xref: /kernel/linux/linux-5.10/net/ipv4/syncookies.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Syncookies implementation for the Linux kernel
4 *
5 *  Copyright (C) 1997 Andi Kleen
6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
7 */
8
9#include <linux/tcp.h>
10#include <linux/slab.h>
11#include <linux/random.h>
12#include <linux/siphash.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <net/secure_seq.h>
16#include <net/tcp.h>
17#include <net/route.h>
18
19static siphash_key_t syncookie_secret[2] __read_mostly;
20
21#define COOKIEBITS 24	/* Upper bits store count */
22#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
23
24/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
25 * stores TCP options:
26 *
27 * MSB                               LSB
28 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
29 * |  Timestamp | ECN | SACK | WScale  |
30 *
31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
32 * any) to figure out which TCP options we should use for the rebuilt
33 * connection.
34 *
35 * A WScale setting of '0xf' (which is an invalid scaling value)
36 * means that original syn did not include the TCP window scaling option.
37 */
38#define TS_OPT_WSCALE_MASK	0xf
39#define TS_OPT_SACK		BIT(4)
40#define TS_OPT_ECN		BIT(5)
41/* There is no TS_OPT_TIMESTAMP:
42 * if ACK contains timestamp option, we already know it was
43 * requested/supported by the syn/synack exchange.
44 */
45#define TSBITS	6
46
47static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
48		       u32 count, int c)
49{
50	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
51	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
52			    (__force u32)sport << 16 | (__force u32)dport,
53			    count, &syncookie_secret[c]);
54}
55
56
57/*
58 * when syncookies are in effect and tcp timestamps are enabled we encode
59 * tcp options in the lower bits of the timestamp value that will be
60 * sent in the syn-ack.
61 * Since subsequent timestamps use the normal tcp_time_stamp value, we
62 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
63 */
64u64 cookie_init_timestamp(struct request_sock *req, u64 now)
65{
66	const struct inet_request_sock *ireq = inet_rsk(req);
67	u64 ts, ts_now = tcp_ns_to_ts(now);
68	u32 options = 0;
69
70	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
71	if (ireq->sack_ok)
72		options |= TS_OPT_SACK;
73	if (ireq->ecn_ok)
74		options |= TS_OPT_ECN;
75
76	ts = (ts_now >> TSBITS) << TSBITS;
77	ts |= options;
78	if (ts > ts_now)
79		ts -= (1UL << TSBITS);
80
81	return ts * (NSEC_PER_SEC / TCP_TS_HZ);
82}
83
84
85static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
86				   __be16 dport, __u32 sseq, __u32 data)
87{
88	/*
89	 * Compute the secure sequence number.
90	 * The output should be:
91	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
92	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
93	 * Where sseq is their sequence number and count increases every
94	 * minute by 1.
95	 * As an extra hack, we add a small "data" value that encodes the
96	 * MSS into the second hash value.
97	 */
98	u32 count = tcp_cookie_time();
99	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
100		sseq + (count << COOKIEBITS) +
101		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
102		 & COOKIEMASK));
103}
104
105/*
106 * This retrieves the small "data" value from the syncookie.
107 * If the syncookie is bad, the data returned will be out of
108 * range.  This must be checked by the caller.
109 *
110 * The count value used to generate the cookie must be less than
111 * MAX_SYNCOOKIE_AGE minutes in the past.
112 * The return value (__u32)-1 if this test fails.
113 */
114static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
115				  __be16 sport, __be16 dport, __u32 sseq)
116{
117	u32 diff, count = tcp_cookie_time();
118
119	/* Strip away the layers from the cookie */
120	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
121
122	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
123	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
124	if (diff >= MAX_SYNCOOKIE_AGE)
125		return (__u32)-1;
126
127	return (cookie -
128		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
129		& COOKIEMASK;	/* Leaving the data behind */
130}
131
132/*
133 * MSS Values are chosen based on the 2011 paper
134 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
135 * Values ..
136 *  .. lower than 536 are rare (< 0.2%)
137 *  .. between 537 and 1299 account for less than < 1.5% of observed values
138 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
139 *  .. exceeding 1460 are very rare (< 0.04%)
140 *
141 *  1460 is the single most frequently announced mss value (30 to 46% depending
142 *  on monitor location).  Table must be sorted.
143 */
144static __u16 const msstab[] = {
145	536,
146	1300,
147	1440,	/* 1440, 1452: PPPoE */
148	1460,
149};
150
151/*
152 * Generate a syncookie.  mssp points to the mss, which is returned
153 * rounded down to the value encoded in the cookie.
154 */
155u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
156			      u16 *mssp)
157{
158	int mssind;
159	const __u16 mss = *mssp;
160
161	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
162		if (mss >= msstab[mssind])
163			break;
164	*mssp = msstab[mssind];
165
166	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
167				     th->source, th->dest, ntohl(th->seq),
168				     mssind);
169}
170EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
171
172__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
173{
174	const struct iphdr *iph = ip_hdr(skb);
175	const struct tcphdr *th = tcp_hdr(skb);
176
177	return __cookie_v4_init_sequence(iph, th, mssp);
178}
179
180/*
181 * Check if a ack sequence number is a valid syncookie.
182 * Return the decoded mss if it is, or 0 if not.
183 */
184int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
185		      u32 cookie)
186{
187	__u32 seq = ntohl(th->seq) - 1;
188	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
189					    th->source, th->dest, seq);
190
191	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
192}
193EXPORT_SYMBOL_GPL(__cookie_v4_check);
194
195struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
196				 struct request_sock *req,
197				 struct dst_entry *dst, u32 tsoff)
198{
199	struct inet_connection_sock *icsk = inet_csk(sk);
200	struct sock *child;
201	bool own_req;
202
203	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
204						 NULL, &own_req);
205	if (child) {
206		refcount_set(&req->rsk_refcnt, 1);
207		tcp_sk(child)->tsoffset = tsoff;
208		sock_rps_save_rxhash(child, skb);
209
210		if (rsk_drop_req(req)) {
211			reqsk_put(req);
212			return child;
213		}
214
215		if (inet_csk_reqsk_queue_add(sk, req, child))
216			return child;
217
218		bh_unlock_sock(child);
219		sock_put(child);
220	}
221	__reqsk_free(req);
222
223	return NULL;
224}
225EXPORT_SYMBOL(tcp_get_cookie_sock);
226
227/*
228 * when syncookies are in effect and tcp timestamps are enabled we stored
229 * additional tcp options in the timestamp.
230 * This extracts these options from the timestamp echo.
231 *
232 * return false if we decode a tcp option that is disabled
233 * on the host.
234 */
235bool cookie_timestamp_decode(const struct net *net,
236			     struct tcp_options_received *tcp_opt)
237{
238	/* echoed timestamp, lowest bits contain options */
239	u32 options = tcp_opt->rcv_tsecr;
240
241	if (!tcp_opt->saw_tstamp)  {
242		tcp_clear_options(tcp_opt);
243		return true;
244	}
245
246	if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
247		return false;
248
249	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
250
251	if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
252		return false;
253
254	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
255		return true; /* no window scaling */
256
257	tcp_opt->wscale_ok = 1;
258	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
259
260	return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
261}
262EXPORT_SYMBOL(cookie_timestamp_decode);
263
264bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
265		   const struct net *net, const struct dst_entry *dst)
266{
267	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
268
269	if (!ecn_ok)
270		return false;
271
272	if (net->ipv4.sysctl_tcp_ecn)
273		return true;
274
275	return dst_feature(dst, RTAX_FEATURE_ECN);
276}
277EXPORT_SYMBOL(cookie_ecn_ok);
278
279struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
280					    const struct tcp_request_sock_ops *af_ops,
281					    struct sock *sk,
282					    struct sk_buff *skb)
283{
284	struct tcp_request_sock *treq;
285	struct request_sock *req;
286
287	if (sk_is_mptcp(sk))
288		req = mptcp_subflow_reqsk_alloc(ops, sk, false);
289	else
290		req = inet_reqsk_alloc(ops, sk, false);
291
292	if (!req)
293		return NULL;
294
295	treq = tcp_rsk(req);
296
297	/* treq->af_specific might be used to perform TCP_MD5 lookup */
298	treq->af_specific = af_ops;
299
300	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
301#if IS_ENABLED(CONFIG_MPTCP)
302	treq->is_mptcp = sk_is_mptcp(sk);
303	if (treq->is_mptcp) {
304		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
305
306		if (err) {
307			reqsk_free(req);
308			return NULL;
309		}
310	}
311#endif
312
313	return req;
314}
315EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
316
317/* On input, sk is a listener.
318 * Output is listener if incoming packet would not create a child
319 *           NULL if memory could not be allocated.
320 */
321struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
322{
323	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
324	struct tcp_options_received tcp_opt;
325	struct inet_request_sock *ireq;
326	struct tcp_request_sock *treq;
327	struct tcp_sock *tp = tcp_sk(sk);
328	const struct tcphdr *th = tcp_hdr(skb);
329	__u32 cookie = ntohl(th->ack_seq) - 1;
330	struct sock *ret = sk;
331	struct request_sock *req;
332	int full_space, mss;
333	struct rtable *rt;
334	__u8 rcv_wscale;
335	struct flowi4 fl4;
336	u32 tsoff = 0;
337
338	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) ||
339	    !th->ack || th->rst)
340		goto out;
341
342	if (tcp_synq_no_recent_overflow(sk))
343		goto out;
344
345	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
346	if (mss == 0) {
347		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
348		goto out;
349	}
350
351	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
352
353	/* check for timestamp cookie support */
354	memset(&tcp_opt, 0, sizeof(tcp_opt));
355	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
356
357	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
358		tsoff = secure_tcp_ts_off(sock_net(sk),
359					  ip_hdr(skb)->daddr,
360					  ip_hdr(skb)->saddr);
361		tcp_opt.rcv_tsecr -= tsoff;
362	}
363
364	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
365		goto out;
366
367	ret = NULL;
368	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops,
369				     &tcp_request_sock_ipv4_ops, sk, skb);
370	if (!req)
371		goto out;
372
373	ireq = inet_rsk(req);
374	treq = tcp_rsk(req);
375	treq->rcv_isn		= ntohl(th->seq) - 1;
376	treq->snt_isn		= cookie;
377	treq->ts_off		= 0;
378	treq->txhash		= net_tx_rndhash();
379	req->mss		= mss;
380	ireq->ir_num		= ntohs(th->dest);
381	ireq->ir_rmt_port	= th->source;
382	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
383	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
384	ireq->ir_mark		= inet_request_mark(sk, skb);
385	ireq->snd_wscale	= tcp_opt.snd_wscale;
386	ireq->sack_ok		= tcp_opt.sack_ok;
387	ireq->wscale_ok		= tcp_opt.wscale_ok;
388	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
389	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
390	treq->snt_synack	= 0;
391	treq->tfo_listener	= false;
392
393	if (IS_ENABLED(CONFIG_SMC))
394		ireq->smc_ok = 0;
395
396	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
397
398	/* We throwed the options of the initial SYN away, so we hope
399	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
400	 */
401	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
402
403	if (security_inet_conn_request(sk, skb, req)) {
404		reqsk_free(req);
405		goto out;
406	}
407
408	req->num_retrans = 0;
409
410	/*
411	 * We need to lookup the route here to get at the correct
412	 * window size. We should better make sure that the window size
413	 * hasn't changed since we received the original syn, but I see
414	 * no easy way to do this.
415	 */
416	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
417			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
418			   inet_sk_flowi_flags(sk),
419			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
420			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
421	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
422	rt = ip_route_output_key(sock_net(sk), &fl4);
423	if (IS_ERR(rt)) {
424		reqsk_free(req);
425		goto out;
426	}
427
428	/* Try to redo what tcp_v4_send_synack did. */
429	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
430	/* limit the window selection if the user enforce a smaller rx buffer */
431	full_space = tcp_full_space(sk);
432	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
433	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
434		req->rsk_window_clamp = full_space;
435
436	tcp_select_initial_window(sk, full_space, req->mss,
437				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
438				  ireq->wscale_ok, &rcv_wscale,
439				  dst_metric(&rt->dst, RTAX_INITRWND));
440
441	ireq->rcv_wscale  = rcv_wscale;
442	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
443
444	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
445	/* ip_queue_xmit() depends on our flow being setup
446	 * Normal sockets get it right from inet_csk_route_child_sock()
447	 */
448	if (ret)
449		inet_sk(ret)->cork.fl.u.ip4 = fl4;
450out:	return ret;
451}
452