rtts = 5;
197/* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
198static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
199/* Time period for clamping cwnd increment due to ack aggregation */
200static const u32 bbr_extra_acked_max_us = 100 * 1000;
201
202static void bbr_check_probe_rtt_done(struct sock *sk);
203
204/* Do we estimate that STARTUP filled the pipe? */
205static bool bbr_full_bw_reached(const struct sock *sk)
206{
207	const struct bbr *bbr = inet_csk_ca(sk);
208
209	return bbr->full_bw_reached;
210}
211
212/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
213static u32 bbr_max_bw(const struct sock *sk)
214{
215	struct bbr *bbr = inet_csk_ca(sk);
216
217	return minmax_get(&bbr->bw);
218}
219
220/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
221static u32 bbr_bw(const struct sock *sk)
222{
223	struct bbr *bbr = inet_csk_ca(sk);
224
225	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
226}
227
228/* Return maximum extra acked in past k-2k round trips,
229 * where k = bbr_extra_acked_win_rtts.
230 */
231static u16 bbr_extra_acked(const struct sock *sk)
232{
233	struct bbr *bbr = inet_csk_ca(sk);
234
235	return max(bbr->extra_acked[0], bbr->extra_acked[1]);
236}
237
238/* Return rate in bytes per second, optionally with a gain.
239 * The order here is chosen carefully to avoid overflow of u64. This should
240 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
241 */
242static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
243{
244	unsigned int mss = tcp_sk(sk)->mss_cache;
245
246	rate *= mss;
247	rate *= gain;
248	rate >>= BBR_SCALE;
249	rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent);
250	return rate >> BW_SCALE;
251}
252
253/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
254static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
255{
256	u64 rate = bw;
257
258	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
259	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
260	return rate;
261}
262
263/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
264static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
265{
266	struct tcp_sock *tp = tcp_sk(sk);
267	struct bbr *bbr = inet_csk_ca(sk);
268	u64 bw;
269	u32 rtt_us;
270
271	if (tp->srtt_us) {		/* any RTT sample yet? */
272		rtt_us = max(tp->srtt_us >> 3, 1U);
273		bbr->has_seen_rtt = 1;
274	} else {			 /* no RTT sample yet */
275		rtt_us = USEC_PER_MSEC;	 /* use nominal default RTT */
276	}
277	bw = (u64)tp->snd_cwnd * BW_UNIT;
278	do_div(bw, rtt_us);
279	sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
280}
281
282/* Pace using current bw estimate and a gain factor. */
283static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
284{
285	struct tcp_sock *tp = tcp_sk(sk);
286	struct bbr *bbr = inet_csk_ca(sk);
287	unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
288
289	if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
290		bbr_init_pacing_rate_from_rtt(sk);
291	if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
292		sk->sk_pacing_rate = rate;
293}
294
295/* override sysctl_tcp_min_tso_segs */
296static u32 bbr_min_tso_segs(struct sock *sk)
297{
298	return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
299}
300
301static u32 bbr_tso_segs_goal(struct sock *sk)
302{
303	struct tcp_sock *tp = tcp_sk(sk);
304	u32 segs, bytes;
305
306	/* Sort of tcp_tso_autosize() but ignoring
307	 * driver provided sk_gso_max_size.
308	 */
309	bytes = min_t(unsigned long,
310		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
311		      GSO_MAX_SIZE - 1 - MAX_TCP_HEADER);
312	segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
313
314	return min(segs, 0x7FU);
315}
316
317/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
318static void bbr_save_cwnd(struct sock *sk)
319{
320	struct tcp_sock *tp = tcp_sk(sk);
321	struct bbr *bbr = inet_csk_ca(sk);
322
323	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
324		bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
325	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
326		bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
327}
328
329static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
330{
331	struct tcp_sock *tp = tcp_sk(sk);
332	struct bbr *bbr = inet_csk_ca(sk);
333
334	if (event == CA_EVENT_TX_START && tp->app_limited) {
335		bbr->idle_restart = 1;
336		bbr->ack_epoch_mstamp = tp->tcp_mstamp;
337		bbr->ack_epoch_acked = 0;
338		/* Avoid pointless buffer overflows: pace at est. bw if we don't
339		 * need more speed (we're restarting from idle and app-limited).
340		 */
341		if (bbr->mode == BBR_PROBE_BW)
342			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
343		else if (bbr->mode == BBR_PROBE_RTT)
344			bbr_check_probe_rtt_done(sk);
345	}
346}
347
348/* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
349 *
350 * bdp = ceil(bw * min_rtt * gain)
351 *
352 * The key factor, gain, controls the amount of queue. While a small gain
353 * builds a smaller queue, it becomes more vulnerable to noise in RTT
354 * measurements (e.g., delayed ACKs or other ACK compression effects). This
355 * noise may cause BBR to under-estimate the rate.
356 */
357static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
358{
359	struct bbr *bbr = inet_csk_ca(sk);
360	u32 bdp;
361	u64 w;
362
363	/* If we've never had a valid RTT sample, cap cwnd at the initial
364	 * default. This should only happen when the connection is not using TCP
365	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
366	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
367	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
368	 */
369	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
370		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
371
372	w = (u64)bw * bbr->min_rtt_us;
373
374	/* Apply a gain to the given value, remove the BW_SCALE shift, and
375	 * round the value up to avoid a negative feedback loop.
376	 */
377	bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
378
379	return bdp;
380}
381
382/* To achieve full performance in high-speed paths, we budget enough cwnd to
383 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
384 *   - one skb in sending host Qdisc,
385 *   - one skb in sending host TSO/GSO engine
386 *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
387 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
388 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
389 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
390 * full even with ACK-every-other-packet delayed ACKs.
391 */
392static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
393{
394	struct bbr *bbr = inet_csk_ca(sk);
395
396	/* Allow enough full-sized skbs in flight to utilize end systems. */
397	cwnd += 3 * bbr_tso_segs_goal(sk);
398
399	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
400	cwnd = (cwnd + 1) & ~1U;
401
402	/* Ensure gain cycling gets inflight above BDP even for small BDPs. */
403	if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0)
404		cwnd += 2;
405
406	return cwnd;
407}
408
409/* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
410static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
411{
412	u32 inflight;
413
414	inflight = bbr_bdp(sk, bw, gain);
415	inflight = bbr_quantization_budget(sk, inflight);
416
417	return inflight;
418}
419
420/* With pacing at lower layers, there's often less data "in the network" than
421 * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
422 * we often have several skbs queued in the pacing layer with a pre-scheduled
423 * earliest departure time (EDT). BBR adapts its pacing rate based on the
424 * inflight level that it estimates has already been "baked in" by previous
425 * departure time decisions. We calculate a rough estimate of the number of our
426 * packets that might be in the network at the earliest departure time for the
427 * next skb scheduled:
428 *   in_network_at_edt = inflight_at_edt - (EDT - now) * bw
429 * If we're increasing inflight, then we want to know if the transmit of the
430 * EDT skb will push inflight above the target, so inflight_at_edt includes
431 * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
432 * then estimate if inflight will sink too low just before the EDT transmit.
433 */
434static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
435{
436	struct tcp_sock *tp = tcp_sk(sk);
437	struct bbr *bbr = inet_csk_ca(sk);
438	u64 now_ns, edt_ns, interval_us;
439	u32 interval_delivered, inflight_at_edt;
440
441	now_ns = tp->tcp_clock_cache;
442	edt_ns = max(tp->tcp_wstamp_ns, now_ns);
443	interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
444	interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
445	inflight_at_edt = inflight_now;
446	if (bbr->pacing_gain > BBR_UNIT)              /* increasing inflight */
447		inflight_at_edt += bbr_tso_segs_goal(sk);  /* include EDT skb */
448	if (interval_delivered >= inflight_at_edt)
449		return 0;
450	return inflight_at_edt - interval_delivered;
451}
452
453/* Find the cwnd increment based on estimate of ack aggregation */
454static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
455{
456	u32 max_aggr_cwnd, aggr_cwnd = 0;
457
458	if (bbr_extra_acked_gain && bbr_full_bw_reached(sk)) {
459		max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us)
460				/ BW_UNIT;
461		aggr_cwnd = (bbr_extra_acked_gain * bbr_extra_acked(sk))
462			     >> BBR_SCALE;
463		aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
464	}
465
466	return aggr_cwnd;
467}
468
469/* An optimization in BBR to reduce losses: On the first round of recovery, we
470 * follow the packet conservation principle: send P packets per P packets acked.
471 * After that, we slow-start and send at most 2*P packets per P packets acked.
472 * After recovery finishes, or upon undo, we restore the cwnd we had when
473 * recovery started (capped by the target cwnd based on estimated BDP).
474 *
475 * TODO(ycheng/ncardwell): implement a rate-based approach.
476 */
477static bool bbr_set_cwnd_to_recover_or_restore(
478	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
479{
480	struct tcp_sock *tp = tcp_sk(sk);
481	struct bbr *bbr = inet_csk_ca(sk);
482	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
483	u32 cwnd = tp->snd_cwnd;
484
485	/* An ACK for P pkts should release at most 2*P packets. We do this
486	 * in two steps. First, here we deduct the number of lost packets.
487	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
488	 */
489	if (rs->losses > 0)
490		cwnd = max_t(s32, cwnd - rs->losses, 1);
491
492	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
493		/* Starting 1st round of Recovery, so do packet conservation. */
494		bbr->packet_conservation = 1;
495		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
496		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
497		cwnd = tcp_packets_in_flight(tp) + acked;
498	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
499		/* Exiting loss recovery; restore cwnd saved before recovery. */
500		cwnd = max(cwnd, bbr->prior_cwnd);
501		bbr->packet_conservation = 0;
502	}
503	bbr->prev_ca_state = state;
504
505	if (bbr->packet_conservation) {
506		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
507		return true;	/* yes, using packet conservation */
508	}
509	*new_cwnd = cwnd;
510	return false;
511}
512
513/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
514 * has drawn us down below target), or snap down to target if we're above it.
515 */
516static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
517			 u32 acked, u32 bw, int gain)
518{
519	struct tcp_sock *tp = tcp_sk(sk);
520	struct bbr *bbr = inet_csk_ca(sk);
521	u32 cwnd = tp->snd_cwnd, target_cwnd = 0;
522
523	if (!acked)
524		goto done;  /* no packet fully ACKed; just apply caps */
525
526	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
527		goto done;
528
529	target_cwnd = bbr_bdp(sk, bw, gain);
530
531	/* Increment the cwnd to account for excess ACKed data that seems
532	 * due to aggregation (of data and/or ACKs) visible in the ACK stream.
533	 */
534	target_cwnd += bbr_ack_aggregation_cwnd(sk);
535	target_cwnd = bbr_quantization_budget(sk, target_cwnd);
536
537	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
538	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
539		cwnd = min(cwnd + acked, target_cwnd);
540	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
541		cwnd = cwnd + acked;
542	cwnd = max(cwnd, bbr_cwnd_min_target);
543
544done:
545	tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */
546	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
547		tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
548}
549
550/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
551static bool bbr_is_next_cycle_phase(struct sock *sk,
552				    const struct rate_sample *rs)
553{
554	struct tcp_sock *tp = tcp_sk(sk);
555	struct bbr *bbr = inet_csk_ca(sk);
556	bool is_full_length =
557		tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
558		bbr->min_rtt_us;
559	u32 inflight, bw;
560
561	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
562	 * use the pipe without increasing the queue.
563	 */
564	if (bbr->pacing_gain == BBR_UNIT)
565		return is_full_length;		/* just use wall clock time */
566
567	inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
568	bw = bbr_max_bw(sk);
569
570	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
571	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
572	 * small (e.g. on a LAN). We do not persist if packets are lost, since
573	 * a path with small buffers may not hold that much.
574	 */
575	if (bbr->pacing_gain > BBR_UNIT)
576		return is_full_length &&
577			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
578			 inflight >= bbr_inflight(sk, bw, bbr->pacing_gain));
579
580	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
581	 * probing didn't find more bw. If inflight falls to match BDP then we
582	 * estimate queue is drained; persisting would underutilize the pipe.
583	 */
584	return is_full_length ||
585		inflight <= bbr_inflight(sk, bw, BBR_UNIT);
586}
587
588static void bbr_advance_cycle_phase(struct sock *sk)
589{
590	struct tcp_sock *tp = tcp_sk(sk);
591	struct bbr *bbr = inet_csk_ca(sk);
592
593	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
594	bbr->cycle_mstamp = tp->delivered_mstamp;
595}
596
597/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
598static void bbr_update_cycle_phase(struct sock *sk,
599				   const struct rate_sample *rs)
600{
601	struct bbr *bbr = inet_csk_ca(sk);
602
603	if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
604		bbr_advance_cycle_phase(sk);
605}
606
607static void bbr_reset_startup_mode(struct sock *sk)
608{
609	struct bbr *bbr = inet_csk_ca(sk);
610
611	bbr->mode = BBR_STARTUP;
612}
613
614static void bbr_reset_probe_bw_mode(struct sock *sk)
615{
616	struct bbr *bbr = inet_csk_ca(sk);
617
618	bbr->mode = BBR_PROBE_BW;
619	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
620	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
621}
622
623static void bbr_reset_mode(struct sock *sk)
624{
625	if (!bbr_full_bw_reached(sk))
626		bbr_reset_startup_mode(sk);
627	else
628		bbr_reset_probe_bw_mode(sk);
629}
630
631/* Start a new long-term sampling interval. */
632static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
633{
634	struct tcp_sock *tp = tcp_sk(sk);
635	struct bbr *bbr = inet_csk_ca(sk);
636
637	bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
638	bbr->lt_last_delivered = tp->delivered;
639	bbr->lt_last_lost = tp->lost;
640	bbr->lt_rtt_cnt = 0;
641}
642
643/* Completely reset long-term bandwidth sampling. */
644static void bbr_reset_lt_bw_sampling(struct sock *sk)
645{
646	struct bbr *bbr = inet_csk_ca(sk);
647
648	bbr->lt_bw = 0;
649	bbr->lt_use_bw = 0;
650	bbr->lt_is_sampling = false;
651	bbr_reset_lt_bw_sampling_interval(sk);
652}
653
654/* Long-term bw sampling interval is done. Estimate whether we're policed. */
655static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
656{
657	struct bbr *bbr = inet_csk_ca(sk);
658	u32 diff;
659
660	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
661		/* Is new bw close to the lt_bw from the previous interval? */
662		diff = abs(bw - bbr->lt_bw);
663		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
664		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
665		     bbr_lt_bw_diff)) {
666			/* All criteria are met; estimate we're policed. */
667			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
668			bbr->lt_use_bw = 1;
669			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
670			bbr->lt_rtt_cnt = 0;
671			return;
672		}
673	}
674	bbr->lt_bw = bw;
675	bbr_reset_lt_bw_sampling_interval(sk);
676}
677
678/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
679 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
680 * explicitly models their policed rate, to reduce unnecessary losses. We
681 * estimate that we're policed if we see 2 consecutive sampling intervals with
682 * consistent throughput and high packet loss. If we think we're being policed,
683 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
684 */
685static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
686{
687	struct tcp_sock *tp = tcp_sk(sk);
688	struct bbr *bbr = inet_csk_ca(sk);
689	u32 lost, delivered;
690	u64 bw;
691	u32 t;
692
693	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
694		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
695		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
696			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
697			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
698		}
699		return;
700	}
701
702	/* Wait for the first loss before sampling, to let the policer exhaust
703	 * its tokens and estimate the steady-state rate allowed by the policer.
704	 * Starting samples earlier includes bursts that over-estimate the bw.
705	 */
706	if (!bbr->lt_is_sampling) {
707		if (!rs->losses)
708			return;
709		bbr_reset_lt_bw_sampling_interval(sk);
710		bbr->lt_is_sampling = true;
711	}
712
713	/* To avoid underestimates, reset sampling if we run out of data. */
714	if (rs->is_app_limited) {
715		bbr_reset_lt_bw_sampling(sk);
716		return;
717	}
718
719	if (bbr->round_start)
720		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
721	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
722		return;		/* sampling interval needs to be longer */
723	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
724		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
725		return;
726	}
727
728	/* End sampling interval when a packet is lost, so we estimate the
729	 * policer tokens were exhausted. Stopping the sampling before the
730	 * tokens are exhausted under-estimates the policed rate.
731	 */
732	if (!rs->losses)
733		return;
734
735	/* Calculate packets lost and delivered in sampling interval. */
736	lost = tp->lost - bbr->lt_last_lost;
737	delivered = tp->delivered - bbr->lt_last_delivered;
738	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
739	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
740		return;
741
742	/* Find average delivery rate in this sampling interval. */
743	t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
744	if ((s32)t < 1)
745		return;		/* interval is less than one ms, so wait */
746	/* Check if can multiply without overflow */
747	if (t >= ~0U / USEC_PER_MSEC) {
748		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
749		return;
750	}
751	t *= USEC_PER_MSEC;
752	bw = (u64)delivered * BW_UNIT;
753	do_div(bw, t);
754	bbr_lt_bw_interval_done(sk, bw);
755}
756
757/* Estimate the bandwidth based on how fast packets are delivered */
758static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
759{
760	struct tcp_sock *tp = tcp_sk(sk);
761	struct bbr *bbr = inet_csk_ca(sk);
762	u64 bw;
763
764	bbr->round_start = 0;
765	if (rs->delivered < 0 || rs->interval_us <= 0)
766		return; /* Not a valid observation */
767
768	/* See if we've reached the next RTT */
769	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
770		bbr->next_rtt_delivered = tp->delivered;
771		bbr->rtt_cnt++;
772		bbr->round_start = 1;
773		bbr->packet_conservation = 0;
774	}
775
776	bbr_lt_bw_sampling(sk, rs);
777
778	/* Divide delivered by the interval to find a (lower bound) bottleneck
779	 * bandwidth sample. Delivered is in packets and interval_us in uS and
780	 * ratio will be <<1 for most connections. So delivered is first scaled.
781	 */
782	bw = div64_long((u64)rs->delivered * BW_UNIT, rs->interval_us);
783
784	/* If this sample is application-limited, it is likely to have a very
785	 * low delivered count that represents application behavior rather than
786	 * the available network rate. Such a sample could drag down estimated
787	 * bw, causing needless slow-down. Thus, to continue to send at the
788	 * last measured network rate, we filter out app-limited samples unless
789	 * they describe the path bw at least as well as our bw model.
790	 *
791	 * So the goal during app-limited phase is to proceed with the best
792	 * network rate no matter how long. We automatically leave this
793	 * phase when app writes faster than the network can deliver :)
794	 */
795	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
796		/* Incorporate new sample into our max bw filter. */
797		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
798	}
799}
800
801/* Estimates the windowed max degree of ack aggregation.
802 * This is used to provision extra in-flight data to keep sending during
803 * inter-ACK silences.
804 *
805 * Degree of ack aggregation is estimated as extra data acked beyond expected.
806 *
807 * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
808 * cwnd += max_extra_acked
809 *
810 * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
811 * Max filter is an approximate sliding window of 5-10 (packet timed) round
812 * trips.
813 */
814static void bbr_update_ack_aggregation(struct sock *sk,
815				       const struct rate_sample *rs)
816{
817	u32 epoch_us, expected_acked, extra_acked;
818	struct bbr *bbr = inet_csk_ca(sk);
819	struct tcp_sock *tp = tcp_sk(sk);
820
821	if (!bbr_extra_acked_gain || rs->acked_sacked <= 0 ||
822	    rs->delivered < 0 || rs->interval_us <= 0)
823		return;
824
825	if (bbr->round_start) {
826		bbr->extra_acked_win_rtts = min(0x1F,
827						bbr->extra_acked_win_rtts + 1);
828		if (bbr->extra_acked_win_rtts >= bbr_extra_acked_win_rtts) {
829			bbr->extra_acked_win_rtts = 0;
830			bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ?
831						   0 : 1;
832			bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
833		}
834	}
835
836	/* Compute how many packets we expected to be delivered over epoch. */
837	epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp,
838				      bbr->ack_epoch_mstamp);
839	expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT;
840
841	/* Reset the aggregation epoch if ACK rate is below expected rate or
842	 * significantly large no. of ack received since epoch (potentially
843	 * quite old epoch).
844	 */
845	if (bbr->ack_epoch_acked <= expected_acked ||
846	    (bbr->ack_epoch_acked + rs->acked_sacked >=
847	     bbr_ack_epoch_acked_reset_thresh)) {
848		bbr->ack_epoch_acked = 0;
849		bbr->ack_epoch_mstamp = tp->delivered_mstamp;
850		expected_acked = 0;
851	}
852
853	/* Compute excess data delivered, beyond what was expected. */
854	bbr->ack_epoch_acked = min_t(u32, 0xFFFFF,
855				     bbr->ack_epoch_acked + rs->acked_sacked);
856	extra_acked = bbr->ack_epoch_acked - expected_acked;
857	extra_acked = min(extra_acked, tp->snd_cwnd);
858	if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
859		bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
860}
861
862/* Estimate when the pipe is full, using the change in delivery rate: BBR
863 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
864 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
865 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
866 * higher rwin, 3: we get higher delivery rate samples. Or transient
867 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
868 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
869 */
870static void bbr_check_full_bw_reached(struct sock *sk,
871				      const struct rate_sample *rs)
872{
873	struct bbr *bbr = inet_csk_ca(sk);
874	u32 bw_thresh;
875
876	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
877		return;
878
879	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
880	if (bbr_max_bw(sk) >= bw_thresh) {
881		bbr->full_bw = bbr_max_bw(sk);
882		bbr->full_bw_cnt = 0;
883		return;
884	}
885	++bbr->full_bw_cnt;
886	bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
887}
888
889/* If pipe is probably full, drain the queue and then enter steady-state. */
890static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
891{
892	struct bbr *bbr = inet_csk_ca(sk);
893
894	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
895		bbr->mode = BBR_DRAIN;	/* drain queue we created */
896		tcp_sk(sk)->snd_ssthresh =
897				bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
898	}	/* fall through to check if in-flight is already small: */
899	if (bbr->mode == BBR_DRAIN &&
900	    bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <=
901	    bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
902		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
903}
904
905static void bbr_check_probe_rtt_done(struct sock *sk)
906{
907	struct tcp_sock *tp = tcp_sk(sk);
908	struct bbr *bbr = inet_csk_ca(sk);
909
910	if (!(bbr->probe_rtt_done_stamp &&
911	      after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
912		return;
913
914	bbr->min_rtt_stamp = tcp_jiffies32;  /* wait a while until PROBE_RTT */
915	tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
916	bbr_reset_mode(sk);
917}
918
919/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
920 * periodically drain the bottleneck queue, to converge to measure the true
921 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
922 * small (reducing queuing delay and packet loss) and achieve fairness among
923 * BBR flows.
924 *
925 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
926 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
927 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
928 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
929 * re-enter the previous mode. BBR uses 200ms to approximately bound the
930 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
931 *
932 * Note that flows need only pay 2% if they are busy sending over the last 10
933 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
934 * natural silences or low-rate periods within 10 seconds where the rate is low
935 * enough for long enough to drain its queue in the bottleneck. We pick up
936 * these min RTT measurements opportunistically with our min_rtt filter. :-)
937 */
938static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
939{
940	struct tcp_sock *tp = tcp_sk(sk);
941	struct bbr *bbr = inet_csk_ca(sk);
942	bool filter_expired;
943
944	/* Track min RTT seen in the min_rtt_win_sec filter window: */
945	filter_expired = after(tcp_jiffies32,
946			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
947	if (rs->rtt_us >= 0 &&
948	    (rs->rtt_us < bbr->min_rtt_us ||
949	     (filter_expired && !rs->is_ack_delayed))) {
950		bbr->min_rtt_us = rs->rtt_us;
951		bbr->min_rtt_stamp = tcp_jiffies32;
952	}
953
954	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
955	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
956		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
957		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
958		bbr->probe_rtt_done_stamp = 0;
959	}
960
961	if (bbr->mode == BBR_PROBE_RTT) {
962		/* Ignore low rate samples during this mode. */
963		tp->app_limited =
964			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
965		/* Maintain min packets in flight for max(200 ms, 1 round). */
966		if (!bbr->probe_rtt_done_stamp &&
967		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
968			bbr->probe_rtt_done_stamp = tcp_jiffies32 +
969				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
970			bbr->probe_rtt_round_done = 0;
971			bbr->next_rtt_delivered = tp->delivered;
972		} else if (bbr->probe_rtt_done_stamp) {
973			if (bbr->round_start)
974				bbr->probe_rtt_round_done = 1;
975			if (bbr->probe_rtt_round_done)
976				bbr_check_probe_rtt_done(sk);
977		}
978	}
979	/* Restart after idle ends only once we process a new S/ACK for data */
980	if (rs->delivered > 0)
981		bbr->idle_restart = 0;
982}
983
984static void bbr_update_gains(struct sock *sk)
985{
986	struct bbr *bbr = inet_csk_ca(sk);
987
988	switch (bbr->mode) {
989	case BBR_STARTUP:
990		bbr->pacing_gain = bbr_high_gain;
991		bbr->cwnd_gain	 = bbr_high_gain;
992		break;
993	case BBR_DRAIN:
994		bbr->pacing_gain = bbr_drain_gain;	/* slow, to drain */
995		bbr->cwnd_gain	 = bbr_high_gain;	/* keep cwnd */
996		break;
997	case BBR_PROBE_BW:
998		bbr->pacing_gain = (bbr->lt_use_bw ?
999				    BBR_UNIT :
1000				    bbr_pacing_gain[bbr->cycle_idx]);
1001		bbr->cwnd_gain	 = bbr_cwnd_gain;
1002		break;
1003	case BBR_PROBE_RTT:
1004		bbr->pacing_gain = BBR_UNIT;
1005		bbr->cwnd_gain	 = BBR_UNIT;
1006		break;
1007	default:
1008		WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
1009		break;
1010	}
1011}
1012
1013static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
1014{
1015	bbr_update_bw(sk, rs);
1016	bbr_update_ack_aggregation(sk, rs);
1017	bbr_update_cycle_phase(sk, rs);
1018	bbr_check_full_bw_reached(sk, rs);
1019	bbr_check_drain(sk, rs);
1020	bbr_update_min_rtt(sk, rs);
1021	bbr_update_gains(sk);
1022}
1023
1024static void bbr_main(struct sock *sk, const struct rate_sample *rs)
1025{
1026	struct bbr *bbr = inet_csk_ca(sk);
1027	u32 bw;
1028
1029	bbr_update_model(sk, rs);
1030
1031	bw = bbr_bw(sk);
1032	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
1033	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
1034}
1035
1036static void bbr_init(struct sock *sk)
1037{
1038	struct tcp_sock *tp = tcp_sk(sk);
1039	struct bbr *bbr = inet_csk_ca(sk);
1040
1041	bbr->prior_cwnd = 0;
1042	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1043	bbr->rtt_cnt = 0;
1044	bbr->next_rtt_delivered = tp->delivered;
1045	bbr->prev_ca_state = TCP_CA_Open;
1046	bbr->packet_conservation = 0;
1047
1048	bbr->probe_rtt_done_stamp = 0;
1049	bbr->probe_rtt_round_done = 0;
1050	bbr->min_rtt_us = tcp_min_rtt(tp);
1051	bbr->min_rtt_stamp = tcp_jiffies32;
1052
1053	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
1054
1055	bbr->has_seen_rtt = 0;
1056	bbr_init_pacing_rate_from_rtt(sk);
1057
1058	bbr->round_start = 0;
1059	bbr->idle_restart = 0;
1060	bbr->full_bw_reached = 0;
1061	bbr->full_bw = 0;
1062	bbr->full_bw_cnt = 0;
1063	bbr->cycle_mstamp = 0;
1064	bbr->cycle_idx = 0;
1065	bbr_reset_lt_bw_sampling(sk);
1066	bbr_reset_startup_mode(sk);
1067
1068	bbr->ack_epoch_mstamp = tp->tcp_mstamp;
1069	bbr->ack_epoch_acked = 0;
1070	bbr->extra_acked_win_rtts = 0;
1071	bbr->extra_acked_win_idx = 0;
1072	bbr->extra_acked[0] = 0;
1073	bbr->extra_acked[1] = 0;
1074
1075	cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
1076}
1077
1078static u32 bbr_sndbuf_expand(struct sock *sk)
1079{
1080	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
1081	return 3;
1082}
1083
1084/* In theory BBR does not need to undo the cwnd since it does not
1085 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
1086 */
1087static u32 bbr_undo_cwnd(struct sock *sk)
1088{
1089	struct bbr *bbr = inet_csk_ca(sk);
1090
1091	bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
1092	bbr->full_bw_cnt = 0;
1093	bbr_reset_lt_bw_sampling(sk);
1094	return tcp_sk(sk)->snd_cwnd;
1095}
1096
1097/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
1098static u32 bbr_ssthresh(struct sock *sk)
1099{
1100	bbr_save_cwnd(sk);
1101	return tcp_sk(sk)->snd_ssthresh;
1102}
1103
1104static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
1105			   union tcp_cc_info *info)
1106{
1107	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
1108	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
1109		struct tcp_sock *tp = tcp_sk(sk);
1110		struct bbr *bbr = inet_csk_ca(sk);
1111		u64 bw = bbr_bw(sk);
1112
1113		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
1114		memset(&info->bbr, 0, sizeof(info->bbr));
1115		info->bbr.bbr_bw_lo		= (u32)bw;
1116		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
1117		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
1118		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
1119		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
1120		*attr = INET_DIAG_BBRINFO;
1121		return sizeof(info->bbr);
1122	}
1123	return 0;
1124}
1125
1126static void bbr_set_state(struct sock *sk, u8 new_state)
1127{
1128	struct bbr *bbr = inet_csk_ca(sk);
1129
1130	if (new_state == TCP_CA_Loss) {
1131		struct rate_sample rs = { .losses = 1 };
1132
1133		bbr->prev_ca_state = TCP_CA_Loss;
1134		bbr->full_bw = 0;
1135		bbr->round_start = 1;	/* treat RTO like end of a round */
1136		bbr_lt_bw_sampling(sk, &rs);
1137	}
1138}
1139
1140static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
1141	.flags		= TCP_CONG_NON_RESTRICTED,
1142	.name		= "bbr",
1143	.owner		= THIS_MODULE,
1144	.init		= bbr_init,
1145	.cong_control	= bbr_main,
1146	.sndbuf_expand	= bbr_sndbuf_expand,
1147	.undo_cwnd	= bbr_undo_cwnd,
1148	.cwnd_event	= bbr_cwnd_event,
1149	.ssthresh	= bbr_ssthresh,
1150	.min_tso_segs	= bbr_min_tso_segs,
1151	.get_info	= bbr_get_info,
1152	.set_state	= bbr_set_state,
1153};
1154
1155static int __init bbr_register(void)
1156{
1157	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
1158	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
1159}
1160
1161static void __exit bbr_unregister(void)
1162{
1163	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
1164}
1165
1166module_init(bbr_register);
1167module_exit(bbr_unregister);
1168
1169MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
1170MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
1171MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
1172MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
1173MODULE_LICENSE("Dual BSD/GPL");
1174MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
1175