1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71#include <linux/uaccess.h> 72#include <linux/bitops.h> 73#include <linux/capability.h> 74#include <linux/cpu.h> 75#include <linux/types.h> 76#include <linux/kernel.h> 77#include <linux/hash.h> 78#include <linux/slab.h> 79#include <linux/sched.h> 80#include <linux/sched/mm.h> 81#include <linux/mutex.h> 82#include <linux/rwsem.h> 83#include <linux/string.h> 84#include <linux/mm.h> 85#include <linux/socket.h> 86#include <linux/sockios.h> 87#include <linux/errno.h> 88#include <linux/interrupt.h> 89#include <linux/if_ether.h> 90#include <linux/netdevice.h> 91#include <linux/etherdevice.h> 92#include <linux/ethtool.h> 93#include <linux/skbuff.h> 94#include <linux/bpf.h> 95#include <linux/bpf_trace.h> 96#include <net/net_namespace.h> 97#include <net/sock.h> 98#include <net/busy_poll.h> 99#include <linux/rtnetlink.h> 100#include <linux/stat.h> 101#include <net/dsa.h> 102#include <net/dst.h> 103#include <net/dst_metadata.h> 104#include <net/pkt_sched.h> 105#include <net/pkt_cls.h> 106#include <net/checksum.h> 107#include <net/xfrm.h> 108#include <linux/highmem.h> 109#include <linux/init.h> 110#include <linux/module.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/iw_handler.h> 115#include <asm/current.h> 116#include <linux/audit.h> 117#include <linux/dmaengine.h> 118#include <linux/err.h> 119#include <linux/ctype.h> 120#include <linux/if_arp.h> 121#include <linux/if_vlan.h> 122#include <linux/ip.h> 123#include <net/ip.h> 124#include <net/mpls.h> 125#include <linux/ipv6.h> 126#include <linux/in.h> 127#include <linux/jhash.h> 128#include <linux/random.h> 129#include <trace/events/napi.h> 130#include <trace/events/net.h> 131#include <trace/events/skb.h> 132#include <linux/inetdevice.h> 133#include <linux/cpu_rmap.h> 134#include <linux/static_key.h> 135#include <linux/hashtable.h> 136#include <linux/vmalloc.h> 137#include <linux/if_macvlan.h> 138#include <linux/errqueue.h> 139#include <linux/hrtimer.h> 140#include <linux/netfilter_ingress.h> 141#include <linux/crash_dump.h> 142#include <linux/sctp.h> 143#include <net/udp_tunnel.h> 144#include <linux/net_namespace.h> 145#include <linux/indirect_call_wrapper.h> 146#include <net/devlink.h> 147#include <linux/pm_runtime.h> 148#include <linux/prandom.h> 149 150#include "net-sysfs.h" 151 152#define MAX_GRO_SKBS 8 153 154/* This should be increased if a protocol with a bigger head is added. */ 155#define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157static DEFINE_SPINLOCK(ptype_lock); 158static DEFINE_SPINLOCK(offload_lock); 159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160struct list_head ptype_all __read_mostly; /* Taps */ 161static struct list_head offload_base __read_mostly; 162 163static int netif_rx_internal(struct sk_buff *skb); 164static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171/* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190DEFINE_RWLOCK(dev_base_lock); 191EXPORT_SYMBOL(dev_base_lock); 192 193static DEFINE_MUTEX(ifalias_mutex); 194 195/* protects napi_hash addition/deletion and napi_gen_id */ 196static DEFINE_SPINLOCK(napi_hash_lock); 197 198static unsigned int napi_gen_id = NR_CPUS; 199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201static DECLARE_RWSEM(devnet_rename_sem); 202 203static inline void dev_base_seq_inc(struct net *net) 204{ 205 while (++net->dev_base_seq == 0) 206 ; 207} 208 209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210{ 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214} 215 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217{ 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219} 220 221static inline void rps_lock(struct softnet_data *sd) 222{ 223#ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225#endif 226} 227 228static inline void rps_unlock(struct softnet_data *sd) 229{ 230#ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232#endif 233} 234 235static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 236 const char *name) 237{ 238 struct netdev_name_node *name_node; 239 240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 241 if (!name_node) 242 return NULL; 243 INIT_HLIST_NODE(&name_node->hlist); 244 name_node->dev = dev; 245 name_node->name = name; 246 return name_node; 247} 248 249static struct netdev_name_node * 250netdev_name_node_head_alloc(struct net_device *dev) 251{ 252 struct netdev_name_node *name_node; 253 254 name_node = netdev_name_node_alloc(dev, dev->name); 255 if (!name_node) 256 return NULL; 257 INIT_LIST_HEAD(&name_node->list); 258 return name_node; 259} 260 261static void netdev_name_node_free(struct netdev_name_node *name_node) 262{ 263 kfree(name_node); 264} 265 266static void netdev_name_node_add(struct net *net, 267 struct netdev_name_node *name_node) 268{ 269 hlist_add_head_rcu(&name_node->hlist, 270 dev_name_hash(net, name_node->name)); 271} 272 273static void netdev_name_node_del(struct netdev_name_node *name_node) 274{ 275 hlist_del_rcu(&name_node->hlist); 276} 277 278static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 279 const char *name) 280{ 281 struct hlist_head *head = dev_name_hash(net, name); 282 struct netdev_name_node *name_node; 283 284 hlist_for_each_entry(name_node, head, hlist) 285 if (!strcmp(name_node->name, name)) 286 return name_node; 287 return NULL; 288} 289 290static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 291 const char *name) 292{ 293 struct hlist_head *head = dev_name_hash(net, name); 294 struct netdev_name_node *name_node; 295 296 hlist_for_each_entry_rcu(name_node, head, hlist) 297 if (!strcmp(name_node->name, name)) 298 return name_node; 299 return NULL; 300} 301 302int netdev_name_node_alt_create(struct net_device *dev, const char *name) 303{ 304 struct netdev_name_node *name_node; 305 struct net *net = dev_net(dev); 306 307 name_node = netdev_name_node_lookup(net, name); 308 if (name_node) 309 return -EEXIST; 310 name_node = netdev_name_node_alloc(dev, name); 311 if (!name_node) 312 return -ENOMEM; 313 netdev_name_node_add(net, name_node); 314 /* The node that holds dev->name acts as a head of per-device list. */ 315 list_add_tail(&name_node->list, &dev->name_node->list); 316 317 return 0; 318} 319EXPORT_SYMBOL(netdev_name_node_alt_create); 320 321static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 322{ 323 list_del(&name_node->list); 324 netdev_name_node_del(name_node); 325 kfree(name_node->name); 326 netdev_name_node_free(name_node); 327} 328 329int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 330{ 331 struct netdev_name_node *name_node; 332 struct net *net = dev_net(dev); 333 334 name_node = netdev_name_node_lookup(net, name); 335 if (!name_node) 336 return -ENOENT; 337 /* lookup might have found our primary name or a name belonging 338 * to another device. 339 */ 340 if (name_node == dev->name_node || name_node->dev != dev) 341 return -EINVAL; 342 343 __netdev_name_node_alt_destroy(name_node); 344 345 return 0; 346} 347EXPORT_SYMBOL(netdev_name_node_alt_destroy); 348 349static void netdev_name_node_alt_flush(struct net_device *dev) 350{ 351 struct netdev_name_node *name_node, *tmp; 352 353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 354 __netdev_name_node_alt_destroy(name_node); 355} 356 357/* Device list insertion */ 358static void list_netdevice(struct net_device *dev) 359{ 360 struct net *net = dev_net(dev); 361 362 ASSERT_RTNL(); 363 364 write_lock_bh(&dev_base_lock); 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 366 netdev_name_node_add(net, dev->name_node); 367 hlist_add_head_rcu(&dev->index_hlist, 368 dev_index_hash(net, dev->ifindex)); 369 write_unlock_bh(&dev_base_lock); 370 371 dev_base_seq_inc(net); 372} 373 374/* Device list removal 375 * caller must respect a RCU grace period before freeing/reusing dev 376 */ 377static void unlist_netdevice(struct net_device *dev) 378{ 379 ASSERT_RTNL(); 380 381 /* Unlink dev from the device chain */ 382 write_lock_bh(&dev_base_lock); 383 list_del_rcu(&dev->dev_list); 384 netdev_name_node_del(dev->name_node); 385 hlist_del_rcu(&dev->index_hlist); 386 write_unlock_bh(&dev_base_lock); 387 388 dev_base_seq_inc(dev_net(dev)); 389} 390 391/* 392 * Our notifier list 393 */ 394 395static RAW_NOTIFIER_HEAD(netdev_chain); 396 397/* 398 * Device drivers call our routines to queue packets here. We empty the 399 * queue in the local softnet handler. 400 */ 401 402DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 403EXPORT_PER_CPU_SYMBOL(softnet_data); 404 405#ifdef CONFIG_LOCKDEP 406/* 407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 408 * according to dev->type 409 */ 410static const unsigned short netdev_lock_type[] = { 411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 426 427static const char *const netdev_lock_name[] = { 428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 443 444static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 445static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 446 447static inline unsigned short netdev_lock_pos(unsigned short dev_type) 448{ 449 int i; 450 451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 452 if (netdev_lock_type[i] == dev_type) 453 return i; 454 /* the last key is used by default */ 455 return ARRAY_SIZE(netdev_lock_type) - 1; 456} 457 458static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 459 unsigned short dev_type) 460{ 461 int i; 462 463 i = netdev_lock_pos(dev_type); 464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 465 netdev_lock_name[i]); 466} 467 468static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 469{ 470 int i; 471 472 i = netdev_lock_pos(dev->type); 473 lockdep_set_class_and_name(&dev->addr_list_lock, 474 &netdev_addr_lock_key[i], 475 netdev_lock_name[i]); 476} 477#else 478static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 479 unsigned short dev_type) 480{ 481} 482 483static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 484{ 485} 486#endif 487 488/******************************************************************************* 489 * 490 * Protocol management and registration routines 491 * 492 *******************************************************************************/ 493 494 495/* 496 * Add a protocol ID to the list. Now that the input handler is 497 * smarter we can dispense with all the messy stuff that used to be 498 * here. 499 * 500 * BEWARE!!! Protocol handlers, mangling input packets, 501 * MUST BE last in hash buckets and checking protocol handlers 502 * MUST start from promiscuous ptype_all chain in net_bh. 503 * It is true now, do not change it. 504 * Explanation follows: if protocol handler, mangling packet, will 505 * be the first on list, it is not able to sense, that packet 506 * is cloned and should be copied-on-write, so that it will 507 * change it and subsequent readers will get broken packet. 508 * --ANK (980803) 509 */ 510 511static inline struct list_head *ptype_head(const struct packet_type *pt) 512{ 513 if (pt->type == htons(ETH_P_ALL)) 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 515 else 516 return pt->dev ? &pt->dev->ptype_specific : 517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 518} 519 520/** 521 * dev_add_pack - add packet handler 522 * @pt: packet type declaration 523 * 524 * Add a protocol handler to the networking stack. The passed &packet_type 525 * is linked into kernel lists and may not be freed until it has been 526 * removed from the kernel lists. 527 * 528 * This call does not sleep therefore it can not 529 * guarantee all CPU's that are in middle of receiving packets 530 * will see the new packet type (until the next received packet). 531 */ 532 533void dev_add_pack(struct packet_type *pt) 534{ 535 struct list_head *head = ptype_head(pt); 536 537 spin_lock(&ptype_lock); 538 list_add_rcu(&pt->list, head); 539 spin_unlock(&ptype_lock); 540} 541EXPORT_SYMBOL(dev_add_pack); 542 543/** 544 * __dev_remove_pack - remove packet handler 545 * @pt: packet type declaration 546 * 547 * Remove a protocol handler that was previously added to the kernel 548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 549 * from the kernel lists and can be freed or reused once this function 550 * returns. 551 * 552 * The packet type might still be in use by receivers 553 * and must not be freed until after all the CPU's have gone 554 * through a quiescent state. 555 */ 556void __dev_remove_pack(struct packet_type *pt) 557{ 558 struct list_head *head = ptype_head(pt); 559 struct packet_type *pt1; 560 561 spin_lock(&ptype_lock); 562 563 list_for_each_entry(pt1, head, list) { 564 if (pt == pt1) { 565 list_del_rcu(&pt->list); 566 goto out; 567 } 568 } 569 570 pr_warn("dev_remove_pack: %p not found\n", pt); 571out: 572 spin_unlock(&ptype_lock); 573} 574EXPORT_SYMBOL(__dev_remove_pack); 575 576/** 577 * dev_remove_pack - remove packet handler 578 * @pt: packet type declaration 579 * 580 * Remove a protocol handler that was previously added to the kernel 581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 582 * from the kernel lists and can be freed or reused once this function 583 * returns. 584 * 585 * This call sleeps to guarantee that no CPU is looking at the packet 586 * type after return. 587 */ 588void dev_remove_pack(struct packet_type *pt) 589{ 590 __dev_remove_pack(pt); 591 592 synchronize_net(); 593} 594EXPORT_SYMBOL(dev_remove_pack); 595 596 597/** 598 * dev_add_offload - register offload handlers 599 * @po: protocol offload declaration 600 * 601 * Add protocol offload handlers to the networking stack. The passed 602 * &proto_offload is linked into kernel lists and may not be freed until 603 * it has been removed from the kernel lists. 604 * 605 * This call does not sleep therefore it can not 606 * guarantee all CPU's that are in middle of receiving packets 607 * will see the new offload handlers (until the next received packet). 608 */ 609void dev_add_offload(struct packet_offload *po) 610{ 611 struct packet_offload *elem; 612 613 spin_lock(&offload_lock); 614 list_for_each_entry(elem, &offload_base, list) { 615 if (po->priority < elem->priority) 616 break; 617 } 618 list_add_rcu(&po->list, elem->list.prev); 619 spin_unlock(&offload_lock); 620} 621EXPORT_SYMBOL(dev_add_offload); 622 623/** 624 * __dev_remove_offload - remove offload handler 625 * @po: packet offload declaration 626 * 627 * Remove a protocol offload handler that was previously added to the 628 * kernel offload handlers by dev_add_offload(). The passed &offload_type 629 * is removed from the kernel lists and can be freed or reused once this 630 * function returns. 631 * 632 * The packet type might still be in use by receivers 633 * and must not be freed until after all the CPU's have gone 634 * through a quiescent state. 635 */ 636static void __dev_remove_offload(struct packet_offload *po) 637{ 638 struct list_head *head = &offload_base; 639 struct packet_offload *po1; 640 641 spin_lock(&offload_lock); 642 643 list_for_each_entry(po1, head, list) { 644 if (po == po1) { 645 list_del_rcu(&po->list); 646 goto out; 647 } 648 } 649 650 pr_warn("dev_remove_offload: %p not found\n", po); 651out: 652 spin_unlock(&offload_lock); 653} 654 655/** 656 * dev_remove_offload - remove packet offload handler 657 * @po: packet offload declaration 658 * 659 * Remove a packet offload handler that was previously added to the kernel 660 * offload handlers by dev_add_offload(). The passed &offload_type is 661 * removed from the kernel lists and can be freed or reused once this 662 * function returns. 663 * 664 * This call sleeps to guarantee that no CPU is looking at the packet 665 * type after return. 666 */ 667void dev_remove_offload(struct packet_offload *po) 668{ 669 __dev_remove_offload(po); 670 671 synchronize_net(); 672} 673EXPORT_SYMBOL(dev_remove_offload); 674 675/****************************************************************************** 676 * 677 * Device Boot-time Settings Routines 678 * 679 ******************************************************************************/ 680 681/* Boot time configuration table */ 682static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 683 684/** 685 * netdev_boot_setup_add - add new setup entry 686 * @name: name of the device 687 * @map: configured settings for the device 688 * 689 * Adds new setup entry to the dev_boot_setup list. The function 690 * returns 0 on error and 1 on success. This is a generic routine to 691 * all netdevices. 692 */ 693static int netdev_boot_setup_add(char *name, struct ifmap *map) 694{ 695 struct netdev_boot_setup *s; 696 int i; 697 698 s = dev_boot_setup; 699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 701 memset(s[i].name, 0, sizeof(s[i].name)); 702 strlcpy(s[i].name, name, IFNAMSIZ); 703 memcpy(&s[i].map, map, sizeof(s[i].map)); 704 break; 705 } 706 } 707 708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 709} 710 711/** 712 * netdev_boot_setup_check - check boot time settings 713 * @dev: the netdevice 714 * 715 * Check boot time settings for the device. 716 * The found settings are set for the device to be used 717 * later in the device probing. 718 * Returns 0 if no settings found, 1 if they are. 719 */ 720int netdev_boot_setup_check(struct net_device *dev) 721{ 722 struct netdev_boot_setup *s = dev_boot_setup; 723 int i; 724 725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 727 !strcmp(dev->name, s[i].name)) { 728 dev->irq = s[i].map.irq; 729 dev->base_addr = s[i].map.base_addr; 730 dev->mem_start = s[i].map.mem_start; 731 dev->mem_end = s[i].map.mem_end; 732 return 1; 733 } 734 } 735 return 0; 736} 737EXPORT_SYMBOL(netdev_boot_setup_check); 738 739 740/** 741 * netdev_boot_base - get address from boot time settings 742 * @prefix: prefix for network device 743 * @unit: id for network device 744 * 745 * Check boot time settings for the base address of device. 746 * The found settings are set for the device to be used 747 * later in the device probing. 748 * Returns 0 if no settings found. 749 */ 750unsigned long netdev_boot_base(const char *prefix, int unit) 751{ 752 const struct netdev_boot_setup *s = dev_boot_setup; 753 char name[IFNAMSIZ]; 754 int i; 755 756 sprintf(name, "%s%d", prefix, unit); 757 758 /* 759 * If device already registered then return base of 1 760 * to indicate not to probe for this interface 761 */ 762 if (__dev_get_by_name(&init_net, name)) 763 return 1; 764 765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 766 if (!strcmp(name, s[i].name)) 767 return s[i].map.base_addr; 768 return 0; 769} 770 771/* 772 * Saves at boot time configured settings for any netdevice. 773 */ 774int __init netdev_boot_setup(char *str) 775{ 776 int ints[5]; 777 struct ifmap map; 778 779 str = get_options(str, ARRAY_SIZE(ints), ints); 780 if (!str || !*str) 781 return 0; 782 783 /* Save settings */ 784 memset(&map, 0, sizeof(map)); 785 if (ints[0] > 0) 786 map.irq = ints[1]; 787 if (ints[0] > 1) 788 map.base_addr = ints[2]; 789 if (ints[0] > 2) 790 map.mem_start = ints[3]; 791 if (ints[0] > 3) 792 map.mem_end = ints[4]; 793 794 /* Add new entry to the list */ 795 return netdev_boot_setup_add(str, &map); 796} 797 798__setup("netdev=", netdev_boot_setup); 799 800/******************************************************************************* 801 * 802 * Device Interface Subroutines 803 * 804 *******************************************************************************/ 805 806/** 807 * dev_get_iflink - get 'iflink' value of a interface 808 * @dev: targeted interface 809 * 810 * Indicates the ifindex the interface is linked to. 811 * Physical interfaces have the same 'ifindex' and 'iflink' values. 812 */ 813 814int dev_get_iflink(const struct net_device *dev) 815{ 816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 817 return dev->netdev_ops->ndo_get_iflink(dev); 818 819 return dev->ifindex; 820} 821EXPORT_SYMBOL(dev_get_iflink); 822 823/** 824 * dev_fill_metadata_dst - Retrieve tunnel egress information. 825 * @dev: targeted interface 826 * @skb: The packet. 827 * 828 * For better visibility of tunnel traffic OVS needs to retrieve 829 * egress tunnel information for a packet. Following API allows 830 * user to get this info. 831 */ 832int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 833{ 834 struct ip_tunnel_info *info; 835 836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 837 return -EINVAL; 838 839 info = skb_tunnel_info_unclone(skb); 840 if (!info) 841 return -ENOMEM; 842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 843 return -EINVAL; 844 845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 846} 847EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 848 849/** 850 * __dev_get_by_name - find a device by its name 851 * @net: the applicable net namespace 852 * @name: name to find 853 * 854 * Find an interface by name. Must be called under RTNL semaphore 855 * or @dev_base_lock. If the name is found a pointer to the device 856 * is returned. If the name is not found then %NULL is returned. The 857 * reference counters are not incremented so the caller must be 858 * careful with locks. 859 */ 860 861struct net_device *__dev_get_by_name(struct net *net, const char *name) 862{ 863 struct netdev_name_node *node_name; 864 865 node_name = netdev_name_node_lookup(net, name); 866 return node_name ? node_name->dev : NULL; 867} 868EXPORT_SYMBOL(__dev_get_by_name); 869 870/** 871 * dev_get_by_name_rcu - find a device by its name 872 * @net: the applicable net namespace 873 * @name: name to find 874 * 875 * Find an interface by name. 876 * If the name is found a pointer to the device is returned. 877 * If the name is not found then %NULL is returned. 878 * The reference counters are not incremented so the caller must be 879 * careful with locks. The caller must hold RCU lock. 880 */ 881 882struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 883{ 884 struct netdev_name_node *node_name; 885 886 node_name = netdev_name_node_lookup_rcu(net, name); 887 return node_name ? node_name->dev : NULL; 888} 889EXPORT_SYMBOL(dev_get_by_name_rcu); 890 891/** 892 * dev_get_by_name - find a device by its name 893 * @net: the applicable net namespace 894 * @name: name to find 895 * 896 * Find an interface by name. This can be called from any 897 * context and does its own locking. The returned handle has 898 * the usage count incremented and the caller must use dev_put() to 899 * release it when it is no longer needed. %NULL is returned if no 900 * matching device is found. 901 */ 902 903struct net_device *dev_get_by_name(struct net *net, const char *name) 904{ 905 struct net_device *dev; 906 907 rcu_read_lock(); 908 dev = dev_get_by_name_rcu(net, name); 909 if (dev) 910 dev_hold(dev); 911 rcu_read_unlock(); 912 return dev; 913} 914EXPORT_SYMBOL(dev_get_by_name); 915 916/** 917 * __dev_get_by_index - find a device by its ifindex 918 * @net: the applicable net namespace 919 * @ifindex: index of device 920 * 921 * Search for an interface by index. Returns %NULL if the device 922 * is not found or a pointer to the device. The device has not 923 * had its reference counter increased so the caller must be careful 924 * about locking. The caller must hold either the RTNL semaphore 925 * or @dev_base_lock. 926 */ 927 928struct net_device *__dev_get_by_index(struct net *net, int ifindex) 929{ 930 struct net_device *dev; 931 struct hlist_head *head = dev_index_hash(net, ifindex); 932 933 hlist_for_each_entry(dev, head, index_hlist) 934 if (dev->ifindex == ifindex) 935 return dev; 936 937 return NULL; 938} 939EXPORT_SYMBOL(__dev_get_by_index); 940 941/** 942 * dev_get_by_index_rcu - find a device by its ifindex 943 * @net: the applicable net namespace 944 * @ifindex: index of device 945 * 946 * Search for an interface by index. Returns %NULL if the device 947 * is not found or a pointer to the device. The device has not 948 * had its reference counter increased so the caller must be careful 949 * about locking. The caller must hold RCU lock. 950 */ 951 952struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 953{ 954 struct net_device *dev; 955 struct hlist_head *head = dev_index_hash(net, ifindex); 956 957 hlist_for_each_entry_rcu(dev, head, index_hlist) 958 if (dev->ifindex == ifindex) 959 return dev; 960 961 return NULL; 962} 963EXPORT_SYMBOL(dev_get_by_index_rcu); 964 965 966/** 967 * dev_get_by_index - find a device by its ifindex 968 * @net: the applicable net namespace 969 * @ifindex: index of device 970 * 971 * Search for an interface by index. Returns NULL if the device 972 * is not found or a pointer to the device. The device returned has 973 * had a reference added and the pointer is safe until the user calls 974 * dev_put to indicate they have finished with it. 975 */ 976 977struct net_device *dev_get_by_index(struct net *net, int ifindex) 978{ 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 if (dev) 984 dev_hold(dev); 985 rcu_read_unlock(); 986 return dev; 987} 988EXPORT_SYMBOL(dev_get_by_index); 989 990/** 991 * dev_get_by_napi_id - find a device by napi_id 992 * @napi_id: ID of the NAPI struct 993 * 994 * Search for an interface by NAPI ID. Returns %NULL if the device 995 * is not found or a pointer to the device. The device has not had 996 * its reference counter increased so the caller must be careful 997 * about locking. The caller must hold RCU lock. 998 */ 999 1000struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1001{ 1002 struct napi_struct *napi; 1003 1004 WARN_ON_ONCE(!rcu_read_lock_held()); 1005 1006 if (napi_id < MIN_NAPI_ID) 1007 return NULL; 1008 1009 napi = napi_by_id(napi_id); 1010 1011 return napi ? napi->dev : NULL; 1012} 1013EXPORT_SYMBOL(dev_get_by_napi_id); 1014 1015/** 1016 * netdev_get_name - get a netdevice name, knowing its ifindex. 1017 * @net: network namespace 1018 * @name: a pointer to the buffer where the name will be stored. 1019 * @ifindex: the ifindex of the interface to get the name from. 1020 */ 1021int netdev_get_name(struct net *net, char *name, int ifindex) 1022{ 1023 struct net_device *dev; 1024 int ret; 1025 1026 down_read(&devnet_rename_sem); 1027 rcu_read_lock(); 1028 1029 dev = dev_get_by_index_rcu(net, ifindex); 1030 if (!dev) { 1031 ret = -ENODEV; 1032 goto out; 1033 } 1034 1035 strcpy(name, dev->name); 1036 1037 ret = 0; 1038out: 1039 rcu_read_unlock(); 1040 up_read(&devnet_rename_sem); 1041 return ret; 1042} 1043 1044/** 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address 1046 * @net: the applicable net namespace 1047 * @type: media type of device 1048 * @ha: hardware address 1049 * 1050 * Search for an interface by MAC address. Returns NULL if the device 1051 * is not found or a pointer to the device. 1052 * The caller must hold RCU or RTNL. 1053 * The returned device has not had its ref count increased 1054 * and the caller must therefore be careful about locking 1055 * 1056 */ 1057 1058struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1059 const char *ha) 1060{ 1061 struct net_device *dev; 1062 1063 for_each_netdev_rcu(net, dev) 1064 if (dev->type == type && 1065 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1066 return dev; 1067 1068 return NULL; 1069} 1070EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1071 1072struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1073{ 1074 struct net_device *dev; 1075 1076 ASSERT_RTNL(); 1077 for_each_netdev(net, dev) 1078 if (dev->type == type) 1079 return dev; 1080 1081 return NULL; 1082} 1083EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1084 1085struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1086{ 1087 struct net_device *dev, *ret = NULL; 1088 1089 rcu_read_lock(); 1090 for_each_netdev_rcu(net, dev) 1091 if (dev->type == type) { 1092 dev_hold(dev); 1093 ret = dev; 1094 break; 1095 } 1096 rcu_read_unlock(); 1097 return ret; 1098} 1099EXPORT_SYMBOL(dev_getfirstbyhwtype); 1100 1101/** 1102 * __dev_get_by_flags - find any device with given flags 1103 * @net: the applicable net namespace 1104 * @if_flags: IFF_* values 1105 * @mask: bitmask of bits in if_flags to check 1106 * 1107 * Search for any interface with the given flags. Returns NULL if a device 1108 * is not found or a pointer to the device. Must be called inside 1109 * rtnl_lock(), and result refcount is unchanged. 1110 */ 1111 1112struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1113 unsigned short mask) 1114{ 1115 struct net_device *dev, *ret; 1116 1117 ASSERT_RTNL(); 1118 1119 ret = NULL; 1120 for_each_netdev(net, dev) { 1121 if (((dev->flags ^ if_flags) & mask) == 0) { 1122 ret = dev; 1123 break; 1124 } 1125 } 1126 return ret; 1127} 1128EXPORT_SYMBOL(__dev_get_by_flags); 1129 1130/** 1131 * dev_valid_name - check if name is okay for network device 1132 * @name: name string 1133 * 1134 * Network device names need to be valid file names to 1135 * allow sysfs to work. We also disallow any kind of 1136 * whitespace. 1137 */ 1138bool dev_valid_name(const char *name) 1139{ 1140 if (*name == '\0') 1141 return false; 1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1143 return false; 1144 if (!strcmp(name, ".") || !strcmp(name, "..")) 1145 return false; 1146 1147 while (*name) { 1148 if (*name == '/' || *name == ':' || isspace(*name)) 1149 return false; 1150 name++; 1151 } 1152 return true; 1153} 1154EXPORT_SYMBOL(dev_valid_name); 1155 1156/** 1157 * __dev_alloc_name - allocate a name for a device 1158 * @net: network namespace to allocate the device name in 1159 * @name: name format string 1160 * @buf: scratch buffer and result name string 1161 * 1162 * Passed a format string - eg "lt%d" it will try and find a suitable 1163 * id. It scans list of devices to build up a free map, then chooses 1164 * the first empty slot. The caller must hold the dev_base or rtnl lock 1165 * while allocating the name and adding the device in order to avoid 1166 * duplicates. 1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1168 * Returns the number of the unit assigned or a negative errno code. 1169 */ 1170 1171static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1172{ 1173 int i = 0; 1174 const char *p; 1175 const int max_netdevices = 8*PAGE_SIZE; 1176 unsigned long *inuse; 1177 struct net_device *d; 1178 1179 if (!dev_valid_name(name)) 1180 return -EINVAL; 1181 1182 p = strchr(name, '%'); 1183 if (p) { 1184 /* 1185 * Verify the string as this thing may have come from 1186 * the user. There must be either one "%d" and no other "%" 1187 * characters. 1188 */ 1189 if (p[1] != 'd' || strchr(p + 2, '%')) 1190 return -EINVAL; 1191 1192 /* Use one page as a bit array of possible slots */ 1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1194 if (!inuse) 1195 return -ENOMEM; 1196 1197 for_each_netdev(net, d) { 1198 struct netdev_name_node *name_node; 1199 list_for_each_entry(name_node, &d->name_node->list, list) { 1200 if (!sscanf(name_node->name, name, &i)) 1201 continue; 1202 if (i < 0 || i >= max_netdevices) 1203 continue; 1204 1205 /* avoid cases where sscanf is not exact inverse of printf */ 1206 snprintf(buf, IFNAMSIZ, name, i); 1207 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1208 set_bit(i, inuse); 1209 } 1210 if (!sscanf(d->name, name, &i)) 1211 continue; 1212 if (i < 0 || i >= max_netdevices) 1213 continue; 1214 1215 /* avoid cases where sscanf is not exact inverse of printf */ 1216 snprintf(buf, IFNAMSIZ, name, i); 1217 if (!strncmp(buf, d->name, IFNAMSIZ)) 1218 set_bit(i, inuse); 1219 } 1220 1221 i = find_first_zero_bit(inuse, max_netdevices); 1222 free_page((unsigned long) inuse); 1223 } 1224 1225 snprintf(buf, IFNAMSIZ, name, i); 1226 if (!__dev_get_by_name(net, buf)) 1227 return i; 1228 1229 /* It is possible to run out of possible slots 1230 * when the name is long and there isn't enough space left 1231 * for the digits, or if all bits are used. 1232 */ 1233 return -ENFILE; 1234} 1235 1236static int dev_alloc_name_ns(struct net *net, 1237 struct net_device *dev, 1238 const char *name) 1239{ 1240 char buf[IFNAMSIZ]; 1241 int ret; 1242 1243 BUG_ON(!net); 1244 ret = __dev_alloc_name(net, name, buf); 1245 if (ret >= 0) 1246 strlcpy(dev->name, buf, IFNAMSIZ); 1247 return ret; 1248} 1249 1250/** 1251 * dev_alloc_name - allocate a name for a device 1252 * @dev: device 1253 * @name: name format string 1254 * 1255 * Passed a format string - eg "lt%d" it will try and find a suitable 1256 * id. It scans list of devices to build up a free map, then chooses 1257 * the first empty slot. The caller must hold the dev_base or rtnl lock 1258 * while allocating the name and adding the device in order to avoid 1259 * duplicates. 1260 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1261 * Returns the number of the unit assigned or a negative errno code. 1262 */ 1263 1264int dev_alloc_name(struct net_device *dev, const char *name) 1265{ 1266 return dev_alloc_name_ns(dev_net(dev), dev, name); 1267} 1268EXPORT_SYMBOL(dev_alloc_name); 1269 1270static int dev_get_valid_name(struct net *net, struct net_device *dev, 1271 const char *name) 1272{ 1273 BUG_ON(!net); 1274 1275 if (!dev_valid_name(name)) 1276 return -EINVAL; 1277 1278 if (strchr(name, '%')) 1279 return dev_alloc_name_ns(net, dev, name); 1280 else if (__dev_get_by_name(net, name)) 1281 return -EEXIST; 1282 else if (dev->name != name) 1283 strlcpy(dev->name, name, IFNAMSIZ); 1284 1285 return 0; 1286} 1287 1288/** 1289 * dev_change_name - change name of a device 1290 * @dev: device 1291 * @newname: name (or format string) must be at least IFNAMSIZ 1292 * 1293 * Change name of a device, can pass format strings "eth%d". 1294 * for wildcarding. 1295 */ 1296int dev_change_name(struct net_device *dev, const char *newname) 1297{ 1298 unsigned char old_assign_type; 1299 char oldname[IFNAMSIZ]; 1300 int err = 0; 1301 int ret; 1302 struct net *net; 1303 1304 ASSERT_RTNL(); 1305 BUG_ON(!dev_net(dev)); 1306 1307 net = dev_net(dev); 1308 1309 /* Some auto-enslaved devices e.g. failover slaves are 1310 * special, as userspace might rename the device after 1311 * the interface had been brought up and running since 1312 * the point kernel initiated auto-enslavement. Allow 1313 * live name change even when these slave devices are 1314 * up and running. 1315 * 1316 * Typically, users of these auto-enslaving devices 1317 * don't actually care about slave name change, as 1318 * they are supposed to operate on master interface 1319 * directly. 1320 */ 1321 if (dev->flags & IFF_UP && 1322 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1323 return -EBUSY; 1324 1325 down_write(&devnet_rename_sem); 1326 1327 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1328 up_write(&devnet_rename_sem); 1329 return 0; 1330 } 1331 1332 memcpy(oldname, dev->name, IFNAMSIZ); 1333 1334 err = dev_get_valid_name(net, dev, newname); 1335 if (err < 0) { 1336 up_write(&devnet_rename_sem); 1337 return err; 1338 } 1339 1340 if (oldname[0] && !strchr(oldname, '%')) 1341 netdev_info(dev, "renamed from %s\n", oldname); 1342 1343 old_assign_type = dev->name_assign_type; 1344 dev->name_assign_type = NET_NAME_RENAMED; 1345 1346rollback: 1347 ret = device_rename(&dev->dev, dev->name); 1348 if (ret) { 1349 memcpy(dev->name, oldname, IFNAMSIZ); 1350 dev->name_assign_type = old_assign_type; 1351 up_write(&devnet_rename_sem); 1352 return ret; 1353 } 1354 1355 up_write(&devnet_rename_sem); 1356 1357 netdev_adjacent_rename_links(dev, oldname); 1358 1359 write_lock_bh(&dev_base_lock); 1360 netdev_name_node_del(dev->name_node); 1361 write_unlock_bh(&dev_base_lock); 1362 1363 synchronize_rcu(); 1364 1365 write_lock_bh(&dev_base_lock); 1366 netdev_name_node_add(net, dev->name_node); 1367 write_unlock_bh(&dev_base_lock); 1368 1369 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1370 ret = notifier_to_errno(ret); 1371 1372 if (ret) { 1373 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1374 if (err >= 0) { 1375 err = ret; 1376 down_write(&devnet_rename_sem); 1377 memcpy(dev->name, oldname, IFNAMSIZ); 1378 memcpy(oldname, newname, IFNAMSIZ); 1379 dev->name_assign_type = old_assign_type; 1380 old_assign_type = NET_NAME_RENAMED; 1381 goto rollback; 1382 } else { 1383 pr_err("%s: name change rollback failed: %d\n", 1384 dev->name, ret); 1385 } 1386 } 1387 1388 return err; 1389} 1390 1391/** 1392 * dev_set_alias - change ifalias of a device 1393 * @dev: device 1394 * @alias: name up to IFALIASZ 1395 * @len: limit of bytes to copy from info 1396 * 1397 * Set ifalias for a device, 1398 */ 1399int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1400{ 1401 struct dev_ifalias *new_alias = NULL; 1402 1403 if (len >= IFALIASZ) 1404 return -EINVAL; 1405 1406 if (len) { 1407 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1408 if (!new_alias) 1409 return -ENOMEM; 1410 1411 memcpy(new_alias->ifalias, alias, len); 1412 new_alias->ifalias[len] = 0; 1413 } 1414 1415 mutex_lock(&ifalias_mutex); 1416 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1417 mutex_is_locked(&ifalias_mutex)); 1418 mutex_unlock(&ifalias_mutex); 1419 1420 if (new_alias) 1421 kfree_rcu(new_alias, rcuhead); 1422 1423 return len; 1424} 1425EXPORT_SYMBOL(dev_set_alias); 1426 1427/** 1428 * dev_get_alias - get ifalias of a device 1429 * @dev: device 1430 * @name: buffer to store name of ifalias 1431 * @len: size of buffer 1432 * 1433 * get ifalias for a device. Caller must make sure dev cannot go 1434 * away, e.g. rcu read lock or own a reference count to device. 1435 */ 1436int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1437{ 1438 const struct dev_ifalias *alias; 1439 int ret = 0; 1440 1441 rcu_read_lock(); 1442 alias = rcu_dereference(dev->ifalias); 1443 if (alias) 1444 ret = snprintf(name, len, "%s", alias->ifalias); 1445 rcu_read_unlock(); 1446 1447 return ret; 1448} 1449 1450/** 1451 * netdev_features_change - device changes features 1452 * @dev: device to cause notification 1453 * 1454 * Called to indicate a device has changed features. 1455 */ 1456void netdev_features_change(struct net_device *dev) 1457{ 1458 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1459} 1460EXPORT_SYMBOL(netdev_features_change); 1461 1462/** 1463 * netdev_state_change - device changes state 1464 * @dev: device to cause notification 1465 * 1466 * Called to indicate a device has changed state. This function calls 1467 * the notifier chains for netdev_chain and sends a NEWLINK message 1468 * to the routing socket. 1469 */ 1470void netdev_state_change(struct net_device *dev) 1471{ 1472 if (dev->flags & IFF_UP) { 1473 struct netdev_notifier_change_info change_info = { 1474 .info.dev = dev, 1475 }; 1476 1477 call_netdevice_notifiers_info(NETDEV_CHANGE, 1478 &change_info.info); 1479 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1480 } 1481} 1482EXPORT_SYMBOL(netdev_state_change); 1483 1484/** 1485 * netdev_notify_peers - notify network peers about existence of @dev 1486 * @dev: network device 1487 * 1488 * Generate traffic such that interested network peers are aware of 1489 * @dev, such as by generating a gratuitous ARP. This may be used when 1490 * a device wants to inform the rest of the network about some sort of 1491 * reconfiguration such as a failover event or virtual machine 1492 * migration. 1493 */ 1494void netdev_notify_peers(struct net_device *dev) 1495{ 1496 rtnl_lock(); 1497 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1498 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1499 rtnl_unlock(); 1500} 1501EXPORT_SYMBOL(netdev_notify_peers); 1502 1503static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1504{ 1505 const struct net_device_ops *ops = dev->netdev_ops; 1506 int ret; 1507 1508 ASSERT_RTNL(); 1509 1510 if (!netif_device_present(dev)) { 1511 /* may be detached because parent is runtime-suspended */ 1512 if (dev->dev.parent) 1513 pm_runtime_resume(dev->dev.parent); 1514 if (!netif_device_present(dev)) 1515 return -ENODEV; 1516 } 1517 1518 /* Block netpoll from trying to do any rx path servicing. 1519 * If we don't do this there is a chance ndo_poll_controller 1520 * or ndo_poll may be running while we open the device 1521 */ 1522 netpoll_poll_disable(dev); 1523 1524 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1525 ret = notifier_to_errno(ret); 1526 if (ret) 1527 return ret; 1528 1529 set_bit(__LINK_STATE_START, &dev->state); 1530 1531 if (ops->ndo_validate_addr) 1532 ret = ops->ndo_validate_addr(dev); 1533 1534 if (!ret && ops->ndo_open) 1535 ret = ops->ndo_open(dev); 1536 1537 netpoll_poll_enable(dev); 1538 1539 if (ret) 1540 clear_bit(__LINK_STATE_START, &dev->state); 1541 else { 1542 dev->flags |= IFF_UP; 1543 dev_set_rx_mode(dev); 1544 dev_activate(dev); 1545 add_device_randomness(dev->dev_addr, dev->addr_len); 1546 } 1547 1548 return ret; 1549} 1550 1551/** 1552 * dev_open - prepare an interface for use. 1553 * @dev: device to open 1554 * @extack: netlink extended ack 1555 * 1556 * Takes a device from down to up state. The device's private open 1557 * function is invoked and then the multicast lists are loaded. Finally 1558 * the device is moved into the up state and a %NETDEV_UP message is 1559 * sent to the netdev notifier chain. 1560 * 1561 * Calling this function on an active interface is a nop. On a failure 1562 * a negative errno code is returned. 1563 */ 1564int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1565{ 1566 int ret; 1567 1568 if (dev->flags & IFF_UP) 1569 return 0; 1570 1571 ret = __dev_open(dev, extack); 1572 if (ret < 0) 1573 return ret; 1574 1575 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1576 call_netdevice_notifiers(NETDEV_UP, dev); 1577 1578 return ret; 1579} 1580EXPORT_SYMBOL(dev_open); 1581 1582static void __dev_close_many(struct list_head *head) 1583{ 1584 struct net_device *dev; 1585 1586 ASSERT_RTNL(); 1587 might_sleep(); 1588 1589 list_for_each_entry(dev, head, close_list) { 1590 /* Temporarily disable netpoll until the interface is down */ 1591 netpoll_poll_disable(dev); 1592 1593 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1594 1595 clear_bit(__LINK_STATE_START, &dev->state); 1596 1597 /* Synchronize to scheduled poll. We cannot touch poll list, it 1598 * can be even on different cpu. So just clear netif_running(). 1599 * 1600 * dev->stop() will invoke napi_disable() on all of it's 1601 * napi_struct instances on this device. 1602 */ 1603 smp_mb__after_atomic(); /* Commit netif_running(). */ 1604 } 1605 1606 dev_deactivate_many(head); 1607 1608 list_for_each_entry(dev, head, close_list) { 1609 const struct net_device_ops *ops = dev->netdev_ops; 1610 1611 /* 1612 * Call the device specific close. This cannot fail. 1613 * Only if device is UP 1614 * 1615 * We allow it to be called even after a DETACH hot-plug 1616 * event. 1617 */ 1618 if (ops->ndo_stop) 1619 ops->ndo_stop(dev); 1620 1621 dev->flags &= ~IFF_UP; 1622 netpoll_poll_enable(dev); 1623 } 1624} 1625 1626static void __dev_close(struct net_device *dev) 1627{ 1628 LIST_HEAD(single); 1629 1630 list_add(&dev->close_list, &single); 1631 __dev_close_many(&single); 1632 list_del(&single); 1633} 1634 1635void dev_close_many(struct list_head *head, bool unlink) 1636{ 1637 struct net_device *dev, *tmp; 1638 1639 /* Remove the devices that don't need to be closed */ 1640 list_for_each_entry_safe(dev, tmp, head, close_list) 1641 if (!(dev->flags & IFF_UP)) 1642 list_del_init(&dev->close_list); 1643 1644 __dev_close_many(head); 1645 1646 list_for_each_entry_safe(dev, tmp, head, close_list) { 1647 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1648 call_netdevice_notifiers(NETDEV_DOWN, dev); 1649 if (unlink) 1650 list_del_init(&dev->close_list); 1651 } 1652} 1653EXPORT_SYMBOL(dev_close_many); 1654 1655/** 1656 * dev_close - shutdown an interface. 1657 * @dev: device to shutdown 1658 * 1659 * This function moves an active device into down state. A 1660 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1661 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1662 * chain. 1663 */ 1664void dev_close(struct net_device *dev) 1665{ 1666 if (dev->flags & IFF_UP) { 1667 LIST_HEAD(single); 1668 1669 list_add(&dev->close_list, &single); 1670 dev_close_many(&single, true); 1671 list_del(&single); 1672 } 1673} 1674EXPORT_SYMBOL(dev_close); 1675 1676 1677/** 1678 * dev_disable_lro - disable Large Receive Offload on a device 1679 * @dev: device 1680 * 1681 * Disable Large Receive Offload (LRO) on a net device. Must be 1682 * called under RTNL. This is needed if received packets may be 1683 * forwarded to another interface. 1684 */ 1685void dev_disable_lro(struct net_device *dev) 1686{ 1687 struct net_device *lower_dev; 1688 struct list_head *iter; 1689 1690 dev->wanted_features &= ~NETIF_F_LRO; 1691 netdev_update_features(dev); 1692 1693 if (unlikely(dev->features & NETIF_F_LRO)) 1694 netdev_WARN(dev, "failed to disable LRO!\n"); 1695 1696 netdev_for_each_lower_dev(dev, lower_dev, iter) 1697 dev_disable_lro(lower_dev); 1698} 1699EXPORT_SYMBOL(dev_disable_lro); 1700 1701/** 1702 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1703 * @dev: device 1704 * 1705 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1706 * called under RTNL. This is needed if Generic XDP is installed on 1707 * the device. 1708 */ 1709static void dev_disable_gro_hw(struct net_device *dev) 1710{ 1711 dev->wanted_features &= ~NETIF_F_GRO_HW; 1712 netdev_update_features(dev); 1713 1714 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1715 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1716} 1717 1718const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1719{ 1720#define N(val) \ 1721 case NETDEV_##val: \ 1722 return "NETDEV_" __stringify(val); 1723 switch (cmd) { 1724 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1725 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1726 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1727 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1728 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1729 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1730 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1731 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1732 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1733 N(PRE_CHANGEADDR) 1734 } 1735#undef N 1736 return "UNKNOWN_NETDEV_EVENT"; 1737} 1738EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1739 1740static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1741 struct net_device *dev) 1742{ 1743 struct netdev_notifier_info info = { 1744 .dev = dev, 1745 }; 1746 1747 return nb->notifier_call(nb, val, &info); 1748} 1749 1750static int call_netdevice_register_notifiers(struct notifier_block *nb, 1751 struct net_device *dev) 1752{ 1753 int err; 1754 1755 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1756 err = notifier_to_errno(err); 1757 if (err) 1758 return err; 1759 1760 if (!(dev->flags & IFF_UP)) 1761 return 0; 1762 1763 call_netdevice_notifier(nb, NETDEV_UP, dev); 1764 return 0; 1765} 1766 1767static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1768 struct net_device *dev) 1769{ 1770 if (dev->flags & IFF_UP) { 1771 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1772 dev); 1773 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1774 } 1775 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1776} 1777 1778static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1779 struct net *net) 1780{ 1781 struct net_device *dev; 1782 int err; 1783 1784 for_each_netdev(net, dev) { 1785 err = call_netdevice_register_notifiers(nb, dev); 1786 if (err) 1787 goto rollback; 1788 } 1789 return 0; 1790 1791rollback: 1792 for_each_netdev_continue_reverse(net, dev) 1793 call_netdevice_unregister_notifiers(nb, dev); 1794 return err; 1795} 1796 1797static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1798 struct net *net) 1799{ 1800 struct net_device *dev; 1801 1802 for_each_netdev(net, dev) 1803 call_netdevice_unregister_notifiers(nb, dev); 1804} 1805 1806static int dev_boot_phase = 1; 1807 1808/** 1809 * register_netdevice_notifier - register a network notifier block 1810 * @nb: notifier 1811 * 1812 * Register a notifier to be called when network device events occur. 1813 * The notifier passed is linked into the kernel structures and must 1814 * not be reused until it has been unregistered. A negative errno code 1815 * is returned on a failure. 1816 * 1817 * When registered all registration and up events are replayed 1818 * to the new notifier to allow device to have a race free 1819 * view of the network device list. 1820 */ 1821 1822int register_netdevice_notifier(struct notifier_block *nb) 1823{ 1824 struct net *net; 1825 int err; 1826 1827 /* Close race with setup_net() and cleanup_net() */ 1828 down_write(&pernet_ops_rwsem); 1829 rtnl_lock(); 1830 err = raw_notifier_chain_register(&netdev_chain, nb); 1831 if (err) 1832 goto unlock; 1833 if (dev_boot_phase) 1834 goto unlock; 1835 for_each_net(net) { 1836 err = call_netdevice_register_net_notifiers(nb, net); 1837 if (err) 1838 goto rollback; 1839 } 1840 1841unlock: 1842 rtnl_unlock(); 1843 up_write(&pernet_ops_rwsem); 1844 return err; 1845 1846rollback: 1847 for_each_net_continue_reverse(net) 1848 call_netdevice_unregister_net_notifiers(nb, net); 1849 1850 raw_notifier_chain_unregister(&netdev_chain, nb); 1851 goto unlock; 1852} 1853EXPORT_SYMBOL(register_netdevice_notifier); 1854 1855/** 1856 * unregister_netdevice_notifier - unregister a network notifier block 1857 * @nb: notifier 1858 * 1859 * Unregister a notifier previously registered by 1860 * register_netdevice_notifier(). The notifier is unlinked into the 1861 * kernel structures and may then be reused. A negative errno code 1862 * is returned on a failure. 1863 * 1864 * After unregistering unregister and down device events are synthesized 1865 * for all devices on the device list to the removed notifier to remove 1866 * the need for special case cleanup code. 1867 */ 1868 1869int unregister_netdevice_notifier(struct notifier_block *nb) 1870{ 1871 struct net *net; 1872 int err; 1873 1874 /* Close race with setup_net() and cleanup_net() */ 1875 down_write(&pernet_ops_rwsem); 1876 rtnl_lock(); 1877 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1878 if (err) 1879 goto unlock; 1880 1881 for_each_net(net) 1882 call_netdevice_unregister_net_notifiers(nb, net); 1883 1884unlock: 1885 rtnl_unlock(); 1886 up_write(&pernet_ops_rwsem); 1887 return err; 1888} 1889EXPORT_SYMBOL(unregister_netdevice_notifier); 1890 1891static int __register_netdevice_notifier_net(struct net *net, 1892 struct notifier_block *nb, 1893 bool ignore_call_fail) 1894{ 1895 int err; 1896 1897 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1898 if (err) 1899 return err; 1900 if (dev_boot_phase) 1901 return 0; 1902 1903 err = call_netdevice_register_net_notifiers(nb, net); 1904 if (err && !ignore_call_fail) 1905 goto chain_unregister; 1906 1907 return 0; 1908 1909chain_unregister: 1910 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1911 return err; 1912} 1913 1914static int __unregister_netdevice_notifier_net(struct net *net, 1915 struct notifier_block *nb) 1916{ 1917 int err; 1918 1919 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1920 if (err) 1921 return err; 1922 1923 call_netdevice_unregister_net_notifiers(nb, net); 1924 return 0; 1925} 1926 1927/** 1928 * register_netdevice_notifier_net - register a per-netns network notifier block 1929 * @net: network namespace 1930 * @nb: notifier 1931 * 1932 * Register a notifier to be called when network device events occur. 1933 * The notifier passed is linked into the kernel structures and must 1934 * not be reused until it has been unregistered. A negative errno code 1935 * is returned on a failure. 1936 * 1937 * When registered all registration and up events are replayed 1938 * to the new notifier to allow device to have a race free 1939 * view of the network device list. 1940 */ 1941 1942int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1943{ 1944 int err; 1945 1946 rtnl_lock(); 1947 err = __register_netdevice_notifier_net(net, nb, false); 1948 rtnl_unlock(); 1949 return err; 1950} 1951EXPORT_SYMBOL(register_netdevice_notifier_net); 1952 1953/** 1954 * unregister_netdevice_notifier_net - unregister a per-netns 1955 * network notifier block 1956 * @net: network namespace 1957 * @nb: notifier 1958 * 1959 * Unregister a notifier previously registered by 1960 * register_netdevice_notifier(). The notifier is unlinked into the 1961 * kernel structures and may then be reused. A negative errno code 1962 * is returned on a failure. 1963 * 1964 * After unregistering unregister and down device events are synthesized 1965 * for all devices on the device list to the removed notifier to remove 1966 * the need for special case cleanup code. 1967 */ 1968 1969int unregister_netdevice_notifier_net(struct net *net, 1970 struct notifier_block *nb) 1971{ 1972 int err; 1973 1974 rtnl_lock(); 1975 err = __unregister_netdevice_notifier_net(net, nb); 1976 rtnl_unlock(); 1977 return err; 1978} 1979EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1980 1981int register_netdevice_notifier_dev_net(struct net_device *dev, 1982 struct notifier_block *nb, 1983 struct netdev_net_notifier *nn) 1984{ 1985 int err; 1986 1987 rtnl_lock(); 1988 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1989 if (!err) { 1990 nn->nb = nb; 1991 list_add(&nn->list, &dev->net_notifier_list); 1992 } 1993 rtnl_unlock(); 1994 return err; 1995} 1996EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1997 1998int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1999 struct notifier_block *nb, 2000 struct netdev_net_notifier *nn) 2001{ 2002 int err; 2003 2004 rtnl_lock(); 2005 list_del(&nn->list); 2006 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2007 rtnl_unlock(); 2008 return err; 2009} 2010EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2011 2012static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2013 struct net *net) 2014{ 2015 struct netdev_net_notifier *nn; 2016 2017 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2018 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2019 __register_netdevice_notifier_net(net, nn->nb, true); 2020 } 2021} 2022 2023/** 2024 * call_netdevice_notifiers_info - call all network notifier blocks 2025 * @val: value passed unmodified to notifier function 2026 * @info: notifier information data 2027 * 2028 * Call all network notifier blocks. Parameters and return value 2029 * are as for raw_notifier_call_chain(). 2030 */ 2031 2032static int call_netdevice_notifiers_info(unsigned long val, 2033 struct netdev_notifier_info *info) 2034{ 2035 struct net *net = dev_net(info->dev); 2036 int ret; 2037 2038 ASSERT_RTNL(); 2039 2040 /* Run per-netns notifier block chain first, then run the global one. 2041 * Hopefully, one day, the global one is going to be removed after 2042 * all notifier block registrators get converted to be per-netns. 2043 */ 2044 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2045 if (ret & NOTIFY_STOP_MASK) 2046 return ret; 2047 return raw_notifier_call_chain(&netdev_chain, val, info); 2048} 2049 2050static int call_netdevice_notifiers_extack(unsigned long val, 2051 struct net_device *dev, 2052 struct netlink_ext_ack *extack) 2053{ 2054 struct netdev_notifier_info info = { 2055 .dev = dev, 2056 .extack = extack, 2057 }; 2058 2059 return call_netdevice_notifiers_info(val, &info); 2060} 2061 2062/** 2063 * call_netdevice_notifiers - call all network notifier blocks 2064 * @val: value passed unmodified to notifier function 2065 * @dev: net_device pointer passed unmodified to notifier function 2066 * 2067 * Call all network notifier blocks. Parameters and return value 2068 * are as for raw_notifier_call_chain(). 2069 */ 2070 2071int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2072{ 2073 return call_netdevice_notifiers_extack(val, dev, NULL); 2074} 2075EXPORT_SYMBOL(call_netdevice_notifiers); 2076 2077/** 2078 * call_netdevice_notifiers_mtu - call all network notifier blocks 2079 * @val: value passed unmodified to notifier function 2080 * @dev: net_device pointer passed unmodified to notifier function 2081 * @arg: additional u32 argument passed to the notifier function 2082 * 2083 * Call all network notifier blocks. Parameters and return value 2084 * are as for raw_notifier_call_chain(). 2085 */ 2086static int call_netdevice_notifiers_mtu(unsigned long val, 2087 struct net_device *dev, u32 arg) 2088{ 2089 struct netdev_notifier_info_ext info = { 2090 .info.dev = dev, 2091 .ext.mtu = arg, 2092 }; 2093 2094 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2095 2096 return call_netdevice_notifiers_info(val, &info.info); 2097} 2098 2099#ifdef CONFIG_NET_INGRESS 2100static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2101 2102void net_inc_ingress_queue(void) 2103{ 2104 static_branch_inc(&ingress_needed_key); 2105} 2106EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2107 2108void net_dec_ingress_queue(void) 2109{ 2110 static_branch_dec(&ingress_needed_key); 2111} 2112EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2113#endif 2114 2115#ifdef CONFIG_NET_EGRESS 2116static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2117 2118void net_inc_egress_queue(void) 2119{ 2120 static_branch_inc(&egress_needed_key); 2121} 2122EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2123 2124void net_dec_egress_queue(void) 2125{ 2126 static_branch_dec(&egress_needed_key); 2127} 2128EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2129#endif 2130 2131static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2132#ifdef CONFIG_JUMP_LABEL 2133static atomic_t netstamp_needed_deferred; 2134static atomic_t netstamp_wanted; 2135static void netstamp_clear(struct work_struct *work) 2136{ 2137 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2138 int wanted; 2139 2140 wanted = atomic_add_return(deferred, &netstamp_wanted); 2141 if (wanted > 0) 2142 static_branch_enable(&netstamp_needed_key); 2143 else 2144 static_branch_disable(&netstamp_needed_key); 2145} 2146static DECLARE_WORK(netstamp_work, netstamp_clear); 2147#endif 2148 2149void net_enable_timestamp(void) 2150{ 2151#ifdef CONFIG_JUMP_LABEL 2152 int wanted; 2153 2154 while (1) { 2155 wanted = atomic_read(&netstamp_wanted); 2156 if (wanted <= 0) 2157 break; 2158 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2159 return; 2160 } 2161 atomic_inc(&netstamp_needed_deferred); 2162 schedule_work(&netstamp_work); 2163#else 2164 static_branch_inc(&netstamp_needed_key); 2165#endif 2166} 2167EXPORT_SYMBOL(net_enable_timestamp); 2168 2169void net_disable_timestamp(void) 2170{ 2171#ifdef CONFIG_JUMP_LABEL 2172 int wanted; 2173 2174 while (1) { 2175 wanted = atomic_read(&netstamp_wanted); 2176 if (wanted <= 1) 2177 break; 2178 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2179 return; 2180 } 2181 atomic_dec(&netstamp_needed_deferred); 2182 schedule_work(&netstamp_work); 2183#else 2184 static_branch_dec(&netstamp_needed_key); 2185#endif 2186} 2187EXPORT_SYMBOL(net_disable_timestamp); 2188 2189static inline void net_timestamp_set(struct sk_buff *skb) 2190{ 2191 skb->tstamp = 0; 2192 if (static_branch_unlikely(&netstamp_needed_key)) 2193 __net_timestamp(skb); 2194} 2195 2196#define net_timestamp_check(COND, SKB) \ 2197 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2198 if ((COND) && !(SKB)->tstamp) \ 2199 __net_timestamp(SKB); \ 2200 } \ 2201 2202bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2203{ 2204 unsigned int len; 2205 2206 if (!(dev->flags & IFF_UP)) 2207 return false; 2208 2209 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2210 if (skb->len <= len) 2211 return true; 2212 2213 /* if TSO is enabled, we don't care about the length as the packet 2214 * could be forwarded without being segmented before 2215 */ 2216 if (skb_is_gso(skb)) 2217 return true; 2218 2219 return false; 2220} 2221EXPORT_SYMBOL_GPL(is_skb_forwardable); 2222 2223int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2224{ 2225 int ret = ____dev_forward_skb(dev, skb); 2226 2227 if (likely(!ret)) { 2228 skb->protocol = eth_type_trans(skb, dev); 2229 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2230 } 2231 2232 return ret; 2233} 2234EXPORT_SYMBOL_GPL(__dev_forward_skb); 2235 2236/** 2237 * dev_forward_skb - loopback an skb to another netif 2238 * 2239 * @dev: destination network device 2240 * @skb: buffer to forward 2241 * 2242 * return values: 2243 * NET_RX_SUCCESS (no congestion) 2244 * NET_RX_DROP (packet was dropped, but freed) 2245 * 2246 * dev_forward_skb can be used for injecting an skb from the 2247 * start_xmit function of one device into the receive queue 2248 * of another device. 2249 * 2250 * The receiving device may be in another namespace, so 2251 * we have to clear all information in the skb that could 2252 * impact namespace isolation. 2253 */ 2254int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2255{ 2256 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2257} 2258EXPORT_SYMBOL_GPL(dev_forward_skb); 2259 2260static inline int deliver_skb(struct sk_buff *skb, 2261 struct packet_type *pt_prev, 2262 struct net_device *orig_dev) 2263{ 2264 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2265 return -ENOMEM; 2266 refcount_inc(&skb->users); 2267 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2268} 2269 2270static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2271 struct packet_type **pt, 2272 struct net_device *orig_dev, 2273 __be16 type, 2274 struct list_head *ptype_list) 2275{ 2276 struct packet_type *ptype, *pt_prev = *pt; 2277 2278 list_for_each_entry_rcu(ptype, ptype_list, list) { 2279 if (ptype->type != type) 2280 continue; 2281 if (pt_prev) 2282 deliver_skb(skb, pt_prev, orig_dev); 2283 pt_prev = ptype; 2284 } 2285 *pt = pt_prev; 2286} 2287 2288static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2289{ 2290 if (!ptype->af_packet_priv || !skb->sk) 2291 return false; 2292 2293 if (ptype->id_match) 2294 return ptype->id_match(ptype, skb->sk); 2295 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2296 return true; 2297 2298 return false; 2299} 2300 2301/** 2302 * dev_nit_active - return true if any network interface taps are in use 2303 * 2304 * @dev: network device to check for the presence of taps 2305 */ 2306bool dev_nit_active(struct net_device *dev) 2307{ 2308 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2309} 2310EXPORT_SYMBOL_GPL(dev_nit_active); 2311 2312/* 2313 * Support routine. Sends outgoing frames to any network 2314 * taps currently in use. 2315 */ 2316 2317void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2318{ 2319 struct packet_type *ptype; 2320 struct sk_buff *skb2 = NULL; 2321 struct packet_type *pt_prev = NULL; 2322 struct list_head *ptype_list = &ptype_all; 2323 2324 rcu_read_lock(); 2325again: 2326 list_for_each_entry_rcu(ptype, ptype_list, list) { 2327 if (READ_ONCE(ptype->ignore_outgoing)) 2328 continue; 2329 2330 /* Never send packets back to the socket 2331 * they originated from - MvS (miquels@drinkel.ow.org) 2332 */ 2333 if (skb_loop_sk(ptype, skb)) 2334 continue; 2335 2336 if (pt_prev) { 2337 deliver_skb(skb2, pt_prev, skb->dev); 2338 pt_prev = ptype; 2339 continue; 2340 } 2341 2342 /* need to clone skb, done only once */ 2343 skb2 = skb_clone(skb, GFP_ATOMIC); 2344 if (!skb2) 2345 goto out_unlock; 2346 2347 net_timestamp_set(skb2); 2348 2349 /* skb->nh should be correctly 2350 * set by sender, so that the second statement is 2351 * just protection against buggy protocols. 2352 */ 2353 skb_reset_mac_header(skb2); 2354 2355 if (skb_network_header(skb2) < skb2->data || 2356 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2357 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2358 ntohs(skb2->protocol), 2359 dev->name); 2360 skb_reset_network_header(skb2); 2361 } 2362 2363 skb2->transport_header = skb2->network_header; 2364 skb2->pkt_type = PACKET_OUTGOING; 2365 pt_prev = ptype; 2366 } 2367 2368 if (ptype_list == &ptype_all) { 2369 ptype_list = &dev->ptype_all; 2370 goto again; 2371 } 2372out_unlock: 2373 if (pt_prev) { 2374 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2375 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2376 else 2377 kfree_skb(skb2); 2378 } 2379 rcu_read_unlock(); 2380} 2381EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2382 2383/** 2384 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2385 * @dev: Network device 2386 * @txq: number of queues available 2387 * 2388 * If real_num_tx_queues is changed the tc mappings may no longer be 2389 * valid. To resolve this verify the tc mapping remains valid and if 2390 * not NULL the mapping. With no priorities mapping to this 2391 * offset/count pair it will no longer be used. In the worst case TC0 2392 * is invalid nothing can be done so disable priority mappings. If is 2393 * expected that drivers will fix this mapping if they can before 2394 * calling netif_set_real_num_tx_queues. 2395 */ 2396static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2397{ 2398 int i; 2399 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2400 2401 /* If TC0 is invalidated disable TC mapping */ 2402 if (tc->offset + tc->count > txq) { 2403 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2404 dev->num_tc = 0; 2405 return; 2406 } 2407 2408 /* Invalidated prio to tc mappings set to TC0 */ 2409 for (i = 1; i < TC_BITMASK + 1; i++) { 2410 int q = netdev_get_prio_tc_map(dev, i); 2411 2412 tc = &dev->tc_to_txq[q]; 2413 if (tc->offset + tc->count > txq) { 2414 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2415 i, q); 2416 netdev_set_prio_tc_map(dev, i, 0); 2417 } 2418 } 2419} 2420 2421int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2422{ 2423 if (dev->num_tc) { 2424 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2425 int i; 2426 2427 /* walk through the TCs and see if it falls into any of them */ 2428 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2429 if ((txq - tc->offset) < tc->count) 2430 return i; 2431 } 2432 2433 /* didn't find it, just return -1 to indicate no match */ 2434 return -1; 2435 } 2436 2437 return 0; 2438} 2439EXPORT_SYMBOL(netdev_txq_to_tc); 2440 2441#ifdef CONFIG_XPS 2442struct static_key xps_needed __read_mostly; 2443EXPORT_SYMBOL(xps_needed); 2444struct static_key xps_rxqs_needed __read_mostly; 2445EXPORT_SYMBOL(xps_rxqs_needed); 2446static DEFINE_MUTEX(xps_map_mutex); 2447#define xmap_dereference(P) \ 2448 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2449 2450static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2451 int tci, u16 index) 2452{ 2453 struct xps_map *map = NULL; 2454 int pos; 2455 2456 if (dev_maps) 2457 map = xmap_dereference(dev_maps->attr_map[tci]); 2458 if (!map) 2459 return false; 2460 2461 for (pos = map->len; pos--;) { 2462 if (map->queues[pos] != index) 2463 continue; 2464 2465 if (map->len > 1) { 2466 map->queues[pos] = map->queues[--map->len]; 2467 break; 2468 } 2469 2470 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2471 kfree_rcu(map, rcu); 2472 return false; 2473 } 2474 2475 return true; 2476} 2477 2478static bool remove_xps_queue_cpu(struct net_device *dev, 2479 struct xps_dev_maps *dev_maps, 2480 int cpu, u16 offset, u16 count) 2481{ 2482 int num_tc = dev->num_tc ? : 1; 2483 bool active = false; 2484 int tci; 2485 2486 for (tci = cpu * num_tc; num_tc--; tci++) { 2487 int i, j; 2488 2489 for (i = count, j = offset; i--; j++) { 2490 if (!remove_xps_queue(dev_maps, tci, j)) 2491 break; 2492 } 2493 2494 active |= i < 0; 2495 } 2496 2497 return active; 2498} 2499 2500static void reset_xps_maps(struct net_device *dev, 2501 struct xps_dev_maps *dev_maps, 2502 bool is_rxqs_map) 2503{ 2504 if (is_rxqs_map) { 2505 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2506 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2507 } else { 2508 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2509 } 2510 static_key_slow_dec_cpuslocked(&xps_needed); 2511 kfree_rcu(dev_maps, rcu); 2512} 2513 2514static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2515 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2516 u16 offset, u16 count, bool is_rxqs_map) 2517{ 2518 bool active = false; 2519 int i, j; 2520 2521 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2522 j < nr_ids;) 2523 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2524 count); 2525 if (!active) 2526 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2527 2528 if (!is_rxqs_map) { 2529 for (i = offset + (count - 1); count--; i--) { 2530 netdev_queue_numa_node_write( 2531 netdev_get_tx_queue(dev, i), 2532 NUMA_NO_NODE); 2533 } 2534 } 2535} 2536 2537static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2538 u16 count) 2539{ 2540 const unsigned long *possible_mask = NULL; 2541 struct xps_dev_maps *dev_maps; 2542 unsigned int nr_ids; 2543 2544 if (!static_key_false(&xps_needed)) 2545 return; 2546 2547 cpus_read_lock(); 2548 mutex_lock(&xps_map_mutex); 2549 2550 if (static_key_false(&xps_rxqs_needed)) { 2551 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2552 if (dev_maps) { 2553 nr_ids = dev->num_rx_queues; 2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2555 offset, count, true); 2556 } 2557 } 2558 2559 dev_maps = xmap_dereference(dev->xps_cpus_map); 2560 if (!dev_maps) 2561 goto out_no_maps; 2562 2563 if (num_possible_cpus() > 1) 2564 possible_mask = cpumask_bits(cpu_possible_mask); 2565 nr_ids = nr_cpu_ids; 2566 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2567 false); 2568 2569out_no_maps: 2570 mutex_unlock(&xps_map_mutex); 2571 cpus_read_unlock(); 2572} 2573 2574static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2575{ 2576 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2577} 2578 2579static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2580 u16 index, bool is_rxqs_map) 2581{ 2582 struct xps_map *new_map; 2583 int alloc_len = XPS_MIN_MAP_ALLOC; 2584 int i, pos; 2585 2586 for (pos = 0; map && pos < map->len; pos++) { 2587 if (map->queues[pos] != index) 2588 continue; 2589 return map; 2590 } 2591 2592 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2593 if (map) { 2594 if (pos < map->alloc_len) 2595 return map; 2596 2597 alloc_len = map->alloc_len * 2; 2598 } 2599 2600 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2601 * map 2602 */ 2603 if (is_rxqs_map) 2604 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2605 else 2606 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2607 cpu_to_node(attr_index)); 2608 if (!new_map) 2609 return NULL; 2610 2611 for (i = 0; i < pos; i++) 2612 new_map->queues[i] = map->queues[i]; 2613 new_map->alloc_len = alloc_len; 2614 new_map->len = pos; 2615 2616 return new_map; 2617} 2618 2619/* Must be called under cpus_read_lock */ 2620int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2621 u16 index, bool is_rxqs_map) 2622{ 2623 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2624 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2625 int i, j, tci, numa_node_id = -2; 2626 int maps_sz, num_tc = 1, tc = 0; 2627 struct xps_map *map, *new_map; 2628 bool active = false; 2629 unsigned int nr_ids; 2630 2631 WARN_ON_ONCE(index >= dev->num_tx_queues); 2632 2633 if (dev->num_tc) { 2634 /* Do not allow XPS on subordinate device directly */ 2635 num_tc = dev->num_tc; 2636 if (num_tc < 0) 2637 return -EINVAL; 2638 2639 /* If queue belongs to subordinate dev use its map */ 2640 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2641 2642 tc = netdev_txq_to_tc(dev, index); 2643 if (tc < 0) 2644 return -EINVAL; 2645 } 2646 2647 mutex_lock(&xps_map_mutex); 2648 if (is_rxqs_map) { 2649 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2650 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2651 nr_ids = dev->num_rx_queues; 2652 } else { 2653 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2654 if (num_possible_cpus() > 1) { 2655 online_mask = cpumask_bits(cpu_online_mask); 2656 possible_mask = cpumask_bits(cpu_possible_mask); 2657 } 2658 dev_maps = xmap_dereference(dev->xps_cpus_map); 2659 nr_ids = nr_cpu_ids; 2660 } 2661 2662 if (maps_sz < L1_CACHE_BYTES) 2663 maps_sz = L1_CACHE_BYTES; 2664 2665 /* allocate memory for queue storage */ 2666 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2667 j < nr_ids;) { 2668 if (!new_dev_maps) 2669 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2670 if (!new_dev_maps) { 2671 mutex_unlock(&xps_map_mutex); 2672 return -ENOMEM; 2673 } 2674 2675 tci = j * num_tc + tc; 2676 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2677 NULL; 2678 2679 map = expand_xps_map(map, j, index, is_rxqs_map); 2680 if (!map) 2681 goto error; 2682 2683 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2684 } 2685 2686 if (!new_dev_maps) 2687 goto out_no_new_maps; 2688 2689 if (!dev_maps) { 2690 /* Increment static keys at most once per type */ 2691 static_key_slow_inc_cpuslocked(&xps_needed); 2692 if (is_rxqs_map) 2693 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2694 } 2695 2696 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2697 j < nr_ids;) { 2698 /* copy maps belonging to foreign traffic classes */ 2699 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2700 /* fill in the new device map from the old device map */ 2701 map = xmap_dereference(dev_maps->attr_map[tci]); 2702 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2703 } 2704 2705 /* We need to explicitly update tci as prevous loop 2706 * could break out early if dev_maps is NULL. 2707 */ 2708 tci = j * num_tc + tc; 2709 2710 if (netif_attr_test_mask(j, mask, nr_ids) && 2711 netif_attr_test_online(j, online_mask, nr_ids)) { 2712 /* add tx-queue to CPU/rx-queue maps */ 2713 int pos = 0; 2714 2715 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2716 while ((pos < map->len) && (map->queues[pos] != index)) 2717 pos++; 2718 2719 if (pos == map->len) 2720 map->queues[map->len++] = index; 2721#ifdef CONFIG_NUMA 2722 if (!is_rxqs_map) { 2723 if (numa_node_id == -2) 2724 numa_node_id = cpu_to_node(j); 2725 else if (numa_node_id != cpu_to_node(j)) 2726 numa_node_id = -1; 2727 } 2728#endif 2729 } else if (dev_maps) { 2730 /* fill in the new device map from the old device map */ 2731 map = xmap_dereference(dev_maps->attr_map[tci]); 2732 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2733 } 2734 2735 /* copy maps belonging to foreign traffic classes */ 2736 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2737 /* fill in the new device map from the old device map */ 2738 map = xmap_dereference(dev_maps->attr_map[tci]); 2739 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2740 } 2741 } 2742 2743 if (is_rxqs_map) 2744 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2745 else 2746 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2747 2748 /* Cleanup old maps */ 2749 if (!dev_maps) 2750 goto out_no_old_maps; 2751 2752 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2753 j < nr_ids;) { 2754 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2755 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2756 map = xmap_dereference(dev_maps->attr_map[tci]); 2757 if (map && map != new_map) 2758 kfree_rcu(map, rcu); 2759 } 2760 } 2761 2762 kfree_rcu(dev_maps, rcu); 2763 2764out_no_old_maps: 2765 dev_maps = new_dev_maps; 2766 active = true; 2767 2768out_no_new_maps: 2769 if (!is_rxqs_map) { 2770 /* update Tx queue numa node */ 2771 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2772 (numa_node_id >= 0) ? 2773 numa_node_id : NUMA_NO_NODE); 2774 } 2775 2776 if (!dev_maps) 2777 goto out_no_maps; 2778 2779 /* removes tx-queue from unused CPUs/rx-queues */ 2780 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2781 j < nr_ids;) { 2782 for (i = tc, tci = j * num_tc; i--; tci++) 2783 active |= remove_xps_queue(dev_maps, tci, index); 2784 if (!netif_attr_test_mask(j, mask, nr_ids) || 2785 !netif_attr_test_online(j, online_mask, nr_ids)) 2786 active |= remove_xps_queue(dev_maps, tci, index); 2787 for (i = num_tc - tc, tci++; --i; tci++) 2788 active |= remove_xps_queue(dev_maps, tci, index); 2789 } 2790 2791 /* free map if not active */ 2792 if (!active) 2793 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2794 2795out_no_maps: 2796 mutex_unlock(&xps_map_mutex); 2797 2798 return 0; 2799error: 2800 /* remove any maps that we added */ 2801 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2802 j < nr_ids;) { 2803 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2804 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2805 map = dev_maps ? 2806 xmap_dereference(dev_maps->attr_map[tci]) : 2807 NULL; 2808 if (new_map && new_map != map) 2809 kfree(new_map); 2810 } 2811 } 2812 2813 mutex_unlock(&xps_map_mutex); 2814 2815 kfree(new_dev_maps); 2816 return -ENOMEM; 2817} 2818EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2819 2820int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2821 u16 index) 2822{ 2823 int ret; 2824 2825 cpus_read_lock(); 2826 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2827 cpus_read_unlock(); 2828 2829 return ret; 2830} 2831EXPORT_SYMBOL(netif_set_xps_queue); 2832 2833#endif 2834static void netdev_unbind_all_sb_channels(struct net_device *dev) 2835{ 2836 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2837 2838 /* Unbind any subordinate channels */ 2839 while (txq-- != &dev->_tx[0]) { 2840 if (txq->sb_dev) 2841 netdev_unbind_sb_channel(dev, txq->sb_dev); 2842 } 2843} 2844 2845void netdev_reset_tc(struct net_device *dev) 2846{ 2847#ifdef CONFIG_XPS 2848 netif_reset_xps_queues_gt(dev, 0); 2849#endif 2850 netdev_unbind_all_sb_channels(dev); 2851 2852 /* Reset TC configuration of device */ 2853 dev->num_tc = 0; 2854 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2855 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2856} 2857EXPORT_SYMBOL(netdev_reset_tc); 2858 2859int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2860{ 2861 if (tc >= dev->num_tc) 2862 return -EINVAL; 2863 2864#ifdef CONFIG_XPS 2865 netif_reset_xps_queues(dev, offset, count); 2866#endif 2867 dev->tc_to_txq[tc].count = count; 2868 dev->tc_to_txq[tc].offset = offset; 2869 return 0; 2870} 2871EXPORT_SYMBOL(netdev_set_tc_queue); 2872 2873int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2874{ 2875 if (num_tc > TC_MAX_QUEUE) 2876 return -EINVAL; 2877 2878#ifdef CONFIG_XPS 2879 netif_reset_xps_queues_gt(dev, 0); 2880#endif 2881 netdev_unbind_all_sb_channels(dev); 2882 2883 dev->num_tc = num_tc; 2884 return 0; 2885} 2886EXPORT_SYMBOL(netdev_set_num_tc); 2887 2888void netdev_unbind_sb_channel(struct net_device *dev, 2889 struct net_device *sb_dev) 2890{ 2891 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2892 2893#ifdef CONFIG_XPS 2894 netif_reset_xps_queues_gt(sb_dev, 0); 2895#endif 2896 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2897 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2898 2899 while (txq-- != &dev->_tx[0]) { 2900 if (txq->sb_dev == sb_dev) 2901 txq->sb_dev = NULL; 2902 } 2903} 2904EXPORT_SYMBOL(netdev_unbind_sb_channel); 2905 2906int netdev_bind_sb_channel_queue(struct net_device *dev, 2907 struct net_device *sb_dev, 2908 u8 tc, u16 count, u16 offset) 2909{ 2910 /* Make certain the sb_dev and dev are already configured */ 2911 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2912 return -EINVAL; 2913 2914 /* We cannot hand out queues we don't have */ 2915 if ((offset + count) > dev->real_num_tx_queues) 2916 return -EINVAL; 2917 2918 /* Record the mapping */ 2919 sb_dev->tc_to_txq[tc].count = count; 2920 sb_dev->tc_to_txq[tc].offset = offset; 2921 2922 /* Provide a way for Tx queue to find the tc_to_txq map or 2923 * XPS map for itself. 2924 */ 2925 while (count--) 2926 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2927 2928 return 0; 2929} 2930EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2931 2932int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2933{ 2934 /* Do not use a multiqueue device to represent a subordinate channel */ 2935 if (netif_is_multiqueue(dev)) 2936 return -ENODEV; 2937 2938 /* We allow channels 1 - 32767 to be used for subordinate channels. 2939 * Channel 0 is meant to be "native" mode and used only to represent 2940 * the main root device. We allow writing 0 to reset the device back 2941 * to normal mode after being used as a subordinate channel. 2942 */ 2943 if (channel > S16_MAX) 2944 return -EINVAL; 2945 2946 dev->num_tc = -channel; 2947 2948 return 0; 2949} 2950EXPORT_SYMBOL(netdev_set_sb_channel); 2951 2952/* 2953 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2954 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2955 */ 2956int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2957{ 2958 bool disabling; 2959 int rc; 2960 2961 disabling = txq < dev->real_num_tx_queues; 2962 2963 if (txq < 1 || txq > dev->num_tx_queues) 2964 return -EINVAL; 2965 2966 if (dev->reg_state == NETREG_REGISTERED || 2967 dev->reg_state == NETREG_UNREGISTERING) { 2968 ASSERT_RTNL(); 2969 2970 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2971 txq); 2972 if (rc) 2973 return rc; 2974 2975 if (dev->num_tc) 2976 netif_setup_tc(dev, txq); 2977 2978 dev_qdisc_change_real_num_tx(dev, txq); 2979 2980 dev->real_num_tx_queues = txq; 2981 2982 if (disabling) { 2983 synchronize_net(); 2984 qdisc_reset_all_tx_gt(dev, txq); 2985#ifdef CONFIG_XPS 2986 netif_reset_xps_queues_gt(dev, txq); 2987#endif 2988 } 2989 } else { 2990 dev->real_num_tx_queues = txq; 2991 } 2992 2993 return 0; 2994} 2995EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2996 2997#ifdef CONFIG_SYSFS 2998/** 2999 * netif_set_real_num_rx_queues - set actual number of RX queues used 3000 * @dev: Network device 3001 * @rxq: Actual number of RX queues 3002 * 3003 * This must be called either with the rtnl_lock held or before 3004 * registration of the net device. Returns 0 on success, or a 3005 * negative error code. If called before registration, it always 3006 * succeeds. 3007 */ 3008int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3009{ 3010 int rc; 3011 3012 if (rxq < 1 || rxq > dev->num_rx_queues) 3013 return -EINVAL; 3014 3015 if (dev->reg_state == NETREG_REGISTERED) { 3016 ASSERT_RTNL(); 3017 3018 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3019 rxq); 3020 if (rc) 3021 return rc; 3022 } 3023 3024 dev->real_num_rx_queues = rxq; 3025 return 0; 3026} 3027EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3028#endif 3029 3030/** 3031 * netif_get_num_default_rss_queues - default number of RSS queues 3032 * 3033 * This routine should set an upper limit on the number of RSS queues 3034 * used by default by multiqueue devices. 3035 */ 3036int netif_get_num_default_rss_queues(void) 3037{ 3038 return is_kdump_kernel() ? 3039 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3040} 3041EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3042 3043static void __netif_reschedule(struct Qdisc *q) 3044{ 3045 struct softnet_data *sd; 3046 unsigned long flags; 3047 3048 local_irq_save(flags); 3049 sd = this_cpu_ptr(&softnet_data); 3050 q->next_sched = NULL; 3051 *sd->output_queue_tailp = q; 3052 sd->output_queue_tailp = &q->next_sched; 3053 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3054 local_irq_restore(flags); 3055} 3056 3057void __netif_schedule(struct Qdisc *q) 3058{ 3059 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3060 __netif_reschedule(q); 3061} 3062EXPORT_SYMBOL(__netif_schedule); 3063 3064struct dev_kfree_skb_cb { 3065 enum skb_free_reason reason; 3066}; 3067 3068static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3069{ 3070 return (struct dev_kfree_skb_cb *)skb->cb; 3071} 3072 3073void netif_schedule_queue(struct netdev_queue *txq) 3074{ 3075 rcu_read_lock(); 3076 if (!netif_xmit_stopped(txq)) { 3077 struct Qdisc *q = rcu_dereference(txq->qdisc); 3078 3079 __netif_schedule(q); 3080 } 3081 rcu_read_unlock(); 3082} 3083EXPORT_SYMBOL(netif_schedule_queue); 3084 3085void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3086{ 3087 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3088 struct Qdisc *q; 3089 3090 rcu_read_lock(); 3091 q = rcu_dereference(dev_queue->qdisc); 3092 __netif_schedule(q); 3093 rcu_read_unlock(); 3094 } 3095} 3096EXPORT_SYMBOL(netif_tx_wake_queue); 3097 3098void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3099{ 3100 unsigned long flags; 3101 3102 if (unlikely(!skb)) 3103 return; 3104 3105 if (likely(refcount_read(&skb->users) == 1)) { 3106 smp_rmb(); 3107 refcount_set(&skb->users, 0); 3108 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3109 return; 3110 } 3111 get_kfree_skb_cb(skb)->reason = reason; 3112 local_irq_save(flags); 3113 skb->next = __this_cpu_read(softnet_data.completion_queue); 3114 __this_cpu_write(softnet_data.completion_queue, skb); 3115 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3116 local_irq_restore(flags); 3117} 3118EXPORT_SYMBOL(__dev_kfree_skb_irq); 3119 3120void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3121{ 3122 if (in_irq() || irqs_disabled()) 3123 __dev_kfree_skb_irq(skb, reason); 3124 else if (unlikely(reason == SKB_REASON_DROPPED)) 3125 kfree_skb(skb); 3126 else 3127 consume_skb(skb); 3128} 3129EXPORT_SYMBOL(__dev_kfree_skb_any); 3130 3131 3132/** 3133 * netif_device_detach - mark device as removed 3134 * @dev: network device 3135 * 3136 * Mark device as removed from system and therefore no longer available. 3137 */ 3138void netif_device_detach(struct net_device *dev) 3139{ 3140 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3141 netif_running(dev)) { 3142 netif_tx_stop_all_queues(dev); 3143 } 3144} 3145EXPORT_SYMBOL(netif_device_detach); 3146 3147/** 3148 * netif_device_attach - mark device as attached 3149 * @dev: network device 3150 * 3151 * Mark device as attached from system and restart if needed. 3152 */ 3153void netif_device_attach(struct net_device *dev) 3154{ 3155 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3156 netif_running(dev)) { 3157 netif_tx_wake_all_queues(dev); 3158 __netdev_watchdog_up(dev); 3159 } 3160} 3161EXPORT_SYMBOL(netif_device_attach); 3162 3163/* 3164 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3165 * to be used as a distribution range. 3166 */ 3167static u16 skb_tx_hash(const struct net_device *dev, 3168 const struct net_device *sb_dev, 3169 struct sk_buff *skb) 3170{ 3171 u32 hash; 3172 u16 qoffset = 0; 3173 u16 qcount = dev->real_num_tx_queues; 3174 3175 if (dev->num_tc) { 3176 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3177 3178 qoffset = sb_dev->tc_to_txq[tc].offset; 3179 qcount = sb_dev->tc_to_txq[tc].count; 3180 if (unlikely(!qcount)) { 3181 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3182 sb_dev->name, qoffset, tc); 3183 qoffset = 0; 3184 qcount = dev->real_num_tx_queues; 3185 } 3186 } 3187 3188 if (skb_rx_queue_recorded(skb)) { 3189 hash = skb_get_rx_queue(skb); 3190 if (hash >= qoffset) 3191 hash -= qoffset; 3192 while (unlikely(hash >= qcount)) 3193 hash -= qcount; 3194 return hash + qoffset; 3195 } 3196 3197 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3198} 3199 3200static void skb_warn_bad_offload(const struct sk_buff *skb) 3201{ 3202 static const netdev_features_t null_features; 3203 struct net_device *dev = skb->dev; 3204 const char *name = ""; 3205 3206 if (!net_ratelimit()) 3207 return; 3208 3209 if (dev) { 3210 if (dev->dev.parent) 3211 name = dev_driver_string(dev->dev.parent); 3212 else 3213 name = netdev_name(dev); 3214 } 3215 skb_dump(KERN_WARNING, skb, false); 3216 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3217 name, dev ? &dev->features : &null_features, 3218 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3219} 3220 3221/* 3222 * Invalidate hardware checksum when packet is to be mangled, and 3223 * complete checksum manually on outgoing path. 3224 */ 3225int skb_checksum_help(struct sk_buff *skb) 3226{ 3227 __wsum csum; 3228 int ret = 0, offset; 3229 3230 if (skb->ip_summed == CHECKSUM_COMPLETE) 3231 goto out_set_summed; 3232 3233 if (unlikely(skb_shinfo(skb)->gso_size)) { 3234 skb_warn_bad_offload(skb); 3235 return -EINVAL; 3236 } 3237 3238 /* Before computing a checksum, we should make sure no frag could 3239 * be modified by an external entity : checksum could be wrong. 3240 */ 3241 if (skb_has_shared_frag(skb)) { 3242 ret = __skb_linearize(skb); 3243 if (ret) 3244 goto out; 3245 } 3246 3247 offset = skb_checksum_start_offset(skb); 3248 ret = -EINVAL; 3249 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) 3250 goto out; 3251 3252 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3253 3254 offset += skb->csum_offset; 3255 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) 3256 goto out; 3257 3258 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3259 if (ret) 3260 goto out; 3261 3262 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3263out_set_summed: 3264 skb->ip_summed = CHECKSUM_NONE; 3265out: 3266 return ret; 3267} 3268EXPORT_SYMBOL(skb_checksum_help); 3269 3270int skb_crc32c_csum_help(struct sk_buff *skb) 3271{ 3272 __le32 crc32c_csum; 3273 int ret = 0, offset, start; 3274 3275 if (skb->ip_summed != CHECKSUM_PARTIAL) 3276 goto out; 3277 3278 if (unlikely(skb_is_gso(skb))) 3279 goto out; 3280 3281 /* Before computing a checksum, we should make sure no frag could 3282 * be modified by an external entity : checksum could be wrong. 3283 */ 3284 if (unlikely(skb_has_shared_frag(skb))) { 3285 ret = __skb_linearize(skb); 3286 if (ret) 3287 goto out; 3288 } 3289 start = skb_checksum_start_offset(skb); 3290 offset = start + offsetof(struct sctphdr, checksum); 3291 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3292 ret = -EINVAL; 3293 goto out; 3294 } 3295 3296 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3297 if (ret) 3298 goto out; 3299 3300 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3301 skb->len - start, ~(__u32)0, 3302 crc32c_csum_stub)); 3303 *(__le32 *)(skb->data + offset) = crc32c_csum; 3304 skb->ip_summed = CHECKSUM_NONE; 3305 skb->csum_not_inet = 0; 3306out: 3307 return ret; 3308} 3309 3310__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3311{ 3312 __be16 type = skb->protocol; 3313 3314 /* Tunnel gso handlers can set protocol to ethernet. */ 3315 if (type == htons(ETH_P_TEB)) { 3316 struct ethhdr *eth; 3317 3318 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3319 return 0; 3320 3321 eth = (struct ethhdr *)skb->data; 3322 type = eth->h_proto; 3323 } 3324 3325 return vlan_get_protocol_and_depth(skb, type, depth); 3326} 3327 3328/** 3329 * skb_mac_gso_segment - mac layer segmentation handler. 3330 * @skb: buffer to segment 3331 * @features: features for the output path (see dev->features) 3332 */ 3333struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3334 netdev_features_t features) 3335{ 3336 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3337 struct packet_offload *ptype; 3338 int vlan_depth = skb->mac_len; 3339 __be16 type = skb_network_protocol(skb, &vlan_depth); 3340 3341 if (unlikely(!type)) 3342 return ERR_PTR(-EINVAL); 3343 3344 __skb_pull(skb, vlan_depth); 3345 3346 rcu_read_lock(); 3347 list_for_each_entry_rcu(ptype, &offload_base, list) { 3348 if (ptype->type == type && ptype->callbacks.gso_segment) { 3349 segs = ptype->callbacks.gso_segment(skb, features); 3350 break; 3351 } 3352 } 3353 rcu_read_unlock(); 3354 3355 __skb_push(skb, skb->data - skb_mac_header(skb)); 3356 3357 return segs; 3358} 3359EXPORT_SYMBOL(skb_mac_gso_segment); 3360 3361 3362/* openvswitch calls this on rx path, so we need a different check. 3363 */ 3364static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3365{ 3366 if (tx_path) 3367 return skb->ip_summed != CHECKSUM_PARTIAL && 3368 skb->ip_summed != CHECKSUM_UNNECESSARY; 3369 3370 return skb->ip_summed == CHECKSUM_NONE; 3371} 3372 3373/** 3374 * __skb_gso_segment - Perform segmentation on skb. 3375 * @skb: buffer to segment 3376 * @features: features for the output path (see dev->features) 3377 * @tx_path: whether it is called in TX path 3378 * 3379 * This function segments the given skb and returns a list of segments. 3380 * 3381 * It may return NULL if the skb requires no segmentation. This is 3382 * only possible when GSO is used for verifying header integrity. 3383 * 3384 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3385 */ 3386struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3387 netdev_features_t features, bool tx_path) 3388{ 3389 struct sk_buff *segs; 3390 3391 if (unlikely(skb_needs_check(skb, tx_path))) { 3392 int err; 3393 3394 /* We're going to init ->check field in TCP or UDP header */ 3395 err = skb_cow_head(skb, 0); 3396 if (err < 0) 3397 return ERR_PTR(err); 3398 } 3399 3400 /* Only report GSO partial support if it will enable us to 3401 * support segmentation on this frame without needing additional 3402 * work. 3403 */ 3404 if (features & NETIF_F_GSO_PARTIAL) { 3405 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3406 struct net_device *dev = skb->dev; 3407 3408 partial_features |= dev->features & dev->gso_partial_features; 3409 if (!skb_gso_ok(skb, features | partial_features)) 3410 features &= ~NETIF_F_GSO_PARTIAL; 3411 } 3412 3413 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3414 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3415 3416 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3417 SKB_GSO_CB(skb)->encap_level = 0; 3418 3419 skb_reset_mac_header(skb); 3420 skb_reset_mac_len(skb); 3421 3422 segs = skb_mac_gso_segment(skb, features); 3423 3424 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3425 skb_warn_bad_offload(skb); 3426 3427 return segs; 3428} 3429EXPORT_SYMBOL(__skb_gso_segment); 3430 3431/* Take action when hardware reception checksum errors are detected. */ 3432#ifdef CONFIG_BUG 3433void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3434{ 3435 if (net_ratelimit()) { 3436 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3437 skb_dump(KERN_ERR, skb, true); 3438 dump_stack(); 3439 } 3440} 3441EXPORT_SYMBOL(netdev_rx_csum_fault); 3442#endif 3443 3444/* XXX: check that highmem exists at all on the given machine. */ 3445static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3446{ 3447#ifdef CONFIG_HIGHMEM 3448 int i; 3449 3450 if (!(dev->features & NETIF_F_HIGHDMA)) { 3451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3452 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3453 3454 if (PageHighMem(skb_frag_page(frag))) 3455 return 1; 3456 } 3457 } 3458#endif 3459 return 0; 3460} 3461 3462/* If MPLS offload request, verify we are testing hardware MPLS features 3463 * instead of standard features for the netdev. 3464 */ 3465#if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3466static netdev_features_t net_mpls_features(struct sk_buff *skb, 3467 netdev_features_t features, 3468 __be16 type) 3469{ 3470 if (eth_p_mpls(type)) 3471 features &= skb->dev->mpls_features; 3472 3473 return features; 3474} 3475#else 3476static netdev_features_t net_mpls_features(struct sk_buff *skb, 3477 netdev_features_t features, 3478 __be16 type) 3479{ 3480 return features; 3481} 3482#endif 3483 3484static netdev_features_t harmonize_features(struct sk_buff *skb, 3485 netdev_features_t features) 3486{ 3487 __be16 type; 3488 3489 type = skb_network_protocol(skb, NULL); 3490 features = net_mpls_features(skb, features, type); 3491 3492 if (skb->ip_summed != CHECKSUM_NONE && 3493 !can_checksum_protocol(features, type)) { 3494 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3495 } 3496 if (illegal_highdma(skb->dev, skb)) 3497 features &= ~NETIF_F_SG; 3498 3499 return features; 3500} 3501 3502netdev_features_t passthru_features_check(struct sk_buff *skb, 3503 struct net_device *dev, 3504 netdev_features_t features) 3505{ 3506 return features; 3507} 3508EXPORT_SYMBOL(passthru_features_check); 3509 3510static netdev_features_t dflt_features_check(struct sk_buff *skb, 3511 struct net_device *dev, 3512 netdev_features_t features) 3513{ 3514 return vlan_features_check(skb, features); 3515} 3516 3517static netdev_features_t gso_features_check(const struct sk_buff *skb, 3518 struct net_device *dev, 3519 netdev_features_t features) 3520{ 3521 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3522 3523 if (gso_segs > dev->gso_max_segs) 3524 return features & ~NETIF_F_GSO_MASK; 3525 3526 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) 3527 return features & ~NETIF_F_GSO_MASK; 3528 3529 if (!skb_shinfo(skb)->gso_type) { 3530 skb_warn_bad_offload(skb); 3531 return features & ~NETIF_F_GSO_MASK; 3532 } 3533 3534 /* Support for GSO partial features requires software 3535 * intervention before we can actually process the packets 3536 * so we need to strip support for any partial features now 3537 * and we can pull them back in after we have partially 3538 * segmented the frame. 3539 */ 3540 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3541 features &= ~dev->gso_partial_features; 3542 3543 /* Make sure to clear the IPv4 ID mangling feature if the 3544 * IPv4 header has the potential to be fragmented. 3545 */ 3546 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3547 struct iphdr *iph = skb->encapsulation ? 3548 inner_ip_hdr(skb) : ip_hdr(skb); 3549 3550 if (!(iph->frag_off & htons(IP_DF))) 3551 features &= ~NETIF_F_TSO_MANGLEID; 3552 } 3553 3554 return features; 3555} 3556 3557netdev_features_t netif_skb_features(struct sk_buff *skb) 3558{ 3559 struct net_device *dev = skb->dev; 3560 netdev_features_t features = dev->features; 3561 3562 if (skb_is_gso(skb)) 3563 features = gso_features_check(skb, dev, features); 3564 3565 /* If encapsulation offload request, verify we are testing 3566 * hardware encapsulation features instead of standard 3567 * features for the netdev 3568 */ 3569 if (skb->encapsulation) 3570 features &= dev->hw_enc_features; 3571 3572 if (skb_vlan_tagged(skb)) 3573 features = netdev_intersect_features(features, 3574 dev->vlan_features | 3575 NETIF_F_HW_VLAN_CTAG_TX | 3576 NETIF_F_HW_VLAN_STAG_TX); 3577 3578 if (dev->netdev_ops->ndo_features_check) 3579 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3580 features); 3581 else 3582 features &= dflt_features_check(skb, dev, features); 3583 3584 return harmonize_features(skb, features); 3585} 3586EXPORT_SYMBOL(netif_skb_features); 3587 3588static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3589 struct netdev_queue *txq, bool more) 3590{ 3591 unsigned int len; 3592 int rc; 3593 3594 if (dev_nit_active(dev)) 3595 dev_queue_xmit_nit(skb, dev); 3596 3597 len = skb->len; 3598 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3599 trace_net_dev_start_xmit(skb, dev); 3600 rc = netdev_start_xmit(skb, dev, txq, more); 3601 trace_net_dev_xmit(skb, rc, dev, len); 3602 3603 return rc; 3604} 3605 3606struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3607 struct netdev_queue *txq, int *ret) 3608{ 3609 struct sk_buff *skb = first; 3610 int rc = NETDEV_TX_OK; 3611 3612 while (skb) { 3613 struct sk_buff *next = skb->next; 3614 3615 skb_mark_not_on_list(skb); 3616 rc = xmit_one(skb, dev, txq, next != NULL); 3617 if (unlikely(!dev_xmit_complete(rc))) { 3618 skb->next = next; 3619 goto out; 3620 } 3621 3622 skb = next; 3623 if (netif_tx_queue_stopped(txq) && skb) { 3624 rc = NETDEV_TX_BUSY; 3625 break; 3626 } 3627 } 3628 3629out: 3630 *ret = rc; 3631 return skb; 3632} 3633 3634static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3635 netdev_features_t features) 3636{ 3637 if (skb_vlan_tag_present(skb) && 3638 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3639 skb = __vlan_hwaccel_push_inside(skb); 3640 return skb; 3641} 3642 3643int skb_csum_hwoffload_help(struct sk_buff *skb, 3644 const netdev_features_t features) 3645{ 3646 if (unlikely(skb_csum_is_sctp(skb))) 3647 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3648 skb_crc32c_csum_help(skb); 3649 3650 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3651} 3652EXPORT_SYMBOL(skb_csum_hwoffload_help); 3653 3654static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3655{ 3656 netdev_features_t features; 3657 3658 features = netif_skb_features(skb); 3659 skb = validate_xmit_vlan(skb, features); 3660 if (unlikely(!skb)) 3661 goto out_null; 3662 3663 skb = sk_validate_xmit_skb(skb, dev); 3664 if (unlikely(!skb)) 3665 goto out_null; 3666 3667 if (netif_needs_gso(skb, features)) { 3668 struct sk_buff *segs; 3669 3670 segs = skb_gso_segment(skb, features); 3671 if (IS_ERR(segs)) { 3672 goto out_kfree_skb; 3673 } else if (segs) { 3674 consume_skb(skb); 3675 skb = segs; 3676 } 3677 } else { 3678 if (skb_needs_linearize(skb, features) && 3679 __skb_linearize(skb)) 3680 goto out_kfree_skb; 3681 3682 /* If packet is not checksummed and device does not 3683 * support checksumming for this protocol, complete 3684 * checksumming here. 3685 */ 3686 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3687 if (skb->encapsulation) 3688 skb_set_inner_transport_header(skb, 3689 skb_checksum_start_offset(skb)); 3690 else 3691 skb_set_transport_header(skb, 3692 skb_checksum_start_offset(skb)); 3693 if (skb_csum_hwoffload_help(skb, features)) 3694 goto out_kfree_skb; 3695 } 3696 } 3697 3698 skb = validate_xmit_xfrm(skb, features, again); 3699 3700 return skb; 3701 3702out_kfree_skb: 3703 kfree_skb(skb); 3704out_null: 3705 atomic_long_inc(&dev->tx_dropped); 3706 return NULL; 3707} 3708 3709struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3710{ 3711 struct sk_buff *next, *head = NULL, *tail; 3712 3713 for (; skb != NULL; skb = next) { 3714 next = skb->next; 3715 skb_mark_not_on_list(skb); 3716 3717 /* in case skb wont be segmented, point to itself */ 3718 skb->prev = skb; 3719 3720 skb = validate_xmit_skb(skb, dev, again); 3721 if (!skb) 3722 continue; 3723 3724 if (!head) 3725 head = skb; 3726 else 3727 tail->next = skb; 3728 /* If skb was segmented, skb->prev points to 3729 * the last segment. If not, it still contains skb. 3730 */ 3731 tail = skb->prev; 3732 } 3733 return head; 3734} 3735EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3736 3737static void qdisc_pkt_len_init(struct sk_buff *skb) 3738{ 3739 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3740 3741 qdisc_skb_cb(skb)->pkt_len = skb->len; 3742 3743 /* To get more precise estimation of bytes sent on wire, 3744 * we add to pkt_len the headers size of all segments 3745 */ 3746 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3747 unsigned int hdr_len; 3748 u16 gso_segs = shinfo->gso_segs; 3749 3750 /* mac layer + network layer */ 3751 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3752 3753 /* + transport layer */ 3754 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3755 const struct tcphdr *th; 3756 struct tcphdr _tcphdr; 3757 3758 th = skb_header_pointer(skb, skb_transport_offset(skb), 3759 sizeof(_tcphdr), &_tcphdr); 3760 if (likely(th)) 3761 hdr_len += __tcp_hdrlen(th); 3762 } else { 3763 struct udphdr _udphdr; 3764 3765 if (skb_header_pointer(skb, skb_transport_offset(skb), 3766 sizeof(_udphdr), &_udphdr)) 3767 hdr_len += sizeof(struct udphdr); 3768 } 3769 3770 if (shinfo->gso_type & SKB_GSO_DODGY) 3771 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3772 shinfo->gso_size); 3773 3774 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3775 } 3776} 3777 3778static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3779 struct net_device *dev, 3780 struct netdev_queue *txq) 3781{ 3782 spinlock_t *root_lock = qdisc_lock(q); 3783 struct sk_buff *to_free = NULL; 3784 bool contended; 3785 int rc; 3786 3787 qdisc_calculate_pkt_len(skb, q); 3788 3789 if (q->flags & TCQ_F_NOLOCK) { 3790 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3791 if (likely(!netif_xmit_frozen_or_stopped(txq))) 3792 qdisc_run(q); 3793 3794 if (unlikely(to_free)) 3795 kfree_skb_list(to_free); 3796 return rc; 3797 } 3798 3799 /* 3800 * Heuristic to force contended enqueues to serialize on a 3801 * separate lock before trying to get qdisc main lock. 3802 * This permits qdisc->running owner to get the lock more 3803 * often and dequeue packets faster. 3804 */ 3805 contended = qdisc_is_running(q); 3806 if (unlikely(contended)) 3807 spin_lock(&q->busylock); 3808 3809 spin_lock(root_lock); 3810 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3811 __qdisc_drop(skb, &to_free); 3812 rc = NET_XMIT_DROP; 3813 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3814 qdisc_run_begin(q)) { 3815 /* 3816 * This is a work-conserving queue; there are no old skbs 3817 * waiting to be sent out; and the qdisc is not running - 3818 * xmit the skb directly. 3819 */ 3820 3821 qdisc_bstats_update(q, skb); 3822 3823 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3824 if (unlikely(contended)) { 3825 spin_unlock(&q->busylock); 3826 contended = false; 3827 } 3828 __qdisc_run(q); 3829 } 3830 3831 qdisc_run_end(q); 3832 rc = NET_XMIT_SUCCESS; 3833 } else { 3834 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3835 if (qdisc_run_begin(q)) { 3836 if (unlikely(contended)) { 3837 spin_unlock(&q->busylock); 3838 contended = false; 3839 } 3840 __qdisc_run(q); 3841 qdisc_run_end(q); 3842 } 3843 } 3844 spin_unlock(root_lock); 3845 if (unlikely(to_free)) 3846 kfree_skb_list(to_free); 3847 if (unlikely(contended)) 3848 spin_unlock(&q->busylock); 3849 return rc; 3850} 3851 3852#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3853static void skb_update_prio(struct sk_buff *skb) 3854{ 3855 const struct netprio_map *map; 3856 const struct sock *sk; 3857 unsigned int prioidx; 3858 3859 if (skb->priority) 3860 return; 3861 map = rcu_dereference_bh(skb->dev->priomap); 3862 if (!map) 3863 return; 3864 sk = skb_to_full_sk(skb); 3865 if (!sk) 3866 return; 3867 3868 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3869 3870 if (prioidx < map->priomap_len) 3871 skb->priority = map->priomap[prioidx]; 3872} 3873#else 3874#define skb_update_prio(skb) 3875#endif 3876 3877/** 3878 * dev_loopback_xmit - loop back @skb 3879 * @net: network namespace this loopback is happening in 3880 * @sk: sk needed to be a netfilter okfn 3881 * @skb: buffer to transmit 3882 */ 3883int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3884{ 3885 skb_reset_mac_header(skb); 3886 __skb_pull(skb, skb_network_offset(skb)); 3887 skb->pkt_type = PACKET_LOOPBACK; 3888 if (skb->ip_summed == CHECKSUM_NONE) 3889 skb->ip_summed = CHECKSUM_UNNECESSARY; 3890 WARN_ON(!skb_dst(skb)); 3891 skb_dst_force(skb); 3892 netif_rx_ni(skb); 3893 return 0; 3894} 3895EXPORT_SYMBOL(dev_loopback_xmit); 3896 3897#ifdef CONFIG_NET_EGRESS 3898static struct sk_buff * 3899sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3900{ 3901 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3902 struct tcf_result cl_res; 3903 3904 if (!miniq) 3905 return skb; 3906 3907 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3908 qdisc_skb_cb(skb)->mru = 0; 3909 mini_qdisc_bstats_cpu_update(miniq, skb); 3910 3911 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3912 case TC_ACT_OK: 3913 case TC_ACT_RECLASSIFY: 3914 skb->tc_index = TC_H_MIN(cl_res.classid); 3915 break; 3916 case TC_ACT_SHOT: 3917 mini_qdisc_qstats_cpu_drop(miniq); 3918 *ret = NET_XMIT_DROP; 3919 kfree_skb(skb); 3920 return NULL; 3921 case TC_ACT_STOLEN: 3922 case TC_ACT_QUEUED: 3923 case TC_ACT_TRAP: 3924 *ret = NET_XMIT_SUCCESS; 3925 consume_skb(skb); 3926 return NULL; 3927 case TC_ACT_REDIRECT: 3928 /* No need to push/pop skb's mac_header here on egress! */ 3929 skb_do_redirect(skb); 3930 *ret = NET_XMIT_SUCCESS; 3931 return NULL; 3932 default: 3933 break; 3934 } 3935 3936 return skb; 3937} 3938#endif /* CONFIG_NET_EGRESS */ 3939 3940#ifdef CONFIG_XPS 3941static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3942 struct xps_dev_maps *dev_maps, unsigned int tci) 3943{ 3944 struct xps_map *map; 3945 int queue_index = -1; 3946 3947 if (dev->num_tc) { 3948 tci *= dev->num_tc; 3949 tci += netdev_get_prio_tc_map(dev, skb->priority); 3950 } 3951 3952 map = rcu_dereference(dev_maps->attr_map[tci]); 3953 if (map) { 3954 if (map->len == 1) 3955 queue_index = map->queues[0]; 3956 else 3957 queue_index = map->queues[reciprocal_scale( 3958 skb_get_hash(skb), map->len)]; 3959 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3960 queue_index = -1; 3961 } 3962 return queue_index; 3963} 3964#endif 3965 3966static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3967 struct sk_buff *skb) 3968{ 3969#ifdef CONFIG_XPS 3970 struct xps_dev_maps *dev_maps; 3971 struct sock *sk = skb->sk; 3972 int queue_index = -1; 3973 3974 if (!static_key_false(&xps_needed)) 3975 return -1; 3976 3977 rcu_read_lock(); 3978 if (!static_key_false(&xps_rxqs_needed)) 3979 goto get_cpus_map; 3980 3981 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3982 if (dev_maps) { 3983 int tci = sk_rx_queue_get(sk); 3984 3985 if (tci >= 0 && tci < dev->num_rx_queues) 3986 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3987 tci); 3988 } 3989 3990get_cpus_map: 3991 if (queue_index < 0) { 3992 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3993 if (dev_maps) { 3994 unsigned int tci = skb->sender_cpu - 1; 3995 3996 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3997 tci); 3998 } 3999 } 4000 rcu_read_unlock(); 4001 4002 return queue_index; 4003#else 4004 return -1; 4005#endif 4006} 4007 4008u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4009 struct net_device *sb_dev) 4010{ 4011 return 0; 4012} 4013EXPORT_SYMBOL(dev_pick_tx_zero); 4014 4015u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4016 struct net_device *sb_dev) 4017{ 4018 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4019} 4020EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4021 4022u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4023 struct net_device *sb_dev) 4024{ 4025 struct sock *sk = skb->sk; 4026 int queue_index = sk_tx_queue_get(sk); 4027 4028 sb_dev = sb_dev ? : dev; 4029 4030 if (queue_index < 0 || skb->ooo_okay || 4031 queue_index >= dev->real_num_tx_queues) { 4032 int new_index = get_xps_queue(dev, sb_dev, skb); 4033 4034 if (new_index < 0) 4035 new_index = skb_tx_hash(dev, sb_dev, skb); 4036 4037 if (queue_index != new_index && sk && 4038 sk_fullsock(sk) && 4039 rcu_access_pointer(sk->sk_dst_cache)) 4040 sk_tx_queue_set(sk, new_index); 4041 4042 queue_index = new_index; 4043 } 4044 4045 return queue_index; 4046} 4047EXPORT_SYMBOL(netdev_pick_tx); 4048 4049struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4050 struct sk_buff *skb, 4051 struct net_device *sb_dev) 4052{ 4053 int queue_index = 0; 4054 4055#ifdef CONFIG_XPS 4056 u32 sender_cpu = skb->sender_cpu - 1; 4057 4058 if (sender_cpu >= (u32)NR_CPUS) 4059 skb->sender_cpu = raw_smp_processor_id() + 1; 4060#endif 4061 4062 if (dev->real_num_tx_queues != 1) { 4063 const struct net_device_ops *ops = dev->netdev_ops; 4064 4065 if (ops->ndo_select_queue) 4066 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4067 else 4068 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4069 4070 queue_index = netdev_cap_txqueue(dev, queue_index); 4071 } 4072 4073 skb_set_queue_mapping(skb, queue_index); 4074 return netdev_get_tx_queue(dev, queue_index); 4075} 4076 4077/** 4078 * __dev_queue_xmit - transmit a buffer 4079 * @skb: buffer to transmit 4080 * @sb_dev: suboordinate device used for L2 forwarding offload 4081 * 4082 * Queue a buffer for transmission to a network device. The caller must 4083 * have set the device and priority and built the buffer before calling 4084 * this function. The function can be called from an interrupt. 4085 * 4086 * A negative errno code is returned on a failure. A success does not 4087 * guarantee the frame will be transmitted as it may be dropped due 4088 * to congestion or traffic shaping. 4089 * 4090 * ----------------------------------------------------------------------------------- 4091 * I notice this method can also return errors from the queue disciplines, 4092 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4093 * be positive. 4094 * 4095 * Regardless of the return value, the skb is consumed, so it is currently 4096 * difficult to retry a send to this method. (You can bump the ref count 4097 * before sending to hold a reference for retry if you are careful.) 4098 * 4099 * When calling this method, interrupts MUST be enabled. This is because 4100 * the BH enable code must have IRQs enabled so that it will not deadlock. 4101 * --BLG 4102 */ 4103static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4104{ 4105 struct net_device *dev = skb->dev; 4106 struct netdev_queue *txq; 4107 struct Qdisc *q; 4108 int rc = -ENOMEM; 4109 bool again = false; 4110 4111 skb_reset_mac_header(skb); 4112 skb_assert_len(skb); 4113 4114 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4115 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4116 4117 /* Disable soft irqs for various locks below. Also 4118 * stops preemption for RCU. 4119 */ 4120 rcu_read_lock_bh(); 4121 4122 skb_update_prio(skb); 4123 4124 qdisc_pkt_len_init(skb); 4125#ifdef CONFIG_NET_CLS_ACT 4126 skb->tc_at_ingress = 0; 4127# ifdef CONFIG_NET_EGRESS 4128 if (static_branch_unlikely(&egress_needed_key)) { 4129 skb = sch_handle_egress(skb, &rc, dev); 4130 if (!skb) 4131 goto out; 4132 } 4133# endif 4134#endif 4135 /* If device/qdisc don't need skb->dst, release it right now while 4136 * its hot in this cpu cache. 4137 */ 4138 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4139 skb_dst_drop(skb); 4140 else 4141 skb_dst_force(skb); 4142 4143 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4144 q = rcu_dereference_bh(txq->qdisc); 4145 4146 trace_net_dev_queue(skb); 4147 if (q->enqueue) { 4148 rc = __dev_xmit_skb(skb, q, dev, txq); 4149 goto out; 4150 } 4151 4152 /* The device has no queue. Common case for software devices: 4153 * loopback, all the sorts of tunnels... 4154 4155 * Really, it is unlikely that netif_tx_lock protection is necessary 4156 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4157 * counters.) 4158 * However, it is possible, that they rely on protection 4159 * made by us here. 4160 4161 * Check this and shot the lock. It is not prone from deadlocks. 4162 *Either shot noqueue qdisc, it is even simpler 8) 4163 */ 4164 if (dev->flags & IFF_UP) { 4165 int cpu = smp_processor_id(); /* ok because BHs are off */ 4166 4167 /* Other cpus might concurrently change txq->xmit_lock_owner 4168 * to -1 or to their cpu id, but not to our id. 4169 */ 4170 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4171 if (dev_xmit_recursion()) 4172 goto recursion_alert; 4173 4174 skb = validate_xmit_skb(skb, dev, &again); 4175 if (!skb) 4176 goto out; 4177 4178 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4179 HARD_TX_LOCK(dev, txq, cpu); 4180 4181 if (!netif_xmit_stopped(txq)) { 4182 dev_xmit_recursion_inc(); 4183 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4184 dev_xmit_recursion_dec(); 4185 if (dev_xmit_complete(rc)) { 4186 HARD_TX_UNLOCK(dev, txq); 4187 goto out; 4188 } 4189 } 4190 HARD_TX_UNLOCK(dev, txq); 4191 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4192 dev->name); 4193 } else { 4194 /* Recursion is detected! It is possible, 4195 * unfortunately 4196 */ 4197recursion_alert: 4198 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4199 dev->name); 4200 } 4201 } 4202 4203 rc = -ENETDOWN; 4204 rcu_read_unlock_bh(); 4205 4206 atomic_long_inc(&dev->tx_dropped); 4207 kfree_skb_list(skb); 4208 return rc; 4209out: 4210 rcu_read_unlock_bh(); 4211 return rc; 4212} 4213 4214int dev_queue_xmit(struct sk_buff *skb) 4215{ 4216 return __dev_queue_xmit(skb, NULL); 4217} 4218EXPORT_SYMBOL(dev_queue_xmit); 4219 4220int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4221{ 4222 return __dev_queue_xmit(skb, sb_dev); 4223} 4224EXPORT_SYMBOL(dev_queue_xmit_accel); 4225 4226int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4227{ 4228 struct net_device *dev = skb->dev; 4229 struct sk_buff *orig_skb = skb; 4230 struct netdev_queue *txq; 4231 int ret = NETDEV_TX_BUSY; 4232 bool again = false; 4233 4234 if (unlikely(!netif_running(dev) || 4235 !netif_carrier_ok(dev))) 4236 goto drop; 4237 4238 skb = validate_xmit_skb_list(skb, dev, &again); 4239 if (skb != orig_skb) 4240 goto drop; 4241 4242 skb_set_queue_mapping(skb, queue_id); 4243 txq = skb_get_tx_queue(dev, skb); 4244 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4245 4246 local_bh_disable(); 4247 4248 dev_xmit_recursion_inc(); 4249 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4250 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4251 ret = netdev_start_xmit(skb, dev, txq, false); 4252 HARD_TX_UNLOCK(dev, txq); 4253 dev_xmit_recursion_dec(); 4254 4255 local_bh_enable(); 4256 return ret; 4257drop: 4258 atomic_long_inc(&dev->tx_dropped); 4259 kfree_skb_list(skb); 4260 return NET_XMIT_DROP; 4261} 4262EXPORT_SYMBOL(__dev_direct_xmit); 4263 4264/************************************************************************* 4265 * Receiver routines 4266 *************************************************************************/ 4267 4268int netdev_max_backlog __read_mostly = 1000; 4269EXPORT_SYMBOL(netdev_max_backlog); 4270 4271int netdev_tstamp_prequeue __read_mostly = 1; 4272int netdev_budget __read_mostly = 300; 4273/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4274unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4275int weight_p __read_mostly = 64; /* old backlog weight */ 4276int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4277int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4278int dev_rx_weight __read_mostly = 64; 4279int dev_tx_weight __read_mostly = 64; 4280/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4281int gro_normal_batch __read_mostly = 8; 4282 4283/* Called with irq disabled */ 4284static inline void ____napi_schedule(struct softnet_data *sd, 4285 struct napi_struct *napi) 4286{ 4287 list_add_tail(&napi->poll_list, &sd->poll_list); 4288 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4289} 4290 4291#ifdef CONFIG_RPS 4292 4293/* One global table that all flow-based protocols share. */ 4294struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4295EXPORT_SYMBOL(rps_sock_flow_table); 4296u32 rps_cpu_mask __read_mostly; 4297EXPORT_SYMBOL(rps_cpu_mask); 4298 4299struct static_key_false rps_needed __read_mostly; 4300EXPORT_SYMBOL(rps_needed); 4301struct static_key_false rfs_needed __read_mostly; 4302EXPORT_SYMBOL(rfs_needed); 4303 4304static struct rps_dev_flow * 4305set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4306 struct rps_dev_flow *rflow, u16 next_cpu) 4307{ 4308 if (next_cpu < nr_cpu_ids) { 4309#ifdef CONFIG_RFS_ACCEL 4310 struct netdev_rx_queue *rxqueue; 4311 struct rps_dev_flow_table *flow_table; 4312 struct rps_dev_flow *old_rflow; 4313 u32 flow_id; 4314 u16 rxq_index; 4315 int rc; 4316 4317 /* Should we steer this flow to a different hardware queue? */ 4318 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4319 !(dev->features & NETIF_F_NTUPLE)) 4320 goto out; 4321 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4322 if (rxq_index == skb_get_rx_queue(skb)) 4323 goto out; 4324 4325 rxqueue = dev->_rx + rxq_index; 4326 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4327 if (!flow_table) 4328 goto out; 4329 flow_id = skb_get_hash(skb) & flow_table->mask; 4330 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4331 rxq_index, flow_id); 4332 if (rc < 0) 4333 goto out; 4334 old_rflow = rflow; 4335 rflow = &flow_table->flows[flow_id]; 4336 rflow->filter = rc; 4337 if (old_rflow->filter == rflow->filter) 4338 old_rflow->filter = RPS_NO_FILTER; 4339 out: 4340#endif 4341 rflow->last_qtail = 4342 per_cpu(softnet_data, next_cpu).input_queue_head; 4343 } 4344 4345 rflow->cpu = next_cpu; 4346 return rflow; 4347} 4348 4349/* 4350 * get_rps_cpu is called from netif_receive_skb and returns the target 4351 * CPU from the RPS map of the receiving queue for a given skb. 4352 * rcu_read_lock must be held on entry. 4353 */ 4354static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4355 struct rps_dev_flow **rflowp) 4356{ 4357 const struct rps_sock_flow_table *sock_flow_table; 4358 struct netdev_rx_queue *rxqueue = dev->_rx; 4359 struct rps_dev_flow_table *flow_table; 4360 struct rps_map *map; 4361 int cpu = -1; 4362 u32 tcpu; 4363 u32 hash; 4364 4365 if (skb_rx_queue_recorded(skb)) { 4366 u16 index = skb_get_rx_queue(skb); 4367 4368 if (unlikely(index >= dev->real_num_rx_queues)) { 4369 WARN_ONCE(dev->real_num_rx_queues > 1, 4370 "%s received packet on queue %u, but number " 4371 "of RX queues is %u\n", 4372 dev->name, index, dev->real_num_rx_queues); 4373 goto done; 4374 } 4375 rxqueue += index; 4376 } 4377 4378 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4379 4380 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4381 map = rcu_dereference(rxqueue->rps_map); 4382 if (!flow_table && !map) 4383 goto done; 4384 4385 skb_reset_network_header(skb); 4386 hash = skb_get_hash(skb); 4387 if (!hash) 4388 goto done; 4389 4390 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4391 if (flow_table && sock_flow_table) { 4392 struct rps_dev_flow *rflow; 4393 u32 next_cpu; 4394 u32 ident; 4395 4396 /* First check into global flow table if there is a match. 4397 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4398 */ 4399 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4400 if ((ident ^ hash) & ~rps_cpu_mask) 4401 goto try_rps; 4402 4403 next_cpu = ident & rps_cpu_mask; 4404 4405 /* OK, now we know there is a match, 4406 * we can look at the local (per receive queue) flow table 4407 */ 4408 rflow = &flow_table->flows[hash & flow_table->mask]; 4409 tcpu = rflow->cpu; 4410 4411 /* 4412 * If the desired CPU (where last recvmsg was done) is 4413 * different from current CPU (one in the rx-queue flow 4414 * table entry), switch if one of the following holds: 4415 * - Current CPU is unset (>= nr_cpu_ids). 4416 * - Current CPU is offline. 4417 * - The current CPU's queue tail has advanced beyond the 4418 * last packet that was enqueued using this table entry. 4419 * This guarantees that all previous packets for the flow 4420 * have been dequeued, thus preserving in order delivery. 4421 */ 4422 if (unlikely(tcpu != next_cpu) && 4423 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4424 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4425 rflow->last_qtail)) >= 0)) { 4426 tcpu = next_cpu; 4427 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4428 } 4429 4430 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4431 *rflowp = rflow; 4432 cpu = tcpu; 4433 goto done; 4434 } 4435 } 4436 4437try_rps: 4438 4439 if (map) { 4440 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4441 if (cpu_online(tcpu)) { 4442 cpu = tcpu; 4443 goto done; 4444 } 4445 } 4446 4447done: 4448 return cpu; 4449} 4450 4451#ifdef CONFIG_RFS_ACCEL 4452 4453/** 4454 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4455 * @dev: Device on which the filter was set 4456 * @rxq_index: RX queue index 4457 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4458 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4459 * 4460 * Drivers that implement ndo_rx_flow_steer() should periodically call 4461 * this function for each installed filter and remove the filters for 4462 * which it returns %true. 4463 */ 4464bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4465 u32 flow_id, u16 filter_id) 4466{ 4467 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4468 struct rps_dev_flow_table *flow_table; 4469 struct rps_dev_flow *rflow; 4470 bool expire = true; 4471 unsigned int cpu; 4472 4473 rcu_read_lock(); 4474 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4475 if (flow_table && flow_id <= flow_table->mask) { 4476 rflow = &flow_table->flows[flow_id]; 4477 cpu = READ_ONCE(rflow->cpu); 4478 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4479 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4480 rflow->last_qtail) < 4481 (int)(10 * flow_table->mask))) 4482 expire = false; 4483 } 4484 rcu_read_unlock(); 4485 return expire; 4486} 4487EXPORT_SYMBOL(rps_may_expire_flow); 4488 4489#endif /* CONFIG_RFS_ACCEL */ 4490 4491/* Called from hardirq (IPI) context */ 4492static void rps_trigger_softirq(void *data) 4493{ 4494 struct softnet_data *sd = data; 4495 4496 ____napi_schedule(sd, &sd->backlog); 4497 sd->received_rps++; 4498} 4499 4500#endif /* CONFIG_RPS */ 4501 4502/* 4503 * Check if this softnet_data structure is another cpu one 4504 * If yes, queue it to our IPI list and return 1 4505 * If no, return 0 4506 */ 4507static int rps_ipi_queued(struct softnet_data *sd) 4508{ 4509#ifdef CONFIG_RPS 4510 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4511 4512 if (sd != mysd) { 4513 sd->rps_ipi_next = mysd->rps_ipi_list; 4514 mysd->rps_ipi_list = sd; 4515 4516 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4517 return 1; 4518 } 4519#endif /* CONFIG_RPS */ 4520 return 0; 4521} 4522 4523#ifdef CONFIG_NET_FLOW_LIMIT 4524int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4525#endif 4526 4527static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4528{ 4529#ifdef CONFIG_NET_FLOW_LIMIT 4530 struct sd_flow_limit *fl; 4531 struct softnet_data *sd; 4532 unsigned int old_flow, new_flow; 4533 4534 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4535 return false; 4536 4537 sd = this_cpu_ptr(&softnet_data); 4538 4539 rcu_read_lock(); 4540 fl = rcu_dereference(sd->flow_limit); 4541 if (fl) { 4542 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4543 old_flow = fl->history[fl->history_head]; 4544 fl->history[fl->history_head] = new_flow; 4545 4546 fl->history_head++; 4547 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4548 4549 if (likely(fl->buckets[old_flow])) 4550 fl->buckets[old_flow]--; 4551 4552 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4553 fl->count++; 4554 rcu_read_unlock(); 4555 return true; 4556 } 4557 } 4558 rcu_read_unlock(); 4559#endif 4560 return false; 4561} 4562 4563/* 4564 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4565 * queue (may be a remote CPU queue). 4566 */ 4567static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4568 unsigned int *qtail) 4569{ 4570 struct softnet_data *sd; 4571 unsigned long flags; 4572 unsigned int qlen; 4573 4574 sd = &per_cpu(softnet_data, cpu); 4575 4576 local_irq_save(flags); 4577 4578 rps_lock(sd); 4579 if (!netif_running(skb->dev)) 4580 goto drop; 4581 qlen = skb_queue_len(&sd->input_pkt_queue); 4582 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4583 if (qlen) { 4584enqueue: 4585 __skb_queue_tail(&sd->input_pkt_queue, skb); 4586 input_queue_tail_incr_save(sd, qtail); 4587 rps_unlock(sd); 4588 local_irq_restore(flags); 4589 return NET_RX_SUCCESS; 4590 } 4591 4592 /* Schedule NAPI for backlog device 4593 * We can use non atomic operation since we own the queue lock 4594 */ 4595 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4596 if (!rps_ipi_queued(sd)) 4597 ____napi_schedule(sd, &sd->backlog); 4598 } 4599 goto enqueue; 4600 } 4601 4602drop: 4603 sd->dropped++; 4604 rps_unlock(sd); 4605 4606 local_irq_restore(flags); 4607 4608 atomic_long_inc(&skb->dev->rx_dropped); 4609 kfree_skb(skb); 4610 return NET_RX_DROP; 4611} 4612 4613static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4614{ 4615 struct net_device *dev = skb->dev; 4616 struct netdev_rx_queue *rxqueue; 4617 4618 rxqueue = dev->_rx; 4619 4620 if (skb_rx_queue_recorded(skb)) { 4621 u16 index = skb_get_rx_queue(skb); 4622 4623 if (unlikely(index >= dev->real_num_rx_queues)) { 4624 WARN_ONCE(dev->real_num_rx_queues > 1, 4625 "%s received packet on queue %u, but number " 4626 "of RX queues is %u\n", 4627 dev->name, index, dev->real_num_rx_queues); 4628 4629 return rxqueue; /* Return first rxqueue */ 4630 } 4631 rxqueue += index; 4632 } 4633 return rxqueue; 4634} 4635 4636static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4637 struct xdp_buff *xdp, 4638 struct bpf_prog *xdp_prog) 4639{ 4640 struct netdev_rx_queue *rxqueue; 4641 void *orig_data, *orig_data_end; 4642 u32 metalen, act = XDP_DROP; 4643 __be16 orig_eth_type; 4644 struct ethhdr *eth; 4645 bool orig_bcast; 4646 int hlen, off; 4647 u32 mac_len; 4648 4649 /* Reinjected packets coming from act_mirred or similar should 4650 * not get XDP generic processing. 4651 */ 4652 if (skb_is_redirected(skb)) 4653 return XDP_PASS; 4654 4655 /* XDP packets must be linear and must have sufficient headroom 4656 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4657 * native XDP provides, thus we need to do it here as well. 4658 */ 4659 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4660 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4661 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4662 int troom = skb->tail + skb->data_len - skb->end; 4663 4664 /* In case we have to go down the path and also linearize, 4665 * then lets do the pskb_expand_head() work just once here. 4666 */ 4667 if (pskb_expand_head(skb, 4668 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4669 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4670 goto do_drop; 4671 if (skb_linearize(skb)) 4672 goto do_drop; 4673 } 4674 4675 /* The XDP program wants to see the packet starting at the MAC 4676 * header. 4677 */ 4678 mac_len = skb->data - skb_mac_header(skb); 4679 hlen = skb_headlen(skb) + mac_len; 4680 xdp->data = skb->data - mac_len; 4681 xdp->data_meta = xdp->data; 4682 xdp->data_end = xdp->data + hlen; 4683 xdp->data_hard_start = skb->data - skb_headroom(skb); 4684 4685 /* SKB "head" area always have tailroom for skb_shared_info */ 4686 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4687 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4688 4689 orig_data_end = xdp->data_end; 4690 orig_data = xdp->data; 4691 eth = (struct ethhdr *)xdp->data; 4692 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4693 orig_eth_type = eth->h_proto; 4694 4695 rxqueue = netif_get_rxqueue(skb); 4696 xdp->rxq = &rxqueue->xdp_rxq; 4697 4698 act = bpf_prog_run_xdp(xdp_prog, xdp); 4699 4700 /* check if bpf_xdp_adjust_head was used */ 4701 off = xdp->data - orig_data; 4702 if (off) { 4703 if (off > 0) 4704 __skb_pull(skb, off); 4705 else if (off < 0) 4706 __skb_push(skb, -off); 4707 4708 skb->mac_header += off; 4709 skb_reset_network_header(skb); 4710 } 4711 4712 /* check if bpf_xdp_adjust_tail was used */ 4713 off = xdp->data_end - orig_data_end; 4714 if (off != 0) { 4715 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4716 skb->len += off; /* positive on grow, negative on shrink */ 4717 } 4718 4719 /* check if XDP changed eth hdr such SKB needs update */ 4720 eth = (struct ethhdr *)xdp->data; 4721 if ((orig_eth_type != eth->h_proto) || 4722 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4723 __skb_push(skb, ETH_HLEN); 4724 skb->protocol = eth_type_trans(skb, skb->dev); 4725 } 4726 4727 switch (act) { 4728 case XDP_REDIRECT: 4729 case XDP_TX: 4730 __skb_push(skb, mac_len); 4731 break; 4732 case XDP_PASS: 4733 metalen = xdp->data - xdp->data_meta; 4734 if (metalen) 4735 skb_metadata_set(skb, metalen); 4736 break; 4737 default: 4738 bpf_warn_invalid_xdp_action(act); 4739 fallthrough; 4740 case XDP_ABORTED: 4741 trace_xdp_exception(skb->dev, xdp_prog, act); 4742 fallthrough; 4743 case XDP_DROP: 4744 do_drop: 4745 kfree_skb(skb); 4746 break; 4747 } 4748 4749 return act; 4750} 4751 4752/* When doing generic XDP we have to bypass the qdisc layer and the 4753 * network taps in order to match in-driver-XDP behavior. 4754 */ 4755void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4756{ 4757 struct net_device *dev = skb->dev; 4758 struct netdev_queue *txq; 4759 bool free_skb = true; 4760 int cpu, rc; 4761 4762 txq = netdev_core_pick_tx(dev, skb, NULL); 4763 cpu = smp_processor_id(); 4764 HARD_TX_LOCK(dev, txq, cpu); 4765 if (!netif_xmit_stopped(txq)) { 4766 rc = netdev_start_xmit(skb, dev, txq, 0); 4767 if (dev_xmit_complete(rc)) 4768 free_skb = false; 4769 } 4770 HARD_TX_UNLOCK(dev, txq); 4771 if (free_skb) { 4772 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4773 kfree_skb(skb); 4774 } 4775} 4776 4777static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4778 4779int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4780{ 4781 if (xdp_prog) { 4782 struct xdp_buff xdp; 4783 u32 act; 4784 int err; 4785 4786 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4787 if (act != XDP_PASS) { 4788 switch (act) { 4789 case XDP_REDIRECT: 4790 err = xdp_do_generic_redirect(skb->dev, skb, 4791 &xdp, xdp_prog); 4792 if (err) 4793 goto out_redir; 4794 break; 4795 case XDP_TX: 4796 generic_xdp_tx(skb, xdp_prog); 4797 break; 4798 } 4799 return XDP_DROP; 4800 } 4801 } 4802 return XDP_PASS; 4803out_redir: 4804 kfree_skb(skb); 4805 return XDP_DROP; 4806} 4807EXPORT_SYMBOL_GPL(do_xdp_generic); 4808 4809static int netif_rx_internal(struct sk_buff *skb) 4810{ 4811 int ret; 4812 4813 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 4814 4815 trace_netif_rx(skb); 4816 4817#ifdef CONFIG_RPS 4818 if (static_branch_unlikely(&rps_needed)) { 4819 struct rps_dev_flow voidflow, *rflow = &voidflow; 4820 int cpu; 4821 4822 preempt_disable(); 4823 rcu_read_lock(); 4824 4825 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4826 if (cpu < 0) 4827 cpu = smp_processor_id(); 4828 4829 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4830 4831 rcu_read_unlock(); 4832 preempt_enable(); 4833 } else 4834#endif 4835 { 4836 unsigned int qtail; 4837 4838 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4839 put_cpu(); 4840 } 4841 return ret; 4842} 4843 4844/** 4845 * netif_rx - post buffer to the network code 4846 * @skb: buffer to post 4847 * 4848 * This function receives a packet from a device driver and queues it for 4849 * the upper (protocol) levels to process. It always succeeds. The buffer 4850 * may be dropped during processing for congestion control or by the 4851 * protocol layers. 4852 * 4853 * return values: 4854 * NET_RX_SUCCESS (no congestion) 4855 * NET_RX_DROP (packet was dropped) 4856 * 4857 */ 4858 4859int netif_rx(struct sk_buff *skb) 4860{ 4861 int ret; 4862 4863 trace_netif_rx_entry(skb); 4864 4865 ret = netif_rx_internal(skb); 4866 trace_netif_rx_exit(ret); 4867 4868 return ret; 4869} 4870EXPORT_SYMBOL(netif_rx); 4871 4872int netif_rx_ni(struct sk_buff *skb) 4873{ 4874 int err; 4875 4876 trace_netif_rx_ni_entry(skb); 4877 4878 preempt_disable(); 4879 err = netif_rx_internal(skb); 4880 if (local_softirq_pending()) 4881 do_softirq(); 4882 preempt_enable(); 4883 trace_netif_rx_ni_exit(err); 4884 4885 return err; 4886} 4887EXPORT_SYMBOL(netif_rx_ni); 4888 4889int netif_rx_any_context(struct sk_buff *skb) 4890{ 4891 /* 4892 * If invoked from contexts which do not invoke bottom half 4893 * processing either at return from interrupt or when softrqs are 4894 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4895 * directly. 4896 */ 4897 if (in_interrupt()) 4898 return netif_rx(skb); 4899 else 4900 return netif_rx_ni(skb); 4901} 4902EXPORT_SYMBOL(netif_rx_any_context); 4903 4904static __latent_entropy void net_tx_action(struct softirq_action *h) 4905{ 4906 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4907 4908 if (sd->completion_queue) { 4909 struct sk_buff *clist; 4910 4911 local_irq_disable(); 4912 clist = sd->completion_queue; 4913 sd->completion_queue = NULL; 4914 local_irq_enable(); 4915 4916 while (clist) { 4917 struct sk_buff *skb = clist; 4918 4919 clist = clist->next; 4920 4921 WARN_ON(refcount_read(&skb->users)); 4922 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4923 trace_consume_skb(skb); 4924 else 4925 trace_kfree_skb(skb, net_tx_action); 4926 4927 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4928 __kfree_skb(skb); 4929 else 4930 __kfree_skb_defer(skb); 4931 } 4932 4933 __kfree_skb_flush(); 4934 } 4935 4936 if (sd->output_queue) { 4937 struct Qdisc *head; 4938 4939 local_irq_disable(); 4940 head = sd->output_queue; 4941 sd->output_queue = NULL; 4942 sd->output_queue_tailp = &sd->output_queue; 4943 local_irq_enable(); 4944 4945 rcu_read_lock(); 4946 4947 while (head) { 4948 struct Qdisc *q = head; 4949 spinlock_t *root_lock = NULL; 4950 4951 head = head->next_sched; 4952 4953 /* We need to make sure head->next_sched is read 4954 * before clearing __QDISC_STATE_SCHED 4955 */ 4956 smp_mb__before_atomic(); 4957 4958 if (!(q->flags & TCQ_F_NOLOCK)) { 4959 root_lock = qdisc_lock(q); 4960 spin_lock(root_lock); 4961 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 4962 &q->state))) { 4963 /* There is a synchronize_net() between 4964 * STATE_DEACTIVATED flag being set and 4965 * qdisc_reset()/some_qdisc_is_busy() in 4966 * dev_deactivate(), so we can safely bail out 4967 * early here to avoid data race between 4968 * qdisc_deactivate() and some_qdisc_is_busy() 4969 * for lockless qdisc. 4970 */ 4971 clear_bit(__QDISC_STATE_SCHED, &q->state); 4972 continue; 4973 } 4974 4975 clear_bit(__QDISC_STATE_SCHED, &q->state); 4976 qdisc_run(q); 4977 if (root_lock) 4978 spin_unlock(root_lock); 4979 } 4980 4981 rcu_read_unlock(); 4982 } 4983 4984 xfrm_dev_backlog(sd); 4985} 4986 4987#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4988/* This hook is defined here for ATM LANE */ 4989int (*br_fdb_test_addr_hook)(struct net_device *dev, 4990 unsigned char *addr) __read_mostly; 4991EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4992#endif 4993 4994static inline struct sk_buff * 4995sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4996 struct net_device *orig_dev, bool *another) 4997{ 4998#ifdef CONFIG_NET_CLS_ACT 4999 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5000 struct tcf_result cl_res; 5001 5002 /* If there's at least one ingress present somewhere (so 5003 * we get here via enabled static key), remaining devices 5004 * that are not configured with an ingress qdisc will bail 5005 * out here. 5006 */ 5007 if (!miniq) 5008 return skb; 5009 5010 if (*pt_prev) { 5011 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5012 *pt_prev = NULL; 5013 } 5014 5015 qdisc_skb_cb(skb)->pkt_len = skb->len; 5016 qdisc_skb_cb(skb)->mru = 0; 5017 skb->tc_at_ingress = 1; 5018 mini_qdisc_bstats_cpu_update(miniq, skb); 5019 5020 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 5021 &cl_res, false)) { 5022 case TC_ACT_OK: 5023 case TC_ACT_RECLASSIFY: 5024 skb->tc_index = TC_H_MIN(cl_res.classid); 5025 break; 5026 case TC_ACT_SHOT: 5027 mini_qdisc_qstats_cpu_drop(miniq); 5028 kfree_skb(skb); 5029 return NULL; 5030 case TC_ACT_STOLEN: 5031 case TC_ACT_QUEUED: 5032 case TC_ACT_TRAP: 5033 consume_skb(skb); 5034 return NULL; 5035 case TC_ACT_REDIRECT: 5036 /* skb_mac_header check was done by cls/act_bpf, so 5037 * we can safely push the L2 header back before 5038 * redirecting to another netdev 5039 */ 5040 __skb_push(skb, skb->mac_len); 5041 if (skb_do_redirect(skb) == -EAGAIN) { 5042 __skb_pull(skb, skb->mac_len); 5043 *another = true; 5044 break; 5045 } 5046 return NULL; 5047 case TC_ACT_CONSUMED: 5048 return NULL; 5049 default: 5050 break; 5051 } 5052#endif /* CONFIG_NET_CLS_ACT */ 5053 return skb; 5054} 5055 5056/** 5057 * netdev_is_rx_handler_busy - check if receive handler is registered 5058 * @dev: device to check 5059 * 5060 * Check if a receive handler is already registered for a given device. 5061 * Return true if there one. 5062 * 5063 * The caller must hold the rtnl_mutex. 5064 */ 5065bool netdev_is_rx_handler_busy(struct net_device *dev) 5066{ 5067 ASSERT_RTNL(); 5068 return dev && rtnl_dereference(dev->rx_handler); 5069} 5070EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5071 5072/** 5073 * netdev_rx_handler_register - register receive handler 5074 * @dev: device to register a handler for 5075 * @rx_handler: receive handler to register 5076 * @rx_handler_data: data pointer that is used by rx handler 5077 * 5078 * Register a receive handler for a device. This handler will then be 5079 * called from __netif_receive_skb. A negative errno code is returned 5080 * on a failure. 5081 * 5082 * The caller must hold the rtnl_mutex. 5083 * 5084 * For a general description of rx_handler, see enum rx_handler_result. 5085 */ 5086int netdev_rx_handler_register(struct net_device *dev, 5087 rx_handler_func_t *rx_handler, 5088 void *rx_handler_data) 5089{ 5090 if (netdev_is_rx_handler_busy(dev)) 5091 return -EBUSY; 5092 5093 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5094 return -EINVAL; 5095 5096 /* Note: rx_handler_data must be set before rx_handler */ 5097 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5098 rcu_assign_pointer(dev->rx_handler, rx_handler); 5099 5100 return 0; 5101} 5102EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5103 5104/** 5105 * netdev_rx_handler_unregister - unregister receive handler 5106 * @dev: device to unregister a handler from 5107 * 5108 * Unregister a receive handler from a device. 5109 * 5110 * The caller must hold the rtnl_mutex. 5111 */ 5112void netdev_rx_handler_unregister(struct net_device *dev) 5113{ 5114 5115 ASSERT_RTNL(); 5116 RCU_INIT_POINTER(dev->rx_handler, NULL); 5117 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5118 * section has a guarantee to see a non NULL rx_handler_data 5119 * as well. 5120 */ 5121 synchronize_net(); 5122 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5123} 5124EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5125 5126/* 5127 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5128 * the special handling of PFMEMALLOC skbs. 5129 */ 5130static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5131{ 5132 switch (skb->protocol) { 5133 case htons(ETH_P_ARP): 5134 case htons(ETH_P_IP): 5135 case htons(ETH_P_IPV6): 5136 case htons(ETH_P_8021Q): 5137 case htons(ETH_P_8021AD): 5138 return true; 5139 default: 5140 return false; 5141 } 5142} 5143 5144static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5145 int *ret, struct net_device *orig_dev) 5146{ 5147 if (nf_hook_ingress_active(skb)) { 5148 int ingress_retval; 5149 5150 if (*pt_prev) { 5151 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5152 *pt_prev = NULL; 5153 } 5154 5155 rcu_read_lock(); 5156 ingress_retval = nf_hook_ingress(skb); 5157 rcu_read_unlock(); 5158 return ingress_retval; 5159 } 5160 return 0; 5161} 5162 5163static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5164 struct packet_type **ppt_prev) 5165{ 5166 struct packet_type *ptype, *pt_prev; 5167 rx_handler_func_t *rx_handler; 5168 struct sk_buff *skb = *pskb; 5169 struct net_device *orig_dev; 5170 bool deliver_exact = false; 5171 int ret = NET_RX_DROP; 5172 __be16 type; 5173 5174 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5175 5176 trace_netif_receive_skb(skb); 5177 5178 orig_dev = skb->dev; 5179 5180 skb_reset_network_header(skb); 5181 if (!skb_transport_header_was_set(skb)) 5182 skb_reset_transport_header(skb); 5183 skb_reset_mac_len(skb); 5184 5185 pt_prev = NULL; 5186 5187another_round: 5188 skb->skb_iif = skb->dev->ifindex; 5189 5190 __this_cpu_inc(softnet_data.processed); 5191 5192 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5193 int ret2; 5194 5195 preempt_disable(); 5196 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5197 preempt_enable(); 5198 5199 if (ret2 != XDP_PASS) { 5200 ret = NET_RX_DROP; 5201 goto out; 5202 } 5203 skb_reset_mac_len(skb); 5204 } 5205 5206 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5207 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5208 skb = skb_vlan_untag(skb); 5209 if (unlikely(!skb)) 5210 goto out; 5211 } 5212 5213 if (skb_skip_tc_classify(skb)) 5214 goto skip_classify; 5215 5216 if (pfmemalloc) 5217 goto skip_taps; 5218 5219 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5220 if (pt_prev) 5221 ret = deliver_skb(skb, pt_prev, orig_dev); 5222 pt_prev = ptype; 5223 } 5224 5225 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5226 if (pt_prev) 5227 ret = deliver_skb(skb, pt_prev, orig_dev); 5228 pt_prev = ptype; 5229 } 5230 5231skip_taps: 5232#ifdef CONFIG_NET_INGRESS 5233 if (static_branch_unlikely(&ingress_needed_key)) { 5234 bool another = false; 5235 5236 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5237 &another); 5238 if (another) 5239 goto another_round; 5240 if (!skb) 5241 goto out; 5242 5243 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5244 goto out; 5245 } 5246#endif 5247 skb_reset_redirect(skb); 5248skip_classify: 5249 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5250 goto drop; 5251 5252 if (skb_vlan_tag_present(skb)) { 5253 if (pt_prev) { 5254 ret = deliver_skb(skb, pt_prev, orig_dev); 5255 pt_prev = NULL; 5256 } 5257 if (vlan_do_receive(&skb)) 5258 goto another_round; 5259 else if (unlikely(!skb)) 5260 goto out; 5261 } 5262 5263 rx_handler = rcu_dereference(skb->dev->rx_handler); 5264 if (rx_handler) { 5265 if (pt_prev) { 5266 ret = deliver_skb(skb, pt_prev, orig_dev); 5267 pt_prev = NULL; 5268 } 5269 switch (rx_handler(&skb)) { 5270 case RX_HANDLER_CONSUMED: 5271 ret = NET_RX_SUCCESS; 5272 goto out; 5273 case RX_HANDLER_ANOTHER: 5274 goto another_round; 5275 case RX_HANDLER_EXACT: 5276 deliver_exact = true; 5277 case RX_HANDLER_PASS: 5278 break; 5279 default: 5280 BUG(); 5281 } 5282 } 5283 5284 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5285check_vlan_id: 5286 if (skb_vlan_tag_get_id(skb)) { 5287 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5288 * find vlan device. 5289 */ 5290 skb->pkt_type = PACKET_OTHERHOST; 5291 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5292 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5293 /* Outer header is 802.1P with vlan 0, inner header is 5294 * 802.1Q or 802.1AD and vlan_do_receive() above could 5295 * not find vlan dev for vlan id 0. 5296 */ 5297 __vlan_hwaccel_clear_tag(skb); 5298 skb = skb_vlan_untag(skb); 5299 if (unlikely(!skb)) 5300 goto out; 5301 if (vlan_do_receive(&skb)) 5302 /* After stripping off 802.1P header with vlan 0 5303 * vlan dev is found for inner header. 5304 */ 5305 goto another_round; 5306 else if (unlikely(!skb)) 5307 goto out; 5308 else 5309 /* We have stripped outer 802.1P vlan 0 header. 5310 * But could not find vlan dev. 5311 * check again for vlan id to set OTHERHOST. 5312 */ 5313 goto check_vlan_id; 5314 } 5315 /* Note: we might in the future use prio bits 5316 * and set skb->priority like in vlan_do_receive() 5317 * For the time being, just ignore Priority Code Point 5318 */ 5319 __vlan_hwaccel_clear_tag(skb); 5320 } 5321 5322 type = skb->protocol; 5323 5324 /* deliver only exact match when indicated */ 5325 if (likely(!deliver_exact)) { 5326 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5327 &ptype_base[ntohs(type) & 5328 PTYPE_HASH_MASK]); 5329 } 5330 5331 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5332 &orig_dev->ptype_specific); 5333 5334 if (unlikely(skb->dev != orig_dev)) { 5335 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5336 &skb->dev->ptype_specific); 5337 } 5338 5339 if (pt_prev) { 5340 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5341 goto drop; 5342 *ppt_prev = pt_prev; 5343 } else { 5344drop: 5345 if (!deliver_exact) 5346 atomic_long_inc(&skb->dev->rx_dropped); 5347 else 5348 atomic_long_inc(&skb->dev->rx_nohandler); 5349 kfree_skb(skb); 5350 /* Jamal, now you will not able to escape explaining 5351 * me how you were going to use this. :-) 5352 */ 5353 ret = NET_RX_DROP; 5354 } 5355 5356out: 5357 /* The invariant here is that if *ppt_prev is not NULL 5358 * then skb should also be non-NULL. 5359 * 5360 * Apparently *ppt_prev assignment above holds this invariant due to 5361 * skb dereferencing near it. 5362 */ 5363 *pskb = skb; 5364 return ret; 5365} 5366 5367static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5368{ 5369 struct net_device *orig_dev = skb->dev; 5370 struct packet_type *pt_prev = NULL; 5371 int ret; 5372 5373 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5374 if (pt_prev) 5375 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5376 skb->dev, pt_prev, orig_dev); 5377 return ret; 5378} 5379 5380/** 5381 * netif_receive_skb_core - special purpose version of netif_receive_skb 5382 * @skb: buffer to process 5383 * 5384 * More direct receive version of netif_receive_skb(). It should 5385 * only be used by callers that have a need to skip RPS and Generic XDP. 5386 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5387 * 5388 * This function may only be called from softirq context and interrupts 5389 * should be enabled. 5390 * 5391 * Return values (usually ignored): 5392 * NET_RX_SUCCESS: no congestion 5393 * NET_RX_DROP: packet was dropped 5394 */ 5395int netif_receive_skb_core(struct sk_buff *skb) 5396{ 5397 int ret; 5398 5399 rcu_read_lock(); 5400 ret = __netif_receive_skb_one_core(skb, false); 5401 rcu_read_unlock(); 5402 5403 return ret; 5404} 5405EXPORT_SYMBOL(netif_receive_skb_core); 5406 5407static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5408 struct packet_type *pt_prev, 5409 struct net_device *orig_dev) 5410{ 5411 struct sk_buff *skb, *next; 5412 5413 if (!pt_prev) 5414 return; 5415 if (list_empty(head)) 5416 return; 5417 if (pt_prev->list_func != NULL) 5418 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5419 ip_list_rcv, head, pt_prev, orig_dev); 5420 else 5421 list_for_each_entry_safe(skb, next, head, list) { 5422 skb_list_del_init(skb); 5423 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5424 } 5425} 5426 5427static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5428{ 5429 /* Fast-path assumptions: 5430 * - There is no RX handler. 5431 * - Only one packet_type matches. 5432 * If either of these fails, we will end up doing some per-packet 5433 * processing in-line, then handling the 'last ptype' for the whole 5434 * sublist. This can't cause out-of-order delivery to any single ptype, 5435 * because the 'last ptype' must be constant across the sublist, and all 5436 * other ptypes are handled per-packet. 5437 */ 5438 /* Current (common) ptype of sublist */ 5439 struct packet_type *pt_curr = NULL; 5440 /* Current (common) orig_dev of sublist */ 5441 struct net_device *od_curr = NULL; 5442 struct list_head sublist; 5443 struct sk_buff *skb, *next; 5444 5445 INIT_LIST_HEAD(&sublist); 5446 list_for_each_entry_safe(skb, next, head, list) { 5447 struct net_device *orig_dev = skb->dev; 5448 struct packet_type *pt_prev = NULL; 5449 5450 skb_list_del_init(skb); 5451 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5452 if (!pt_prev) 5453 continue; 5454 if (pt_curr != pt_prev || od_curr != orig_dev) { 5455 /* dispatch old sublist */ 5456 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5457 /* start new sublist */ 5458 INIT_LIST_HEAD(&sublist); 5459 pt_curr = pt_prev; 5460 od_curr = orig_dev; 5461 } 5462 list_add_tail(&skb->list, &sublist); 5463 } 5464 5465 /* dispatch final sublist */ 5466 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5467} 5468 5469static int __netif_receive_skb(struct sk_buff *skb) 5470{ 5471 int ret; 5472 5473 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5474 unsigned int noreclaim_flag; 5475 5476 /* 5477 * PFMEMALLOC skbs are special, they should 5478 * - be delivered to SOCK_MEMALLOC sockets only 5479 * - stay away from userspace 5480 * - have bounded memory usage 5481 * 5482 * Use PF_MEMALLOC as this saves us from propagating the allocation 5483 * context down to all allocation sites. 5484 */ 5485 noreclaim_flag = memalloc_noreclaim_save(); 5486 ret = __netif_receive_skb_one_core(skb, true); 5487 memalloc_noreclaim_restore(noreclaim_flag); 5488 } else 5489 ret = __netif_receive_skb_one_core(skb, false); 5490 5491 return ret; 5492} 5493 5494static void __netif_receive_skb_list(struct list_head *head) 5495{ 5496 unsigned long noreclaim_flag = 0; 5497 struct sk_buff *skb, *next; 5498 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5499 5500 list_for_each_entry_safe(skb, next, head, list) { 5501 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5502 struct list_head sublist; 5503 5504 /* Handle the previous sublist */ 5505 list_cut_before(&sublist, head, &skb->list); 5506 if (!list_empty(&sublist)) 5507 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5508 pfmemalloc = !pfmemalloc; 5509 /* See comments in __netif_receive_skb */ 5510 if (pfmemalloc) 5511 noreclaim_flag = memalloc_noreclaim_save(); 5512 else 5513 memalloc_noreclaim_restore(noreclaim_flag); 5514 } 5515 } 5516 /* Handle the remaining sublist */ 5517 if (!list_empty(head)) 5518 __netif_receive_skb_list_core(head, pfmemalloc); 5519 /* Restore pflags */ 5520 if (pfmemalloc) 5521 memalloc_noreclaim_restore(noreclaim_flag); 5522} 5523 5524static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5525{ 5526 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5527 struct bpf_prog *new = xdp->prog; 5528 int ret = 0; 5529 5530 if (new) { 5531 u32 i; 5532 5533 mutex_lock(&new->aux->used_maps_mutex); 5534 5535 /* generic XDP does not work with DEVMAPs that can 5536 * have a bpf_prog installed on an entry 5537 */ 5538 for (i = 0; i < new->aux->used_map_cnt; i++) { 5539 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5540 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5541 mutex_unlock(&new->aux->used_maps_mutex); 5542 return -EINVAL; 5543 } 5544 } 5545 5546 mutex_unlock(&new->aux->used_maps_mutex); 5547 } 5548 5549 switch (xdp->command) { 5550 case XDP_SETUP_PROG: 5551 rcu_assign_pointer(dev->xdp_prog, new); 5552 if (old) 5553 bpf_prog_put(old); 5554 5555 if (old && !new) { 5556 static_branch_dec(&generic_xdp_needed_key); 5557 } else if (new && !old) { 5558 static_branch_inc(&generic_xdp_needed_key); 5559 dev_disable_lro(dev); 5560 dev_disable_gro_hw(dev); 5561 } 5562 break; 5563 5564 default: 5565 ret = -EINVAL; 5566 break; 5567 } 5568 5569 return ret; 5570} 5571 5572static int netif_receive_skb_internal(struct sk_buff *skb) 5573{ 5574 int ret; 5575 5576 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5577 5578 if (skb_defer_rx_timestamp(skb)) 5579 return NET_RX_SUCCESS; 5580 5581 rcu_read_lock(); 5582#ifdef CONFIG_RPS 5583 if (static_branch_unlikely(&rps_needed)) { 5584 struct rps_dev_flow voidflow, *rflow = &voidflow; 5585 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5586 5587 if (cpu >= 0) { 5588 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5589 rcu_read_unlock(); 5590 return ret; 5591 } 5592 } 5593#endif 5594 ret = __netif_receive_skb(skb); 5595 rcu_read_unlock(); 5596 return ret; 5597} 5598 5599static void netif_receive_skb_list_internal(struct list_head *head) 5600{ 5601 struct sk_buff *skb, *next; 5602 struct list_head sublist; 5603 5604 INIT_LIST_HEAD(&sublist); 5605 list_for_each_entry_safe(skb, next, head, list) { 5606 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5607 skb_list_del_init(skb); 5608 if (!skb_defer_rx_timestamp(skb)) 5609 list_add_tail(&skb->list, &sublist); 5610 } 5611 list_splice_init(&sublist, head); 5612 5613 rcu_read_lock(); 5614#ifdef CONFIG_RPS 5615 if (static_branch_unlikely(&rps_needed)) { 5616 list_for_each_entry_safe(skb, next, head, list) { 5617 struct rps_dev_flow voidflow, *rflow = &voidflow; 5618 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5619 5620 if (cpu >= 0) { 5621 /* Will be handled, remove from list */ 5622 skb_list_del_init(skb); 5623 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5624 } 5625 } 5626 } 5627#endif 5628 __netif_receive_skb_list(head); 5629 rcu_read_unlock(); 5630} 5631 5632/** 5633 * netif_receive_skb - process receive buffer from network 5634 * @skb: buffer to process 5635 * 5636 * netif_receive_skb() is the main receive data processing function. 5637 * It always succeeds. The buffer may be dropped during processing 5638 * for congestion control or by the protocol layers. 5639 * 5640 * This function may only be called from softirq context and interrupts 5641 * should be enabled. 5642 * 5643 * Return values (usually ignored): 5644 * NET_RX_SUCCESS: no congestion 5645 * NET_RX_DROP: packet was dropped 5646 */ 5647int netif_receive_skb(struct sk_buff *skb) 5648{ 5649 int ret; 5650 5651 trace_netif_receive_skb_entry(skb); 5652 5653 ret = netif_receive_skb_internal(skb); 5654 trace_netif_receive_skb_exit(ret); 5655 5656 return ret; 5657} 5658EXPORT_SYMBOL(netif_receive_skb); 5659 5660/** 5661 * netif_receive_skb_list - process many receive buffers from network 5662 * @head: list of skbs to process. 5663 * 5664 * Since return value of netif_receive_skb() is normally ignored, and 5665 * wouldn't be meaningful for a list, this function returns void. 5666 * 5667 * This function may only be called from softirq context and interrupts 5668 * should be enabled. 5669 */ 5670void netif_receive_skb_list(struct list_head *head) 5671{ 5672 struct sk_buff *skb; 5673 5674 if (list_empty(head)) 5675 return; 5676 if (trace_netif_receive_skb_list_entry_enabled()) { 5677 list_for_each_entry(skb, head, list) 5678 trace_netif_receive_skb_list_entry(skb); 5679 } 5680 netif_receive_skb_list_internal(head); 5681 trace_netif_receive_skb_list_exit(0); 5682} 5683EXPORT_SYMBOL(netif_receive_skb_list); 5684 5685static DEFINE_PER_CPU(struct work_struct, flush_works); 5686 5687/* Network device is going away, flush any packets still pending */ 5688static void flush_backlog(struct work_struct *work) 5689{ 5690 struct sk_buff *skb, *tmp; 5691 struct softnet_data *sd; 5692 5693 local_bh_disable(); 5694 sd = this_cpu_ptr(&softnet_data); 5695 5696 local_irq_disable(); 5697 rps_lock(sd); 5698 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5699 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5700 __skb_unlink(skb, &sd->input_pkt_queue); 5701 dev_kfree_skb_irq(skb); 5702 input_queue_head_incr(sd); 5703 } 5704 } 5705 rps_unlock(sd); 5706 local_irq_enable(); 5707 5708 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5709 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5710 __skb_unlink(skb, &sd->process_queue); 5711 kfree_skb(skb); 5712 input_queue_head_incr(sd); 5713 } 5714 } 5715 local_bh_enable(); 5716} 5717 5718static bool flush_required(int cpu) 5719{ 5720#if IS_ENABLED(CONFIG_RPS) 5721 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5722 bool do_flush; 5723 5724 local_irq_disable(); 5725 rps_lock(sd); 5726 5727 /* as insertion into process_queue happens with the rps lock held, 5728 * process_queue access may race only with dequeue 5729 */ 5730 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5731 !skb_queue_empty_lockless(&sd->process_queue); 5732 rps_unlock(sd); 5733 local_irq_enable(); 5734 5735 return do_flush; 5736#endif 5737 /* without RPS we can't safely check input_pkt_queue: during a 5738 * concurrent remote skb_queue_splice() we can detect as empty both 5739 * input_pkt_queue and process_queue even if the latter could end-up 5740 * containing a lot of packets. 5741 */ 5742 return true; 5743} 5744 5745static void flush_all_backlogs(void) 5746{ 5747 static cpumask_t flush_cpus; 5748 unsigned int cpu; 5749 5750 /* since we are under rtnl lock protection we can use static data 5751 * for the cpumask and avoid allocating on stack the possibly 5752 * large mask 5753 */ 5754 ASSERT_RTNL(); 5755 5756 get_online_cpus(); 5757 5758 cpumask_clear(&flush_cpus); 5759 for_each_online_cpu(cpu) { 5760 if (flush_required(cpu)) { 5761 queue_work_on(cpu, system_highpri_wq, 5762 per_cpu_ptr(&flush_works, cpu)); 5763 cpumask_set_cpu(cpu, &flush_cpus); 5764 } 5765 } 5766 5767 /* we can have in flight packet[s] on the cpus we are not flushing, 5768 * synchronize_net() in unregister_netdevice_many() will take care of 5769 * them 5770 */ 5771 for_each_cpu(cpu, &flush_cpus) 5772 flush_work(per_cpu_ptr(&flush_works, cpu)); 5773 5774 put_online_cpus(); 5775} 5776 5777/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5778static void gro_normal_list(struct napi_struct *napi) 5779{ 5780 if (!napi->rx_count) 5781 return; 5782 netif_receive_skb_list_internal(&napi->rx_list); 5783 INIT_LIST_HEAD(&napi->rx_list); 5784 napi->rx_count = 0; 5785} 5786 5787/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5788 * pass the whole batch up to the stack. 5789 */ 5790static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs) 5791{ 5792 list_add_tail(&skb->list, &napi->rx_list); 5793 napi->rx_count += segs; 5794 if (napi->rx_count >= gro_normal_batch) 5795 gro_normal_list(napi); 5796} 5797 5798INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5799INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5800static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5801{ 5802 struct packet_offload *ptype; 5803 __be16 type = skb->protocol; 5804 struct list_head *head = &offload_base; 5805 int err = -ENOENT; 5806 5807 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5808 5809 if (NAPI_GRO_CB(skb)->count == 1) { 5810 skb_shinfo(skb)->gso_size = 0; 5811 goto out; 5812 } 5813 5814 rcu_read_lock(); 5815 list_for_each_entry_rcu(ptype, head, list) { 5816 if (ptype->type != type || !ptype->callbacks.gro_complete) 5817 continue; 5818 5819 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5820 ipv6_gro_complete, inet_gro_complete, 5821 skb, 0); 5822 break; 5823 } 5824 rcu_read_unlock(); 5825 5826 if (err) { 5827 WARN_ON(&ptype->list == head); 5828 kfree_skb(skb); 5829 return NET_RX_SUCCESS; 5830 } 5831 5832out: 5833 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count); 5834 return NET_RX_SUCCESS; 5835} 5836 5837static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5838 bool flush_old) 5839{ 5840 struct list_head *head = &napi->gro_hash[index].list; 5841 struct sk_buff *skb, *p; 5842 5843 list_for_each_entry_safe_reverse(skb, p, head, list) { 5844 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5845 return; 5846 skb_list_del_init(skb); 5847 napi_gro_complete(napi, skb); 5848 napi->gro_hash[index].count--; 5849 } 5850 5851 if (!napi->gro_hash[index].count) 5852 __clear_bit(index, &napi->gro_bitmask); 5853} 5854 5855/* napi->gro_hash[].list contains packets ordered by age. 5856 * youngest packets at the head of it. 5857 * Complete skbs in reverse order to reduce latencies. 5858 */ 5859void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5860{ 5861 unsigned long bitmask = napi->gro_bitmask; 5862 unsigned int i, base = ~0U; 5863 5864 while ((i = ffs(bitmask)) != 0) { 5865 bitmask >>= i; 5866 base += i; 5867 __napi_gro_flush_chain(napi, base, flush_old); 5868 } 5869} 5870EXPORT_SYMBOL(napi_gro_flush); 5871 5872static struct list_head *gro_list_prepare(struct napi_struct *napi, 5873 struct sk_buff *skb) 5874{ 5875 unsigned int maclen = skb->dev->hard_header_len; 5876 u32 hash = skb_get_hash_raw(skb); 5877 struct list_head *head; 5878 struct sk_buff *p; 5879 5880 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5881 list_for_each_entry(p, head, list) { 5882 unsigned long diffs; 5883 5884 NAPI_GRO_CB(p)->flush = 0; 5885 5886 if (hash != skb_get_hash_raw(p)) { 5887 NAPI_GRO_CB(p)->same_flow = 0; 5888 continue; 5889 } 5890 5891 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5892 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5893 if (skb_vlan_tag_present(p)) 5894 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5895 diffs |= skb_metadata_dst_cmp(p, skb); 5896 diffs |= skb_metadata_differs(p, skb); 5897 if (maclen == ETH_HLEN) 5898 diffs |= compare_ether_header(skb_mac_header(p), 5899 skb_mac_header(skb)); 5900 else if (!diffs) 5901 diffs = memcmp(skb_mac_header(p), 5902 skb_mac_header(skb), 5903 maclen); 5904 5905 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb); 5906#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5907 if (!diffs) { 5908 struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT); 5909 struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT); 5910 5911 diffs |= (!!p_ext) ^ (!!skb_ext); 5912 if (!diffs && unlikely(skb_ext)) 5913 diffs |= p_ext->chain ^ skb_ext->chain; 5914 } 5915#endif 5916 5917 NAPI_GRO_CB(p)->same_flow = !diffs; 5918 } 5919 5920 return head; 5921} 5922 5923static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff) 5924{ 5925 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5926 const skb_frag_t *frag0 = &pinfo->frags[0]; 5927 5928 NAPI_GRO_CB(skb)->data_offset = 0; 5929 NAPI_GRO_CB(skb)->frag0 = NULL; 5930 NAPI_GRO_CB(skb)->frag0_len = 0; 5931 5932 if (!skb_headlen(skb) && pinfo->nr_frags && 5933 !PageHighMem(skb_frag_page(frag0)) && 5934 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) { 5935 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5936 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5937 skb_frag_size(frag0), 5938 skb->end - skb->tail); 5939 } 5940} 5941 5942static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5943{ 5944 struct skb_shared_info *pinfo = skb_shinfo(skb); 5945 5946 BUG_ON(skb->end - skb->tail < grow); 5947 5948 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5949 5950 skb->data_len -= grow; 5951 skb->tail += grow; 5952 5953 skb_frag_off_add(&pinfo->frags[0], grow); 5954 skb_frag_size_sub(&pinfo->frags[0], grow); 5955 5956 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5957 skb_frag_unref(skb, 0); 5958 memmove(pinfo->frags, pinfo->frags + 1, 5959 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5960 } 5961} 5962 5963static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5964{ 5965 struct sk_buff *oldest; 5966 5967 oldest = list_last_entry(head, struct sk_buff, list); 5968 5969 /* We are called with head length >= MAX_GRO_SKBS, so this is 5970 * impossible. 5971 */ 5972 if (WARN_ON_ONCE(!oldest)) 5973 return; 5974 5975 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5976 * SKB to the chain. 5977 */ 5978 skb_list_del_init(oldest); 5979 napi_gro_complete(napi, oldest); 5980} 5981 5982INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5983 struct sk_buff *)); 5984INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5985 struct sk_buff *)); 5986static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5987{ 5988 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5989 struct list_head *head = &offload_base; 5990 struct packet_offload *ptype; 5991 __be16 type = skb->protocol; 5992 struct list_head *gro_head; 5993 struct sk_buff *pp = NULL; 5994 enum gro_result ret; 5995 int same_flow; 5996 int grow; 5997 5998 if (netif_elide_gro(skb->dev)) 5999 goto normal; 6000 6001 gro_head = gro_list_prepare(napi, skb); 6002 6003 rcu_read_lock(); 6004 list_for_each_entry_rcu(ptype, head, list) { 6005 if (ptype->type != type || !ptype->callbacks.gro_receive) 6006 continue; 6007 6008 skb_set_network_header(skb, skb_gro_offset(skb)); 6009 skb_reset_mac_len(skb); 6010 NAPI_GRO_CB(skb)->same_flow = 0; 6011 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 6012 NAPI_GRO_CB(skb)->free = 0; 6013 NAPI_GRO_CB(skb)->encap_mark = 0; 6014 NAPI_GRO_CB(skb)->recursion_counter = 0; 6015 NAPI_GRO_CB(skb)->is_fou = 0; 6016 NAPI_GRO_CB(skb)->is_atomic = 1; 6017 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 6018 6019 /* Setup for GRO checksum validation */ 6020 switch (skb->ip_summed) { 6021 case CHECKSUM_COMPLETE: 6022 NAPI_GRO_CB(skb)->csum = skb->csum; 6023 NAPI_GRO_CB(skb)->csum_valid = 1; 6024 NAPI_GRO_CB(skb)->csum_cnt = 0; 6025 break; 6026 case CHECKSUM_UNNECESSARY: 6027 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 6028 NAPI_GRO_CB(skb)->csum_valid = 0; 6029 break; 6030 default: 6031 NAPI_GRO_CB(skb)->csum_cnt = 0; 6032 NAPI_GRO_CB(skb)->csum_valid = 0; 6033 } 6034 6035 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 6036 ipv6_gro_receive, inet_gro_receive, 6037 gro_head, skb); 6038 break; 6039 } 6040 rcu_read_unlock(); 6041 6042 if (&ptype->list == head) 6043 goto normal; 6044 6045 if (PTR_ERR(pp) == -EINPROGRESS) { 6046 ret = GRO_CONSUMED; 6047 goto ok; 6048 } 6049 6050 same_flow = NAPI_GRO_CB(skb)->same_flow; 6051 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 6052 6053 if (pp) { 6054 skb_list_del_init(pp); 6055 napi_gro_complete(napi, pp); 6056 napi->gro_hash[hash].count--; 6057 } 6058 6059 if (same_flow) 6060 goto ok; 6061 6062 if (NAPI_GRO_CB(skb)->flush) 6063 goto normal; 6064 6065 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 6066 gro_flush_oldest(napi, gro_head); 6067 } else { 6068 napi->gro_hash[hash].count++; 6069 } 6070 NAPI_GRO_CB(skb)->count = 1; 6071 NAPI_GRO_CB(skb)->age = jiffies; 6072 NAPI_GRO_CB(skb)->last = skb; 6073 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 6074 list_add(&skb->list, gro_head); 6075 ret = GRO_HELD; 6076 6077pull: 6078 grow = skb_gro_offset(skb) - skb_headlen(skb); 6079 if (grow > 0) 6080 gro_pull_from_frag0(skb, grow); 6081ok: 6082 if (napi->gro_hash[hash].count) { 6083 if (!test_bit(hash, &napi->gro_bitmask)) 6084 __set_bit(hash, &napi->gro_bitmask); 6085 } else if (test_bit(hash, &napi->gro_bitmask)) { 6086 __clear_bit(hash, &napi->gro_bitmask); 6087 } 6088 6089 return ret; 6090 6091normal: 6092 ret = GRO_NORMAL; 6093 goto pull; 6094} 6095 6096struct packet_offload *gro_find_receive_by_type(__be16 type) 6097{ 6098 struct list_head *offload_head = &offload_base; 6099 struct packet_offload *ptype; 6100 6101 list_for_each_entry_rcu(ptype, offload_head, list) { 6102 if (ptype->type != type || !ptype->callbacks.gro_receive) 6103 continue; 6104 return ptype; 6105 } 6106 return NULL; 6107} 6108EXPORT_SYMBOL(gro_find_receive_by_type); 6109 6110struct packet_offload *gro_find_complete_by_type(__be16 type) 6111{ 6112 struct list_head *offload_head = &offload_base; 6113 struct packet_offload *ptype; 6114 6115 list_for_each_entry_rcu(ptype, offload_head, list) { 6116 if (ptype->type != type || !ptype->callbacks.gro_complete) 6117 continue; 6118 return ptype; 6119 } 6120 return NULL; 6121} 6122EXPORT_SYMBOL(gro_find_complete_by_type); 6123 6124static void napi_skb_free_stolen_head(struct sk_buff *skb) 6125{ 6126 nf_reset_ct(skb); 6127 skb_dst_drop(skb); 6128 skb_ext_put(skb); 6129 kmem_cache_free(skbuff_head_cache, skb); 6130} 6131 6132static gro_result_t napi_skb_finish(struct napi_struct *napi, 6133 struct sk_buff *skb, 6134 gro_result_t ret) 6135{ 6136 switch (ret) { 6137 case GRO_NORMAL: 6138 gro_normal_one(napi, skb, 1); 6139 break; 6140 6141 case GRO_DROP: 6142 kfree_skb(skb); 6143 break; 6144 6145 case GRO_MERGED_FREE: 6146 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6147 napi_skb_free_stolen_head(skb); 6148 else 6149 __kfree_skb(skb); 6150 break; 6151 6152 case GRO_HELD: 6153 case GRO_MERGED: 6154 case GRO_CONSUMED: 6155 break; 6156 } 6157 6158 return ret; 6159} 6160 6161gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6162{ 6163 gro_result_t ret; 6164 6165 skb_mark_napi_id(skb, napi); 6166 trace_napi_gro_receive_entry(skb); 6167 6168 skb_gro_reset_offset(skb, 0); 6169 6170 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6171 trace_napi_gro_receive_exit(ret); 6172 6173 return ret; 6174} 6175EXPORT_SYMBOL(napi_gro_receive); 6176 6177static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6178{ 6179 if (unlikely(skb->pfmemalloc)) { 6180 consume_skb(skb); 6181 return; 6182 } 6183 __skb_pull(skb, skb_headlen(skb)); 6184 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6185 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6186 __vlan_hwaccel_clear_tag(skb); 6187 skb->dev = napi->dev; 6188 skb->skb_iif = 0; 6189 6190 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6191 skb->pkt_type = PACKET_HOST; 6192 6193 skb->encapsulation = 0; 6194 skb_shinfo(skb)->gso_type = 0; 6195 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6196 skb_ext_reset(skb); 6197 nf_reset_ct(skb); 6198 6199 napi->skb = skb; 6200} 6201 6202struct sk_buff *napi_get_frags(struct napi_struct *napi) 6203{ 6204 struct sk_buff *skb = napi->skb; 6205 6206 if (!skb) { 6207 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6208 if (skb) { 6209 napi->skb = skb; 6210 skb_mark_napi_id(skb, napi); 6211 } 6212 } 6213 return skb; 6214} 6215EXPORT_SYMBOL(napi_get_frags); 6216 6217static gro_result_t napi_frags_finish(struct napi_struct *napi, 6218 struct sk_buff *skb, 6219 gro_result_t ret) 6220{ 6221 switch (ret) { 6222 case GRO_NORMAL: 6223 case GRO_HELD: 6224 __skb_push(skb, ETH_HLEN); 6225 skb->protocol = eth_type_trans(skb, skb->dev); 6226 if (ret == GRO_NORMAL) 6227 gro_normal_one(napi, skb, 1); 6228 break; 6229 6230 case GRO_DROP: 6231 napi_reuse_skb(napi, skb); 6232 break; 6233 6234 case GRO_MERGED_FREE: 6235 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6236 napi_skb_free_stolen_head(skb); 6237 else 6238 napi_reuse_skb(napi, skb); 6239 break; 6240 6241 case GRO_MERGED: 6242 case GRO_CONSUMED: 6243 break; 6244 } 6245 6246 return ret; 6247} 6248 6249/* Upper GRO stack assumes network header starts at gro_offset=0 6250 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6251 * We copy ethernet header into skb->data to have a common layout. 6252 */ 6253static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6254{ 6255 struct sk_buff *skb = napi->skb; 6256 const struct ethhdr *eth; 6257 unsigned int hlen = sizeof(*eth); 6258 6259 napi->skb = NULL; 6260 6261 skb_reset_mac_header(skb); 6262 skb_gro_reset_offset(skb, hlen); 6263 6264 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6265 eth = skb_gro_header_slow(skb, hlen, 0); 6266 if (unlikely(!eth)) { 6267 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6268 __func__, napi->dev->name); 6269 napi_reuse_skb(napi, skb); 6270 return NULL; 6271 } 6272 } else { 6273 eth = (const struct ethhdr *)skb->data; 6274 gro_pull_from_frag0(skb, hlen); 6275 NAPI_GRO_CB(skb)->frag0 += hlen; 6276 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6277 } 6278 __skb_pull(skb, hlen); 6279 6280 /* 6281 * This works because the only protocols we care about don't require 6282 * special handling. 6283 * We'll fix it up properly in napi_frags_finish() 6284 */ 6285 skb->protocol = eth->h_proto; 6286 6287 return skb; 6288} 6289 6290gro_result_t napi_gro_frags(struct napi_struct *napi) 6291{ 6292 gro_result_t ret; 6293 struct sk_buff *skb = napi_frags_skb(napi); 6294 6295 if (!skb) 6296 return GRO_DROP; 6297 6298 trace_napi_gro_frags_entry(skb); 6299 6300 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6301 trace_napi_gro_frags_exit(ret); 6302 6303 return ret; 6304} 6305EXPORT_SYMBOL(napi_gro_frags); 6306 6307/* Compute the checksum from gro_offset and return the folded value 6308 * after adding in any pseudo checksum. 6309 */ 6310__sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6311{ 6312 __wsum wsum; 6313 __sum16 sum; 6314 6315 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6316 6317 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6318 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6319 /* See comments in __skb_checksum_complete(). */ 6320 if (likely(!sum)) { 6321 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6322 !skb->csum_complete_sw) 6323 netdev_rx_csum_fault(skb->dev, skb); 6324 } 6325 6326 NAPI_GRO_CB(skb)->csum = wsum; 6327 NAPI_GRO_CB(skb)->csum_valid = 1; 6328 6329 return sum; 6330} 6331EXPORT_SYMBOL(__skb_gro_checksum_complete); 6332 6333static void net_rps_send_ipi(struct softnet_data *remsd) 6334{ 6335#ifdef CONFIG_RPS 6336 while (remsd) { 6337 struct softnet_data *next = remsd->rps_ipi_next; 6338 6339 if (cpu_online(remsd->cpu)) 6340 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6341 remsd = next; 6342 } 6343#endif 6344} 6345 6346/* 6347 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6348 * Note: called with local irq disabled, but exits with local irq enabled. 6349 */ 6350static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6351{ 6352#ifdef CONFIG_RPS 6353 struct softnet_data *remsd = sd->rps_ipi_list; 6354 6355 if (remsd) { 6356 sd->rps_ipi_list = NULL; 6357 6358 local_irq_enable(); 6359 6360 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6361 net_rps_send_ipi(remsd); 6362 } else 6363#endif 6364 local_irq_enable(); 6365} 6366 6367static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6368{ 6369#ifdef CONFIG_RPS 6370 return sd->rps_ipi_list != NULL; 6371#else 6372 return false; 6373#endif 6374} 6375 6376static int process_backlog(struct napi_struct *napi, int quota) 6377{ 6378 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6379 bool again = true; 6380 int work = 0; 6381 6382 /* Check if we have pending ipi, its better to send them now, 6383 * not waiting net_rx_action() end. 6384 */ 6385 if (sd_has_rps_ipi_waiting(sd)) { 6386 local_irq_disable(); 6387 net_rps_action_and_irq_enable(sd); 6388 } 6389 6390 napi->weight = READ_ONCE(dev_rx_weight); 6391 while (again) { 6392 struct sk_buff *skb; 6393 6394 while ((skb = __skb_dequeue(&sd->process_queue))) { 6395 rcu_read_lock(); 6396 __netif_receive_skb(skb); 6397 rcu_read_unlock(); 6398 input_queue_head_incr(sd); 6399 if (++work >= quota) 6400 return work; 6401 6402 } 6403 6404 local_irq_disable(); 6405 rps_lock(sd); 6406 if (skb_queue_empty(&sd->input_pkt_queue)) { 6407 /* 6408 * Inline a custom version of __napi_complete(). 6409 * only current cpu owns and manipulates this napi, 6410 * and NAPI_STATE_SCHED is the only possible flag set 6411 * on backlog. 6412 * We can use a plain write instead of clear_bit(), 6413 * and we dont need an smp_mb() memory barrier. 6414 */ 6415 napi->state = 0; 6416 again = false; 6417 } else { 6418 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6419 &sd->process_queue); 6420 } 6421 rps_unlock(sd); 6422 local_irq_enable(); 6423 } 6424 6425 return work; 6426} 6427 6428/** 6429 * __napi_schedule - schedule for receive 6430 * @n: entry to schedule 6431 * 6432 * The entry's receive function will be scheduled to run. 6433 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6434 */ 6435void __napi_schedule(struct napi_struct *n) 6436{ 6437 unsigned long flags; 6438 6439 local_irq_save(flags); 6440 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6441 local_irq_restore(flags); 6442} 6443EXPORT_SYMBOL(__napi_schedule); 6444 6445/** 6446 * napi_schedule_prep - check if napi can be scheduled 6447 * @n: napi context 6448 * 6449 * Test if NAPI routine is already running, and if not mark 6450 * it as running. This is used as a condition variable to 6451 * insure only one NAPI poll instance runs. We also make 6452 * sure there is no pending NAPI disable. 6453 */ 6454bool napi_schedule_prep(struct napi_struct *n) 6455{ 6456 unsigned long val, new; 6457 6458 do { 6459 val = READ_ONCE(n->state); 6460 if (unlikely(val & NAPIF_STATE_DISABLE)) 6461 return false; 6462 new = val | NAPIF_STATE_SCHED; 6463 6464 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6465 * This was suggested by Alexander Duyck, as compiler 6466 * emits better code than : 6467 * if (val & NAPIF_STATE_SCHED) 6468 * new |= NAPIF_STATE_MISSED; 6469 */ 6470 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6471 NAPIF_STATE_MISSED; 6472 } while (cmpxchg(&n->state, val, new) != val); 6473 6474 return !(val & NAPIF_STATE_SCHED); 6475} 6476EXPORT_SYMBOL(napi_schedule_prep); 6477 6478/** 6479 * __napi_schedule_irqoff - schedule for receive 6480 * @n: entry to schedule 6481 * 6482 * Variant of __napi_schedule() assuming hard irqs are masked. 6483 * 6484 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6485 * because the interrupt disabled assumption might not be true 6486 * due to force-threaded interrupts and spinlock substitution. 6487 */ 6488void __napi_schedule_irqoff(struct napi_struct *n) 6489{ 6490 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6491 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6492 else 6493 __napi_schedule(n); 6494} 6495EXPORT_SYMBOL(__napi_schedule_irqoff); 6496 6497bool napi_complete_done(struct napi_struct *n, int work_done) 6498{ 6499 unsigned long flags, val, new, timeout = 0; 6500 bool ret = true; 6501 6502 /* 6503 * 1) Don't let napi dequeue from the cpu poll list 6504 * just in case its running on a different cpu. 6505 * 2) If we are busy polling, do nothing here, we have 6506 * the guarantee we will be called later. 6507 */ 6508 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6509 NAPIF_STATE_IN_BUSY_POLL))) 6510 return false; 6511 6512 if (work_done) { 6513 if (n->gro_bitmask) 6514 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6515 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6516 } 6517 if (n->defer_hard_irqs_count > 0) { 6518 n->defer_hard_irqs_count--; 6519 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6520 if (timeout) 6521 ret = false; 6522 } 6523 if (n->gro_bitmask) { 6524 /* When the NAPI instance uses a timeout and keeps postponing 6525 * it, we need to bound somehow the time packets are kept in 6526 * the GRO layer 6527 */ 6528 napi_gro_flush(n, !!timeout); 6529 } 6530 6531 gro_normal_list(n); 6532 6533 if (unlikely(!list_empty(&n->poll_list))) { 6534 /* If n->poll_list is not empty, we need to mask irqs */ 6535 local_irq_save(flags); 6536 list_del_init(&n->poll_list); 6537 local_irq_restore(flags); 6538 } 6539 6540 do { 6541 val = READ_ONCE(n->state); 6542 6543 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6544 6545 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6546 6547 /* If STATE_MISSED was set, leave STATE_SCHED set, 6548 * because we will call napi->poll() one more time. 6549 * This C code was suggested by Alexander Duyck to help gcc. 6550 */ 6551 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6552 NAPIF_STATE_SCHED; 6553 } while (cmpxchg(&n->state, val, new) != val); 6554 6555 if (unlikely(val & NAPIF_STATE_MISSED)) { 6556 __napi_schedule(n); 6557 return false; 6558 } 6559 6560 if (timeout) 6561 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6562 HRTIMER_MODE_REL_PINNED); 6563 return ret; 6564} 6565EXPORT_SYMBOL(napi_complete_done); 6566 6567/* must be called under rcu_read_lock(), as we dont take a reference */ 6568static struct napi_struct *napi_by_id(unsigned int napi_id) 6569{ 6570 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6571 struct napi_struct *napi; 6572 6573 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6574 if (napi->napi_id == napi_id) 6575 return napi; 6576 6577 return NULL; 6578} 6579 6580#if defined(CONFIG_NET_RX_BUSY_POLL) 6581 6582#define BUSY_POLL_BUDGET 8 6583 6584static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6585{ 6586 int rc; 6587 6588 /* Busy polling means there is a high chance device driver hard irq 6589 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6590 * set in napi_schedule_prep(). 6591 * Since we are about to call napi->poll() once more, we can safely 6592 * clear NAPI_STATE_MISSED. 6593 * 6594 * Note: x86 could use a single "lock and ..." instruction 6595 * to perform these two clear_bit() 6596 */ 6597 clear_bit(NAPI_STATE_MISSED, &napi->state); 6598 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6599 6600 local_bh_disable(); 6601 6602 /* All we really want here is to re-enable device interrupts. 6603 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6604 */ 6605 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6606 /* We can't gro_normal_list() here, because napi->poll() might have 6607 * rearmed the napi (napi_complete_done()) in which case it could 6608 * already be running on another CPU. 6609 */ 6610 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6611 netpoll_poll_unlock(have_poll_lock); 6612 if (rc == BUSY_POLL_BUDGET) { 6613 /* As the whole budget was spent, we still own the napi so can 6614 * safely handle the rx_list. 6615 */ 6616 gro_normal_list(napi); 6617 __napi_schedule(napi); 6618 } 6619 local_bh_enable(); 6620} 6621 6622void napi_busy_loop(unsigned int napi_id, 6623 bool (*loop_end)(void *, unsigned long), 6624 void *loop_end_arg) 6625{ 6626 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6627 int (*napi_poll)(struct napi_struct *napi, int budget); 6628 void *have_poll_lock = NULL; 6629 struct napi_struct *napi; 6630 6631restart: 6632 napi_poll = NULL; 6633 6634 rcu_read_lock(); 6635 6636 napi = napi_by_id(napi_id); 6637 if (!napi) 6638 goto out; 6639 6640 preempt_disable(); 6641 for (;;) { 6642 int work = 0; 6643 6644 local_bh_disable(); 6645 if (!napi_poll) { 6646 unsigned long val = READ_ONCE(napi->state); 6647 6648 /* If multiple threads are competing for this napi, 6649 * we avoid dirtying napi->state as much as we can. 6650 */ 6651 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6652 NAPIF_STATE_IN_BUSY_POLL)) 6653 goto count; 6654 if (cmpxchg(&napi->state, val, 6655 val | NAPIF_STATE_IN_BUSY_POLL | 6656 NAPIF_STATE_SCHED) != val) 6657 goto count; 6658 have_poll_lock = netpoll_poll_lock(napi); 6659 napi_poll = napi->poll; 6660 } 6661 work = napi_poll(napi, BUSY_POLL_BUDGET); 6662 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6663 gro_normal_list(napi); 6664count: 6665 if (work > 0) 6666 __NET_ADD_STATS(dev_net(napi->dev), 6667 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6668 local_bh_enable(); 6669 6670 if (!loop_end || loop_end(loop_end_arg, start_time)) 6671 break; 6672 6673 if (unlikely(need_resched())) { 6674 if (napi_poll) 6675 busy_poll_stop(napi, have_poll_lock); 6676 preempt_enable(); 6677 rcu_read_unlock(); 6678 cond_resched(); 6679 if (loop_end(loop_end_arg, start_time)) 6680 return; 6681 goto restart; 6682 } 6683 cpu_relax(); 6684 } 6685 if (napi_poll) 6686 busy_poll_stop(napi, have_poll_lock); 6687 preempt_enable(); 6688out: 6689 rcu_read_unlock(); 6690} 6691EXPORT_SYMBOL(napi_busy_loop); 6692 6693#endif /* CONFIG_NET_RX_BUSY_POLL */ 6694 6695static void napi_hash_add(struct napi_struct *napi) 6696{ 6697 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6698 return; 6699 6700 spin_lock(&napi_hash_lock); 6701 6702 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6703 do { 6704 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6705 napi_gen_id = MIN_NAPI_ID; 6706 } while (napi_by_id(napi_gen_id)); 6707 napi->napi_id = napi_gen_id; 6708 6709 hlist_add_head_rcu(&napi->napi_hash_node, 6710 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6711 6712 spin_unlock(&napi_hash_lock); 6713} 6714 6715/* Warning : caller is responsible to make sure rcu grace period 6716 * is respected before freeing memory containing @napi 6717 */ 6718static void napi_hash_del(struct napi_struct *napi) 6719{ 6720 spin_lock(&napi_hash_lock); 6721 6722 hlist_del_init_rcu(&napi->napi_hash_node); 6723 6724 spin_unlock(&napi_hash_lock); 6725} 6726 6727static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6728{ 6729 struct napi_struct *napi; 6730 6731 napi = container_of(timer, struct napi_struct, timer); 6732 6733 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6734 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6735 */ 6736 if (!napi_disable_pending(napi) && 6737 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6738 __napi_schedule_irqoff(napi); 6739 6740 return HRTIMER_NORESTART; 6741} 6742 6743static void init_gro_hash(struct napi_struct *napi) 6744{ 6745 int i; 6746 6747 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6748 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6749 napi->gro_hash[i].count = 0; 6750 } 6751 napi->gro_bitmask = 0; 6752} 6753 6754void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6755 int (*poll)(struct napi_struct *, int), int weight) 6756{ 6757 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6758 return; 6759 6760 INIT_LIST_HEAD(&napi->poll_list); 6761 INIT_HLIST_NODE(&napi->napi_hash_node); 6762 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6763 napi->timer.function = napi_watchdog; 6764 init_gro_hash(napi); 6765 napi->skb = NULL; 6766 INIT_LIST_HEAD(&napi->rx_list); 6767 napi->rx_count = 0; 6768 napi->poll = poll; 6769 if (weight > NAPI_POLL_WEIGHT) 6770 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6771 weight); 6772 napi->weight = weight; 6773 napi->dev = dev; 6774#ifdef CONFIG_NETPOLL 6775 napi->poll_owner = -1; 6776#endif 6777 set_bit(NAPI_STATE_SCHED, &napi->state); 6778 set_bit(NAPI_STATE_NPSVC, &napi->state); 6779 list_add_rcu(&napi->dev_list, &dev->napi_list); 6780 napi_hash_add(napi); 6781} 6782EXPORT_SYMBOL(netif_napi_add); 6783 6784void napi_disable(struct napi_struct *n) 6785{ 6786 might_sleep(); 6787 set_bit(NAPI_STATE_DISABLE, &n->state); 6788 6789 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6790 msleep(1); 6791 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6792 msleep(1); 6793 6794 hrtimer_cancel(&n->timer); 6795 6796 clear_bit(NAPI_STATE_DISABLE, &n->state); 6797} 6798EXPORT_SYMBOL(napi_disable); 6799 6800static void flush_gro_hash(struct napi_struct *napi) 6801{ 6802 int i; 6803 6804 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6805 struct sk_buff *skb, *n; 6806 6807 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6808 kfree_skb(skb); 6809 napi->gro_hash[i].count = 0; 6810 } 6811} 6812 6813/* Must be called in process context */ 6814void __netif_napi_del(struct napi_struct *napi) 6815{ 6816 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6817 return; 6818 6819 napi_hash_del(napi); 6820 list_del_rcu(&napi->dev_list); 6821 napi_free_frags(napi); 6822 6823 flush_gro_hash(napi); 6824 napi->gro_bitmask = 0; 6825} 6826EXPORT_SYMBOL(__netif_napi_del); 6827 6828static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6829{ 6830 void *have; 6831 int work, weight; 6832 6833 list_del_init(&n->poll_list); 6834 6835 have = netpoll_poll_lock(n); 6836 6837 weight = n->weight; 6838 6839 /* This NAPI_STATE_SCHED test is for avoiding a race 6840 * with netpoll's poll_napi(). Only the entity which 6841 * obtains the lock and sees NAPI_STATE_SCHED set will 6842 * actually make the ->poll() call. Therefore we avoid 6843 * accidentally calling ->poll() when NAPI is not scheduled. 6844 */ 6845 work = 0; 6846 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6847 work = n->poll(n, weight); 6848 trace_napi_poll(n, work, weight); 6849 } 6850 6851 if (unlikely(work > weight)) 6852 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6853 n->poll, work, weight); 6854 6855 if (likely(work < weight)) 6856 goto out_unlock; 6857 6858 /* Drivers must not modify the NAPI state if they 6859 * consume the entire weight. In such cases this code 6860 * still "owns" the NAPI instance and therefore can 6861 * move the instance around on the list at-will. 6862 */ 6863 if (unlikely(napi_disable_pending(n))) { 6864 napi_complete(n); 6865 goto out_unlock; 6866 } 6867 6868 if (n->gro_bitmask) { 6869 /* flush too old packets 6870 * If HZ < 1000, flush all packets. 6871 */ 6872 napi_gro_flush(n, HZ >= 1000); 6873 } 6874 6875 gro_normal_list(n); 6876 6877 /* Some drivers may have called napi_schedule 6878 * prior to exhausting their budget. 6879 */ 6880 if (unlikely(!list_empty(&n->poll_list))) { 6881 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6882 n->dev ? n->dev->name : "backlog"); 6883 goto out_unlock; 6884 } 6885 6886 list_add_tail(&n->poll_list, repoll); 6887 6888out_unlock: 6889 netpoll_poll_unlock(have); 6890 6891 return work; 6892} 6893 6894static __latent_entropy void net_rx_action(struct softirq_action *h) 6895{ 6896 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6897 unsigned long time_limit = jiffies + 6898 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6899 int budget = READ_ONCE(netdev_budget); 6900 LIST_HEAD(list); 6901 LIST_HEAD(repoll); 6902 6903 local_irq_disable(); 6904 list_splice_init(&sd->poll_list, &list); 6905 local_irq_enable(); 6906 6907 for (;;) { 6908 struct napi_struct *n; 6909 6910 if (list_empty(&list)) { 6911 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6912 goto out; 6913 break; 6914 } 6915 6916 n = list_first_entry(&list, struct napi_struct, poll_list); 6917 budget -= napi_poll(n, &repoll); 6918 6919 /* If softirq window is exhausted then punt. 6920 * Allow this to run for 2 jiffies since which will allow 6921 * an average latency of 1.5/HZ. 6922 */ 6923 if (unlikely(budget <= 0 || 6924 time_after_eq(jiffies, time_limit))) { 6925 sd->time_squeeze++; 6926 break; 6927 } 6928 } 6929 6930 local_irq_disable(); 6931 6932 list_splice_tail_init(&sd->poll_list, &list); 6933 list_splice_tail(&repoll, &list); 6934 list_splice(&list, &sd->poll_list); 6935 if (!list_empty(&sd->poll_list)) 6936 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6937 6938 net_rps_action_and_irq_enable(sd); 6939out: 6940 __kfree_skb_flush(); 6941} 6942 6943struct netdev_adjacent { 6944 struct net_device *dev; 6945 6946 /* upper master flag, there can only be one master device per list */ 6947 bool master; 6948 6949 /* lookup ignore flag */ 6950 bool ignore; 6951 6952 /* counter for the number of times this device was added to us */ 6953 u16 ref_nr; 6954 6955 /* private field for the users */ 6956 void *private; 6957 6958 struct list_head list; 6959 struct rcu_head rcu; 6960}; 6961 6962static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6963 struct list_head *adj_list) 6964{ 6965 struct netdev_adjacent *adj; 6966 6967 list_for_each_entry(adj, adj_list, list) { 6968 if (adj->dev == adj_dev) 6969 return adj; 6970 } 6971 return NULL; 6972} 6973 6974static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6975 struct netdev_nested_priv *priv) 6976{ 6977 struct net_device *dev = (struct net_device *)priv->data; 6978 6979 return upper_dev == dev; 6980} 6981 6982/** 6983 * netdev_has_upper_dev - Check if device is linked to an upper device 6984 * @dev: device 6985 * @upper_dev: upper device to check 6986 * 6987 * Find out if a device is linked to specified upper device and return true 6988 * in case it is. Note that this checks only immediate upper device, 6989 * not through a complete stack of devices. The caller must hold the RTNL lock. 6990 */ 6991bool netdev_has_upper_dev(struct net_device *dev, 6992 struct net_device *upper_dev) 6993{ 6994 struct netdev_nested_priv priv = { 6995 .data = (void *)upper_dev, 6996 }; 6997 6998 ASSERT_RTNL(); 6999 7000 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7001 &priv); 7002} 7003EXPORT_SYMBOL(netdev_has_upper_dev); 7004 7005/** 7006 * netdev_has_upper_dev_all - Check if device is linked to an upper device 7007 * @dev: device 7008 * @upper_dev: upper device to check 7009 * 7010 * Find out if a device is linked to specified upper device and return true 7011 * in case it is. Note that this checks the entire upper device chain. 7012 * The caller must hold rcu lock. 7013 */ 7014 7015bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7016 struct net_device *upper_dev) 7017{ 7018 struct netdev_nested_priv priv = { 7019 .data = (void *)upper_dev, 7020 }; 7021 7022 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7023 &priv); 7024} 7025EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7026 7027/** 7028 * netdev_has_any_upper_dev - Check if device is linked to some device 7029 * @dev: device 7030 * 7031 * Find out if a device is linked to an upper device and return true in case 7032 * it is. The caller must hold the RTNL lock. 7033 */ 7034bool netdev_has_any_upper_dev(struct net_device *dev) 7035{ 7036 ASSERT_RTNL(); 7037 7038 return !list_empty(&dev->adj_list.upper); 7039} 7040EXPORT_SYMBOL(netdev_has_any_upper_dev); 7041 7042/** 7043 * netdev_master_upper_dev_get - Get master upper device 7044 * @dev: device 7045 * 7046 * Find a master upper device and return pointer to it or NULL in case 7047 * it's not there. The caller must hold the RTNL lock. 7048 */ 7049struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7050{ 7051 struct netdev_adjacent *upper; 7052 7053 ASSERT_RTNL(); 7054 7055 if (list_empty(&dev->adj_list.upper)) 7056 return NULL; 7057 7058 upper = list_first_entry(&dev->adj_list.upper, 7059 struct netdev_adjacent, list); 7060 if (likely(upper->master)) 7061 return upper->dev; 7062 return NULL; 7063} 7064EXPORT_SYMBOL(netdev_master_upper_dev_get); 7065 7066static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7067{ 7068 struct netdev_adjacent *upper; 7069 7070 ASSERT_RTNL(); 7071 7072 if (list_empty(&dev->adj_list.upper)) 7073 return NULL; 7074 7075 upper = list_first_entry(&dev->adj_list.upper, 7076 struct netdev_adjacent, list); 7077 if (likely(upper->master) && !upper->ignore) 7078 return upper->dev; 7079 return NULL; 7080} 7081 7082/** 7083 * netdev_has_any_lower_dev - Check if device is linked to some device 7084 * @dev: device 7085 * 7086 * Find out if a device is linked to a lower device and return true in case 7087 * it is. The caller must hold the RTNL lock. 7088 */ 7089static bool netdev_has_any_lower_dev(struct net_device *dev) 7090{ 7091 ASSERT_RTNL(); 7092 7093 return !list_empty(&dev->adj_list.lower); 7094} 7095 7096void *netdev_adjacent_get_private(struct list_head *adj_list) 7097{ 7098 struct netdev_adjacent *adj; 7099 7100 adj = list_entry(adj_list, struct netdev_adjacent, list); 7101 7102 return adj->private; 7103} 7104EXPORT_SYMBOL(netdev_adjacent_get_private); 7105 7106/** 7107 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7108 * @dev: device 7109 * @iter: list_head ** of the current position 7110 * 7111 * Gets the next device from the dev's upper list, starting from iter 7112 * position. The caller must hold RCU read lock. 7113 */ 7114struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7115 struct list_head **iter) 7116{ 7117 struct netdev_adjacent *upper; 7118 7119 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7120 7121 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7122 7123 if (&upper->list == &dev->adj_list.upper) 7124 return NULL; 7125 7126 *iter = &upper->list; 7127 7128 return upper->dev; 7129} 7130EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7131 7132static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7133 struct list_head **iter, 7134 bool *ignore) 7135{ 7136 struct netdev_adjacent *upper; 7137 7138 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7139 7140 if (&upper->list == &dev->adj_list.upper) 7141 return NULL; 7142 7143 *iter = &upper->list; 7144 *ignore = upper->ignore; 7145 7146 return upper->dev; 7147} 7148 7149static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7150 struct list_head **iter) 7151{ 7152 struct netdev_adjacent *upper; 7153 7154 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7155 7156 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7157 7158 if (&upper->list == &dev->adj_list.upper) 7159 return NULL; 7160 7161 *iter = &upper->list; 7162 7163 return upper->dev; 7164} 7165 7166static int __netdev_walk_all_upper_dev(struct net_device *dev, 7167 int (*fn)(struct net_device *dev, 7168 struct netdev_nested_priv *priv), 7169 struct netdev_nested_priv *priv) 7170{ 7171 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7172 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7173 int ret, cur = 0; 7174 bool ignore; 7175 7176 now = dev; 7177 iter = &dev->adj_list.upper; 7178 7179 while (1) { 7180 if (now != dev) { 7181 ret = fn(now, priv); 7182 if (ret) 7183 return ret; 7184 } 7185 7186 next = NULL; 7187 while (1) { 7188 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7189 if (!udev) 7190 break; 7191 if (ignore) 7192 continue; 7193 7194 next = udev; 7195 niter = &udev->adj_list.upper; 7196 dev_stack[cur] = now; 7197 iter_stack[cur++] = iter; 7198 break; 7199 } 7200 7201 if (!next) { 7202 if (!cur) 7203 return 0; 7204 next = dev_stack[--cur]; 7205 niter = iter_stack[cur]; 7206 } 7207 7208 now = next; 7209 iter = niter; 7210 } 7211 7212 return 0; 7213} 7214 7215int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7216 int (*fn)(struct net_device *dev, 7217 struct netdev_nested_priv *priv), 7218 struct netdev_nested_priv *priv) 7219{ 7220 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7221 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7222 int ret, cur = 0; 7223 7224 now = dev; 7225 iter = &dev->adj_list.upper; 7226 7227 while (1) { 7228 if (now != dev) { 7229 ret = fn(now, priv); 7230 if (ret) 7231 return ret; 7232 } 7233 7234 next = NULL; 7235 while (1) { 7236 udev = netdev_next_upper_dev_rcu(now, &iter); 7237 if (!udev) 7238 break; 7239 7240 next = udev; 7241 niter = &udev->adj_list.upper; 7242 dev_stack[cur] = now; 7243 iter_stack[cur++] = iter; 7244 break; 7245 } 7246 7247 if (!next) { 7248 if (!cur) 7249 return 0; 7250 next = dev_stack[--cur]; 7251 niter = iter_stack[cur]; 7252 } 7253 7254 now = next; 7255 iter = niter; 7256 } 7257 7258 return 0; 7259} 7260EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7261 7262static bool __netdev_has_upper_dev(struct net_device *dev, 7263 struct net_device *upper_dev) 7264{ 7265 struct netdev_nested_priv priv = { 7266 .flags = 0, 7267 .data = (void *)upper_dev, 7268 }; 7269 7270 ASSERT_RTNL(); 7271 7272 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7273 &priv); 7274} 7275 7276/** 7277 * netdev_lower_get_next_private - Get the next ->private from the 7278 * lower neighbour list 7279 * @dev: device 7280 * @iter: list_head ** of the current position 7281 * 7282 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7283 * list, starting from iter position. The caller must hold either hold the 7284 * RTNL lock or its own locking that guarantees that the neighbour lower 7285 * list will remain unchanged. 7286 */ 7287void *netdev_lower_get_next_private(struct net_device *dev, 7288 struct list_head **iter) 7289{ 7290 struct netdev_adjacent *lower; 7291 7292 lower = list_entry(*iter, struct netdev_adjacent, list); 7293 7294 if (&lower->list == &dev->adj_list.lower) 7295 return NULL; 7296 7297 *iter = lower->list.next; 7298 7299 return lower->private; 7300} 7301EXPORT_SYMBOL(netdev_lower_get_next_private); 7302 7303/** 7304 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7305 * lower neighbour list, RCU 7306 * variant 7307 * @dev: device 7308 * @iter: list_head ** of the current position 7309 * 7310 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7311 * list, starting from iter position. The caller must hold RCU read lock. 7312 */ 7313void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7314 struct list_head **iter) 7315{ 7316 struct netdev_adjacent *lower; 7317 7318 WARN_ON_ONCE(!rcu_read_lock_held()); 7319 7320 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7321 7322 if (&lower->list == &dev->adj_list.lower) 7323 return NULL; 7324 7325 *iter = &lower->list; 7326 7327 return lower->private; 7328} 7329EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7330 7331/** 7332 * netdev_lower_get_next - Get the next device from the lower neighbour 7333 * list 7334 * @dev: device 7335 * @iter: list_head ** of the current position 7336 * 7337 * Gets the next netdev_adjacent from the dev's lower neighbour 7338 * list, starting from iter position. The caller must hold RTNL lock or 7339 * its own locking that guarantees that the neighbour lower 7340 * list will remain unchanged. 7341 */ 7342void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7343{ 7344 struct netdev_adjacent *lower; 7345 7346 lower = list_entry(*iter, struct netdev_adjacent, list); 7347 7348 if (&lower->list == &dev->adj_list.lower) 7349 return NULL; 7350 7351 *iter = lower->list.next; 7352 7353 return lower->dev; 7354} 7355EXPORT_SYMBOL(netdev_lower_get_next); 7356 7357static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7358 struct list_head **iter) 7359{ 7360 struct netdev_adjacent *lower; 7361 7362 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7363 7364 if (&lower->list == &dev->adj_list.lower) 7365 return NULL; 7366 7367 *iter = &lower->list; 7368 7369 return lower->dev; 7370} 7371 7372static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7373 struct list_head **iter, 7374 bool *ignore) 7375{ 7376 struct netdev_adjacent *lower; 7377 7378 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7379 7380 if (&lower->list == &dev->adj_list.lower) 7381 return NULL; 7382 7383 *iter = &lower->list; 7384 *ignore = lower->ignore; 7385 7386 return lower->dev; 7387} 7388 7389int netdev_walk_all_lower_dev(struct net_device *dev, 7390 int (*fn)(struct net_device *dev, 7391 struct netdev_nested_priv *priv), 7392 struct netdev_nested_priv *priv) 7393{ 7394 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7395 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7396 int ret, cur = 0; 7397 7398 now = dev; 7399 iter = &dev->adj_list.lower; 7400 7401 while (1) { 7402 if (now != dev) { 7403 ret = fn(now, priv); 7404 if (ret) 7405 return ret; 7406 } 7407 7408 next = NULL; 7409 while (1) { 7410 ldev = netdev_next_lower_dev(now, &iter); 7411 if (!ldev) 7412 break; 7413 7414 next = ldev; 7415 niter = &ldev->adj_list.lower; 7416 dev_stack[cur] = now; 7417 iter_stack[cur++] = iter; 7418 break; 7419 } 7420 7421 if (!next) { 7422 if (!cur) 7423 return 0; 7424 next = dev_stack[--cur]; 7425 niter = iter_stack[cur]; 7426 } 7427 7428 now = next; 7429 iter = niter; 7430 } 7431 7432 return 0; 7433} 7434EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7435 7436static int __netdev_walk_all_lower_dev(struct net_device *dev, 7437 int (*fn)(struct net_device *dev, 7438 struct netdev_nested_priv *priv), 7439 struct netdev_nested_priv *priv) 7440{ 7441 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7442 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7443 int ret, cur = 0; 7444 bool ignore; 7445 7446 now = dev; 7447 iter = &dev->adj_list.lower; 7448 7449 while (1) { 7450 if (now != dev) { 7451 ret = fn(now, priv); 7452 if (ret) 7453 return ret; 7454 } 7455 7456 next = NULL; 7457 while (1) { 7458 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7459 if (!ldev) 7460 break; 7461 if (ignore) 7462 continue; 7463 7464 next = ldev; 7465 niter = &ldev->adj_list.lower; 7466 dev_stack[cur] = now; 7467 iter_stack[cur++] = iter; 7468 break; 7469 } 7470 7471 if (!next) { 7472 if (!cur) 7473 return 0; 7474 next = dev_stack[--cur]; 7475 niter = iter_stack[cur]; 7476 } 7477 7478 now = next; 7479 iter = niter; 7480 } 7481 7482 return 0; 7483} 7484 7485struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7486 struct list_head **iter) 7487{ 7488 struct netdev_adjacent *lower; 7489 7490 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7491 if (&lower->list == &dev->adj_list.lower) 7492 return NULL; 7493 7494 *iter = &lower->list; 7495 7496 return lower->dev; 7497} 7498EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7499 7500static u8 __netdev_upper_depth(struct net_device *dev) 7501{ 7502 struct net_device *udev; 7503 struct list_head *iter; 7504 u8 max_depth = 0; 7505 bool ignore; 7506 7507 for (iter = &dev->adj_list.upper, 7508 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7509 udev; 7510 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7511 if (ignore) 7512 continue; 7513 if (max_depth < udev->upper_level) 7514 max_depth = udev->upper_level; 7515 } 7516 7517 return max_depth; 7518} 7519 7520static u8 __netdev_lower_depth(struct net_device *dev) 7521{ 7522 struct net_device *ldev; 7523 struct list_head *iter; 7524 u8 max_depth = 0; 7525 bool ignore; 7526 7527 for (iter = &dev->adj_list.lower, 7528 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7529 ldev; 7530 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7531 if (ignore) 7532 continue; 7533 if (max_depth < ldev->lower_level) 7534 max_depth = ldev->lower_level; 7535 } 7536 7537 return max_depth; 7538} 7539 7540static int __netdev_update_upper_level(struct net_device *dev, 7541 struct netdev_nested_priv *__unused) 7542{ 7543 dev->upper_level = __netdev_upper_depth(dev) + 1; 7544 return 0; 7545} 7546 7547static int __netdev_update_lower_level(struct net_device *dev, 7548 struct netdev_nested_priv *priv) 7549{ 7550 dev->lower_level = __netdev_lower_depth(dev) + 1; 7551 7552#ifdef CONFIG_LOCKDEP 7553 if (!priv) 7554 return 0; 7555 7556 if (priv->flags & NESTED_SYNC_IMM) 7557 dev->nested_level = dev->lower_level - 1; 7558 if (priv->flags & NESTED_SYNC_TODO) 7559 net_unlink_todo(dev); 7560#endif 7561 return 0; 7562} 7563 7564int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7565 int (*fn)(struct net_device *dev, 7566 struct netdev_nested_priv *priv), 7567 struct netdev_nested_priv *priv) 7568{ 7569 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7570 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7571 int ret, cur = 0; 7572 7573 now = dev; 7574 iter = &dev->adj_list.lower; 7575 7576 while (1) { 7577 if (now != dev) { 7578 ret = fn(now, priv); 7579 if (ret) 7580 return ret; 7581 } 7582 7583 next = NULL; 7584 while (1) { 7585 ldev = netdev_next_lower_dev_rcu(now, &iter); 7586 if (!ldev) 7587 break; 7588 7589 next = ldev; 7590 niter = &ldev->adj_list.lower; 7591 dev_stack[cur] = now; 7592 iter_stack[cur++] = iter; 7593 break; 7594 } 7595 7596 if (!next) { 7597 if (!cur) 7598 return 0; 7599 next = dev_stack[--cur]; 7600 niter = iter_stack[cur]; 7601 } 7602 7603 now = next; 7604 iter = niter; 7605 } 7606 7607 return 0; 7608} 7609EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7610 7611/** 7612 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7613 * lower neighbour list, RCU 7614 * variant 7615 * @dev: device 7616 * 7617 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7618 * list. The caller must hold RCU read lock. 7619 */ 7620void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7621{ 7622 struct netdev_adjacent *lower; 7623 7624 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7625 struct netdev_adjacent, list); 7626 if (lower) 7627 return lower->private; 7628 return NULL; 7629} 7630EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7631 7632/** 7633 * netdev_master_upper_dev_get_rcu - Get master upper device 7634 * @dev: device 7635 * 7636 * Find a master upper device and return pointer to it or NULL in case 7637 * it's not there. The caller must hold the RCU read lock. 7638 */ 7639struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7640{ 7641 struct netdev_adjacent *upper; 7642 7643 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7644 struct netdev_adjacent, list); 7645 if (upper && likely(upper->master)) 7646 return upper->dev; 7647 return NULL; 7648} 7649EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7650 7651static int netdev_adjacent_sysfs_add(struct net_device *dev, 7652 struct net_device *adj_dev, 7653 struct list_head *dev_list) 7654{ 7655 char linkname[IFNAMSIZ+7]; 7656 7657 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7658 "upper_%s" : "lower_%s", adj_dev->name); 7659 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7660 linkname); 7661} 7662static void netdev_adjacent_sysfs_del(struct net_device *dev, 7663 char *name, 7664 struct list_head *dev_list) 7665{ 7666 char linkname[IFNAMSIZ+7]; 7667 7668 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7669 "upper_%s" : "lower_%s", name); 7670 sysfs_remove_link(&(dev->dev.kobj), linkname); 7671} 7672 7673static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7674 struct net_device *adj_dev, 7675 struct list_head *dev_list) 7676{ 7677 return (dev_list == &dev->adj_list.upper || 7678 dev_list == &dev->adj_list.lower) && 7679 net_eq(dev_net(dev), dev_net(adj_dev)); 7680} 7681 7682static int __netdev_adjacent_dev_insert(struct net_device *dev, 7683 struct net_device *adj_dev, 7684 struct list_head *dev_list, 7685 void *private, bool master) 7686{ 7687 struct netdev_adjacent *adj; 7688 int ret; 7689 7690 adj = __netdev_find_adj(adj_dev, dev_list); 7691 7692 if (adj) { 7693 adj->ref_nr += 1; 7694 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7695 dev->name, adj_dev->name, adj->ref_nr); 7696 7697 return 0; 7698 } 7699 7700 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7701 if (!adj) 7702 return -ENOMEM; 7703 7704 adj->dev = adj_dev; 7705 adj->master = master; 7706 adj->ref_nr = 1; 7707 adj->private = private; 7708 adj->ignore = false; 7709 dev_hold(adj_dev); 7710 7711 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7712 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7713 7714 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7715 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7716 if (ret) 7717 goto free_adj; 7718 } 7719 7720 /* Ensure that master link is always the first item in list. */ 7721 if (master) { 7722 ret = sysfs_create_link(&(dev->dev.kobj), 7723 &(adj_dev->dev.kobj), "master"); 7724 if (ret) 7725 goto remove_symlinks; 7726 7727 list_add_rcu(&adj->list, dev_list); 7728 } else { 7729 list_add_tail_rcu(&adj->list, dev_list); 7730 } 7731 7732 return 0; 7733 7734remove_symlinks: 7735 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7736 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7737free_adj: 7738 kfree(adj); 7739 dev_put(adj_dev); 7740 7741 return ret; 7742} 7743 7744static void __netdev_adjacent_dev_remove(struct net_device *dev, 7745 struct net_device *adj_dev, 7746 u16 ref_nr, 7747 struct list_head *dev_list) 7748{ 7749 struct netdev_adjacent *adj; 7750 7751 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7752 dev->name, adj_dev->name, ref_nr); 7753 7754 adj = __netdev_find_adj(adj_dev, dev_list); 7755 7756 if (!adj) { 7757 pr_err("Adjacency does not exist for device %s from %s\n", 7758 dev->name, adj_dev->name); 7759 WARN_ON(1); 7760 return; 7761 } 7762 7763 if (adj->ref_nr > ref_nr) { 7764 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7765 dev->name, adj_dev->name, ref_nr, 7766 adj->ref_nr - ref_nr); 7767 adj->ref_nr -= ref_nr; 7768 return; 7769 } 7770 7771 if (adj->master) 7772 sysfs_remove_link(&(dev->dev.kobj), "master"); 7773 7774 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7775 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7776 7777 list_del_rcu(&adj->list); 7778 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7779 adj_dev->name, dev->name, adj_dev->name); 7780 dev_put(adj_dev); 7781 kfree_rcu(adj, rcu); 7782} 7783 7784static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7785 struct net_device *upper_dev, 7786 struct list_head *up_list, 7787 struct list_head *down_list, 7788 void *private, bool master) 7789{ 7790 int ret; 7791 7792 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7793 private, master); 7794 if (ret) 7795 return ret; 7796 7797 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7798 private, false); 7799 if (ret) { 7800 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7801 return ret; 7802 } 7803 7804 return 0; 7805} 7806 7807static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7808 struct net_device *upper_dev, 7809 u16 ref_nr, 7810 struct list_head *up_list, 7811 struct list_head *down_list) 7812{ 7813 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7814 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7815} 7816 7817static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7818 struct net_device *upper_dev, 7819 void *private, bool master) 7820{ 7821 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7822 &dev->adj_list.upper, 7823 &upper_dev->adj_list.lower, 7824 private, master); 7825} 7826 7827static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7828 struct net_device *upper_dev) 7829{ 7830 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7831 &dev->adj_list.upper, 7832 &upper_dev->adj_list.lower); 7833} 7834 7835static int __netdev_upper_dev_link(struct net_device *dev, 7836 struct net_device *upper_dev, bool master, 7837 void *upper_priv, void *upper_info, 7838 struct netdev_nested_priv *priv, 7839 struct netlink_ext_ack *extack) 7840{ 7841 struct netdev_notifier_changeupper_info changeupper_info = { 7842 .info = { 7843 .dev = dev, 7844 .extack = extack, 7845 }, 7846 .upper_dev = upper_dev, 7847 .master = master, 7848 .linking = true, 7849 .upper_info = upper_info, 7850 }; 7851 struct net_device *master_dev; 7852 int ret = 0; 7853 7854 ASSERT_RTNL(); 7855 7856 if (dev == upper_dev) 7857 return -EBUSY; 7858 7859 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7860 if (__netdev_has_upper_dev(upper_dev, dev)) 7861 return -EBUSY; 7862 7863 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7864 return -EMLINK; 7865 7866 if (!master) { 7867 if (__netdev_has_upper_dev(dev, upper_dev)) 7868 return -EEXIST; 7869 } else { 7870 master_dev = __netdev_master_upper_dev_get(dev); 7871 if (master_dev) 7872 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7873 } 7874 7875 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7876 &changeupper_info.info); 7877 ret = notifier_to_errno(ret); 7878 if (ret) 7879 return ret; 7880 7881 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7882 master); 7883 if (ret) 7884 return ret; 7885 7886 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7887 &changeupper_info.info); 7888 ret = notifier_to_errno(ret); 7889 if (ret) 7890 goto rollback; 7891 7892 __netdev_update_upper_level(dev, NULL); 7893 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7894 7895 __netdev_update_lower_level(upper_dev, priv); 7896 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7897 priv); 7898 7899 return 0; 7900 7901rollback: 7902 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7903 7904 return ret; 7905} 7906 7907/** 7908 * netdev_upper_dev_link - Add a link to the upper device 7909 * @dev: device 7910 * @upper_dev: new upper device 7911 * @extack: netlink extended ack 7912 * 7913 * Adds a link to device which is upper to this one. The caller must hold 7914 * the RTNL lock. On a failure a negative errno code is returned. 7915 * On success the reference counts are adjusted and the function 7916 * returns zero. 7917 */ 7918int netdev_upper_dev_link(struct net_device *dev, 7919 struct net_device *upper_dev, 7920 struct netlink_ext_ack *extack) 7921{ 7922 struct netdev_nested_priv priv = { 7923 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7924 .data = NULL, 7925 }; 7926 7927 return __netdev_upper_dev_link(dev, upper_dev, false, 7928 NULL, NULL, &priv, extack); 7929} 7930EXPORT_SYMBOL(netdev_upper_dev_link); 7931 7932/** 7933 * netdev_master_upper_dev_link - Add a master link to the upper device 7934 * @dev: device 7935 * @upper_dev: new upper device 7936 * @upper_priv: upper device private 7937 * @upper_info: upper info to be passed down via notifier 7938 * @extack: netlink extended ack 7939 * 7940 * Adds a link to device which is upper to this one. In this case, only 7941 * one master upper device can be linked, although other non-master devices 7942 * might be linked as well. The caller must hold the RTNL lock. 7943 * On a failure a negative errno code is returned. On success the reference 7944 * counts are adjusted and the function returns zero. 7945 */ 7946int netdev_master_upper_dev_link(struct net_device *dev, 7947 struct net_device *upper_dev, 7948 void *upper_priv, void *upper_info, 7949 struct netlink_ext_ack *extack) 7950{ 7951 struct netdev_nested_priv priv = { 7952 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7953 .data = NULL, 7954 }; 7955 7956 return __netdev_upper_dev_link(dev, upper_dev, true, 7957 upper_priv, upper_info, &priv, extack); 7958} 7959EXPORT_SYMBOL(netdev_master_upper_dev_link); 7960 7961static void __netdev_upper_dev_unlink(struct net_device *dev, 7962 struct net_device *upper_dev, 7963 struct netdev_nested_priv *priv) 7964{ 7965 struct netdev_notifier_changeupper_info changeupper_info = { 7966 .info = { 7967 .dev = dev, 7968 }, 7969 .upper_dev = upper_dev, 7970 .linking = false, 7971 }; 7972 7973 ASSERT_RTNL(); 7974 7975 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7976 7977 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7978 &changeupper_info.info); 7979 7980 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7981 7982 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7983 &changeupper_info.info); 7984 7985 __netdev_update_upper_level(dev, NULL); 7986 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7987 7988 __netdev_update_lower_level(upper_dev, priv); 7989 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7990 priv); 7991} 7992 7993/** 7994 * netdev_upper_dev_unlink - Removes a link to upper device 7995 * @dev: device 7996 * @upper_dev: new upper device 7997 * 7998 * Removes a link to device which is upper to this one. The caller must hold 7999 * the RTNL lock. 8000 */ 8001void netdev_upper_dev_unlink(struct net_device *dev, 8002 struct net_device *upper_dev) 8003{ 8004 struct netdev_nested_priv priv = { 8005 .flags = NESTED_SYNC_TODO, 8006 .data = NULL, 8007 }; 8008 8009 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8010} 8011EXPORT_SYMBOL(netdev_upper_dev_unlink); 8012 8013static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8014 struct net_device *lower_dev, 8015 bool val) 8016{ 8017 struct netdev_adjacent *adj; 8018 8019 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8020 if (adj) 8021 adj->ignore = val; 8022 8023 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8024 if (adj) 8025 adj->ignore = val; 8026} 8027 8028static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8029 struct net_device *lower_dev) 8030{ 8031 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8032} 8033 8034static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8035 struct net_device *lower_dev) 8036{ 8037 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8038} 8039 8040int netdev_adjacent_change_prepare(struct net_device *old_dev, 8041 struct net_device *new_dev, 8042 struct net_device *dev, 8043 struct netlink_ext_ack *extack) 8044{ 8045 struct netdev_nested_priv priv = { 8046 .flags = 0, 8047 .data = NULL, 8048 }; 8049 int err; 8050 8051 if (!new_dev) 8052 return 0; 8053 8054 if (old_dev && new_dev != old_dev) 8055 netdev_adjacent_dev_disable(dev, old_dev); 8056 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8057 extack); 8058 if (err) { 8059 if (old_dev && new_dev != old_dev) 8060 netdev_adjacent_dev_enable(dev, old_dev); 8061 return err; 8062 } 8063 8064 return 0; 8065} 8066EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8067 8068void netdev_adjacent_change_commit(struct net_device *old_dev, 8069 struct net_device *new_dev, 8070 struct net_device *dev) 8071{ 8072 struct netdev_nested_priv priv = { 8073 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8074 .data = NULL, 8075 }; 8076 8077 if (!new_dev || !old_dev) 8078 return; 8079 8080 if (new_dev == old_dev) 8081 return; 8082 8083 netdev_adjacent_dev_enable(dev, old_dev); 8084 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8085} 8086EXPORT_SYMBOL(netdev_adjacent_change_commit); 8087 8088void netdev_adjacent_change_abort(struct net_device *old_dev, 8089 struct net_device *new_dev, 8090 struct net_device *dev) 8091{ 8092 struct netdev_nested_priv priv = { 8093 .flags = 0, 8094 .data = NULL, 8095 }; 8096 8097 if (!new_dev) 8098 return; 8099 8100 if (old_dev && new_dev != old_dev) 8101 netdev_adjacent_dev_enable(dev, old_dev); 8102 8103 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8104} 8105EXPORT_SYMBOL(netdev_adjacent_change_abort); 8106 8107/** 8108 * netdev_bonding_info_change - Dispatch event about slave change 8109 * @dev: device 8110 * @bonding_info: info to dispatch 8111 * 8112 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8113 * The caller must hold the RTNL lock. 8114 */ 8115void netdev_bonding_info_change(struct net_device *dev, 8116 struct netdev_bonding_info *bonding_info) 8117{ 8118 struct netdev_notifier_bonding_info info = { 8119 .info.dev = dev, 8120 }; 8121 8122 memcpy(&info.bonding_info, bonding_info, 8123 sizeof(struct netdev_bonding_info)); 8124 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8125 &info.info); 8126} 8127EXPORT_SYMBOL(netdev_bonding_info_change); 8128 8129/** 8130 * netdev_get_xmit_slave - Get the xmit slave of master device 8131 * @dev: device 8132 * @skb: The packet 8133 * @all_slaves: assume all the slaves are active 8134 * 8135 * The reference counters are not incremented so the caller must be 8136 * careful with locks. The caller must hold RCU lock. 8137 * %NULL is returned if no slave is found. 8138 */ 8139 8140struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8141 struct sk_buff *skb, 8142 bool all_slaves) 8143{ 8144 const struct net_device_ops *ops = dev->netdev_ops; 8145 8146 if (!ops->ndo_get_xmit_slave) 8147 return NULL; 8148 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8149} 8150EXPORT_SYMBOL(netdev_get_xmit_slave); 8151 8152static void netdev_adjacent_add_links(struct net_device *dev) 8153{ 8154 struct netdev_adjacent *iter; 8155 8156 struct net *net = dev_net(dev); 8157 8158 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8159 if (!net_eq(net, dev_net(iter->dev))) 8160 continue; 8161 netdev_adjacent_sysfs_add(iter->dev, dev, 8162 &iter->dev->adj_list.lower); 8163 netdev_adjacent_sysfs_add(dev, iter->dev, 8164 &dev->adj_list.upper); 8165 } 8166 8167 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8168 if (!net_eq(net, dev_net(iter->dev))) 8169 continue; 8170 netdev_adjacent_sysfs_add(iter->dev, dev, 8171 &iter->dev->adj_list.upper); 8172 netdev_adjacent_sysfs_add(dev, iter->dev, 8173 &dev->adj_list.lower); 8174 } 8175} 8176 8177static void netdev_adjacent_del_links(struct net_device *dev) 8178{ 8179 struct netdev_adjacent *iter; 8180 8181 struct net *net = dev_net(dev); 8182 8183 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8184 if (!net_eq(net, dev_net(iter->dev))) 8185 continue; 8186 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8187 &iter->dev->adj_list.lower); 8188 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8189 &dev->adj_list.upper); 8190 } 8191 8192 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8193 if (!net_eq(net, dev_net(iter->dev))) 8194 continue; 8195 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8196 &iter->dev->adj_list.upper); 8197 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8198 &dev->adj_list.lower); 8199 } 8200} 8201 8202void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8203{ 8204 struct netdev_adjacent *iter; 8205 8206 struct net *net = dev_net(dev); 8207 8208 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8209 if (!net_eq(net, dev_net(iter->dev))) 8210 continue; 8211 netdev_adjacent_sysfs_del(iter->dev, oldname, 8212 &iter->dev->adj_list.lower); 8213 netdev_adjacent_sysfs_add(iter->dev, dev, 8214 &iter->dev->adj_list.lower); 8215 } 8216 8217 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8218 if (!net_eq(net, dev_net(iter->dev))) 8219 continue; 8220 netdev_adjacent_sysfs_del(iter->dev, oldname, 8221 &iter->dev->adj_list.upper); 8222 netdev_adjacent_sysfs_add(iter->dev, dev, 8223 &iter->dev->adj_list.upper); 8224 } 8225} 8226 8227void *netdev_lower_dev_get_private(struct net_device *dev, 8228 struct net_device *lower_dev) 8229{ 8230 struct netdev_adjacent *lower; 8231 8232 if (!lower_dev) 8233 return NULL; 8234 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8235 if (!lower) 8236 return NULL; 8237 8238 return lower->private; 8239} 8240EXPORT_SYMBOL(netdev_lower_dev_get_private); 8241 8242 8243/** 8244 * netdev_lower_change - Dispatch event about lower device state change 8245 * @lower_dev: device 8246 * @lower_state_info: state to dispatch 8247 * 8248 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8249 * The caller must hold the RTNL lock. 8250 */ 8251void netdev_lower_state_changed(struct net_device *lower_dev, 8252 void *lower_state_info) 8253{ 8254 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8255 .info.dev = lower_dev, 8256 }; 8257 8258 ASSERT_RTNL(); 8259 changelowerstate_info.lower_state_info = lower_state_info; 8260 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8261 &changelowerstate_info.info); 8262} 8263EXPORT_SYMBOL(netdev_lower_state_changed); 8264 8265static void dev_change_rx_flags(struct net_device *dev, int flags) 8266{ 8267 const struct net_device_ops *ops = dev->netdev_ops; 8268 8269 if (ops->ndo_change_rx_flags) 8270 ops->ndo_change_rx_flags(dev, flags); 8271} 8272 8273static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8274{ 8275 unsigned int old_flags = dev->flags; 8276 kuid_t uid; 8277 kgid_t gid; 8278 8279 ASSERT_RTNL(); 8280 8281 dev->flags |= IFF_PROMISC; 8282 dev->promiscuity += inc; 8283 if (dev->promiscuity == 0) { 8284 /* 8285 * Avoid overflow. 8286 * If inc causes overflow, untouch promisc and return error. 8287 */ 8288 if (inc < 0) 8289 dev->flags &= ~IFF_PROMISC; 8290 else { 8291 dev->promiscuity -= inc; 8292 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8293 dev->name); 8294 return -EOVERFLOW; 8295 } 8296 } 8297 if (dev->flags != old_flags) { 8298 pr_info("device %s %s promiscuous mode\n", 8299 dev->name, 8300 dev->flags & IFF_PROMISC ? "entered" : "left"); 8301 if (audit_enabled) { 8302 current_uid_gid(&uid, &gid); 8303 audit_log(audit_context(), GFP_ATOMIC, 8304 AUDIT_ANOM_PROMISCUOUS, 8305 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8306 dev->name, (dev->flags & IFF_PROMISC), 8307 (old_flags & IFF_PROMISC), 8308 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8309 from_kuid(&init_user_ns, uid), 8310 from_kgid(&init_user_ns, gid), 8311 audit_get_sessionid(current)); 8312 } 8313 8314 dev_change_rx_flags(dev, IFF_PROMISC); 8315 } 8316 if (notify) 8317 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8318 return 0; 8319} 8320 8321/** 8322 * dev_set_promiscuity - update promiscuity count on a device 8323 * @dev: device 8324 * @inc: modifier 8325 * 8326 * Add or remove promiscuity from a device. While the count in the device 8327 * remains above zero the interface remains promiscuous. Once it hits zero 8328 * the device reverts back to normal filtering operation. A negative inc 8329 * value is used to drop promiscuity on the device. 8330 * Return 0 if successful or a negative errno code on error. 8331 */ 8332int dev_set_promiscuity(struct net_device *dev, int inc) 8333{ 8334 unsigned int old_flags = dev->flags; 8335 int err; 8336 8337 err = __dev_set_promiscuity(dev, inc, true); 8338 if (err < 0) 8339 return err; 8340 if (dev->flags != old_flags) 8341 dev_set_rx_mode(dev); 8342 return err; 8343} 8344EXPORT_SYMBOL(dev_set_promiscuity); 8345 8346static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8347{ 8348 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8349 8350 ASSERT_RTNL(); 8351 8352 dev->flags |= IFF_ALLMULTI; 8353 dev->allmulti += inc; 8354 if (dev->allmulti == 0) { 8355 /* 8356 * Avoid overflow. 8357 * If inc causes overflow, untouch allmulti and return error. 8358 */ 8359 if (inc < 0) 8360 dev->flags &= ~IFF_ALLMULTI; 8361 else { 8362 dev->allmulti -= inc; 8363 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8364 dev->name); 8365 return -EOVERFLOW; 8366 } 8367 } 8368 if (dev->flags ^ old_flags) { 8369 dev_change_rx_flags(dev, IFF_ALLMULTI); 8370 dev_set_rx_mode(dev); 8371 if (notify) 8372 __dev_notify_flags(dev, old_flags, 8373 dev->gflags ^ old_gflags); 8374 } 8375 return 0; 8376} 8377 8378/** 8379 * dev_set_allmulti - update allmulti count on a device 8380 * @dev: device 8381 * @inc: modifier 8382 * 8383 * Add or remove reception of all multicast frames to a device. While the 8384 * count in the device remains above zero the interface remains listening 8385 * to all interfaces. Once it hits zero the device reverts back to normal 8386 * filtering operation. A negative @inc value is used to drop the counter 8387 * when releasing a resource needing all multicasts. 8388 * Return 0 if successful or a negative errno code on error. 8389 */ 8390 8391int dev_set_allmulti(struct net_device *dev, int inc) 8392{ 8393 return __dev_set_allmulti(dev, inc, true); 8394} 8395EXPORT_SYMBOL(dev_set_allmulti); 8396 8397/* 8398 * Upload unicast and multicast address lists to device and 8399 * configure RX filtering. When the device doesn't support unicast 8400 * filtering it is put in promiscuous mode while unicast addresses 8401 * are present. 8402 */ 8403void __dev_set_rx_mode(struct net_device *dev) 8404{ 8405 const struct net_device_ops *ops = dev->netdev_ops; 8406 8407 /* dev_open will call this function so the list will stay sane. */ 8408 if (!(dev->flags&IFF_UP)) 8409 return; 8410 8411 if (!netif_device_present(dev)) 8412 return; 8413 8414 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8415 /* Unicast addresses changes may only happen under the rtnl, 8416 * therefore calling __dev_set_promiscuity here is safe. 8417 */ 8418 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8419 __dev_set_promiscuity(dev, 1, false); 8420 dev->uc_promisc = true; 8421 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8422 __dev_set_promiscuity(dev, -1, false); 8423 dev->uc_promisc = false; 8424 } 8425 } 8426 8427 if (ops->ndo_set_rx_mode) 8428 ops->ndo_set_rx_mode(dev); 8429} 8430 8431void dev_set_rx_mode(struct net_device *dev) 8432{ 8433 netif_addr_lock_bh(dev); 8434 __dev_set_rx_mode(dev); 8435 netif_addr_unlock_bh(dev); 8436} 8437 8438/** 8439 * dev_get_flags - get flags reported to userspace 8440 * @dev: device 8441 * 8442 * Get the combination of flag bits exported through APIs to userspace. 8443 */ 8444unsigned int dev_get_flags(const struct net_device *dev) 8445{ 8446 unsigned int flags; 8447 8448 flags = (dev->flags & ~(IFF_PROMISC | 8449 IFF_ALLMULTI | 8450 IFF_RUNNING | 8451 IFF_LOWER_UP | 8452 IFF_DORMANT)) | 8453 (dev->gflags & (IFF_PROMISC | 8454 IFF_ALLMULTI)); 8455 8456 if (netif_running(dev)) { 8457 if (netif_oper_up(dev)) 8458 flags |= IFF_RUNNING; 8459 if (netif_carrier_ok(dev)) 8460 flags |= IFF_LOWER_UP; 8461 if (netif_dormant(dev)) 8462 flags |= IFF_DORMANT; 8463 } 8464 8465 return flags; 8466} 8467EXPORT_SYMBOL(dev_get_flags); 8468 8469int __dev_change_flags(struct net_device *dev, unsigned int flags, 8470 struct netlink_ext_ack *extack) 8471{ 8472 unsigned int old_flags = dev->flags; 8473 int ret; 8474 8475 ASSERT_RTNL(); 8476 8477 /* 8478 * Set the flags on our device. 8479 */ 8480 8481 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8482 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8483 IFF_AUTOMEDIA)) | 8484 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8485 IFF_ALLMULTI)); 8486 8487 /* 8488 * Load in the correct multicast list now the flags have changed. 8489 */ 8490 8491 if ((old_flags ^ flags) & IFF_MULTICAST) 8492 dev_change_rx_flags(dev, IFF_MULTICAST); 8493 8494 dev_set_rx_mode(dev); 8495 8496 /* 8497 * Have we downed the interface. We handle IFF_UP ourselves 8498 * according to user attempts to set it, rather than blindly 8499 * setting it. 8500 */ 8501 8502 ret = 0; 8503 if ((old_flags ^ flags) & IFF_UP) { 8504 if (old_flags & IFF_UP) 8505 __dev_close(dev); 8506 else 8507 ret = __dev_open(dev, extack); 8508 } 8509 8510 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8511 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8512 unsigned int old_flags = dev->flags; 8513 8514 dev->gflags ^= IFF_PROMISC; 8515 8516 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8517 if (dev->flags != old_flags) 8518 dev_set_rx_mode(dev); 8519 } 8520 8521 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8522 * is important. Some (broken) drivers set IFF_PROMISC, when 8523 * IFF_ALLMULTI is requested not asking us and not reporting. 8524 */ 8525 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8526 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8527 8528 dev->gflags ^= IFF_ALLMULTI; 8529 __dev_set_allmulti(dev, inc, false); 8530 } 8531 8532 return ret; 8533} 8534 8535void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8536 unsigned int gchanges) 8537{ 8538 unsigned int changes = dev->flags ^ old_flags; 8539 8540 if (gchanges) 8541 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8542 8543 if (changes & IFF_UP) { 8544 if (dev->flags & IFF_UP) 8545 call_netdevice_notifiers(NETDEV_UP, dev); 8546 else 8547 call_netdevice_notifiers(NETDEV_DOWN, dev); 8548 } 8549 8550 if (dev->flags & IFF_UP && 8551 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8552 struct netdev_notifier_change_info change_info = { 8553 .info = { 8554 .dev = dev, 8555 }, 8556 .flags_changed = changes, 8557 }; 8558 8559 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8560 } 8561} 8562 8563/** 8564 * dev_change_flags - change device settings 8565 * @dev: device 8566 * @flags: device state flags 8567 * @extack: netlink extended ack 8568 * 8569 * Change settings on device based state flags. The flags are 8570 * in the userspace exported format. 8571 */ 8572int dev_change_flags(struct net_device *dev, unsigned int flags, 8573 struct netlink_ext_ack *extack) 8574{ 8575 int ret; 8576 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8577 8578 ret = __dev_change_flags(dev, flags, extack); 8579 if (ret < 0) 8580 return ret; 8581 8582 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8583 __dev_notify_flags(dev, old_flags, changes); 8584 return ret; 8585} 8586EXPORT_SYMBOL(dev_change_flags); 8587 8588int __dev_set_mtu(struct net_device *dev, int new_mtu) 8589{ 8590 const struct net_device_ops *ops = dev->netdev_ops; 8591 8592 if (ops->ndo_change_mtu) 8593 return ops->ndo_change_mtu(dev, new_mtu); 8594 8595 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8596 WRITE_ONCE(dev->mtu, new_mtu); 8597 return 0; 8598} 8599EXPORT_SYMBOL(__dev_set_mtu); 8600 8601int dev_validate_mtu(struct net_device *dev, int new_mtu, 8602 struct netlink_ext_ack *extack) 8603{ 8604 /* MTU must be positive, and in range */ 8605 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8606 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8607 return -EINVAL; 8608 } 8609 8610 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8611 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8612 return -EINVAL; 8613 } 8614 return 0; 8615} 8616 8617/** 8618 * dev_set_mtu_ext - Change maximum transfer unit 8619 * @dev: device 8620 * @new_mtu: new transfer unit 8621 * @extack: netlink extended ack 8622 * 8623 * Change the maximum transfer size of the network device. 8624 */ 8625int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8626 struct netlink_ext_ack *extack) 8627{ 8628 int err, orig_mtu; 8629 8630 if (new_mtu == dev->mtu) 8631 return 0; 8632 8633 err = dev_validate_mtu(dev, new_mtu, extack); 8634 if (err) 8635 return err; 8636 8637 if (!netif_device_present(dev)) 8638 return -ENODEV; 8639 8640 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8641 err = notifier_to_errno(err); 8642 if (err) 8643 return err; 8644 8645 orig_mtu = dev->mtu; 8646 err = __dev_set_mtu(dev, new_mtu); 8647 8648 if (!err) { 8649 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8650 orig_mtu); 8651 err = notifier_to_errno(err); 8652 if (err) { 8653 /* setting mtu back and notifying everyone again, 8654 * so that they have a chance to revert changes. 8655 */ 8656 __dev_set_mtu(dev, orig_mtu); 8657 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8658 new_mtu); 8659 } 8660 } 8661 return err; 8662} 8663 8664int dev_set_mtu(struct net_device *dev, int new_mtu) 8665{ 8666 struct netlink_ext_ack extack; 8667 int err; 8668 8669 memset(&extack, 0, sizeof(extack)); 8670 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8671 if (err && extack._msg) 8672 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8673 return err; 8674} 8675EXPORT_SYMBOL(dev_set_mtu); 8676 8677/** 8678 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8679 * @dev: device 8680 * @new_len: new tx queue length 8681 */ 8682int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8683{ 8684 unsigned int orig_len = dev->tx_queue_len; 8685 int res; 8686 8687 if (new_len != (unsigned int)new_len) 8688 return -ERANGE; 8689 8690 if (new_len != orig_len) { 8691 dev->tx_queue_len = new_len; 8692 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8693 res = notifier_to_errno(res); 8694 if (res) 8695 goto err_rollback; 8696 res = dev_qdisc_change_tx_queue_len(dev); 8697 if (res) 8698 goto err_rollback; 8699 } 8700 8701 return 0; 8702 8703err_rollback: 8704 netdev_err(dev, "refused to change device tx_queue_len\n"); 8705 dev->tx_queue_len = orig_len; 8706 return res; 8707} 8708 8709/** 8710 * dev_set_group - Change group this device belongs to 8711 * @dev: device 8712 * @new_group: group this device should belong to 8713 */ 8714void dev_set_group(struct net_device *dev, int new_group) 8715{ 8716 dev->group = new_group; 8717} 8718EXPORT_SYMBOL(dev_set_group); 8719 8720/** 8721 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8722 * @dev: device 8723 * @addr: new address 8724 * @extack: netlink extended ack 8725 */ 8726int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8727 struct netlink_ext_ack *extack) 8728{ 8729 struct netdev_notifier_pre_changeaddr_info info = { 8730 .info.dev = dev, 8731 .info.extack = extack, 8732 .dev_addr = addr, 8733 }; 8734 int rc; 8735 8736 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8737 return notifier_to_errno(rc); 8738} 8739EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8740 8741/** 8742 * dev_set_mac_address - Change Media Access Control Address 8743 * @dev: device 8744 * @sa: new address 8745 * @extack: netlink extended ack 8746 * 8747 * Change the hardware (MAC) address of the device 8748 */ 8749int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8750 struct netlink_ext_ack *extack) 8751{ 8752 const struct net_device_ops *ops = dev->netdev_ops; 8753 int err; 8754 8755 if (!ops->ndo_set_mac_address) 8756 return -EOPNOTSUPP; 8757 if (sa->sa_family != dev->type) 8758 return -EINVAL; 8759 if (!netif_device_present(dev)) 8760 return -ENODEV; 8761 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8762 if (err) 8763 return err; 8764 err = ops->ndo_set_mac_address(dev, sa); 8765 if (err) 8766 return err; 8767 dev->addr_assign_type = NET_ADDR_SET; 8768 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8769 add_device_randomness(dev->dev_addr, dev->addr_len); 8770 return 0; 8771} 8772EXPORT_SYMBOL(dev_set_mac_address); 8773 8774static DECLARE_RWSEM(dev_addr_sem); 8775 8776int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8777 struct netlink_ext_ack *extack) 8778{ 8779 int ret; 8780 8781 down_write(&dev_addr_sem); 8782 ret = dev_set_mac_address(dev, sa, extack); 8783 up_write(&dev_addr_sem); 8784 return ret; 8785} 8786EXPORT_SYMBOL(dev_set_mac_address_user); 8787 8788int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8789{ 8790 size_t size = sizeof(sa->sa_data_min); 8791 struct net_device *dev; 8792 int ret = 0; 8793 8794 down_read(&dev_addr_sem); 8795 rcu_read_lock(); 8796 8797 dev = dev_get_by_name_rcu(net, dev_name); 8798 if (!dev) { 8799 ret = -ENODEV; 8800 goto unlock; 8801 } 8802 if (!dev->addr_len) 8803 memset(sa->sa_data, 0, size); 8804 else 8805 memcpy(sa->sa_data, dev->dev_addr, 8806 min_t(size_t, size, dev->addr_len)); 8807 sa->sa_family = dev->type; 8808 8809unlock: 8810 rcu_read_unlock(); 8811 up_read(&dev_addr_sem); 8812 return ret; 8813} 8814EXPORT_SYMBOL(dev_get_mac_address); 8815 8816/** 8817 * dev_change_carrier - Change device carrier 8818 * @dev: device 8819 * @new_carrier: new value 8820 * 8821 * Change device carrier 8822 */ 8823int dev_change_carrier(struct net_device *dev, bool new_carrier) 8824{ 8825 const struct net_device_ops *ops = dev->netdev_ops; 8826 8827 if (!ops->ndo_change_carrier) 8828 return -EOPNOTSUPP; 8829 if (!netif_device_present(dev)) 8830 return -ENODEV; 8831 return ops->ndo_change_carrier(dev, new_carrier); 8832} 8833EXPORT_SYMBOL(dev_change_carrier); 8834 8835/** 8836 * dev_get_phys_port_id - Get device physical port ID 8837 * @dev: device 8838 * @ppid: port ID 8839 * 8840 * Get device physical port ID 8841 */ 8842int dev_get_phys_port_id(struct net_device *dev, 8843 struct netdev_phys_item_id *ppid) 8844{ 8845 const struct net_device_ops *ops = dev->netdev_ops; 8846 8847 if (!ops->ndo_get_phys_port_id) 8848 return -EOPNOTSUPP; 8849 return ops->ndo_get_phys_port_id(dev, ppid); 8850} 8851EXPORT_SYMBOL(dev_get_phys_port_id); 8852 8853/** 8854 * dev_get_phys_port_name - Get device physical port name 8855 * @dev: device 8856 * @name: port name 8857 * @len: limit of bytes to copy to name 8858 * 8859 * Get device physical port name 8860 */ 8861int dev_get_phys_port_name(struct net_device *dev, 8862 char *name, size_t len) 8863{ 8864 const struct net_device_ops *ops = dev->netdev_ops; 8865 int err; 8866 8867 if (ops->ndo_get_phys_port_name) { 8868 err = ops->ndo_get_phys_port_name(dev, name, len); 8869 if (err != -EOPNOTSUPP) 8870 return err; 8871 } 8872 return devlink_compat_phys_port_name_get(dev, name, len); 8873} 8874EXPORT_SYMBOL(dev_get_phys_port_name); 8875 8876/** 8877 * dev_get_port_parent_id - Get the device's port parent identifier 8878 * @dev: network device 8879 * @ppid: pointer to a storage for the port's parent identifier 8880 * @recurse: allow/disallow recursion to lower devices 8881 * 8882 * Get the devices's port parent identifier 8883 */ 8884int dev_get_port_parent_id(struct net_device *dev, 8885 struct netdev_phys_item_id *ppid, 8886 bool recurse) 8887{ 8888 const struct net_device_ops *ops = dev->netdev_ops; 8889 struct netdev_phys_item_id first = { }; 8890 struct net_device *lower_dev; 8891 struct list_head *iter; 8892 int err; 8893 8894 if (ops->ndo_get_port_parent_id) { 8895 err = ops->ndo_get_port_parent_id(dev, ppid); 8896 if (err != -EOPNOTSUPP) 8897 return err; 8898 } 8899 8900 err = devlink_compat_switch_id_get(dev, ppid); 8901 if (!err || err != -EOPNOTSUPP) 8902 return err; 8903 8904 if (!recurse) 8905 return -EOPNOTSUPP; 8906 8907 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8908 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8909 if (err) 8910 break; 8911 if (!first.id_len) 8912 first = *ppid; 8913 else if (memcmp(&first, ppid, sizeof(*ppid))) 8914 return -EOPNOTSUPP; 8915 } 8916 8917 return err; 8918} 8919EXPORT_SYMBOL(dev_get_port_parent_id); 8920 8921/** 8922 * netdev_port_same_parent_id - Indicate if two network devices have 8923 * the same port parent identifier 8924 * @a: first network device 8925 * @b: second network device 8926 */ 8927bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8928{ 8929 struct netdev_phys_item_id a_id = { }; 8930 struct netdev_phys_item_id b_id = { }; 8931 8932 if (dev_get_port_parent_id(a, &a_id, true) || 8933 dev_get_port_parent_id(b, &b_id, true)) 8934 return false; 8935 8936 return netdev_phys_item_id_same(&a_id, &b_id); 8937} 8938EXPORT_SYMBOL(netdev_port_same_parent_id); 8939 8940/** 8941 * dev_change_proto_down - update protocol port state information 8942 * @dev: device 8943 * @proto_down: new value 8944 * 8945 * This info can be used by switch drivers to set the phys state of the 8946 * port. 8947 */ 8948int dev_change_proto_down(struct net_device *dev, bool proto_down) 8949{ 8950 const struct net_device_ops *ops = dev->netdev_ops; 8951 8952 if (!ops->ndo_change_proto_down) 8953 return -EOPNOTSUPP; 8954 if (!netif_device_present(dev)) 8955 return -ENODEV; 8956 return ops->ndo_change_proto_down(dev, proto_down); 8957} 8958EXPORT_SYMBOL(dev_change_proto_down); 8959 8960/** 8961 * dev_change_proto_down_generic - generic implementation for 8962 * ndo_change_proto_down that sets carrier according to 8963 * proto_down. 8964 * 8965 * @dev: device 8966 * @proto_down: new value 8967 */ 8968int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8969{ 8970 if (proto_down) 8971 netif_carrier_off(dev); 8972 else 8973 netif_carrier_on(dev); 8974 dev->proto_down = proto_down; 8975 return 0; 8976} 8977EXPORT_SYMBOL(dev_change_proto_down_generic); 8978 8979/** 8980 * dev_change_proto_down_reason - proto down reason 8981 * 8982 * @dev: device 8983 * @mask: proto down mask 8984 * @value: proto down value 8985 */ 8986void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8987 u32 value) 8988{ 8989 int b; 8990 8991 if (!mask) { 8992 dev->proto_down_reason = value; 8993 } else { 8994 for_each_set_bit(b, &mask, 32) { 8995 if (value & (1 << b)) 8996 dev->proto_down_reason |= BIT(b); 8997 else 8998 dev->proto_down_reason &= ~BIT(b); 8999 } 9000 } 9001} 9002EXPORT_SYMBOL(dev_change_proto_down_reason); 9003 9004struct bpf_xdp_link { 9005 struct bpf_link link; 9006 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9007 int flags; 9008}; 9009 9010static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9011{ 9012 if (flags & XDP_FLAGS_HW_MODE) 9013 return XDP_MODE_HW; 9014 if (flags & XDP_FLAGS_DRV_MODE) 9015 return XDP_MODE_DRV; 9016 if (flags & XDP_FLAGS_SKB_MODE) 9017 return XDP_MODE_SKB; 9018 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9019} 9020 9021static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9022{ 9023 switch (mode) { 9024 case XDP_MODE_SKB: 9025 return generic_xdp_install; 9026 case XDP_MODE_DRV: 9027 case XDP_MODE_HW: 9028 return dev->netdev_ops->ndo_bpf; 9029 default: 9030 return NULL; 9031 }; 9032} 9033 9034static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9035 enum bpf_xdp_mode mode) 9036{ 9037 return dev->xdp_state[mode].link; 9038} 9039 9040static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9041 enum bpf_xdp_mode mode) 9042{ 9043 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9044 9045 if (link) 9046 return link->link.prog; 9047 return dev->xdp_state[mode].prog; 9048} 9049 9050static u8 dev_xdp_prog_count(struct net_device *dev) 9051{ 9052 u8 count = 0; 9053 int i; 9054 9055 for (i = 0; i < __MAX_XDP_MODE; i++) 9056 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9057 count++; 9058 return count; 9059} 9060 9061u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9062{ 9063 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9064 9065 return prog ? prog->aux->id : 0; 9066} 9067 9068static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9069 struct bpf_xdp_link *link) 9070{ 9071 dev->xdp_state[mode].link = link; 9072 dev->xdp_state[mode].prog = NULL; 9073} 9074 9075static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9076 struct bpf_prog *prog) 9077{ 9078 dev->xdp_state[mode].link = NULL; 9079 dev->xdp_state[mode].prog = prog; 9080} 9081 9082static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9083 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9084 u32 flags, struct bpf_prog *prog) 9085{ 9086 struct netdev_bpf xdp; 9087 int err; 9088 9089 memset(&xdp, 0, sizeof(xdp)); 9090 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9091 xdp.extack = extack; 9092 xdp.flags = flags; 9093 xdp.prog = prog; 9094 9095 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9096 * "moved" into driver), so they don't increment it on their own, but 9097 * they do decrement refcnt when program is detached or replaced. 9098 * Given net_device also owns link/prog, we need to bump refcnt here 9099 * to prevent drivers from underflowing it. 9100 */ 9101 if (prog) 9102 bpf_prog_inc(prog); 9103 err = bpf_op(dev, &xdp); 9104 if (err) { 9105 if (prog) 9106 bpf_prog_put(prog); 9107 return err; 9108 } 9109 9110 if (mode != XDP_MODE_HW) 9111 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9112 9113 return 0; 9114} 9115 9116static void dev_xdp_uninstall(struct net_device *dev) 9117{ 9118 struct bpf_xdp_link *link; 9119 struct bpf_prog *prog; 9120 enum bpf_xdp_mode mode; 9121 bpf_op_t bpf_op; 9122 9123 ASSERT_RTNL(); 9124 9125 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9126 prog = dev_xdp_prog(dev, mode); 9127 if (!prog) 9128 continue; 9129 9130 bpf_op = dev_xdp_bpf_op(dev, mode); 9131 if (!bpf_op) 9132 continue; 9133 9134 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9135 9136 /* auto-detach link from net device */ 9137 link = dev_xdp_link(dev, mode); 9138 if (link) 9139 link->dev = NULL; 9140 else 9141 bpf_prog_put(prog); 9142 9143 dev_xdp_set_link(dev, mode, NULL); 9144 } 9145} 9146 9147static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9148 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9149 struct bpf_prog *old_prog, u32 flags) 9150{ 9151 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9152 struct bpf_prog *cur_prog; 9153 enum bpf_xdp_mode mode; 9154 bpf_op_t bpf_op; 9155 int err; 9156 9157 ASSERT_RTNL(); 9158 9159 /* either link or prog attachment, never both */ 9160 if (link && (new_prog || old_prog)) 9161 return -EINVAL; 9162 /* link supports only XDP mode flags */ 9163 if (link && (flags & ~XDP_FLAGS_MODES)) { 9164 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9165 return -EINVAL; 9166 } 9167 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9168 if (num_modes > 1) { 9169 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9170 return -EINVAL; 9171 } 9172 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9173 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9174 NL_SET_ERR_MSG(extack, 9175 "More than one program loaded, unset mode is ambiguous"); 9176 return -EINVAL; 9177 } 9178 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9179 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9180 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9181 return -EINVAL; 9182 } 9183 9184 mode = dev_xdp_mode(dev, flags); 9185 /* can't replace attached link */ 9186 if (dev_xdp_link(dev, mode)) { 9187 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9188 return -EBUSY; 9189 } 9190 9191 cur_prog = dev_xdp_prog(dev, mode); 9192 /* can't replace attached prog with link */ 9193 if (link && cur_prog) { 9194 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9195 return -EBUSY; 9196 } 9197 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9198 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9199 return -EEXIST; 9200 } 9201 9202 /* put effective new program into new_prog */ 9203 if (link) 9204 new_prog = link->link.prog; 9205 9206 if (new_prog) { 9207 bool offload = mode == XDP_MODE_HW; 9208 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9209 ? XDP_MODE_DRV : XDP_MODE_SKB; 9210 9211 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9212 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9213 return -EBUSY; 9214 } 9215 if (!offload && dev_xdp_prog(dev, other_mode)) { 9216 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9217 return -EEXIST; 9218 } 9219 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9220 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9221 return -EINVAL; 9222 } 9223 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9224 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9225 return -EINVAL; 9226 } 9227 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9228 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9229 return -EINVAL; 9230 } 9231 } 9232 9233 /* don't call drivers if the effective program didn't change */ 9234 if (new_prog != cur_prog) { 9235 bpf_op = dev_xdp_bpf_op(dev, mode); 9236 if (!bpf_op) { 9237 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9238 return -EOPNOTSUPP; 9239 } 9240 9241 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9242 if (err) 9243 return err; 9244 } 9245 9246 if (link) 9247 dev_xdp_set_link(dev, mode, link); 9248 else 9249 dev_xdp_set_prog(dev, mode, new_prog); 9250 if (cur_prog) 9251 bpf_prog_put(cur_prog); 9252 9253 return 0; 9254} 9255 9256static int dev_xdp_attach_link(struct net_device *dev, 9257 struct netlink_ext_ack *extack, 9258 struct bpf_xdp_link *link) 9259{ 9260 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9261} 9262 9263static int dev_xdp_detach_link(struct net_device *dev, 9264 struct netlink_ext_ack *extack, 9265 struct bpf_xdp_link *link) 9266{ 9267 enum bpf_xdp_mode mode; 9268 bpf_op_t bpf_op; 9269 9270 ASSERT_RTNL(); 9271 9272 mode = dev_xdp_mode(dev, link->flags); 9273 if (dev_xdp_link(dev, mode) != link) 9274 return -EINVAL; 9275 9276 bpf_op = dev_xdp_bpf_op(dev, mode); 9277 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9278 dev_xdp_set_link(dev, mode, NULL); 9279 return 0; 9280} 9281 9282static void bpf_xdp_link_release(struct bpf_link *link) 9283{ 9284 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9285 9286 rtnl_lock(); 9287 9288 /* if racing with net_device's tear down, xdp_link->dev might be 9289 * already NULL, in which case link was already auto-detached 9290 */ 9291 if (xdp_link->dev) { 9292 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9293 xdp_link->dev = NULL; 9294 } 9295 9296 rtnl_unlock(); 9297} 9298 9299static int bpf_xdp_link_detach(struct bpf_link *link) 9300{ 9301 bpf_xdp_link_release(link); 9302 return 0; 9303} 9304 9305static void bpf_xdp_link_dealloc(struct bpf_link *link) 9306{ 9307 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9308 9309 kfree(xdp_link); 9310} 9311 9312static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9313 struct seq_file *seq) 9314{ 9315 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9316 u32 ifindex = 0; 9317 9318 rtnl_lock(); 9319 if (xdp_link->dev) 9320 ifindex = xdp_link->dev->ifindex; 9321 rtnl_unlock(); 9322 9323 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9324} 9325 9326static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9327 struct bpf_link_info *info) 9328{ 9329 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9330 u32 ifindex = 0; 9331 9332 rtnl_lock(); 9333 if (xdp_link->dev) 9334 ifindex = xdp_link->dev->ifindex; 9335 rtnl_unlock(); 9336 9337 info->xdp.ifindex = ifindex; 9338 return 0; 9339} 9340 9341static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9342 struct bpf_prog *old_prog) 9343{ 9344 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9345 enum bpf_xdp_mode mode; 9346 bpf_op_t bpf_op; 9347 int err = 0; 9348 9349 rtnl_lock(); 9350 9351 /* link might have been auto-released already, so fail */ 9352 if (!xdp_link->dev) { 9353 err = -ENOLINK; 9354 goto out_unlock; 9355 } 9356 9357 if (old_prog && link->prog != old_prog) { 9358 err = -EPERM; 9359 goto out_unlock; 9360 } 9361 old_prog = link->prog; 9362 if (old_prog->type != new_prog->type || 9363 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9364 err = -EINVAL; 9365 goto out_unlock; 9366 } 9367 9368 if (old_prog == new_prog) { 9369 /* no-op, don't disturb drivers */ 9370 bpf_prog_put(new_prog); 9371 goto out_unlock; 9372 } 9373 9374 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9375 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9376 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9377 xdp_link->flags, new_prog); 9378 if (err) 9379 goto out_unlock; 9380 9381 old_prog = xchg(&link->prog, new_prog); 9382 bpf_prog_put(old_prog); 9383 9384out_unlock: 9385 rtnl_unlock(); 9386 return err; 9387} 9388 9389static const struct bpf_link_ops bpf_xdp_link_lops = { 9390 .release = bpf_xdp_link_release, 9391 .dealloc = bpf_xdp_link_dealloc, 9392 .detach = bpf_xdp_link_detach, 9393 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9394 .fill_link_info = bpf_xdp_link_fill_link_info, 9395 .update_prog = bpf_xdp_link_update, 9396}; 9397 9398int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9399{ 9400 struct net *net = current->nsproxy->net_ns; 9401 struct bpf_link_primer link_primer; 9402 struct bpf_xdp_link *link; 9403 struct net_device *dev; 9404 int err, fd; 9405 9406 rtnl_lock(); 9407 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9408 if (!dev) { 9409 rtnl_unlock(); 9410 return -EINVAL; 9411 } 9412 9413 link = kzalloc(sizeof(*link), GFP_USER); 9414 if (!link) { 9415 err = -ENOMEM; 9416 goto unlock; 9417 } 9418 9419 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9420 link->dev = dev; 9421 link->flags = attr->link_create.flags; 9422 9423 err = bpf_link_prime(&link->link, &link_primer); 9424 if (err) { 9425 kfree(link); 9426 goto unlock; 9427 } 9428 9429 err = dev_xdp_attach_link(dev, NULL, link); 9430 rtnl_unlock(); 9431 9432 if (err) { 9433 link->dev = NULL; 9434 bpf_link_cleanup(&link_primer); 9435 goto out_put_dev; 9436 } 9437 9438 fd = bpf_link_settle(&link_primer); 9439 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9440 dev_put(dev); 9441 return fd; 9442 9443unlock: 9444 rtnl_unlock(); 9445 9446out_put_dev: 9447 dev_put(dev); 9448 return err; 9449} 9450 9451/** 9452 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9453 * @dev: device 9454 * @extack: netlink extended ack 9455 * @fd: new program fd or negative value to clear 9456 * @expected_fd: old program fd that userspace expects to replace or clear 9457 * @flags: xdp-related flags 9458 * 9459 * Set or clear a bpf program for a device 9460 */ 9461int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9462 int fd, int expected_fd, u32 flags) 9463{ 9464 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9465 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9466 int err; 9467 9468 ASSERT_RTNL(); 9469 9470 if (fd >= 0) { 9471 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9472 mode != XDP_MODE_SKB); 9473 if (IS_ERR(new_prog)) 9474 return PTR_ERR(new_prog); 9475 } 9476 9477 if (expected_fd >= 0) { 9478 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9479 mode != XDP_MODE_SKB); 9480 if (IS_ERR(old_prog)) { 9481 err = PTR_ERR(old_prog); 9482 old_prog = NULL; 9483 goto err_out; 9484 } 9485 } 9486 9487 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9488 9489err_out: 9490 if (err && new_prog) 9491 bpf_prog_put(new_prog); 9492 if (old_prog) 9493 bpf_prog_put(old_prog); 9494 return err; 9495} 9496 9497/** 9498 * dev_new_index - allocate an ifindex 9499 * @net: the applicable net namespace 9500 * 9501 * Returns a suitable unique value for a new device interface 9502 * number. The caller must hold the rtnl semaphore or the 9503 * dev_base_lock to be sure it remains unique. 9504 */ 9505static int dev_new_index(struct net *net) 9506{ 9507 int ifindex = net->ifindex; 9508 9509 for (;;) { 9510 if (++ifindex <= 0) 9511 ifindex = 1; 9512 if (!__dev_get_by_index(net, ifindex)) 9513 return net->ifindex = ifindex; 9514 } 9515} 9516 9517/* Delayed registration/unregisteration */ 9518static LIST_HEAD(net_todo_list); 9519DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9520 9521static void net_set_todo(struct net_device *dev) 9522{ 9523 list_add_tail(&dev->todo_list, &net_todo_list); 9524 dev_net(dev)->dev_unreg_count++; 9525} 9526 9527static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9528 struct net_device *upper, netdev_features_t features) 9529{ 9530 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9531 netdev_features_t feature; 9532 int feature_bit; 9533 9534 for_each_netdev_feature(upper_disables, feature_bit) { 9535 feature = __NETIF_F_BIT(feature_bit); 9536 if (!(upper->wanted_features & feature) 9537 && (features & feature)) { 9538 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9539 &feature, upper->name); 9540 features &= ~feature; 9541 } 9542 } 9543 9544 return features; 9545} 9546 9547static void netdev_sync_lower_features(struct net_device *upper, 9548 struct net_device *lower, netdev_features_t features) 9549{ 9550 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9551 netdev_features_t feature; 9552 int feature_bit; 9553 9554 for_each_netdev_feature(upper_disables, feature_bit) { 9555 feature = __NETIF_F_BIT(feature_bit); 9556 if (!(features & feature) && (lower->features & feature)) { 9557 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9558 &feature, lower->name); 9559 lower->wanted_features &= ~feature; 9560 __netdev_update_features(lower); 9561 9562 if (unlikely(lower->features & feature)) 9563 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9564 &feature, lower->name); 9565 else 9566 netdev_features_change(lower); 9567 } 9568 } 9569} 9570 9571static netdev_features_t netdev_fix_features(struct net_device *dev, 9572 netdev_features_t features) 9573{ 9574 /* Fix illegal checksum combinations */ 9575 if ((features & NETIF_F_HW_CSUM) && 9576 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9577 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9578 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9579 } 9580 9581 /* TSO requires that SG is present as well. */ 9582 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9583 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9584 features &= ~NETIF_F_ALL_TSO; 9585 } 9586 9587 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9588 !(features & NETIF_F_IP_CSUM)) { 9589 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9590 features &= ~NETIF_F_TSO; 9591 features &= ~NETIF_F_TSO_ECN; 9592 } 9593 9594 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9595 !(features & NETIF_F_IPV6_CSUM)) { 9596 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9597 features &= ~NETIF_F_TSO6; 9598 } 9599 9600 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9601 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9602 features &= ~NETIF_F_TSO_MANGLEID; 9603 9604 /* TSO ECN requires that TSO is present as well. */ 9605 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9606 features &= ~NETIF_F_TSO_ECN; 9607 9608 /* Software GSO depends on SG. */ 9609 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9610 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9611 features &= ~NETIF_F_GSO; 9612 } 9613 9614 /* GSO partial features require GSO partial be set */ 9615 if ((features & dev->gso_partial_features) && 9616 !(features & NETIF_F_GSO_PARTIAL)) { 9617 netdev_dbg(dev, 9618 "Dropping partially supported GSO features since no GSO partial.\n"); 9619 features &= ~dev->gso_partial_features; 9620 } 9621 9622 if (!(features & NETIF_F_RXCSUM)) { 9623 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9624 * successfully merged by hardware must also have the 9625 * checksum verified by hardware. If the user does not 9626 * want to enable RXCSUM, logically, we should disable GRO_HW. 9627 */ 9628 if (features & NETIF_F_GRO_HW) { 9629 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9630 features &= ~NETIF_F_GRO_HW; 9631 } 9632 } 9633 9634 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9635 if (features & NETIF_F_RXFCS) { 9636 if (features & NETIF_F_LRO) { 9637 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9638 features &= ~NETIF_F_LRO; 9639 } 9640 9641 if (features & NETIF_F_GRO_HW) { 9642 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9643 features &= ~NETIF_F_GRO_HW; 9644 } 9645 } 9646 9647 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9648 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9649 features &= ~NETIF_F_HW_TLS_RX; 9650 } 9651 9652 return features; 9653} 9654 9655int __netdev_update_features(struct net_device *dev) 9656{ 9657 struct net_device *upper, *lower; 9658 netdev_features_t features; 9659 struct list_head *iter; 9660 int err = -1; 9661 9662 ASSERT_RTNL(); 9663 9664 features = netdev_get_wanted_features(dev); 9665 9666 if (dev->netdev_ops->ndo_fix_features) 9667 features = dev->netdev_ops->ndo_fix_features(dev, features); 9668 9669 /* driver might be less strict about feature dependencies */ 9670 features = netdev_fix_features(dev, features); 9671 9672 /* some features can't be enabled if they're off on an upper device */ 9673 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9674 features = netdev_sync_upper_features(dev, upper, features); 9675 9676 if (dev->features == features) 9677 goto sync_lower; 9678 9679 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9680 &dev->features, &features); 9681 9682 if (dev->netdev_ops->ndo_set_features) 9683 err = dev->netdev_ops->ndo_set_features(dev, features); 9684 else 9685 err = 0; 9686 9687 if (unlikely(err < 0)) { 9688 netdev_err(dev, 9689 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9690 err, &features, &dev->features); 9691 /* return non-0 since some features might have changed and 9692 * it's better to fire a spurious notification than miss it 9693 */ 9694 return -1; 9695 } 9696 9697sync_lower: 9698 /* some features must be disabled on lower devices when disabled 9699 * on an upper device (think: bonding master or bridge) 9700 */ 9701 netdev_for_each_lower_dev(dev, lower, iter) 9702 netdev_sync_lower_features(dev, lower, features); 9703 9704 if (!err) { 9705 netdev_features_t diff = features ^ dev->features; 9706 9707 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9708 /* udp_tunnel_{get,drop}_rx_info both need 9709 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9710 * device, or they won't do anything. 9711 * Thus we need to update dev->features 9712 * *before* calling udp_tunnel_get_rx_info, 9713 * but *after* calling udp_tunnel_drop_rx_info. 9714 */ 9715 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9716 dev->features = features; 9717 udp_tunnel_get_rx_info(dev); 9718 } else { 9719 udp_tunnel_drop_rx_info(dev); 9720 } 9721 } 9722 9723 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9724 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9725 dev->features = features; 9726 err |= vlan_get_rx_ctag_filter_info(dev); 9727 } else { 9728 vlan_drop_rx_ctag_filter_info(dev); 9729 } 9730 } 9731 9732 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9733 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9734 dev->features = features; 9735 err |= vlan_get_rx_stag_filter_info(dev); 9736 } else { 9737 vlan_drop_rx_stag_filter_info(dev); 9738 } 9739 } 9740 9741 dev->features = features; 9742 } 9743 9744 return err < 0 ? 0 : 1; 9745} 9746 9747/** 9748 * netdev_update_features - recalculate device features 9749 * @dev: the device to check 9750 * 9751 * Recalculate dev->features set and send notifications if it 9752 * has changed. Should be called after driver or hardware dependent 9753 * conditions might have changed that influence the features. 9754 */ 9755void netdev_update_features(struct net_device *dev) 9756{ 9757 if (__netdev_update_features(dev)) 9758 netdev_features_change(dev); 9759} 9760EXPORT_SYMBOL(netdev_update_features); 9761 9762/** 9763 * netdev_change_features - recalculate device features 9764 * @dev: the device to check 9765 * 9766 * Recalculate dev->features set and send notifications even 9767 * if they have not changed. Should be called instead of 9768 * netdev_update_features() if also dev->vlan_features might 9769 * have changed to allow the changes to be propagated to stacked 9770 * VLAN devices. 9771 */ 9772void netdev_change_features(struct net_device *dev) 9773{ 9774 __netdev_update_features(dev); 9775 netdev_features_change(dev); 9776} 9777EXPORT_SYMBOL(netdev_change_features); 9778 9779/** 9780 * netif_stacked_transfer_operstate - transfer operstate 9781 * @rootdev: the root or lower level device to transfer state from 9782 * @dev: the device to transfer operstate to 9783 * 9784 * Transfer operational state from root to device. This is normally 9785 * called when a stacking relationship exists between the root 9786 * device and the device(a leaf device). 9787 */ 9788void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9789 struct net_device *dev) 9790{ 9791 if (rootdev->operstate == IF_OPER_DORMANT) 9792 netif_dormant_on(dev); 9793 else 9794 netif_dormant_off(dev); 9795 9796 if (rootdev->operstate == IF_OPER_TESTING) 9797 netif_testing_on(dev); 9798 else 9799 netif_testing_off(dev); 9800 9801 if (netif_carrier_ok(rootdev)) 9802 netif_carrier_on(dev); 9803 else 9804 netif_carrier_off(dev); 9805} 9806EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9807 9808static int netif_alloc_rx_queues(struct net_device *dev) 9809{ 9810 unsigned int i, count = dev->num_rx_queues; 9811 struct netdev_rx_queue *rx; 9812 size_t sz = count * sizeof(*rx); 9813 int err = 0; 9814 9815 BUG_ON(count < 1); 9816 9817 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9818 if (!rx) 9819 return -ENOMEM; 9820 9821 dev->_rx = rx; 9822 9823 for (i = 0; i < count; i++) { 9824 rx[i].dev = dev; 9825 9826 /* XDP RX-queue setup */ 9827 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9828 if (err < 0) 9829 goto err_rxq_info; 9830 } 9831 return 0; 9832 9833err_rxq_info: 9834 /* Rollback successful reg's and free other resources */ 9835 while (i--) 9836 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9837 kvfree(dev->_rx); 9838 dev->_rx = NULL; 9839 return err; 9840} 9841 9842static void netif_free_rx_queues(struct net_device *dev) 9843{ 9844 unsigned int i, count = dev->num_rx_queues; 9845 9846 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9847 if (!dev->_rx) 9848 return; 9849 9850 for (i = 0; i < count; i++) 9851 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9852 9853 kvfree(dev->_rx); 9854} 9855 9856static void netdev_init_one_queue(struct net_device *dev, 9857 struct netdev_queue *queue, void *_unused) 9858{ 9859 /* Initialize queue lock */ 9860 spin_lock_init(&queue->_xmit_lock); 9861 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9862 queue->xmit_lock_owner = -1; 9863 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9864 queue->dev = dev; 9865#ifdef CONFIG_BQL 9866 dql_init(&queue->dql, HZ); 9867#endif 9868} 9869 9870static void netif_free_tx_queues(struct net_device *dev) 9871{ 9872 kvfree(dev->_tx); 9873} 9874 9875static int netif_alloc_netdev_queues(struct net_device *dev) 9876{ 9877 unsigned int count = dev->num_tx_queues; 9878 struct netdev_queue *tx; 9879 size_t sz = count * sizeof(*tx); 9880 9881 if (count < 1 || count > 0xffff) 9882 return -EINVAL; 9883 9884 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9885 if (!tx) 9886 return -ENOMEM; 9887 9888 dev->_tx = tx; 9889 9890 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9891 spin_lock_init(&dev->tx_global_lock); 9892 9893 return 0; 9894} 9895 9896void netif_tx_stop_all_queues(struct net_device *dev) 9897{ 9898 unsigned int i; 9899 9900 for (i = 0; i < dev->num_tx_queues; i++) { 9901 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9902 9903 netif_tx_stop_queue(txq); 9904 } 9905} 9906EXPORT_SYMBOL(netif_tx_stop_all_queues); 9907 9908/** 9909 * register_netdevice - register a network device 9910 * @dev: device to register 9911 * 9912 * Take a completed network device structure and add it to the kernel 9913 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9914 * chain. 0 is returned on success. A negative errno code is returned 9915 * on a failure to set up the device, or if the name is a duplicate. 9916 * 9917 * Callers must hold the rtnl semaphore. You may want 9918 * register_netdev() instead of this. 9919 * 9920 * BUGS: 9921 * The locking appears insufficient to guarantee two parallel registers 9922 * will not get the same name. 9923 */ 9924 9925int register_netdevice(struct net_device *dev) 9926{ 9927 int ret; 9928 struct net *net = dev_net(dev); 9929 9930 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9931 NETDEV_FEATURE_COUNT); 9932 BUG_ON(dev_boot_phase); 9933 ASSERT_RTNL(); 9934 9935 might_sleep(); 9936 9937 /* When net_device's are persistent, this will be fatal. */ 9938 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9939 BUG_ON(!net); 9940 9941 ret = ethtool_check_ops(dev->ethtool_ops); 9942 if (ret) 9943 return ret; 9944 9945 spin_lock_init(&dev->addr_list_lock); 9946 netdev_set_addr_lockdep_class(dev); 9947 9948 ret = dev_get_valid_name(net, dev, dev->name); 9949 if (ret < 0) 9950 goto out; 9951 9952 ret = -ENOMEM; 9953 dev->name_node = netdev_name_node_head_alloc(dev); 9954 if (!dev->name_node) 9955 goto out; 9956 9957 /* Init, if this function is available */ 9958 if (dev->netdev_ops->ndo_init) { 9959 ret = dev->netdev_ops->ndo_init(dev); 9960 if (ret) { 9961 if (ret > 0) 9962 ret = -EIO; 9963 goto err_free_name; 9964 } 9965 } 9966 9967 if (((dev->hw_features | dev->features) & 9968 NETIF_F_HW_VLAN_CTAG_FILTER) && 9969 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9970 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9971 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9972 ret = -EINVAL; 9973 goto err_uninit; 9974 } 9975 9976 ret = -EBUSY; 9977 if (!dev->ifindex) 9978 dev->ifindex = dev_new_index(net); 9979 else if (__dev_get_by_index(net, dev->ifindex)) 9980 goto err_uninit; 9981 9982 /* Transfer changeable features to wanted_features and enable 9983 * software offloads (GSO and GRO). 9984 */ 9985 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9986 dev->features |= NETIF_F_SOFT_FEATURES; 9987 9988 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9989 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9990 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9991 } 9992 9993 dev->wanted_features = dev->features & dev->hw_features; 9994 9995 if (!(dev->flags & IFF_LOOPBACK)) 9996 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9997 9998 /* If IPv4 TCP segmentation offload is supported we should also 9999 * allow the device to enable segmenting the frame with the option 10000 * of ignoring a static IP ID value. This doesn't enable the 10001 * feature itself but allows the user to enable it later. 10002 */ 10003 if (dev->hw_features & NETIF_F_TSO) 10004 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10005 if (dev->vlan_features & NETIF_F_TSO) 10006 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10007 if (dev->mpls_features & NETIF_F_TSO) 10008 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10009 if (dev->hw_enc_features & NETIF_F_TSO) 10010 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10011 10012 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10013 */ 10014 dev->vlan_features |= NETIF_F_HIGHDMA; 10015 10016 /* Make NETIF_F_SG inheritable to tunnel devices. 10017 */ 10018 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10019 10020 /* Make NETIF_F_SG inheritable to MPLS. 10021 */ 10022 dev->mpls_features |= NETIF_F_SG; 10023 10024 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10025 ret = notifier_to_errno(ret); 10026 if (ret) 10027 goto err_uninit; 10028 10029 ret = netdev_register_kobject(dev); 10030 if (ret) { 10031 dev->reg_state = NETREG_UNREGISTERED; 10032 goto err_uninit; 10033 } 10034 dev->reg_state = NETREG_REGISTERED; 10035 10036 __netdev_update_features(dev); 10037 10038 /* 10039 * Default initial state at registry is that the 10040 * device is present. 10041 */ 10042 10043 set_bit(__LINK_STATE_PRESENT, &dev->state); 10044 10045 linkwatch_init_dev(dev); 10046 10047 dev_init_scheduler(dev); 10048 dev_hold(dev); 10049 list_netdevice(dev); 10050 add_device_randomness(dev->dev_addr, dev->addr_len); 10051 10052 /* If the device has permanent device address, driver should 10053 * set dev_addr and also addr_assign_type should be set to 10054 * NET_ADDR_PERM (default value). 10055 */ 10056 if (dev->addr_assign_type == NET_ADDR_PERM) 10057 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10058 10059 /* Notify protocols, that a new device appeared. */ 10060 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10061 ret = notifier_to_errno(ret); 10062 if (ret) { 10063 /* Expect explicit free_netdev() on failure */ 10064 dev->needs_free_netdev = false; 10065 unregister_netdevice_queue(dev, NULL); 10066 goto out; 10067 } 10068 /* 10069 * Prevent userspace races by waiting until the network 10070 * device is fully setup before sending notifications. 10071 */ 10072 if (!dev->rtnl_link_ops || 10073 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10074 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10075 10076out: 10077 return ret; 10078 10079err_uninit: 10080 if (dev->netdev_ops->ndo_uninit) 10081 dev->netdev_ops->ndo_uninit(dev); 10082 if (dev->priv_destructor) 10083 dev->priv_destructor(dev); 10084err_free_name: 10085 netdev_name_node_free(dev->name_node); 10086 goto out; 10087} 10088EXPORT_SYMBOL(register_netdevice); 10089 10090/** 10091 * init_dummy_netdev - init a dummy network device for NAPI 10092 * @dev: device to init 10093 * 10094 * This takes a network device structure and initialize the minimum 10095 * amount of fields so it can be used to schedule NAPI polls without 10096 * registering a full blown interface. This is to be used by drivers 10097 * that need to tie several hardware interfaces to a single NAPI 10098 * poll scheduler due to HW limitations. 10099 */ 10100int init_dummy_netdev(struct net_device *dev) 10101{ 10102 /* Clear everything. Note we don't initialize spinlocks 10103 * are they aren't supposed to be taken by any of the 10104 * NAPI code and this dummy netdev is supposed to be 10105 * only ever used for NAPI polls 10106 */ 10107 memset(dev, 0, sizeof(struct net_device)); 10108 10109 /* make sure we BUG if trying to hit standard 10110 * register/unregister code path 10111 */ 10112 dev->reg_state = NETREG_DUMMY; 10113 10114 /* NAPI wants this */ 10115 INIT_LIST_HEAD(&dev->napi_list); 10116 10117 /* a dummy interface is started by default */ 10118 set_bit(__LINK_STATE_PRESENT, &dev->state); 10119 set_bit(__LINK_STATE_START, &dev->state); 10120 10121 /* napi_busy_loop stats accounting wants this */ 10122 dev_net_set(dev, &init_net); 10123 10124 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10125 * because users of this 'device' dont need to change 10126 * its refcount. 10127 */ 10128 10129 return 0; 10130} 10131EXPORT_SYMBOL_GPL(init_dummy_netdev); 10132 10133 10134/** 10135 * register_netdev - register a network device 10136 * @dev: device to register 10137 * 10138 * Take a completed network device structure and add it to the kernel 10139 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10140 * chain. 0 is returned on success. A negative errno code is returned 10141 * on a failure to set up the device, or if the name is a duplicate. 10142 * 10143 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10144 * and expands the device name if you passed a format string to 10145 * alloc_netdev. 10146 */ 10147int register_netdev(struct net_device *dev) 10148{ 10149 int err; 10150 10151 if (rtnl_lock_killable()) 10152 return -EINTR; 10153 err = register_netdevice(dev); 10154 rtnl_unlock(); 10155 return err; 10156} 10157EXPORT_SYMBOL(register_netdev); 10158 10159int netdev_refcnt_read(const struct net_device *dev) 10160{ 10161 int i, refcnt = 0; 10162 10163 for_each_possible_cpu(i) 10164 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10165 return refcnt; 10166} 10167EXPORT_SYMBOL(netdev_refcnt_read); 10168 10169#define WAIT_REFS_MIN_MSECS 1 10170#define WAIT_REFS_MAX_MSECS 250 10171/** 10172 * netdev_wait_allrefs - wait until all references are gone. 10173 * @dev: target net_device 10174 * 10175 * This is called when unregistering network devices. 10176 * 10177 * Any protocol or device that holds a reference should register 10178 * for netdevice notification, and cleanup and put back the 10179 * reference if they receive an UNREGISTER event. 10180 * We can get stuck here if buggy protocols don't correctly 10181 * call dev_put. 10182 */ 10183static void netdev_wait_allrefs(struct net_device *dev) 10184{ 10185 unsigned long rebroadcast_time, warning_time; 10186 int wait = 0, refcnt; 10187 10188 linkwatch_forget_dev(dev); 10189 10190 rebroadcast_time = warning_time = jiffies; 10191 refcnt = netdev_refcnt_read(dev); 10192 10193 while (refcnt != 0) { 10194 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10195 rtnl_lock(); 10196 10197 /* Rebroadcast unregister notification */ 10198 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10199 10200 __rtnl_unlock(); 10201 rcu_barrier(); 10202 rtnl_lock(); 10203 10204 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10205 &dev->state)) { 10206 /* We must not have linkwatch events 10207 * pending on unregister. If this 10208 * happens, we simply run the queue 10209 * unscheduled, resulting in a noop 10210 * for this device. 10211 */ 10212 linkwatch_run_queue(); 10213 } 10214 10215 __rtnl_unlock(); 10216 10217 rebroadcast_time = jiffies; 10218 } 10219 10220 if (!wait) { 10221 rcu_barrier(); 10222 wait = WAIT_REFS_MIN_MSECS; 10223 } else { 10224 msleep(wait); 10225 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10226 } 10227 10228 refcnt = netdev_refcnt_read(dev); 10229 10230 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10231 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10232 dev->name, refcnt); 10233 warning_time = jiffies; 10234 } 10235 } 10236} 10237 10238/* The sequence is: 10239 * 10240 * rtnl_lock(); 10241 * ... 10242 * register_netdevice(x1); 10243 * register_netdevice(x2); 10244 * ... 10245 * unregister_netdevice(y1); 10246 * unregister_netdevice(y2); 10247 * ... 10248 * rtnl_unlock(); 10249 * free_netdev(y1); 10250 * free_netdev(y2); 10251 * 10252 * We are invoked by rtnl_unlock(). 10253 * This allows us to deal with problems: 10254 * 1) We can delete sysfs objects which invoke hotplug 10255 * without deadlocking with linkwatch via keventd. 10256 * 2) Since we run with the RTNL semaphore not held, we can sleep 10257 * safely in order to wait for the netdev refcnt to drop to zero. 10258 * 10259 * We must not return until all unregister events added during 10260 * the interval the lock was held have been completed. 10261 */ 10262void netdev_run_todo(void) 10263{ 10264 struct list_head list; 10265#ifdef CONFIG_LOCKDEP 10266 struct list_head unlink_list; 10267 10268 list_replace_init(&net_unlink_list, &unlink_list); 10269 10270 while (!list_empty(&unlink_list)) { 10271 struct net_device *dev = list_first_entry(&unlink_list, 10272 struct net_device, 10273 unlink_list); 10274 list_del_init(&dev->unlink_list); 10275 dev->nested_level = dev->lower_level - 1; 10276 } 10277#endif 10278 10279 /* Snapshot list, allow later requests */ 10280 list_replace_init(&net_todo_list, &list); 10281 10282 __rtnl_unlock(); 10283 10284 10285 /* Wait for rcu callbacks to finish before next phase */ 10286 if (!list_empty(&list)) 10287 rcu_barrier(); 10288 10289 while (!list_empty(&list)) { 10290 struct net_device *dev 10291 = list_first_entry(&list, struct net_device, todo_list); 10292 list_del(&dev->todo_list); 10293 10294 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10295 pr_err("network todo '%s' but state %d\n", 10296 dev->name, dev->reg_state); 10297 dump_stack(); 10298 continue; 10299 } 10300 10301 dev->reg_state = NETREG_UNREGISTERED; 10302 10303 netdev_wait_allrefs(dev); 10304 10305 /* paranoia */ 10306 BUG_ON(netdev_refcnt_read(dev)); 10307 BUG_ON(!list_empty(&dev->ptype_all)); 10308 BUG_ON(!list_empty(&dev->ptype_specific)); 10309 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10310 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10311 10312 if (dev->priv_destructor) 10313 dev->priv_destructor(dev); 10314 if (dev->needs_free_netdev) 10315 free_netdev(dev); 10316 10317 /* Report a network device has been unregistered */ 10318 rtnl_lock(); 10319 dev_net(dev)->dev_unreg_count--; 10320 __rtnl_unlock(); 10321 wake_up(&netdev_unregistering_wq); 10322 10323 /* Free network device */ 10324 kobject_put(&dev->dev.kobj); 10325 } 10326} 10327 10328/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10329 * all the same fields in the same order as net_device_stats, with only 10330 * the type differing, but rtnl_link_stats64 may have additional fields 10331 * at the end for newer counters. 10332 */ 10333void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10334 const struct net_device_stats *netdev_stats) 10335{ 10336 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10337 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10338 u64 *dst = (u64 *)stats64; 10339 10340 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10341 for (i = 0; i < n; i++) 10342 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10343 /* zero out counters that only exist in rtnl_link_stats64 */ 10344 memset((char *)stats64 + n * sizeof(u64), 0, 10345 sizeof(*stats64) - n * sizeof(u64)); 10346} 10347EXPORT_SYMBOL(netdev_stats_to_stats64); 10348 10349/** 10350 * dev_get_stats - get network device statistics 10351 * @dev: device to get statistics from 10352 * @storage: place to store stats 10353 * 10354 * Get network statistics from device. Return @storage. 10355 * The device driver may provide its own method by setting 10356 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10357 * otherwise the internal statistics structure is used. 10358 */ 10359struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10360 struct rtnl_link_stats64 *storage) 10361{ 10362 const struct net_device_ops *ops = dev->netdev_ops; 10363 10364 if (ops->ndo_get_stats64) { 10365 memset(storage, 0, sizeof(*storage)); 10366 ops->ndo_get_stats64(dev, storage); 10367 } else if (ops->ndo_get_stats) { 10368 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10369 } else { 10370 netdev_stats_to_stats64(storage, &dev->stats); 10371 } 10372 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10373 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10374 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10375 return storage; 10376} 10377EXPORT_SYMBOL(dev_get_stats); 10378 10379/** 10380 * dev_fetch_sw_netstats - get per-cpu network device statistics 10381 * @s: place to store stats 10382 * @netstats: per-cpu network stats to read from 10383 * 10384 * Read per-cpu network statistics and populate the related fields in @s. 10385 */ 10386void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10387 const struct pcpu_sw_netstats __percpu *netstats) 10388{ 10389 int cpu; 10390 10391 for_each_possible_cpu(cpu) { 10392 const struct pcpu_sw_netstats *stats; 10393 struct pcpu_sw_netstats tmp; 10394 unsigned int start; 10395 10396 stats = per_cpu_ptr(netstats, cpu); 10397 do { 10398 start = u64_stats_fetch_begin_irq(&stats->syncp); 10399 tmp.rx_packets = stats->rx_packets; 10400 tmp.rx_bytes = stats->rx_bytes; 10401 tmp.tx_packets = stats->tx_packets; 10402 tmp.tx_bytes = stats->tx_bytes; 10403 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10404 10405 s->rx_packets += tmp.rx_packets; 10406 s->rx_bytes += tmp.rx_bytes; 10407 s->tx_packets += tmp.tx_packets; 10408 s->tx_bytes += tmp.tx_bytes; 10409 } 10410} 10411EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10412 10413struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10414{ 10415 struct netdev_queue *queue = dev_ingress_queue(dev); 10416 10417#ifdef CONFIG_NET_CLS_ACT 10418 if (queue) 10419 return queue; 10420 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10421 if (!queue) 10422 return NULL; 10423 netdev_init_one_queue(dev, queue, NULL); 10424 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10425 queue->qdisc_sleeping = &noop_qdisc; 10426 rcu_assign_pointer(dev->ingress_queue, queue); 10427#endif 10428 return queue; 10429} 10430 10431static const struct ethtool_ops default_ethtool_ops; 10432 10433void netdev_set_default_ethtool_ops(struct net_device *dev, 10434 const struct ethtool_ops *ops) 10435{ 10436 if (dev->ethtool_ops == &default_ethtool_ops) 10437 dev->ethtool_ops = ops; 10438} 10439EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10440 10441void netdev_freemem(struct net_device *dev) 10442{ 10443 char *addr = (char *)dev - dev->padded; 10444 10445 kvfree(addr); 10446} 10447 10448/** 10449 * alloc_netdev_mqs - allocate network device 10450 * @sizeof_priv: size of private data to allocate space for 10451 * @name: device name format string 10452 * @name_assign_type: origin of device name 10453 * @setup: callback to initialize device 10454 * @txqs: the number of TX subqueues to allocate 10455 * @rxqs: the number of RX subqueues to allocate 10456 * 10457 * Allocates a struct net_device with private data area for driver use 10458 * and performs basic initialization. Also allocates subqueue structs 10459 * for each queue on the device. 10460 */ 10461struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10462 unsigned char name_assign_type, 10463 void (*setup)(struct net_device *), 10464 unsigned int txqs, unsigned int rxqs) 10465{ 10466 struct net_device *dev; 10467 unsigned int alloc_size; 10468 struct net_device *p; 10469 10470 BUG_ON(strlen(name) >= sizeof(dev->name)); 10471 10472 if (txqs < 1) { 10473 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10474 return NULL; 10475 } 10476 10477 if (rxqs < 1) { 10478 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10479 return NULL; 10480 } 10481 10482 alloc_size = sizeof(struct net_device); 10483 if (sizeof_priv) { 10484 /* ensure 32-byte alignment of private area */ 10485 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10486 alloc_size += sizeof_priv; 10487 } 10488 /* ensure 32-byte alignment of whole construct */ 10489 alloc_size += NETDEV_ALIGN - 1; 10490 10491 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10492 if (!p) 10493 return NULL; 10494 10495 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10496 dev->padded = (char *)dev - (char *)p; 10497 10498 dev->pcpu_refcnt = alloc_percpu(int); 10499 if (!dev->pcpu_refcnt) 10500 goto free_dev; 10501 10502 if (dev_addr_init(dev)) 10503 goto free_pcpu; 10504 10505 dev_mc_init(dev); 10506 dev_uc_init(dev); 10507 10508 dev_net_set(dev, &init_net); 10509 10510 dev->gso_max_size = GSO_MAX_SIZE; 10511 dev->gso_max_segs = GSO_MAX_SEGS; 10512 dev->upper_level = 1; 10513 dev->lower_level = 1; 10514#ifdef CONFIG_LOCKDEP 10515 dev->nested_level = 0; 10516 INIT_LIST_HEAD(&dev->unlink_list); 10517#endif 10518 10519 INIT_LIST_HEAD(&dev->napi_list); 10520 INIT_LIST_HEAD(&dev->unreg_list); 10521 INIT_LIST_HEAD(&dev->close_list); 10522 INIT_LIST_HEAD(&dev->link_watch_list); 10523 INIT_LIST_HEAD(&dev->adj_list.upper); 10524 INIT_LIST_HEAD(&dev->adj_list.lower); 10525 INIT_LIST_HEAD(&dev->ptype_all); 10526 INIT_LIST_HEAD(&dev->ptype_specific); 10527 INIT_LIST_HEAD(&dev->net_notifier_list); 10528#ifdef CONFIG_NET_SCHED 10529 hash_init(dev->qdisc_hash); 10530#endif 10531 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10532 setup(dev); 10533 10534 if (!dev->tx_queue_len) { 10535 dev->priv_flags |= IFF_NO_QUEUE; 10536 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10537 } 10538 10539 dev->num_tx_queues = txqs; 10540 dev->real_num_tx_queues = txqs; 10541 if (netif_alloc_netdev_queues(dev)) 10542 goto free_all; 10543 10544 dev->num_rx_queues = rxqs; 10545 dev->real_num_rx_queues = rxqs; 10546 if (netif_alloc_rx_queues(dev)) 10547 goto free_all; 10548 10549 strcpy(dev->name, name); 10550 dev->name_assign_type = name_assign_type; 10551 dev->group = INIT_NETDEV_GROUP; 10552 if (!dev->ethtool_ops) 10553 dev->ethtool_ops = &default_ethtool_ops; 10554 10555 nf_hook_ingress_init(dev); 10556 10557 return dev; 10558 10559free_all: 10560 free_netdev(dev); 10561 return NULL; 10562 10563free_pcpu: 10564 free_percpu(dev->pcpu_refcnt); 10565free_dev: 10566 netdev_freemem(dev); 10567 return NULL; 10568} 10569EXPORT_SYMBOL(alloc_netdev_mqs); 10570 10571/** 10572 * free_netdev - free network device 10573 * @dev: device 10574 * 10575 * This function does the last stage of destroying an allocated device 10576 * interface. The reference to the device object is released. If this 10577 * is the last reference then it will be freed.Must be called in process 10578 * context. 10579 */ 10580void free_netdev(struct net_device *dev) 10581{ 10582 struct napi_struct *p, *n; 10583 10584 might_sleep(); 10585 10586 /* When called immediately after register_netdevice() failed the unwind 10587 * handling may still be dismantling the device. Handle that case by 10588 * deferring the free. 10589 */ 10590 if (dev->reg_state == NETREG_UNREGISTERING) { 10591 ASSERT_RTNL(); 10592 dev->needs_free_netdev = true; 10593 return; 10594 } 10595 10596 netif_free_tx_queues(dev); 10597 netif_free_rx_queues(dev); 10598 10599 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10600 10601 /* Flush device addresses */ 10602 dev_addr_flush(dev); 10603 10604 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10605 netif_napi_del(p); 10606 10607 free_percpu(dev->pcpu_refcnt); 10608 dev->pcpu_refcnt = NULL; 10609 free_percpu(dev->xdp_bulkq); 10610 dev->xdp_bulkq = NULL; 10611 10612 /* Compatibility with error handling in drivers */ 10613 if (dev->reg_state == NETREG_UNINITIALIZED) { 10614 netdev_freemem(dev); 10615 return; 10616 } 10617 10618 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10619 dev->reg_state = NETREG_RELEASED; 10620 10621 /* will free via device release */ 10622 put_device(&dev->dev); 10623} 10624EXPORT_SYMBOL(free_netdev); 10625 10626/** 10627 * synchronize_net - Synchronize with packet receive processing 10628 * 10629 * Wait for packets currently being received to be done. 10630 * Does not block later packets from starting. 10631 */ 10632void synchronize_net(void) 10633{ 10634 might_sleep(); 10635 if (rtnl_is_locked()) 10636 synchronize_rcu_expedited(); 10637 else 10638 synchronize_rcu(); 10639} 10640EXPORT_SYMBOL(synchronize_net); 10641 10642/** 10643 * unregister_netdevice_queue - remove device from the kernel 10644 * @dev: device 10645 * @head: list 10646 * 10647 * This function shuts down a device interface and removes it 10648 * from the kernel tables. 10649 * If head not NULL, device is queued to be unregistered later. 10650 * 10651 * Callers must hold the rtnl semaphore. You may want 10652 * unregister_netdev() instead of this. 10653 */ 10654 10655void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10656{ 10657 ASSERT_RTNL(); 10658 10659 if (head) { 10660 list_move_tail(&dev->unreg_list, head); 10661 } else { 10662 LIST_HEAD(single); 10663 10664 list_add(&dev->unreg_list, &single); 10665 unregister_netdevice_many(&single); 10666 } 10667} 10668EXPORT_SYMBOL(unregister_netdevice_queue); 10669 10670/** 10671 * unregister_netdevice_many - unregister many devices 10672 * @head: list of devices 10673 * 10674 * Note: As most callers use a stack allocated list_head, 10675 * we force a list_del() to make sure stack wont be corrupted later. 10676 */ 10677void unregister_netdevice_many(struct list_head *head) 10678{ 10679 struct net_device *dev, *tmp; 10680 LIST_HEAD(close_head); 10681 10682 BUG_ON(dev_boot_phase); 10683 ASSERT_RTNL(); 10684 10685 if (list_empty(head)) 10686 return; 10687 10688 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10689 /* Some devices call without registering 10690 * for initialization unwind. Remove those 10691 * devices and proceed with the remaining. 10692 */ 10693 if (dev->reg_state == NETREG_UNINITIALIZED) { 10694 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10695 dev->name, dev); 10696 10697 WARN_ON(1); 10698 list_del(&dev->unreg_list); 10699 continue; 10700 } 10701 dev->dismantle = true; 10702 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10703 } 10704 10705 /* If device is running, close it first. */ 10706 list_for_each_entry(dev, head, unreg_list) 10707 list_add_tail(&dev->close_list, &close_head); 10708 dev_close_many(&close_head, true); 10709 10710 list_for_each_entry(dev, head, unreg_list) { 10711 /* And unlink it from device chain. */ 10712 unlist_netdevice(dev); 10713 10714 dev->reg_state = NETREG_UNREGISTERING; 10715 } 10716 flush_all_backlogs(); 10717 10718 synchronize_net(); 10719 10720 list_for_each_entry(dev, head, unreg_list) { 10721 struct sk_buff *skb = NULL; 10722 10723 /* Shutdown queueing discipline. */ 10724 dev_shutdown(dev); 10725 10726 dev_xdp_uninstall(dev); 10727 10728 /* Notify protocols, that we are about to destroy 10729 * this device. They should clean all the things. 10730 */ 10731 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10732 10733 if (!dev->rtnl_link_ops || 10734 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10735 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10736 GFP_KERNEL, NULL, 0); 10737 10738 /* 10739 * Flush the unicast and multicast chains 10740 */ 10741 dev_uc_flush(dev); 10742 dev_mc_flush(dev); 10743 10744 netdev_name_node_alt_flush(dev); 10745 netdev_name_node_free(dev->name_node); 10746 10747 if (dev->netdev_ops->ndo_uninit) 10748 dev->netdev_ops->ndo_uninit(dev); 10749 10750 if (skb) 10751 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10752 10753 /* Notifier chain MUST detach us all upper devices. */ 10754 WARN_ON(netdev_has_any_upper_dev(dev)); 10755 WARN_ON(netdev_has_any_lower_dev(dev)); 10756 10757 /* Remove entries from kobject tree */ 10758 netdev_unregister_kobject(dev); 10759#ifdef CONFIG_XPS 10760 /* Remove XPS queueing entries */ 10761 netif_reset_xps_queues_gt(dev, 0); 10762#endif 10763 } 10764 10765 synchronize_net(); 10766 10767 list_for_each_entry(dev, head, unreg_list) { 10768 dev_put(dev); 10769 net_set_todo(dev); 10770 } 10771 10772 list_del(head); 10773} 10774EXPORT_SYMBOL(unregister_netdevice_many); 10775 10776/** 10777 * unregister_netdev - remove device from the kernel 10778 * @dev: device 10779 * 10780 * This function shuts down a device interface and removes it 10781 * from the kernel tables. 10782 * 10783 * This is just a wrapper for unregister_netdevice that takes 10784 * the rtnl semaphore. In general you want to use this and not 10785 * unregister_netdevice. 10786 */ 10787void unregister_netdev(struct net_device *dev) 10788{ 10789 rtnl_lock(); 10790 unregister_netdevice(dev); 10791 rtnl_unlock(); 10792} 10793EXPORT_SYMBOL(unregister_netdev); 10794 10795/** 10796 * dev_change_net_namespace - move device to different nethost namespace 10797 * @dev: device 10798 * @net: network namespace 10799 * @pat: If not NULL name pattern to try if the current device name 10800 * is already taken in the destination network namespace. 10801 * 10802 * This function shuts down a device interface and moves it 10803 * to a new network namespace. On success 0 is returned, on 10804 * a failure a netagive errno code is returned. 10805 * 10806 * Callers must hold the rtnl semaphore. 10807 */ 10808 10809int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10810{ 10811 struct net *net_old = dev_net(dev); 10812 int err, new_nsid, new_ifindex; 10813 10814 ASSERT_RTNL(); 10815 10816 /* Don't allow namespace local devices to be moved. */ 10817 err = -EINVAL; 10818 if (dev->features & NETIF_F_NETNS_LOCAL) 10819 goto out; 10820 10821 /* Ensure the device has been registrered */ 10822 if (dev->reg_state != NETREG_REGISTERED) 10823 goto out; 10824 10825 /* Get out if there is nothing todo */ 10826 err = 0; 10827 if (net_eq(net_old, net)) 10828 goto out; 10829 10830 /* Pick the destination device name, and ensure 10831 * we can use it in the destination network namespace. 10832 */ 10833 err = -EEXIST; 10834 if (__dev_get_by_name(net, dev->name)) { 10835 /* We get here if we can't use the current device name */ 10836 if (!pat) 10837 goto out; 10838 err = dev_get_valid_name(net, dev, pat); 10839 if (err < 0) 10840 goto out; 10841 } 10842 10843 /* 10844 * And now a mini version of register_netdevice unregister_netdevice. 10845 */ 10846 10847 /* If device is running close it first. */ 10848 dev_close(dev); 10849 10850 /* And unlink it from device chain */ 10851 unlist_netdevice(dev); 10852 10853 synchronize_net(); 10854 10855 /* Shutdown queueing discipline. */ 10856 dev_shutdown(dev); 10857 10858 /* Notify protocols, that we are about to destroy 10859 * this device. They should clean all the things. 10860 * 10861 * Note that dev->reg_state stays at NETREG_REGISTERED. 10862 * This is wanted because this way 8021q and macvlan know 10863 * the device is just moving and can keep their slaves up. 10864 */ 10865 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10866 rcu_barrier(); 10867 10868 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10869 /* If there is an ifindex conflict assign a new one */ 10870 if (__dev_get_by_index(net, dev->ifindex)) 10871 new_ifindex = dev_new_index(net); 10872 else 10873 new_ifindex = dev->ifindex; 10874 10875 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10876 new_ifindex); 10877 10878 /* 10879 * Flush the unicast and multicast chains 10880 */ 10881 dev_uc_flush(dev); 10882 dev_mc_flush(dev); 10883 10884 /* Send a netdev-removed uevent to the old namespace */ 10885 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10886 netdev_adjacent_del_links(dev); 10887 10888 /* Move per-net netdevice notifiers that are following the netdevice */ 10889 move_netdevice_notifiers_dev_net(dev, net); 10890 10891 /* Actually switch the network namespace */ 10892 dev_net_set(dev, net); 10893 dev->ifindex = new_ifindex; 10894 10895 /* Send a netdev-add uevent to the new namespace */ 10896 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10897 netdev_adjacent_add_links(dev); 10898 10899 /* Fixup kobjects */ 10900 err = device_rename(&dev->dev, dev->name); 10901 WARN_ON(err); 10902 10903 /* Adapt owner in case owning user namespace of target network 10904 * namespace is different from the original one. 10905 */ 10906 err = netdev_change_owner(dev, net_old, net); 10907 WARN_ON(err); 10908 10909 /* Add the device back in the hashes */ 10910 list_netdevice(dev); 10911 10912 /* Notify protocols, that a new device appeared. */ 10913 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10914 10915 /* 10916 * Prevent userspace races by waiting until the network 10917 * device is fully setup before sending notifications. 10918 */ 10919 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10920 10921 synchronize_net(); 10922 err = 0; 10923out: 10924 return err; 10925} 10926EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10927 10928static int dev_cpu_dead(unsigned int oldcpu) 10929{ 10930 struct sk_buff **list_skb; 10931 struct sk_buff *skb; 10932 unsigned int cpu; 10933 struct softnet_data *sd, *oldsd, *remsd = NULL; 10934 10935 local_irq_disable(); 10936 cpu = smp_processor_id(); 10937 sd = &per_cpu(softnet_data, cpu); 10938 oldsd = &per_cpu(softnet_data, oldcpu); 10939 10940 /* Find end of our completion_queue. */ 10941 list_skb = &sd->completion_queue; 10942 while (*list_skb) 10943 list_skb = &(*list_skb)->next; 10944 /* Append completion queue from offline CPU. */ 10945 *list_skb = oldsd->completion_queue; 10946 oldsd->completion_queue = NULL; 10947 10948 /* Append output queue from offline CPU. */ 10949 if (oldsd->output_queue) { 10950 *sd->output_queue_tailp = oldsd->output_queue; 10951 sd->output_queue_tailp = oldsd->output_queue_tailp; 10952 oldsd->output_queue = NULL; 10953 oldsd->output_queue_tailp = &oldsd->output_queue; 10954 } 10955 /* Append NAPI poll list from offline CPU, with one exception : 10956 * process_backlog() must be called by cpu owning percpu backlog. 10957 * We properly handle process_queue & input_pkt_queue later. 10958 */ 10959 while (!list_empty(&oldsd->poll_list)) { 10960 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10961 struct napi_struct, 10962 poll_list); 10963 10964 list_del_init(&napi->poll_list); 10965 if (napi->poll == process_backlog) 10966 napi->state = 0; 10967 else 10968 ____napi_schedule(sd, napi); 10969 } 10970 10971 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10972 local_irq_enable(); 10973 10974#ifdef CONFIG_RPS 10975 remsd = oldsd->rps_ipi_list; 10976 oldsd->rps_ipi_list = NULL; 10977#endif 10978 /* send out pending IPI's on offline CPU */ 10979 net_rps_send_ipi(remsd); 10980 10981 /* Process offline CPU's input_pkt_queue */ 10982 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10983 netif_rx_ni(skb); 10984 input_queue_head_incr(oldsd); 10985 } 10986 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10987 netif_rx_ni(skb); 10988 input_queue_head_incr(oldsd); 10989 } 10990 10991 return 0; 10992} 10993 10994/** 10995 * netdev_increment_features - increment feature set by one 10996 * @all: current feature set 10997 * @one: new feature set 10998 * @mask: mask feature set 10999 * 11000 * Computes a new feature set after adding a device with feature set 11001 * @one to the master device with current feature set @all. Will not 11002 * enable anything that is off in @mask. Returns the new feature set. 11003 */ 11004netdev_features_t netdev_increment_features(netdev_features_t all, 11005 netdev_features_t one, netdev_features_t mask) 11006{ 11007 if (mask & NETIF_F_HW_CSUM) 11008 mask |= NETIF_F_CSUM_MASK; 11009 mask |= NETIF_F_VLAN_CHALLENGED; 11010 11011 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11012 all &= one | ~NETIF_F_ALL_FOR_ALL; 11013 11014 /* If one device supports hw checksumming, set for all. */ 11015 if (all & NETIF_F_HW_CSUM) 11016 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11017 11018 return all; 11019} 11020EXPORT_SYMBOL(netdev_increment_features); 11021 11022static struct hlist_head * __net_init netdev_create_hash(void) 11023{ 11024 int i; 11025 struct hlist_head *hash; 11026 11027 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11028 if (hash != NULL) 11029 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11030 INIT_HLIST_HEAD(&hash[i]); 11031 11032 return hash; 11033} 11034 11035/* Initialize per network namespace state */ 11036static int __net_init netdev_init(struct net *net) 11037{ 11038 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11039 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11040 11041 if (net != &init_net) 11042 INIT_LIST_HEAD(&net->dev_base_head); 11043 11044 net->dev_name_head = netdev_create_hash(); 11045 if (net->dev_name_head == NULL) 11046 goto err_name; 11047 11048 net->dev_index_head = netdev_create_hash(); 11049 if (net->dev_index_head == NULL) 11050 goto err_idx; 11051 11052 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11053 11054 return 0; 11055 11056err_idx: 11057 kfree(net->dev_name_head); 11058err_name: 11059 return -ENOMEM; 11060} 11061 11062/** 11063 * netdev_drivername - network driver for the device 11064 * @dev: network device 11065 * 11066 * Determine network driver for device. 11067 */ 11068const char *netdev_drivername(const struct net_device *dev) 11069{ 11070 const struct device_driver *driver; 11071 const struct device *parent; 11072 const char *empty = ""; 11073 11074 parent = dev->dev.parent; 11075 if (!parent) 11076 return empty; 11077 11078 driver = parent->driver; 11079 if (driver && driver->name) 11080 return driver->name; 11081 return empty; 11082} 11083 11084static void __netdev_printk(const char *level, const struct net_device *dev, 11085 struct va_format *vaf) 11086{ 11087 if (dev && dev->dev.parent) { 11088 dev_printk_emit(level[1] - '0', 11089 dev->dev.parent, 11090 "%s %s %s%s: %pV", 11091 dev_driver_string(dev->dev.parent), 11092 dev_name(dev->dev.parent), 11093 netdev_name(dev), netdev_reg_state(dev), 11094 vaf); 11095 } else if (dev) { 11096 printk("%s%s%s: %pV", 11097 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11098 } else { 11099 printk("%s(NULL net_device): %pV", level, vaf); 11100 } 11101} 11102 11103void netdev_printk(const char *level, const struct net_device *dev, 11104 const char *format, ...) 11105{ 11106 struct va_format vaf; 11107 va_list args; 11108 11109 va_start(args, format); 11110 11111 vaf.fmt = format; 11112 vaf.va = &args; 11113 11114 __netdev_printk(level, dev, &vaf); 11115 11116 va_end(args); 11117} 11118EXPORT_SYMBOL(netdev_printk); 11119 11120#define define_netdev_printk_level(func, level) \ 11121void func(const struct net_device *dev, const char *fmt, ...) \ 11122{ \ 11123 struct va_format vaf; \ 11124 va_list args; \ 11125 \ 11126 va_start(args, fmt); \ 11127 \ 11128 vaf.fmt = fmt; \ 11129 vaf.va = &args; \ 11130 \ 11131 __netdev_printk(level, dev, &vaf); \ 11132 \ 11133 va_end(args); \ 11134} \ 11135EXPORT_SYMBOL(func); 11136 11137define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11138define_netdev_printk_level(netdev_alert, KERN_ALERT); 11139define_netdev_printk_level(netdev_crit, KERN_CRIT); 11140define_netdev_printk_level(netdev_err, KERN_ERR); 11141define_netdev_printk_level(netdev_warn, KERN_WARNING); 11142define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11143define_netdev_printk_level(netdev_info, KERN_INFO); 11144 11145static void __net_exit netdev_exit(struct net *net) 11146{ 11147 kfree(net->dev_name_head); 11148 kfree(net->dev_index_head); 11149 if (net != &init_net) 11150 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11151} 11152 11153static struct pernet_operations __net_initdata netdev_net_ops = { 11154 .init = netdev_init, 11155 .exit = netdev_exit, 11156}; 11157 11158static void __net_exit default_device_exit(struct net *net) 11159{ 11160 struct net_device *dev, *aux; 11161 /* 11162 * Push all migratable network devices back to the 11163 * initial network namespace 11164 */ 11165 rtnl_lock(); 11166 for_each_netdev_safe(net, dev, aux) { 11167 int err; 11168 char fb_name[IFNAMSIZ]; 11169 11170 /* Ignore unmoveable devices (i.e. loopback) */ 11171 if (dev->features & NETIF_F_NETNS_LOCAL) 11172 continue; 11173 11174 /* Leave virtual devices for the generic cleanup */ 11175 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11176 continue; 11177 11178 /* Push remaining network devices to init_net */ 11179 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11180 if (__dev_get_by_name(&init_net, fb_name)) 11181 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11182 err = dev_change_net_namespace(dev, &init_net, fb_name); 11183 if (err) { 11184 pr_emerg("%s: failed to move %s to init_net: %d\n", 11185 __func__, dev->name, err); 11186 BUG(); 11187 } 11188 } 11189 rtnl_unlock(); 11190} 11191 11192static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11193{ 11194 /* Return with the rtnl_lock held when there are no network 11195 * devices unregistering in any network namespace in net_list. 11196 */ 11197 struct net *net; 11198 bool unregistering; 11199 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11200 11201 add_wait_queue(&netdev_unregistering_wq, &wait); 11202 for (;;) { 11203 unregistering = false; 11204 rtnl_lock(); 11205 list_for_each_entry(net, net_list, exit_list) { 11206 if (net->dev_unreg_count > 0) { 11207 unregistering = true; 11208 break; 11209 } 11210 } 11211 if (!unregistering) 11212 break; 11213 __rtnl_unlock(); 11214 11215 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11216 } 11217 remove_wait_queue(&netdev_unregistering_wq, &wait); 11218} 11219 11220static void __net_exit default_device_exit_batch(struct list_head *net_list) 11221{ 11222 /* At exit all network devices most be removed from a network 11223 * namespace. Do this in the reverse order of registration. 11224 * Do this across as many network namespaces as possible to 11225 * improve batching efficiency. 11226 */ 11227 struct net_device *dev; 11228 struct net *net; 11229 LIST_HEAD(dev_kill_list); 11230 11231 /* To prevent network device cleanup code from dereferencing 11232 * loopback devices or network devices that have been freed 11233 * wait here for all pending unregistrations to complete, 11234 * before unregistring the loopback device and allowing the 11235 * network namespace be freed. 11236 * 11237 * The netdev todo list containing all network devices 11238 * unregistrations that happen in default_device_exit_batch 11239 * will run in the rtnl_unlock() at the end of 11240 * default_device_exit_batch. 11241 */ 11242 rtnl_lock_unregistering(net_list); 11243 list_for_each_entry(net, net_list, exit_list) { 11244 for_each_netdev_reverse(net, dev) { 11245 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11246 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11247 else 11248 unregister_netdevice_queue(dev, &dev_kill_list); 11249 } 11250 } 11251 unregister_netdevice_many(&dev_kill_list); 11252 rtnl_unlock(); 11253} 11254 11255static struct pernet_operations __net_initdata default_device_ops = { 11256 .exit = default_device_exit, 11257 .exit_batch = default_device_exit_batch, 11258}; 11259 11260/* 11261 * Initialize the DEV module. At boot time this walks the device list and 11262 * unhooks any devices that fail to initialise (normally hardware not 11263 * present) and leaves us with a valid list of present and active devices. 11264 * 11265 */ 11266 11267/* 11268 * This is called single threaded during boot, so no need 11269 * to take the rtnl semaphore. 11270 */ 11271static int __init net_dev_init(void) 11272{ 11273 int i, rc = -ENOMEM; 11274 11275 BUG_ON(!dev_boot_phase); 11276 11277 if (dev_proc_init()) 11278 goto out; 11279 11280 if (netdev_kobject_init()) 11281 goto out; 11282 11283 INIT_LIST_HEAD(&ptype_all); 11284 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11285 INIT_LIST_HEAD(&ptype_base[i]); 11286 11287 INIT_LIST_HEAD(&offload_base); 11288 11289 if (register_pernet_subsys(&netdev_net_ops)) 11290 goto out; 11291 11292 /* 11293 * Initialise the packet receive queues. 11294 */ 11295 11296 for_each_possible_cpu(i) { 11297 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11298 struct softnet_data *sd = &per_cpu(softnet_data, i); 11299 11300 INIT_WORK(flush, flush_backlog); 11301 11302 skb_queue_head_init(&sd->input_pkt_queue); 11303 skb_queue_head_init(&sd->process_queue); 11304#ifdef CONFIG_XFRM_OFFLOAD 11305 skb_queue_head_init(&sd->xfrm_backlog); 11306#endif 11307 INIT_LIST_HEAD(&sd->poll_list); 11308 sd->output_queue_tailp = &sd->output_queue; 11309#ifdef CONFIG_RPS 11310 sd->csd.func = rps_trigger_softirq; 11311 sd->csd.info = sd; 11312 sd->cpu = i; 11313#endif 11314 11315 init_gro_hash(&sd->backlog); 11316 sd->backlog.poll = process_backlog; 11317 sd->backlog.weight = weight_p; 11318 } 11319 11320 dev_boot_phase = 0; 11321 11322 /* The loopback device is special if any other network devices 11323 * is present in a network namespace the loopback device must 11324 * be present. Since we now dynamically allocate and free the 11325 * loopback device ensure this invariant is maintained by 11326 * keeping the loopback device as the first device on the 11327 * list of network devices. Ensuring the loopback devices 11328 * is the first device that appears and the last network device 11329 * that disappears. 11330 */ 11331 if (register_pernet_device(&loopback_net_ops)) 11332 goto out; 11333 11334 if (register_pernet_device(&default_device_ops)) 11335 goto out; 11336 11337 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11338 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11339 11340 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11341 NULL, dev_cpu_dead); 11342 WARN_ON(rc < 0); 11343 rc = 0; 11344out: 11345 return rc; 11346} 11347 11348subsys_initcall(net_dev_init); 11349