xref: /kernel/linux/linux-5.10/net/core/skmsg.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3
4#include <linux/skmsg.h>
5#include <linux/skbuff.h>
6#include <linux/scatterlist.h>
7
8#include <net/sock.h>
9#include <net/tcp.h>
10#include <net/tls.h>
11
12static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13{
14	if (msg->sg.end > msg->sg.start &&
15	    elem_first_coalesce < msg->sg.end)
16		return true;
17
18	if (msg->sg.end < msg->sg.start &&
19	    (elem_first_coalesce > msg->sg.start ||
20	     elem_first_coalesce < msg->sg.end))
21		return true;
22
23	return false;
24}
25
26int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27		 int elem_first_coalesce)
28{
29	struct page_frag *pfrag = sk_page_frag(sk);
30	u32 osize = msg->sg.size;
31	int ret = 0;
32
33	len -= msg->sg.size;
34	while (len > 0) {
35		struct scatterlist *sge;
36		u32 orig_offset;
37		int use, i;
38
39		if (!sk_page_frag_refill(sk, pfrag)) {
40			ret = -ENOMEM;
41			goto msg_trim;
42		}
43
44		orig_offset = pfrag->offset;
45		use = min_t(int, len, pfrag->size - orig_offset);
46		if (!sk_wmem_schedule(sk, use)) {
47			ret = -ENOMEM;
48			goto msg_trim;
49		}
50
51		i = msg->sg.end;
52		sk_msg_iter_var_prev(i);
53		sge = &msg->sg.data[i];
54
55		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
56		    sg_page(sge) == pfrag->page &&
57		    sge->offset + sge->length == orig_offset) {
58			sge->length += use;
59		} else {
60			if (sk_msg_full(msg)) {
61				ret = -ENOSPC;
62				break;
63			}
64
65			sge = &msg->sg.data[msg->sg.end];
66			sg_unmark_end(sge);
67			sg_set_page(sge, pfrag->page, use, orig_offset);
68			get_page(pfrag->page);
69			sk_msg_iter_next(msg, end);
70		}
71
72		sk_mem_charge(sk, use);
73		msg->sg.size += use;
74		pfrag->offset += use;
75		len -= use;
76	}
77
78	return ret;
79
80msg_trim:
81	sk_msg_trim(sk, msg, osize);
82	return ret;
83}
84EXPORT_SYMBOL_GPL(sk_msg_alloc);
85
86int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
87		 u32 off, u32 len)
88{
89	int i = src->sg.start;
90	struct scatterlist *sge = sk_msg_elem(src, i);
91	struct scatterlist *sgd = NULL;
92	u32 sge_len, sge_off;
93
94	while (off) {
95		if (sge->length > off)
96			break;
97		off -= sge->length;
98		sk_msg_iter_var_next(i);
99		if (i == src->sg.end && off)
100			return -ENOSPC;
101		sge = sk_msg_elem(src, i);
102	}
103
104	while (len) {
105		sge_len = sge->length - off;
106		if (sge_len > len)
107			sge_len = len;
108
109		if (dst->sg.end)
110			sgd = sk_msg_elem(dst, dst->sg.end - 1);
111
112		if (sgd &&
113		    (sg_page(sge) == sg_page(sgd)) &&
114		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
115			sgd->length += sge_len;
116			dst->sg.size += sge_len;
117		} else if (!sk_msg_full(dst)) {
118			sge_off = sge->offset + off;
119			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
120		} else {
121			return -ENOSPC;
122		}
123
124		off = 0;
125		len -= sge_len;
126		sk_mem_charge(sk, sge_len);
127		sk_msg_iter_var_next(i);
128		if (i == src->sg.end && len)
129			return -ENOSPC;
130		sge = sk_msg_elem(src, i);
131	}
132
133	return 0;
134}
135EXPORT_SYMBOL_GPL(sk_msg_clone);
136
137void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
138{
139	int i = msg->sg.start;
140
141	do {
142		struct scatterlist *sge = sk_msg_elem(msg, i);
143
144		if (bytes < sge->length) {
145			sge->length -= bytes;
146			sge->offset += bytes;
147			sk_mem_uncharge(sk, bytes);
148			break;
149		}
150
151		sk_mem_uncharge(sk, sge->length);
152		bytes -= sge->length;
153		sge->length = 0;
154		sge->offset = 0;
155		sk_msg_iter_var_next(i);
156	} while (bytes && i != msg->sg.end);
157	msg->sg.start = i;
158}
159EXPORT_SYMBOL_GPL(sk_msg_return_zero);
160
161void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
162{
163	int i = msg->sg.start;
164
165	do {
166		struct scatterlist *sge = &msg->sg.data[i];
167		int uncharge = (bytes < sge->length) ? bytes : sge->length;
168
169		sk_mem_uncharge(sk, uncharge);
170		bytes -= uncharge;
171		sk_msg_iter_var_next(i);
172	} while (i != msg->sg.end);
173}
174EXPORT_SYMBOL_GPL(sk_msg_return);
175
176static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
177			    bool charge)
178{
179	struct scatterlist *sge = sk_msg_elem(msg, i);
180	u32 len = sge->length;
181
182	/* When the skb owns the memory we free it from consume_skb path. */
183	if (!msg->skb) {
184		if (charge)
185			sk_mem_uncharge(sk, len);
186		put_page(sg_page(sge));
187	}
188	memset(sge, 0, sizeof(*sge));
189	return len;
190}
191
192static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
193			 bool charge)
194{
195	struct scatterlist *sge = sk_msg_elem(msg, i);
196	int freed = 0;
197
198	while (msg->sg.size) {
199		msg->sg.size -= sge->length;
200		freed += sk_msg_free_elem(sk, msg, i, charge);
201		sk_msg_iter_var_next(i);
202		sk_msg_check_to_free(msg, i, msg->sg.size);
203		sge = sk_msg_elem(msg, i);
204	}
205	consume_skb(msg->skb);
206	sk_msg_init(msg);
207	return freed;
208}
209
210int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
211{
212	return __sk_msg_free(sk, msg, msg->sg.start, false);
213}
214EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
215
216int sk_msg_free(struct sock *sk, struct sk_msg *msg)
217{
218	return __sk_msg_free(sk, msg, msg->sg.start, true);
219}
220EXPORT_SYMBOL_GPL(sk_msg_free);
221
222static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
223				  u32 bytes, bool charge)
224{
225	struct scatterlist *sge;
226	u32 i = msg->sg.start;
227
228	while (bytes) {
229		sge = sk_msg_elem(msg, i);
230		if (!sge->length)
231			break;
232		if (bytes < sge->length) {
233			if (charge)
234				sk_mem_uncharge(sk, bytes);
235			sge->length -= bytes;
236			sge->offset += bytes;
237			msg->sg.size -= bytes;
238			break;
239		}
240
241		msg->sg.size -= sge->length;
242		bytes -= sge->length;
243		sk_msg_free_elem(sk, msg, i, charge);
244		sk_msg_iter_var_next(i);
245		sk_msg_check_to_free(msg, i, bytes);
246	}
247	msg->sg.start = i;
248}
249
250void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
251{
252	__sk_msg_free_partial(sk, msg, bytes, true);
253}
254EXPORT_SYMBOL_GPL(sk_msg_free_partial);
255
256void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
257				  u32 bytes)
258{
259	__sk_msg_free_partial(sk, msg, bytes, false);
260}
261
262void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
263{
264	int trim = msg->sg.size - len;
265	u32 i = msg->sg.end;
266
267	if (trim <= 0) {
268		WARN_ON(trim < 0);
269		return;
270	}
271
272	sk_msg_iter_var_prev(i);
273	msg->sg.size = len;
274	while (msg->sg.data[i].length &&
275	       trim >= msg->sg.data[i].length) {
276		trim -= msg->sg.data[i].length;
277		sk_msg_free_elem(sk, msg, i, true);
278		sk_msg_iter_var_prev(i);
279		if (!trim)
280			goto out;
281	}
282
283	msg->sg.data[i].length -= trim;
284	sk_mem_uncharge(sk, trim);
285	/* Adjust copybreak if it falls into the trimmed part of last buf */
286	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
287		msg->sg.copybreak = msg->sg.data[i].length;
288out:
289	sk_msg_iter_var_next(i);
290	msg->sg.end = i;
291
292	/* If we trim data a full sg elem before curr pointer update
293	 * copybreak and current so that any future copy operations
294	 * start at new copy location.
295	 * However trimed data that has not yet been used in a copy op
296	 * does not require an update.
297	 */
298	if (!msg->sg.size) {
299		msg->sg.curr = msg->sg.start;
300		msg->sg.copybreak = 0;
301	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
302		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
303		sk_msg_iter_var_prev(i);
304		msg->sg.curr = i;
305		msg->sg.copybreak = msg->sg.data[i].length;
306	}
307}
308EXPORT_SYMBOL_GPL(sk_msg_trim);
309
310int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
311			      struct sk_msg *msg, u32 bytes)
312{
313	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
314	const int to_max_pages = MAX_MSG_FRAGS;
315	struct page *pages[MAX_MSG_FRAGS];
316	ssize_t orig, copied, use, offset;
317
318	orig = msg->sg.size;
319	while (bytes > 0) {
320		i = 0;
321		maxpages = to_max_pages - num_elems;
322		if (maxpages == 0) {
323			ret = -EFAULT;
324			goto out;
325		}
326
327		copied = iov_iter_get_pages(from, pages, bytes, maxpages,
328					    &offset);
329		if (copied <= 0) {
330			ret = -EFAULT;
331			goto out;
332		}
333
334		iov_iter_advance(from, copied);
335		bytes -= copied;
336		msg->sg.size += copied;
337
338		while (copied) {
339			use = min_t(int, copied, PAGE_SIZE - offset);
340			sg_set_page(&msg->sg.data[msg->sg.end],
341				    pages[i], use, offset);
342			sg_unmark_end(&msg->sg.data[msg->sg.end]);
343			sk_mem_charge(sk, use);
344
345			offset = 0;
346			copied -= use;
347			sk_msg_iter_next(msg, end);
348			num_elems++;
349			i++;
350		}
351		/* When zerocopy is mixed with sk_msg_*copy* operations we
352		 * may have a copybreak set in this case clear and prefer
353		 * zerocopy remainder when possible.
354		 */
355		msg->sg.copybreak = 0;
356		msg->sg.curr = msg->sg.end;
357	}
358out:
359	/* Revert iov_iter updates, msg will need to use 'trim' later if it
360	 * also needs to be cleared.
361	 */
362	if (ret)
363		iov_iter_revert(from, msg->sg.size - orig);
364	return ret;
365}
366EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367
368int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
369			     struct sk_msg *msg, u32 bytes)
370{
371	int ret = -ENOSPC, i = msg->sg.curr;
372	struct scatterlist *sge;
373	u32 copy, buf_size;
374	void *to;
375
376	do {
377		sge = sk_msg_elem(msg, i);
378		/* This is possible if a trim operation shrunk the buffer */
379		if (msg->sg.copybreak >= sge->length) {
380			msg->sg.copybreak = 0;
381			sk_msg_iter_var_next(i);
382			if (i == msg->sg.end)
383				break;
384			sge = sk_msg_elem(msg, i);
385		}
386
387		buf_size = sge->length - msg->sg.copybreak;
388		copy = (buf_size > bytes) ? bytes : buf_size;
389		to = sg_virt(sge) + msg->sg.copybreak;
390		msg->sg.copybreak += copy;
391		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
392			ret = copy_from_iter_nocache(to, copy, from);
393		else
394			ret = copy_from_iter(to, copy, from);
395		if (ret != copy) {
396			ret = -EFAULT;
397			goto out;
398		}
399		bytes -= copy;
400		if (!bytes)
401			break;
402		msg->sg.copybreak = 0;
403		sk_msg_iter_var_next(i);
404	} while (i != msg->sg.end);
405out:
406	msg->sg.curr = i;
407	return ret;
408}
409EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
410
411static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
412						  struct sk_buff *skb)
413{
414	struct sk_msg *msg;
415
416	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
417		return NULL;
418
419	if (!sk_rmem_schedule(sk, skb, skb->truesize))
420		return NULL;
421
422	msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
423	if (unlikely(!msg))
424		return NULL;
425
426	sk_msg_init(msg);
427	return msg;
428}
429
430static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
431					struct sk_psock *psock,
432					struct sock *sk,
433					struct sk_msg *msg)
434{
435	int num_sge, copied;
436
437	/* skb linearize may fail with ENOMEM, but lets simply try again
438	 * later if this happens. Under memory pressure we don't want to
439	 * drop the skb. We need to linearize the skb so that the mapping
440	 * in skb_to_sgvec can not error.
441	 */
442	if (skb_linearize(skb))
443		return -EAGAIN;
444	num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
445	if (unlikely(num_sge < 0))
446		return num_sge;
447
448	copied = skb->len;
449	msg->sg.start = 0;
450	msg->sg.size = copied;
451	msg->sg.end = num_sge;
452	msg->skb = skb;
453
454	sk_psock_queue_msg(psock, msg);
455	sk_psock_data_ready(sk, psock);
456	return copied;
457}
458
459static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);
460
461static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
462{
463	struct sock *sk = psock->sk;
464	struct sk_msg *msg;
465	int err;
466
467	/* If we are receiving on the same sock skb->sk is already assigned,
468	 * skip memory accounting and owner transition seeing it already set
469	 * correctly.
470	 */
471	if (unlikely(skb->sk == sk))
472		return sk_psock_skb_ingress_self(psock, skb);
473	msg = sk_psock_create_ingress_msg(sk, skb);
474	if (!msg)
475		return -EAGAIN;
476
477	/* This will transition ownership of the data from the socket where
478	 * the BPF program was run initiating the redirect to the socket
479	 * we will eventually receive this data on. The data will be released
480	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
481	 * into user buffers.
482	 */
483	skb_set_owner_r(skb, sk);
484	err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
485	if (err < 0)
486		kfree(msg);
487	return err;
488}
489
490/* Puts an skb on the ingress queue of the socket already assigned to the
491 * skb. In this case we do not need to check memory limits or skb_set_owner_r
492 * because the skb is already accounted for here.
493 */
494static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
495{
496	struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
497	struct sock *sk = psock->sk;
498	int err;
499
500	if (unlikely(!msg))
501		return -EAGAIN;
502	sk_msg_init(msg);
503	skb_set_owner_r(skb, sk);
504	err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
505	if (err < 0)
506		kfree(msg);
507	return err;
508}
509
510static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
511			       u32 off, u32 len, bool ingress)
512{
513	if (!ingress) {
514		if (!sock_writeable(psock->sk))
515			return -EAGAIN;
516		return skb_send_sock_locked(psock->sk, skb, off, len);
517	}
518	return sk_psock_skb_ingress(psock, skb);
519}
520
521static void sk_psock_backlog(struct work_struct *work)
522{
523	struct sk_psock *psock = container_of(work, struct sk_psock, work);
524	struct sk_psock_work_state *state = &psock->work_state;
525	struct sk_buff *skb;
526	bool ingress;
527	u32 len, off;
528	int ret;
529
530	/* Lock sock to avoid losing sk_socket during loop. */
531	lock_sock(psock->sk);
532	if (state->skb) {
533		skb = state->skb;
534		len = state->len;
535		off = state->off;
536		state->skb = NULL;
537		goto start;
538	}
539
540	while ((skb = skb_dequeue(&psock->ingress_skb))) {
541		len = skb->len;
542		off = 0;
543start:
544		ingress = tcp_skb_bpf_ingress(skb);
545		do {
546			ret = -EIO;
547			if (likely(psock->sk->sk_socket))
548				ret = sk_psock_handle_skb(psock, skb, off,
549							  len, ingress);
550			if (ret <= 0) {
551				if (ret == -EAGAIN) {
552					state->skb = skb;
553					state->len = len;
554					state->off = off;
555					goto end;
556				}
557				/* Hard errors break pipe and stop xmit. */
558				sk_psock_report_error(psock, ret ? -ret : EPIPE);
559				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
560				kfree_skb(skb);
561				goto end;
562			}
563			off += ret;
564			len -= ret;
565		} while (len);
566
567		if (!ingress)
568			kfree_skb(skb);
569	}
570end:
571	release_sock(psock->sk);
572}
573
574struct sk_psock *sk_psock_init(struct sock *sk, int node)
575{
576	struct sk_psock *psock;
577	struct proto *prot;
578
579	write_lock_bh(&sk->sk_callback_lock);
580
581	if (inet_csk_has_ulp(sk)) {
582		psock = ERR_PTR(-EINVAL);
583		goto out;
584	}
585
586	if (sk->sk_user_data) {
587		psock = ERR_PTR(-EBUSY);
588		goto out;
589	}
590
591	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
592	if (!psock) {
593		psock = ERR_PTR(-ENOMEM);
594		goto out;
595	}
596
597	prot = READ_ONCE(sk->sk_prot);
598	psock->sk = sk;
599	psock->eval = __SK_NONE;
600	psock->sk_proto = prot;
601	psock->saved_unhash = prot->unhash;
602	psock->saved_close = prot->close;
603	psock->saved_write_space = sk->sk_write_space;
604
605	INIT_LIST_HEAD(&psock->link);
606	spin_lock_init(&psock->link_lock);
607
608	INIT_WORK(&psock->work, sk_psock_backlog);
609	INIT_LIST_HEAD(&psock->ingress_msg);
610	skb_queue_head_init(&psock->ingress_skb);
611
612	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
613	refcount_set(&psock->refcnt, 1);
614
615	__rcu_assign_sk_user_data_with_flags(sk, psock,
616					     SK_USER_DATA_NOCOPY |
617					     SK_USER_DATA_PSOCK);
618	sock_hold(sk);
619
620out:
621	write_unlock_bh(&sk->sk_callback_lock);
622	return psock;
623}
624EXPORT_SYMBOL_GPL(sk_psock_init);
625
626struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
627{
628	struct sk_psock_link *link;
629
630	spin_lock_bh(&psock->link_lock);
631	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
632					list);
633	if (link)
634		list_del(&link->list);
635	spin_unlock_bh(&psock->link_lock);
636	return link;
637}
638
639void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
640{
641	struct sk_msg *msg, *tmp;
642
643	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
644		list_del(&msg->list);
645		sk_msg_free(psock->sk, msg);
646		kfree(msg);
647	}
648}
649
650static void sk_psock_zap_ingress(struct sk_psock *psock)
651{
652	__skb_queue_purge(&psock->ingress_skb);
653	__sk_psock_purge_ingress_msg(psock);
654}
655
656static void sk_psock_link_destroy(struct sk_psock *psock)
657{
658	struct sk_psock_link *link, *tmp;
659
660	list_for_each_entry_safe(link, tmp, &psock->link, list) {
661		list_del(&link->list);
662		sk_psock_free_link(link);
663	}
664}
665
666static void sk_psock_destroy_deferred(struct work_struct *gc)
667{
668	struct sk_psock *psock = container_of(gc, struct sk_psock, gc);
669
670	/* No sk_callback_lock since already detached. */
671
672	/* Parser has been stopped */
673	if (psock->progs.skb_parser)
674		strp_done(&psock->parser.strp);
675
676	cancel_work_sync(&psock->work);
677
678	psock_progs_drop(&psock->progs);
679
680	sk_psock_link_destroy(psock);
681	sk_psock_cork_free(psock);
682	sk_psock_zap_ingress(psock);
683
684	if (psock->sk_redir)
685		sock_put(psock->sk_redir);
686	sock_put(psock->sk);
687	kfree(psock);
688}
689
690static void sk_psock_destroy(struct rcu_head *rcu)
691{
692	struct sk_psock *psock = container_of(rcu, struct sk_psock, rcu);
693
694	INIT_WORK(&psock->gc, sk_psock_destroy_deferred);
695	schedule_work(&psock->gc);
696}
697
698void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
699{
700	sk_psock_cork_free(psock);
701	sk_psock_zap_ingress(psock);
702
703	write_lock_bh(&sk->sk_callback_lock);
704	sk_psock_restore_proto(sk, psock);
705	rcu_assign_sk_user_data(sk, NULL);
706	if (psock->progs.skb_parser)
707		sk_psock_stop_strp(sk, psock);
708	else if (psock->progs.skb_verdict)
709		sk_psock_stop_verdict(sk, psock);
710	write_unlock_bh(&sk->sk_callback_lock);
711	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
712
713	call_rcu(&psock->rcu, sk_psock_destroy);
714}
715EXPORT_SYMBOL_GPL(sk_psock_drop);
716
717static int sk_psock_map_verd(int verdict, bool redir)
718{
719	switch (verdict) {
720	case SK_PASS:
721		return redir ? __SK_REDIRECT : __SK_PASS;
722	case SK_DROP:
723	default:
724		break;
725	}
726
727	return __SK_DROP;
728}
729
730int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
731			 struct sk_msg *msg)
732{
733	struct bpf_prog *prog;
734	int ret;
735
736	rcu_read_lock();
737	prog = READ_ONCE(psock->progs.msg_parser);
738	if (unlikely(!prog)) {
739		ret = __SK_PASS;
740		goto out;
741	}
742
743	sk_msg_compute_data_pointers(msg);
744	msg->sk = sk;
745	ret = bpf_prog_run_pin_on_cpu(prog, msg);
746	ret = sk_psock_map_verd(ret, msg->sk_redir);
747	psock->apply_bytes = msg->apply_bytes;
748	if (ret == __SK_REDIRECT) {
749		if (psock->sk_redir)
750			sock_put(psock->sk_redir);
751		psock->sk_redir = msg->sk_redir;
752		if (!psock->sk_redir) {
753			ret = __SK_DROP;
754			goto out;
755		}
756		sock_hold(psock->sk_redir);
757	}
758out:
759	rcu_read_unlock();
760	return ret;
761}
762EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
763
764static int sk_psock_bpf_run(struct sk_psock *psock, struct bpf_prog *prog,
765			    struct sk_buff *skb)
766{
767	bpf_compute_data_end_sk_skb(skb);
768	return bpf_prog_run_pin_on_cpu(prog, skb);
769}
770
771static struct sk_psock *sk_psock_from_strp(struct strparser *strp)
772{
773	struct sk_psock_parser *parser;
774
775	parser = container_of(strp, struct sk_psock_parser, strp);
776	return container_of(parser, struct sk_psock, parser);
777}
778
779static void sk_psock_skb_redirect(struct sk_buff *skb)
780{
781	struct sk_psock *psock_other;
782	struct sock *sk_other;
783
784	sk_other = tcp_skb_bpf_redirect_fetch(skb);
785	/* This error is a buggy BPF program, it returned a redirect
786	 * return code, but then didn't set a redirect interface.
787	 */
788	if (unlikely(!sk_other)) {
789		kfree_skb(skb);
790		return;
791	}
792	psock_other = sk_psock(sk_other);
793	/* This error indicates the socket is being torn down or had another
794	 * error that caused the pipe to break. We can't send a packet on
795	 * a socket that is in this state so we drop the skb.
796	 */
797	if (!psock_other || sock_flag(sk_other, SOCK_DEAD) ||
798	    !sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
799		kfree_skb(skb);
800		return;
801	}
802
803	skb_queue_tail(&psock_other->ingress_skb, skb);
804	schedule_work(&psock_other->work);
805}
806
807static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict)
808{
809	switch (verdict) {
810	case __SK_REDIRECT:
811		sk_psock_skb_redirect(skb);
812		break;
813	case __SK_PASS:
814	case __SK_DROP:
815	default:
816		break;
817	}
818}
819
820int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
821{
822	struct bpf_prog *prog;
823	int ret = __SK_PASS;
824
825	rcu_read_lock();
826	prog = READ_ONCE(psock->progs.skb_verdict);
827	if (likely(prog)) {
828		skb->sk = psock->sk;
829		tcp_skb_bpf_redirect_clear(skb);
830		ret = sk_psock_bpf_run(psock, prog, skb);
831		ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
832		skb->sk = NULL;
833	}
834	sk_psock_tls_verdict_apply(skb, psock->sk, ret);
835	rcu_read_unlock();
836	return ret;
837}
838EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
839
840static void sk_psock_verdict_apply(struct sk_psock *psock,
841				   struct sk_buff *skb, int verdict)
842{
843	struct tcp_skb_cb *tcp;
844	struct sock *sk_other;
845	int err = -EIO;
846
847	switch (verdict) {
848	case __SK_PASS:
849		sk_other = psock->sk;
850		if (sock_flag(sk_other, SOCK_DEAD) ||
851		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
852			goto out_free;
853		}
854
855		tcp = TCP_SKB_CB(skb);
856		tcp->bpf.flags |= BPF_F_INGRESS;
857
858		/* If the queue is empty then we can submit directly
859		 * into the msg queue. If its not empty we have to
860		 * queue work otherwise we may get OOO data. Otherwise,
861		 * if sk_psock_skb_ingress errors will be handled by
862		 * retrying later from workqueue.
863		 */
864		if (skb_queue_empty(&psock->ingress_skb)) {
865			err = sk_psock_skb_ingress_self(psock, skb);
866		}
867		if (err < 0) {
868			skb_queue_tail(&psock->ingress_skb, skb);
869			schedule_work(&psock->work);
870		}
871		break;
872	case __SK_REDIRECT:
873		sk_psock_skb_redirect(skb);
874		break;
875	case __SK_DROP:
876	default:
877out_free:
878		kfree_skb(skb);
879	}
880}
881
882static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
883{
884	struct sk_psock *psock;
885	struct bpf_prog *prog;
886	int ret = __SK_DROP;
887	struct sock *sk;
888
889	rcu_read_lock();
890	sk = strp->sk;
891	psock = sk_psock(sk);
892	if (unlikely(!psock)) {
893		kfree_skb(skb);
894		goto out;
895	}
896	prog = READ_ONCE(psock->progs.skb_verdict);
897	if (likely(prog)) {
898		skb->sk = sk;
899		tcp_skb_bpf_redirect_clear(skb);
900		ret = sk_psock_bpf_run(psock, prog, skb);
901		ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
902		skb->sk = NULL;
903	}
904	sk_psock_verdict_apply(psock, skb, ret);
905out:
906	rcu_read_unlock();
907}
908
909static int sk_psock_strp_read_done(struct strparser *strp, int err)
910{
911	return err;
912}
913
914static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
915{
916	struct sk_psock *psock = sk_psock_from_strp(strp);
917	struct bpf_prog *prog;
918	int ret = skb->len;
919
920	rcu_read_lock();
921	prog = READ_ONCE(psock->progs.skb_parser);
922	if (likely(prog)) {
923		skb->sk = psock->sk;
924		ret = sk_psock_bpf_run(psock, prog, skb);
925		skb->sk = NULL;
926	}
927	rcu_read_unlock();
928	return ret;
929}
930
931/* Called with socket lock held. */
932static void sk_psock_strp_data_ready(struct sock *sk)
933{
934	struct sk_psock *psock;
935
936	rcu_read_lock();
937	psock = sk_psock(sk);
938	if (likely(psock)) {
939		if (tls_sw_has_ctx_rx(sk)) {
940			psock->parser.saved_data_ready(sk);
941		} else {
942			write_lock_bh(&sk->sk_callback_lock);
943			strp_data_ready(&psock->parser.strp);
944			write_unlock_bh(&sk->sk_callback_lock);
945		}
946	}
947	rcu_read_unlock();
948}
949
950static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
951				 unsigned int offset, size_t orig_len)
952{
953	struct sock *sk = (struct sock *)desc->arg.data;
954	struct sk_psock *psock;
955	struct bpf_prog *prog;
956	int ret = __SK_DROP;
957	int len = orig_len;
958
959	/* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
960	skb = skb_clone(skb, GFP_ATOMIC);
961	if (!skb) {
962		desc->error = -ENOMEM;
963		return 0;
964	}
965
966	rcu_read_lock();
967	psock = sk_psock(sk);
968	if (unlikely(!psock)) {
969		len = 0;
970		kfree_skb(skb);
971		goto out;
972	}
973	prog = READ_ONCE(psock->progs.skb_verdict);
974	if (likely(prog)) {
975		skb->sk = sk;
976		tcp_skb_bpf_redirect_clear(skb);
977		ret = sk_psock_bpf_run(psock, prog, skb);
978		ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb));
979		skb->sk = NULL;
980	}
981	sk_psock_verdict_apply(psock, skb, ret);
982out:
983	rcu_read_unlock();
984	return len;
985}
986
987static void sk_psock_verdict_data_ready(struct sock *sk)
988{
989	struct socket *sock = sk->sk_socket;
990	read_descriptor_t desc;
991
992	if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
993		return;
994
995	desc.arg.data = sk;
996	desc.error = 0;
997	desc.count = 1;
998
999	sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1000}
1001
1002static void sk_psock_write_space(struct sock *sk)
1003{
1004	struct sk_psock *psock;
1005	void (*write_space)(struct sock *sk) = NULL;
1006
1007	rcu_read_lock();
1008	psock = sk_psock(sk);
1009	if (likely(psock)) {
1010		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1011			schedule_work(&psock->work);
1012		write_space = psock->saved_write_space;
1013	}
1014	rcu_read_unlock();
1015	if (write_space)
1016		write_space(sk);
1017}
1018
1019int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1020{
1021	static const struct strp_callbacks cb = {
1022		.rcv_msg	= sk_psock_strp_read,
1023		.read_sock_done	= sk_psock_strp_read_done,
1024		.parse_msg	= sk_psock_strp_parse,
1025	};
1026
1027	psock->parser.enabled = false;
1028	return strp_init(&psock->parser.strp, sk, &cb);
1029}
1030
1031void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1032{
1033	struct sk_psock_parser *parser = &psock->parser;
1034
1035	if (parser->enabled)
1036		return;
1037
1038	parser->saved_data_ready = sk->sk_data_ready;
1039	sk->sk_data_ready = sk_psock_verdict_data_ready;
1040	sk->sk_write_space = sk_psock_write_space;
1041	parser->enabled = true;
1042}
1043
1044void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1045{
1046	struct sk_psock_parser *parser = &psock->parser;
1047
1048	if (parser->enabled)
1049		return;
1050
1051	parser->saved_data_ready = sk->sk_data_ready;
1052	sk->sk_data_ready = sk_psock_strp_data_ready;
1053	sk->sk_write_space = sk_psock_write_space;
1054	parser->enabled = true;
1055}
1056
1057void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1058{
1059	struct sk_psock_parser *parser = &psock->parser;
1060
1061	if (!parser->enabled)
1062		return;
1063
1064	sk->sk_data_ready = parser->saved_data_ready;
1065	parser->saved_data_ready = NULL;
1066	strp_stop(&parser->strp);
1067	parser->enabled = false;
1068}
1069
1070void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1071{
1072	struct sk_psock_parser *parser = &psock->parser;
1073
1074	if (!parser->enabled)
1075		return;
1076
1077	sk->sk_data_ready = parser->saved_data_ready;
1078	parser->saved_data_ready = NULL;
1079	parser->enabled = false;
1080}
1081