1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Support for INET connection oriented protocols.
8 *
9 * Authors:	See the TCP sources
10 */
11
12#include <linux/module.h>
13#include <linux/jhash.h>
14
15#include <net/inet_connection_sock.h>
16#include <net/inet_hashtables.h>
17#include <net/inet_timewait_sock.h>
18#include <net/ip.h>
19#include <net/route.h>
20#include <net/tcp_states.h>
21#include <net/xfrm.h>
22#include <net/tcp.h>
23#include <net/sock_reuseport.h>
24#include <net/addrconf.h>
25
26#if IS_ENABLED(CONFIG_IPV6)
27/* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28 *				if IPv6 only, and any IPv4 addresses
29 *				if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 *				and 0.0.0.0 equals to 0.0.0.0 only
33 */
34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35				 const struct in6_addr *sk2_rcv_saddr6,
36				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37				 bool sk1_ipv6only, bool sk2_ipv6only,
38				 bool match_sk1_wildcard,
39				 bool match_sk2_wildcard)
40{
41	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44	/* if both are mapped, treat as IPv4 */
45	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46		if (!sk2_ipv6only) {
47			if (sk1_rcv_saddr == sk2_rcv_saddr)
48				return true;
49			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50				(match_sk2_wildcard && !sk2_rcv_saddr);
51		}
52		return false;
53	}
54
55	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56		return true;
57
58	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60		return true;
61
62	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64		return true;
65
66	if (sk2_rcv_saddr6 &&
67	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68		return true;
69
70	return false;
71}
72#endif
73
74/* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 *				0.0.0.0 only equals to 0.0.0.0
77 */
78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79				 bool sk2_ipv6only, bool match_sk1_wildcard,
80				 bool match_sk2_wildcard)
81{
82	if (!sk2_ipv6only) {
83		if (sk1_rcv_saddr == sk2_rcv_saddr)
84			return true;
85		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86			(match_sk2_wildcard && !sk2_rcv_saddr);
87	}
88	return false;
89}
90
91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92			  bool match_wildcard)
93{
94#if IS_ENABLED(CONFIG_IPV6)
95	if (sk->sk_family == AF_INET6)
96		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97					    inet6_rcv_saddr(sk2),
98					    sk->sk_rcv_saddr,
99					    sk2->sk_rcv_saddr,
100					    ipv6_only_sock(sk),
101					    ipv6_only_sock(sk2),
102					    match_wildcard,
103					    match_wildcard);
104#endif
105
106	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
107				    ipv6_only_sock(sk2), match_wildcard,
108				    match_wildcard);
109}
110EXPORT_SYMBOL(inet_rcv_saddr_equal);
111
112bool inet_rcv_saddr_any(const struct sock *sk)
113{
114#if IS_ENABLED(CONFIG_IPV6)
115	if (sk->sk_family == AF_INET6)
116		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
117#endif
118	return !sk->sk_rcv_saddr;
119}
120
121void inet_get_local_port_range(struct net *net, int *low, int *high)
122{
123	unsigned int seq;
124
125	do {
126		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
127
128		*low = net->ipv4.ip_local_ports.range[0];
129		*high = net->ipv4.ip_local_ports.range[1];
130	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
131}
132EXPORT_SYMBOL(inet_get_local_port_range);
133
134static int inet_csk_bind_conflict(const struct sock *sk,
135				  const struct inet_bind_bucket *tb,
136				  bool relax, bool reuseport_ok)
137{
138	struct sock *sk2;
139	bool reuse = sk->sk_reuse;
140	bool reuseport = !!sk->sk_reuseport;
141	kuid_t uid = sock_i_uid((struct sock *)sk);
142
143	/*
144	 * Unlike other sk lookup places we do not check
145	 * for sk_net here, since _all_ the socks listed
146	 * in tb->owners list belong to the same net - the
147	 * one this bucket belongs to.
148	 */
149
150	sk_for_each_bound(sk2, &tb->owners) {
151		int bound_dev_if2;
152
153		if (sk == sk2)
154			continue;
155		bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
156		if ((!sk->sk_bound_dev_if ||
157		     !bound_dev_if2 ||
158		     sk->sk_bound_dev_if == bound_dev_if2)) {
159			if (reuse && sk2->sk_reuse &&
160			    sk2->sk_state != TCP_LISTEN) {
161				if ((!relax ||
162				     (!reuseport_ok &&
163				      reuseport && sk2->sk_reuseport &&
164				      !rcu_access_pointer(sk->sk_reuseport_cb) &&
165				      (sk2->sk_state == TCP_TIME_WAIT ||
166				       uid_eq(uid, sock_i_uid(sk2))))) &&
167				    inet_rcv_saddr_equal(sk, sk2, true))
168					break;
169			} else if (!reuseport_ok ||
170				   !reuseport || !sk2->sk_reuseport ||
171				   rcu_access_pointer(sk->sk_reuseport_cb) ||
172				   (sk2->sk_state != TCP_TIME_WAIT &&
173				    !uid_eq(uid, sock_i_uid(sk2)))) {
174				if (inet_rcv_saddr_equal(sk, sk2, true))
175					break;
176			}
177		}
178	}
179	return sk2 != NULL;
180}
181
182/*
183 * Find an open port number for the socket.  Returns with the
184 * inet_bind_hashbucket lock held.
185 */
186static struct inet_bind_hashbucket *
187inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
188{
189	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
190	int port = 0;
191	struct inet_bind_hashbucket *head;
192	struct net *net = sock_net(sk);
193	bool relax = false;
194	int i, low, high, attempt_half;
195	struct inet_bind_bucket *tb;
196	u32 remaining, offset;
197	int l3mdev;
198
199	l3mdev = inet_sk_bound_l3mdev(sk);
200ports_exhausted:
201	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
202other_half_scan:
203	inet_get_local_port_range(net, &low, &high);
204	high++; /* [32768, 60999] -> [32768, 61000[ */
205	if (high - low < 4)
206		attempt_half = 0;
207	if (attempt_half) {
208		int half = low + (((high - low) >> 2) << 1);
209
210		if (attempt_half == 1)
211			high = half;
212		else
213			low = half;
214	}
215	remaining = high - low;
216	if (likely(remaining > 1))
217		remaining &= ~1U;
218
219	offset = prandom_u32() % remaining;
220	/* __inet_hash_connect() favors ports having @low parity
221	 * We do the opposite to not pollute connect() users.
222	 */
223	offset |= 1U;
224
225other_parity_scan:
226	port = low + offset;
227	for (i = 0; i < remaining; i += 2, port += 2) {
228		if (unlikely(port >= high))
229			port -= remaining;
230		if (inet_is_local_reserved_port(net, port))
231			continue;
232		head = &hinfo->bhash[inet_bhashfn(net, port,
233						  hinfo->bhash_size)];
234		spin_lock_bh(&head->lock);
235		inet_bind_bucket_for_each(tb, &head->chain)
236			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
237			    tb->port == port) {
238				if (!inet_csk_bind_conflict(sk, tb, relax, false))
239					goto success;
240				goto next_port;
241			}
242		tb = NULL;
243		goto success;
244next_port:
245		spin_unlock_bh(&head->lock);
246		cond_resched();
247	}
248
249	offset--;
250	if (!(offset & 1))
251		goto other_parity_scan;
252
253	if (attempt_half == 1) {
254		/* OK we now try the upper half of the range */
255		attempt_half = 2;
256		goto other_half_scan;
257	}
258
259	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
260		/* We still have a chance to connect to different destinations */
261		relax = true;
262		goto ports_exhausted;
263	}
264	return NULL;
265success:
266	*port_ret = port;
267	*tb_ret = tb;
268	return head;
269}
270
271static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
272				     struct sock *sk)
273{
274	kuid_t uid = sock_i_uid(sk);
275
276	if (tb->fastreuseport <= 0)
277		return 0;
278	if (!sk->sk_reuseport)
279		return 0;
280	if (rcu_access_pointer(sk->sk_reuseport_cb))
281		return 0;
282	if (!uid_eq(tb->fastuid, uid))
283		return 0;
284	/* We only need to check the rcv_saddr if this tb was once marked
285	 * without fastreuseport and then was reset, as we can only know that
286	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
287	 * owners list.
288	 */
289	if (tb->fastreuseport == FASTREUSEPORT_ANY)
290		return 1;
291#if IS_ENABLED(CONFIG_IPV6)
292	if (tb->fast_sk_family == AF_INET6)
293		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
294					    inet6_rcv_saddr(sk),
295					    tb->fast_rcv_saddr,
296					    sk->sk_rcv_saddr,
297					    tb->fast_ipv6_only,
298					    ipv6_only_sock(sk), true, false);
299#endif
300	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
301				    ipv6_only_sock(sk), true, false);
302}
303
304void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
305			       struct sock *sk)
306{
307	kuid_t uid = sock_i_uid(sk);
308	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
309
310	if (hlist_empty(&tb->owners)) {
311		tb->fastreuse = reuse;
312		if (sk->sk_reuseport) {
313			tb->fastreuseport = FASTREUSEPORT_ANY;
314			tb->fastuid = uid;
315			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
316			tb->fast_ipv6_only = ipv6_only_sock(sk);
317			tb->fast_sk_family = sk->sk_family;
318#if IS_ENABLED(CONFIG_IPV6)
319			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
320#endif
321		} else {
322			tb->fastreuseport = 0;
323		}
324	} else {
325		if (!reuse)
326			tb->fastreuse = 0;
327		if (sk->sk_reuseport) {
328			/* We didn't match or we don't have fastreuseport set on
329			 * the tb, but we have sk_reuseport set on this socket
330			 * and we know that there are no bind conflicts with
331			 * this socket in this tb, so reset our tb's reuseport
332			 * settings so that any subsequent sockets that match
333			 * our current socket will be put on the fast path.
334			 *
335			 * If we reset we need to set FASTREUSEPORT_STRICT so we
336			 * do extra checking for all subsequent sk_reuseport
337			 * socks.
338			 */
339			if (!sk_reuseport_match(tb, sk)) {
340				tb->fastreuseport = FASTREUSEPORT_STRICT;
341				tb->fastuid = uid;
342				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
343				tb->fast_ipv6_only = ipv6_only_sock(sk);
344				tb->fast_sk_family = sk->sk_family;
345#if IS_ENABLED(CONFIG_IPV6)
346				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
347#endif
348			}
349		} else {
350			tb->fastreuseport = 0;
351		}
352	}
353}
354
355/* Obtain a reference to a local port for the given sock,
356 * if snum is zero it means select any available local port.
357 * We try to allocate an odd port (and leave even ports for connect())
358 */
359int inet_csk_get_port(struct sock *sk, unsigned short snum)
360{
361	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
362	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
363	int ret = 1, port = snum;
364	struct inet_bind_hashbucket *head;
365	struct net *net = sock_net(sk);
366	struct inet_bind_bucket *tb = NULL;
367	int l3mdev;
368
369	l3mdev = inet_sk_bound_l3mdev(sk);
370
371	if (!port) {
372		head = inet_csk_find_open_port(sk, &tb, &port);
373		if (!head)
374			return ret;
375		if (!tb)
376			goto tb_not_found;
377		goto success;
378	}
379	head = &hinfo->bhash[inet_bhashfn(net, port,
380					  hinfo->bhash_size)];
381	spin_lock_bh(&head->lock);
382	inet_bind_bucket_for_each(tb, &head->chain)
383		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
384		    tb->port == port)
385			goto tb_found;
386tb_not_found:
387	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
388				     net, head, port, l3mdev);
389	if (!tb)
390		goto fail_unlock;
391tb_found:
392	if (!hlist_empty(&tb->owners)) {
393		if (sk->sk_reuse == SK_FORCE_REUSE)
394			goto success;
395
396		if ((tb->fastreuse > 0 && reuse) ||
397		    sk_reuseport_match(tb, sk))
398			goto success;
399		if (inet_csk_bind_conflict(sk, tb, true, true))
400			goto fail_unlock;
401	}
402success:
403	inet_csk_update_fastreuse(tb, sk);
404
405	if (!inet_csk(sk)->icsk_bind_hash)
406		inet_bind_hash(sk, tb, port);
407	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
408	ret = 0;
409
410fail_unlock:
411	spin_unlock_bh(&head->lock);
412	return ret;
413}
414EXPORT_SYMBOL_GPL(inet_csk_get_port);
415
416/*
417 * Wait for an incoming connection, avoid race conditions. This must be called
418 * with the socket locked.
419 */
420static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
421{
422	struct inet_connection_sock *icsk = inet_csk(sk);
423	DEFINE_WAIT(wait);
424	int err;
425
426	/*
427	 * True wake-one mechanism for incoming connections: only
428	 * one process gets woken up, not the 'whole herd'.
429	 * Since we do not 'race & poll' for established sockets
430	 * anymore, the common case will execute the loop only once.
431	 *
432	 * Subtle issue: "add_wait_queue_exclusive()" will be added
433	 * after any current non-exclusive waiters, and we know that
434	 * it will always _stay_ after any new non-exclusive waiters
435	 * because all non-exclusive waiters are added at the
436	 * beginning of the wait-queue. As such, it's ok to "drop"
437	 * our exclusiveness temporarily when we get woken up without
438	 * having to remove and re-insert us on the wait queue.
439	 */
440	for (;;) {
441		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
442					  TASK_INTERRUPTIBLE);
443		release_sock(sk);
444		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
445			timeo = schedule_timeout(timeo);
446		sched_annotate_sleep();
447		lock_sock(sk);
448		err = 0;
449		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
450			break;
451		err = -EINVAL;
452		if (sk->sk_state != TCP_LISTEN)
453			break;
454		err = sock_intr_errno(timeo);
455		if (signal_pending(current))
456			break;
457		err = -EAGAIN;
458		if (!timeo)
459			break;
460	}
461	finish_wait(sk_sleep(sk), &wait);
462	return err;
463}
464
465/*
466 * This will accept the next outstanding connection.
467 */
468struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
469{
470	struct inet_connection_sock *icsk = inet_csk(sk);
471	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
472	struct request_sock *req;
473	struct sock *newsk;
474	int error;
475
476	lock_sock(sk);
477
478	/* We need to make sure that this socket is listening,
479	 * and that it has something pending.
480	 */
481	error = -EINVAL;
482	if (sk->sk_state != TCP_LISTEN)
483		goto out_err;
484
485	/* Find already established connection */
486	if (reqsk_queue_empty(queue)) {
487		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
488
489		/* If this is a non blocking socket don't sleep */
490		error = -EAGAIN;
491		if (!timeo)
492			goto out_err;
493
494		error = inet_csk_wait_for_connect(sk, timeo);
495		if (error)
496			goto out_err;
497	}
498	req = reqsk_queue_remove(queue, sk);
499	newsk = req->sk;
500
501	if (sk->sk_protocol == IPPROTO_TCP &&
502	    tcp_rsk(req)->tfo_listener) {
503		spin_lock_bh(&queue->fastopenq.lock);
504		if (tcp_rsk(req)->tfo_listener) {
505			/* We are still waiting for the final ACK from 3WHS
506			 * so can't free req now. Instead, we set req->sk to
507			 * NULL to signify that the child socket is taken
508			 * so reqsk_fastopen_remove() will free the req
509			 * when 3WHS finishes (or is aborted).
510			 */
511			req->sk = NULL;
512			req = NULL;
513		}
514		spin_unlock_bh(&queue->fastopenq.lock);
515	}
516
517out:
518	release_sock(sk);
519	if (newsk && mem_cgroup_sockets_enabled) {
520		int amt;
521
522		/* atomically get the memory usage, set and charge the
523		 * newsk->sk_memcg.
524		 */
525		lock_sock(newsk);
526
527		/* The socket has not been accepted yet, no need to look at
528		 * newsk->sk_wmem_queued.
529		 */
530		amt = sk_mem_pages(newsk->sk_forward_alloc +
531				   atomic_read(&newsk->sk_rmem_alloc));
532		mem_cgroup_sk_alloc(newsk);
533		if (newsk->sk_memcg && amt)
534			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
535
536		release_sock(newsk);
537	}
538	if (req)
539		reqsk_put(req);
540
541	if (newsk)
542		inet_init_csk_locks(newsk);
543
544	return newsk;
545out_err:
546	newsk = NULL;
547	req = NULL;
548	*err = error;
549	goto out;
550}
551EXPORT_SYMBOL(inet_csk_accept);
552
553/*
554 * Using different timers for retransmit, delayed acks and probes
555 * We may wish use just one timer maintaining a list of expire jiffies
556 * to optimize.
557 */
558void inet_csk_init_xmit_timers(struct sock *sk,
559			       void (*retransmit_handler)(struct timer_list *t),
560			       void (*delack_handler)(struct timer_list *t),
561			       void (*keepalive_handler)(struct timer_list *t))
562{
563	struct inet_connection_sock *icsk = inet_csk(sk);
564
565	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
566	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
567	timer_setup(&sk->sk_timer, keepalive_handler, 0);
568	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
569}
570EXPORT_SYMBOL(inet_csk_init_xmit_timers);
571
572void inet_csk_clear_xmit_timers(struct sock *sk)
573{
574	struct inet_connection_sock *icsk = inet_csk(sk);
575
576	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
577
578	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
579	sk_stop_timer(sk, &icsk->icsk_delack_timer);
580	sk_stop_timer(sk, &sk->sk_timer);
581}
582EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
583
584void inet_csk_clear_xmit_timers_sync(struct sock *sk)
585{
586	struct inet_connection_sock *icsk = inet_csk(sk);
587
588	/* ongoing timer handlers need to acquire socket lock. */
589	sock_not_owned_by_me(sk);
590
591	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
592
593	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
594	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
595	sk_stop_timer_sync(sk, &sk->sk_timer);
596}
597
598void inet_csk_delete_keepalive_timer(struct sock *sk)
599{
600	sk_stop_timer(sk, &sk->sk_timer);
601}
602EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
603
604void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
605{
606	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
607}
608EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
609
610struct dst_entry *inet_csk_route_req(const struct sock *sk,
611				     struct flowi4 *fl4,
612				     const struct request_sock *req)
613{
614	const struct inet_request_sock *ireq = inet_rsk(req);
615	struct net *net = read_pnet(&ireq->ireq_net);
616	struct ip_options_rcu *opt;
617	struct rtable *rt;
618
619	rcu_read_lock();
620	opt = rcu_dereference(ireq->ireq_opt);
621
622	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
623			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
624			   sk->sk_protocol, inet_sk_flowi_flags(sk),
625			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
626			   ireq->ir_loc_addr, ireq->ir_rmt_port,
627			   htons(ireq->ir_num), sk->sk_uid);
628	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
629	rt = ip_route_output_flow(net, fl4, sk);
630	if (IS_ERR(rt))
631		goto no_route;
632	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
633		goto route_err;
634	rcu_read_unlock();
635	return &rt->dst;
636
637route_err:
638	ip_rt_put(rt);
639no_route:
640	rcu_read_unlock();
641	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
642	return NULL;
643}
644EXPORT_SYMBOL_GPL(inet_csk_route_req);
645
646struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
647					    struct sock *newsk,
648					    const struct request_sock *req)
649{
650	const struct inet_request_sock *ireq = inet_rsk(req);
651	struct net *net = read_pnet(&ireq->ireq_net);
652	struct inet_sock *newinet = inet_sk(newsk);
653	struct ip_options_rcu *opt;
654	struct flowi4 *fl4;
655	struct rtable *rt;
656
657	opt = rcu_dereference(ireq->ireq_opt);
658	fl4 = &newinet->cork.fl.u.ip4;
659
660	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
661			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
662			   sk->sk_protocol, inet_sk_flowi_flags(sk),
663			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
664			   ireq->ir_loc_addr, ireq->ir_rmt_port,
665			   htons(ireq->ir_num), sk->sk_uid);
666	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
667	rt = ip_route_output_flow(net, fl4, sk);
668	if (IS_ERR(rt))
669		goto no_route;
670	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
671		goto route_err;
672	return &rt->dst;
673
674route_err:
675	ip_rt_put(rt);
676no_route:
677	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
678	return NULL;
679}
680EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
681
682/* Decide when to expire the request and when to resend SYN-ACK */
683static void syn_ack_recalc(struct request_sock *req,
684			   const int max_syn_ack_retries,
685			   const u8 rskq_defer_accept,
686			   int *expire, int *resend)
687{
688	if (!rskq_defer_accept) {
689		*expire = req->num_timeout >= max_syn_ack_retries;
690		*resend = 1;
691		return;
692	}
693	*expire = req->num_timeout >= max_syn_ack_retries &&
694		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
695	/* Do not resend while waiting for data after ACK,
696	 * start to resend on end of deferring period to give
697	 * last chance for data or ACK to create established socket.
698	 */
699	*resend = !inet_rsk(req)->acked ||
700		  req->num_timeout >= rskq_defer_accept - 1;
701}
702
703int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
704{
705	int err = req->rsk_ops->rtx_syn_ack(parent, req);
706
707	if (!err)
708		req->num_retrans++;
709	return err;
710}
711EXPORT_SYMBOL(inet_rtx_syn_ack);
712
713/* return true if req was found in the ehash table */
714static bool reqsk_queue_unlink(struct request_sock *req)
715{
716	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
717	bool found = false;
718
719	if (sk_hashed(req_to_sk(req))) {
720		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
721
722		spin_lock(lock);
723		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
724		spin_unlock(lock);
725	}
726	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
727		reqsk_put(req);
728	return found;
729}
730
731bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
732{
733	bool unlinked = reqsk_queue_unlink(req);
734
735	if (unlinked) {
736		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
737		reqsk_put(req);
738	}
739	return unlinked;
740}
741EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
742
743void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
744{
745	inet_csk_reqsk_queue_drop(sk, req);
746	reqsk_put(req);
747}
748EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
749
750static void reqsk_timer_handler(struct timer_list *t)
751{
752	struct request_sock *req = from_timer(req, t, rsk_timer);
753	struct sock *sk_listener = req->rsk_listener;
754	struct net *net = sock_net(sk_listener);
755	struct inet_connection_sock *icsk = inet_csk(sk_listener);
756	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
757	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
758
759	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
760		goto drop;
761
762	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
763		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
764	/* Normally all the openreqs are young and become mature
765	 * (i.e. converted to established socket) for first timeout.
766	 * If synack was not acknowledged for 1 second, it means
767	 * one of the following things: synack was lost, ack was lost,
768	 * rtt is high or nobody planned to ack (i.e. synflood).
769	 * When server is a bit loaded, queue is populated with old
770	 * open requests, reducing effective size of queue.
771	 * When server is well loaded, queue size reduces to zero
772	 * after several minutes of work. It is not synflood,
773	 * it is normal operation. The solution is pruning
774	 * too old entries overriding normal timeout, when
775	 * situation becomes dangerous.
776	 *
777	 * Essentially, we reserve half of room for young
778	 * embrions; and abort old ones without pity, if old
779	 * ones are about to clog our table.
780	 */
781	qlen = reqsk_queue_len(queue);
782	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
783		int young = reqsk_queue_len_young(queue) << 1;
784
785		while (max_syn_ack_retries > 2) {
786			if (qlen < young)
787				break;
788			max_syn_ack_retries--;
789			young <<= 1;
790		}
791	}
792	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
793		       &expire, &resend);
794	req->rsk_ops->syn_ack_timeout(req);
795	if (!expire &&
796	    (!resend ||
797	     !inet_rtx_syn_ack(sk_listener, req) ||
798	     inet_rsk(req)->acked)) {
799		unsigned long timeo;
800
801		if (req->num_timeout++ == 0)
802			atomic_dec(&queue->young);
803		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
804		mod_timer(&req->rsk_timer, jiffies + timeo);
805		return;
806	}
807drop:
808	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
809}
810
811static void reqsk_queue_hash_req(struct request_sock *req,
812				 unsigned long timeout)
813{
814	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
815	mod_timer(&req->rsk_timer, jiffies + timeout);
816
817	inet_ehash_insert(req_to_sk(req), NULL, NULL);
818	/* before letting lookups find us, make sure all req fields
819	 * are committed to memory and refcnt initialized.
820	 */
821	smp_wmb();
822	refcount_set(&req->rsk_refcnt, 2 + 1);
823}
824
825void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
826				   unsigned long timeout)
827{
828	reqsk_queue_hash_req(req, timeout);
829	inet_csk_reqsk_queue_added(sk);
830}
831EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
832
833static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
834			   const gfp_t priority)
835{
836	struct inet_connection_sock *icsk = inet_csk(newsk);
837
838	if (!icsk->icsk_ulp_ops)
839		return;
840
841	icsk->icsk_ulp_ops->clone(req, newsk, priority);
842}
843
844/**
845 *	inet_csk_clone_lock - clone an inet socket, and lock its clone
846 *	@sk: the socket to clone
847 *	@req: request_sock
848 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
849 *
850 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
851 */
852struct sock *inet_csk_clone_lock(const struct sock *sk,
853				 const struct request_sock *req,
854				 const gfp_t priority)
855{
856	struct sock *newsk = sk_clone_lock(sk, priority);
857
858	if (newsk) {
859		struct inet_connection_sock *newicsk = inet_csk(newsk);
860
861		newsk->sk_wait_pending = 0;
862		inet_sk_set_state(newsk, TCP_SYN_RECV);
863		newicsk->icsk_bind_hash = NULL;
864
865		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
866		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
867		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
868
869		/* listeners have SOCK_RCU_FREE, not the children */
870		sock_reset_flag(newsk, SOCK_RCU_FREE);
871
872		inet_sk(newsk)->mc_list = NULL;
873
874		newsk->sk_mark = inet_rsk(req)->ir_mark;
875		atomic64_set(&newsk->sk_cookie,
876			     atomic64_read(&inet_rsk(req)->ir_cookie));
877
878		newicsk->icsk_retransmits = 0;
879		newicsk->icsk_backoff	  = 0;
880		newicsk->icsk_probes_out  = 0;
881		newicsk->icsk_probes_tstamp = 0;
882
883		/* Deinitialize accept_queue to trap illegal accesses. */
884		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
885
886		inet_clone_ulp(req, newsk, priority);
887
888		security_inet_csk_clone(newsk, req);
889	}
890	return newsk;
891}
892EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
893
894/*
895 * At this point, there should be no process reference to this
896 * socket, and thus no user references at all.  Therefore we
897 * can assume the socket waitqueue is inactive and nobody will
898 * try to jump onto it.
899 */
900void inet_csk_destroy_sock(struct sock *sk)
901{
902	WARN_ON(sk->sk_state != TCP_CLOSE);
903	WARN_ON(!sock_flag(sk, SOCK_DEAD));
904
905	/* It cannot be in hash table! */
906	WARN_ON(!sk_unhashed(sk));
907
908	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
909	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
910
911	sk->sk_prot->destroy(sk);
912
913	sk_stream_kill_queues(sk);
914
915	xfrm_sk_free_policy(sk);
916
917	sk_refcnt_debug_release(sk);
918
919	this_cpu_dec(*sk->sk_prot->orphan_count);
920
921	sock_put(sk);
922}
923EXPORT_SYMBOL(inet_csk_destroy_sock);
924
925/* This function allows to force a closure of a socket after the call to
926 * tcp/dccp_create_openreq_child().
927 */
928void inet_csk_prepare_forced_close(struct sock *sk)
929	__releases(&sk->sk_lock.slock)
930{
931	/* sk_clone_lock locked the socket and set refcnt to 2 */
932	bh_unlock_sock(sk);
933	sock_put(sk);
934	inet_csk_prepare_for_destroy_sock(sk);
935	inet_sk(sk)->inet_num = 0;
936}
937EXPORT_SYMBOL(inet_csk_prepare_forced_close);
938
939static int inet_ulp_can_listen(const struct sock *sk)
940{
941	const struct inet_connection_sock *icsk = inet_csk(sk);
942
943	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
944		return -EINVAL;
945
946	return 0;
947}
948
949int inet_csk_listen_start(struct sock *sk, int backlog)
950{
951	struct inet_connection_sock *icsk = inet_csk(sk);
952	struct inet_sock *inet = inet_sk(sk);
953	int err;
954
955	err = inet_ulp_can_listen(sk);
956	if (unlikely(err))
957		return err;
958
959	reqsk_queue_alloc(&icsk->icsk_accept_queue);
960
961	sk->sk_ack_backlog = 0;
962	inet_csk_delack_init(sk);
963
964	/* There is race window here: we announce ourselves listening,
965	 * but this transition is still not validated by get_port().
966	 * It is OK, because this socket enters to hash table only
967	 * after validation is complete.
968	 */
969	err = -EADDRINUSE;
970	inet_sk_state_store(sk, TCP_LISTEN);
971	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
972		inet->inet_sport = htons(inet->inet_num);
973
974		sk_dst_reset(sk);
975		err = sk->sk_prot->hash(sk);
976
977		if (likely(!err))
978			return 0;
979	}
980
981	inet_sk_set_state(sk, TCP_CLOSE);
982	return err;
983}
984EXPORT_SYMBOL_GPL(inet_csk_listen_start);
985
986static void inet_child_forget(struct sock *sk, struct request_sock *req,
987			      struct sock *child)
988{
989	sk->sk_prot->disconnect(child, O_NONBLOCK);
990
991	sock_orphan(child);
992
993	this_cpu_inc(*sk->sk_prot->orphan_count);
994
995	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
996		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
997		BUG_ON(sk != req->rsk_listener);
998
999		/* Paranoid, to prevent race condition if
1000		 * an inbound pkt destined for child is
1001		 * blocked by sock lock in tcp_v4_rcv().
1002		 * Also to satisfy an assertion in
1003		 * tcp_v4_destroy_sock().
1004		 */
1005		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1006	}
1007	inet_csk_destroy_sock(child);
1008}
1009
1010struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1011				      struct request_sock *req,
1012				      struct sock *child)
1013{
1014	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1015
1016	spin_lock(&queue->rskq_lock);
1017	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1018		inet_child_forget(sk, req, child);
1019		child = NULL;
1020	} else {
1021		req->sk = child;
1022		req->dl_next = NULL;
1023		if (queue->rskq_accept_head == NULL)
1024			WRITE_ONCE(queue->rskq_accept_head, req);
1025		else
1026			queue->rskq_accept_tail->dl_next = req;
1027		queue->rskq_accept_tail = req;
1028		sk_acceptq_added(sk);
1029	}
1030	spin_unlock(&queue->rskq_lock);
1031	return child;
1032}
1033EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1034
1035struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1036					 struct request_sock *req, bool own_req)
1037{
1038	if (own_req) {
1039		inet_csk_reqsk_queue_drop(sk, req);
1040		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1041		if (inet_csk_reqsk_queue_add(sk, req, child))
1042			return child;
1043	}
1044	/* Too bad, another child took ownership of the request, undo. */
1045	bh_unlock_sock(child);
1046	sock_put(child);
1047	return NULL;
1048}
1049EXPORT_SYMBOL(inet_csk_complete_hashdance);
1050
1051/*
1052 *	This routine closes sockets which have been at least partially
1053 *	opened, but not yet accepted.
1054 */
1055void inet_csk_listen_stop(struct sock *sk)
1056{
1057	struct inet_connection_sock *icsk = inet_csk(sk);
1058	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1059	struct request_sock *next, *req;
1060
1061	/* Following specs, it would be better either to send FIN
1062	 * (and enter FIN-WAIT-1, it is normal close)
1063	 * or to send active reset (abort).
1064	 * Certainly, it is pretty dangerous while synflood, but it is
1065	 * bad justification for our negligence 8)
1066	 * To be honest, we are not able to make either
1067	 * of the variants now.			--ANK
1068	 */
1069	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1070		struct sock *child = req->sk;
1071
1072		local_bh_disable();
1073		bh_lock_sock(child);
1074		WARN_ON(sock_owned_by_user(child));
1075		sock_hold(child);
1076
1077		inet_child_forget(sk, req, child);
1078		reqsk_put(req);
1079		bh_unlock_sock(child);
1080		local_bh_enable();
1081		sock_put(child);
1082
1083		cond_resched();
1084	}
1085	if (queue->fastopenq.rskq_rst_head) {
1086		/* Free all the reqs queued in rskq_rst_head. */
1087		spin_lock_bh(&queue->fastopenq.lock);
1088		req = queue->fastopenq.rskq_rst_head;
1089		queue->fastopenq.rskq_rst_head = NULL;
1090		spin_unlock_bh(&queue->fastopenq.lock);
1091		while (req != NULL) {
1092			next = req->dl_next;
1093			reqsk_put(req);
1094			req = next;
1095		}
1096	}
1097	WARN_ON_ONCE(sk->sk_ack_backlog);
1098}
1099EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1100
1101void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1102{
1103	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1104	const struct inet_sock *inet = inet_sk(sk);
1105
1106	sin->sin_family		= AF_INET;
1107	sin->sin_addr.s_addr	= inet->inet_daddr;
1108	sin->sin_port		= inet->inet_dport;
1109}
1110EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1111
1112static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1113{
1114	const struct inet_sock *inet = inet_sk(sk);
1115	const struct ip_options_rcu *inet_opt;
1116	__be32 daddr = inet->inet_daddr;
1117	struct flowi4 *fl4;
1118	struct rtable *rt;
1119
1120	rcu_read_lock();
1121	inet_opt = rcu_dereference(inet->inet_opt);
1122	if (inet_opt && inet_opt->opt.srr)
1123		daddr = inet_opt->opt.faddr;
1124	fl4 = &fl->u.ip4;
1125	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1126				   inet->inet_saddr, inet->inet_dport,
1127				   inet->inet_sport, sk->sk_protocol,
1128				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1129	if (IS_ERR(rt))
1130		rt = NULL;
1131	if (rt)
1132		sk_setup_caps(sk, &rt->dst);
1133	rcu_read_unlock();
1134
1135	return &rt->dst;
1136}
1137
1138struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1139{
1140	struct dst_entry *dst = __sk_dst_check(sk, 0);
1141	struct inet_sock *inet = inet_sk(sk);
1142
1143	if (!dst) {
1144		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1145		if (!dst)
1146			goto out;
1147	}
1148	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1149
1150	dst = __sk_dst_check(sk, 0);
1151	if (!dst)
1152		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1153out:
1154	return dst;
1155}
1156EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1157