xref: /kernel/linux/linux-5.10/net/ceph/messenger.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef	CONFIG_BLOCK
16#include <linux/bio.h>
17#endif	/* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20
21#include <linux/ceph/ceph_features.h>
22#include <linux/ceph/libceph.h>
23#include <linux/ceph/messenger.h>
24#include <linux/ceph/decode.h>
25#include <linux/ceph/pagelist.h>
26#include <linux/export.h>
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system.  The messenger provides ordered and reliable
31 * delivery.  We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error).  Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below.  The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 *      --------
44 *      | NEW* |  transient initial state
45 *      --------
46 *          | con_sock_state_init()
47 *          v
48 *      ----------
49 *      | CLOSED |  initialized, but no socket (and no
50 *      ----------  TCP connection)
51 *       ^      \
52 *       |       \ con_sock_state_connecting()
53 *       |        ----------------------
54 *       |                              \
55 *       + con_sock_state_closed()       \
56 *       |+---------------------------    \
57 *       | \                          \    \
58 *       |  -----------                \    \
59 *       |  | CLOSING |  socket event;  \    \
60 *       |  -----------  await close     \    \
61 *       |       ^                        \   |
62 *       |       |                         \  |
63 *       |       + con_sock_state_closing() \ |
64 *       |      / \                         | |
65 *       |     /   ---------------          | |
66 *       |    /                   \         v v
67 *       |   /                    --------------
68 *       |  /    -----------------| CONNECTING |  socket created, TCP
69 *       |  |   /                 --------------  connect initiated
70 *       |  |   | con_sock_state_connected()
71 *       |  |   v
72 *      -------------
73 *      | CONNECTED |  TCP connection established
74 *      -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84
85/*
86 * connection states
87 */
88#define CON_STATE_CLOSED        1  /* -> PREOPEN */
89#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94
95/*
96 * ceph_connection flag bits
97 */
98#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99				       * messages on errors */
100#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101#define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102#define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104
105static bool con_flag_valid(unsigned long con_flag)
106{
107	switch (con_flag) {
108	case CON_FLAG_LOSSYTX:
109	case CON_FLAG_KEEPALIVE_PENDING:
110	case CON_FLAG_WRITE_PENDING:
111	case CON_FLAG_SOCK_CLOSED:
112	case CON_FLAG_BACKOFF:
113		return true;
114	default:
115		return false;
116	}
117}
118
119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120{
121	BUG_ON(!con_flag_valid(con_flag));
122
123	clear_bit(con_flag, &con->flags);
124}
125
126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127{
128	BUG_ON(!con_flag_valid(con_flag));
129
130	set_bit(con_flag, &con->flags);
131}
132
133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134{
135	BUG_ON(!con_flag_valid(con_flag));
136
137	return test_bit(con_flag, &con->flags);
138}
139
140static bool con_flag_test_and_clear(struct ceph_connection *con,
141					unsigned long con_flag)
142{
143	BUG_ON(!con_flag_valid(con_flag));
144
145	return test_and_clear_bit(con_flag, &con->flags);
146}
147
148static bool con_flag_test_and_set(struct ceph_connection *con,
149					unsigned long con_flag)
150{
151	BUG_ON(!con_flag_valid(con_flag));
152
153	return test_and_set_bit(con_flag, &con->flags);
154}
155
156/* Slab caches for frequently-allocated structures */
157
158static struct kmem_cache	*ceph_msg_cache;
159
160/* static tag bytes (protocol control messages) */
161static char tag_msg = CEPH_MSGR_TAG_MSG;
162static char tag_ack = CEPH_MSGR_TAG_ACK;
163static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166#ifdef CONFIG_LOCKDEP
167static struct lock_class_key socket_class;
168#endif
169
170static void queue_con(struct ceph_connection *con);
171static void cancel_con(struct ceph_connection *con);
172static void ceph_con_workfn(struct work_struct *);
173static void con_fault(struct ceph_connection *con);
174
175/*
176 * Nicely render a sockaddr as a string.  An array of formatted
177 * strings is used, to approximate reentrancy.
178 */
179#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
180#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
181#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
182#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
183
184static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185static atomic_t addr_str_seq = ATOMIC_INIT(0);
186
187static struct page *zero_page;		/* used in certain error cases */
188
189const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190{
191	int i;
192	char *s;
193	struct sockaddr_storage ss = addr->in_addr; /* align */
194	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196
197	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198	s = addr_str[i];
199
200	switch (ss.ss_family) {
201	case AF_INET:
202		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
203			 le32_to_cpu(addr->type), &in4->sin_addr,
204			 ntohs(in4->sin_port));
205		break;
206
207	case AF_INET6:
208		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
209			 le32_to_cpu(addr->type), &in6->sin6_addr,
210			 ntohs(in6->sin6_port));
211		break;
212
213	default:
214		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
215			 ss.ss_family);
216	}
217
218	return s;
219}
220EXPORT_SYMBOL(ceph_pr_addr);
221
222static void encode_my_addr(struct ceph_messenger *msgr)
223{
224	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
225	ceph_encode_banner_addr(&msgr->my_enc_addr);
226}
227
228/*
229 * work queue for all reading and writing to/from the socket.
230 */
231static struct workqueue_struct *ceph_msgr_wq;
232
233static int ceph_msgr_slab_init(void)
234{
235	BUG_ON(ceph_msg_cache);
236	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
237	if (!ceph_msg_cache)
238		return -ENOMEM;
239
240	return 0;
241}
242
243static void ceph_msgr_slab_exit(void)
244{
245	BUG_ON(!ceph_msg_cache);
246	kmem_cache_destroy(ceph_msg_cache);
247	ceph_msg_cache = NULL;
248}
249
250static void _ceph_msgr_exit(void)
251{
252	if (ceph_msgr_wq) {
253		destroy_workqueue(ceph_msgr_wq);
254		ceph_msgr_wq = NULL;
255	}
256
257	BUG_ON(zero_page == NULL);
258	put_page(zero_page);
259	zero_page = NULL;
260
261	ceph_msgr_slab_exit();
262}
263
264int __init ceph_msgr_init(void)
265{
266	if (ceph_msgr_slab_init())
267		return -ENOMEM;
268
269	BUG_ON(zero_page != NULL);
270	zero_page = ZERO_PAGE(0);
271	get_page(zero_page);
272
273	/*
274	 * The number of active work items is limited by the number of
275	 * connections, so leave @max_active at default.
276	 */
277	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
278	if (ceph_msgr_wq)
279		return 0;
280
281	pr_err("msgr_init failed to create workqueue\n");
282	_ceph_msgr_exit();
283
284	return -ENOMEM;
285}
286
287void ceph_msgr_exit(void)
288{
289	BUG_ON(ceph_msgr_wq == NULL);
290
291	_ceph_msgr_exit();
292}
293
294void ceph_msgr_flush(void)
295{
296	flush_workqueue(ceph_msgr_wq);
297}
298EXPORT_SYMBOL(ceph_msgr_flush);
299
300/* Connection socket state transition functions */
301
302static void con_sock_state_init(struct ceph_connection *con)
303{
304	int old_state;
305
306	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
307	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
308		printk("%s: unexpected old state %d\n", __func__, old_state);
309	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310	     CON_SOCK_STATE_CLOSED);
311}
312
313static void con_sock_state_connecting(struct ceph_connection *con)
314{
315	int old_state;
316
317	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
318	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
319		printk("%s: unexpected old state %d\n", __func__, old_state);
320	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
321	     CON_SOCK_STATE_CONNECTING);
322}
323
324static void con_sock_state_connected(struct ceph_connection *con)
325{
326	int old_state;
327
328	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
329	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
330		printk("%s: unexpected old state %d\n", __func__, old_state);
331	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332	     CON_SOCK_STATE_CONNECTED);
333}
334
335static void con_sock_state_closing(struct ceph_connection *con)
336{
337	int old_state;
338
339	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
340	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
341			old_state != CON_SOCK_STATE_CONNECTED &&
342			old_state != CON_SOCK_STATE_CLOSING))
343		printk("%s: unexpected old state %d\n", __func__, old_state);
344	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345	     CON_SOCK_STATE_CLOSING);
346}
347
348static void con_sock_state_closed(struct ceph_connection *con)
349{
350	int old_state;
351
352	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
353	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
354		    old_state != CON_SOCK_STATE_CLOSING &&
355		    old_state != CON_SOCK_STATE_CONNECTING &&
356		    old_state != CON_SOCK_STATE_CLOSED))
357		printk("%s: unexpected old state %d\n", __func__, old_state);
358	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
359	     CON_SOCK_STATE_CLOSED);
360}
361
362/*
363 * socket callback functions
364 */
365
366/* data available on socket, or listen socket received a connect */
367static void ceph_sock_data_ready(struct sock *sk)
368{
369	struct ceph_connection *con = sk->sk_user_data;
370	if (atomic_read(&con->msgr->stopping)) {
371		return;
372	}
373
374	if (sk->sk_state != TCP_CLOSE_WAIT) {
375		dout("%s on %p state = %lu, queueing work\n", __func__,
376		     con, con->state);
377		queue_con(con);
378	}
379}
380
381/* socket has buffer space for writing */
382static void ceph_sock_write_space(struct sock *sk)
383{
384	struct ceph_connection *con = sk->sk_user_data;
385
386	/* only queue to workqueue if there is data we want to write,
387	 * and there is sufficient space in the socket buffer to accept
388	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
389	 * doesn't get called again until try_write() fills the socket
390	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
391	 * and net/core/stream.c:sk_stream_write_space().
392	 */
393	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
394		if (sk_stream_is_writeable(sk)) {
395			dout("%s %p queueing write work\n", __func__, con);
396			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
397			queue_con(con);
398		}
399	} else {
400		dout("%s %p nothing to write\n", __func__, con);
401	}
402}
403
404/* socket's state has changed */
405static void ceph_sock_state_change(struct sock *sk)
406{
407	struct ceph_connection *con = sk->sk_user_data;
408
409	dout("%s %p state = %lu sk_state = %u\n", __func__,
410	     con, con->state, sk->sk_state);
411
412	switch (sk->sk_state) {
413	case TCP_CLOSE:
414		dout("%s TCP_CLOSE\n", __func__);
415		fallthrough;
416	case TCP_CLOSE_WAIT:
417		dout("%s TCP_CLOSE_WAIT\n", __func__);
418		con_sock_state_closing(con);
419		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
420		queue_con(con);
421		break;
422	case TCP_ESTABLISHED:
423		dout("%s TCP_ESTABLISHED\n", __func__);
424		con_sock_state_connected(con);
425		queue_con(con);
426		break;
427	default:	/* Everything else is uninteresting */
428		break;
429	}
430}
431
432/*
433 * set up socket callbacks
434 */
435static void set_sock_callbacks(struct socket *sock,
436			       struct ceph_connection *con)
437{
438	struct sock *sk = sock->sk;
439	sk->sk_user_data = con;
440	sk->sk_data_ready = ceph_sock_data_ready;
441	sk->sk_write_space = ceph_sock_write_space;
442	sk->sk_state_change = ceph_sock_state_change;
443}
444
445
446/*
447 * socket helpers
448 */
449
450/*
451 * initiate connection to a remote socket.
452 */
453static int ceph_tcp_connect(struct ceph_connection *con)
454{
455	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
456	struct socket *sock;
457	unsigned int noio_flag;
458	int ret;
459
460	BUG_ON(con->sock);
461
462	/* sock_create_kern() allocates with GFP_KERNEL */
463	noio_flag = memalloc_noio_save();
464	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
465			       SOCK_STREAM, IPPROTO_TCP, &sock);
466	memalloc_noio_restore(noio_flag);
467	if (ret)
468		return ret;
469	sock->sk->sk_allocation = GFP_NOFS;
470
471#ifdef CONFIG_LOCKDEP
472	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
473#endif
474
475	set_sock_callbacks(sock, con);
476
477	dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
478
479	con_sock_state_connecting(con);
480	ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
481			     O_NONBLOCK);
482	if (ret == -EINPROGRESS) {
483		dout("connect %s EINPROGRESS sk_state = %u\n",
484		     ceph_pr_addr(&con->peer_addr),
485		     sock->sk->sk_state);
486	} else if (ret < 0) {
487		pr_err("connect %s error %d\n",
488		       ceph_pr_addr(&con->peer_addr), ret);
489		sock_release(sock);
490		return ret;
491	}
492
493	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
494		tcp_sock_set_nodelay(sock->sk);
495
496	con->sock = sock;
497	return 0;
498}
499
500/*
501 * If @buf is NULL, discard up to @len bytes.
502 */
503static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
504{
505	struct kvec iov = {buf, len};
506	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
507	int r;
508
509	if (!buf)
510		msg.msg_flags |= MSG_TRUNC;
511
512	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
513	r = sock_recvmsg(sock, &msg, msg.msg_flags);
514	if (r == -EAGAIN)
515		r = 0;
516	return r;
517}
518
519static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
520		     int page_offset, size_t length)
521{
522	struct bio_vec bvec = {
523		.bv_page = page,
524		.bv_offset = page_offset,
525		.bv_len = length
526	};
527	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528	int r;
529
530	BUG_ON(page_offset + length > PAGE_SIZE);
531	iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
532	r = sock_recvmsg(sock, &msg, msg.msg_flags);
533	if (r == -EAGAIN)
534		r = 0;
535	return r;
536}
537
538/*
539 * write something.  @more is true if caller will be sending more data
540 * shortly.
541 */
542static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543			    size_t kvlen, size_t len, bool more)
544{
545	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546	int r;
547
548	if (more)
549		msg.msg_flags |= MSG_MORE;
550	else
551		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
552
553	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554	if (r == -EAGAIN)
555		r = 0;
556	return r;
557}
558
559/*
560 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
561 */
562static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
563			     int offset, size_t size, int more)
564{
565	ssize_t (*sendpage)(struct socket *sock, struct page *page,
566			    int offset, size_t size, int flags);
567	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
568	int ret;
569
570	/*
571	 * sendpage cannot properly handle pages with page_count == 0,
572	 * we need to fall back to sendmsg if that's the case.
573	 *
574	 * Same goes for slab pages: skb_can_coalesce() allows
575	 * coalescing neighboring slab objects into a single frag which
576	 * triggers one of hardened usercopy checks.
577	 */
578	if (sendpage_ok(page))
579		sendpage = sock->ops->sendpage;
580	else
581		sendpage = sock_no_sendpage;
582
583	ret = sendpage(sock, page, offset, size, flags);
584	if (ret == -EAGAIN)
585		ret = 0;
586
587	return ret;
588}
589
590/*
591 * Shutdown/close the socket for the given connection.
592 */
593static int con_close_socket(struct ceph_connection *con)
594{
595	int rc = 0;
596
597	dout("con_close_socket on %p sock %p\n", con, con->sock);
598	if (con->sock) {
599		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
600		sock_release(con->sock);
601		con->sock = NULL;
602	}
603
604	/*
605	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
606	 * independent of the connection mutex, and we could have
607	 * received a socket close event before we had the chance to
608	 * shut the socket down.
609	 */
610	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
611
612	con_sock_state_closed(con);
613	return rc;
614}
615
616/*
617 * Reset a connection.  Discard all incoming and outgoing messages
618 * and clear *_seq state.
619 */
620static void ceph_msg_remove(struct ceph_msg *msg)
621{
622	list_del_init(&msg->list_head);
623
624	ceph_msg_put(msg);
625}
626static void ceph_msg_remove_list(struct list_head *head)
627{
628	while (!list_empty(head)) {
629		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
630							list_head);
631		ceph_msg_remove(msg);
632	}
633}
634
635static void reset_connection(struct ceph_connection *con)
636{
637	/* reset connection, out_queue, msg_ and connect_seq */
638	/* discard existing out_queue and msg_seq */
639	dout("reset_connection %p\n", con);
640	ceph_msg_remove_list(&con->out_queue);
641	ceph_msg_remove_list(&con->out_sent);
642
643	if (con->in_msg) {
644		BUG_ON(con->in_msg->con != con);
645		ceph_msg_put(con->in_msg);
646		con->in_msg = NULL;
647	}
648
649	con->connect_seq = 0;
650	con->out_seq = 0;
651	if (con->out_msg) {
652		BUG_ON(con->out_msg->con != con);
653		ceph_msg_put(con->out_msg);
654		con->out_msg = NULL;
655	}
656	con->in_seq = 0;
657	con->in_seq_acked = 0;
658
659	con->out_skip = 0;
660}
661
662/*
663 * mark a peer down.  drop any open connections.
664 */
665void ceph_con_close(struct ceph_connection *con)
666{
667	mutex_lock(&con->mutex);
668	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
669	con->state = CON_STATE_CLOSED;
670
671	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
672	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
673	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
674	con_flag_clear(con, CON_FLAG_BACKOFF);
675
676	reset_connection(con);
677	con->peer_global_seq = 0;
678	cancel_con(con);
679	con_close_socket(con);
680	mutex_unlock(&con->mutex);
681}
682EXPORT_SYMBOL(ceph_con_close);
683
684/*
685 * Reopen a closed connection, with a new peer address.
686 */
687void ceph_con_open(struct ceph_connection *con,
688		   __u8 entity_type, __u64 entity_num,
689		   struct ceph_entity_addr *addr)
690{
691	mutex_lock(&con->mutex);
692	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
693
694	WARN_ON(con->state != CON_STATE_CLOSED);
695	con->state = CON_STATE_PREOPEN;
696
697	con->peer_name.type = (__u8) entity_type;
698	con->peer_name.num = cpu_to_le64(entity_num);
699
700	memcpy(&con->peer_addr, addr, sizeof(*addr));
701	con->delay = 0;      /* reset backoff memory */
702	mutex_unlock(&con->mutex);
703	queue_con(con);
704}
705EXPORT_SYMBOL(ceph_con_open);
706
707/*
708 * return true if this connection ever successfully opened
709 */
710bool ceph_con_opened(struct ceph_connection *con)
711{
712	return con->connect_seq > 0;
713}
714
715/*
716 * initialize a new connection.
717 */
718void ceph_con_init(struct ceph_connection *con, void *private,
719	const struct ceph_connection_operations *ops,
720	struct ceph_messenger *msgr)
721{
722	dout("con_init %p\n", con);
723	memset(con, 0, sizeof(*con));
724	con->private = private;
725	con->ops = ops;
726	con->msgr = msgr;
727
728	con_sock_state_init(con);
729
730	mutex_init(&con->mutex);
731	INIT_LIST_HEAD(&con->out_queue);
732	INIT_LIST_HEAD(&con->out_sent);
733	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
734
735	con->state = CON_STATE_CLOSED;
736}
737EXPORT_SYMBOL(ceph_con_init);
738
739
740/*
741 * We maintain a global counter to order connection attempts.  Get
742 * a unique seq greater than @gt.
743 */
744static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
745{
746	u32 ret;
747
748	spin_lock(&msgr->global_seq_lock);
749	if (msgr->global_seq < gt)
750		msgr->global_seq = gt;
751	ret = ++msgr->global_seq;
752	spin_unlock(&msgr->global_seq_lock);
753	return ret;
754}
755
756static void con_out_kvec_reset(struct ceph_connection *con)
757{
758	BUG_ON(con->out_skip);
759
760	con->out_kvec_left = 0;
761	con->out_kvec_bytes = 0;
762	con->out_kvec_cur = &con->out_kvec[0];
763}
764
765static void con_out_kvec_add(struct ceph_connection *con,
766				size_t size, void *data)
767{
768	int index = con->out_kvec_left;
769
770	BUG_ON(con->out_skip);
771	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
772
773	con->out_kvec[index].iov_len = size;
774	con->out_kvec[index].iov_base = data;
775	con->out_kvec_left++;
776	con->out_kvec_bytes += size;
777}
778
779/*
780 * Chop off a kvec from the end.  Return residual number of bytes for
781 * that kvec, i.e. how many bytes would have been written if the kvec
782 * hadn't been nuked.
783 */
784static int con_out_kvec_skip(struct ceph_connection *con)
785{
786	int off = con->out_kvec_cur - con->out_kvec;
787	int skip = 0;
788
789	if (con->out_kvec_bytes > 0) {
790		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
791		BUG_ON(con->out_kvec_bytes < skip);
792		BUG_ON(!con->out_kvec_left);
793		con->out_kvec_bytes -= skip;
794		con->out_kvec_left--;
795	}
796
797	return skip;
798}
799
800#ifdef CONFIG_BLOCK
801
802/*
803 * For a bio data item, a piece is whatever remains of the next
804 * entry in the current bio iovec, or the first entry in the next
805 * bio in the list.
806 */
807static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
808					size_t length)
809{
810	struct ceph_msg_data *data = cursor->data;
811	struct ceph_bio_iter *it = &cursor->bio_iter;
812
813	cursor->resid = min_t(size_t, length, data->bio_length);
814	*it = data->bio_pos;
815	if (cursor->resid < it->iter.bi_size)
816		it->iter.bi_size = cursor->resid;
817
818	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
819	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
820}
821
822static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
823						size_t *page_offset,
824						size_t *length)
825{
826	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
827					   cursor->bio_iter.iter);
828
829	*page_offset = bv.bv_offset;
830	*length = bv.bv_len;
831	return bv.bv_page;
832}
833
834static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
835					size_t bytes)
836{
837	struct ceph_bio_iter *it = &cursor->bio_iter;
838	struct page *page = bio_iter_page(it->bio, it->iter);
839
840	BUG_ON(bytes > cursor->resid);
841	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
842	cursor->resid -= bytes;
843	bio_advance_iter(it->bio, &it->iter, bytes);
844
845	if (!cursor->resid) {
846		BUG_ON(!cursor->last_piece);
847		return false;   /* no more data */
848	}
849
850	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
851		       page == bio_iter_page(it->bio, it->iter)))
852		return false;	/* more bytes to process in this segment */
853
854	if (!it->iter.bi_size) {
855		it->bio = it->bio->bi_next;
856		it->iter = it->bio->bi_iter;
857		if (cursor->resid < it->iter.bi_size)
858			it->iter.bi_size = cursor->resid;
859	}
860
861	BUG_ON(cursor->last_piece);
862	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
863	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
864	return true;
865}
866#endif /* CONFIG_BLOCK */
867
868static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
869					size_t length)
870{
871	struct ceph_msg_data *data = cursor->data;
872	struct bio_vec *bvecs = data->bvec_pos.bvecs;
873
874	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
875	cursor->bvec_iter = data->bvec_pos.iter;
876	cursor->bvec_iter.bi_size = cursor->resid;
877
878	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
879	cursor->last_piece =
880	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
881}
882
883static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
884						size_t *page_offset,
885						size_t *length)
886{
887	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
888					   cursor->bvec_iter);
889
890	*page_offset = bv.bv_offset;
891	*length = bv.bv_len;
892	return bv.bv_page;
893}
894
895static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
896					size_t bytes)
897{
898	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
899	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
900
901	BUG_ON(bytes > cursor->resid);
902	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
903	cursor->resid -= bytes;
904	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
905
906	if (!cursor->resid) {
907		BUG_ON(!cursor->last_piece);
908		return false;   /* no more data */
909	}
910
911	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
912		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
913		return false;	/* more bytes to process in this segment */
914
915	BUG_ON(cursor->last_piece);
916	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
917	cursor->last_piece =
918	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
919	return true;
920}
921
922/*
923 * For a page array, a piece comes from the first page in the array
924 * that has not already been fully consumed.
925 */
926static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
927					size_t length)
928{
929	struct ceph_msg_data *data = cursor->data;
930	int page_count;
931
932	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
933
934	BUG_ON(!data->pages);
935	BUG_ON(!data->length);
936
937	cursor->resid = min(length, data->length);
938	page_count = calc_pages_for(data->alignment, (u64)data->length);
939	cursor->page_offset = data->alignment & ~PAGE_MASK;
940	cursor->page_index = 0;
941	BUG_ON(page_count > (int)USHRT_MAX);
942	cursor->page_count = (unsigned short)page_count;
943	BUG_ON(length > SIZE_MAX - cursor->page_offset);
944	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
945}
946
947static struct page *
948ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
949					size_t *page_offset, size_t *length)
950{
951	struct ceph_msg_data *data = cursor->data;
952
953	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
954
955	BUG_ON(cursor->page_index >= cursor->page_count);
956	BUG_ON(cursor->page_offset >= PAGE_SIZE);
957
958	*page_offset = cursor->page_offset;
959	if (cursor->last_piece)
960		*length = cursor->resid;
961	else
962		*length = PAGE_SIZE - *page_offset;
963
964	return data->pages[cursor->page_index];
965}
966
967static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
968						size_t bytes)
969{
970	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
971
972	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
973
974	/* Advance the cursor page offset */
975
976	cursor->resid -= bytes;
977	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
978	if (!bytes || cursor->page_offset)
979		return false;	/* more bytes to process in the current page */
980
981	if (!cursor->resid)
982		return false;   /* no more data */
983
984	/* Move on to the next page; offset is already at 0 */
985
986	BUG_ON(cursor->page_index >= cursor->page_count);
987	cursor->page_index++;
988	cursor->last_piece = cursor->resid <= PAGE_SIZE;
989
990	return true;
991}
992
993/*
994 * For a pagelist, a piece is whatever remains to be consumed in the
995 * first page in the list, or the front of the next page.
996 */
997static void
998ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
999					size_t length)
1000{
1001	struct ceph_msg_data *data = cursor->data;
1002	struct ceph_pagelist *pagelist;
1003	struct page *page;
1004
1005	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1006
1007	pagelist = data->pagelist;
1008	BUG_ON(!pagelist);
1009
1010	if (!length)
1011		return;		/* pagelist can be assigned but empty */
1012
1013	BUG_ON(list_empty(&pagelist->head));
1014	page = list_first_entry(&pagelist->head, struct page, lru);
1015
1016	cursor->resid = min(length, pagelist->length);
1017	cursor->page = page;
1018	cursor->offset = 0;
1019	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1020}
1021
1022static struct page *
1023ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1024				size_t *page_offset, size_t *length)
1025{
1026	struct ceph_msg_data *data = cursor->data;
1027	struct ceph_pagelist *pagelist;
1028
1029	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1030
1031	pagelist = data->pagelist;
1032	BUG_ON(!pagelist);
1033
1034	BUG_ON(!cursor->page);
1035	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1036
1037	/* offset of first page in pagelist is always 0 */
1038	*page_offset = cursor->offset & ~PAGE_MASK;
1039	if (cursor->last_piece)
1040		*length = cursor->resid;
1041	else
1042		*length = PAGE_SIZE - *page_offset;
1043
1044	return cursor->page;
1045}
1046
1047static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1048						size_t bytes)
1049{
1050	struct ceph_msg_data *data = cursor->data;
1051	struct ceph_pagelist *pagelist;
1052
1053	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1054
1055	pagelist = data->pagelist;
1056	BUG_ON(!pagelist);
1057
1058	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1059	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1060
1061	/* Advance the cursor offset */
1062
1063	cursor->resid -= bytes;
1064	cursor->offset += bytes;
1065	/* offset of first page in pagelist is always 0 */
1066	if (!bytes || cursor->offset & ~PAGE_MASK)
1067		return false;	/* more bytes to process in the current page */
1068
1069	if (!cursor->resid)
1070		return false;   /* no more data */
1071
1072	/* Move on to the next page */
1073
1074	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1075	cursor->page = list_next_entry(cursor->page, lru);
1076	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1077
1078	return true;
1079}
1080
1081/*
1082 * Message data is handled (sent or received) in pieces, where each
1083 * piece resides on a single page.  The network layer might not
1084 * consume an entire piece at once.  A data item's cursor keeps
1085 * track of which piece is next to process and how much remains to
1086 * be processed in that piece.  It also tracks whether the current
1087 * piece is the last one in the data item.
1088 */
1089static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1090{
1091	size_t length = cursor->total_resid;
1092
1093	switch (cursor->data->type) {
1094	case CEPH_MSG_DATA_PAGELIST:
1095		ceph_msg_data_pagelist_cursor_init(cursor, length);
1096		break;
1097	case CEPH_MSG_DATA_PAGES:
1098		ceph_msg_data_pages_cursor_init(cursor, length);
1099		break;
1100#ifdef CONFIG_BLOCK
1101	case CEPH_MSG_DATA_BIO:
1102		ceph_msg_data_bio_cursor_init(cursor, length);
1103		break;
1104#endif /* CONFIG_BLOCK */
1105	case CEPH_MSG_DATA_BVECS:
1106		ceph_msg_data_bvecs_cursor_init(cursor, length);
1107		break;
1108	case CEPH_MSG_DATA_NONE:
1109	default:
1110		/* BUG(); */
1111		break;
1112	}
1113	cursor->need_crc = true;
1114}
1115
1116static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1117{
1118	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1119
1120	BUG_ON(!length);
1121	BUG_ON(length > msg->data_length);
1122	BUG_ON(!msg->num_data_items);
1123
1124	cursor->total_resid = length;
1125	cursor->data = msg->data;
1126
1127	__ceph_msg_data_cursor_init(cursor);
1128}
1129
1130/*
1131 * Return the page containing the next piece to process for a given
1132 * data item, and supply the page offset and length of that piece.
1133 * Indicate whether this is the last piece in this data item.
1134 */
1135static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1136					size_t *page_offset, size_t *length,
1137					bool *last_piece)
1138{
1139	struct page *page;
1140
1141	switch (cursor->data->type) {
1142	case CEPH_MSG_DATA_PAGELIST:
1143		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1144		break;
1145	case CEPH_MSG_DATA_PAGES:
1146		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1147		break;
1148#ifdef CONFIG_BLOCK
1149	case CEPH_MSG_DATA_BIO:
1150		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1151		break;
1152#endif /* CONFIG_BLOCK */
1153	case CEPH_MSG_DATA_BVECS:
1154		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1155		break;
1156	case CEPH_MSG_DATA_NONE:
1157	default:
1158		page = NULL;
1159		break;
1160	}
1161
1162	BUG_ON(!page);
1163	BUG_ON(*page_offset + *length > PAGE_SIZE);
1164	BUG_ON(!*length);
1165	BUG_ON(*length > cursor->resid);
1166	if (last_piece)
1167		*last_piece = cursor->last_piece;
1168
1169	return page;
1170}
1171
1172/*
1173 * Returns true if the result moves the cursor on to the next piece
1174 * of the data item.
1175 */
1176static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1177				  size_t bytes)
1178{
1179	bool new_piece;
1180
1181	BUG_ON(bytes > cursor->resid);
1182	switch (cursor->data->type) {
1183	case CEPH_MSG_DATA_PAGELIST:
1184		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1185		break;
1186	case CEPH_MSG_DATA_PAGES:
1187		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1188		break;
1189#ifdef CONFIG_BLOCK
1190	case CEPH_MSG_DATA_BIO:
1191		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1192		break;
1193#endif /* CONFIG_BLOCK */
1194	case CEPH_MSG_DATA_BVECS:
1195		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1196		break;
1197	case CEPH_MSG_DATA_NONE:
1198	default:
1199		BUG();
1200		break;
1201	}
1202	cursor->total_resid -= bytes;
1203
1204	if (!cursor->resid && cursor->total_resid) {
1205		WARN_ON(!cursor->last_piece);
1206		cursor->data++;
1207		__ceph_msg_data_cursor_init(cursor);
1208		new_piece = true;
1209	}
1210	cursor->need_crc = new_piece;
1211}
1212
1213static size_t sizeof_footer(struct ceph_connection *con)
1214{
1215	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1216	    sizeof(struct ceph_msg_footer) :
1217	    sizeof(struct ceph_msg_footer_old);
1218}
1219
1220static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1221{
1222	/* Initialize data cursor */
1223
1224	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1225}
1226
1227/*
1228 * Prepare footer for currently outgoing message, and finish things
1229 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1230 */
1231static void prepare_write_message_footer(struct ceph_connection *con)
1232{
1233	struct ceph_msg *m = con->out_msg;
1234
1235	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1236
1237	dout("prepare_write_message_footer %p\n", con);
1238	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1239	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1240		if (con->ops->sign_message)
1241			con->ops->sign_message(m);
1242		else
1243			m->footer.sig = 0;
1244	} else {
1245		m->old_footer.flags = m->footer.flags;
1246	}
1247	con->out_more = m->more_to_follow;
1248	con->out_msg_done = true;
1249}
1250
1251/*
1252 * Prepare headers for the next outgoing message.
1253 */
1254static void prepare_write_message(struct ceph_connection *con)
1255{
1256	struct ceph_msg *m;
1257	u32 crc;
1258
1259	con_out_kvec_reset(con);
1260	con->out_msg_done = false;
1261
1262	/* Sneak an ack in there first?  If we can get it into the same
1263	 * TCP packet that's a good thing. */
1264	if (con->in_seq > con->in_seq_acked) {
1265		con->in_seq_acked = con->in_seq;
1266		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1267		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1268		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1269			&con->out_temp_ack);
1270	}
1271
1272	BUG_ON(list_empty(&con->out_queue));
1273	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1274	con->out_msg = m;
1275	BUG_ON(m->con != con);
1276
1277	/* put message on sent list */
1278	ceph_msg_get(m);
1279	list_move_tail(&m->list_head, &con->out_sent);
1280
1281	/*
1282	 * only assign outgoing seq # if we haven't sent this message
1283	 * yet.  if it is requeued, resend with it's original seq.
1284	 */
1285	if (m->needs_out_seq) {
1286		m->hdr.seq = cpu_to_le64(++con->out_seq);
1287		m->needs_out_seq = false;
1288
1289		if (con->ops->reencode_message)
1290			con->ops->reencode_message(m);
1291	}
1292
1293	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1294	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1295	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1296	     m->data_length);
1297	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1298	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1299
1300	/* tag + hdr + front + middle */
1301	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1302	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1303	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1304
1305	if (m->middle)
1306		con_out_kvec_add(con, m->middle->vec.iov_len,
1307			m->middle->vec.iov_base);
1308
1309	/* fill in hdr crc and finalize hdr */
1310	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1311	con->out_msg->hdr.crc = cpu_to_le32(crc);
1312	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1313
1314	/* fill in front and middle crc, footer */
1315	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1316	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1317	if (m->middle) {
1318		crc = crc32c(0, m->middle->vec.iov_base,
1319				m->middle->vec.iov_len);
1320		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1321	} else
1322		con->out_msg->footer.middle_crc = 0;
1323	dout("%s front_crc %u middle_crc %u\n", __func__,
1324	     le32_to_cpu(con->out_msg->footer.front_crc),
1325	     le32_to_cpu(con->out_msg->footer.middle_crc));
1326	con->out_msg->footer.flags = 0;
1327
1328	/* is there a data payload? */
1329	con->out_msg->footer.data_crc = 0;
1330	if (m->data_length) {
1331		prepare_message_data(con->out_msg, m->data_length);
1332		con->out_more = 1;  /* data + footer will follow */
1333	} else {
1334		/* no, queue up footer too and be done */
1335		prepare_write_message_footer(con);
1336	}
1337
1338	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1339}
1340
1341/*
1342 * Prepare an ack.
1343 */
1344static void prepare_write_ack(struct ceph_connection *con)
1345{
1346	dout("prepare_write_ack %p %llu -> %llu\n", con,
1347	     con->in_seq_acked, con->in_seq);
1348	con->in_seq_acked = con->in_seq;
1349
1350	con_out_kvec_reset(con);
1351
1352	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1353
1354	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356				&con->out_temp_ack);
1357
1358	con->out_more = 1;  /* more will follow.. eventually.. */
1359	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1360}
1361
1362/*
1363 * Prepare to share the seq during handshake
1364 */
1365static void prepare_write_seq(struct ceph_connection *con)
1366{
1367	dout("prepare_write_seq %p %llu -> %llu\n", con,
1368	     con->in_seq_acked, con->in_seq);
1369	con->in_seq_acked = con->in_seq;
1370
1371	con_out_kvec_reset(con);
1372
1373	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1374	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1375			 &con->out_temp_ack);
1376
1377	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1378}
1379
1380/*
1381 * Prepare to write keepalive byte.
1382 */
1383static void prepare_write_keepalive(struct ceph_connection *con)
1384{
1385	dout("prepare_write_keepalive %p\n", con);
1386	con_out_kvec_reset(con);
1387	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1388		struct timespec64 now;
1389
1390		ktime_get_real_ts64(&now);
1391		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1392		ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1393		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1394				 &con->out_temp_keepalive2);
1395	} else {
1396		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1397	}
1398	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399}
1400
1401/*
1402 * Connection negotiation.
1403 */
1404
1405static int get_connect_authorizer(struct ceph_connection *con)
1406{
1407	struct ceph_auth_handshake *auth;
1408	int auth_proto;
1409
1410	if (!con->ops->get_authorizer) {
1411		con->auth = NULL;
1412		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1413		con->out_connect.authorizer_len = 0;
1414		return 0;
1415	}
1416
1417	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1418	if (IS_ERR(auth))
1419		return PTR_ERR(auth);
1420
1421	con->auth = auth;
1422	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1423	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1424	return 0;
1425}
1426
1427/*
1428 * We connected to a peer and are saying hello.
1429 */
1430static void prepare_write_banner(struct ceph_connection *con)
1431{
1432	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1433	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1434					&con->msgr->my_enc_addr);
1435
1436	con->out_more = 0;
1437	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1438}
1439
1440static void __prepare_write_connect(struct ceph_connection *con)
1441{
1442	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1443	if (con->auth)
1444		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1445				 con->auth->authorizer_buf);
1446
1447	con->out_more = 0;
1448	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1449}
1450
1451static int prepare_write_connect(struct ceph_connection *con)
1452{
1453	unsigned int global_seq = get_global_seq(con->msgr, 0);
1454	int proto;
1455	int ret;
1456
1457	switch (con->peer_name.type) {
1458	case CEPH_ENTITY_TYPE_MON:
1459		proto = CEPH_MONC_PROTOCOL;
1460		break;
1461	case CEPH_ENTITY_TYPE_OSD:
1462		proto = CEPH_OSDC_PROTOCOL;
1463		break;
1464	case CEPH_ENTITY_TYPE_MDS:
1465		proto = CEPH_MDSC_PROTOCOL;
1466		break;
1467	default:
1468		BUG();
1469	}
1470
1471	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1472	     con->connect_seq, global_seq, proto);
1473
1474	con->out_connect.features =
1475	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1476	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1477	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1478	con->out_connect.global_seq = cpu_to_le32(global_seq);
1479	con->out_connect.protocol_version = cpu_to_le32(proto);
1480	con->out_connect.flags = 0;
1481
1482	ret = get_connect_authorizer(con);
1483	if (ret)
1484		return ret;
1485
1486	__prepare_write_connect(con);
1487	return 0;
1488}
1489
1490/*
1491 * write as much of pending kvecs to the socket as we can.
1492 *  1 -> done
1493 *  0 -> socket full, but more to do
1494 * <0 -> error
1495 */
1496static int write_partial_kvec(struct ceph_connection *con)
1497{
1498	int ret;
1499
1500	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1501	while (con->out_kvec_bytes > 0) {
1502		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1503				       con->out_kvec_left, con->out_kvec_bytes,
1504				       con->out_more);
1505		if (ret <= 0)
1506			goto out;
1507		con->out_kvec_bytes -= ret;
1508		if (con->out_kvec_bytes == 0)
1509			break;            /* done */
1510
1511		/* account for full iov entries consumed */
1512		while (ret >= con->out_kvec_cur->iov_len) {
1513			BUG_ON(!con->out_kvec_left);
1514			ret -= con->out_kvec_cur->iov_len;
1515			con->out_kvec_cur++;
1516			con->out_kvec_left--;
1517		}
1518		/* and for a partially-consumed entry */
1519		if (ret) {
1520			con->out_kvec_cur->iov_len -= ret;
1521			con->out_kvec_cur->iov_base += ret;
1522		}
1523	}
1524	con->out_kvec_left = 0;
1525	ret = 1;
1526out:
1527	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1528	     con->out_kvec_bytes, con->out_kvec_left, ret);
1529	return ret;  /* done! */
1530}
1531
1532static u32 ceph_crc32c_page(u32 crc, struct page *page,
1533				unsigned int page_offset,
1534				unsigned int length)
1535{
1536	char *kaddr;
1537
1538	kaddr = kmap(page);
1539	BUG_ON(kaddr == NULL);
1540	crc = crc32c(crc, kaddr + page_offset, length);
1541	kunmap(page);
1542
1543	return crc;
1544}
1545/*
1546 * Write as much message data payload as we can.  If we finish, queue
1547 * up the footer.
1548 *  1 -> done, footer is now queued in out_kvec[].
1549 *  0 -> socket full, but more to do
1550 * <0 -> error
1551 */
1552static int write_partial_message_data(struct ceph_connection *con)
1553{
1554	struct ceph_msg *msg = con->out_msg;
1555	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1556	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1557	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1558	u32 crc;
1559
1560	dout("%s %p msg %p\n", __func__, con, msg);
1561
1562	if (!msg->num_data_items)
1563		return -EINVAL;
1564
1565	/*
1566	 * Iterate through each page that contains data to be
1567	 * written, and send as much as possible for each.
1568	 *
1569	 * If we are calculating the data crc (the default), we will
1570	 * need to map the page.  If we have no pages, they have
1571	 * been revoked, so use the zero page.
1572	 */
1573	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1574	while (cursor->total_resid) {
1575		struct page *page;
1576		size_t page_offset;
1577		size_t length;
1578		int ret;
1579
1580		if (!cursor->resid) {
1581			ceph_msg_data_advance(cursor, 0);
1582			continue;
1583		}
1584
1585		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1586		if (length == cursor->total_resid)
1587			more = MSG_MORE;
1588		ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1589					more);
1590		if (ret <= 0) {
1591			if (do_datacrc)
1592				msg->footer.data_crc = cpu_to_le32(crc);
1593
1594			return ret;
1595		}
1596		if (do_datacrc && cursor->need_crc)
1597			crc = ceph_crc32c_page(crc, page, page_offset, length);
1598		ceph_msg_data_advance(cursor, (size_t)ret);
1599	}
1600
1601	dout("%s %p msg %p done\n", __func__, con, msg);
1602
1603	/* prepare and queue up footer, too */
1604	if (do_datacrc)
1605		msg->footer.data_crc = cpu_to_le32(crc);
1606	else
1607		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1608	con_out_kvec_reset(con);
1609	prepare_write_message_footer(con);
1610
1611	return 1;	/* must return > 0 to indicate success */
1612}
1613
1614/*
1615 * write some zeros
1616 */
1617static int write_partial_skip(struct ceph_connection *con)
1618{
1619	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1620	int ret;
1621
1622	dout("%s %p %d left\n", __func__, con, con->out_skip);
1623	while (con->out_skip > 0) {
1624		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1625
1626		if (size == con->out_skip)
1627			more = MSG_MORE;
1628		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1629		if (ret <= 0)
1630			goto out;
1631		con->out_skip -= ret;
1632	}
1633	ret = 1;
1634out:
1635	return ret;
1636}
1637
1638/*
1639 * Prepare to read connection handshake, or an ack.
1640 */
1641static void prepare_read_banner(struct ceph_connection *con)
1642{
1643	dout("prepare_read_banner %p\n", con);
1644	con->in_base_pos = 0;
1645}
1646
1647static void prepare_read_connect(struct ceph_connection *con)
1648{
1649	dout("prepare_read_connect %p\n", con);
1650	con->in_base_pos = 0;
1651}
1652
1653static void prepare_read_ack(struct ceph_connection *con)
1654{
1655	dout("prepare_read_ack %p\n", con);
1656	con->in_base_pos = 0;
1657}
1658
1659static void prepare_read_seq(struct ceph_connection *con)
1660{
1661	dout("prepare_read_seq %p\n", con);
1662	con->in_base_pos = 0;
1663	con->in_tag = CEPH_MSGR_TAG_SEQ;
1664}
1665
1666static void prepare_read_tag(struct ceph_connection *con)
1667{
1668	dout("prepare_read_tag %p\n", con);
1669	con->in_base_pos = 0;
1670	con->in_tag = CEPH_MSGR_TAG_READY;
1671}
1672
1673static void prepare_read_keepalive_ack(struct ceph_connection *con)
1674{
1675	dout("prepare_read_keepalive_ack %p\n", con);
1676	con->in_base_pos = 0;
1677}
1678
1679/*
1680 * Prepare to read a message.
1681 */
1682static int prepare_read_message(struct ceph_connection *con)
1683{
1684	dout("prepare_read_message %p\n", con);
1685	BUG_ON(con->in_msg != NULL);
1686	con->in_base_pos = 0;
1687	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1688	return 0;
1689}
1690
1691
1692static int read_partial(struct ceph_connection *con,
1693			int end, int size, void *object)
1694{
1695	while (con->in_base_pos < end) {
1696		int left = end - con->in_base_pos;
1697		int have = size - left;
1698		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1699		if (ret <= 0)
1700			return ret;
1701		con->in_base_pos += ret;
1702	}
1703	return 1;
1704}
1705
1706
1707/*
1708 * Read all or part of the connect-side handshake on a new connection
1709 */
1710static int read_partial_banner(struct ceph_connection *con)
1711{
1712	int size;
1713	int end;
1714	int ret;
1715
1716	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1717
1718	/* peer's banner */
1719	size = strlen(CEPH_BANNER);
1720	end = size;
1721	ret = read_partial(con, end, size, con->in_banner);
1722	if (ret <= 0)
1723		goto out;
1724
1725	size = sizeof (con->actual_peer_addr);
1726	end += size;
1727	ret = read_partial(con, end, size, &con->actual_peer_addr);
1728	if (ret <= 0)
1729		goto out;
1730	ceph_decode_banner_addr(&con->actual_peer_addr);
1731
1732	size = sizeof (con->peer_addr_for_me);
1733	end += size;
1734	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1735	if (ret <= 0)
1736		goto out;
1737	ceph_decode_banner_addr(&con->peer_addr_for_me);
1738
1739out:
1740	return ret;
1741}
1742
1743static int read_partial_connect(struct ceph_connection *con)
1744{
1745	int size;
1746	int end;
1747	int ret;
1748
1749	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1750
1751	size = sizeof (con->in_reply);
1752	end = size;
1753	ret = read_partial(con, end, size, &con->in_reply);
1754	if (ret <= 0)
1755		goto out;
1756
1757	if (con->auth) {
1758		size = le32_to_cpu(con->in_reply.authorizer_len);
1759		if (size > con->auth->authorizer_reply_buf_len) {
1760			pr_err("authorizer reply too big: %d > %zu\n", size,
1761			       con->auth->authorizer_reply_buf_len);
1762			ret = -EINVAL;
1763			goto out;
1764		}
1765
1766		end += size;
1767		ret = read_partial(con, end, size,
1768				   con->auth->authorizer_reply_buf);
1769		if (ret <= 0)
1770			goto out;
1771	}
1772
1773	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1774	     con, (int)con->in_reply.tag,
1775	     le32_to_cpu(con->in_reply.connect_seq),
1776	     le32_to_cpu(con->in_reply.global_seq));
1777out:
1778	return ret;
1779}
1780
1781/*
1782 * Verify the hello banner looks okay.
1783 */
1784static int verify_hello(struct ceph_connection *con)
1785{
1786	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1787		pr_err("connect to %s got bad banner\n",
1788		       ceph_pr_addr(&con->peer_addr));
1789		con->error_msg = "protocol error, bad banner";
1790		return -1;
1791	}
1792	return 0;
1793}
1794
1795static bool addr_is_blank(struct ceph_entity_addr *addr)
1796{
1797	struct sockaddr_storage ss = addr->in_addr; /* align */
1798	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1799	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1800
1801	switch (ss.ss_family) {
1802	case AF_INET:
1803		return addr4->s_addr == htonl(INADDR_ANY);
1804	case AF_INET6:
1805		return ipv6_addr_any(addr6);
1806	default:
1807		return true;
1808	}
1809}
1810
1811static int addr_port(struct ceph_entity_addr *addr)
1812{
1813	switch (get_unaligned(&addr->in_addr.ss_family)) {
1814	case AF_INET:
1815		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1816	case AF_INET6:
1817		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1818	}
1819	return 0;
1820}
1821
1822static void addr_set_port(struct ceph_entity_addr *addr, int p)
1823{
1824	switch (get_unaligned(&addr->in_addr.ss_family)) {
1825	case AF_INET:
1826		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1827		break;
1828	case AF_INET6:
1829		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1830		break;
1831	}
1832}
1833
1834/*
1835 * Unlike other *_pton function semantics, zero indicates success.
1836 */
1837static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1838		char delim, const char **ipend)
1839{
1840	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1841
1842	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1843		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1844		return 0;
1845	}
1846
1847	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1848		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1849		return 0;
1850	}
1851
1852	return -EINVAL;
1853}
1854
1855/*
1856 * Extract hostname string and resolve using kernel DNS facility.
1857 */
1858#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1859static int ceph_dns_resolve_name(const char *name, size_t namelen,
1860		struct ceph_entity_addr *addr, char delim, const char **ipend)
1861{
1862	const char *end, *delim_p;
1863	char *colon_p, *ip_addr = NULL;
1864	int ip_len, ret;
1865
1866	/*
1867	 * The end of the hostname occurs immediately preceding the delimiter or
1868	 * the port marker (':') where the delimiter takes precedence.
1869	 */
1870	delim_p = memchr(name, delim, namelen);
1871	colon_p = memchr(name, ':', namelen);
1872
1873	if (delim_p && colon_p)
1874		end = delim_p < colon_p ? delim_p : colon_p;
1875	else if (!delim_p && colon_p)
1876		end = colon_p;
1877	else {
1878		end = delim_p;
1879		if (!end) /* case: hostname:/ */
1880			end = name + namelen;
1881	}
1882
1883	if (end <= name)
1884		return -EINVAL;
1885
1886	/* do dns_resolve upcall */
1887	ip_len = dns_query(current->nsproxy->net_ns,
1888			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1889	if (ip_len > 0)
1890		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1891	else
1892		ret = -ESRCH;
1893
1894	kfree(ip_addr);
1895
1896	*ipend = end;
1897
1898	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1899			ret, ret ? "failed" : ceph_pr_addr(addr));
1900
1901	return ret;
1902}
1903#else
1904static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1905		struct ceph_entity_addr *addr, char delim, const char **ipend)
1906{
1907	return -EINVAL;
1908}
1909#endif
1910
1911/*
1912 * Parse a server name (IP or hostname). If a valid IP address is not found
1913 * then try to extract a hostname to resolve using userspace DNS upcall.
1914 */
1915static int ceph_parse_server_name(const char *name, size_t namelen,
1916		struct ceph_entity_addr *addr, char delim, const char **ipend)
1917{
1918	int ret;
1919
1920	ret = ceph_pton(name, namelen, addr, delim, ipend);
1921	if (ret)
1922		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1923
1924	return ret;
1925}
1926
1927/*
1928 * Parse an ip[:port] list into an addr array.  Use the default
1929 * monitor port if a port isn't specified.
1930 */
1931int ceph_parse_ips(const char *c, const char *end,
1932		   struct ceph_entity_addr *addr,
1933		   int max_count, int *count)
1934{
1935	int i, ret = -EINVAL;
1936	const char *p = c;
1937
1938	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1939	for (i = 0; i < max_count; i++) {
1940		const char *ipend;
1941		int port;
1942		char delim = ',';
1943
1944		if (*p == '[') {
1945			delim = ']';
1946			p++;
1947		}
1948
1949		ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1950		if (ret)
1951			goto bad;
1952		ret = -EINVAL;
1953
1954		p = ipend;
1955
1956		if (delim == ']') {
1957			if (*p != ']') {
1958				dout("missing matching ']'\n");
1959				goto bad;
1960			}
1961			p++;
1962		}
1963
1964		/* port? */
1965		if (p < end && *p == ':') {
1966			port = 0;
1967			p++;
1968			while (p < end && *p >= '0' && *p <= '9') {
1969				port = (port * 10) + (*p - '0');
1970				p++;
1971			}
1972			if (port == 0)
1973				port = CEPH_MON_PORT;
1974			else if (port > 65535)
1975				goto bad;
1976		} else {
1977			port = CEPH_MON_PORT;
1978		}
1979
1980		addr_set_port(&addr[i], port);
1981		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1982
1983		dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1984
1985		if (p == end)
1986			break;
1987		if (*p != ',')
1988			goto bad;
1989		p++;
1990	}
1991
1992	if (p != end)
1993		goto bad;
1994
1995	if (count)
1996		*count = i + 1;
1997	return 0;
1998
1999bad:
2000	return ret;
2001}
2002
2003static int process_banner(struct ceph_connection *con)
2004{
2005	dout("process_banner on %p\n", con);
2006
2007	if (verify_hello(con) < 0)
2008		return -1;
2009
2010	/*
2011	 * Make sure the other end is who we wanted.  note that the other
2012	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2013	 * them the benefit of the doubt.
2014	 */
2015	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2016		   sizeof(con->peer_addr)) != 0 &&
2017	    !(addr_is_blank(&con->actual_peer_addr) &&
2018	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2019		pr_warn("wrong peer, want %s/%u, got %s/%u\n",
2020			ceph_pr_addr(&con->peer_addr),
2021			le32_to_cpu(con->peer_addr.nonce),
2022			ceph_pr_addr(&con->actual_peer_addr),
2023			le32_to_cpu(con->actual_peer_addr.nonce));
2024		con->error_msg = "wrong peer at address";
2025		return -1;
2026	}
2027
2028	/*
2029	 * did we learn our address?
2030	 */
2031	if (addr_is_blank(&con->msgr->inst.addr)) {
2032		int port = addr_port(&con->msgr->inst.addr);
2033
2034		memcpy(&con->msgr->inst.addr.in_addr,
2035		       &con->peer_addr_for_me.in_addr,
2036		       sizeof(con->peer_addr_for_me.in_addr));
2037		addr_set_port(&con->msgr->inst.addr, port);
2038		encode_my_addr(con->msgr);
2039		dout("process_banner learned my addr is %s\n",
2040		     ceph_pr_addr(&con->msgr->inst.addr));
2041	}
2042
2043	return 0;
2044}
2045
2046static int process_connect(struct ceph_connection *con)
2047{
2048	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2049	u64 req_feat = from_msgr(con->msgr)->required_features;
2050	u64 server_feat = le64_to_cpu(con->in_reply.features);
2051	int ret;
2052
2053	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2054
2055	if (con->auth) {
2056		int len = le32_to_cpu(con->in_reply.authorizer_len);
2057
2058		/*
2059		 * Any connection that defines ->get_authorizer()
2060		 * should also define ->add_authorizer_challenge() and
2061		 * ->verify_authorizer_reply().
2062		 *
2063		 * See get_connect_authorizer().
2064		 */
2065		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2066			ret = con->ops->add_authorizer_challenge(
2067				    con, con->auth->authorizer_reply_buf, len);
2068			if (ret < 0)
2069				return ret;
2070
2071			con_out_kvec_reset(con);
2072			__prepare_write_connect(con);
2073			prepare_read_connect(con);
2074			return 0;
2075		}
2076
2077		if (len) {
2078			ret = con->ops->verify_authorizer_reply(con);
2079			if (ret < 0) {
2080				con->error_msg = "bad authorize reply";
2081				return ret;
2082			}
2083		}
2084	}
2085
2086	switch (con->in_reply.tag) {
2087	case CEPH_MSGR_TAG_FEATURES:
2088		pr_err("%s%lld %s feature set mismatch,"
2089		       " my %llx < server's %llx, missing %llx\n",
2090		       ENTITY_NAME(con->peer_name),
2091		       ceph_pr_addr(&con->peer_addr),
2092		       sup_feat, server_feat, server_feat & ~sup_feat);
2093		con->error_msg = "missing required protocol features";
2094		reset_connection(con);
2095		return -1;
2096
2097	case CEPH_MSGR_TAG_BADPROTOVER:
2098		pr_err("%s%lld %s protocol version mismatch,"
2099		       " my %d != server's %d\n",
2100		       ENTITY_NAME(con->peer_name),
2101		       ceph_pr_addr(&con->peer_addr),
2102		       le32_to_cpu(con->out_connect.protocol_version),
2103		       le32_to_cpu(con->in_reply.protocol_version));
2104		con->error_msg = "protocol version mismatch";
2105		reset_connection(con);
2106		return -1;
2107
2108	case CEPH_MSGR_TAG_BADAUTHORIZER:
2109		con->auth_retry++;
2110		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2111		     con->auth_retry);
2112		if (con->auth_retry == 2) {
2113			con->error_msg = "connect authorization failure";
2114			return -1;
2115		}
2116		con_out_kvec_reset(con);
2117		ret = prepare_write_connect(con);
2118		if (ret < 0)
2119			return ret;
2120		prepare_read_connect(con);
2121		break;
2122
2123	case CEPH_MSGR_TAG_RESETSESSION:
2124		/*
2125		 * If we connected with a large connect_seq but the peer
2126		 * has no record of a session with us (no connection, or
2127		 * connect_seq == 0), they will send RESETSESION to indicate
2128		 * that they must have reset their session, and may have
2129		 * dropped messages.
2130		 */
2131		dout("process_connect got RESET peer seq %u\n",
2132		     le32_to_cpu(con->in_reply.connect_seq));
2133		pr_err("%s%lld %s connection reset\n",
2134		       ENTITY_NAME(con->peer_name),
2135		       ceph_pr_addr(&con->peer_addr));
2136		reset_connection(con);
2137		con_out_kvec_reset(con);
2138		ret = prepare_write_connect(con);
2139		if (ret < 0)
2140			return ret;
2141		prepare_read_connect(con);
2142
2143		/* Tell ceph about it. */
2144		mutex_unlock(&con->mutex);
2145		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2146		if (con->ops->peer_reset)
2147			con->ops->peer_reset(con);
2148		mutex_lock(&con->mutex);
2149		if (con->state != CON_STATE_NEGOTIATING)
2150			return -EAGAIN;
2151		break;
2152
2153	case CEPH_MSGR_TAG_RETRY_SESSION:
2154		/*
2155		 * If we sent a smaller connect_seq than the peer has, try
2156		 * again with a larger value.
2157		 */
2158		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2159		     le32_to_cpu(con->out_connect.connect_seq),
2160		     le32_to_cpu(con->in_reply.connect_seq));
2161		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2162		con_out_kvec_reset(con);
2163		ret = prepare_write_connect(con);
2164		if (ret < 0)
2165			return ret;
2166		prepare_read_connect(con);
2167		break;
2168
2169	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2170		/*
2171		 * If we sent a smaller global_seq than the peer has, try
2172		 * again with a larger value.
2173		 */
2174		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2175		     con->peer_global_seq,
2176		     le32_to_cpu(con->in_reply.global_seq));
2177		get_global_seq(con->msgr,
2178			       le32_to_cpu(con->in_reply.global_seq));
2179		con_out_kvec_reset(con);
2180		ret = prepare_write_connect(con);
2181		if (ret < 0)
2182			return ret;
2183		prepare_read_connect(con);
2184		break;
2185
2186	case CEPH_MSGR_TAG_SEQ:
2187	case CEPH_MSGR_TAG_READY:
2188		if (req_feat & ~server_feat) {
2189			pr_err("%s%lld %s protocol feature mismatch,"
2190			       " my required %llx > server's %llx, need %llx\n",
2191			       ENTITY_NAME(con->peer_name),
2192			       ceph_pr_addr(&con->peer_addr),
2193			       req_feat, server_feat, req_feat & ~server_feat);
2194			con->error_msg = "missing required protocol features";
2195			reset_connection(con);
2196			return -1;
2197		}
2198
2199		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2200		con->state = CON_STATE_OPEN;
2201		con->auth_retry = 0;    /* we authenticated; clear flag */
2202		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2203		con->connect_seq++;
2204		con->peer_features = server_feat;
2205		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2206		     con->peer_global_seq,
2207		     le32_to_cpu(con->in_reply.connect_seq),
2208		     con->connect_seq);
2209		WARN_ON(con->connect_seq !=
2210			le32_to_cpu(con->in_reply.connect_seq));
2211
2212		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2213			con_flag_set(con, CON_FLAG_LOSSYTX);
2214
2215		con->delay = 0;      /* reset backoff memory */
2216
2217		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2218			prepare_write_seq(con);
2219			prepare_read_seq(con);
2220		} else {
2221			prepare_read_tag(con);
2222		}
2223		break;
2224
2225	case CEPH_MSGR_TAG_WAIT:
2226		/*
2227		 * If there is a connection race (we are opening
2228		 * connections to each other), one of us may just have
2229		 * to WAIT.  This shouldn't happen if we are the
2230		 * client.
2231		 */
2232		con->error_msg = "protocol error, got WAIT as client";
2233		return -1;
2234
2235	default:
2236		con->error_msg = "protocol error, garbage tag during connect";
2237		return -1;
2238	}
2239	return 0;
2240}
2241
2242
2243/*
2244 * read (part of) an ack
2245 */
2246static int read_partial_ack(struct ceph_connection *con)
2247{
2248	int size = sizeof (con->in_temp_ack);
2249	int end = size;
2250
2251	return read_partial(con, end, size, &con->in_temp_ack);
2252}
2253
2254/*
2255 * We can finally discard anything that's been acked.
2256 */
2257static void process_ack(struct ceph_connection *con)
2258{
2259	struct ceph_msg *m;
2260	u64 ack = le64_to_cpu(con->in_temp_ack);
2261	u64 seq;
2262	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2263	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2264
2265	/*
2266	 * In the reconnect case, con_fault() has requeued messages
2267	 * in out_sent. We should cleanup old messages according to
2268	 * the reconnect seq.
2269	 */
2270	while (!list_empty(list)) {
2271		m = list_first_entry(list, struct ceph_msg, list_head);
2272		if (reconnect && m->needs_out_seq)
2273			break;
2274		seq = le64_to_cpu(m->hdr.seq);
2275		if (seq > ack)
2276			break;
2277		dout("got ack for seq %llu type %d at %p\n", seq,
2278		     le16_to_cpu(m->hdr.type), m);
2279		m->ack_stamp = jiffies;
2280		ceph_msg_remove(m);
2281	}
2282
2283	prepare_read_tag(con);
2284}
2285
2286
2287static int read_partial_message_section(struct ceph_connection *con,
2288					struct kvec *section,
2289					unsigned int sec_len, u32 *crc)
2290{
2291	int ret, left;
2292
2293	BUG_ON(!section);
2294
2295	while (section->iov_len < sec_len) {
2296		BUG_ON(section->iov_base == NULL);
2297		left = sec_len - section->iov_len;
2298		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2299				       section->iov_len, left);
2300		if (ret <= 0)
2301			return ret;
2302		section->iov_len += ret;
2303	}
2304	if (section->iov_len == sec_len)
2305		*crc = crc32c(0, section->iov_base, section->iov_len);
2306
2307	return 1;
2308}
2309
2310static int read_partial_msg_data(struct ceph_connection *con)
2311{
2312	struct ceph_msg *msg = con->in_msg;
2313	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2314	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2315	struct page *page;
2316	size_t page_offset;
2317	size_t length;
2318	u32 crc = 0;
2319	int ret;
2320
2321	if (!msg->num_data_items)
2322		return -EIO;
2323
2324	if (do_datacrc)
2325		crc = con->in_data_crc;
2326	while (cursor->total_resid) {
2327		if (!cursor->resid) {
2328			ceph_msg_data_advance(cursor, 0);
2329			continue;
2330		}
2331
2332		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2333		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2334		if (ret <= 0) {
2335			if (do_datacrc)
2336				con->in_data_crc = crc;
2337
2338			return ret;
2339		}
2340
2341		if (do_datacrc)
2342			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2343		ceph_msg_data_advance(cursor, (size_t)ret);
2344	}
2345	if (do_datacrc)
2346		con->in_data_crc = crc;
2347
2348	return 1;	/* must return > 0 to indicate success */
2349}
2350
2351/*
2352 * read (part of) a message.
2353 */
2354static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2355
2356static int read_partial_message(struct ceph_connection *con)
2357{
2358	struct ceph_msg *m = con->in_msg;
2359	int size;
2360	int end;
2361	int ret;
2362	unsigned int front_len, middle_len, data_len;
2363	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2364	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2365	u64 seq;
2366	u32 crc;
2367
2368	dout("read_partial_message con %p msg %p\n", con, m);
2369
2370	/* header */
2371	size = sizeof (con->in_hdr);
2372	end = size;
2373	ret = read_partial(con, end, size, &con->in_hdr);
2374	if (ret <= 0)
2375		return ret;
2376
2377	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2378	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2379		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2380		       crc, con->in_hdr.crc);
2381		return -EBADMSG;
2382	}
2383
2384	front_len = le32_to_cpu(con->in_hdr.front_len);
2385	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2386		return -EIO;
2387	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2388	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2389		return -EIO;
2390	data_len = le32_to_cpu(con->in_hdr.data_len);
2391	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2392		return -EIO;
2393
2394	/* verify seq# */
2395	seq = le64_to_cpu(con->in_hdr.seq);
2396	if ((s64)seq - (s64)con->in_seq < 1) {
2397		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2398			ENTITY_NAME(con->peer_name),
2399			ceph_pr_addr(&con->peer_addr),
2400			seq, con->in_seq + 1);
2401		con->in_base_pos = -front_len - middle_len - data_len -
2402			sizeof_footer(con);
2403		con->in_tag = CEPH_MSGR_TAG_READY;
2404		return 1;
2405	} else if ((s64)seq - (s64)con->in_seq > 1) {
2406		pr_err("read_partial_message bad seq %lld expected %lld\n",
2407		       seq, con->in_seq + 1);
2408		con->error_msg = "bad message sequence # for incoming message";
2409		return -EBADE;
2410	}
2411
2412	/* allocate message? */
2413	if (!con->in_msg) {
2414		int skip = 0;
2415
2416		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2417		     front_len, data_len);
2418		ret = ceph_con_in_msg_alloc(con, &skip);
2419		if (ret < 0)
2420			return ret;
2421
2422		BUG_ON(!con->in_msg ^ skip);
2423		if (skip) {
2424			/* skip this message */
2425			dout("alloc_msg said skip message\n");
2426			con->in_base_pos = -front_len - middle_len - data_len -
2427				sizeof_footer(con);
2428			con->in_tag = CEPH_MSGR_TAG_READY;
2429			con->in_seq++;
2430			return 1;
2431		}
2432
2433		BUG_ON(!con->in_msg);
2434		BUG_ON(con->in_msg->con != con);
2435		m = con->in_msg;
2436		m->front.iov_len = 0;    /* haven't read it yet */
2437		if (m->middle)
2438			m->middle->vec.iov_len = 0;
2439
2440		/* prepare for data payload, if any */
2441
2442		if (data_len)
2443			prepare_message_data(con->in_msg, data_len);
2444	}
2445
2446	/* front */
2447	ret = read_partial_message_section(con, &m->front, front_len,
2448					   &con->in_front_crc);
2449	if (ret <= 0)
2450		return ret;
2451
2452	/* middle */
2453	if (m->middle) {
2454		ret = read_partial_message_section(con, &m->middle->vec,
2455						   middle_len,
2456						   &con->in_middle_crc);
2457		if (ret <= 0)
2458			return ret;
2459	}
2460
2461	/* (page) data */
2462	if (data_len) {
2463		ret = read_partial_msg_data(con);
2464		if (ret <= 0)
2465			return ret;
2466	}
2467
2468	/* footer */
2469	size = sizeof_footer(con);
2470	end += size;
2471	ret = read_partial(con, end, size, &m->footer);
2472	if (ret <= 0)
2473		return ret;
2474
2475	if (!need_sign) {
2476		m->footer.flags = m->old_footer.flags;
2477		m->footer.sig = 0;
2478	}
2479
2480	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2481	     m, front_len, m->footer.front_crc, middle_len,
2482	     m->footer.middle_crc, data_len, m->footer.data_crc);
2483
2484	/* crc ok? */
2485	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2486		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2487		       m, con->in_front_crc, m->footer.front_crc);
2488		return -EBADMSG;
2489	}
2490	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2491		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2492		       m, con->in_middle_crc, m->footer.middle_crc);
2493		return -EBADMSG;
2494	}
2495	if (do_datacrc &&
2496	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2497	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2498		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2499		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2500		return -EBADMSG;
2501	}
2502
2503	if (need_sign && con->ops->check_message_signature &&
2504	    con->ops->check_message_signature(m)) {
2505		pr_err("read_partial_message %p signature check failed\n", m);
2506		return -EBADMSG;
2507	}
2508
2509	return 1; /* done! */
2510}
2511
2512/*
2513 * Process message.  This happens in the worker thread.  The callback should
2514 * be careful not to do anything that waits on other incoming messages or it
2515 * may deadlock.
2516 */
2517static void process_message(struct ceph_connection *con)
2518{
2519	struct ceph_msg *msg = con->in_msg;
2520
2521	BUG_ON(con->in_msg->con != con);
2522	con->in_msg = NULL;
2523
2524	/* if first message, set peer_name */
2525	if (con->peer_name.type == 0)
2526		con->peer_name = msg->hdr.src;
2527
2528	con->in_seq++;
2529	mutex_unlock(&con->mutex);
2530
2531	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2532	     msg, le64_to_cpu(msg->hdr.seq),
2533	     ENTITY_NAME(msg->hdr.src),
2534	     le16_to_cpu(msg->hdr.type),
2535	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2536	     le32_to_cpu(msg->hdr.front_len),
2537	     le32_to_cpu(msg->hdr.data_len),
2538	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2539	con->ops->dispatch(con, msg);
2540
2541	mutex_lock(&con->mutex);
2542}
2543
2544static int read_keepalive_ack(struct ceph_connection *con)
2545{
2546	struct ceph_timespec ceph_ts;
2547	size_t size = sizeof(ceph_ts);
2548	int ret = read_partial(con, size, size, &ceph_ts);
2549	if (ret <= 0)
2550		return ret;
2551	ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2552	prepare_read_tag(con);
2553	return 1;
2554}
2555
2556/*
2557 * Write something to the socket.  Called in a worker thread when the
2558 * socket appears to be writeable and we have something ready to send.
2559 */
2560static int try_write(struct ceph_connection *con)
2561{
2562	int ret = 1;
2563
2564	dout("try_write start %p state %lu\n", con, con->state);
2565	if (con->state != CON_STATE_PREOPEN &&
2566	    con->state != CON_STATE_CONNECTING &&
2567	    con->state != CON_STATE_NEGOTIATING &&
2568	    con->state != CON_STATE_OPEN)
2569		return 0;
2570
2571	/* open the socket first? */
2572	if (con->state == CON_STATE_PREOPEN) {
2573		BUG_ON(con->sock);
2574		con->state = CON_STATE_CONNECTING;
2575
2576		con_out_kvec_reset(con);
2577		prepare_write_banner(con);
2578		prepare_read_banner(con);
2579
2580		BUG_ON(con->in_msg);
2581		con->in_tag = CEPH_MSGR_TAG_READY;
2582		dout("try_write initiating connect on %p new state %lu\n",
2583		     con, con->state);
2584		ret = ceph_tcp_connect(con);
2585		if (ret < 0) {
2586			con->error_msg = "connect error";
2587			goto out;
2588		}
2589	}
2590
2591more:
2592	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2593	BUG_ON(!con->sock);
2594
2595	/* kvec data queued? */
2596	if (con->out_kvec_left) {
2597		ret = write_partial_kvec(con);
2598		if (ret <= 0)
2599			goto out;
2600	}
2601	if (con->out_skip) {
2602		ret = write_partial_skip(con);
2603		if (ret <= 0)
2604			goto out;
2605	}
2606
2607	/* msg pages? */
2608	if (con->out_msg) {
2609		if (con->out_msg_done) {
2610			ceph_msg_put(con->out_msg);
2611			con->out_msg = NULL;   /* we're done with this one */
2612			goto do_next;
2613		}
2614
2615		ret = write_partial_message_data(con);
2616		if (ret == 1)
2617			goto more;  /* we need to send the footer, too! */
2618		if (ret == 0)
2619			goto out;
2620		if (ret < 0) {
2621			dout("try_write write_partial_message_data err %d\n",
2622			     ret);
2623			goto out;
2624		}
2625	}
2626
2627do_next:
2628	if (con->state == CON_STATE_OPEN) {
2629		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2630			prepare_write_keepalive(con);
2631			goto more;
2632		}
2633		/* is anything else pending? */
2634		if (!list_empty(&con->out_queue)) {
2635			prepare_write_message(con);
2636			goto more;
2637		}
2638		if (con->in_seq > con->in_seq_acked) {
2639			prepare_write_ack(con);
2640			goto more;
2641		}
2642	}
2643
2644	/* Nothing to do! */
2645	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2646	dout("try_write nothing else to write.\n");
2647	ret = 0;
2648out:
2649	dout("try_write done on %p ret %d\n", con, ret);
2650	return ret;
2651}
2652
2653/*
2654 * Read what we can from the socket.
2655 */
2656static int try_read(struct ceph_connection *con)
2657{
2658	int ret = -1;
2659
2660more:
2661	dout("try_read start on %p state %lu\n", con, con->state);
2662	if (con->state != CON_STATE_CONNECTING &&
2663	    con->state != CON_STATE_NEGOTIATING &&
2664	    con->state != CON_STATE_OPEN)
2665		return 0;
2666
2667	BUG_ON(!con->sock);
2668
2669	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2670	     con->in_base_pos);
2671
2672	if (con->state == CON_STATE_CONNECTING) {
2673		dout("try_read connecting\n");
2674		ret = read_partial_banner(con);
2675		if (ret <= 0)
2676			goto out;
2677		ret = process_banner(con);
2678		if (ret < 0)
2679			goto out;
2680
2681		con->state = CON_STATE_NEGOTIATING;
2682
2683		/*
2684		 * Received banner is good, exchange connection info.
2685		 * Do not reset out_kvec, as sending our banner raced
2686		 * with receiving peer banner after connect completed.
2687		 */
2688		ret = prepare_write_connect(con);
2689		if (ret < 0)
2690			goto out;
2691		prepare_read_connect(con);
2692
2693		/* Send connection info before awaiting response */
2694		goto out;
2695	}
2696
2697	if (con->state == CON_STATE_NEGOTIATING) {
2698		dout("try_read negotiating\n");
2699		ret = read_partial_connect(con);
2700		if (ret <= 0)
2701			goto out;
2702		ret = process_connect(con);
2703		if (ret < 0)
2704			goto out;
2705		goto more;
2706	}
2707
2708	WARN_ON(con->state != CON_STATE_OPEN);
2709
2710	if (con->in_base_pos < 0) {
2711		/*
2712		 * skipping + discarding content.
2713		 */
2714		ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2715		if (ret <= 0)
2716			goto out;
2717		dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2718		con->in_base_pos += ret;
2719		if (con->in_base_pos)
2720			goto more;
2721	}
2722	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2723		/*
2724		 * what's next?
2725		 */
2726		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2727		if (ret <= 0)
2728			goto out;
2729		dout("try_read got tag %d\n", (int)con->in_tag);
2730		switch (con->in_tag) {
2731		case CEPH_MSGR_TAG_MSG:
2732			prepare_read_message(con);
2733			break;
2734		case CEPH_MSGR_TAG_ACK:
2735			prepare_read_ack(con);
2736			break;
2737		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2738			prepare_read_keepalive_ack(con);
2739			break;
2740		case CEPH_MSGR_TAG_CLOSE:
2741			con_close_socket(con);
2742			con->state = CON_STATE_CLOSED;
2743			goto out;
2744		default:
2745			goto bad_tag;
2746		}
2747	}
2748	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2749		ret = read_partial_message(con);
2750		if (ret <= 0) {
2751			switch (ret) {
2752			case -EBADMSG:
2753				con->error_msg = "bad crc/signature";
2754				fallthrough;
2755			case -EBADE:
2756				ret = -EIO;
2757				break;
2758			case -EIO:
2759				con->error_msg = "io error";
2760				break;
2761			}
2762			goto out;
2763		}
2764		if (con->in_tag == CEPH_MSGR_TAG_READY)
2765			goto more;
2766		process_message(con);
2767		if (con->state == CON_STATE_OPEN)
2768			prepare_read_tag(con);
2769		goto more;
2770	}
2771	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2772	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2773		/*
2774		 * the final handshake seq exchange is semantically
2775		 * equivalent to an ACK
2776		 */
2777		ret = read_partial_ack(con);
2778		if (ret <= 0)
2779			goto out;
2780		process_ack(con);
2781		goto more;
2782	}
2783	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2784		ret = read_keepalive_ack(con);
2785		if (ret <= 0)
2786			goto out;
2787		goto more;
2788	}
2789
2790out:
2791	dout("try_read done on %p ret %d\n", con, ret);
2792	return ret;
2793
2794bad_tag:
2795	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2796	con->error_msg = "protocol error, garbage tag";
2797	ret = -1;
2798	goto out;
2799}
2800
2801
2802/*
2803 * Atomically queue work on a connection after the specified delay.
2804 * Bump @con reference to avoid races with connection teardown.
2805 * Returns 0 if work was queued, or an error code otherwise.
2806 */
2807static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2808{
2809	if (!con->ops->get(con)) {
2810		dout("%s %p ref count 0\n", __func__, con);
2811		return -ENOENT;
2812	}
2813
2814	dout("%s %p %lu\n", __func__, con, delay);
2815	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2816		dout("%s %p - already queued\n", __func__, con);
2817		con->ops->put(con);
2818		return -EBUSY;
2819	}
2820
2821	return 0;
2822}
2823
2824static void queue_con(struct ceph_connection *con)
2825{
2826	(void) queue_con_delay(con, 0);
2827}
2828
2829static void cancel_con(struct ceph_connection *con)
2830{
2831	if (cancel_delayed_work(&con->work)) {
2832		dout("%s %p\n", __func__, con);
2833		con->ops->put(con);
2834	}
2835}
2836
2837static bool con_sock_closed(struct ceph_connection *con)
2838{
2839	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2840		return false;
2841
2842#define CASE(x)								\
2843	case CON_STATE_ ## x:						\
2844		con->error_msg = "socket closed (con state " #x ")";	\
2845		break;
2846
2847	switch (con->state) {
2848	CASE(CLOSED);
2849	CASE(PREOPEN);
2850	CASE(CONNECTING);
2851	CASE(NEGOTIATING);
2852	CASE(OPEN);
2853	CASE(STANDBY);
2854	default:
2855		pr_warn("%s con %p unrecognized state %lu\n",
2856			__func__, con, con->state);
2857		con->error_msg = "unrecognized con state";
2858		BUG();
2859		break;
2860	}
2861#undef CASE
2862
2863	return true;
2864}
2865
2866static bool con_backoff(struct ceph_connection *con)
2867{
2868	int ret;
2869
2870	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2871		return false;
2872
2873	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2874	if (ret) {
2875		dout("%s: con %p FAILED to back off %lu\n", __func__,
2876			con, con->delay);
2877		BUG_ON(ret == -ENOENT);
2878		con_flag_set(con, CON_FLAG_BACKOFF);
2879	}
2880
2881	return true;
2882}
2883
2884/* Finish fault handling; con->mutex must *not* be held here */
2885
2886static void con_fault_finish(struct ceph_connection *con)
2887{
2888	dout("%s %p\n", __func__, con);
2889
2890	/*
2891	 * in case we faulted due to authentication, invalidate our
2892	 * current tickets so that we can get new ones.
2893	 */
2894	if (con->auth_retry) {
2895		dout("auth_retry %d, invalidating\n", con->auth_retry);
2896		if (con->ops->invalidate_authorizer)
2897			con->ops->invalidate_authorizer(con);
2898		con->auth_retry = 0;
2899	}
2900
2901	if (con->ops->fault)
2902		con->ops->fault(con);
2903}
2904
2905/*
2906 * Do some work on a connection.  Drop a connection ref when we're done.
2907 */
2908static void ceph_con_workfn(struct work_struct *work)
2909{
2910	struct ceph_connection *con = container_of(work, struct ceph_connection,
2911						   work.work);
2912	bool fault;
2913
2914	mutex_lock(&con->mutex);
2915	while (true) {
2916		int ret;
2917
2918		if ((fault = con_sock_closed(con))) {
2919			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2920			break;
2921		}
2922		if (con_backoff(con)) {
2923			dout("%s: con %p BACKOFF\n", __func__, con);
2924			break;
2925		}
2926		if (con->state == CON_STATE_STANDBY) {
2927			dout("%s: con %p STANDBY\n", __func__, con);
2928			break;
2929		}
2930		if (con->state == CON_STATE_CLOSED) {
2931			dout("%s: con %p CLOSED\n", __func__, con);
2932			BUG_ON(con->sock);
2933			break;
2934		}
2935		if (con->state == CON_STATE_PREOPEN) {
2936			dout("%s: con %p PREOPEN\n", __func__, con);
2937			BUG_ON(con->sock);
2938		}
2939
2940		ret = try_read(con);
2941		if (ret < 0) {
2942			if (ret == -EAGAIN)
2943				continue;
2944			if (!con->error_msg)
2945				con->error_msg = "socket error on read";
2946			fault = true;
2947			break;
2948		}
2949
2950		ret = try_write(con);
2951		if (ret < 0) {
2952			if (ret == -EAGAIN)
2953				continue;
2954			if (!con->error_msg)
2955				con->error_msg = "socket error on write";
2956			fault = true;
2957		}
2958
2959		break;	/* If we make it to here, we're done */
2960	}
2961	if (fault)
2962		con_fault(con);
2963	mutex_unlock(&con->mutex);
2964
2965	if (fault)
2966		con_fault_finish(con);
2967
2968	con->ops->put(con);
2969}
2970
2971/*
2972 * Generic error/fault handler.  A retry mechanism is used with
2973 * exponential backoff
2974 */
2975static void con_fault(struct ceph_connection *con)
2976{
2977	dout("fault %p state %lu to peer %s\n",
2978	     con, con->state, ceph_pr_addr(&con->peer_addr));
2979
2980	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2981		ceph_pr_addr(&con->peer_addr), con->error_msg);
2982	con->error_msg = NULL;
2983
2984	WARN_ON(con->state != CON_STATE_CONNECTING &&
2985	       con->state != CON_STATE_NEGOTIATING &&
2986	       con->state != CON_STATE_OPEN);
2987
2988	con_close_socket(con);
2989
2990	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2991		dout("fault on LOSSYTX channel, marking CLOSED\n");
2992		con->state = CON_STATE_CLOSED;
2993		return;
2994	}
2995
2996	if (con->in_msg) {
2997		BUG_ON(con->in_msg->con != con);
2998		ceph_msg_put(con->in_msg);
2999		con->in_msg = NULL;
3000	}
3001	if (con->out_msg) {
3002		BUG_ON(con->out_msg->con != con);
3003		ceph_msg_put(con->out_msg);
3004		con->out_msg = NULL;
3005	}
3006
3007	/* Requeue anything that hasn't been acked */
3008	list_splice_init(&con->out_sent, &con->out_queue);
3009
3010	/* If there are no messages queued or keepalive pending, place
3011	 * the connection in a STANDBY state */
3012	if (list_empty(&con->out_queue) &&
3013	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3014		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3015		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3016		con->state = CON_STATE_STANDBY;
3017	} else {
3018		/* retry after a delay. */
3019		con->state = CON_STATE_PREOPEN;
3020		if (con->delay == 0)
3021			con->delay = BASE_DELAY_INTERVAL;
3022		else if (con->delay < MAX_DELAY_INTERVAL)
3023			con->delay *= 2;
3024		con_flag_set(con, CON_FLAG_BACKOFF);
3025		queue_con(con);
3026	}
3027}
3028
3029
3030void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
3031{
3032	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
3033	msgr->inst.addr.nonce = cpu_to_le32(nonce);
3034	encode_my_addr(msgr);
3035}
3036
3037/*
3038 * initialize a new messenger instance
3039 */
3040void ceph_messenger_init(struct ceph_messenger *msgr,
3041			 struct ceph_entity_addr *myaddr)
3042{
3043	spin_lock_init(&msgr->global_seq_lock);
3044
3045	if (myaddr)
3046		msgr->inst.addr = *myaddr;
3047
3048	/* select a random nonce */
3049	msgr->inst.addr.type = 0;
3050	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3051	encode_my_addr(msgr);
3052
3053	atomic_set(&msgr->stopping, 0);
3054	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3055
3056	dout("%s %p\n", __func__, msgr);
3057}
3058EXPORT_SYMBOL(ceph_messenger_init);
3059
3060void ceph_messenger_fini(struct ceph_messenger *msgr)
3061{
3062	put_net(read_pnet(&msgr->net));
3063}
3064EXPORT_SYMBOL(ceph_messenger_fini);
3065
3066static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3067{
3068	if (msg->con)
3069		msg->con->ops->put(msg->con);
3070
3071	msg->con = con ? con->ops->get(con) : NULL;
3072	BUG_ON(msg->con != con);
3073}
3074
3075static void clear_standby(struct ceph_connection *con)
3076{
3077	/* come back from STANDBY? */
3078	if (con->state == CON_STATE_STANDBY) {
3079		dout("clear_standby %p and ++connect_seq\n", con);
3080		con->state = CON_STATE_PREOPEN;
3081		con->connect_seq++;
3082		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3083		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3084	}
3085}
3086
3087/*
3088 * Queue up an outgoing message on the given connection.
3089 */
3090void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3091{
3092	/* set src+dst */
3093	msg->hdr.src = con->msgr->inst.name;
3094	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3095	msg->needs_out_seq = true;
3096
3097	mutex_lock(&con->mutex);
3098
3099	if (con->state == CON_STATE_CLOSED) {
3100		dout("con_send %p closed, dropping %p\n", con, msg);
3101		ceph_msg_put(msg);
3102		mutex_unlock(&con->mutex);
3103		return;
3104	}
3105
3106	msg_con_set(msg, con);
3107
3108	BUG_ON(!list_empty(&msg->list_head));
3109	list_add_tail(&msg->list_head, &con->out_queue);
3110	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3111	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3112	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3113	     le32_to_cpu(msg->hdr.front_len),
3114	     le32_to_cpu(msg->hdr.middle_len),
3115	     le32_to_cpu(msg->hdr.data_len));
3116
3117	clear_standby(con);
3118	mutex_unlock(&con->mutex);
3119
3120	/* if there wasn't anything waiting to send before, queue
3121	 * new work */
3122	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3123		queue_con(con);
3124}
3125EXPORT_SYMBOL(ceph_con_send);
3126
3127/*
3128 * Revoke a message that was previously queued for send
3129 */
3130void ceph_msg_revoke(struct ceph_msg *msg)
3131{
3132	struct ceph_connection *con = msg->con;
3133
3134	if (!con) {
3135		dout("%s msg %p null con\n", __func__, msg);
3136		return;		/* Message not in our possession */
3137	}
3138
3139	mutex_lock(&con->mutex);
3140	if (!list_empty(&msg->list_head)) {
3141		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3142		list_del_init(&msg->list_head);
3143		msg->hdr.seq = 0;
3144
3145		ceph_msg_put(msg);
3146	}
3147	if (con->out_msg == msg) {
3148		BUG_ON(con->out_skip);
3149		/* footer */
3150		if (con->out_msg_done) {
3151			con->out_skip += con_out_kvec_skip(con);
3152		} else {
3153			BUG_ON(!msg->data_length);
3154			con->out_skip += sizeof_footer(con);
3155		}
3156		/* data, middle, front */
3157		if (msg->data_length)
3158			con->out_skip += msg->cursor.total_resid;
3159		if (msg->middle)
3160			con->out_skip += con_out_kvec_skip(con);
3161		con->out_skip += con_out_kvec_skip(con);
3162
3163		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3164		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3165		msg->hdr.seq = 0;
3166		con->out_msg = NULL;
3167		ceph_msg_put(msg);
3168	}
3169
3170	mutex_unlock(&con->mutex);
3171}
3172
3173/*
3174 * Revoke a message that we may be reading data into
3175 */
3176void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3177{
3178	struct ceph_connection *con = msg->con;
3179
3180	if (!con) {
3181		dout("%s msg %p null con\n", __func__, msg);
3182		return;		/* Message not in our possession */
3183	}
3184
3185	mutex_lock(&con->mutex);
3186	if (con->in_msg == msg) {
3187		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3188		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3189		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3190
3191		/* skip rest of message */
3192		dout("%s %p msg %p revoked\n", __func__, con, msg);
3193		con->in_base_pos = con->in_base_pos -
3194				sizeof(struct ceph_msg_header) -
3195				front_len -
3196				middle_len -
3197				data_len -
3198				sizeof(struct ceph_msg_footer);
3199		ceph_msg_put(con->in_msg);
3200		con->in_msg = NULL;
3201		con->in_tag = CEPH_MSGR_TAG_READY;
3202		con->in_seq++;
3203	} else {
3204		dout("%s %p in_msg %p msg %p no-op\n",
3205		     __func__, con, con->in_msg, msg);
3206	}
3207	mutex_unlock(&con->mutex);
3208}
3209
3210/*
3211 * Queue a keepalive byte to ensure the tcp connection is alive.
3212 */
3213void ceph_con_keepalive(struct ceph_connection *con)
3214{
3215	dout("con_keepalive %p\n", con);
3216	mutex_lock(&con->mutex);
3217	clear_standby(con);
3218	con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3219	mutex_unlock(&con->mutex);
3220
3221	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3222		queue_con(con);
3223}
3224EXPORT_SYMBOL(ceph_con_keepalive);
3225
3226bool ceph_con_keepalive_expired(struct ceph_connection *con,
3227			       unsigned long interval)
3228{
3229	if (interval > 0 &&
3230	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3231		struct timespec64 now;
3232		struct timespec64 ts;
3233		ktime_get_real_ts64(&now);
3234		jiffies_to_timespec64(interval, &ts);
3235		ts = timespec64_add(con->last_keepalive_ack, ts);
3236		return timespec64_compare(&now, &ts) >= 0;
3237	}
3238	return false;
3239}
3240
3241static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3242{
3243	BUG_ON(msg->num_data_items >= msg->max_data_items);
3244	return &msg->data[msg->num_data_items++];
3245}
3246
3247static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3248{
3249	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
3250		int num_pages = calc_pages_for(data->alignment, data->length);
3251		ceph_release_page_vector(data->pages, num_pages);
3252	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
3253		ceph_pagelist_release(data->pagelist);
3254	}
3255}
3256
3257void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3258			     size_t length, size_t alignment, bool own_pages)
3259{
3260	struct ceph_msg_data *data;
3261
3262	BUG_ON(!pages);
3263	BUG_ON(!length);
3264
3265	data = ceph_msg_data_add(msg);
3266	data->type = CEPH_MSG_DATA_PAGES;
3267	data->pages = pages;
3268	data->length = length;
3269	data->alignment = alignment & ~PAGE_MASK;
3270	data->own_pages = own_pages;
3271
3272	msg->data_length += length;
3273}
3274EXPORT_SYMBOL(ceph_msg_data_add_pages);
3275
3276void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3277				struct ceph_pagelist *pagelist)
3278{
3279	struct ceph_msg_data *data;
3280
3281	BUG_ON(!pagelist);
3282	BUG_ON(!pagelist->length);
3283
3284	data = ceph_msg_data_add(msg);
3285	data->type = CEPH_MSG_DATA_PAGELIST;
3286	refcount_inc(&pagelist->refcnt);
3287	data->pagelist = pagelist;
3288
3289	msg->data_length += pagelist->length;
3290}
3291EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3292
3293#ifdef	CONFIG_BLOCK
3294void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3295			   u32 length)
3296{
3297	struct ceph_msg_data *data;
3298
3299	data = ceph_msg_data_add(msg);
3300	data->type = CEPH_MSG_DATA_BIO;
3301	data->bio_pos = *bio_pos;
3302	data->bio_length = length;
3303
3304	msg->data_length += length;
3305}
3306EXPORT_SYMBOL(ceph_msg_data_add_bio);
3307#endif	/* CONFIG_BLOCK */
3308
3309void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3310			     struct ceph_bvec_iter *bvec_pos)
3311{
3312	struct ceph_msg_data *data;
3313
3314	data = ceph_msg_data_add(msg);
3315	data->type = CEPH_MSG_DATA_BVECS;
3316	data->bvec_pos = *bvec_pos;
3317
3318	msg->data_length += bvec_pos->iter.bi_size;
3319}
3320EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3321
3322/*
3323 * construct a new message with given type, size
3324 * the new msg has a ref count of 1.
3325 */
3326struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3327			       gfp_t flags, bool can_fail)
3328{
3329	struct ceph_msg *m;
3330
3331	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3332	if (m == NULL)
3333		goto out;
3334
3335	m->hdr.type = cpu_to_le16(type);
3336	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3337	m->hdr.front_len = cpu_to_le32(front_len);
3338
3339	INIT_LIST_HEAD(&m->list_head);
3340	kref_init(&m->kref);
3341
3342	/* front */
3343	if (front_len) {
3344		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3345		if (m->front.iov_base == NULL) {
3346			dout("ceph_msg_new can't allocate %d bytes\n",
3347			     front_len);
3348			goto out2;
3349		}
3350	} else {
3351		m->front.iov_base = NULL;
3352	}
3353	m->front_alloc_len = m->front.iov_len = front_len;
3354
3355	if (max_data_items) {
3356		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3357					flags);
3358		if (!m->data)
3359			goto out2;
3360
3361		m->max_data_items = max_data_items;
3362	}
3363
3364	dout("ceph_msg_new %p front %d\n", m, front_len);
3365	return m;
3366
3367out2:
3368	ceph_msg_put(m);
3369out:
3370	if (!can_fail) {
3371		pr_err("msg_new can't create type %d front %d\n", type,
3372		       front_len);
3373		WARN_ON(1);
3374	} else {
3375		dout("msg_new can't create type %d front %d\n", type,
3376		     front_len);
3377	}
3378	return NULL;
3379}
3380EXPORT_SYMBOL(ceph_msg_new2);
3381
3382struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3383			      bool can_fail)
3384{
3385	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3386}
3387EXPORT_SYMBOL(ceph_msg_new);
3388
3389/*
3390 * Allocate "middle" portion of a message, if it is needed and wasn't
3391 * allocated by alloc_msg.  This allows us to read a small fixed-size
3392 * per-type header in the front and then gracefully fail (i.e.,
3393 * propagate the error to the caller based on info in the front) when
3394 * the middle is too large.
3395 */
3396static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3397{
3398	int type = le16_to_cpu(msg->hdr.type);
3399	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3400
3401	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3402	     ceph_msg_type_name(type), middle_len);
3403	BUG_ON(!middle_len);
3404	BUG_ON(msg->middle);
3405
3406	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3407	if (!msg->middle)
3408		return -ENOMEM;
3409	return 0;
3410}
3411
3412/*
3413 * Allocate a message for receiving an incoming message on a
3414 * connection, and save the result in con->in_msg.  Uses the
3415 * connection's private alloc_msg op if available.
3416 *
3417 * Returns 0 on success, or a negative error code.
3418 *
3419 * On success, if we set *skip = 1:
3420 *  - the next message should be skipped and ignored.
3421 *  - con->in_msg == NULL
3422 * or if we set *skip = 0:
3423 *  - con->in_msg is non-null.
3424 * On error (ENOMEM, EAGAIN, ...),
3425 *  - con->in_msg == NULL
3426 */
3427static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3428{
3429	struct ceph_msg_header *hdr = &con->in_hdr;
3430	int middle_len = le32_to_cpu(hdr->middle_len);
3431	struct ceph_msg *msg;
3432	int ret = 0;
3433
3434	BUG_ON(con->in_msg != NULL);
3435	BUG_ON(!con->ops->alloc_msg);
3436
3437	mutex_unlock(&con->mutex);
3438	msg = con->ops->alloc_msg(con, hdr, skip);
3439	mutex_lock(&con->mutex);
3440	if (con->state != CON_STATE_OPEN) {
3441		if (msg)
3442			ceph_msg_put(msg);
3443		return -EAGAIN;
3444	}
3445	if (msg) {
3446		BUG_ON(*skip);
3447		msg_con_set(msg, con);
3448		con->in_msg = msg;
3449	} else {
3450		/*
3451		 * Null message pointer means either we should skip
3452		 * this message or we couldn't allocate memory.  The
3453		 * former is not an error.
3454		 */
3455		if (*skip)
3456			return 0;
3457
3458		con->error_msg = "error allocating memory for incoming message";
3459		return -ENOMEM;
3460	}
3461	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3462
3463	if (middle_len && !con->in_msg->middle) {
3464		ret = ceph_alloc_middle(con, con->in_msg);
3465		if (ret < 0) {
3466			ceph_msg_put(con->in_msg);
3467			con->in_msg = NULL;
3468		}
3469	}
3470
3471	return ret;
3472}
3473
3474
3475/*
3476 * Free a generically kmalloc'd message.
3477 */
3478static void ceph_msg_free(struct ceph_msg *m)
3479{
3480	dout("%s %p\n", __func__, m);
3481	kvfree(m->front.iov_base);
3482	kfree(m->data);
3483	kmem_cache_free(ceph_msg_cache, m);
3484}
3485
3486static void ceph_msg_release(struct kref *kref)
3487{
3488	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3489	int i;
3490
3491	dout("%s %p\n", __func__, m);
3492	WARN_ON(!list_empty(&m->list_head));
3493
3494	msg_con_set(m, NULL);
3495
3496	/* drop middle, data, if any */
3497	if (m->middle) {
3498		ceph_buffer_put(m->middle);
3499		m->middle = NULL;
3500	}
3501
3502	for (i = 0; i < m->num_data_items; i++)
3503		ceph_msg_data_destroy(&m->data[i]);
3504
3505	if (m->pool)
3506		ceph_msgpool_put(m->pool, m);
3507	else
3508		ceph_msg_free(m);
3509}
3510
3511struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3512{
3513	dout("%s %p (was %d)\n", __func__, msg,
3514	     kref_read(&msg->kref));
3515	kref_get(&msg->kref);
3516	return msg;
3517}
3518EXPORT_SYMBOL(ceph_msg_get);
3519
3520void ceph_msg_put(struct ceph_msg *msg)
3521{
3522	dout("%s %p (was %d)\n", __func__, msg,
3523	     kref_read(&msg->kref));
3524	kref_put(&msg->kref, ceph_msg_release);
3525}
3526EXPORT_SYMBOL(ceph_msg_put);
3527
3528void ceph_msg_dump(struct ceph_msg *msg)
3529{
3530	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3531		 msg->front_alloc_len, msg->data_length);
3532	print_hex_dump(KERN_DEBUG, "header: ",
3533		       DUMP_PREFIX_OFFSET, 16, 1,
3534		       &msg->hdr, sizeof(msg->hdr), true);
3535	print_hex_dump(KERN_DEBUG, " front: ",
3536		       DUMP_PREFIX_OFFSET, 16, 1,
3537		       msg->front.iov_base, msg->front.iov_len, true);
3538	if (msg->middle)
3539		print_hex_dump(KERN_DEBUG, "middle: ",
3540			       DUMP_PREFIX_OFFSET, 16, 1,
3541			       msg->middle->vec.iov_base,
3542			       msg->middle->vec.iov_len, true);
3543	print_hex_dump(KERN_DEBUG, "footer: ",
3544		       DUMP_PREFIX_OFFSET, 16, 1,
3545		       &msg->footer, sizeof(msg->footer), true);
3546}
3547EXPORT_SYMBOL(ceph_msg_dump);
3548