xref: /kernel/linux/linux-5.10/net/ipv4/ip_input.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		The Internet Protocol (IP) module.
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Donald Becker, <becker@super.org>
12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 *		Richard Underwood
14 *		Stefan Becker, <stefanb@yello.ping.de>
15 *		Jorge Cwik, <jorge@laser.satlink.net>
16 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 *
18 * Fixes:
19 *		Alan Cox	:	Commented a couple of minor bits of surplus code
20 *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21 *					(just stops a compiler warning).
22 *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23 *					are junked rather than corrupting things.
24 *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25 *					We used to process them non broadcast and
26 *					boy could that cause havoc.
27 *		Alan Cox	:	ip_forward sets the free flag on the
28 *					new frame it queues. Still crap because
29 *					it copies the frame but at least it
30 *					doesn't eat memory too.
31 *		Alan Cox	:	Generic queue code and memory fixes.
32 *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33 *		Gerhard Koerting:	Forward fragmented frames correctly.
34 *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35 *		Gerhard Koerting:	IP interface addressing fix.
36 *		Linus Torvalds	:	More robustness checks
37 *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38 *		Alan Cox	:	Save IP header pointer for later
39 *		Alan Cox	:	ip option setting
40 *		Alan Cox	:	Use ip_tos/ip_ttl settings
41 *		Alan Cox	:	Fragmentation bogosity removed
42 *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43 *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44 *		Alan Cox	:	Silly ip bug when an overlength
45 *					fragment turns up. Now frees the
46 *					queue.
47 *		Linus Torvalds/ :	Memory leakage on fragmentation
48 *		Alan Cox	:	handling.
49 *		Gerhard Koerting:	Forwarding uses IP priority hints
50 *		Teemu Rantanen	:	Fragment problems.
51 *		Alan Cox	:	General cleanup, comments and reformat
52 *		Alan Cox	:	SNMP statistics
53 *		Alan Cox	:	BSD address rule semantics. Also see
54 *					UDP as there is a nasty checksum issue
55 *					if you do things the wrong way.
56 *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57 *		Alan Cox	: 	IP options adjust sk->priority.
58 *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59 *		Alan Cox	:	Avoid ip_chk_addr when possible.
60 *	Richard Underwood	:	IP multicasting.
61 *		Alan Cox	:	Cleaned up multicast handlers.
62 *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63 *		Gunther Mayer	:	Fix the SNMP reporting typo
64 *		Alan Cox	:	Always in group 224.0.0.1
65 *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66 *					Masquerading support.
67 *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68 *		Alan Cox	:	IP_MULTICAST_LOOP option.
69 *		Alan Cox	:	Use notifiers.
70 *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71 *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72 *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73 *	Arnt Gulbrandsen	:	ip_build_xmit
74 *		Alan Cox	:	Per socket routing cache
75 *		Alan Cox	:	Fixed routing cache, added header cache.
76 *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77 *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78 *		Alan Cox	:	Incoming IP option handling.
79 *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80 *		Alan Cox	:	Stopped broadcast source route explosions.
81 *		Alan Cox	:	Can disable source routing
82 *		Takeshi Sone    :	Masquerading didn't work.
83 *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84 *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85 *		Alan Cox	:	Fixed multicast (by popular demand 8))
86 *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87 *		Alan Cox	:	Fixed SNMP statistics [I think]
88 *	Gerhard Koerting	:	IP fragmentation forwarding fix
89 *		Alan Cox	:	Device lock against page fault.
90 *		Alan Cox	:	IP_HDRINCL facility.
91 *	Werner Almesberger	:	Zero fragment bug
92 *		Alan Cox	:	RAW IP frame length bug
93 *		Alan Cox	:	Outgoing firewall on build_xmit
94 *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95 *		Alan Cox	:	Multicast routing hooks
96 *		Jos Vos		:	Do accounting *before* call_in_firewall
97 *	Willy Konynenberg	:	Transparent proxying support
98 *
99 * To Fix:
100 *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101 *		and could be made very efficient with the addition of some virtual memory hacks to permit
102 *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103 *		Output fragmentation wants updating along with the buffer management to use a single
104 *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105 *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106 *		fragmentation anyway.
107 */
108
109#define pr_fmt(fmt) "IPv4: " fmt
110
111#include <linux/module.h>
112#include <linux/types.h>
113#include <linux/kernel.h>
114#include <linux/string.h>
115#include <linux/errno.h>
116#include <linux/slab.h>
117
118#include <linux/net.h>
119#include <linux/socket.h>
120#include <linux/sockios.h>
121#include <linux/in.h>
122#include <linux/inet.h>
123#include <linux/inetdevice.h>
124#include <linux/netdevice.h>
125#include <linux/etherdevice.h>
126#include <linux/indirect_call_wrapper.h>
127
128#include <net/snmp.h>
129#include <net/ip.h>
130#include <net/protocol.h>
131#include <net/route.h>
132#include <linux/skbuff.h>
133#include <net/sock.h>
134#include <net/arp.h>
135#include <net/icmp.h>
136#include <net/raw.h>
137#include <net/checksum.h>
138#include <net/inet_ecn.h>
139#include <linux/netfilter_ipv4.h>
140#include <net/xfrm.h>
141#include <linux/mroute.h>
142#include <linux/netlink.h>
143#include <net/dst_metadata.h>
144#ifdef CONFIG_LOWPOWER_PROTOCOL
145#include <net/lowpower_protocol.h>
146#endif /* CONFIG_LOWPOWER_PROTOCOL */
147
148/*
149 *	Process Router Attention IP option (RFC 2113)
150 */
151bool ip_call_ra_chain(struct sk_buff *skb)
152{
153	struct ip_ra_chain *ra;
154	u8 protocol = ip_hdr(skb)->protocol;
155	struct sock *last = NULL;
156	struct net_device *dev = skb->dev;
157	struct net *net = dev_net(dev);
158
159	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
160		struct sock *sk = ra->sk;
161
162		/* If socket is bound to an interface, only report
163		 * the packet if it came  from that interface.
164		 */
165		if (sk && inet_sk(sk)->inet_num == protocol &&
166		    (!sk->sk_bound_dev_if ||
167		     sk->sk_bound_dev_if == dev->ifindex)) {
168			if (ip_is_fragment(ip_hdr(skb))) {
169				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
170					return true;
171			}
172			if (last) {
173				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
174				if (skb2)
175					raw_rcv(last, skb2);
176			}
177			last = sk;
178		}
179	}
180
181	if (last) {
182		raw_rcv(last, skb);
183		return true;
184	}
185	return false;
186}
187
188INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
189INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
190void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
191{
192	const struct net_protocol *ipprot;
193	int raw, ret;
194
195resubmit:
196	raw = raw_local_deliver(skb, protocol);
197
198	ipprot = rcu_dereference(inet_protos[protocol]);
199	if (ipprot) {
200		if (!ipprot->no_policy) {
201			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
202				kfree_skb(skb);
203				return;
204			}
205			nf_reset_ct(skb);
206		}
207		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
208				      skb);
209		if (ret < 0) {
210			protocol = -ret;
211			goto resubmit;
212		}
213		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
214	} else {
215		if (!raw) {
216			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
217				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
218				icmp_send(skb, ICMP_DEST_UNREACH,
219					  ICMP_PROT_UNREACH, 0);
220			}
221			kfree_skb(skb);
222		} else {
223			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
224			consume_skb(skb);
225		}
226	}
227}
228
229static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
230{
231	__skb_pull(skb, skb_network_header_len(skb));
232
233	rcu_read_lock();
234	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
235	rcu_read_unlock();
236
237	return 0;
238}
239
240/*
241 * 	Deliver IP Packets to the higher protocol layers.
242 */
243int ip_local_deliver(struct sk_buff *skb)
244{
245	/*
246	 *	Reassemble IP fragments.
247	 */
248	struct net *net = dev_net(skb->dev);
249#ifdef CONFIG_LOWPOWER_PROTOCOL
250	int ret;
251#endif /* CONFIG_LOWPOWER_PROTOCOL */
252
253	if (ip_is_fragment(ip_hdr(skb))) {
254		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
255			return 0;
256	}
257
258#ifdef CONFIG_LOWPOWER_PROTOCOL
259	if (netfilter_bypass_enable(net, skb, ip_local_deliver_finish, &ret))
260		return ret;
261#endif /* CONFIG_LOWPOWER_PROTOCOL */
262
263	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
264		       net, NULL, skb, skb->dev, NULL,
265		       ip_local_deliver_finish);
266}
267
268static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
269{
270	struct ip_options *opt;
271	const struct iphdr *iph;
272
273	/* It looks as overkill, because not all
274	   IP options require packet mangling.
275	   But it is the easiest for now, especially taking
276	   into account that combination of IP options
277	   and running sniffer is extremely rare condition.
278					      --ANK (980813)
279	*/
280	if (skb_cow(skb, skb_headroom(skb))) {
281		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
282		goto drop;
283	}
284
285	iph = ip_hdr(skb);
286	opt = &(IPCB(skb)->opt);
287	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
288
289	if (ip_options_compile(dev_net(dev), opt, skb)) {
290		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
291		goto drop;
292	}
293
294	if (unlikely(opt->srr)) {
295		struct in_device *in_dev = __in_dev_get_rcu(dev);
296
297		if (in_dev) {
298			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
299				if (IN_DEV_LOG_MARTIANS(in_dev))
300					net_info_ratelimited("source route option %pI4 -> %pI4\n",
301							     &iph->saddr,
302							     &iph->daddr);
303				goto drop;
304			}
305		}
306
307		if (ip_options_rcv_srr(skb, dev))
308			goto drop;
309	}
310
311	return false;
312drop:
313	return true;
314}
315
316static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
317			    const struct sk_buff *hint)
318{
319	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
320	       ip_hdr(hint)->tos == iph->tos;
321}
322
323int tcp_v4_early_demux(struct sk_buff *skb);
324int udp_v4_early_demux(struct sk_buff *skb);
325static int ip_rcv_finish_core(struct net *net, struct sock *sk,
326			      struct sk_buff *skb, struct net_device *dev,
327			      const struct sk_buff *hint)
328{
329	const struct iphdr *iph = ip_hdr(skb);
330	struct rtable *rt;
331	int err;
332
333	if (ip_can_use_hint(skb, iph, hint)) {
334		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
335					dev, hint);
336		if (unlikely(err))
337			goto drop_error;
338	}
339
340	if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
341	    !skb_dst(skb) &&
342	    !skb->sk &&
343	    !ip_is_fragment(iph)) {
344		switch (iph->protocol) {
345		case IPPROTO_TCP:
346			if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
347				tcp_v4_early_demux(skb);
348
349				/* must reload iph, skb->head might have changed */
350				iph = ip_hdr(skb);
351			}
352			break;
353		case IPPROTO_UDP:
354			if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
355				err = udp_v4_early_demux(skb);
356				if (unlikely(err))
357					goto drop_error;
358
359				/* must reload iph, skb->head might have changed */
360				iph = ip_hdr(skb);
361			}
362			break;
363		}
364	}
365
366	/*
367	 *	Initialise the virtual path cache for the packet. It describes
368	 *	how the packet travels inside Linux networking.
369	 */
370	if (!skb_valid_dst(skb)) {
371		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
372					   iph->tos, dev);
373		if (unlikely(err))
374			goto drop_error;
375	} else {
376		struct in_device *in_dev = __in_dev_get_rcu(dev);
377
378		if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
379			IPCB(skb)->flags |= IPSKB_NOPOLICY;
380	}
381
382#ifdef CONFIG_IP_ROUTE_CLASSID
383	if (unlikely(skb_dst(skb)->tclassid)) {
384		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
385		u32 idx = skb_dst(skb)->tclassid;
386		st[idx&0xFF].o_packets++;
387		st[idx&0xFF].o_bytes += skb->len;
388		st[(idx>>16)&0xFF].i_packets++;
389		st[(idx>>16)&0xFF].i_bytes += skb->len;
390	}
391#endif
392
393	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
394		goto drop;
395
396	rt = skb_rtable(skb);
397	if (rt->rt_type == RTN_MULTICAST) {
398		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
399	} else if (rt->rt_type == RTN_BROADCAST) {
400		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
401	} else if (skb->pkt_type == PACKET_BROADCAST ||
402		   skb->pkt_type == PACKET_MULTICAST) {
403		struct in_device *in_dev = __in_dev_get_rcu(dev);
404
405		/* RFC 1122 3.3.6:
406		 *
407		 *   When a host sends a datagram to a link-layer broadcast
408		 *   address, the IP destination address MUST be a legal IP
409		 *   broadcast or IP multicast address.
410		 *
411		 *   A host SHOULD silently discard a datagram that is received
412		 *   via a link-layer broadcast (see Section 2.4) but does not
413		 *   specify an IP multicast or broadcast destination address.
414		 *
415		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
416		 * in a way a form of multicast and the most common use case for
417		 * this is 802.11 protecting against cross-station spoofing (the
418		 * so-called "hole-196" attack) so do it for both.
419		 */
420		if (in_dev &&
421		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
422			goto drop;
423	}
424
425	return NET_RX_SUCCESS;
426
427drop:
428	kfree_skb(skb);
429	return NET_RX_DROP;
430
431drop_error:
432	if (err == -EXDEV)
433		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
434	goto drop;
435}
436
437static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
438{
439	struct net_device *dev = skb->dev;
440	int ret;
441
442	/* if ingress device is enslaved to an L3 master device pass the
443	 * skb to its handler for processing
444	 */
445	skb = l3mdev_ip_rcv(skb);
446	if (!skb)
447		return NET_RX_SUCCESS;
448
449	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
450	if (ret != NET_RX_DROP)
451		ret = dst_input(skb);
452	return ret;
453}
454
455/*
456 * 	Main IP Receive routine.
457 */
458static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
459{
460	const struct iphdr *iph;
461	u32 len;
462
463	/* When the interface is in promisc. mode, drop all the crap
464	 * that it receives, do not try to analyse it.
465	 */
466	if (skb->pkt_type == PACKET_OTHERHOST)
467		goto drop;
468
469	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
470
471	skb = skb_share_check(skb, GFP_ATOMIC);
472	if (!skb) {
473		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
474		goto out;
475	}
476
477	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
478		goto inhdr_error;
479
480	iph = ip_hdr(skb);
481
482	/*
483	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
484	 *
485	 *	Is the datagram acceptable?
486	 *
487	 *	1.	Length at least the size of an ip header
488	 *	2.	Version of 4
489	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
490	 *	4.	Doesn't have a bogus length
491	 */
492
493	if (iph->ihl < 5 || iph->version != 4)
494		goto inhdr_error;
495
496	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
497	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
498	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
499	__IP_ADD_STATS(net,
500		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
501		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
502
503	if (!pskb_may_pull(skb, iph->ihl*4))
504		goto inhdr_error;
505
506	iph = ip_hdr(skb);
507
508	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
509		goto csum_error;
510
511	len = ntohs(iph->tot_len);
512	if (skb->len < len) {
513		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
514		goto drop;
515	} else if (len < (iph->ihl*4))
516		goto inhdr_error;
517
518	/* Our transport medium may have padded the buffer out. Now we know it
519	 * is IP we can trim to the true length of the frame.
520	 * Note this now means skb->len holds ntohs(iph->tot_len).
521	 */
522	if (pskb_trim_rcsum(skb, len)) {
523		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
524		goto drop;
525	}
526
527	iph = ip_hdr(skb);
528	skb->transport_header = skb->network_header + iph->ihl*4;
529
530	/* Remove any debris in the socket control block */
531	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
532	IPCB(skb)->iif = skb->skb_iif;
533
534	/* Must drop socket now because of tproxy. */
535	if (!skb_sk_is_prefetched(skb))
536		skb_orphan(skb);
537
538	return skb;
539
540csum_error:
541	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
542inhdr_error:
543	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
544drop:
545	kfree_skb(skb);
546out:
547	return NULL;
548}
549
550/*
551 * IP receive entry point
552 */
553int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
554	   struct net_device *orig_dev)
555{
556	struct net *net = dev_net(dev);
557
558	skb = ip_rcv_core(skb, net);
559	if (skb == NULL)
560		return NET_RX_DROP;
561
562	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
563		       net, NULL, skb, dev, NULL,
564		       ip_rcv_finish);
565}
566
567static void ip_sublist_rcv_finish(struct list_head *head)
568{
569	struct sk_buff *skb, *next;
570
571	list_for_each_entry_safe(skb, next, head, list) {
572		skb_list_del_init(skb);
573		dst_input(skb);
574	}
575}
576
577static struct sk_buff *ip_extract_route_hint(const struct net *net,
578					     struct sk_buff *skb, int rt_type)
579{
580	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
581	    IPCB(skb)->flags & IPSKB_MULTIPATH)
582		return NULL;
583
584	return skb;
585}
586
587static void ip_list_rcv_finish(struct net *net, struct sock *sk,
588			       struct list_head *head)
589{
590	struct sk_buff *skb, *next, *hint = NULL;
591	struct dst_entry *curr_dst = NULL;
592	struct list_head sublist;
593
594	INIT_LIST_HEAD(&sublist);
595	list_for_each_entry_safe(skb, next, head, list) {
596		struct net_device *dev = skb->dev;
597		struct dst_entry *dst;
598
599		skb_list_del_init(skb);
600		/* if ingress device is enslaved to an L3 master device pass the
601		 * skb to its handler for processing
602		 */
603		skb = l3mdev_ip_rcv(skb);
604		if (!skb)
605			continue;
606		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
607			continue;
608
609		dst = skb_dst(skb);
610		if (curr_dst != dst) {
611			hint = ip_extract_route_hint(net, skb,
612					       ((struct rtable *)dst)->rt_type);
613
614			/* dispatch old sublist */
615			if (!list_empty(&sublist))
616				ip_sublist_rcv_finish(&sublist);
617			/* start new sublist */
618			INIT_LIST_HEAD(&sublist);
619			curr_dst = dst;
620		}
621		list_add_tail(&skb->list, &sublist);
622	}
623	/* dispatch final sublist */
624	ip_sublist_rcv_finish(&sublist);
625}
626
627static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
628			   struct net *net)
629{
630	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
631		     head, dev, NULL, ip_rcv_finish);
632	ip_list_rcv_finish(net, NULL, head);
633}
634
635/* Receive a list of IP packets */
636void ip_list_rcv(struct list_head *head, struct packet_type *pt,
637		 struct net_device *orig_dev)
638{
639	struct net_device *curr_dev = NULL;
640	struct net *curr_net = NULL;
641	struct sk_buff *skb, *next;
642	struct list_head sublist;
643
644	INIT_LIST_HEAD(&sublist);
645	list_for_each_entry_safe(skb, next, head, list) {
646		struct net_device *dev = skb->dev;
647		struct net *net = dev_net(dev);
648
649		skb_list_del_init(skb);
650		skb = ip_rcv_core(skb, net);
651		if (skb == NULL)
652			continue;
653
654		if (curr_dev != dev || curr_net != net) {
655			/* dispatch old sublist */
656			if (!list_empty(&sublist))
657				ip_sublist_rcv(&sublist, curr_dev, curr_net);
658			/* start new sublist */
659			INIT_LIST_HEAD(&sublist);
660			curr_dev = dev;
661			curr_net = net;
662		}
663		list_add_tail(&skb->list, &sublist);
664	}
665	/* dispatch final sublist */
666	if (!list_empty(&sublist))
667		ip_sublist_rcv(&sublist, curr_dev, curr_net);
668}
669