xref: /kernel/linux/linux-5.10/net/ipv4/arp.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* linux/net/ipv4/arp.c
3 *
4 * Copyright (C) 1994 by Florian  La Roche
5 *
6 * This module implements the Address Resolution Protocol ARP (RFC 826),
7 * which is used to convert IP addresses (or in the future maybe other
8 * high-level addresses) into a low-level hardware address (like an Ethernet
9 * address).
10 *
11 * Fixes:
12 *		Alan Cox	:	Removed the Ethernet assumptions in
13 *					Florian's code
14 *		Alan Cox	:	Fixed some small errors in the ARP
15 *					logic
16 *		Alan Cox	:	Allow >4K in /proc
17 *		Alan Cox	:	Make ARP add its own protocol entry
18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
20 *		Alan Cox	:	Drop data when a device is downed.
21 *		Alan Cox	:	Use init_timer().
22 *		Alan Cox	:	Double lock fixes.
23 *		Martin Seine	:	Move the arphdr structure
24 *					to if_arp.h for compatibility.
25 *					with BSD based programs.
26 *		Andrew Tridgell :       Added ARP netmask code and
27 *					re-arranged proxy handling.
28 *		Alan Cox	:	Changed to use notifiers.
29 *		Niibe Yutaka	:	Reply for this device or proxies only.
30 *		Alan Cox	:	Don't proxy across hardware types!
31 *		Jonathan Naylor :	Added support for NET/ROM.
32 *		Mike Shaver     :       RFC1122 checks.
33 *		Jonathan Naylor :	Only lookup the hardware address for
34 *					the correct hardware type.
35 *		Germano Caronni	:	Assorted subtle races.
36 *		Craig Schlenter :	Don't modify permanent entry
37 *					during arp_rcv.
38 *		Russ Nelson	:	Tidied up a few bits.
39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40 *					eg intelligent arp probing and
41 *					generation
42 *					of host down events.
43 *		Alan Cox	:	Missing unlock in device events.
44 *		Eckes		:	ARP ioctl control errors.
45 *		Alexey Kuznetsov:	Arp free fix.
46 *		Manuel Rodriguez:	Gratuitous ARP.
47 *              Jonathan Layes  :       Added arpd support through kerneld
48 *                                      message queue (960314)
49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50 *		Mike McLagan    :	Routing by source
51 *		Stuart Cheshire	:	Metricom and grat arp fixes
52 *					*** FOR 2.1 clean this up ***
53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55 *					folded into the mainstream FDDI code.
56 *					Ack spit, Linus how did you allow that
57 *					one in...
58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59 *					clean up the APFDDI & gen. FDDI bits.
60 *		Alexey Kuznetsov:	new arp state machine;
61 *					now it is in net/core/neighbour.c.
62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64 *		Shmulik Hen:		Split arp_send to arp_create and
65 *					arp_xmit so intermediate drivers like
66 *					bonding can change the skb before
67 *					sending (e.g. insert 8021q tag).
68 *		Harald Welte	:	convert to make use of jenkins hash
69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70 */
71
72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73
74#include <linux/module.h>
75#include <linux/types.h>
76#include <linux/string.h>
77#include <linux/kernel.h>
78#include <linux/capability.h>
79#include <linux/socket.h>
80#include <linux/sockios.h>
81#include <linux/errno.h>
82#include <linux/in.h>
83#include <linux/mm.h>
84#include <linux/inet.h>
85#include <linux/inetdevice.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/fddidevice.h>
89#include <linux/if_arp.h>
90#include <linux/skbuff.h>
91#include <linux/proc_fs.h>
92#include <linux/seq_file.h>
93#include <linux/stat.h>
94#include <linux/init.h>
95#include <linux/net.h>
96#include <linux/rcupdate.h>
97#include <linux/slab.h>
98#ifdef CONFIG_SYSCTL
99#include <linux/sysctl.h>
100#endif
101
102#include <net/net_namespace.h>
103#include <net/ip.h>
104#include <net/icmp.h>
105#include <net/route.h>
106#include <net/protocol.h>
107#include <net/tcp.h>
108#include <net/sock.h>
109#include <net/arp.h>
110#include <net/ax25.h>
111#include <net/netrom.h>
112#include <net/dst_metadata.h>
113#include <net/ip_tunnels.h>
114
115#include <linux/uaccess.h>
116
117#include <linux/netfilter_arp.h>
118
119/*
120 *	Interface to generic neighbour cache.
121 */
122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124static int arp_constructor(struct neighbour *neigh);
125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127static void parp_redo(struct sk_buff *skb);
128static int arp_is_multicast(const void *pkey);
129
130static const struct neigh_ops arp_generic_ops = {
131	.family =		AF_INET,
132	.solicit =		arp_solicit,
133	.error_report =		arp_error_report,
134	.output =		neigh_resolve_output,
135	.connected_output =	neigh_connected_output,
136};
137
138static const struct neigh_ops arp_hh_ops = {
139	.family =		AF_INET,
140	.solicit =		arp_solicit,
141	.error_report =		arp_error_report,
142	.output =		neigh_resolve_output,
143	.connected_output =	neigh_resolve_output,
144};
145
146static const struct neigh_ops arp_direct_ops = {
147	.family =		AF_INET,
148	.output =		neigh_direct_output,
149	.connected_output =	neigh_direct_output,
150};
151
152struct neigh_table arp_tbl = {
153	.family		= AF_INET,
154	.key_len	= 4,
155	.protocol	= cpu_to_be16(ETH_P_IP),
156	.hash		= arp_hash,
157	.key_eq		= arp_key_eq,
158	.constructor	= arp_constructor,
159	.proxy_redo	= parp_redo,
160	.is_multicast	= arp_is_multicast,
161	.id		= "arp_cache",
162	.parms		= {
163		.tbl			= &arp_tbl,
164		.reachable_time		= 30 * HZ,
165		.data	= {
166			[NEIGH_VAR_MCAST_PROBES] = 3,
167			[NEIGH_VAR_UCAST_PROBES] = 3,
168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
173			[NEIGH_VAR_PROXY_QLEN] = 64,
174			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
176			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
177		},
178	},
179	.gc_interval	= 30 * HZ,
180	.gc_thresh1	= 128,
181	.gc_thresh2	= 512,
182	.gc_thresh3	= 1024,
183};
184EXPORT_SYMBOL(arp_tbl);
185
186int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187{
188	switch (dev->type) {
189	case ARPHRD_ETHER:
190	case ARPHRD_FDDI:
191	case ARPHRD_IEEE802:
192		ip_eth_mc_map(addr, haddr);
193		return 0;
194	case ARPHRD_INFINIBAND:
195		ip_ib_mc_map(addr, dev->broadcast, haddr);
196		return 0;
197	case ARPHRD_IPGRE:
198		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199		return 0;
200	default:
201		if (dir) {
202			memcpy(haddr, dev->broadcast, dev->addr_len);
203			return 0;
204		}
205	}
206	return -EINVAL;
207}
208
209
210static u32 arp_hash(const void *pkey,
211		    const struct net_device *dev,
212		    __u32 *hash_rnd)
213{
214	return arp_hashfn(pkey, dev, hash_rnd);
215}
216
217static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218{
219	return neigh_key_eq32(neigh, pkey);
220}
221
222static int arp_constructor(struct neighbour *neigh)
223{
224	__be32 addr;
225	struct net_device *dev = neigh->dev;
226	struct in_device *in_dev;
227	struct neigh_parms *parms;
228	u32 inaddr_any = INADDR_ANY;
229
230	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
231		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
232
233	addr = *(__be32 *)neigh->primary_key;
234	rcu_read_lock();
235	in_dev = __in_dev_get_rcu(dev);
236	if (!in_dev) {
237		rcu_read_unlock();
238		return -EINVAL;
239	}
240
241	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
242
243	parms = in_dev->arp_parms;
244	__neigh_parms_put(neigh->parms);
245	neigh->parms = neigh_parms_clone(parms);
246	rcu_read_unlock();
247
248	if (!dev->header_ops) {
249		neigh->nud_state = NUD_NOARP;
250		neigh->ops = &arp_direct_ops;
251		neigh->output = neigh_direct_output;
252	} else {
253		/* Good devices (checked by reading texts, but only Ethernet is
254		   tested)
255
256		   ARPHRD_ETHER: (ethernet, apfddi)
257		   ARPHRD_FDDI: (fddi)
258		   ARPHRD_IEEE802: (tr)
259		   ARPHRD_METRICOM: (strip)
260		   ARPHRD_ARCNET:
261		   etc. etc. etc.
262
263		   ARPHRD_IPDDP will also work, if author repairs it.
264		   I did not it, because this driver does not work even
265		   in old paradigm.
266		 */
267
268		if (neigh->type == RTN_MULTICAST) {
269			neigh->nud_state = NUD_NOARP;
270			arp_mc_map(addr, neigh->ha, dev, 1);
271		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
272			neigh->nud_state = NUD_NOARP;
273			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
274		} else if (neigh->type == RTN_BROADCAST ||
275			   (dev->flags & IFF_POINTOPOINT)) {
276			neigh->nud_state = NUD_NOARP;
277			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
278		}
279
280		if (dev->header_ops->cache)
281			neigh->ops = &arp_hh_ops;
282		else
283			neigh->ops = &arp_generic_ops;
284
285		if (neigh->nud_state & NUD_VALID)
286			neigh->output = neigh->ops->connected_output;
287		else
288			neigh->output = neigh->ops->output;
289	}
290	return 0;
291}
292
293static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
294{
295	dst_link_failure(skb);
296	kfree_skb(skb);
297}
298
299/* Create and send an arp packet. */
300static void arp_send_dst(int type, int ptype, __be32 dest_ip,
301			 struct net_device *dev, __be32 src_ip,
302			 const unsigned char *dest_hw,
303			 const unsigned char *src_hw,
304			 const unsigned char *target_hw,
305			 struct dst_entry *dst)
306{
307	struct sk_buff *skb;
308
309	/* arp on this interface. */
310	if (dev->flags & IFF_NOARP)
311		return;
312
313	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
314			 dest_hw, src_hw, target_hw);
315	if (!skb)
316		return;
317
318	skb_dst_set(skb, dst_clone(dst));
319	arp_xmit(skb);
320}
321
322void arp_send(int type, int ptype, __be32 dest_ip,
323	      struct net_device *dev, __be32 src_ip,
324	      const unsigned char *dest_hw, const unsigned char *src_hw,
325	      const unsigned char *target_hw)
326{
327	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
328		     target_hw, NULL);
329}
330EXPORT_SYMBOL(arp_send);
331
332static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333{
334	__be32 saddr = 0;
335	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
336	struct net_device *dev = neigh->dev;
337	__be32 target = *(__be32 *)neigh->primary_key;
338	int probes = atomic_read(&neigh->probes);
339	struct in_device *in_dev;
340	struct dst_entry *dst = NULL;
341
342	rcu_read_lock();
343	in_dev = __in_dev_get_rcu(dev);
344	if (!in_dev) {
345		rcu_read_unlock();
346		return;
347	}
348	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
349	default:
350	case 0:		/* By default announce any local IP */
351		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
352					  ip_hdr(skb)->saddr) == RTN_LOCAL)
353			saddr = ip_hdr(skb)->saddr;
354		break;
355	case 1:		/* Restrict announcements of saddr in same subnet */
356		if (!skb)
357			break;
358		saddr = ip_hdr(skb)->saddr;
359		if (inet_addr_type_dev_table(dev_net(dev), dev,
360					     saddr) == RTN_LOCAL) {
361			/* saddr should be known to target */
362			if (inet_addr_onlink(in_dev, target, saddr))
363				break;
364		}
365		saddr = 0;
366		break;
367	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
368		break;
369	}
370	rcu_read_unlock();
371
372	if (!saddr)
373		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
374
375	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
376	if (probes < 0) {
377		if (!(neigh->nud_state & NUD_VALID))
378			pr_debug("trying to ucast probe in NUD_INVALID\n");
379		neigh_ha_snapshot(dst_ha, neigh, dev);
380		dst_hw = dst_ha;
381	} else {
382		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
383		if (probes < 0) {
384			neigh_app_ns(neigh);
385			return;
386		}
387	}
388
389	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
390		dst = skb_dst(skb);
391	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
392		     dst_hw, dev->dev_addr, NULL, dst);
393}
394
395static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
396{
397	struct net *net = dev_net(in_dev->dev);
398	int scope;
399
400	switch (IN_DEV_ARP_IGNORE(in_dev)) {
401	case 0:	/* Reply, the tip is already validated */
402		return 0;
403	case 1:	/* Reply only if tip is configured on the incoming interface */
404		sip = 0;
405		scope = RT_SCOPE_HOST;
406		break;
407	case 2:	/*
408		 * Reply only if tip is configured on the incoming interface
409		 * and is in same subnet as sip
410		 */
411		scope = RT_SCOPE_HOST;
412		break;
413	case 3:	/* Do not reply for scope host addresses */
414		sip = 0;
415		scope = RT_SCOPE_LINK;
416		in_dev = NULL;
417		break;
418	case 4:	/* Reserved */
419	case 5:
420	case 6:
421	case 7:
422		return 0;
423	case 8:	/* Do not reply */
424		return 1;
425	default:
426		return 0;
427	}
428	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
429}
430
431static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
432{
433	struct rtable *rt;
434	int flag = 0;
435	/*unsigned long now; */
436	struct net *net = dev_net(dev);
437
438	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
439	if (IS_ERR(rt))
440		return 1;
441	if (rt->dst.dev != dev) {
442		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
443		flag = 1;
444	}
445	ip_rt_put(rt);
446	return flag;
447}
448
449/*
450 * Check if we can use proxy ARP for this path
451 */
452static inline int arp_fwd_proxy(struct in_device *in_dev,
453				struct net_device *dev,	struct rtable *rt)
454{
455	struct in_device *out_dev;
456	int imi, omi = -1;
457
458	if (rt->dst.dev == dev)
459		return 0;
460
461	if (!IN_DEV_PROXY_ARP(in_dev))
462		return 0;
463	imi = IN_DEV_MEDIUM_ID(in_dev);
464	if (imi == 0)
465		return 1;
466	if (imi == -1)
467		return 0;
468
469	/* place to check for proxy_arp for routes */
470
471	out_dev = __in_dev_get_rcu(rt->dst.dev);
472	if (out_dev)
473		omi = IN_DEV_MEDIUM_ID(out_dev);
474
475	return omi != imi && omi != -1;
476}
477
478/*
479 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
480 *
481 * RFC3069 supports proxy arp replies back to the same interface.  This
482 * is done to support (ethernet) switch features, like RFC 3069, where
483 * the individual ports are not allowed to communicate with each
484 * other, BUT they are allowed to talk to the upstream router.  As
485 * described in RFC 3069, it is possible to allow these hosts to
486 * communicate through the upstream router, by proxy_arp'ing.
487 *
488 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
489 *
490 *  This technology is known by different names:
491 *    In RFC 3069 it is called VLAN Aggregation.
492 *    Cisco and Allied Telesyn call it Private VLAN.
493 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
494 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
495 *
496 */
497static inline int arp_fwd_pvlan(struct in_device *in_dev,
498				struct net_device *dev,	struct rtable *rt,
499				__be32 sip, __be32 tip)
500{
501	/* Private VLAN is only concerned about the same ethernet segment */
502	if (rt->dst.dev != dev)
503		return 0;
504
505	/* Don't reply on self probes (often done by windowz boxes)*/
506	if (sip == tip)
507		return 0;
508
509	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
510		return 1;
511	else
512		return 0;
513}
514
515/*
516 *	Interface to link layer: send routine and receive handler.
517 */
518
519/*
520 *	Create an arp packet. If dest_hw is not set, we create a broadcast
521 *	message.
522 */
523struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
524			   struct net_device *dev, __be32 src_ip,
525			   const unsigned char *dest_hw,
526			   const unsigned char *src_hw,
527			   const unsigned char *target_hw)
528{
529	struct sk_buff *skb;
530	struct arphdr *arp;
531	unsigned char *arp_ptr;
532	int hlen = LL_RESERVED_SPACE(dev);
533	int tlen = dev->needed_tailroom;
534
535	/*
536	 *	Allocate a buffer
537	 */
538
539	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
540	if (!skb)
541		return NULL;
542
543	skb_reserve(skb, hlen);
544	skb_reset_network_header(skb);
545	arp = skb_put(skb, arp_hdr_len(dev));
546	skb->dev = dev;
547	skb->protocol = htons(ETH_P_ARP);
548	if (!src_hw)
549		src_hw = dev->dev_addr;
550	if (!dest_hw)
551		dest_hw = dev->broadcast;
552
553	/*
554	 *	Fill the device header for the ARP frame
555	 */
556	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
557		goto out;
558
559	/*
560	 * Fill out the arp protocol part.
561	 *
562	 * The arp hardware type should match the device type, except for FDDI,
563	 * which (according to RFC 1390) should always equal 1 (Ethernet).
564	 */
565	/*
566	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
567	 *	DIX code for the protocol. Make these device structure fields.
568	 */
569	switch (dev->type) {
570	default:
571		arp->ar_hrd = htons(dev->type);
572		arp->ar_pro = htons(ETH_P_IP);
573		break;
574
575#if IS_ENABLED(CONFIG_AX25)
576	case ARPHRD_AX25:
577		arp->ar_hrd = htons(ARPHRD_AX25);
578		arp->ar_pro = htons(AX25_P_IP);
579		break;
580
581#if IS_ENABLED(CONFIG_NETROM)
582	case ARPHRD_NETROM:
583		arp->ar_hrd = htons(ARPHRD_NETROM);
584		arp->ar_pro = htons(AX25_P_IP);
585		break;
586#endif
587#endif
588
589#if IS_ENABLED(CONFIG_FDDI)
590	case ARPHRD_FDDI:
591		arp->ar_hrd = htons(ARPHRD_ETHER);
592		arp->ar_pro = htons(ETH_P_IP);
593		break;
594#endif
595	}
596
597	arp->ar_hln = dev->addr_len;
598	arp->ar_pln = 4;
599	arp->ar_op = htons(type);
600
601	arp_ptr = (unsigned char *)(arp + 1);
602
603	memcpy(arp_ptr, src_hw, dev->addr_len);
604	arp_ptr += dev->addr_len;
605	memcpy(arp_ptr, &src_ip, 4);
606	arp_ptr += 4;
607
608	switch (dev->type) {
609#if IS_ENABLED(CONFIG_FIREWIRE_NET)
610	case ARPHRD_IEEE1394:
611		break;
612#endif
613	default:
614		if (target_hw)
615			memcpy(arp_ptr, target_hw, dev->addr_len);
616		else
617			memset(arp_ptr, 0, dev->addr_len);
618		arp_ptr += dev->addr_len;
619	}
620	memcpy(arp_ptr, &dest_ip, 4);
621
622	return skb;
623
624out:
625	kfree_skb(skb);
626	return NULL;
627}
628EXPORT_SYMBOL(arp_create);
629
630static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
631{
632	return dev_queue_xmit(skb);
633}
634
635/*
636 *	Send an arp packet.
637 */
638void arp_xmit(struct sk_buff *skb)
639{
640	/* Send it off, maybe filter it using firewalling first.  */
641	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
642		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
643		arp_xmit_finish);
644}
645EXPORT_SYMBOL(arp_xmit);
646
647static bool arp_is_garp(struct net *net, struct net_device *dev,
648			int *addr_type, __be16 ar_op,
649			__be32 sip, __be32 tip,
650			unsigned char *sha, unsigned char *tha)
651{
652	bool is_garp = tip == sip;
653
654	/* Gratuitous ARP _replies_ also require target hwaddr to be
655	 * the same as source.
656	 */
657	if (is_garp && ar_op == htons(ARPOP_REPLY))
658		is_garp =
659			/* IPv4 over IEEE 1394 doesn't provide target
660			 * hardware address field in its ARP payload.
661			 */
662			tha &&
663			!memcmp(tha, sha, dev->addr_len);
664
665	if (is_garp) {
666		*addr_type = inet_addr_type_dev_table(net, dev, sip);
667		if (*addr_type != RTN_UNICAST)
668			is_garp = false;
669	}
670	return is_garp;
671}
672
673/*
674 *	Process an arp request.
675 */
676
677static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
678{
679	struct net_device *dev = skb->dev;
680	struct in_device *in_dev = __in_dev_get_rcu(dev);
681	struct arphdr *arp;
682	unsigned char *arp_ptr;
683	struct rtable *rt;
684	unsigned char *sha;
685	unsigned char *tha = NULL;
686	__be32 sip, tip;
687	u16 dev_type = dev->type;
688	int addr_type;
689	struct neighbour *n;
690	struct dst_entry *reply_dst = NULL;
691	bool is_garp = false;
692
693	/* arp_rcv below verifies the ARP header and verifies the device
694	 * is ARP'able.
695	 */
696
697	if (!in_dev)
698		goto out_free_skb;
699
700	arp = arp_hdr(skb);
701
702	switch (dev_type) {
703	default:
704		if (arp->ar_pro != htons(ETH_P_IP) ||
705		    htons(dev_type) != arp->ar_hrd)
706			goto out_free_skb;
707		break;
708	case ARPHRD_ETHER:
709	case ARPHRD_FDDI:
710	case ARPHRD_IEEE802:
711		/*
712		 * ETHERNET, and Fibre Channel (which are IEEE 802
713		 * devices, according to RFC 2625) devices will accept ARP
714		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
715		 * This is the case also of FDDI, where the RFC 1390 says that
716		 * FDDI devices should accept ARP hardware of (1) Ethernet,
717		 * however, to be more robust, we'll accept both 1 (Ethernet)
718		 * or 6 (IEEE 802.2)
719		 */
720		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
721		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
722		    arp->ar_pro != htons(ETH_P_IP))
723			goto out_free_skb;
724		break;
725	case ARPHRD_AX25:
726		if (arp->ar_pro != htons(AX25_P_IP) ||
727		    arp->ar_hrd != htons(ARPHRD_AX25))
728			goto out_free_skb;
729		break;
730	case ARPHRD_NETROM:
731		if (arp->ar_pro != htons(AX25_P_IP) ||
732		    arp->ar_hrd != htons(ARPHRD_NETROM))
733			goto out_free_skb;
734		break;
735	}
736
737	/* Understand only these message types */
738
739	if (arp->ar_op != htons(ARPOP_REPLY) &&
740	    arp->ar_op != htons(ARPOP_REQUEST))
741		goto out_free_skb;
742
743/*
744 *	Extract fields
745 */
746	arp_ptr = (unsigned char *)(arp + 1);
747	sha	= arp_ptr;
748	arp_ptr += dev->addr_len;
749	memcpy(&sip, arp_ptr, 4);
750	arp_ptr += 4;
751	switch (dev_type) {
752#if IS_ENABLED(CONFIG_FIREWIRE_NET)
753	case ARPHRD_IEEE1394:
754		break;
755#endif
756	default:
757		tha = arp_ptr;
758		arp_ptr += dev->addr_len;
759	}
760	memcpy(&tip, arp_ptr, 4);
761/*
762 *	Check for bad requests for 127.x.x.x and requests for multicast
763 *	addresses.  If this is one such, delete it.
764 */
765	if (ipv4_is_multicast(tip) ||
766	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
767		goto out_free_skb;
768
769 /*
770  *	For some 802.11 wireless deployments (and possibly other networks),
771  *	there will be an ARP proxy and gratuitous ARP frames are attacks
772  *	and thus should not be accepted.
773  */
774	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
775		goto out_free_skb;
776
777/*
778 *     Special case: We must set Frame Relay source Q.922 address
779 */
780	if (dev_type == ARPHRD_DLCI)
781		sha = dev->broadcast;
782
783/*
784 *  Process entry.  The idea here is we want to send a reply if it is a
785 *  request for us or if it is a request for someone else that we hold
786 *  a proxy for.  We want to add an entry to our cache if it is a reply
787 *  to us or if it is a request for our address.
788 *  (The assumption for this last is that if someone is requesting our
789 *  address, they are probably intending to talk to us, so it saves time
790 *  if we cache their address.  Their address is also probably not in
791 *  our cache, since ours is not in their cache.)
792 *
793 *  Putting this another way, we only care about replies if they are to
794 *  us, in which case we add them to the cache.  For requests, we care
795 *  about those for us and those for our proxies.  We reply to both,
796 *  and in the case of requests for us we add the requester to the arp
797 *  cache.
798 */
799
800	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
801		reply_dst = (struct dst_entry *)
802			    iptunnel_metadata_reply(skb_metadata_dst(skb),
803						    GFP_ATOMIC);
804
805	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
806	if (sip == 0) {
807		if (arp->ar_op == htons(ARPOP_REQUEST) &&
808		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
809		    !arp_ignore(in_dev, sip, tip))
810			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
811				     sha, dev->dev_addr, sha, reply_dst);
812		goto out_consume_skb;
813	}
814
815	if (arp->ar_op == htons(ARPOP_REQUEST) &&
816	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
817
818		rt = skb_rtable(skb);
819		addr_type = rt->rt_type;
820
821		if (addr_type == RTN_LOCAL) {
822			int dont_send;
823
824			dont_send = arp_ignore(in_dev, sip, tip);
825			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
826				dont_send = arp_filter(sip, tip, dev);
827			if (!dont_send) {
828				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
829				if (n) {
830					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
831						     sip, dev, tip, sha,
832						     dev->dev_addr, sha,
833						     reply_dst);
834					neigh_release(n);
835				}
836			}
837			goto out_consume_skb;
838		} else if (IN_DEV_FORWARD(in_dev)) {
839			if (addr_type == RTN_UNICAST  &&
840			    (arp_fwd_proxy(in_dev, dev, rt) ||
841			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
842			     (rt->dst.dev != dev &&
843			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
844				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
845				if (n)
846					neigh_release(n);
847
848				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
849				    skb->pkt_type == PACKET_HOST ||
850				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
852						     sip, dev, tip, sha,
853						     dev->dev_addr, sha,
854						     reply_dst);
855				} else {
856					pneigh_enqueue(&arp_tbl,
857						       in_dev->arp_parms, skb);
858					goto out_free_dst;
859				}
860				goto out_consume_skb;
861			}
862		}
863	}
864
865	/* Update our ARP tables */
866
867	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
868
869	addr_type = -1;
870	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
871		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
872				      sip, tip, sha, tha);
873	}
874
875	if (IN_DEV_ARP_ACCEPT(in_dev)) {
876		/* Unsolicited ARP is not accepted by default.
877		   It is possible, that this option should be enabled for some
878		   devices (strip is candidate)
879		 */
880		if (!n &&
881		    (is_garp ||
882		     (arp->ar_op == htons(ARPOP_REPLY) &&
883		      (addr_type == RTN_UNICAST ||
884		       (addr_type < 0 &&
885			/* postpone calculation to as late as possible */
886			inet_addr_type_dev_table(net, dev, sip) ==
887				RTN_UNICAST)))))
888			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
889	}
890
891	if (n) {
892		int state = NUD_REACHABLE;
893		int override;
894
895		/* If several different ARP replies follows back-to-back,
896		   use the FIRST one. It is possible, if several proxy
897		   agents are active. Taking the first reply prevents
898		   arp trashing and chooses the fastest router.
899		 */
900		override = time_after(jiffies,
901				      n->updated +
902				      NEIGH_VAR(n->parms, LOCKTIME)) ||
903			   is_garp;
904
905		/* Broadcast replies and request packets
906		   do not assert neighbour reachability.
907		 */
908		if (arp->ar_op != htons(ARPOP_REPLY) ||
909		    skb->pkt_type != PACKET_HOST)
910			state = NUD_STALE;
911		neigh_update(n, sha, state,
912			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
913		neigh_release(n);
914	}
915
916out_consume_skb:
917	consume_skb(skb);
918
919out_free_dst:
920	dst_release(reply_dst);
921	return NET_RX_SUCCESS;
922
923out_free_skb:
924	kfree_skb(skb);
925	return NET_RX_DROP;
926}
927
928static void parp_redo(struct sk_buff *skb)
929{
930	arp_process(dev_net(skb->dev), NULL, skb);
931}
932
933static int arp_is_multicast(const void *pkey)
934{
935	return ipv4_is_multicast(*((__be32 *)pkey));
936}
937
938/*
939 *	Receive an arp request from the device layer.
940 */
941
942static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
943		   struct packet_type *pt, struct net_device *orig_dev)
944{
945	const struct arphdr *arp;
946
947	/* do not tweak dropwatch on an ARP we will ignore */
948	if (dev->flags & IFF_NOARP ||
949	    skb->pkt_type == PACKET_OTHERHOST ||
950	    skb->pkt_type == PACKET_LOOPBACK)
951		goto consumeskb;
952
953	skb = skb_share_check(skb, GFP_ATOMIC);
954	if (!skb)
955		goto out_of_mem;
956
957	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
958	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
959		goto freeskb;
960
961	arp = arp_hdr(skb);
962	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
963		goto freeskb;
964
965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
966
967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
968		       dev_net(dev), NULL, skb, dev, NULL,
969		       arp_process);
970
971consumeskb:
972	consume_skb(skb);
973	return NET_RX_SUCCESS;
974freeskb:
975	kfree_skb(skb);
976out_of_mem:
977	return NET_RX_DROP;
978}
979
980/*
981 *	User level interface (ioctl)
982 */
983
984/*
985 *	Set (create) an ARP cache entry.
986 */
987
988static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
989{
990	if (!dev) {
991		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
992		return 0;
993	}
994	if (__in_dev_get_rtnl(dev)) {
995		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
996		return 0;
997	}
998	return -ENXIO;
999}
1000
1001static int arp_req_set_public(struct net *net, struct arpreq *r,
1002		struct net_device *dev)
1003{
1004	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006
1007	if (mask && mask != htonl(0xFFFFFFFF))
1008		return -EINVAL;
1009	if (!dev && (r->arp_flags & ATF_COM)) {
1010		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011				      r->arp_ha.sa_data);
1012		if (!dev)
1013			return -ENODEV;
1014	}
1015	if (mask) {
1016		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017			return -ENOBUFS;
1018		return 0;
1019	}
1020
1021	return arp_req_set_proxy(net, dev, 1);
1022}
1023
1024static int arp_req_set(struct net *net, struct arpreq *r,
1025		       struct net_device *dev)
1026{
1027	__be32 ip;
1028	struct neighbour *neigh;
1029	int err;
1030
1031	if (r->arp_flags & ATF_PUBL)
1032		return arp_req_set_public(net, r, dev);
1033
1034	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035	if (r->arp_flags & ATF_PERM)
1036		r->arp_flags |= ATF_COM;
1037	if (!dev) {
1038		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039
1040		if (IS_ERR(rt))
1041			return PTR_ERR(rt);
1042		dev = rt->dst.dev;
1043		ip_rt_put(rt);
1044		if (!dev)
1045			return -EINVAL;
1046	}
1047	switch (dev->type) {
1048#if IS_ENABLED(CONFIG_FDDI)
1049	case ARPHRD_FDDI:
1050		/*
1051		 * According to RFC 1390, FDDI devices should accept ARP
1052		 * hardware types of 1 (Ethernet).  However, to be more
1053		 * robust, we'll accept hardware types of either 1 (Ethernet)
1054		 * or 6 (IEEE 802.2).
1055		 */
1056		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1058		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1059			return -EINVAL;
1060		break;
1061#endif
1062	default:
1063		if (r->arp_ha.sa_family != dev->type)
1064			return -EINVAL;
1065		break;
1066	}
1067
1068	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069	err = PTR_ERR(neigh);
1070	if (!IS_ERR(neigh)) {
1071		unsigned int state = NUD_STALE;
1072		if (r->arp_flags & ATF_PERM)
1073			state = NUD_PERMANENT;
1074		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075				   r->arp_ha.sa_data : NULL, state,
1076				   NEIGH_UPDATE_F_OVERRIDE |
1077				   NEIGH_UPDATE_F_ADMIN, 0);
1078		neigh_release(neigh);
1079	}
1080	return err;
1081}
1082
1083static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084{
1085	if (neigh->nud_state&NUD_PERMANENT)
1086		return ATF_PERM | ATF_COM;
1087	else if (neigh->nud_state&NUD_VALID)
1088		return ATF_COM;
1089	else
1090		return 0;
1091}
1092
1093/*
1094 *	Get an ARP cache entry.
1095 */
1096
1097static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098{
1099	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100	struct neighbour *neigh;
1101	int err = -ENXIO;
1102
1103	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104	if (neigh) {
1105		if (!(neigh->nud_state & NUD_NOARP)) {
1106			read_lock_bh(&neigh->lock);
1107			memcpy(r->arp_ha.sa_data, neigh->ha,
1108			       min(dev->addr_len, (unsigned char)sizeof(r->arp_ha.sa_data_min)));
1109			r->arp_flags = arp_state_to_flags(neigh);
1110			read_unlock_bh(&neigh->lock);
1111			r->arp_ha.sa_family = dev->type;
1112			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1113			err = 0;
1114		}
1115		neigh_release(neigh);
1116	}
1117	return err;
1118}
1119
1120int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1121{
1122	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1123	int err = -ENXIO;
1124	struct neigh_table *tbl = &arp_tbl;
1125
1126	if (neigh) {
1127		if ((neigh->nud_state & NUD_VALID) && !force) {
1128			neigh_release(neigh);
1129			return 0;
1130		}
1131
1132		if (neigh->nud_state & ~NUD_NOARP)
1133			err = neigh_update(neigh, NULL, NUD_FAILED,
1134					   NEIGH_UPDATE_F_OVERRIDE|
1135					   NEIGH_UPDATE_F_ADMIN, 0);
1136		write_lock_bh(&tbl->lock);
1137		neigh_release(neigh);
1138		neigh_remove_one(neigh, tbl);
1139		write_unlock_bh(&tbl->lock);
1140	}
1141
1142	return err;
1143}
1144
1145static int arp_req_delete_public(struct net *net, struct arpreq *r,
1146		struct net_device *dev)
1147{
1148	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1149	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1150
1151	if (mask == htonl(0xFFFFFFFF))
1152		return pneigh_delete(&arp_tbl, net, &ip, dev);
1153
1154	if (mask)
1155		return -EINVAL;
1156
1157	return arp_req_set_proxy(net, dev, 0);
1158}
1159
1160static int arp_req_delete(struct net *net, struct arpreq *r,
1161			  struct net_device *dev)
1162{
1163	__be32 ip;
1164
1165	if (r->arp_flags & ATF_PUBL)
1166		return arp_req_delete_public(net, r, dev);
1167
1168	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1169	if (!dev) {
1170		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1171		if (IS_ERR(rt))
1172			return PTR_ERR(rt);
1173		dev = rt->dst.dev;
1174		ip_rt_put(rt);
1175		if (!dev)
1176			return -EINVAL;
1177	}
1178	return arp_invalidate(dev, ip, true);
1179}
1180
1181/*
1182 *	Handle an ARP layer I/O control request.
1183 */
1184
1185int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1186{
1187	int err;
1188	struct arpreq r;
1189	struct net_device *dev = NULL;
1190
1191	switch (cmd) {
1192	case SIOCDARP:
1193	case SIOCSARP:
1194		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1195			return -EPERM;
1196		fallthrough;
1197	case SIOCGARP:
1198		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1199		if (err)
1200			return -EFAULT;
1201		break;
1202	default:
1203		return -EINVAL;
1204	}
1205
1206	if (r.arp_pa.sa_family != AF_INET)
1207		return -EPFNOSUPPORT;
1208
1209	if (!(r.arp_flags & ATF_PUBL) &&
1210	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1211		return -EINVAL;
1212	if (!(r.arp_flags & ATF_NETMASK))
1213		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1214							   htonl(0xFFFFFFFFUL);
1215	rtnl_lock();
1216	if (r.arp_dev[0]) {
1217		err = -ENODEV;
1218		dev = __dev_get_by_name(net, r.arp_dev);
1219		if (!dev)
1220			goto out;
1221
1222		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1223		if (!r.arp_ha.sa_family)
1224			r.arp_ha.sa_family = dev->type;
1225		err = -EINVAL;
1226		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1227			goto out;
1228	} else if (cmd == SIOCGARP) {
1229		err = -ENODEV;
1230		goto out;
1231	}
1232
1233	switch (cmd) {
1234	case SIOCDARP:
1235		err = arp_req_delete(net, &r, dev);
1236		break;
1237	case SIOCSARP:
1238		err = arp_req_set(net, &r, dev);
1239		break;
1240	case SIOCGARP:
1241		err = arp_req_get(&r, dev);
1242		break;
1243	}
1244out:
1245	rtnl_unlock();
1246	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1247		err = -EFAULT;
1248	return err;
1249}
1250
1251static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1252			    void *ptr)
1253{
1254	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1255	struct netdev_notifier_change_info *change_info;
1256
1257	switch (event) {
1258	case NETDEV_CHANGEADDR:
1259		neigh_changeaddr(&arp_tbl, dev);
1260		rt_cache_flush(dev_net(dev));
1261		break;
1262	case NETDEV_CHANGE:
1263		change_info = ptr;
1264		if (change_info->flags_changed & IFF_NOARP)
1265			neigh_changeaddr(&arp_tbl, dev);
1266		if (!netif_carrier_ok(dev))
1267			neigh_carrier_down(&arp_tbl, dev);
1268		break;
1269	default:
1270		break;
1271	}
1272
1273	return NOTIFY_DONE;
1274}
1275
1276static struct notifier_block arp_netdev_notifier = {
1277	.notifier_call = arp_netdev_event,
1278};
1279
1280/* Note, that it is not on notifier chain.
1281   It is necessary, that this routine was called after route cache will be
1282   flushed.
1283 */
1284void arp_ifdown(struct net_device *dev)
1285{
1286	neigh_ifdown(&arp_tbl, dev);
1287}
1288
1289
1290/*
1291 *	Called once on startup.
1292 */
1293
1294static struct packet_type arp_packet_type __read_mostly = {
1295	.type =	cpu_to_be16(ETH_P_ARP),
1296	.func =	arp_rcv,
1297};
1298
1299static int arp_proc_init(void);
1300
1301void __init arp_init(void)
1302{
1303	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1304
1305	dev_add_pack(&arp_packet_type);
1306	arp_proc_init();
1307#ifdef CONFIG_SYSCTL
1308	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1309#endif
1310	register_netdevice_notifier(&arp_netdev_notifier);
1311}
1312
1313#ifdef CONFIG_PROC_FS
1314#if IS_ENABLED(CONFIG_AX25)
1315
1316/* ------------------------------------------------------------------------ */
1317/*
1318 *	ax25 -> ASCII conversion
1319 */
1320static void ax2asc2(ax25_address *a, char *buf)
1321{
1322	char c, *s;
1323	int n;
1324
1325	for (n = 0, s = buf; n < 6; n++) {
1326		c = (a->ax25_call[n] >> 1) & 0x7F;
1327
1328		if (c != ' ')
1329			*s++ = c;
1330	}
1331
1332	*s++ = '-';
1333	n = (a->ax25_call[6] >> 1) & 0x0F;
1334	if (n > 9) {
1335		*s++ = '1';
1336		n -= 10;
1337	}
1338
1339	*s++ = n + '0';
1340	*s++ = '\0';
1341
1342	if (*buf == '\0' || *buf == '-') {
1343		buf[0] = '*';
1344		buf[1] = '\0';
1345	}
1346}
1347#endif /* CONFIG_AX25 */
1348
1349#define HBUFFERLEN 30
1350
1351static void arp_format_neigh_entry(struct seq_file *seq,
1352				   struct neighbour *n)
1353{
1354	char hbuffer[HBUFFERLEN];
1355	int k, j;
1356	char tbuf[16];
1357	struct net_device *dev = n->dev;
1358	int hatype = dev->type;
1359
1360	read_lock(&n->lock);
1361	/* Convert hardware address to XX:XX:XX:XX ... form. */
1362#if IS_ENABLED(CONFIG_AX25)
1363	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1364		ax2asc2((ax25_address *)n->ha, hbuffer);
1365	else {
1366#endif
1367	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1368		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1369		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1370		hbuffer[k++] = ':';
1371	}
1372	if (k != 0)
1373		--k;
1374	hbuffer[k] = 0;
1375#if IS_ENABLED(CONFIG_AX25)
1376	}
1377#endif
1378	sprintf(tbuf, "%pI4", n->primary_key);
1379	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1380		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1381	read_unlock(&n->lock);
1382}
1383
1384static void arp_format_pneigh_entry(struct seq_file *seq,
1385				    struct pneigh_entry *n)
1386{
1387	struct net_device *dev = n->dev;
1388	int hatype = dev ? dev->type : 0;
1389	char tbuf[16];
1390
1391	sprintf(tbuf, "%pI4", n->key);
1392	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1393		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1394		   dev ? dev->name : "*");
1395}
1396
1397static int arp_seq_show(struct seq_file *seq, void *v)
1398{
1399	if (v == SEQ_START_TOKEN) {
1400		seq_puts(seq, "IP address       HW type     Flags       "
1401			      "HW address            Mask     Device\n");
1402	} else {
1403		struct neigh_seq_state *state = seq->private;
1404
1405		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1406			arp_format_pneigh_entry(seq, v);
1407		else
1408			arp_format_neigh_entry(seq, v);
1409	}
1410
1411	return 0;
1412}
1413
1414static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1415{
1416	/* Don't want to confuse "arp -a" w/ magic entries,
1417	 * so we tell the generic iterator to skip NUD_NOARP.
1418	 */
1419	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1420}
1421
1422/* ------------------------------------------------------------------------ */
1423
1424static const struct seq_operations arp_seq_ops = {
1425	.start	= arp_seq_start,
1426	.next	= neigh_seq_next,
1427	.stop	= neigh_seq_stop,
1428	.show	= arp_seq_show,
1429};
1430
1431/* ------------------------------------------------------------------------ */
1432
1433static int __net_init arp_net_init(struct net *net)
1434{
1435	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1436			sizeof(struct neigh_seq_state)))
1437		return -ENOMEM;
1438	return 0;
1439}
1440
1441static void __net_exit arp_net_exit(struct net *net)
1442{
1443	remove_proc_entry("arp", net->proc_net);
1444}
1445
1446static struct pernet_operations arp_net_ops = {
1447	.init = arp_net_init,
1448	.exit = arp_net_exit,
1449};
1450
1451static int __init arp_proc_init(void)
1452{
1453	return register_pernet_subsys(&arp_net_ops);
1454}
1455
1456#else /* CONFIG_PROC_FS */
1457
1458static int __init arp_proc_init(void)
1459{
1460	return 0;
1461}
1462
1463#endif /* CONFIG_PROC_FS */
1464