xref: /kernel/linux/linux-5.10/net/ceph/osdmap.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/ceph/ceph_debug.h>
4
5#include <linux/module.h>
6#include <linux/slab.h>
7
8#include <linux/ceph/libceph.h>
9#include <linux/ceph/osdmap.h>
10#include <linux/ceph/decode.h>
11#include <linux/crush/hash.h>
12#include <linux/crush/mapper.h>
13
14char *ceph_osdmap_state_str(char *str, int len, u32 state)
15{
16	if (!len)
17		return str;
18
19	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
20		snprintf(str, len, "exists, up");
21	else if (state & CEPH_OSD_EXISTS)
22		snprintf(str, len, "exists");
23	else if (state & CEPH_OSD_UP)
24		snprintf(str, len, "up");
25	else
26		snprintf(str, len, "doesn't exist");
27
28	return str;
29}
30
31/* maps */
32
33static int calc_bits_of(unsigned int t)
34{
35	int b = 0;
36	while (t) {
37		t = t >> 1;
38		b++;
39	}
40	return b;
41}
42
43/*
44 * the foo_mask is the smallest value 2^n-1 that is >= foo.
45 */
46static void calc_pg_masks(struct ceph_pg_pool_info *pi)
47{
48	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
49	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
50}
51
52/*
53 * decode crush map
54 */
55static int crush_decode_uniform_bucket(void **p, void *end,
56				       struct crush_bucket_uniform *b)
57{
58	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
59	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
60	b->item_weight = ceph_decode_32(p);
61	return 0;
62bad:
63	return -EINVAL;
64}
65
66static int crush_decode_list_bucket(void **p, void *end,
67				    struct crush_bucket_list *b)
68{
69	int j;
70	dout("crush_decode_list_bucket %p to %p\n", *p, end);
71	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
72	if (b->item_weights == NULL)
73		return -ENOMEM;
74	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
75	if (b->sum_weights == NULL)
76		return -ENOMEM;
77	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
78	for (j = 0; j < b->h.size; j++) {
79		b->item_weights[j] = ceph_decode_32(p);
80		b->sum_weights[j] = ceph_decode_32(p);
81	}
82	return 0;
83bad:
84	return -EINVAL;
85}
86
87static int crush_decode_tree_bucket(void **p, void *end,
88				    struct crush_bucket_tree *b)
89{
90	int j;
91	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
92	ceph_decode_8_safe(p, end, b->num_nodes, bad);
93	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
94	if (b->node_weights == NULL)
95		return -ENOMEM;
96	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
97	for (j = 0; j < b->num_nodes; j++)
98		b->node_weights[j] = ceph_decode_32(p);
99	return 0;
100bad:
101	return -EINVAL;
102}
103
104static int crush_decode_straw_bucket(void **p, void *end,
105				     struct crush_bucket_straw *b)
106{
107	int j;
108	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
109	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
110	if (b->item_weights == NULL)
111		return -ENOMEM;
112	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
113	if (b->straws == NULL)
114		return -ENOMEM;
115	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
116	for (j = 0; j < b->h.size; j++) {
117		b->item_weights[j] = ceph_decode_32(p);
118		b->straws[j] = ceph_decode_32(p);
119	}
120	return 0;
121bad:
122	return -EINVAL;
123}
124
125static int crush_decode_straw2_bucket(void **p, void *end,
126				      struct crush_bucket_straw2 *b)
127{
128	int j;
129	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
130	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
131	if (b->item_weights == NULL)
132		return -ENOMEM;
133	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
134	for (j = 0; j < b->h.size; j++)
135		b->item_weights[j] = ceph_decode_32(p);
136	return 0;
137bad:
138	return -EINVAL;
139}
140
141struct crush_name_node {
142	struct rb_node cn_node;
143	int cn_id;
144	char cn_name[];
145};
146
147static struct crush_name_node *alloc_crush_name(size_t name_len)
148{
149	struct crush_name_node *cn;
150
151	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
152	if (!cn)
153		return NULL;
154
155	RB_CLEAR_NODE(&cn->cn_node);
156	return cn;
157}
158
159static void free_crush_name(struct crush_name_node *cn)
160{
161	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
162
163	kfree(cn);
164}
165
166DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
167
168static int decode_crush_names(void **p, void *end, struct rb_root *root)
169{
170	u32 n;
171
172	ceph_decode_32_safe(p, end, n, e_inval);
173	while (n--) {
174		struct crush_name_node *cn;
175		int id;
176		u32 name_len;
177
178		ceph_decode_32_safe(p, end, id, e_inval);
179		ceph_decode_32_safe(p, end, name_len, e_inval);
180		ceph_decode_need(p, end, name_len, e_inval);
181
182		cn = alloc_crush_name(name_len);
183		if (!cn)
184			return -ENOMEM;
185
186		cn->cn_id = id;
187		memcpy(cn->cn_name, *p, name_len);
188		cn->cn_name[name_len] = '\0';
189		*p += name_len;
190
191		if (!__insert_crush_name(root, cn)) {
192			free_crush_name(cn);
193			return -EEXIST;
194		}
195	}
196
197	return 0;
198
199e_inval:
200	return -EINVAL;
201}
202
203void clear_crush_names(struct rb_root *root)
204{
205	while (!RB_EMPTY_ROOT(root)) {
206		struct crush_name_node *cn =
207		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
208
209		erase_crush_name(root, cn);
210		free_crush_name(cn);
211	}
212}
213
214static struct crush_choose_arg_map *alloc_choose_arg_map(void)
215{
216	struct crush_choose_arg_map *arg_map;
217
218	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
219	if (!arg_map)
220		return NULL;
221
222	RB_CLEAR_NODE(&arg_map->node);
223	return arg_map;
224}
225
226static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
227{
228	if (arg_map) {
229		int i, j;
230
231		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
232
233		for (i = 0; i < arg_map->size; i++) {
234			struct crush_choose_arg *arg = &arg_map->args[i];
235
236			for (j = 0; j < arg->weight_set_size; j++)
237				kfree(arg->weight_set[j].weights);
238			kfree(arg->weight_set);
239			kfree(arg->ids);
240		}
241		kfree(arg_map->args);
242		kfree(arg_map);
243	}
244}
245
246DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
247		node);
248
249void clear_choose_args(struct crush_map *c)
250{
251	while (!RB_EMPTY_ROOT(&c->choose_args)) {
252		struct crush_choose_arg_map *arg_map =
253		    rb_entry(rb_first(&c->choose_args),
254			     struct crush_choose_arg_map, node);
255
256		erase_choose_arg_map(&c->choose_args, arg_map);
257		free_choose_arg_map(arg_map);
258	}
259}
260
261static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
262{
263	u32 *a = NULL;
264	u32 len;
265	int ret;
266
267	ceph_decode_32_safe(p, end, len, e_inval);
268	if (len) {
269		u32 i;
270
271		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
272		if (!a) {
273			ret = -ENOMEM;
274			goto fail;
275		}
276
277		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
278		for (i = 0; i < len; i++)
279			a[i] = ceph_decode_32(p);
280	}
281
282	*plen = len;
283	return a;
284
285e_inval:
286	ret = -EINVAL;
287fail:
288	kfree(a);
289	return ERR_PTR(ret);
290}
291
292/*
293 * Assumes @arg is zero-initialized.
294 */
295static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
296{
297	int ret;
298
299	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
300	if (arg->weight_set_size) {
301		u32 i;
302
303		arg->weight_set = kmalloc_array(arg->weight_set_size,
304						sizeof(*arg->weight_set),
305						GFP_NOIO);
306		if (!arg->weight_set)
307			return -ENOMEM;
308
309		for (i = 0; i < arg->weight_set_size; i++) {
310			struct crush_weight_set *w = &arg->weight_set[i];
311
312			w->weights = decode_array_32_alloc(p, end, &w->size);
313			if (IS_ERR(w->weights)) {
314				ret = PTR_ERR(w->weights);
315				w->weights = NULL;
316				return ret;
317			}
318		}
319	}
320
321	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
322	if (IS_ERR(arg->ids)) {
323		ret = PTR_ERR(arg->ids);
324		arg->ids = NULL;
325		return ret;
326	}
327
328	return 0;
329
330e_inval:
331	return -EINVAL;
332}
333
334static int decode_choose_args(void **p, void *end, struct crush_map *c)
335{
336	struct crush_choose_arg_map *arg_map = NULL;
337	u32 num_choose_arg_maps, num_buckets;
338	int ret;
339
340	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
341	while (num_choose_arg_maps--) {
342		arg_map = alloc_choose_arg_map();
343		if (!arg_map) {
344			ret = -ENOMEM;
345			goto fail;
346		}
347
348		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
349				    e_inval);
350		arg_map->size = c->max_buckets;
351		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
352					GFP_NOIO);
353		if (!arg_map->args) {
354			ret = -ENOMEM;
355			goto fail;
356		}
357
358		ceph_decode_32_safe(p, end, num_buckets, e_inval);
359		while (num_buckets--) {
360			struct crush_choose_arg *arg;
361			u32 bucket_index;
362
363			ceph_decode_32_safe(p, end, bucket_index, e_inval);
364			if (bucket_index >= arg_map->size)
365				goto e_inval;
366
367			arg = &arg_map->args[bucket_index];
368			ret = decode_choose_arg(p, end, arg);
369			if (ret)
370				goto fail;
371
372			if (arg->ids_size &&
373			    arg->ids_size != c->buckets[bucket_index]->size)
374				goto e_inval;
375		}
376
377		insert_choose_arg_map(&c->choose_args, arg_map);
378	}
379
380	return 0;
381
382e_inval:
383	ret = -EINVAL;
384fail:
385	free_choose_arg_map(arg_map);
386	return ret;
387}
388
389static void crush_finalize(struct crush_map *c)
390{
391	__s32 b;
392
393	/* Space for the array of pointers to per-bucket workspace */
394	c->working_size = sizeof(struct crush_work) +
395	    c->max_buckets * sizeof(struct crush_work_bucket *);
396
397	for (b = 0; b < c->max_buckets; b++) {
398		if (!c->buckets[b])
399			continue;
400
401		switch (c->buckets[b]->alg) {
402		default:
403			/*
404			 * The base case, permutation variables and
405			 * the pointer to the permutation array.
406			 */
407			c->working_size += sizeof(struct crush_work_bucket);
408			break;
409		}
410		/* Every bucket has a permutation array. */
411		c->working_size += c->buckets[b]->size * sizeof(__u32);
412	}
413}
414
415static struct crush_map *crush_decode(void *pbyval, void *end)
416{
417	struct crush_map *c;
418	int err;
419	int i, j;
420	void **p = &pbyval;
421	void *start = pbyval;
422	u32 magic;
423
424	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
425
426	c = kzalloc(sizeof(*c), GFP_NOFS);
427	if (c == NULL)
428		return ERR_PTR(-ENOMEM);
429
430	c->type_names = RB_ROOT;
431	c->names = RB_ROOT;
432	c->choose_args = RB_ROOT;
433
434        /* set tunables to default values */
435        c->choose_local_tries = 2;
436        c->choose_local_fallback_tries = 5;
437        c->choose_total_tries = 19;
438	c->chooseleaf_descend_once = 0;
439
440	ceph_decode_need(p, end, 4*sizeof(u32), bad);
441	magic = ceph_decode_32(p);
442	if (magic != CRUSH_MAGIC) {
443		pr_err("crush_decode magic %x != current %x\n",
444		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
445		goto bad;
446	}
447	c->max_buckets = ceph_decode_32(p);
448	c->max_rules = ceph_decode_32(p);
449	c->max_devices = ceph_decode_32(p);
450
451	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
452	if (c->buckets == NULL)
453		goto badmem;
454	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
455	if (c->rules == NULL)
456		goto badmem;
457
458	/* buckets */
459	for (i = 0; i < c->max_buckets; i++) {
460		int size = 0;
461		u32 alg;
462		struct crush_bucket *b;
463
464		ceph_decode_32_safe(p, end, alg, bad);
465		if (alg == 0) {
466			c->buckets[i] = NULL;
467			continue;
468		}
469		dout("crush_decode bucket %d off %x %p to %p\n",
470		     i, (int)(*p-start), *p, end);
471
472		switch (alg) {
473		case CRUSH_BUCKET_UNIFORM:
474			size = sizeof(struct crush_bucket_uniform);
475			break;
476		case CRUSH_BUCKET_LIST:
477			size = sizeof(struct crush_bucket_list);
478			break;
479		case CRUSH_BUCKET_TREE:
480			size = sizeof(struct crush_bucket_tree);
481			break;
482		case CRUSH_BUCKET_STRAW:
483			size = sizeof(struct crush_bucket_straw);
484			break;
485		case CRUSH_BUCKET_STRAW2:
486			size = sizeof(struct crush_bucket_straw2);
487			break;
488		default:
489			goto bad;
490		}
491		BUG_ON(size == 0);
492		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
493		if (b == NULL)
494			goto badmem;
495
496		ceph_decode_need(p, end, 4*sizeof(u32), bad);
497		b->id = ceph_decode_32(p);
498		b->type = ceph_decode_16(p);
499		b->alg = ceph_decode_8(p);
500		b->hash = ceph_decode_8(p);
501		b->weight = ceph_decode_32(p);
502		b->size = ceph_decode_32(p);
503
504		dout("crush_decode bucket size %d off %x %p to %p\n",
505		     b->size, (int)(*p-start), *p, end);
506
507		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
508		if (b->items == NULL)
509			goto badmem;
510
511		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
512		for (j = 0; j < b->size; j++)
513			b->items[j] = ceph_decode_32(p);
514
515		switch (b->alg) {
516		case CRUSH_BUCKET_UNIFORM:
517			err = crush_decode_uniform_bucket(p, end,
518				  (struct crush_bucket_uniform *)b);
519			if (err < 0)
520				goto fail;
521			break;
522		case CRUSH_BUCKET_LIST:
523			err = crush_decode_list_bucket(p, end,
524			       (struct crush_bucket_list *)b);
525			if (err < 0)
526				goto fail;
527			break;
528		case CRUSH_BUCKET_TREE:
529			err = crush_decode_tree_bucket(p, end,
530				(struct crush_bucket_tree *)b);
531			if (err < 0)
532				goto fail;
533			break;
534		case CRUSH_BUCKET_STRAW:
535			err = crush_decode_straw_bucket(p, end,
536				(struct crush_bucket_straw *)b);
537			if (err < 0)
538				goto fail;
539			break;
540		case CRUSH_BUCKET_STRAW2:
541			err = crush_decode_straw2_bucket(p, end,
542				(struct crush_bucket_straw2 *)b);
543			if (err < 0)
544				goto fail;
545			break;
546		}
547	}
548
549	/* rules */
550	dout("rule vec is %p\n", c->rules);
551	for (i = 0; i < c->max_rules; i++) {
552		u32 yes;
553		struct crush_rule *r;
554
555		ceph_decode_32_safe(p, end, yes, bad);
556		if (!yes) {
557			dout("crush_decode NO rule %d off %x %p to %p\n",
558			     i, (int)(*p-start), *p, end);
559			c->rules[i] = NULL;
560			continue;
561		}
562
563		dout("crush_decode rule %d off %x %p to %p\n",
564		     i, (int)(*p-start), *p, end);
565
566		/* len */
567		ceph_decode_32_safe(p, end, yes, bad);
568#if BITS_PER_LONG == 32
569		if (yes > (ULONG_MAX - sizeof(*r))
570			  / sizeof(struct crush_rule_step))
571			goto bad;
572#endif
573		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
574		c->rules[i] = r;
575		if (r == NULL)
576			goto badmem;
577		dout(" rule %d is at %p\n", i, r);
578		r->len = yes;
579		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
580		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
581		for (j = 0; j < r->len; j++) {
582			r->steps[j].op = ceph_decode_32(p);
583			r->steps[j].arg1 = ceph_decode_32(p);
584			r->steps[j].arg2 = ceph_decode_32(p);
585		}
586	}
587
588	err = decode_crush_names(p, end, &c->type_names);
589	if (err)
590		goto fail;
591
592	err = decode_crush_names(p, end, &c->names);
593	if (err)
594		goto fail;
595
596	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
597
598        /* tunables */
599        ceph_decode_need(p, end, 3*sizeof(u32), done);
600        c->choose_local_tries = ceph_decode_32(p);
601        c->choose_local_fallback_tries =  ceph_decode_32(p);
602        c->choose_total_tries = ceph_decode_32(p);
603        dout("crush decode tunable choose_local_tries = %d\n",
604             c->choose_local_tries);
605        dout("crush decode tunable choose_local_fallback_tries = %d\n",
606             c->choose_local_fallback_tries);
607        dout("crush decode tunable choose_total_tries = %d\n",
608             c->choose_total_tries);
609
610	ceph_decode_need(p, end, sizeof(u32), done);
611	c->chooseleaf_descend_once = ceph_decode_32(p);
612	dout("crush decode tunable chooseleaf_descend_once = %d\n",
613	     c->chooseleaf_descend_once);
614
615	ceph_decode_need(p, end, sizeof(u8), done);
616	c->chooseleaf_vary_r = ceph_decode_8(p);
617	dout("crush decode tunable chooseleaf_vary_r = %d\n",
618	     c->chooseleaf_vary_r);
619
620	/* skip straw_calc_version, allowed_bucket_algs */
621	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
622	*p += sizeof(u8) + sizeof(u32);
623
624	ceph_decode_need(p, end, sizeof(u8), done);
625	c->chooseleaf_stable = ceph_decode_8(p);
626	dout("crush decode tunable chooseleaf_stable = %d\n",
627	     c->chooseleaf_stable);
628
629	if (*p != end) {
630		/* class_map */
631		ceph_decode_skip_map(p, end, 32, 32, bad);
632		/* class_name */
633		ceph_decode_skip_map(p, end, 32, string, bad);
634		/* class_bucket */
635		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
636	}
637
638	if (*p != end) {
639		err = decode_choose_args(p, end, c);
640		if (err)
641			goto fail;
642	}
643
644done:
645	crush_finalize(c);
646	dout("crush_decode success\n");
647	return c;
648
649badmem:
650	err = -ENOMEM;
651fail:
652	dout("crush_decode fail %d\n", err);
653	crush_destroy(c);
654	return ERR_PTR(err);
655
656bad:
657	err = -EINVAL;
658	goto fail;
659}
660
661int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
662{
663	if (lhs->pool < rhs->pool)
664		return -1;
665	if (lhs->pool > rhs->pool)
666		return 1;
667	if (lhs->seed < rhs->seed)
668		return -1;
669	if (lhs->seed > rhs->seed)
670		return 1;
671
672	return 0;
673}
674
675int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
676{
677	int ret;
678
679	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
680	if (ret)
681		return ret;
682
683	if (lhs->shard < rhs->shard)
684		return -1;
685	if (lhs->shard > rhs->shard)
686		return 1;
687
688	return 0;
689}
690
691static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
692{
693	struct ceph_pg_mapping *pg;
694
695	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
696	if (!pg)
697		return NULL;
698
699	RB_CLEAR_NODE(&pg->node);
700	return pg;
701}
702
703static void free_pg_mapping(struct ceph_pg_mapping *pg)
704{
705	WARN_ON(!RB_EMPTY_NODE(&pg->node));
706
707	kfree(pg);
708}
709
710/*
711 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
712 * to a set of osds) and primary_temp (explicit primary setting)
713 */
714DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
715		 RB_BYPTR, const struct ceph_pg *, node)
716
717/*
718 * rbtree of pg pool info
719 */
720DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
721
722struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
723{
724	return lookup_pg_pool(&map->pg_pools, id);
725}
726
727const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
728{
729	struct ceph_pg_pool_info *pi;
730
731	if (id == CEPH_NOPOOL)
732		return NULL;
733
734	if (WARN_ON_ONCE(id > (u64) INT_MAX))
735		return NULL;
736
737	pi = lookup_pg_pool(&map->pg_pools, id);
738	return pi ? pi->name : NULL;
739}
740EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
741
742int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
743{
744	struct rb_node *rbp;
745
746	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
747		struct ceph_pg_pool_info *pi =
748			rb_entry(rbp, struct ceph_pg_pool_info, node);
749		if (pi->name && strcmp(pi->name, name) == 0)
750			return pi->id;
751	}
752	return -ENOENT;
753}
754EXPORT_SYMBOL(ceph_pg_poolid_by_name);
755
756u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
757{
758	struct ceph_pg_pool_info *pi;
759
760	pi = lookup_pg_pool(&map->pg_pools, id);
761	return pi ? pi->flags : 0;
762}
763EXPORT_SYMBOL(ceph_pg_pool_flags);
764
765static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
766{
767	erase_pg_pool(root, pi);
768	kfree(pi->name);
769	kfree(pi);
770}
771
772static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
773{
774	u8 ev, cv;
775	unsigned len, num;
776	void *pool_end;
777
778	ceph_decode_need(p, end, 2 + 4, bad);
779	ev = ceph_decode_8(p);  /* encoding version */
780	cv = ceph_decode_8(p); /* compat version */
781	if (ev < 5) {
782		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
783		return -EINVAL;
784	}
785	if (cv > 9) {
786		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
787		return -EINVAL;
788	}
789	len = ceph_decode_32(p);
790	ceph_decode_need(p, end, len, bad);
791	pool_end = *p + len;
792
793	pi->type = ceph_decode_8(p);
794	pi->size = ceph_decode_8(p);
795	pi->crush_ruleset = ceph_decode_8(p);
796	pi->object_hash = ceph_decode_8(p);
797
798	pi->pg_num = ceph_decode_32(p);
799	pi->pgp_num = ceph_decode_32(p);
800
801	*p += 4 + 4;  /* skip lpg* */
802	*p += 4;      /* skip last_change */
803	*p += 8 + 4;  /* skip snap_seq, snap_epoch */
804
805	/* skip snaps */
806	num = ceph_decode_32(p);
807	while (num--) {
808		*p += 8;  /* snapid key */
809		*p += 1 + 1; /* versions */
810		len = ceph_decode_32(p);
811		*p += len;
812	}
813
814	/* skip removed_snaps */
815	num = ceph_decode_32(p);
816	*p += num * (8 + 8);
817
818	*p += 8;  /* skip auid */
819	pi->flags = ceph_decode_64(p);
820	*p += 4;  /* skip crash_replay_interval */
821
822	if (ev >= 7)
823		pi->min_size = ceph_decode_8(p);
824	else
825		pi->min_size = pi->size - pi->size / 2;
826
827	if (ev >= 8)
828		*p += 8 + 8;  /* skip quota_max_* */
829
830	if (ev >= 9) {
831		/* skip tiers */
832		num = ceph_decode_32(p);
833		*p += num * 8;
834
835		*p += 8;  /* skip tier_of */
836		*p += 1;  /* skip cache_mode */
837
838		pi->read_tier = ceph_decode_64(p);
839		pi->write_tier = ceph_decode_64(p);
840	} else {
841		pi->read_tier = -1;
842		pi->write_tier = -1;
843	}
844
845	if (ev >= 10) {
846		/* skip properties */
847		num = ceph_decode_32(p);
848		while (num--) {
849			len = ceph_decode_32(p);
850			*p += len; /* key */
851			len = ceph_decode_32(p);
852			*p += len; /* val */
853		}
854	}
855
856	if (ev >= 11) {
857		/* skip hit_set_params */
858		*p += 1 + 1; /* versions */
859		len = ceph_decode_32(p);
860		*p += len;
861
862		*p += 4; /* skip hit_set_period */
863		*p += 4; /* skip hit_set_count */
864	}
865
866	if (ev >= 12)
867		*p += 4; /* skip stripe_width */
868
869	if (ev >= 13) {
870		*p += 8; /* skip target_max_bytes */
871		*p += 8; /* skip target_max_objects */
872		*p += 4; /* skip cache_target_dirty_ratio_micro */
873		*p += 4; /* skip cache_target_full_ratio_micro */
874		*p += 4; /* skip cache_min_flush_age */
875		*p += 4; /* skip cache_min_evict_age */
876	}
877
878	if (ev >=  14) {
879		/* skip erasure_code_profile */
880		len = ceph_decode_32(p);
881		*p += len;
882	}
883
884	/*
885	 * last_force_op_resend_preluminous, will be overridden if the
886	 * map was encoded with RESEND_ON_SPLIT
887	 */
888	if (ev >= 15)
889		pi->last_force_request_resend = ceph_decode_32(p);
890	else
891		pi->last_force_request_resend = 0;
892
893	if (ev >= 16)
894		*p += 4; /* skip min_read_recency_for_promote */
895
896	if (ev >= 17)
897		*p += 8; /* skip expected_num_objects */
898
899	if (ev >= 19)
900		*p += 4; /* skip cache_target_dirty_high_ratio_micro */
901
902	if (ev >= 20)
903		*p += 4; /* skip min_write_recency_for_promote */
904
905	if (ev >= 21)
906		*p += 1; /* skip use_gmt_hitset */
907
908	if (ev >= 22)
909		*p += 1; /* skip fast_read */
910
911	if (ev >= 23) {
912		*p += 4; /* skip hit_set_grade_decay_rate */
913		*p += 4; /* skip hit_set_search_last_n */
914	}
915
916	if (ev >= 24) {
917		/* skip opts */
918		*p += 1 + 1; /* versions */
919		len = ceph_decode_32(p);
920		*p += len;
921	}
922
923	if (ev >= 25)
924		pi->last_force_request_resend = ceph_decode_32(p);
925
926	/* ignore the rest */
927
928	*p = pool_end;
929	calc_pg_masks(pi);
930	return 0;
931
932bad:
933	return -EINVAL;
934}
935
936static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
937{
938	struct ceph_pg_pool_info *pi;
939	u32 num, len;
940	u64 pool;
941
942	ceph_decode_32_safe(p, end, num, bad);
943	dout(" %d pool names\n", num);
944	while (num--) {
945		ceph_decode_64_safe(p, end, pool, bad);
946		ceph_decode_32_safe(p, end, len, bad);
947		dout("  pool %llu len %d\n", pool, len);
948		ceph_decode_need(p, end, len, bad);
949		pi = lookup_pg_pool(&map->pg_pools, pool);
950		if (pi) {
951			char *name = kstrndup(*p, len, GFP_NOFS);
952
953			if (!name)
954				return -ENOMEM;
955			kfree(pi->name);
956			pi->name = name;
957			dout("  name is %s\n", pi->name);
958		}
959		*p += len;
960	}
961	return 0;
962
963bad:
964	return -EINVAL;
965}
966
967/*
968 * CRUSH workspaces
969 *
970 * workspace_manager framework borrowed from fs/btrfs/compression.c.
971 * Two simplifications: there is only one type of workspace and there
972 * is always at least one workspace.
973 */
974static struct crush_work *alloc_workspace(const struct crush_map *c)
975{
976	struct crush_work *work;
977	size_t work_size;
978
979	WARN_ON(!c->working_size);
980	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
981	dout("%s work_size %zu bytes\n", __func__, work_size);
982
983	work = ceph_kvmalloc(work_size, GFP_NOIO);
984	if (!work)
985		return NULL;
986
987	INIT_LIST_HEAD(&work->item);
988	crush_init_workspace(c, work);
989	return work;
990}
991
992static void free_workspace(struct crush_work *work)
993{
994	WARN_ON(!list_empty(&work->item));
995	kvfree(work);
996}
997
998static void init_workspace_manager(struct workspace_manager *wsm)
999{
1000	INIT_LIST_HEAD(&wsm->idle_ws);
1001	spin_lock_init(&wsm->ws_lock);
1002	atomic_set(&wsm->total_ws, 0);
1003	wsm->free_ws = 0;
1004	init_waitqueue_head(&wsm->ws_wait);
1005}
1006
1007static void add_initial_workspace(struct workspace_manager *wsm,
1008				  struct crush_work *work)
1009{
1010	WARN_ON(!list_empty(&wsm->idle_ws));
1011
1012	list_add(&work->item, &wsm->idle_ws);
1013	atomic_set(&wsm->total_ws, 1);
1014	wsm->free_ws = 1;
1015}
1016
1017static void cleanup_workspace_manager(struct workspace_manager *wsm)
1018{
1019	struct crush_work *work;
1020
1021	while (!list_empty(&wsm->idle_ws)) {
1022		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1023					item);
1024		list_del_init(&work->item);
1025		free_workspace(work);
1026	}
1027	atomic_set(&wsm->total_ws, 0);
1028	wsm->free_ws = 0;
1029}
1030
1031/*
1032 * Finds an available workspace or allocates a new one.  If it's not
1033 * possible to allocate a new one, waits until there is one.
1034 */
1035static struct crush_work *get_workspace(struct workspace_manager *wsm,
1036					const struct crush_map *c)
1037{
1038	struct crush_work *work;
1039	int cpus = num_online_cpus();
1040
1041again:
1042	spin_lock(&wsm->ws_lock);
1043	if (!list_empty(&wsm->idle_ws)) {
1044		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1045					item);
1046		list_del_init(&work->item);
1047		wsm->free_ws--;
1048		spin_unlock(&wsm->ws_lock);
1049		return work;
1050
1051	}
1052	if (atomic_read(&wsm->total_ws) > cpus) {
1053		DEFINE_WAIT(wait);
1054
1055		spin_unlock(&wsm->ws_lock);
1056		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1057		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1058			schedule();
1059		finish_wait(&wsm->ws_wait, &wait);
1060		goto again;
1061	}
1062	atomic_inc(&wsm->total_ws);
1063	spin_unlock(&wsm->ws_lock);
1064
1065	work = alloc_workspace(c);
1066	if (!work) {
1067		atomic_dec(&wsm->total_ws);
1068		wake_up(&wsm->ws_wait);
1069
1070		/*
1071		 * Do not return the error but go back to waiting.  We
1072		 * have the inital workspace and the CRUSH computation
1073		 * time is bounded so we will get it eventually.
1074		 */
1075		WARN_ON(atomic_read(&wsm->total_ws) < 1);
1076		goto again;
1077	}
1078	return work;
1079}
1080
1081/*
1082 * Puts a workspace back on the list or frees it if we have enough
1083 * idle ones sitting around.
1084 */
1085static void put_workspace(struct workspace_manager *wsm,
1086			  struct crush_work *work)
1087{
1088	spin_lock(&wsm->ws_lock);
1089	if (wsm->free_ws <= num_online_cpus()) {
1090		list_add(&work->item, &wsm->idle_ws);
1091		wsm->free_ws++;
1092		spin_unlock(&wsm->ws_lock);
1093		goto wake;
1094	}
1095	spin_unlock(&wsm->ws_lock);
1096
1097	free_workspace(work);
1098	atomic_dec(&wsm->total_ws);
1099wake:
1100	if (wq_has_sleeper(&wsm->ws_wait))
1101		wake_up(&wsm->ws_wait);
1102}
1103
1104/*
1105 * osd map
1106 */
1107struct ceph_osdmap *ceph_osdmap_alloc(void)
1108{
1109	struct ceph_osdmap *map;
1110
1111	map = kzalloc(sizeof(*map), GFP_NOIO);
1112	if (!map)
1113		return NULL;
1114
1115	map->pg_pools = RB_ROOT;
1116	map->pool_max = -1;
1117	map->pg_temp = RB_ROOT;
1118	map->primary_temp = RB_ROOT;
1119	map->pg_upmap = RB_ROOT;
1120	map->pg_upmap_items = RB_ROOT;
1121
1122	init_workspace_manager(&map->crush_wsm);
1123
1124	return map;
1125}
1126
1127void ceph_osdmap_destroy(struct ceph_osdmap *map)
1128{
1129	dout("osdmap_destroy %p\n", map);
1130
1131	if (map->crush)
1132		crush_destroy(map->crush);
1133	cleanup_workspace_manager(&map->crush_wsm);
1134
1135	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1136		struct ceph_pg_mapping *pg =
1137			rb_entry(rb_first(&map->pg_temp),
1138				 struct ceph_pg_mapping, node);
1139		erase_pg_mapping(&map->pg_temp, pg);
1140		free_pg_mapping(pg);
1141	}
1142	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1143		struct ceph_pg_mapping *pg =
1144			rb_entry(rb_first(&map->primary_temp),
1145				 struct ceph_pg_mapping, node);
1146		erase_pg_mapping(&map->primary_temp, pg);
1147		free_pg_mapping(pg);
1148	}
1149	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1150		struct ceph_pg_mapping *pg =
1151			rb_entry(rb_first(&map->pg_upmap),
1152				 struct ceph_pg_mapping, node);
1153		rb_erase(&pg->node, &map->pg_upmap);
1154		kfree(pg);
1155	}
1156	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1157		struct ceph_pg_mapping *pg =
1158			rb_entry(rb_first(&map->pg_upmap_items),
1159				 struct ceph_pg_mapping, node);
1160		rb_erase(&pg->node, &map->pg_upmap_items);
1161		kfree(pg);
1162	}
1163	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1164		struct ceph_pg_pool_info *pi =
1165			rb_entry(rb_first(&map->pg_pools),
1166				 struct ceph_pg_pool_info, node);
1167		__remove_pg_pool(&map->pg_pools, pi);
1168	}
1169	kvfree(map->osd_state);
1170	kvfree(map->osd_weight);
1171	kvfree(map->osd_addr);
1172	kvfree(map->osd_primary_affinity);
1173	kfree(map);
1174}
1175
1176/*
1177 * Adjust max_osd value, (re)allocate arrays.
1178 *
1179 * The new elements are properly initialized.
1180 */
1181static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1182{
1183	u32 *state;
1184	u32 *weight;
1185	struct ceph_entity_addr *addr;
1186	u32 to_copy;
1187	int i;
1188
1189	dout("%s old %u new %u\n", __func__, map->max_osd, max);
1190	if (max == map->max_osd)
1191		return 0;
1192
1193	state = ceph_kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1194	weight = ceph_kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1195	addr = ceph_kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1196	if (!state || !weight || !addr) {
1197		kvfree(state);
1198		kvfree(weight);
1199		kvfree(addr);
1200		return -ENOMEM;
1201	}
1202
1203	to_copy = min(map->max_osd, max);
1204	if (map->osd_state) {
1205		memcpy(state, map->osd_state, to_copy * sizeof(*state));
1206		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1207		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1208		kvfree(map->osd_state);
1209		kvfree(map->osd_weight);
1210		kvfree(map->osd_addr);
1211	}
1212
1213	map->osd_state = state;
1214	map->osd_weight = weight;
1215	map->osd_addr = addr;
1216	for (i = map->max_osd; i < max; i++) {
1217		map->osd_state[i] = 0;
1218		map->osd_weight[i] = CEPH_OSD_OUT;
1219		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1220	}
1221
1222	if (map->osd_primary_affinity) {
1223		u32 *affinity;
1224
1225		affinity = ceph_kvmalloc(array_size(max, sizeof(*affinity)),
1226					 GFP_NOFS);
1227		if (!affinity)
1228			return -ENOMEM;
1229
1230		memcpy(affinity, map->osd_primary_affinity,
1231		       to_copy * sizeof(*affinity));
1232		kvfree(map->osd_primary_affinity);
1233
1234		map->osd_primary_affinity = affinity;
1235		for (i = map->max_osd; i < max; i++)
1236			map->osd_primary_affinity[i] =
1237			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1238	}
1239
1240	map->max_osd = max;
1241
1242	return 0;
1243}
1244
1245static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1246{
1247	struct crush_work *work;
1248
1249	if (IS_ERR(crush))
1250		return PTR_ERR(crush);
1251
1252	work = alloc_workspace(crush);
1253	if (!work) {
1254		crush_destroy(crush);
1255		return -ENOMEM;
1256	}
1257
1258	if (map->crush)
1259		crush_destroy(map->crush);
1260	cleanup_workspace_manager(&map->crush_wsm);
1261	map->crush = crush;
1262	add_initial_workspace(&map->crush_wsm, work);
1263	return 0;
1264}
1265
1266#define OSDMAP_WRAPPER_COMPAT_VER	7
1267#define OSDMAP_CLIENT_DATA_COMPAT_VER	1
1268
1269/*
1270 * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
1271 * to struct_v of the client_data section for new (v7 and above)
1272 * osdmaps.
1273 */
1274static int get_osdmap_client_data_v(void **p, void *end,
1275				    const char *prefix, u8 *v)
1276{
1277	u8 struct_v;
1278
1279	ceph_decode_8_safe(p, end, struct_v, e_inval);
1280	if (struct_v >= 7) {
1281		u8 struct_compat;
1282
1283		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1284		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1285			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1286				struct_v, struct_compat,
1287				OSDMAP_WRAPPER_COMPAT_VER, prefix);
1288			return -EINVAL;
1289		}
1290		*p += 4; /* ignore wrapper struct_len */
1291
1292		ceph_decode_8_safe(p, end, struct_v, e_inval);
1293		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1294		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1295			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1296				struct_v, struct_compat,
1297				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1298			return -EINVAL;
1299		}
1300		*p += 4; /* ignore client data struct_len */
1301	} else {
1302		u16 version;
1303
1304		*p -= 1;
1305		ceph_decode_16_safe(p, end, version, e_inval);
1306		if (version < 6) {
1307			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1308				version, prefix);
1309			return -EINVAL;
1310		}
1311
1312		/* old osdmap enconding */
1313		struct_v = 0;
1314	}
1315
1316	*v = struct_v;
1317	return 0;
1318
1319e_inval:
1320	return -EINVAL;
1321}
1322
1323static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1324			  bool incremental)
1325{
1326	u32 n;
1327
1328	ceph_decode_32_safe(p, end, n, e_inval);
1329	while (n--) {
1330		struct ceph_pg_pool_info *pi;
1331		u64 pool;
1332		int ret;
1333
1334		ceph_decode_64_safe(p, end, pool, e_inval);
1335
1336		pi = lookup_pg_pool(&map->pg_pools, pool);
1337		if (!incremental || !pi) {
1338			pi = kzalloc(sizeof(*pi), GFP_NOFS);
1339			if (!pi)
1340				return -ENOMEM;
1341
1342			RB_CLEAR_NODE(&pi->node);
1343			pi->id = pool;
1344
1345			if (!__insert_pg_pool(&map->pg_pools, pi)) {
1346				kfree(pi);
1347				return -EEXIST;
1348			}
1349		}
1350
1351		ret = decode_pool(p, end, pi);
1352		if (ret)
1353			return ret;
1354	}
1355
1356	return 0;
1357
1358e_inval:
1359	return -EINVAL;
1360}
1361
1362static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1363{
1364	return __decode_pools(p, end, map, false);
1365}
1366
1367static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1368{
1369	return __decode_pools(p, end, map, true);
1370}
1371
1372typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1373
1374static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1375			     decode_mapping_fn_t fn, bool incremental)
1376{
1377	u32 n;
1378
1379	WARN_ON(!incremental && !fn);
1380
1381	ceph_decode_32_safe(p, end, n, e_inval);
1382	while (n--) {
1383		struct ceph_pg_mapping *pg;
1384		struct ceph_pg pgid;
1385		int ret;
1386
1387		ret = ceph_decode_pgid(p, end, &pgid);
1388		if (ret)
1389			return ret;
1390
1391		pg = lookup_pg_mapping(mapping_root, &pgid);
1392		if (pg) {
1393			WARN_ON(!incremental);
1394			erase_pg_mapping(mapping_root, pg);
1395			free_pg_mapping(pg);
1396		}
1397
1398		if (fn) {
1399			pg = fn(p, end, incremental);
1400			if (IS_ERR(pg))
1401				return PTR_ERR(pg);
1402
1403			if (pg) {
1404				pg->pgid = pgid; /* struct */
1405				insert_pg_mapping(mapping_root, pg);
1406			}
1407		}
1408	}
1409
1410	return 0;
1411
1412e_inval:
1413	return -EINVAL;
1414}
1415
1416static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1417						bool incremental)
1418{
1419	struct ceph_pg_mapping *pg;
1420	u32 len, i;
1421
1422	ceph_decode_32_safe(p, end, len, e_inval);
1423	if (len == 0 && incremental)
1424		return NULL;	/* new_pg_temp: [] to remove */
1425	if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1426		return ERR_PTR(-EINVAL);
1427
1428	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1429	pg = alloc_pg_mapping(len * sizeof(u32));
1430	if (!pg)
1431		return ERR_PTR(-ENOMEM);
1432
1433	pg->pg_temp.len = len;
1434	for (i = 0; i < len; i++)
1435		pg->pg_temp.osds[i] = ceph_decode_32(p);
1436
1437	return pg;
1438
1439e_inval:
1440	return ERR_PTR(-EINVAL);
1441}
1442
1443static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1444{
1445	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1446				 false);
1447}
1448
1449static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1450{
1451	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1452				 true);
1453}
1454
1455static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1456						     bool incremental)
1457{
1458	struct ceph_pg_mapping *pg;
1459	u32 osd;
1460
1461	ceph_decode_32_safe(p, end, osd, e_inval);
1462	if (osd == (u32)-1 && incremental)
1463		return NULL;	/* new_primary_temp: -1 to remove */
1464
1465	pg = alloc_pg_mapping(0);
1466	if (!pg)
1467		return ERR_PTR(-ENOMEM);
1468
1469	pg->primary_temp.osd = osd;
1470	return pg;
1471
1472e_inval:
1473	return ERR_PTR(-EINVAL);
1474}
1475
1476static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1477{
1478	return decode_pg_mapping(p, end, &map->primary_temp,
1479				 __decode_primary_temp, false);
1480}
1481
1482static int decode_new_primary_temp(void **p, void *end,
1483				   struct ceph_osdmap *map)
1484{
1485	return decode_pg_mapping(p, end, &map->primary_temp,
1486				 __decode_primary_temp, true);
1487}
1488
1489u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1490{
1491	BUG_ON(osd >= map->max_osd);
1492
1493	if (!map->osd_primary_affinity)
1494		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1495
1496	return map->osd_primary_affinity[osd];
1497}
1498
1499static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1500{
1501	BUG_ON(osd >= map->max_osd);
1502
1503	if (!map->osd_primary_affinity) {
1504		int i;
1505
1506		map->osd_primary_affinity = ceph_kvmalloc(
1507		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1508		    GFP_NOFS);
1509		if (!map->osd_primary_affinity)
1510			return -ENOMEM;
1511
1512		for (i = 0; i < map->max_osd; i++)
1513			map->osd_primary_affinity[i] =
1514			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1515	}
1516
1517	map->osd_primary_affinity[osd] = aff;
1518
1519	return 0;
1520}
1521
1522static int decode_primary_affinity(void **p, void *end,
1523				   struct ceph_osdmap *map)
1524{
1525	u32 len, i;
1526
1527	ceph_decode_32_safe(p, end, len, e_inval);
1528	if (len == 0) {
1529		kvfree(map->osd_primary_affinity);
1530		map->osd_primary_affinity = NULL;
1531		return 0;
1532	}
1533	if (len != map->max_osd)
1534		goto e_inval;
1535
1536	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1537
1538	for (i = 0; i < map->max_osd; i++) {
1539		int ret;
1540
1541		ret = set_primary_affinity(map, i, ceph_decode_32(p));
1542		if (ret)
1543			return ret;
1544	}
1545
1546	return 0;
1547
1548e_inval:
1549	return -EINVAL;
1550}
1551
1552static int decode_new_primary_affinity(void **p, void *end,
1553				       struct ceph_osdmap *map)
1554{
1555	u32 n;
1556
1557	ceph_decode_32_safe(p, end, n, e_inval);
1558	while (n--) {
1559		u32 osd, aff;
1560		int ret;
1561
1562		ceph_decode_32_safe(p, end, osd, e_inval);
1563		ceph_decode_32_safe(p, end, aff, e_inval);
1564
1565		ret = set_primary_affinity(map, osd, aff);
1566		if (ret)
1567			return ret;
1568
1569		pr_info("osd%d primary-affinity 0x%x\n", osd, aff);
1570	}
1571
1572	return 0;
1573
1574e_inval:
1575	return -EINVAL;
1576}
1577
1578static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1579						 bool __unused)
1580{
1581	return __decode_pg_temp(p, end, false);
1582}
1583
1584static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1585{
1586	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1587				 false);
1588}
1589
1590static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1591{
1592	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1593				 true);
1594}
1595
1596static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1597{
1598	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1599}
1600
1601static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1602						       bool __unused)
1603{
1604	struct ceph_pg_mapping *pg;
1605	u32 len, i;
1606
1607	ceph_decode_32_safe(p, end, len, e_inval);
1608	if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1609		return ERR_PTR(-EINVAL);
1610
1611	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1612	pg = alloc_pg_mapping(2 * len * sizeof(u32));
1613	if (!pg)
1614		return ERR_PTR(-ENOMEM);
1615
1616	pg->pg_upmap_items.len = len;
1617	for (i = 0; i < len; i++) {
1618		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1619		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1620	}
1621
1622	return pg;
1623
1624e_inval:
1625	return ERR_PTR(-EINVAL);
1626}
1627
1628static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1629{
1630	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1631				 __decode_pg_upmap_items, false);
1632}
1633
1634static int decode_new_pg_upmap_items(void **p, void *end,
1635				     struct ceph_osdmap *map)
1636{
1637	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1638				 __decode_pg_upmap_items, true);
1639}
1640
1641static int decode_old_pg_upmap_items(void **p, void *end,
1642				     struct ceph_osdmap *map)
1643{
1644	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1645}
1646
1647/*
1648 * decode a full map.
1649 */
1650static int osdmap_decode(void **p, void *end, struct ceph_osdmap *map)
1651{
1652	u8 struct_v;
1653	u32 epoch = 0;
1654	void *start = *p;
1655	u32 max;
1656	u32 len, i;
1657	int err;
1658
1659	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1660
1661	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1662	if (err)
1663		goto bad;
1664
1665	/* fsid, epoch, created, modified */
1666	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1667			 sizeof(map->created) + sizeof(map->modified), e_inval);
1668	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1669	epoch = map->epoch = ceph_decode_32(p);
1670	ceph_decode_copy(p, &map->created, sizeof(map->created));
1671	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1672
1673	/* pools */
1674	err = decode_pools(p, end, map);
1675	if (err)
1676		goto bad;
1677
1678	/* pool_name */
1679	err = decode_pool_names(p, end, map);
1680	if (err)
1681		goto bad;
1682
1683	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1684
1685	ceph_decode_32_safe(p, end, map->flags, e_inval);
1686
1687	/* max_osd */
1688	ceph_decode_32_safe(p, end, max, e_inval);
1689
1690	/* (re)alloc osd arrays */
1691	err = osdmap_set_max_osd(map, max);
1692	if (err)
1693		goto bad;
1694
1695	/* osd_state, osd_weight, osd_addrs->client_addr */
1696	ceph_decode_need(p, end, 3*sizeof(u32) +
1697			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1698						       sizeof(u8)) +
1699				       sizeof(*map->osd_weight), e_inval);
1700	if (ceph_decode_32(p) != map->max_osd)
1701		goto e_inval;
1702
1703	if (struct_v >= 5) {
1704		for (i = 0; i < map->max_osd; i++)
1705			map->osd_state[i] = ceph_decode_32(p);
1706	} else {
1707		for (i = 0; i < map->max_osd; i++)
1708			map->osd_state[i] = ceph_decode_8(p);
1709	}
1710
1711	if (ceph_decode_32(p) != map->max_osd)
1712		goto e_inval;
1713
1714	for (i = 0; i < map->max_osd; i++)
1715		map->osd_weight[i] = ceph_decode_32(p);
1716
1717	if (ceph_decode_32(p) != map->max_osd)
1718		goto e_inval;
1719
1720	for (i = 0; i < map->max_osd; i++) {
1721		err = ceph_decode_entity_addr(p, end, &map->osd_addr[i]);
1722		if (err)
1723			goto bad;
1724	}
1725
1726	/* pg_temp */
1727	err = decode_pg_temp(p, end, map);
1728	if (err)
1729		goto bad;
1730
1731	/* primary_temp */
1732	if (struct_v >= 1) {
1733		err = decode_primary_temp(p, end, map);
1734		if (err)
1735			goto bad;
1736	}
1737
1738	/* primary_affinity */
1739	if (struct_v >= 2) {
1740		err = decode_primary_affinity(p, end, map);
1741		if (err)
1742			goto bad;
1743	} else {
1744		WARN_ON(map->osd_primary_affinity);
1745	}
1746
1747	/* crush */
1748	ceph_decode_32_safe(p, end, len, e_inval);
1749	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1750	if (err)
1751		goto bad;
1752
1753	*p += len;
1754	if (struct_v >= 3) {
1755		/* erasure_code_profiles */
1756		ceph_decode_skip_map_of_map(p, end, string, string, string,
1757					    e_inval);
1758	}
1759
1760	if (struct_v >= 4) {
1761		err = decode_pg_upmap(p, end, map);
1762		if (err)
1763			goto bad;
1764
1765		err = decode_pg_upmap_items(p, end, map);
1766		if (err)
1767			goto bad;
1768	} else {
1769		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1770		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1771	}
1772
1773	/* ignore the rest */
1774	*p = end;
1775
1776	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1777	return 0;
1778
1779e_inval:
1780	err = -EINVAL;
1781bad:
1782	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1783	       err, epoch, (int)(*p - start), *p, start, end);
1784	print_hex_dump(KERN_DEBUG, "osdmap: ",
1785		       DUMP_PREFIX_OFFSET, 16, 1,
1786		       start, end - start, true);
1787	return err;
1788}
1789
1790/*
1791 * Allocate and decode a full map.
1792 */
1793struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end)
1794{
1795	struct ceph_osdmap *map;
1796	int ret;
1797
1798	map = ceph_osdmap_alloc();
1799	if (!map)
1800		return ERR_PTR(-ENOMEM);
1801
1802	ret = osdmap_decode(p, end, map);
1803	if (ret) {
1804		ceph_osdmap_destroy(map);
1805		return ERR_PTR(ret);
1806	}
1807
1808	return map;
1809}
1810
1811/*
1812 * Encoding order is (new_up_client, new_state, new_weight).  Need to
1813 * apply in the (new_weight, new_state, new_up_client) order, because
1814 * an incremental map may look like e.g.
1815 *
1816 *     new_up_client: { osd=6, addr=... } # set osd_state and addr
1817 *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1818 */
1819static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1820				      struct ceph_osdmap *map)
1821{
1822	void *new_up_client;
1823	void *new_state;
1824	void *new_weight_end;
1825	u32 len;
1826	int i;
1827
1828	new_up_client = *p;
1829	ceph_decode_32_safe(p, end, len, e_inval);
1830	for (i = 0; i < len; ++i) {
1831		struct ceph_entity_addr addr;
1832
1833		ceph_decode_skip_32(p, end, e_inval);
1834		if (ceph_decode_entity_addr(p, end, &addr))
1835			goto e_inval;
1836	}
1837
1838	new_state = *p;
1839	ceph_decode_32_safe(p, end, len, e_inval);
1840	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1841	ceph_decode_need(p, end, len, e_inval);
1842	*p += len;
1843
1844	/* new_weight */
1845	ceph_decode_32_safe(p, end, len, e_inval);
1846	while (len--) {
1847		s32 osd;
1848		u32 w;
1849
1850		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1851		osd = ceph_decode_32(p);
1852		w = ceph_decode_32(p);
1853		BUG_ON(osd >= map->max_osd);
1854		pr_info("osd%d weight 0x%x %s\n", osd, w,
1855		     w == CEPH_OSD_IN ? "(in)" :
1856		     (w == CEPH_OSD_OUT ? "(out)" : ""));
1857		map->osd_weight[osd] = w;
1858
1859		/*
1860		 * If we are marking in, set the EXISTS, and clear the
1861		 * AUTOOUT and NEW bits.
1862		 */
1863		if (w) {
1864			map->osd_state[osd] |= CEPH_OSD_EXISTS;
1865			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1866						 CEPH_OSD_NEW);
1867		}
1868	}
1869	new_weight_end = *p;
1870
1871	/* new_state (up/down) */
1872	*p = new_state;
1873	len = ceph_decode_32(p);
1874	while (len--) {
1875		s32 osd;
1876		u32 xorstate;
1877		int ret;
1878
1879		osd = ceph_decode_32(p);
1880		if (struct_v >= 5)
1881			xorstate = ceph_decode_32(p);
1882		else
1883			xorstate = ceph_decode_8(p);
1884		if (xorstate == 0)
1885			xorstate = CEPH_OSD_UP;
1886		BUG_ON(osd >= map->max_osd);
1887		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1888		    (xorstate & CEPH_OSD_UP))
1889			pr_info("osd%d down\n", osd);
1890		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1891		    (xorstate & CEPH_OSD_EXISTS)) {
1892			pr_info("osd%d does not exist\n", osd);
1893			ret = set_primary_affinity(map, osd,
1894						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1895			if (ret)
1896				return ret;
1897			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1898			map->osd_state[osd] = 0;
1899		} else {
1900			map->osd_state[osd] ^= xorstate;
1901		}
1902	}
1903
1904	/* new_up_client */
1905	*p = new_up_client;
1906	len = ceph_decode_32(p);
1907	while (len--) {
1908		s32 osd;
1909		struct ceph_entity_addr addr;
1910
1911		osd = ceph_decode_32(p);
1912		BUG_ON(osd >= map->max_osd);
1913		if (ceph_decode_entity_addr(p, end, &addr))
1914			goto e_inval;
1915		pr_info("osd%d up\n", osd);
1916		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1917		map->osd_addr[osd] = addr;
1918	}
1919
1920	*p = new_weight_end;
1921	return 0;
1922
1923e_inval:
1924	return -EINVAL;
1925}
1926
1927/*
1928 * decode and apply an incremental map update.
1929 */
1930struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end,
1931					     struct ceph_osdmap *map)
1932{
1933	struct ceph_fsid fsid;
1934	u32 epoch = 0;
1935	struct ceph_timespec modified;
1936	s32 len;
1937	u64 pool;
1938	__s64 new_pool_max;
1939	__s32 new_flags, max;
1940	void *start = *p;
1941	int err;
1942	u8 struct_v;
1943
1944	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1945
1946	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1947	if (err)
1948		goto bad;
1949
1950	/* fsid, epoch, modified, new_pool_max, new_flags */
1951	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1952			 sizeof(u64) + sizeof(u32), e_inval);
1953	ceph_decode_copy(p, &fsid, sizeof(fsid));
1954	epoch = ceph_decode_32(p);
1955	BUG_ON(epoch != map->epoch+1);
1956	ceph_decode_copy(p, &modified, sizeof(modified));
1957	new_pool_max = ceph_decode_64(p);
1958	new_flags = ceph_decode_32(p);
1959
1960	/* full map? */
1961	ceph_decode_32_safe(p, end, len, e_inval);
1962	if (len > 0) {
1963		dout("apply_incremental full map len %d, %p to %p\n",
1964		     len, *p, end);
1965		return ceph_osdmap_decode(p, min(*p+len, end));
1966	}
1967
1968	/* new crush? */
1969	ceph_decode_32_safe(p, end, len, e_inval);
1970	if (len > 0) {
1971		err = osdmap_set_crush(map,
1972				       crush_decode(*p, min(*p + len, end)));
1973		if (err)
1974			goto bad;
1975		*p += len;
1976	}
1977
1978	/* new flags? */
1979	if (new_flags >= 0)
1980		map->flags = new_flags;
1981	if (new_pool_max >= 0)
1982		map->pool_max = new_pool_max;
1983
1984	/* new max? */
1985	ceph_decode_32_safe(p, end, max, e_inval);
1986	if (max >= 0) {
1987		err = osdmap_set_max_osd(map, max);
1988		if (err)
1989			goto bad;
1990	}
1991
1992	map->epoch++;
1993	map->modified = modified;
1994
1995	/* new_pools */
1996	err = decode_new_pools(p, end, map);
1997	if (err)
1998		goto bad;
1999
2000	/* new_pool_names */
2001	err = decode_pool_names(p, end, map);
2002	if (err)
2003		goto bad;
2004
2005	/* old_pool */
2006	ceph_decode_32_safe(p, end, len, e_inval);
2007	while (len--) {
2008		struct ceph_pg_pool_info *pi;
2009
2010		ceph_decode_64_safe(p, end, pool, e_inval);
2011		pi = lookup_pg_pool(&map->pg_pools, pool);
2012		if (pi)
2013			__remove_pg_pool(&map->pg_pools, pi);
2014	}
2015
2016	/* new_up_client, new_state, new_weight */
2017	err = decode_new_up_state_weight(p, end, struct_v, map);
2018	if (err)
2019		goto bad;
2020
2021	/* new_pg_temp */
2022	err = decode_new_pg_temp(p, end, map);
2023	if (err)
2024		goto bad;
2025
2026	/* new_primary_temp */
2027	if (struct_v >= 1) {
2028		err = decode_new_primary_temp(p, end, map);
2029		if (err)
2030			goto bad;
2031	}
2032
2033	/* new_primary_affinity */
2034	if (struct_v >= 2) {
2035		err = decode_new_primary_affinity(p, end, map);
2036		if (err)
2037			goto bad;
2038	}
2039
2040	if (struct_v >= 3) {
2041		/* new_erasure_code_profiles */
2042		ceph_decode_skip_map_of_map(p, end, string, string, string,
2043					    e_inval);
2044		/* old_erasure_code_profiles */
2045		ceph_decode_skip_set(p, end, string, e_inval);
2046	}
2047
2048	if (struct_v >= 4) {
2049		err = decode_new_pg_upmap(p, end, map);
2050		if (err)
2051			goto bad;
2052
2053		err = decode_old_pg_upmap(p, end, map);
2054		if (err)
2055			goto bad;
2056
2057		err = decode_new_pg_upmap_items(p, end, map);
2058		if (err)
2059			goto bad;
2060
2061		err = decode_old_pg_upmap_items(p, end, map);
2062		if (err)
2063			goto bad;
2064	}
2065
2066	/* ignore the rest */
2067	*p = end;
2068
2069	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2070	return map;
2071
2072e_inval:
2073	err = -EINVAL;
2074bad:
2075	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2076	       err, epoch, (int)(*p - start), *p, start, end);
2077	print_hex_dump(KERN_DEBUG, "osdmap: ",
2078		       DUMP_PREFIX_OFFSET, 16, 1,
2079		       start, end - start, true);
2080	return ERR_PTR(err);
2081}
2082
2083void ceph_oloc_copy(struct ceph_object_locator *dest,
2084		    const struct ceph_object_locator *src)
2085{
2086	ceph_oloc_destroy(dest);
2087
2088	dest->pool = src->pool;
2089	if (src->pool_ns)
2090		dest->pool_ns = ceph_get_string(src->pool_ns);
2091	else
2092		dest->pool_ns = NULL;
2093}
2094EXPORT_SYMBOL(ceph_oloc_copy);
2095
2096void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2097{
2098	ceph_put_string(oloc->pool_ns);
2099}
2100EXPORT_SYMBOL(ceph_oloc_destroy);
2101
2102void ceph_oid_copy(struct ceph_object_id *dest,
2103		   const struct ceph_object_id *src)
2104{
2105	ceph_oid_destroy(dest);
2106
2107	if (src->name != src->inline_name) {
2108		/* very rare, see ceph_object_id definition */
2109		dest->name = kmalloc(src->name_len + 1,
2110				     GFP_NOIO | __GFP_NOFAIL);
2111	} else {
2112		dest->name = dest->inline_name;
2113	}
2114	memcpy(dest->name, src->name, src->name_len + 1);
2115	dest->name_len = src->name_len;
2116}
2117EXPORT_SYMBOL(ceph_oid_copy);
2118
2119static __printf(2, 0)
2120int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2121{
2122	int len;
2123
2124	WARN_ON(!ceph_oid_empty(oid));
2125
2126	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2127	if (len >= sizeof(oid->inline_name))
2128		return len;
2129
2130	oid->name_len = len;
2131	return 0;
2132}
2133
2134/*
2135 * If oid doesn't fit into inline buffer, BUG.
2136 */
2137void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2138{
2139	va_list ap;
2140
2141	va_start(ap, fmt);
2142	BUG_ON(oid_printf_vargs(oid, fmt, ap));
2143	va_end(ap);
2144}
2145EXPORT_SYMBOL(ceph_oid_printf);
2146
2147static __printf(3, 0)
2148int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2149		      const char *fmt, va_list ap)
2150{
2151	va_list aq;
2152	int len;
2153
2154	va_copy(aq, ap);
2155	len = oid_printf_vargs(oid, fmt, aq);
2156	va_end(aq);
2157
2158	if (len) {
2159		char *external_name;
2160
2161		external_name = kmalloc(len + 1, gfp);
2162		if (!external_name)
2163			return -ENOMEM;
2164
2165		oid->name = external_name;
2166		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2167		oid->name_len = len;
2168	}
2169
2170	return 0;
2171}
2172
2173/*
2174 * If oid doesn't fit into inline buffer, allocate.
2175 */
2176int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2177		     const char *fmt, ...)
2178{
2179	va_list ap;
2180	int ret;
2181
2182	va_start(ap, fmt);
2183	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2184	va_end(ap);
2185
2186	return ret;
2187}
2188EXPORT_SYMBOL(ceph_oid_aprintf);
2189
2190void ceph_oid_destroy(struct ceph_object_id *oid)
2191{
2192	if (oid->name != oid->inline_name)
2193		kfree(oid->name);
2194}
2195EXPORT_SYMBOL(ceph_oid_destroy);
2196
2197/*
2198 * osds only
2199 */
2200static bool __osds_equal(const struct ceph_osds *lhs,
2201			 const struct ceph_osds *rhs)
2202{
2203	if (lhs->size == rhs->size &&
2204	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2205		return true;
2206
2207	return false;
2208}
2209
2210/*
2211 * osds + primary
2212 */
2213static bool osds_equal(const struct ceph_osds *lhs,
2214		       const struct ceph_osds *rhs)
2215{
2216	if (__osds_equal(lhs, rhs) &&
2217	    lhs->primary == rhs->primary)
2218		return true;
2219
2220	return false;
2221}
2222
2223static bool osds_valid(const struct ceph_osds *set)
2224{
2225	/* non-empty set */
2226	if (set->size > 0 && set->primary >= 0)
2227		return true;
2228
2229	/* empty can_shift_osds set */
2230	if (!set->size && set->primary == -1)
2231		return true;
2232
2233	/* empty !can_shift_osds set - all NONE */
2234	if (set->size > 0 && set->primary == -1) {
2235		int i;
2236
2237		for (i = 0; i < set->size; i++) {
2238			if (set->osds[i] != CRUSH_ITEM_NONE)
2239				break;
2240		}
2241		if (i == set->size)
2242			return true;
2243	}
2244
2245	return false;
2246}
2247
2248void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2249{
2250	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2251	dest->size = src->size;
2252	dest->primary = src->primary;
2253}
2254
2255bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2256		      u32 new_pg_num)
2257{
2258	int old_bits = calc_bits_of(old_pg_num);
2259	int old_mask = (1 << old_bits) - 1;
2260	int n;
2261
2262	WARN_ON(pgid->seed >= old_pg_num);
2263	if (new_pg_num <= old_pg_num)
2264		return false;
2265
2266	for (n = 1; ; n++) {
2267		int next_bit = n << (old_bits - 1);
2268		u32 s = next_bit | pgid->seed;
2269
2270		if (s < old_pg_num || s == pgid->seed)
2271			continue;
2272		if (s >= new_pg_num)
2273			break;
2274
2275		s = ceph_stable_mod(s, old_pg_num, old_mask);
2276		if (s == pgid->seed)
2277			return true;
2278	}
2279
2280	return false;
2281}
2282
2283bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2284			  const struct ceph_osds *new_acting,
2285			  const struct ceph_osds *old_up,
2286			  const struct ceph_osds *new_up,
2287			  int old_size,
2288			  int new_size,
2289			  int old_min_size,
2290			  int new_min_size,
2291			  u32 old_pg_num,
2292			  u32 new_pg_num,
2293			  bool old_sort_bitwise,
2294			  bool new_sort_bitwise,
2295			  bool old_recovery_deletes,
2296			  bool new_recovery_deletes,
2297			  const struct ceph_pg *pgid)
2298{
2299	return !osds_equal(old_acting, new_acting) ||
2300	       !osds_equal(old_up, new_up) ||
2301	       old_size != new_size ||
2302	       old_min_size != new_min_size ||
2303	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2304	       old_sort_bitwise != new_sort_bitwise ||
2305	       old_recovery_deletes != new_recovery_deletes;
2306}
2307
2308static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2309{
2310	int i;
2311
2312	for (i = 0; i < acting->size; i++) {
2313		if (acting->osds[i] == osd)
2314			return i;
2315	}
2316
2317	return -1;
2318}
2319
2320static bool primary_changed(const struct ceph_osds *old_acting,
2321			    const struct ceph_osds *new_acting)
2322{
2323	if (!old_acting->size && !new_acting->size)
2324		return false; /* both still empty */
2325
2326	if (!old_acting->size ^ !new_acting->size)
2327		return true; /* was empty, now not, or vice versa */
2328
2329	if (old_acting->primary != new_acting->primary)
2330		return true; /* primary changed */
2331
2332	if (calc_pg_rank(old_acting->primary, old_acting) !=
2333	    calc_pg_rank(new_acting->primary, new_acting))
2334		return true;
2335
2336	return false; /* same primary (tho replicas may have changed) */
2337}
2338
2339bool ceph_osds_changed(const struct ceph_osds *old_acting,
2340		       const struct ceph_osds *new_acting,
2341		       bool any_change)
2342{
2343	if (primary_changed(old_acting, new_acting))
2344		return true;
2345
2346	if (any_change && !__osds_equal(old_acting, new_acting))
2347		return true;
2348
2349	return false;
2350}
2351
2352/*
2353 * Map an object into a PG.
2354 *
2355 * Should only be called with target_oid and target_oloc (as opposed to
2356 * base_oid and base_oloc), since tiering isn't taken into account.
2357 */
2358void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2359				 const struct ceph_object_id *oid,
2360				 const struct ceph_object_locator *oloc,
2361				 struct ceph_pg *raw_pgid)
2362{
2363	WARN_ON(pi->id != oloc->pool);
2364
2365	if (!oloc->pool_ns) {
2366		raw_pgid->pool = oloc->pool;
2367		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2368					     oid->name_len);
2369		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2370		     raw_pgid->pool, raw_pgid->seed);
2371	} else {
2372		char stack_buf[256];
2373		char *buf = stack_buf;
2374		int nsl = oloc->pool_ns->len;
2375		size_t total = nsl + 1 + oid->name_len;
2376
2377		if (total > sizeof(stack_buf))
2378			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2379		memcpy(buf, oloc->pool_ns->str, nsl);
2380		buf[nsl] = '\037';
2381		memcpy(buf + nsl + 1, oid->name, oid->name_len);
2382		raw_pgid->pool = oloc->pool;
2383		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2384		if (buf != stack_buf)
2385			kfree(buf);
2386		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2387		     oid->name, nsl, oloc->pool_ns->str,
2388		     raw_pgid->pool, raw_pgid->seed);
2389	}
2390}
2391
2392int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2393			      const struct ceph_object_id *oid,
2394			      const struct ceph_object_locator *oloc,
2395			      struct ceph_pg *raw_pgid)
2396{
2397	struct ceph_pg_pool_info *pi;
2398
2399	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2400	if (!pi)
2401		return -ENOENT;
2402
2403	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2404	return 0;
2405}
2406EXPORT_SYMBOL(ceph_object_locator_to_pg);
2407
2408/*
2409 * Map a raw PG (full precision ps) into an actual PG.
2410 */
2411static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2412			 const struct ceph_pg *raw_pgid,
2413			 struct ceph_pg *pgid)
2414{
2415	pgid->pool = raw_pgid->pool;
2416	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2417				     pi->pg_num_mask);
2418}
2419
2420/*
2421 * Map a raw PG (full precision ps) into a placement ps (placement
2422 * seed).  Include pool id in that value so that different pools don't
2423 * use the same seeds.
2424 */
2425static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2426			 const struct ceph_pg *raw_pgid)
2427{
2428	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2429		/* hash pool id and seed so that pool PGs do not overlap */
2430		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2431				      ceph_stable_mod(raw_pgid->seed,
2432						      pi->pgp_num,
2433						      pi->pgp_num_mask),
2434				      raw_pgid->pool);
2435	} else {
2436		/*
2437		 * legacy behavior: add ps and pool together.  this is
2438		 * not a great approach because the PGs from each pool
2439		 * will overlap on top of each other: 0.5 == 1.4 ==
2440		 * 2.3 == ...
2441		 */
2442		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2443				       pi->pgp_num_mask) +
2444		       (unsigned)raw_pgid->pool;
2445	}
2446}
2447
2448/*
2449 * Magic value used for a "default" fallback choose_args, used if the
2450 * crush_choose_arg_map passed to do_crush() does not exist.  If this
2451 * also doesn't exist, fall back to canonical weights.
2452 */
2453#define CEPH_DEFAULT_CHOOSE_ARGS	-1
2454
2455static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2456		    int *result, int result_max,
2457		    const __u32 *weight, int weight_max,
2458		    s64 choose_args_index)
2459{
2460	struct crush_choose_arg_map *arg_map;
2461	struct crush_work *work;
2462	int r;
2463
2464	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2465
2466	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2467					choose_args_index);
2468	if (!arg_map)
2469		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2470						CEPH_DEFAULT_CHOOSE_ARGS);
2471
2472	work = get_workspace(&map->crush_wsm, map->crush);
2473	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2474			  weight, weight_max, work,
2475			  arg_map ? arg_map->args : NULL);
2476	put_workspace(&map->crush_wsm, work);
2477	return r;
2478}
2479
2480static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2481				    struct ceph_pg_pool_info *pi,
2482				    struct ceph_osds *set)
2483{
2484	int i;
2485
2486	if (ceph_can_shift_osds(pi)) {
2487		int removed = 0;
2488
2489		/* shift left */
2490		for (i = 0; i < set->size; i++) {
2491			if (!ceph_osd_exists(osdmap, set->osds[i])) {
2492				removed++;
2493				continue;
2494			}
2495			if (removed)
2496				set->osds[i - removed] = set->osds[i];
2497		}
2498		set->size -= removed;
2499	} else {
2500		/* set dne devices to NONE */
2501		for (i = 0; i < set->size; i++) {
2502			if (!ceph_osd_exists(osdmap, set->osds[i]))
2503				set->osds[i] = CRUSH_ITEM_NONE;
2504		}
2505	}
2506}
2507
2508/*
2509 * Calculate raw set (CRUSH output) for given PG and filter out
2510 * nonexistent OSDs.  ->primary is undefined for a raw set.
2511 *
2512 * Placement seed (CRUSH input) is returned through @ppps.
2513 */
2514static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2515			   struct ceph_pg_pool_info *pi,
2516			   const struct ceph_pg *raw_pgid,
2517			   struct ceph_osds *raw,
2518			   u32 *ppps)
2519{
2520	u32 pps = raw_pg_to_pps(pi, raw_pgid);
2521	int ruleno;
2522	int len;
2523
2524	ceph_osds_init(raw);
2525	if (ppps)
2526		*ppps = pps;
2527
2528	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2529				 pi->size);
2530	if (ruleno < 0) {
2531		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2532		       pi->id, pi->crush_ruleset, pi->type, pi->size);
2533		return;
2534	}
2535
2536	if (pi->size > ARRAY_SIZE(raw->osds)) {
2537		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2538		       pi->id, pi->crush_ruleset, pi->type, pi->size,
2539		       ARRAY_SIZE(raw->osds));
2540		return;
2541	}
2542
2543	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2544		       osdmap->osd_weight, osdmap->max_osd, pi->id);
2545	if (len < 0) {
2546		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2547		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2548		       pi->size);
2549		return;
2550	}
2551
2552	raw->size = len;
2553	remove_nonexistent_osds(osdmap, pi, raw);
2554}
2555
2556/* apply pg_upmap[_items] mappings */
2557static void apply_upmap(struct ceph_osdmap *osdmap,
2558			const struct ceph_pg *pgid,
2559			struct ceph_osds *raw)
2560{
2561	struct ceph_pg_mapping *pg;
2562	int i, j;
2563
2564	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2565	if (pg) {
2566		/* make sure targets aren't marked out */
2567		for (i = 0; i < pg->pg_upmap.len; i++) {
2568			int osd = pg->pg_upmap.osds[i];
2569
2570			if (osd != CRUSH_ITEM_NONE &&
2571			    osd < osdmap->max_osd &&
2572			    osdmap->osd_weight[osd] == 0) {
2573				/* reject/ignore explicit mapping */
2574				return;
2575			}
2576		}
2577		for (i = 0; i < pg->pg_upmap.len; i++)
2578			raw->osds[i] = pg->pg_upmap.osds[i];
2579		raw->size = pg->pg_upmap.len;
2580		/* check and apply pg_upmap_items, if any */
2581	}
2582
2583	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2584	if (pg) {
2585		/*
2586		 * Note: this approach does not allow a bidirectional swap,
2587		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2588		 */
2589		for (i = 0; i < pg->pg_upmap_items.len; i++) {
2590			int from = pg->pg_upmap_items.from_to[i][0];
2591			int to = pg->pg_upmap_items.from_to[i][1];
2592			int pos = -1;
2593			bool exists = false;
2594
2595			/* make sure replacement doesn't already appear */
2596			for (j = 0; j < raw->size; j++) {
2597				int osd = raw->osds[j];
2598
2599				if (osd == to) {
2600					exists = true;
2601					break;
2602				}
2603				/* ignore mapping if target is marked out */
2604				if (osd == from && pos < 0 &&
2605				    !(to != CRUSH_ITEM_NONE &&
2606				      to < osdmap->max_osd &&
2607				      osdmap->osd_weight[to] == 0)) {
2608					pos = j;
2609				}
2610			}
2611			if (!exists && pos >= 0)
2612				raw->osds[pos] = to;
2613		}
2614	}
2615}
2616
2617/*
2618 * Given raw set, calculate up set and up primary.  By definition of an
2619 * up set, the result won't contain nonexistent or down OSDs.
2620 *
2621 * This is done in-place - on return @set is the up set.  If it's
2622 * empty, ->primary will remain undefined.
2623 */
2624static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2625			   struct ceph_pg_pool_info *pi,
2626			   struct ceph_osds *set)
2627{
2628	int i;
2629
2630	/* ->primary is undefined for a raw set */
2631	BUG_ON(set->primary != -1);
2632
2633	if (ceph_can_shift_osds(pi)) {
2634		int removed = 0;
2635
2636		/* shift left */
2637		for (i = 0; i < set->size; i++) {
2638			if (ceph_osd_is_down(osdmap, set->osds[i])) {
2639				removed++;
2640				continue;
2641			}
2642			if (removed)
2643				set->osds[i - removed] = set->osds[i];
2644		}
2645		set->size -= removed;
2646		if (set->size > 0)
2647			set->primary = set->osds[0];
2648	} else {
2649		/* set down/dne devices to NONE */
2650		for (i = set->size - 1; i >= 0; i--) {
2651			if (ceph_osd_is_down(osdmap, set->osds[i]))
2652				set->osds[i] = CRUSH_ITEM_NONE;
2653			else
2654				set->primary = set->osds[i];
2655		}
2656	}
2657}
2658
2659static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2660				   struct ceph_pg_pool_info *pi,
2661				   u32 pps,
2662				   struct ceph_osds *up)
2663{
2664	int i;
2665	int pos = -1;
2666
2667	/*
2668	 * Do we have any non-default primary_affinity values for these
2669	 * osds?
2670	 */
2671	if (!osdmap->osd_primary_affinity)
2672		return;
2673
2674	for (i = 0; i < up->size; i++) {
2675		int osd = up->osds[i];
2676
2677		if (osd != CRUSH_ITEM_NONE &&
2678		    osdmap->osd_primary_affinity[osd] !=
2679					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2680			break;
2681		}
2682	}
2683	if (i == up->size)
2684		return;
2685
2686	/*
2687	 * Pick the primary.  Feed both the seed (for the pg) and the
2688	 * osd into the hash/rng so that a proportional fraction of an
2689	 * osd's pgs get rejected as primary.
2690	 */
2691	for (i = 0; i < up->size; i++) {
2692		int osd = up->osds[i];
2693		u32 aff;
2694
2695		if (osd == CRUSH_ITEM_NONE)
2696			continue;
2697
2698		aff = osdmap->osd_primary_affinity[osd];
2699		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2700		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2701				    pps, osd) >> 16) >= aff) {
2702			/*
2703			 * We chose not to use this primary.  Note it
2704			 * anyway as a fallback in case we don't pick
2705			 * anyone else, but keep looking.
2706			 */
2707			if (pos < 0)
2708				pos = i;
2709		} else {
2710			pos = i;
2711			break;
2712		}
2713	}
2714	if (pos < 0)
2715		return;
2716
2717	up->primary = up->osds[pos];
2718
2719	if (ceph_can_shift_osds(pi) && pos > 0) {
2720		/* move the new primary to the front */
2721		for (i = pos; i > 0; i--)
2722			up->osds[i] = up->osds[i - 1];
2723		up->osds[0] = up->primary;
2724	}
2725}
2726
2727/*
2728 * Get pg_temp and primary_temp mappings for given PG.
2729 *
2730 * Note that a PG may have none, only pg_temp, only primary_temp or
2731 * both pg_temp and primary_temp mappings.  This means @temp isn't
2732 * always a valid OSD set on return: in the "only primary_temp" case,
2733 * @temp will have its ->primary >= 0 but ->size == 0.
2734 */
2735static void get_temp_osds(struct ceph_osdmap *osdmap,
2736			  struct ceph_pg_pool_info *pi,
2737			  const struct ceph_pg *pgid,
2738			  struct ceph_osds *temp)
2739{
2740	struct ceph_pg_mapping *pg;
2741	int i;
2742
2743	ceph_osds_init(temp);
2744
2745	/* pg_temp? */
2746	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2747	if (pg) {
2748		for (i = 0; i < pg->pg_temp.len; i++) {
2749			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2750				if (ceph_can_shift_osds(pi))
2751					continue;
2752
2753				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2754			} else {
2755				temp->osds[temp->size++] = pg->pg_temp.osds[i];
2756			}
2757		}
2758
2759		/* apply pg_temp's primary */
2760		for (i = 0; i < temp->size; i++) {
2761			if (temp->osds[i] != CRUSH_ITEM_NONE) {
2762				temp->primary = temp->osds[i];
2763				break;
2764			}
2765		}
2766	}
2767
2768	/* primary_temp? */
2769	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2770	if (pg)
2771		temp->primary = pg->primary_temp.osd;
2772}
2773
2774/*
2775 * Map a PG to its acting set as well as its up set.
2776 *
2777 * Acting set is used for data mapping purposes, while up set can be
2778 * recorded for detecting interval changes and deciding whether to
2779 * resend a request.
2780 */
2781void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2782			       struct ceph_pg_pool_info *pi,
2783			       const struct ceph_pg *raw_pgid,
2784			       struct ceph_osds *up,
2785			       struct ceph_osds *acting)
2786{
2787	struct ceph_pg pgid;
2788	u32 pps;
2789
2790	WARN_ON(pi->id != raw_pgid->pool);
2791	raw_pg_to_pg(pi, raw_pgid, &pgid);
2792
2793	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2794	apply_upmap(osdmap, &pgid, up);
2795	raw_to_up_osds(osdmap, pi, up);
2796	apply_primary_affinity(osdmap, pi, pps, up);
2797	get_temp_osds(osdmap, pi, &pgid, acting);
2798	if (!acting->size) {
2799		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2800		acting->size = up->size;
2801		if (acting->primary == -1)
2802			acting->primary = up->primary;
2803	}
2804	WARN_ON(!osds_valid(up) || !osds_valid(acting));
2805}
2806
2807bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2808			      struct ceph_pg_pool_info *pi,
2809			      const struct ceph_pg *raw_pgid,
2810			      struct ceph_spg *spgid)
2811{
2812	struct ceph_pg pgid;
2813	struct ceph_osds up, acting;
2814	int i;
2815
2816	WARN_ON(pi->id != raw_pgid->pool);
2817	raw_pg_to_pg(pi, raw_pgid, &pgid);
2818
2819	if (ceph_can_shift_osds(pi)) {
2820		spgid->pgid = pgid; /* struct */
2821		spgid->shard = CEPH_SPG_NOSHARD;
2822		return true;
2823	}
2824
2825	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2826	for (i = 0; i < acting.size; i++) {
2827		if (acting.osds[i] == acting.primary) {
2828			spgid->pgid = pgid; /* struct */
2829			spgid->shard = i;
2830			return true;
2831		}
2832	}
2833
2834	return false;
2835}
2836
2837/*
2838 * Return acting primary for given PG, or -1 if none.
2839 */
2840int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2841			      const struct ceph_pg *raw_pgid)
2842{
2843	struct ceph_pg_pool_info *pi;
2844	struct ceph_osds up, acting;
2845
2846	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2847	if (!pi)
2848		return -1;
2849
2850	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2851	return acting.primary;
2852}
2853EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2854
2855static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2856					      size_t name_len)
2857{
2858	struct crush_loc_node *loc;
2859
2860	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2861	if (!loc)
2862		return NULL;
2863
2864	RB_CLEAR_NODE(&loc->cl_node);
2865	return loc;
2866}
2867
2868static void free_crush_loc(struct crush_loc_node *loc)
2869{
2870	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2871
2872	kfree(loc);
2873}
2874
2875static int crush_loc_compare(const struct crush_loc *loc1,
2876			     const struct crush_loc *loc2)
2877{
2878	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2879	       strcmp(loc1->cl_name, loc2->cl_name);
2880}
2881
2882DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2883		 RB_BYPTR, const struct crush_loc *, cl_node)
2884
2885/*
2886 * Parses a set of <bucket type name>':'<bucket name> pairs separated
2887 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2888 *
2889 * Note that @crush_location is modified by strsep().
2890 */
2891int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2892{
2893	struct crush_loc_node *loc;
2894	const char *type_name, *name, *colon;
2895	size_t type_name_len, name_len;
2896
2897	dout("%s '%s'\n", __func__, crush_location);
2898	while ((type_name = strsep(&crush_location, "|"))) {
2899		colon = strchr(type_name, ':');
2900		if (!colon)
2901			return -EINVAL;
2902
2903		type_name_len = colon - type_name;
2904		if (type_name_len == 0)
2905			return -EINVAL;
2906
2907		name = colon + 1;
2908		name_len = strlen(name);
2909		if (name_len == 0)
2910			return -EINVAL;
2911
2912		loc = alloc_crush_loc(type_name_len, name_len);
2913		if (!loc)
2914			return -ENOMEM;
2915
2916		loc->cl_loc.cl_type_name = loc->cl_data;
2917		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2918		loc->cl_loc.cl_type_name[type_name_len] = '\0';
2919
2920		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2921		memcpy(loc->cl_loc.cl_name, name, name_len);
2922		loc->cl_loc.cl_name[name_len] = '\0';
2923
2924		if (!__insert_crush_loc(locs, loc)) {
2925			free_crush_loc(loc);
2926			return -EEXIST;
2927		}
2928
2929		dout("%s type_name '%s' name '%s'\n", __func__,
2930		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2931	}
2932
2933	return 0;
2934}
2935
2936int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2937{
2938	struct rb_node *n1 = rb_first(locs1);
2939	struct rb_node *n2 = rb_first(locs2);
2940	int ret;
2941
2942	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2943		struct crush_loc_node *loc1 =
2944		    rb_entry(n1, struct crush_loc_node, cl_node);
2945		struct crush_loc_node *loc2 =
2946		    rb_entry(n2, struct crush_loc_node, cl_node);
2947
2948		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2949		if (ret)
2950			return ret;
2951	}
2952
2953	if (!n1 && n2)
2954		return -1;
2955	if (n1 && !n2)
2956		return 1;
2957	return 0;
2958}
2959
2960void ceph_clear_crush_locs(struct rb_root *locs)
2961{
2962	while (!RB_EMPTY_ROOT(locs)) {
2963		struct crush_loc_node *loc =
2964		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
2965
2966		erase_crush_loc(locs, loc);
2967		free_crush_loc(loc);
2968	}
2969}
2970
2971/*
2972 * [a-zA-Z0-9-_.]+
2973 */
2974static bool is_valid_crush_name(const char *name)
2975{
2976	do {
2977		if (!('a' <= *name && *name <= 'z') &&
2978		    !('A' <= *name && *name <= 'Z') &&
2979		    !('0' <= *name && *name <= '9') &&
2980		    *name != '-' && *name != '_' && *name != '.')
2981			return false;
2982	} while (*++name != '\0');
2983
2984	return true;
2985}
2986
2987/*
2988 * Gets the parent of an item.  Returns its id (<0 because the
2989 * parent is always a bucket), type id (>0 for the same reason,
2990 * via @parent_type_id) and location (via @parent_loc).  If no
2991 * parent, returns 0.
2992 *
2993 * Does a linear search, as there are no parent pointers of any
2994 * kind.  Note that the result is ambigous for items that occur
2995 * multiple times in the map.
2996 */
2997static int get_immediate_parent(struct crush_map *c, int id,
2998				u16 *parent_type_id,
2999				struct crush_loc *parent_loc)
3000{
3001	struct crush_bucket *b;
3002	struct crush_name_node *type_cn, *cn;
3003	int i, j;
3004
3005	for (i = 0; i < c->max_buckets; i++) {
3006		b = c->buckets[i];
3007		if (!b)
3008			continue;
3009
3010		/* ignore per-class shadow hierarchy */
3011		cn = lookup_crush_name(&c->names, b->id);
3012		if (!cn || !is_valid_crush_name(cn->cn_name))
3013			continue;
3014
3015		for (j = 0; j < b->size; j++) {
3016			if (b->items[j] != id)
3017				continue;
3018
3019			*parent_type_id = b->type;
3020			type_cn = lookup_crush_name(&c->type_names, b->type);
3021			parent_loc->cl_type_name = type_cn->cn_name;
3022			parent_loc->cl_name = cn->cn_name;
3023			return b->id;
3024		}
3025	}
3026
3027	return 0;  /* no parent */
3028}
3029
3030/*
3031 * Calculates the locality/distance from an item to a client
3032 * location expressed in terms of CRUSH hierarchy as a set of
3033 * (bucket type name, bucket name) pairs.  Specifically, looks
3034 * for the lowest-valued bucket type for which the location of
3035 * @id matches one of the locations in @locs, so for standard
3036 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3037 * a matching host is closer than a matching rack and a matching
3038 * data center is closer than a matching zone.
3039 *
3040 * Specifying multiple locations (a "multipath" location) such
3041 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3042 * is a multimap.  The locality will be:
3043 *
3044 * - 3 for OSDs in racks foo1 and foo2
3045 * - 8 for OSDs in data center bar
3046 * - -1 for all other OSDs
3047 *
3048 * The lowest possible bucket type is 1, so the best locality
3049 * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
3050 * the OSD itself.
3051 */
3052int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3053			    struct rb_root *locs)
3054{
3055	struct crush_loc loc;
3056	u16 type_id;
3057
3058	/*
3059	 * Instead of repeated get_immediate_parent() calls,
3060	 * the location of @id could be obtained with a single
3061	 * depth-first traversal.
3062	 */
3063	for (;;) {
3064		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3065		if (id >= 0)
3066			return -1;  /* not local */
3067
3068		if (lookup_crush_loc(locs, &loc))
3069			return type_id;
3070	}
3071}
3072