18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci *  Copyright (C) 1993  Linus Torvalds
48c2ecf20Sopenharmony_ci *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
58c2ecf20Sopenharmony_ci *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
68c2ecf20Sopenharmony_ci *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
78c2ecf20Sopenharmony_ci *  Numa awareness, Christoph Lameter, SGI, June 2005
88c2ecf20Sopenharmony_ci *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
98c2ecf20Sopenharmony_ci */
108c2ecf20Sopenharmony_ci
118c2ecf20Sopenharmony_ci#include <linux/vmalloc.h>
128c2ecf20Sopenharmony_ci#include <linux/mm.h>
138c2ecf20Sopenharmony_ci#include <linux/module.h>
148c2ecf20Sopenharmony_ci#include <linux/highmem.h>
158c2ecf20Sopenharmony_ci#include <linux/sched/signal.h>
168c2ecf20Sopenharmony_ci#include <linux/slab.h>
178c2ecf20Sopenharmony_ci#include <linux/spinlock.h>
188c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
198c2ecf20Sopenharmony_ci#include <linux/proc_fs.h>
208c2ecf20Sopenharmony_ci#include <linux/seq_file.h>
218c2ecf20Sopenharmony_ci#include <linux/set_memory.h>
228c2ecf20Sopenharmony_ci#include <linux/debugobjects.h>
238c2ecf20Sopenharmony_ci#include <linux/kallsyms.h>
248c2ecf20Sopenharmony_ci#include <linux/list.h>
258c2ecf20Sopenharmony_ci#include <linux/notifier.h>
268c2ecf20Sopenharmony_ci#include <linux/rbtree.h>
278c2ecf20Sopenharmony_ci#include <linux/xarray.h>
288c2ecf20Sopenharmony_ci#include <linux/rcupdate.h>
298c2ecf20Sopenharmony_ci#include <linux/pfn.h>
308c2ecf20Sopenharmony_ci#include <linux/kmemleak.h>
318c2ecf20Sopenharmony_ci#include <linux/atomic.h>
328c2ecf20Sopenharmony_ci#include <linux/compiler.h>
338c2ecf20Sopenharmony_ci#include <linux/llist.h>
348c2ecf20Sopenharmony_ci#include <linux/bitops.h>
358c2ecf20Sopenharmony_ci#include <linux/rbtree_augmented.h>
368c2ecf20Sopenharmony_ci#include <linux/overflow.h>
378c2ecf20Sopenharmony_ci
388c2ecf20Sopenharmony_ci#include <linux/uaccess.h>
398c2ecf20Sopenharmony_ci#include <asm/tlbflush.h>
408c2ecf20Sopenharmony_ci#include <asm/shmparam.h>
418c2ecf20Sopenharmony_ci
428c2ecf20Sopenharmony_ci#include "internal.h"
438c2ecf20Sopenharmony_ci#include "pgalloc-track.h"
448c2ecf20Sopenharmony_ci
458c2ecf20Sopenharmony_cibool is_vmalloc_addr(const void *x)
468c2ecf20Sopenharmony_ci{
478c2ecf20Sopenharmony_ci	unsigned long addr = (unsigned long)x;
488c2ecf20Sopenharmony_ci
498c2ecf20Sopenharmony_ci	return addr >= VMALLOC_START && addr < VMALLOC_END;
508c2ecf20Sopenharmony_ci}
518c2ecf20Sopenharmony_ciEXPORT_SYMBOL(is_vmalloc_addr);
528c2ecf20Sopenharmony_ci
538c2ecf20Sopenharmony_cistruct vfree_deferred {
548c2ecf20Sopenharmony_ci	struct llist_head list;
558c2ecf20Sopenharmony_ci	struct work_struct wq;
568c2ecf20Sopenharmony_ci};
578c2ecf20Sopenharmony_cistatic DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_cistatic void __vunmap(const void *, int);
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_cistatic void free_work(struct work_struct *w)
628c2ecf20Sopenharmony_ci{
638c2ecf20Sopenharmony_ci	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
648c2ecf20Sopenharmony_ci	struct llist_node *t, *llnode;
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_ci	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
678c2ecf20Sopenharmony_ci		__vunmap((void *)llnode, 1);
688c2ecf20Sopenharmony_ci}
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_ci/*** Page table manipulation functions ***/
718c2ecf20Sopenharmony_ci
728c2ecf20Sopenharmony_cistatic void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
738c2ecf20Sopenharmony_ci			     pgtbl_mod_mask *mask)
748c2ecf20Sopenharmony_ci{
758c2ecf20Sopenharmony_ci	pte_t *pte;
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci	pte = pte_offset_kernel(pmd, addr);
788c2ecf20Sopenharmony_ci	do {
798c2ecf20Sopenharmony_ci		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
808c2ecf20Sopenharmony_ci		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
818c2ecf20Sopenharmony_ci	} while (pte++, addr += PAGE_SIZE, addr != end);
828c2ecf20Sopenharmony_ci	*mask |= PGTBL_PTE_MODIFIED;
838c2ecf20Sopenharmony_ci}
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_cistatic void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
868c2ecf20Sopenharmony_ci			     pgtbl_mod_mask *mask)
878c2ecf20Sopenharmony_ci{
888c2ecf20Sopenharmony_ci	pmd_t *pmd;
898c2ecf20Sopenharmony_ci	unsigned long next;
908c2ecf20Sopenharmony_ci	int cleared;
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci	pmd = pmd_offset(pud, addr);
938c2ecf20Sopenharmony_ci	do {
948c2ecf20Sopenharmony_ci		next = pmd_addr_end(addr, end);
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_ci		cleared = pmd_clear_huge(pmd);
978c2ecf20Sopenharmony_ci		if (cleared || pmd_bad(*pmd))
988c2ecf20Sopenharmony_ci			*mask |= PGTBL_PMD_MODIFIED;
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci		if (cleared)
1018c2ecf20Sopenharmony_ci			continue;
1028c2ecf20Sopenharmony_ci		if (pmd_none_or_clear_bad(pmd))
1038c2ecf20Sopenharmony_ci			continue;
1048c2ecf20Sopenharmony_ci		vunmap_pte_range(pmd, addr, next, mask);
1058c2ecf20Sopenharmony_ci
1068c2ecf20Sopenharmony_ci		cond_resched();
1078c2ecf20Sopenharmony_ci	} while (pmd++, addr = next, addr != end);
1088c2ecf20Sopenharmony_ci}
1098c2ecf20Sopenharmony_ci
1108c2ecf20Sopenharmony_cistatic void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
1118c2ecf20Sopenharmony_ci			     pgtbl_mod_mask *mask)
1128c2ecf20Sopenharmony_ci{
1138c2ecf20Sopenharmony_ci	pud_t *pud;
1148c2ecf20Sopenharmony_ci	unsigned long next;
1158c2ecf20Sopenharmony_ci	int cleared;
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_ci	pud = pud_offset(p4d, addr);
1188c2ecf20Sopenharmony_ci	do {
1198c2ecf20Sopenharmony_ci		next = pud_addr_end(addr, end);
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_ci		cleared = pud_clear_huge(pud);
1228c2ecf20Sopenharmony_ci		if (cleared || pud_bad(*pud))
1238c2ecf20Sopenharmony_ci			*mask |= PGTBL_PUD_MODIFIED;
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci		if (cleared)
1268c2ecf20Sopenharmony_ci			continue;
1278c2ecf20Sopenharmony_ci		if (pud_none_or_clear_bad(pud))
1288c2ecf20Sopenharmony_ci			continue;
1298c2ecf20Sopenharmony_ci		vunmap_pmd_range(pud, addr, next, mask);
1308c2ecf20Sopenharmony_ci	} while (pud++, addr = next, addr != end);
1318c2ecf20Sopenharmony_ci}
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_cistatic void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
1348c2ecf20Sopenharmony_ci			     pgtbl_mod_mask *mask)
1358c2ecf20Sopenharmony_ci{
1368c2ecf20Sopenharmony_ci	p4d_t *p4d;
1378c2ecf20Sopenharmony_ci	unsigned long next;
1388c2ecf20Sopenharmony_ci	int cleared;
1398c2ecf20Sopenharmony_ci
1408c2ecf20Sopenharmony_ci	p4d = p4d_offset(pgd, addr);
1418c2ecf20Sopenharmony_ci	do {
1428c2ecf20Sopenharmony_ci		next = p4d_addr_end(addr, end);
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_ci		cleared = p4d_clear_huge(p4d);
1458c2ecf20Sopenharmony_ci		if (cleared || p4d_bad(*p4d))
1468c2ecf20Sopenharmony_ci			*mask |= PGTBL_P4D_MODIFIED;
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci		if (cleared)
1498c2ecf20Sopenharmony_ci			continue;
1508c2ecf20Sopenharmony_ci		if (p4d_none_or_clear_bad(p4d))
1518c2ecf20Sopenharmony_ci			continue;
1528c2ecf20Sopenharmony_ci		vunmap_pud_range(p4d, addr, next, mask);
1538c2ecf20Sopenharmony_ci	} while (p4d++, addr = next, addr != end);
1548c2ecf20Sopenharmony_ci}
1558c2ecf20Sopenharmony_ci
1568c2ecf20Sopenharmony_ci/**
1578c2ecf20Sopenharmony_ci * unmap_kernel_range_noflush - unmap kernel VM area
1588c2ecf20Sopenharmony_ci * @start: start of the VM area to unmap
1598c2ecf20Sopenharmony_ci * @size: size of the VM area to unmap
1608c2ecf20Sopenharmony_ci *
1618c2ecf20Sopenharmony_ci * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
1628c2ecf20Sopenharmony_ci * should have been allocated using get_vm_area() and its friends.
1638c2ecf20Sopenharmony_ci *
1648c2ecf20Sopenharmony_ci * NOTE:
1658c2ecf20Sopenharmony_ci * This function does NOT do any cache flushing.  The caller is responsible
1668c2ecf20Sopenharmony_ci * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
1678c2ecf20Sopenharmony_ci * function and flush_tlb_kernel_range() after.
1688c2ecf20Sopenharmony_ci */
1698c2ecf20Sopenharmony_civoid unmap_kernel_range_noflush(unsigned long start, unsigned long size)
1708c2ecf20Sopenharmony_ci{
1718c2ecf20Sopenharmony_ci	unsigned long end = start + size;
1728c2ecf20Sopenharmony_ci	unsigned long next;
1738c2ecf20Sopenharmony_ci	pgd_t *pgd;
1748c2ecf20Sopenharmony_ci	unsigned long addr = start;
1758c2ecf20Sopenharmony_ci	pgtbl_mod_mask mask = 0;
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci	BUG_ON(addr >= end);
1788c2ecf20Sopenharmony_ci	pgd = pgd_offset_k(addr);
1798c2ecf20Sopenharmony_ci	do {
1808c2ecf20Sopenharmony_ci		next = pgd_addr_end(addr, end);
1818c2ecf20Sopenharmony_ci		if (pgd_bad(*pgd))
1828c2ecf20Sopenharmony_ci			mask |= PGTBL_PGD_MODIFIED;
1838c2ecf20Sopenharmony_ci		if (pgd_none_or_clear_bad(pgd))
1848c2ecf20Sopenharmony_ci			continue;
1858c2ecf20Sopenharmony_ci		vunmap_p4d_range(pgd, addr, next, &mask);
1868c2ecf20Sopenharmony_ci	} while (pgd++, addr = next, addr != end);
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_ci	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
1898c2ecf20Sopenharmony_ci		arch_sync_kernel_mappings(start, end);
1908c2ecf20Sopenharmony_ci}
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_cistatic int vmap_pte_range(pmd_t *pmd, unsigned long addr,
1938c2ecf20Sopenharmony_ci		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
1948c2ecf20Sopenharmony_ci		pgtbl_mod_mask *mask)
1958c2ecf20Sopenharmony_ci{
1968c2ecf20Sopenharmony_ci	pte_t *pte;
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci	/*
1998c2ecf20Sopenharmony_ci	 * nr is a running index into the array which helps higher level
2008c2ecf20Sopenharmony_ci	 * callers keep track of where we're up to.
2018c2ecf20Sopenharmony_ci	 */
2028c2ecf20Sopenharmony_ci
2038c2ecf20Sopenharmony_ci	pte = pte_alloc_kernel_track(pmd, addr, mask);
2048c2ecf20Sopenharmony_ci	if (!pte)
2058c2ecf20Sopenharmony_ci		return -ENOMEM;
2068c2ecf20Sopenharmony_ci	do {
2078c2ecf20Sopenharmony_ci		struct page *page = pages[*nr];
2088c2ecf20Sopenharmony_ci
2098c2ecf20Sopenharmony_ci		if (WARN_ON(!pte_none(*pte)))
2108c2ecf20Sopenharmony_ci			return -EBUSY;
2118c2ecf20Sopenharmony_ci		if (WARN_ON(!page))
2128c2ecf20Sopenharmony_ci			return -ENOMEM;
2138c2ecf20Sopenharmony_ci		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
2148c2ecf20Sopenharmony_ci		(*nr)++;
2158c2ecf20Sopenharmony_ci	} while (pte++, addr += PAGE_SIZE, addr != end);
2168c2ecf20Sopenharmony_ci	*mask |= PGTBL_PTE_MODIFIED;
2178c2ecf20Sopenharmony_ci	return 0;
2188c2ecf20Sopenharmony_ci}
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_cistatic int vmap_pmd_range(pud_t *pud, unsigned long addr,
2218c2ecf20Sopenharmony_ci		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
2228c2ecf20Sopenharmony_ci		pgtbl_mod_mask *mask)
2238c2ecf20Sopenharmony_ci{
2248c2ecf20Sopenharmony_ci	pmd_t *pmd;
2258c2ecf20Sopenharmony_ci	unsigned long next;
2268c2ecf20Sopenharmony_ci
2278c2ecf20Sopenharmony_ci	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
2288c2ecf20Sopenharmony_ci	if (!pmd)
2298c2ecf20Sopenharmony_ci		return -ENOMEM;
2308c2ecf20Sopenharmony_ci	do {
2318c2ecf20Sopenharmony_ci		next = pmd_addr_end(addr, end);
2328c2ecf20Sopenharmony_ci		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
2338c2ecf20Sopenharmony_ci			return -ENOMEM;
2348c2ecf20Sopenharmony_ci	} while (pmd++, addr = next, addr != end);
2358c2ecf20Sopenharmony_ci	return 0;
2368c2ecf20Sopenharmony_ci}
2378c2ecf20Sopenharmony_ci
2388c2ecf20Sopenharmony_cistatic int vmap_pud_range(p4d_t *p4d, unsigned long addr,
2398c2ecf20Sopenharmony_ci		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
2408c2ecf20Sopenharmony_ci		pgtbl_mod_mask *mask)
2418c2ecf20Sopenharmony_ci{
2428c2ecf20Sopenharmony_ci	pud_t *pud;
2438c2ecf20Sopenharmony_ci	unsigned long next;
2448c2ecf20Sopenharmony_ci
2458c2ecf20Sopenharmony_ci	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
2468c2ecf20Sopenharmony_ci	if (!pud)
2478c2ecf20Sopenharmony_ci		return -ENOMEM;
2488c2ecf20Sopenharmony_ci	do {
2498c2ecf20Sopenharmony_ci		next = pud_addr_end(addr, end);
2508c2ecf20Sopenharmony_ci		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
2518c2ecf20Sopenharmony_ci			return -ENOMEM;
2528c2ecf20Sopenharmony_ci	} while (pud++, addr = next, addr != end);
2538c2ecf20Sopenharmony_ci	return 0;
2548c2ecf20Sopenharmony_ci}
2558c2ecf20Sopenharmony_ci
2568c2ecf20Sopenharmony_cistatic int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
2578c2ecf20Sopenharmony_ci		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
2588c2ecf20Sopenharmony_ci		pgtbl_mod_mask *mask)
2598c2ecf20Sopenharmony_ci{
2608c2ecf20Sopenharmony_ci	p4d_t *p4d;
2618c2ecf20Sopenharmony_ci	unsigned long next;
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_ci	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
2648c2ecf20Sopenharmony_ci	if (!p4d)
2658c2ecf20Sopenharmony_ci		return -ENOMEM;
2668c2ecf20Sopenharmony_ci	do {
2678c2ecf20Sopenharmony_ci		next = p4d_addr_end(addr, end);
2688c2ecf20Sopenharmony_ci		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
2698c2ecf20Sopenharmony_ci			return -ENOMEM;
2708c2ecf20Sopenharmony_ci	} while (p4d++, addr = next, addr != end);
2718c2ecf20Sopenharmony_ci	return 0;
2728c2ecf20Sopenharmony_ci}
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci/**
2758c2ecf20Sopenharmony_ci * map_kernel_range_noflush - map kernel VM area with the specified pages
2768c2ecf20Sopenharmony_ci * @addr: start of the VM area to map
2778c2ecf20Sopenharmony_ci * @size: size of the VM area to map
2788c2ecf20Sopenharmony_ci * @prot: page protection flags to use
2798c2ecf20Sopenharmony_ci * @pages: pages to map
2808c2ecf20Sopenharmony_ci *
2818c2ecf20Sopenharmony_ci * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
2828c2ecf20Sopenharmony_ci * have been allocated using get_vm_area() and its friends.
2838c2ecf20Sopenharmony_ci *
2848c2ecf20Sopenharmony_ci * NOTE:
2858c2ecf20Sopenharmony_ci * This function does NOT do any cache flushing.  The caller is responsible for
2868c2ecf20Sopenharmony_ci * calling flush_cache_vmap() on to-be-mapped areas before calling this
2878c2ecf20Sopenharmony_ci * function.
2888c2ecf20Sopenharmony_ci *
2898c2ecf20Sopenharmony_ci * RETURNS:
2908c2ecf20Sopenharmony_ci * 0 on success, -errno on failure.
2918c2ecf20Sopenharmony_ci */
2928c2ecf20Sopenharmony_ciint map_kernel_range_noflush(unsigned long addr, unsigned long size,
2938c2ecf20Sopenharmony_ci			     pgprot_t prot, struct page **pages)
2948c2ecf20Sopenharmony_ci{
2958c2ecf20Sopenharmony_ci	unsigned long start = addr;
2968c2ecf20Sopenharmony_ci	unsigned long end = addr + size;
2978c2ecf20Sopenharmony_ci	unsigned long next;
2988c2ecf20Sopenharmony_ci	pgd_t *pgd;
2998c2ecf20Sopenharmony_ci	int err = 0;
3008c2ecf20Sopenharmony_ci	int nr = 0;
3018c2ecf20Sopenharmony_ci	pgtbl_mod_mask mask = 0;
3028c2ecf20Sopenharmony_ci
3038c2ecf20Sopenharmony_ci	BUG_ON(addr >= end);
3048c2ecf20Sopenharmony_ci	pgd = pgd_offset_k(addr);
3058c2ecf20Sopenharmony_ci	do {
3068c2ecf20Sopenharmony_ci		next = pgd_addr_end(addr, end);
3078c2ecf20Sopenharmony_ci		if (pgd_bad(*pgd))
3088c2ecf20Sopenharmony_ci			mask |= PGTBL_PGD_MODIFIED;
3098c2ecf20Sopenharmony_ci		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
3108c2ecf20Sopenharmony_ci		if (err)
3118c2ecf20Sopenharmony_ci			return err;
3128c2ecf20Sopenharmony_ci	} while (pgd++, addr = next, addr != end);
3138c2ecf20Sopenharmony_ci
3148c2ecf20Sopenharmony_ci	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3158c2ecf20Sopenharmony_ci		arch_sync_kernel_mappings(start, end);
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci	return 0;
3188c2ecf20Sopenharmony_ci}
3198c2ecf20Sopenharmony_ci
3208c2ecf20Sopenharmony_ciint map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
3218c2ecf20Sopenharmony_ci		struct page **pages)
3228c2ecf20Sopenharmony_ci{
3238c2ecf20Sopenharmony_ci	int ret;
3248c2ecf20Sopenharmony_ci
3258c2ecf20Sopenharmony_ci	ret = map_kernel_range_noflush(start, size, prot, pages);
3268c2ecf20Sopenharmony_ci	flush_cache_vmap(start, start + size);
3278c2ecf20Sopenharmony_ci	return ret;
3288c2ecf20Sopenharmony_ci}
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_ciint is_vmalloc_or_module_addr(const void *x)
3318c2ecf20Sopenharmony_ci{
3328c2ecf20Sopenharmony_ci	/*
3338c2ecf20Sopenharmony_ci	 * ARM, x86-64 and sparc64 put modules in a special place,
3348c2ecf20Sopenharmony_ci	 * and fall back on vmalloc() if that fails. Others
3358c2ecf20Sopenharmony_ci	 * just put it in the vmalloc space.
3368c2ecf20Sopenharmony_ci	 */
3378c2ecf20Sopenharmony_ci#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
3388c2ecf20Sopenharmony_ci	unsigned long addr = (unsigned long)x;
3398c2ecf20Sopenharmony_ci	if (addr >= MODULES_VADDR && addr < MODULES_END)
3408c2ecf20Sopenharmony_ci		return 1;
3418c2ecf20Sopenharmony_ci#endif
3428c2ecf20Sopenharmony_ci	return is_vmalloc_addr(x);
3438c2ecf20Sopenharmony_ci}
3448c2ecf20Sopenharmony_ci
3458c2ecf20Sopenharmony_ci/*
3468c2ecf20Sopenharmony_ci * Walk a vmap address to the struct page it maps.
3478c2ecf20Sopenharmony_ci */
3488c2ecf20Sopenharmony_cistruct page *vmalloc_to_page(const void *vmalloc_addr)
3498c2ecf20Sopenharmony_ci{
3508c2ecf20Sopenharmony_ci	unsigned long addr = (unsigned long) vmalloc_addr;
3518c2ecf20Sopenharmony_ci	struct page *page = NULL;
3528c2ecf20Sopenharmony_ci	pgd_t *pgd = pgd_offset_k(addr);
3538c2ecf20Sopenharmony_ci	p4d_t *p4d;
3548c2ecf20Sopenharmony_ci	pud_t *pud;
3558c2ecf20Sopenharmony_ci	pmd_t *pmd;
3568c2ecf20Sopenharmony_ci	pte_t *ptep, pte;
3578c2ecf20Sopenharmony_ci
3588c2ecf20Sopenharmony_ci	/*
3598c2ecf20Sopenharmony_ci	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
3608c2ecf20Sopenharmony_ci	 * architectures that do not vmalloc module space
3618c2ecf20Sopenharmony_ci	 */
3628c2ecf20Sopenharmony_ci	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
3638c2ecf20Sopenharmony_ci
3648c2ecf20Sopenharmony_ci	if (pgd_none(*pgd))
3658c2ecf20Sopenharmony_ci		return NULL;
3668c2ecf20Sopenharmony_ci	p4d = p4d_offset(pgd, addr);
3678c2ecf20Sopenharmony_ci	if (p4d_none(*p4d))
3688c2ecf20Sopenharmony_ci		return NULL;
3698c2ecf20Sopenharmony_ci	pud = pud_offset(p4d, addr);
3708c2ecf20Sopenharmony_ci
3718c2ecf20Sopenharmony_ci	/*
3728c2ecf20Sopenharmony_ci	 * Don't dereference bad PUD or PMD (below) entries. This will also
3738c2ecf20Sopenharmony_ci	 * identify huge mappings, which we may encounter on architectures
3748c2ecf20Sopenharmony_ci	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
3758c2ecf20Sopenharmony_ci	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
3768c2ecf20Sopenharmony_ci	 * not [unambiguously] associated with a struct page, so there is
3778c2ecf20Sopenharmony_ci	 * no correct value to return for them.
3788c2ecf20Sopenharmony_ci	 */
3798c2ecf20Sopenharmony_ci	WARN_ON_ONCE(pud_bad(*pud));
3808c2ecf20Sopenharmony_ci	if (pud_none(*pud) || pud_bad(*pud))
3818c2ecf20Sopenharmony_ci		return NULL;
3828c2ecf20Sopenharmony_ci	pmd = pmd_offset(pud, addr);
3838c2ecf20Sopenharmony_ci	WARN_ON_ONCE(pmd_bad(*pmd));
3848c2ecf20Sopenharmony_ci	if (pmd_none(*pmd) || pmd_bad(*pmd))
3858c2ecf20Sopenharmony_ci		return NULL;
3868c2ecf20Sopenharmony_ci
3878c2ecf20Sopenharmony_ci	ptep = pte_offset_map(pmd, addr);
3888c2ecf20Sopenharmony_ci	pte = *ptep;
3898c2ecf20Sopenharmony_ci	if (pte_present(pte))
3908c2ecf20Sopenharmony_ci		page = pte_page(pte);
3918c2ecf20Sopenharmony_ci	pte_unmap(ptep);
3928c2ecf20Sopenharmony_ci	return page;
3938c2ecf20Sopenharmony_ci}
3948c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmalloc_to_page);
3958c2ecf20Sopenharmony_ci
3968c2ecf20Sopenharmony_ci/*
3978c2ecf20Sopenharmony_ci * Map a vmalloc()-space virtual address to the physical page frame number.
3988c2ecf20Sopenharmony_ci */
3998c2ecf20Sopenharmony_ciunsigned long vmalloc_to_pfn(const void *vmalloc_addr)
4008c2ecf20Sopenharmony_ci{
4018c2ecf20Sopenharmony_ci	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
4028c2ecf20Sopenharmony_ci}
4038c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmalloc_to_pfn);
4048c2ecf20Sopenharmony_ci
4058c2ecf20Sopenharmony_ci
4068c2ecf20Sopenharmony_ci/*** Global kva allocator ***/
4078c2ecf20Sopenharmony_ci
4088c2ecf20Sopenharmony_ci#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
4098c2ecf20Sopenharmony_ci#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
4108c2ecf20Sopenharmony_ci
4118c2ecf20Sopenharmony_ci
4128c2ecf20Sopenharmony_cistatic DEFINE_SPINLOCK(vmap_area_lock);
4138c2ecf20Sopenharmony_cistatic DEFINE_SPINLOCK(free_vmap_area_lock);
4148c2ecf20Sopenharmony_ci/* Export for kexec only */
4158c2ecf20Sopenharmony_ciLIST_HEAD(vmap_area_list);
4168c2ecf20Sopenharmony_cistatic LLIST_HEAD(vmap_purge_list);
4178c2ecf20Sopenharmony_cistatic struct rb_root vmap_area_root = RB_ROOT;
4188c2ecf20Sopenharmony_cistatic bool vmap_initialized __read_mostly;
4198c2ecf20Sopenharmony_ci
4208c2ecf20Sopenharmony_ci/*
4218c2ecf20Sopenharmony_ci * This kmem_cache is used for vmap_area objects. Instead of
4228c2ecf20Sopenharmony_ci * allocating from slab we reuse an object from this cache to
4238c2ecf20Sopenharmony_ci * make things faster. Especially in "no edge" splitting of
4248c2ecf20Sopenharmony_ci * free block.
4258c2ecf20Sopenharmony_ci */
4268c2ecf20Sopenharmony_cistatic struct kmem_cache *vmap_area_cachep;
4278c2ecf20Sopenharmony_ci
4288c2ecf20Sopenharmony_ci/*
4298c2ecf20Sopenharmony_ci * This linked list is used in pair with free_vmap_area_root.
4308c2ecf20Sopenharmony_ci * It gives O(1) access to prev/next to perform fast coalescing.
4318c2ecf20Sopenharmony_ci */
4328c2ecf20Sopenharmony_cistatic LIST_HEAD(free_vmap_area_list);
4338c2ecf20Sopenharmony_ci
4348c2ecf20Sopenharmony_ci/*
4358c2ecf20Sopenharmony_ci * This augment red-black tree represents the free vmap space.
4368c2ecf20Sopenharmony_ci * All vmap_area objects in this tree are sorted by va->va_start
4378c2ecf20Sopenharmony_ci * address. It is used for allocation and merging when a vmap
4388c2ecf20Sopenharmony_ci * object is released.
4398c2ecf20Sopenharmony_ci *
4408c2ecf20Sopenharmony_ci * Each vmap_area node contains a maximum available free block
4418c2ecf20Sopenharmony_ci * of its sub-tree, right or left. Therefore it is possible to
4428c2ecf20Sopenharmony_ci * find a lowest match of free area.
4438c2ecf20Sopenharmony_ci */
4448c2ecf20Sopenharmony_cistatic struct rb_root free_vmap_area_root = RB_ROOT;
4458c2ecf20Sopenharmony_ci
4468c2ecf20Sopenharmony_ci/*
4478c2ecf20Sopenharmony_ci * Preload a CPU with one object for "no edge" split case. The
4488c2ecf20Sopenharmony_ci * aim is to get rid of allocations from the atomic context, thus
4498c2ecf20Sopenharmony_ci * to use more permissive allocation masks.
4508c2ecf20Sopenharmony_ci */
4518c2ecf20Sopenharmony_cistatic DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
4528c2ecf20Sopenharmony_ci
4538c2ecf20Sopenharmony_cistatic __always_inline unsigned long
4548c2ecf20Sopenharmony_civa_size(struct vmap_area *va)
4558c2ecf20Sopenharmony_ci{
4568c2ecf20Sopenharmony_ci	return (va->va_end - va->va_start);
4578c2ecf20Sopenharmony_ci}
4588c2ecf20Sopenharmony_ci
4598c2ecf20Sopenharmony_cistatic __always_inline unsigned long
4608c2ecf20Sopenharmony_ciget_subtree_max_size(struct rb_node *node)
4618c2ecf20Sopenharmony_ci{
4628c2ecf20Sopenharmony_ci	struct vmap_area *va;
4638c2ecf20Sopenharmony_ci
4648c2ecf20Sopenharmony_ci	va = rb_entry_safe(node, struct vmap_area, rb_node);
4658c2ecf20Sopenharmony_ci	return va ? va->subtree_max_size : 0;
4668c2ecf20Sopenharmony_ci}
4678c2ecf20Sopenharmony_ci
4688c2ecf20Sopenharmony_ci/*
4698c2ecf20Sopenharmony_ci * Gets called when remove the node and rotate.
4708c2ecf20Sopenharmony_ci */
4718c2ecf20Sopenharmony_cistatic __always_inline unsigned long
4728c2ecf20Sopenharmony_cicompute_subtree_max_size(struct vmap_area *va)
4738c2ecf20Sopenharmony_ci{
4748c2ecf20Sopenharmony_ci	return max3(va_size(va),
4758c2ecf20Sopenharmony_ci		get_subtree_max_size(va->rb_node.rb_left),
4768c2ecf20Sopenharmony_ci		get_subtree_max_size(va->rb_node.rb_right));
4778c2ecf20Sopenharmony_ci}
4788c2ecf20Sopenharmony_ci
4798c2ecf20Sopenharmony_ciRB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
4808c2ecf20Sopenharmony_ci	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_cistatic void purge_vmap_area_lazy(void);
4838c2ecf20Sopenharmony_cistatic BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
4848c2ecf20Sopenharmony_cistatic unsigned long lazy_max_pages(void);
4858c2ecf20Sopenharmony_ci
4868c2ecf20Sopenharmony_cistatic atomic_long_t nr_vmalloc_pages;
4878c2ecf20Sopenharmony_ci
4888c2ecf20Sopenharmony_ciunsigned long vmalloc_nr_pages(void)
4898c2ecf20Sopenharmony_ci{
4908c2ecf20Sopenharmony_ci	return atomic_long_read(&nr_vmalloc_pages);
4918c2ecf20Sopenharmony_ci}
4928c2ecf20Sopenharmony_ci
4938c2ecf20Sopenharmony_cistatic struct vmap_area *__find_vmap_area(unsigned long addr)
4948c2ecf20Sopenharmony_ci{
4958c2ecf20Sopenharmony_ci	struct rb_node *n = vmap_area_root.rb_node;
4968c2ecf20Sopenharmony_ci
4978c2ecf20Sopenharmony_ci	while (n) {
4988c2ecf20Sopenharmony_ci		struct vmap_area *va;
4998c2ecf20Sopenharmony_ci
5008c2ecf20Sopenharmony_ci		va = rb_entry(n, struct vmap_area, rb_node);
5018c2ecf20Sopenharmony_ci		if (addr < va->va_start)
5028c2ecf20Sopenharmony_ci			n = n->rb_left;
5038c2ecf20Sopenharmony_ci		else if (addr >= va->va_end)
5048c2ecf20Sopenharmony_ci			n = n->rb_right;
5058c2ecf20Sopenharmony_ci		else
5068c2ecf20Sopenharmony_ci			return va;
5078c2ecf20Sopenharmony_ci	}
5088c2ecf20Sopenharmony_ci
5098c2ecf20Sopenharmony_ci	return NULL;
5108c2ecf20Sopenharmony_ci}
5118c2ecf20Sopenharmony_ci
5128c2ecf20Sopenharmony_ci/*
5138c2ecf20Sopenharmony_ci * This function returns back addresses of parent node
5148c2ecf20Sopenharmony_ci * and its left or right link for further processing.
5158c2ecf20Sopenharmony_ci *
5168c2ecf20Sopenharmony_ci * Otherwise NULL is returned. In that case all further
5178c2ecf20Sopenharmony_ci * steps regarding inserting of conflicting overlap range
5188c2ecf20Sopenharmony_ci * have to be declined and actually considered as a bug.
5198c2ecf20Sopenharmony_ci */
5208c2ecf20Sopenharmony_cistatic __always_inline struct rb_node **
5218c2ecf20Sopenharmony_cifind_va_links(struct vmap_area *va,
5228c2ecf20Sopenharmony_ci	struct rb_root *root, struct rb_node *from,
5238c2ecf20Sopenharmony_ci	struct rb_node **parent)
5248c2ecf20Sopenharmony_ci{
5258c2ecf20Sopenharmony_ci	struct vmap_area *tmp_va;
5268c2ecf20Sopenharmony_ci	struct rb_node **link;
5278c2ecf20Sopenharmony_ci
5288c2ecf20Sopenharmony_ci	if (root) {
5298c2ecf20Sopenharmony_ci		link = &root->rb_node;
5308c2ecf20Sopenharmony_ci		if (unlikely(!*link)) {
5318c2ecf20Sopenharmony_ci			*parent = NULL;
5328c2ecf20Sopenharmony_ci			return link;
5338c2ecf20Sopenharmony_ci		}
5348c2ecf20Sopenharmony_ci	} else {
5358c2ecf20Sopenharmony_ci		link = &from;
5368c2ecf20Sopenharmony_ci	}
5378c2ecf20Sopenharmony_ci
5388c2ecf20Sopenharmony_ci	/*
5398c2ecf20Sopenharmony_ci	 * Go to the bottom of the tree. When we hit the last point
5408c2ecf20Sopenharmony_ci	 * we end up with parent rb_node and correct direction, i name
5418c2ecf20Sopenharmony_ci	 * it link, where the new va->rb_node will be attached to.
5428c2ecf20Sopenharmony_ci	 */
5438c2ecf20Sopenharmony_ci	do {
5448c2ecf20Sopenharmony_ci		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
5458c2ecf20Sopenharmony_ci
5468c2ecf20Sopenharmony_ci		/*
5478c2ecf20Sopenharmony_ci		 * During the traversal we also do some sanity check.
5488c2ecf20Sopenharmony_ci		 * Trigger the BUG() if there are sides(left/right)
5498c2ecf20Sopenharmony_ci		 * or full overlaps.
5508c2ecf20Sopenharmony_ci		 */
5518c2ecf20Sopenharmony_ci		if (va->va_start < tmp_va->va_end &&
5528c2ecf20Sopenharmony_ci				va->va_end <= tmp_va->va_start)
5538c2ecf20Sopenharmony_ci			link = &(*link)->rb_left;
5548c2ecf20Sopenharmony_ci		else if (va->va_end > tmp_va->va_start &&
5558c2ecf20Sopenharmony_ci				va->va_start >= tmp_va->va_end)
5568c2ecf20Sopenharmony_ci			link = &(*link)->rb_right;
5578c2ecf20Sopenharmony_ci		else {
5588c2ecf20Sopenharmony_ci			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
5598c2ecf20Sopenharmony_ci				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
5608c2ecf20Sopenharmony_ci
5618c2ecf20Sopenharmony_ci			return NULL;
5628c2ecf20Sopenharmony_ci		}
5638c2ecf20Sopenharmony_ci	} while (*link);
5648c2ecf20Sopenharmony_ci
5658c2ecf20Sopenharmony_ci	*parent = &tmp_va->rb_node;
5668c2ecf20Sopenharmony_ci	return link;
5678c2ecf20Sopenharmony_ci}
5688c2ecf20Sopenharmony_ci
5698c2ecf20Sopenharmony_cistatic __always_inline struct list_head *
5708c2ecf20Sopenharmony_ciget_va_next_sibling(struct rb_node *parent, struct rb_node **link)
5718c2ecf20Sopenharmony_ci{
5728c2ecf20Sopenharmony_ci	struct list_head *list;
5738c2ecf20Sopenharmony_ci
5748c2ecf20Sopenharmony_ci	if (unlikely(!parent))
5758c2ecf20Sopenharmony_ci		/*
5768c2ecf20Sopenharmony_ci		 * The red-black tree where we try to find VA neighbors
5778c2ecf20Sopenharmony_ci		 * before merging or inserting is empty, i.e. it means
5788c2ecf20Sopenharmony_ci		 * there is no free vmap space. Normally it does not
5798c2ecf20Sopenharmony_ci		 * happen but we handle this case anyway.
5808c2ecf20Sopenharmony_ci		 */
5818c2ecf20Sopenharmony_ci		return NULL;
5828c2ecf20Sopenharmony_ci
5838c2ecf20Sopenharmony_ci	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
5848c2ecf20Sopenharmony_ci	return (&parent->rb_right == link ? list->next : list);
5858c2ecf20Sopenharmony_ci}
5868c2ecf20Sopenharmony_ci
5878c2ecf20Sopenharmony_cistatic __always_inline void
5888c2ecf20Sopenharmony_cilink_va(struct vmap_area *va, struct rb_root *root,
5898c2ecf20Sopenharmony_ci	struct rb_node *parent, struct rb_node **link, struct list_head *head)
5908c2ecf20Sopenharmony_ci{
5918c2ecf20Sopenharmony_ci	/*
5928c2ecf20Sopenharmony_ci	 * VA is still not in the list, but we can
5938c2ecf20Sopenharmony_ci	 * identify its future previous list_head node.
5948c2ecf20Sopenharmony_ci	 */
5958c2ecf20Sopenharmony_ci	if (likely(parent)) {
5968c2ecf20Sopenharmony_ci		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
5978c2ecf20Sopenharmony_ci		if (&parent->rb_right != link)
5988c2ecf20Sopenharmony_ci			head = head->prev;
5998c2ecf20Sopenharmony_ci	}
6008c2ecf20Sopenharmony_ci
6018c2ecf20Sopenharmony_ci	/* Insert to the rb-tree */
6028c2ecf20Sopenharmony_ci	rb_link_node(&va->rb_node, parent, link);
6038c2ecf20Sopenharmony_ci	if (root == &free_vmap_area_root) {
6048c2ecf20Sopenharmony_ci		/*
6058c2ecf20Sopenharmony_ci		 * Some explanation here. Just perform simple insertion
6068c2ecf20Sopenharmony_ci		 * to the tree. We do not set va->subtree_max_size to
6078c2ecf20Sopenharmony_ci		 * its current size before calling rb_insert_augmented().
6088c2ecf20Sopenharmony_ci		 * It is because of we populate the tree from the bottom
6098c2ecf20Sopenharmony_ci		 * to parent levels when the node _is_ in the tree.
6108c2ecf20Sopenharmony_ci		 *
6118c2ecf20Sopenharmony_ci		 * Therefore we set subtree_max_size to zero after insertion,
6128c2ecf20Sopenharmony_ci		 * to let __augment_tree_propagate_from() puts everything to
6138c2ecf20Sopenharmony_ci		 * the correct order later on.
6148c2ecf20Sopenharmony_ci		 */
6158c2ecf20Sopenharmony_ci		rb_insert_augmented(&va->rb_node,
6168c2ecf20Sopenharmony_ci			root, &free_vmap_area_rb_augment_cb);
6178c2ecf20Sopenharmony_ci		va->subtree_max_size = 0;
6188c2ecf20Sopenharmony_ci	} else {
6198c2ecf20Sopenharmony_ci		rb_insert_color(&va->rb_node, root);
6208c2ecf20Sopenharmony_ci	}
6218c2ecf20Sopenharmony_ci
6228c2ecf20Sopenharmony_ci	/* Address-sort this list */
6238c2ecf20Sopenharmony_ci	list_add(&va->list, head);
6248c2ecf20Sopenharmony_ci}
6258c2ecf20Sopenharmony_ci
6268c2ecf20Sopenharmony_cistatic __always_inline void
6278c2ecf20Sopenharmony_ciunlink_va(struct vmap_area *va, struct rb_root *root)
6288c2ecf20Sopenharmony_ci{
6298c2ecf20Sopenharmony_ci	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
6308c2ecf20Sopenharmony_ci		return;
6318c2ecf20Sopenharmony_ci
6328c2ecf20Sopenharmony_ci	if (root == &free_vmap_area_root)
6338c2ecf20Sopenharmony_ci		rb_erase_augmented(&va->rb_node,
6348c2ecf20Sopenharmony_ci			root, &free_vmap_area_rb_augment_cb);
6358c2ecf20Sopenharmony_ci	else
6368c2ecf20Sopenharmony_ci		rb_erase(&va->rb_node, root);
6378c2ecf20Sopenharmony_ci
6388c2ecf20Sopenharmony_ci	list_del(&va->list);
6398c2ecf20Sopenharmony_ci	RB_CLEAR_NODE(&va->rb_node);
6408c2ecf20Sopenharmony_ci}
6418c2ecf20Sopenharmony_ci
6428c2ecf20Sopenharmony_ci#if DEBUG_AUGMENT_PROPAGATE_CHECK
6438c2ecf20Sopenharmony_cistatic void
6448c2ecf20Sopenharmony_ciaugment_tree_propagate_check(void)
6458c2ecf20Sopenharmony_ci{
6468c2ecf20Sopenharmony_ci	struct vmap_area *va;
6478c2ecf20Sopenharmony_ci	unsigned long computed_size;
6488c2ecf20Sopenharmony_ci
6498c2ecf20Sopenharmony_ci	list_for_each_entry(va, &free_vmap_area_list, list) {
6508c2ecf20Sopenharmony_ci		computed_size = compute_subtree_max_size(va);
6518c2ecf20Sopenharmony_ci		if (computed_size != va->subtree_max_size)
6528c2ecf20Sopenharmony_ci			pr_emerg("tree is corrupted: %lu, %lu\n",
6538c2ecf20Sopenharmony_ci				va_size(va), va->subtree_max_size);
6548c2ecf20Sopenharmony_ci	}
6558c2ecf20Sopenharmony_ci}
6568c2ecf20Sopenharmony_ci#endif
6578c2ecf20Sopenharmony_ci
6588c2ecf20Sopenharmony_ci/*
6598c2ecf20Sopenharmony_ci * This function populates subtree_max_size from bottom to upper
6608c2ecf20Sopenharmony_ci * levels starting from VA point. The propagation must be done
6618c2ecf20Sopenharmony_ci * when VA size is modified by changing its va_start/va_end. Or
6628c2ecf20Sopenharmony_ci * in case of newly inserting of VA to the tree.
6638c2ecf20Sopenharmony_ci *
6648c2ecf20Sopenharmony_ci * It means that __augment_tree_propagate_from() must be called:
6658c2ecf20Sopenharmony_ci * - After VA has been inserted to the tree(free path);
6668c2ecf20Sopenharmony_ci * - After VA has been shrunk(allocation path);
6678c2ecf20Sopenharmony_ci * - After VA has been increased(merging path).
6688c2ecf20Sopenharmony_ci *
6698c2ecf20Sopenharmony_ci * Please note that, it does not mean that upper parent nodes
6708c2ecf20Sopenharmony_ci * and their subtree_max_size are recalculated all the time up
6718c2ecf20Sopenharmony_ci * to the root node.
6728c2ecf20Sopenharmony_ci *
6738c2ecf20Sopenharmony_ci *       4--8
6748c2ecf20Sopenharmony_ci *        /\
6758c2ecf20Sopenharmony_ci *       /  \
6768c2ecf20Sopenharmony_ci *      /    \
6778c2ecf20Sopenharmony_ci *    2--2  8--8
6788c2ecf20Sopenharmony_ci *
6798c2ecf20Sopenharmony_ci * For example if we modify the node 4, shrinking it to 2, then
6808c2ecf20Sopenharmony_ci * no any modification is required. If we shrink the node 2 to 1
6818c2ecf20Sopenharmony_ci * its subtree_max_size is updated only, and set to 1. If we shrink
6828c2ecf20Sopenharmony_ci * the node 8 to 6, then its subtree_max_size is set to 6 and parent
6838c2ecf20Sopenharmony_ci * node becomes 4--6.
6848c2ecf20Sopenharmony_ci */
6858c2ecf20Sopenharmony_cistatic __always_inline void
6868c2ecf20Sopenharmony_ciaugment_tree_propagate_from(struct vmap_area *va)
6878c2ecf20Sopenharmony_ci{
6888c2ecf20Sopenharmony_ci	/*
6898c2ecf20Sopenharmony_ci	 * Populate the tree from bottom towards the root until
6908c2ecf20Sopenharmony_ci	 * the calculated maximum available size of checked node
6918c2ecf20Sopenharmony_ci	 * is equal to its current one.
6928c2ecf20Sopenharmony_ci	 */
6938c2ecf20Sopenharmony_ci	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
6948c2ecf20Sopenharmony_ci
6958c2ecf20Sopenharmony_ci#if DEBUG_AUGMENT_PROPAGATE_CHECK
6968c2ecf20Sopenharmony_ci	augment_tree_propagate_check();
6978c2ecf20Sopenharmony_ci#endif
6988c2ecf20Sopenharmony_ci}
6998c2ecf20Sopenharmony_ci
7008c2ecf20Sopenharmony_cistatic void
7018c2ecf20Sopenharmony_ciinsert_vmap_area(struct vmap_area *va,
7028c2ecf20Sopenharmony_ci	struct rb_root *root, struct list_head *head)
7038c2ecf20Sopenharmony_ci{
7048c2ecf20Sopenharmony_ci	struct rb_node **link;
7058c2ecf20Sopenharmony_ci	struct rb_node *parent;
7068c2ecf20Sopenharmony_ci
7078c2ecf20Sopenharmony_ci	link = find_va_links(va, root, NULL, &parent);
7088c2ecf20Sopenharmony_ci	if (link)
7098c2ecf20Sopenharmony_ci		link_va(va, root, parent, link, head);
7108c2ecf20Sopenharmony_ci}
7118c2ecf20Sopenharmony_ci
7128c2ecf20Sopenharmony_cistatic void
7138c2ecf20Sopenharmony_ciinsert_vmap_area_augment(struct vmap_area *va,
7148c2ecf20Sopenharmony_ci	struct rb_node *from, struct rb_root *root,
7158c2ecf20Sopenharmony_ci	struct list_head *head)
7168c2ecf20Sopenharmony_ci{
7178c2ecf20Sopenharmony_ci	struct rb_node **link;
7188c2ecf20Sopenharmony_ci	struct rb_node *parent;
7198c2ecf20Sopenharmony_ci
7208c2ecf20Sopenharmony_ci	if (from)
7218c2ecf20Sopenharmony_ci		link = find_va_links(va, NULL, from, &parent);
7228c2ecf20Sopenharmony_ci	else
7238c2ecf20Sopenharmony_ci		link = find_va_links(va, root, NULL, &parent);
7248c2ecf20Sopenharmony_ci
7258c2ecf20Sopenharmony_ci	if (link) {
7268c2ecf20Sopenharmony_ci		link_va(va, root, parent, link, head);
7278c2ecf20Sopenharmony_ci		augment_tree_propagate_from(va);
7288c2ecf20Sopenharmony_ci	}
7298c2ecf20Sopenharmony_ci}
7308c2ecf20Sopenharmony_ci
7318c2ecf20Sopenharmony_ci/*
7328c2ecf20Sopenharmony_ci * Merge de-allocated chunk of VA memory with previous
7338c2ecf20Sopenharmony_ci * and next free blocks. If coalesce is not done a new
7348c2ecf20Sopenharmony_ci * free area is inserted. If VA has been merged, it is
7358c2ecf20Sopenharmony_ci * freed.
7368c2ecf20Sopenharmony_ci *
7378c2ecf20Sopenharmony_ci * Please note, it can return NULL in case of overlap
7388c2ecf20Sopenharmony_ci * ranges, followed by WARN() report. Despite it is a
7398c2ecf20Sopenharmony_ci * buggy behaviour, a system can be alive and keep
7408c2ecf20Sopenharmony_ci * ongoing.
7418c2ecf20Sopenharmony_ci */
7428c2ecf20Sopenharmony_cistatic __always_inline struct vmap_area *
7438c2ecf20Sopenharmony_cimerge_or_add_vmap_area(struct vmap_area *va,
7448c2ecf20Sopenharmony_ci	struct rb_root *root, struct list_head *head)
7458c2ecf20Sopenharmony_ci{
7468c2ecf20Sopenharmony_ci	struct vmap_area *sibling;
7478c2ecf20Sopenharmony_ci	struct list_head *next;
7488c2ecf20Sopenharmony_ci	struct rb_node **link;
7498c2ecf20Sopenharmony_ci	struct rb_node *parent;
7508c2ecf20Sopenharmony_ci	bool merged = false;
7518c2ecf20Sopenharmony_ci
7528c2ecf20Sopenharmony_ci	/*
7538c2ecf20Sopenharmony_ci	 * Find a place in the tree where VA potentially will be
7548c2ecf20Sopenharmony_ci	 * inserted, unless it is merged with its sibling/siblings.
7558c2ecf20Sopenharmony_ci	 */
7568c2ecf20Sopenharmony_ci	link = find_va_links(va, root, NULL, &parent);
7578c2ecf20Sopenharmony_ci	if (!link)
7588c2ecf20Sopenharmony_ci		return NULL;
7598c2ecf20Sopenharmony_ci
7608c2ecf20Sopenharmony_ci	/*
7618c2ecf20Sopenharmony_ci	 * Get next node of VA to check if merging can be done.
7628c2ecf20Sopenharmony_ci	 */
7638c2ecf20Sopenharmony_ci	next = get_va_next_sibling(parent, link);
7648c2ecf20Sopenharmony_ci	if (unlikely(next == NULL))
7658c2ecf20Sopenharmony_ci		goto insert;
7668c2ecf20Sopenharmony_ci
7678c2ecf20Sopenharmony_ci	/*
7688c2ecf20Sopenharmony_ci	 * start            end
7698c2ecf20Sopenharmony_ci	 * |                |
7708c2ecf20Sopenharmony_ci	 * |<------VA------>|<-----Next----->|
7718c2ecf20Sopenharmony_ci	 *                  |                |
7728c2ecf20Sopenharmony_ci	 *                  start            end
7738c2ecf20Sopenharmony_ci	 */
7748c2ecf20Sopenharmony_ci	if (next != head) {
7758c2ecf20Sopenharmony_ci		sibling = list_entry(next, struct vmap_area, list);
7768c2ecf20Sopenharmony_ci		if (sibling->va_start == va->va_end) {
7778c2ecf20Sopenharmony_ci			sibling->va_start = va->va_start;
7788c2ecf20Sopenharmony_ci
7798c2ecf20Sopenharmony_ci			/* Free vmap_area object. */
7808c2ecf20Sopenharmony_ci			kmem_cache_free(vmap_area_cachep, va);
7818c2ecf20Sopenharmony_ci
7828c2ecf20Sopenharmony_ci			/* Point to the new merged area. */
7838c2ecf20Sopenharmony_ci			va = sibling;
7848c2ecf20Sopenharmony_ci			merged = true;
7858c2ecf20Sopenharmony_ci		}
7868c2ecf20Sopenharmony_ci	}
7878c2ecf20Sopenharmony_ci
7888c2ecf20Sopenharmony_ci	/*
7898c2ecf20Sopenharmony_ci	 * start            end
7908c2ecf20Sopenharmony_ci	 * |                |
7918c2ecf20Sopenharmony_ci	 * |<-----Prev----->|<------VA------>|
7928c2ecf20Sopenharmony_ci	 *                  |                |
7938c2ecf20Sopenharmony_ci	 *                  start            end
7948c2ecf20Sopenharmony_ci	 */
7958c2ecf20Sopenharmony_ci	if (next->prev != head) {
7968c2ecf20Sopenharmony_ci		sibling = list_entry(next->prev, struct vmap_area, list);
7978c2ecf20Sopenharmony_ci		if (sibling->va_end == va->va_start) {
7988c2ecf20Sopenharmony_ci			/*
7998c2ecf20Sopenharmony_ci			 * If both neighbors are coalesced, it is important
8008c2ecf20Sopenharmony_ci			 * to unlink the "next" node first, followed by merging
8018c2ecf20Sopenharmony_ci			 * with "previous" one. Otherwise the tree might not be
8028c2ecf20Sopenharmony_ci			 * fully populated if a sibling's augmented value is
8038c2ecf20Sopenharmony_ci			 * "normalized" because of rotation operations.
8048c2ecf20Sopenharmony_ci			 */
8058c2ecf20Sopenharmony_ci			if (merged)
8068c2ecf20Sopenharmony_ci				unlink_va(va, root);
8078c2ecf20Sopenharmony_ci
8088c2ecf20Sopenharmony_ci			sibling->va_end = va->va_end;
8098c2ecf20Sopenharmony_ci
8108c2ecf20Sopenharmony_ci			/* Free vmap_area object. */
8118c2ecf20Sopenharmony_ci			kmem_cache_free(vmap_area_cachep, va);
8128c2ecf20Sopenharmony_ci
8138c2ecf20Sopenharmony_ci			/* Point to the new merged area. */
8148c2ecf20Sopenharmony_ci			va = sibling;
8158c2ecf20Sopenharmony_ci			merged = true;
8168c2ecf20Sopenharmony_ci		}
8178c2ecf20Sopenharmony_ci	}
8188c2ecf20Sopenharmony_ci
8198c2ecf20Sopenharmony_ciinsert:
8208c2ecf20Sopenharmony_ci	if (!merged)
8218c2ecf20Sopenharmony_ci		link_va(va, root, parent, link, head);
8228c2ecf20Sopenharmony_ci
8238c2ecf20Sopenharmony_ci	/*
8248c2ecf20Sopenharmony_ci	 * Last step is to check and update the tree.
8258c2ecf20Sopenharmony_ci	 */
8268c2ecf20Sopenharmony_ci	augment_tree_propagate_from(va);
8278c2ecf20Sopenharmony_ci	return va;
8288c2ecf20Sopenharmony_ci}
8298c2ecf20Sopenharmony_ci
8308c2ecf20Sopenharmony_cistatic __always_inline bool
8318c2ecf20Sopenharmony_ciis_within_this_va(struct vmap_area *va, unsigned long size,
8328c2ecf20Sopenharmony_ci	unsigned long align, unsigned long vstart)
8338c2ecf20Sopenharmony_ci{
8348c2ecf20Sopenharmony_ci	unsigned long nva_start_addr;
8358c2ecf20Sopenharmony_ci
8368c2ecf20Sopenharmony_ci	if (va->va_start > vstart)
8378c2ecf20Sopenharmony_ci		nva_start_addr = ALIGN(va->va_start, align);
8388c2ecf20Sopenharmony_ci	else
8398c2ecf20Sopenharmony_ci		nva_start_addr = ALIGN(vstart, align);
8408c2ecf20Sopenharmony_ci
8418c2ecf20Sopenharmony_ci	/* Can be overflowed due to big size or alignment. */
8428c2ecf20Sopenharmony_ci	if (nva_start_addr + size < nva_start_addr ||
8438c2ecf20Sopenharmony_ci			nva_start_addr < vstart)
8448c2ecf20Sopenharmony_ci		return false;
8458c2ecf20Sopenharmony_ci
8468c2ecf20Sopenharmony_ci	return (nva_start_addr + size <= va->va_end);
8478c2ecf20Sopenharmony_ci}
8488c2ecf20Sopenharmony_ci
8498c2ecf20Sopenharmony_ci/*
8508c2ecf20Sopenharmony_ci * Find the first free block(lowest start address) in the tree,
8518c2ecf20Sopenharmony_ci * that will accomplish the request corresponding to passing
8528c2ecf20Sopenharmony_ci * parameters.
8538c2ecf20Sopenharmony_ci */
8548c2ecf20Sopenharmony_cistatic __always_inline struct vmap_area *
8558c2ecf20Sopenharmony_cifind_vmap_lowest_match(unsigned long size,
8568c2ecf20Sopenharmony_ci	unsigned long align, unsigned long vstart)
8578c2ecf20Sopenharmony_ci{
8588c2ecf20Sopenharmony_ci	struct vmap_area *va;
8598c2ecf20Sopenharmony_ci	struct rb_node *node;
8608c2ecf20Sopenharmony_ci	unsigned long length;
8618c2ecf20Sopenharmony_ci
8628c2ecf20Sopenharmony_ci	/* Start from the root. */
8638c2ecf20Sopenharmony_ci	node = free_vmap_area_root.rb_node;
8648c2ecf20Sopenharmony_ci
8658c2ecf20Sopenharmony_ci	/* Adjust the search size for alignment overhead. */
8668c2ecf20Sopenharmony_ci	length = size + align - 1;
8678c2ecf20Sopenharmony_ci
8688c2ecf20Sopenharmony_ci	while (node) {
8698c2ecf20Sopenharmony_ci		va = rb_entry(node, struct vmap_area, rb_node);
8708c2ecf20Sopenharmony_ci
8718c2ecf20Sopenharmony_ci		if (get_subtree_max_size(node->rb_left) >= length &&
8728c2ecf20Sopenharmony_ci				vstart < va->va_start) {
8738c2ecf20Sopenharmony_ci			node = node->rb_left;
8748c2ecf20Sopenharmony_ci		} else {
8758c2ecf20Sopenharmony_ci			if (is_within_this_va(va, size, align, vstart))
8768c2ecf20Sopenharmony_ci				return va;
8778c2ecf20Sopenharmony_ci
8788c2ecf20Sopenharmony_ci			/*
8798c2ecf20Sopenharmony_ci			 * Does not make sense to go deeper towards the right
8808c2ecf20Sopenharmony_ci			 * sub-tree if it does not have a free block that is
8818c2ecf20Sopenharmony_ci			 * equal or bigger to the requested search length.
8828c2ecf20Sopenharmony_ci			 */
8838c2ecf20Sopenharmony_ci			if (get_subtree_max_size(node->rb_right) >= length) {
8848c2ecf20Sopenharmony_ci				node = node->rb_right;
8858c2ecf20Sopenharmony_ci				continue;
8868c2ecf20Sopenharmony_ci			}
8878c2ecf20Sopenharmony_ci
8888c2ecf20Sopenharmony_ci			/*
8898c2ecf20Sopenharmony_ci			 * OK. We roll back and find the first right sub-tree,
8908c2ecf20Sopenharmony_ci			 * that will satisfy the search criteria. It can happen
8918c2ecf20Sopenharmony_ci			 * only once due to "vstart" restriction.
8928c2ecf20Sopenharmony_ci			 */
8938c2ecf20Sopenharmony_ci			while ((node = rb_parent(node))) {
8948c2ecf20Sopenharmony_ci				va = rb_entry(node, struct vmap_area, rb_node);
8958c2ecf20Sopenharmony_ci				if (is_within_this_va(va, size, align, vstart))
8968c2ecf20Sopenharmony_ci					return va;
8978c2ecf20Sopenharmony_ci
8988c2ecf20Sopenharmony_ci				if (get_subtree_max_size(node->rb_right) >= length &&
8998c2ecf20Sopenharmony_ci						vstart <= va->va_start) {
9008c2ecf20Sopenharmony_ci					node = node->rb_right;
9018c2ecf20Sopenharmony_ci					break;
9028c2ecf20Sopenharmony_ci				}
9038c2ecf20Sopenharmony_ci			}
9048c2ecf20Sopenharmony_ci		}
9058c2ecf20Sopenharmony_ci	}
9068c2ecf20Sopenharmony_ci
9078c2ecf20Sopenharmony_ci	return NULL;
9088c2ecf20Sopenharmony_ci}
9098c2ecf20Sopenharmony_ci
9108c2ecf20Sopenharmony_ci#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
9118c2ecf20Sopenharmony_ci#include <linux/random.h>
9128c2ecf20Sopenharmony_ci
9138c2ecf20Sopenharmony_cistatic struct vmap_area *
9148c2ecf20Sopenharmony_cifind_vmap_lowest_linear_match(unsigned long size,
9158c2ecf20Sopenharmony_ci	unsigned long align, unsigned long vstart)
9168c2ecf20Sopenharmony_ci{
9178c2ecf20Sopenharmony_ci	struct vmap_area *va;
9188c2ecf20Sopenharmony_ci
9198c2ecf20Sopenharmony_ci	list_for_each_entry(va, &free_vmap_area_list, list) {
9208c2ecf20Sopenharmony_ci		if (!is_within_this_va(va, size, align, vstart))
9218c2ecf20Sopenharmony_ci			continue;
9228c2ecf20Sopenharmony_ci
9238c2ecf20Sopenharmony_ci		return va;
9248c2ecf20Sopenharmony_ci	}
9258c2ecf20Sopenharmony_ci
9268c2ecf20Sopenharmony_ci	return NULL;
9278c2ecf20Sopenharmony_ci}
9288c2ecf20Sopenharmony_ci
9298c2ecf20Sopenharmony_cistatic void
9308c2ecf20Sopenharmony_cifind_vmap_lowest_match_check(unsigned long size)
9318c2ecf20Sopenharmony_ci{
9328c2ecf20Sopenharmony_ci	struct vmap_area *va_1, *va_2;
9338c2ecf20Sopenharmony_ci	unsigned long vstart;
9348c2ecf20Sopenharmony_ci	unsigned int rnd;
9358c2ecf20Sopenharmony_ci
9368c2ecf20Sopenharmony_ci	get_random_bytes(&rnd, sizeof(rnd));
9378c2ecf20Sopenharmony_ci	vstart = VMALLOC_START + rnd;
9388c2ecf20Sopenharmony_ci
9398c2ecf20Sopenharmony_ci	va_1 = find_vmap_lowest_match(size, 1, vstart);
9408c2ecf20Sopenharmony_ci	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
9418c2ecf20Sopenharmony_ci
9428c2ecf20Sopenharmony_ci	if (va_1 != va_2)
9438c2ecf20Sopenharmony_ci		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
9448c2ecf20Sopenharmony_ci			va_1, va_2, vstart);
9458c2ecf20Sopenharmony_ci}
9468c2ecf20Sopenharmony_ci#endif
9478c2ecf20Sopenharmony_ci
9488c2ecf20Sopenharmony_cienum fit_type {
9498c2ecf20Sopenharmony_ci	NOTHING_FIT = 0,
9508c2ecf20Sopenharmony_ci	FL_FIT_TYPE = 1,	/* full fit */
9518c2ecf20Sopenharmony_ci	LE_FIT_TYPE = 2,	/* left edge fit */
9528c2ecf20Sopenharmony_ci	RE_FIT_TYPE = 3,	/* right edge fit */
9538c2ecf20Sopenharmony_ci	NE_FIT_TYPE = 4		/* no edge fit */
9548c2ecf20Sopenharmony_ci};
9558c2ecf20Sopenharmony_ci
9568c2ecf20Sopenharmony_cistatic __always_inline enum fit_type
9578c2ecf20Sopenharmony_ciclassify_va_fit_type(struct vmap_area *va,
9588c2ecf20Sopenharmony_ci	unsigned long nva_start_addr, unsigned long size)
9598c2ecf20Sopenharmony_ci{
9608c2ecf20Sopenharmony_ci	enum fit_type type;
9618c2ecf20Sopenharmony_ci
9628c2ecf20Sopenharmony_ci	/* Check if it is within VA. */
9638c2ecf20Sopenharmony_ci	if (nva_start_addr < va->va_start ||
9648c2ecf20Sopenharmony_ci			nva_start_addr + size > va->va_end)
9658c2ecf20Sopenharmony_ci		return NOTHING_FIT;
9668c2ecf20Sopenharmony_ci
9678c2ecf20Sopenharmony_ci	/* Now classify. */
9688c2ecf20Sopenharmony_ci	if (va->va_start == nva_start_addr) {
9698c2ecf20Sopenharmony_ci		if (va->va_end == nva_start_addr + size)
9708c2ecf20Sopenharmony_ci			type = FL_FIT_TYPE;
9718c2ecf20Sopenharmony_ci		else
9728c2ecf20Sopenharmony_ci			type = LE_FIT_TYPE;
9738c2ecf20Sopenharmony_ci	} else if (va->va_end == nva_start_addr + size) {
9748c2ecf20Sopenharmony_ci		type = RE_FIT_TYPE;
9758c2ecf20Sopenharmony_ci	} else {
9768c2ecf20Sopenharmony_ci		type = NE_FIT_TYPE;
9778c2ecf20Sopenharmony_ci	}
9788c2ecf20Sopenharmony_ci
9798c2ecf20Sopenharmony_ci	return type;
9808c2ecf20Sopenharmony_ci}
9818c2ecf20Sopenharmony_ci
9828c2ecf20Sopenharmony_cistatic __always_inline int
9838c2ecf20Sopenharmony_ciadjust_va_to_fit_type(struct vmap_area *va,
9848c2ecf20Sopenharmony_ci	unsigned long nva_start_addr, unsigned long size,
9858c2ecf20Sopenharmony_ci	enum fit_type type)
9868c2ecf20Sopenharmony_ci{
9878c2ecf20Sopenharmony_ci	struct vmap_area *lva = NULL;
9888c2ecf20Sopenharmony_ci
9898c2ecf20Sopenharmony_ci	if (type == FL_FIT_TYPE) {
9908c2ecf20Sopenharmony_ci		/*
9918c2ecf20Sopenharmony_ci		 * No need to split VA, it fully fits.
9928c2ecf20Sopenharmony_ci		 *
9938c2ecf20Sopenharmony_ci		 * |               |
9948c2ecf20Sopenharmony_ci		 * V      NVA      V
9958c2ecf20Sopenharmony_ci		 * |---------------|
9968c2ecf20Sopenharmony_ci		 */
9978c2ecf20Sopenharmony_ci		unlink_va(va, &free_vmap_area_root);
9988c2ecf20Sopenharmony_ci		kmem_cache_free(vmap_area_cachep, va);
9998c2ecf20Sopenharmony_ci	} else if (type == LE_FIT_TYPE) {
10008c2ecf20Sopenharmony_ci		/*
10018c2ecf20Sopenharmony_ci		 * Split left edge of fit VA.
10028c2ecf20Sopenharmony_ci		 *
10038c2ecf20Sopenharmony_ci		 * |       |
10048c2ecf20Sopenharmony_ci		 * V  NVA  V   R
10058c2ecf20Sopenharmony_ci		 * |-------|-------|
10068c2ecf20Sopenharmony_ci		 */
10078c2ecf20Sopenharmony_ci		va->va_start += size;
10088c2ecf20Sopenharmony_ci	} else if (type == RE_FIT_TYPE) {
10098c2ecf20Sopenharmony_ci		/*
10108c2ecf20Sopenharmony_ci		 * Split right edge of fit VA.
10118c2ecf20Sopenharmony_ci		 *
10128c2ecf20Sopenharmony_ci		 *         |       |
10138c2ecf20Sopenharmony_ci		 *     L   V  NVA  V
10148c2ecf20Sopenharmony_ci		 * |-------|-------|
10158c2ecf20Sopenharmony_ci		 */
10168c2ecf20Sopenharmony_ci		va->va_end = nva_start_addr;
10178c2ecf20Sopenharmony_ci	} else if (type == NE_FIT_TYPE) {
10188c2ecf20Sopenharmony_ci		/*
10198c2ecf20Sopenharmony_ci		 * Split no edge of fit VA.
10208c2ecf20Sopenharmony_ci		 *
10218c2ecf20Sopenharmony_ci		 *     |       |
10228c2ecf20Sopenharmony_ci		 *   L V  NVA  V R
10238c2ecf20Sopenharmony_ci		 * |---|-------|---|
10248c2ecf20Sopenharmony_ci		 */
10258c2ecf20Sopenharmony_ci		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
10268c2ecf20Sopenharmony_ci		if (unlikely(!lva)) {
10278c2ecf20Sopenharmony_ci			/*
10288c2ecf20Sopenharmony_ci			 * For percpu allocator we do not do any pre-allocation
10298c2ecf20Sopenharmony_ci			 * and leave it as it is. The reason is it most likely
10308c2ecf20Sopenharmony_ci			 * never ends up with NE_FIT_TYPE splitting. In case of
10318c2ecf20Sopenharmony_ci			 * percpu allocations offsets and sizes are aligned to
10328c2ecf20Sopenharmony_ci			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
10338c2ecf20Sopenharmony_ci			 * are its main fitting cases.
10348c2ecf20Sopenharmony_ci			 *
10358c2ecf20Sopenharmony_ci			 * There are a few exceptions though, as an example it is
10368c2ecf20Sopenharmony_ci			 * a first allocation (early boot up) when we have "one"
10378c2ecf20Sopenharmony_ci			 * big free space that has to be split.
10388c2ecf20Sopenharmony_ci			 *
10398c2ecf20Sopenharmony_ci			 * Also we can hit this path in case of regular "vmap"
10408c2ecf20Sopenharmony_ci			 * allocations, if "this" current CPU was not preloaded.
10418c2ecf20Sopenharmony_ci			 * See the comment in alloc_vmap_area() why. If so, then
10428c2ecf20Sopenharmony_ci			 * GFP_NOWAIT is used instead to get an extra object for
10438c2ecf20Sopenharmony_ci			 * split purpose. That is rare and most time does not
10448c2ecf20Sopenharmony_ci			 * occur.
10458c2ecf20Sopenharmony_ci			 *
10468c2ecf20Sopenharmony_ci			 * What happens if an allocation gets failed. Basically,
10478c2ecf20Sopenharmony_ci			 * an "overflow" path is triggered to purge lazily freed
10488c2ecf20Sopenharmony_ci			 * areas to free some memory, then, the "retry" path is
10498c2ecf20Sopenharmony_ci			 * triggered to repeat one more time. See more details
10508c2ecf20Sopenharmony_ci			 * in alloc_vmap_area() function.
10518c2ecf20Sopenharmony_ci			 */
10528c2ecf20Sopenharmony_ci			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
10538c2ecf20Sopenharmony_ci			if (!lva)
10548c2ecf20Sopenharmony_ci				return -1;
10558c2ecf20Sopenharmony_ci		}
10568c2ecf20Sopenharmony_ci
10578c2ecf20Sopenharmony_ci		/*
10588c2ecf20Sopenharmony_ci		 * Build the remainder.
10598c2ecf20Sopenharmony_ci		 */
10608c2ecf20Sopenharmony_ci		lva->va_start = va->va_start;
10618c2ecf20Sopenharmony_ci		lva->va_end = nva_start_addr;
10628c2ecf20Sopenharmony_ci
10638c2ecf20Sopenharmony_ci		/*
10648c2ecf20Sopenharmony_ci		 * Shrink this VA to remaining size.
10658c2ecf20Sopenharmony_ci		 */
10668c2ecf20Sopenharmony_ci		va->va_start = nva_start_addr + size;
10678c2ecf20Sopenharmony_ci	} else {
10688c2ecf20Sopenharmony_ci		return -1;
10698c2ecf20Sopenharmony_ci	}
10708c2ecf20Sopenharmony_ci
10718c2ecf20Sopenharmony_ci	if (type != FL_FIT_TYPE) {
10728c2ecf20Sopenharmony_ci		augment_tree_propagate_from(va);
10738c2ecf20Sopenharmony_ci
10748c2ecf20Sopenharmony_ci		if (lva)	/* type == NE_FIT_TYPE */
10758c2ecf20Sopenharmony_ci			insert_vmap_area_augment(lva, &va->rb_node,
10768c2ecf20Sopenharmony_ci				&free_vmap_area_root, &free_vmap_area_list);
10778c2ecf20Sopenharmony_ci	}
10788c2ecf20Sopenharmony_ci
10798c2ecf20Sopenharmony_ci	return 0;
10808c2ecf20Sopenharmony_ci}
10818c2ecf20Sopenharmony_ci
10828c2ecf20Sopenharmony_ci/*
10838c2ecf20Sopenharmony_ci * Returns a start address of the newly allocated area, if success.
10848c2ecf20Sopenharmony_ci * Otherwise a vend is returned that indicates failure.
10858c2ecf20Sopenharmony_ci */
10868c2ecf20Sopenharmony_cistatic __always_inline unsigned long
10878c2ecf20Sopenharmony_ci__alloc_vmap_area(unsigned long size, unsigned long align,
10888c2ecf20Sopenharmony_ci	unsigned long vstart, unsigned long vend)
10898c2ecf20Sopenharmony_ci{
10908c2ecf20Sopenharmony_ci	unsigned long nva_start_addr;
10918c2ecf20Sopenharmony_ci	struct vmap_area *va;
10928c2ecf20Sopenharmony_ci	enum fit_type type;
10938c2ecf20Sopenharmony_ci	int ret;
10948c2ecf20Sopenharmony_ci
10958c2ecf20Sopenharmony_ci	va = find_vmap_lowest_match(size, align, vstart);
10968c2ecf20Sopenharmony_ci	if (unlikely(!va))
10978c2ecf20Sopenharmony_ci		return vend;
10988c2ecf20Sopenharmony_ci
10998c2ecf20Sopenharmony_ci	if (va->va_start > vstart)
11008c2ecf20Sopenharmony_ci		nva_start_addr = ALIGN(va->va_start, align);
11018c2ecf20Sopenharmony_ci	else
11028c2ecf20Sopenharmony_ci		nva_start_addr = ALIGN(vstart, align);
11038c2ecf20Sopenharmony_ci
11048c2ecf20Sopenharmony_ci	/* Check the "vend" restriction. */
11058c2ecf20Sopenharmony_ci	if (nva_start_addr + size > vend)
11068c2ecf20Sopenharmony_ci		return vend;
11078c2ecf20Sopenharmony_ci
11088c2ecf20Sopenharmony_ci	/* Classify what we have found. */
11098c2ecf20Sopenharmony_ci	type = classify_va_fit_type(va, nva_start_addr, size);
11108c2ecf20Sopenharmony_ci	if (WARN_ON_ONCE(type == NOTHING_FIT))
11118c2ecf20Sopenharmony_ci		return vend;
11128c2ecf20Sopenharmony_ci
11138c2ecf20Sopenharmony_ci	/* Update the free vmap_area. */
11148c2ecf20Sopenharmony_ci	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
11158c2ecf20Sopenharmony_ci	if (ret)
11168c2ecf20Sopenharmony_ci		return vend;
11178c2ecf20Sopenharmony_ci
11188c2ecf20Sopenharmony_ci#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
11198c2ecf20Sopenharmony_ci	find_vmap_lowest_match_check(size);
11208c2ecf20Sopenharmony_ci#endif
11218c2ecf20Sopenharmony_ci
11228c2ecf20Sopenharmony_ci	return nva_start_addr;
11238c2ecf20Sopenharmony_ci}
11248c2ecf20Sopenharmony_ci
11258c2ecf20Sopenharmony_ci/*
11268c2ecf20Sopenharmony_ci * Free a region of KVA allocated by alloc_vmap_area
11278c2ecf20Sopenharmony_ci */
11288c2ecf20Sopenharmony_cistatic void free_vmap_area(struct vmap_area *va)
11298c2ecf20Sopenharmony_ci{
11308c2ecf20Sopenharmony_ci	/*
11318c2ecf20Sopenharmony_ci	 * Remove from the busy tree/list.
11328c2ecf20Sopenharmony_ci	 */
11338c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
11348c2ecf20Sopenharmony_ci	unlink_va(va, &vmap_area_root);
11358c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
11368c2ecf20Sopenharmony_ci
11378c2ecf20Sopenharmony_ci	/*
11388c2ecf20Sopenharmony_ci	 * Insert/Merge it back to the free tree/list.
11398c2ecf20Sopenharmony_ci	 */
11408c2ecf20Sopenharmony_ci	spin_lock(&free_vmap_area_lock);
11418c2ecf20Sopenharmony_ci	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
11428c2ecf20Sopenharmony_ci	spin_unlock(&free_vmap_area_lock);
11438c2ecf20Sopenharmony_ci}
11448c2ecf20Sopenharmony_ci
11458c2ecf20Sopenharmony_ci/*
11468c2ecf20Sopenharmony_ci * Allocate a region of KVA of the specified size and alignment, within the
11478c2ecf20Sopenharmony_ci * vstart and vend.
11488c2ecf20Sopenharmony_ci */
11498c2ecf20Sopenharmony_cistatic struct vmap_area *alloc_vmap_area(unsigned long size,
11508c2ecf20Sopenharmony_ci				unsigned long align,
11518c2ecf20Sopenharmony_ci				unsigned long vstart, unsigned long vend,
11528c2ecf20Sopenharmony_ci				int node, gfp_t gfp_mask)
11538c2ecf20Sopenharmony_ci{
11548c2ecf20Sopenharmony_ci	struct vmap_area *va, *pva;
11558c2ecf20Sopenharmony_ci	unsigned long addr;
11568c2ecf20Sopenharmony_ci	int purged = 0;
11578c2ecf20Sopenharmony_ci	int ret;
11588c2ecf20Sopenharmony_ci
11598c2ecf20Sopenharmony_ci	BUG_ON(!size);
11608c2ecf20Sopenharmony_ci	BUG_ON(offset_in_page(size));
11618c2ecf20Sopenharmony_ci	BUG_ON(!is_power_of_2(align));
11628c2ecf20Sopenharmony_ci
11638c2ecf20Sopenharmony_ci	if (unlikely(!vmap_initialized))
11648c2ecf20Sopenharmony_ci		return ERR_PTR(-EBUSY);
11658c2ecf20Sopenharmony_ci
11668c2ecf20Sopenharmony_ci	might_sleep();
11678c2ecf20Sopenharmony_ci	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
11688c2ecf20Sopenharmony_ci
11698c2ecf20Sopenharmony_ci	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
11708c2ecf20Sopenharmony_ci	if (unlikely(!va))
11718c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
11728c2ecf20Sopenharmony_ci
11738c2ecf20Sopenharmony_ci	/*
11748c2ecf20Sopenharmony_ci	 * Only scan the relevant parts containing pointers to other objects
11758c2ecf20Sopenharmony_ci	 * to avoid false negatives.
11768c2ecf20Sopenharmony_ci	 */
11778c2ecf20Sopenharmony_ci	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
11788c2ecf20Sopenharmony_ci
11798c2ecf20Sopenharmony_ciretry:
11808c2ecf20Sopenharmony_ci	/*
11818c2ecf20Sopenharmony_ci	 * Preload this CPU with one extra vmap_area object. It is used
11828c2ecf20Sopenharmony_ci	 * when fit type of free area is NE_FIT_TYPE. Please note, it
11838c2ecf20Sopenharmony_ci	 * does not guarantee that an allocation occurs on a CPU that
11848c2ecf20Sopenharmony_ci	 * is preloaded, instead we minimize the case when it is not.
11858c2ecf20Sopenharmony_ci	 * It can happen because of cpu migration, because there is a
11868c2ecf20Sopenharmony_ci	 * race until the below spinlock is taken.
11878c2ecf20Sopenharmony_ci	 *
11888c2ecf20Sopenharmony_ci	 * The preload is done in non-atomic context, thus it allows us
11898c2ecf20Sopenharmony_ci	 * to use more permissive allocation masks to be more stable under
11908c2ecf20Sopenharmony_ci	 * low memory condition and high memory pressure. In rare case,
11918c2ecf20Sopenharmony_ci	 * if not preloaded, GFP_NOWAIT is used.
11928c2ecf20Sopenharmony_ci	 *
11938c2ecf20Sopenharmony_ci	 * Set "pva" to NULL here, because of "retry" path.
11948c2ecf20Sopenharmony_ci	 */
11958c2ecf20Sopenharmony_ci	pva = NULL;
11968c2ecf20Sopenharmony_ci
11978c2ecf20Sopenharmony_ci	if (!this_cpu_read(ne_fit_preload_node))
11988c2ecf20Sopenharmony_ci		/*
11998c2ecf20Sopenharmony_ci		 * Even if it fails we do not really care about that.
12008c2ecf20Sopenharmony_ci		 * Just proceed as it is. If needed "overflow" path
12018c2ecf20Sopenharmony_ci		 * will refill the cache we allocate from.
12028c2ecf20Sopenharmony_ci		 */
12038c2ecf20Sopenharmony_ci		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
12048c2ecf20Sopenharmony_ci
12058c2ecf20Sopenharmony_ci	spin_lock(&free_vmap_area_lock);
12068c2ecf20Sopenharmony_ci
12078c2ecf20Sopenharmony_ci	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
12088c2ecf20Sopenharmony_ci		kmem_cache_free(vmap_area_cachep, pva);
12098c2ecf20Sopenharmony_ci
12108c2ecf20Sopenharmony_ci	/*
12118c2ecf20Sopenharmony_ci	 * If an allocation fails, the "vend" address is
12128c2ecf20Sopenharmony_ci	 * returned. Therefore trigger the overflow path.
12138c2ecf20Sopenharmony_ci	 */
12148c2ecf20Sopenharmony_ci	addr = __alloc_vmap_area(size, align, vstart, vend);
12158c2ecf20Sopenharmony_ci	spin_unlock(&free_vmap_area_lock);
12168c2ecf20Sopenharmony_ci
12178c2ecf20Sopenharmony_ci	if (unlikely(addr == vend))
12188c2ecf20Sopenharmony_ci		goto overflow;
12198c2ecf20Sopenharmony_ci
12208c2ecf20Sopenharmony_ci	va->va_start = addr;
12218c2ecf20Sopenharmony_ci	va->va_end = addr + size;
12228c2ecf20Sopenharmony_ci	va->vm = NULL;
12238c2ecf20Sopenharmony_ci
12248c2ecf20Sopenharmony_ci
12258c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
12268c2ecf20Sopenharmony_ci	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
12278c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
12288c2ecf20Sopenharmony_ci
12298c2ecf20Sopenharmony_ci	BUG_ON(!IS_ALIGNED(va->va_start, align));
12308c2ecf20Sopenharmony_ci	BUG_ON(va->va_start < vstart);
12318c2ecf20Sopenharmony_ci	BUG_ON(va->va_end > vend);
12328c2ecf20Sopenharmony_ci
12338c2ecf20Sopenharmony_ci	ret = kasan_populate_vmalloc(addr, size);
12348c2ecf20Sopenharmony_ci	if (ret) {
12358c2ecf20Sopenharmony_ci		free_vmap_area(va);
12368c2ecf20Sopenharmony_ci		return ERR_PTR(ret);
12378c2ecf20Sopenharmony_ci	}
12388c2ecf20Sopenharmony_ci
12398c2ecf20Sopenharmony_ci	return va;
12408c2ecf20Sopenharmony_ci
12418c2ecf20Sopenharmony_cioverflow:
12428c2ecf20Sopenharmony_ci	if (!purged) {
12438c2ecf20Sopenharmony_ci		purge_vmap_area_lazy();
12448c2ecf20Sopenharmony_ci		purged = 1;
12458c2ecf20Sopenharmony_ci		goto retry;
12468c2ecf20Sopenharmony_ci	}
12478c2ecf20Sopenharmony_ci
12488c2ecf20Sopenharmony_ci	if (gfpflags_allow_blocking(gfp_mask)) {
12498c2ecf20Sopenharmony_ci		unsigned long freed = 0;
12508c2ecf20Sopenharmony_ci		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
12518c2ecf20Sopenharmony_ci		if (freed > 0) {
12528c2ecf20Sopenharmony_ci			purged = 0;
12538c2ecf20Sopenharmony_ci			goto retry;
12548c2ecf20Sopenharmony_ci		}
12558c2ecf20Sopenharmony_ci	}
12568c2ecf20Sopenharmony_ci
12578c2ecf20Sopenharmony_ci	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
12588c2ecf20Sopenharmony_ci		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
12598c2ecf20Sopenharmony_ci			size);
12608c2ecf20Sopenharmony_ci
12618c2ecf20Sopenharmony_ci	kmem_cache_free(vmap_area_cachep, va);
12628c2ecf20Sopenharmony_ci	return ERR_PTR(-EBUSY);
12638c2ecf20Sopenharmony_ci}
12648c2ecf20Sopenharmony_ci
12658c2ecf20Sopenharmony_ciint register_vmap_purge_notifier(struct notifier_block *nb)
12668c2ecf20Sopenharmony_ci{
12678c2ecf20Sopenharmony_ci	return blocking_notifier_chain_register(&vmap_notify_list, nb);
12688c2ecf20Sopenharmony_ci}
12698c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
12708c2ecf20Sopenharmony_ci
12718c2ecf20Sopenharmony_ciint unregister_vmap_purge_notifier(struct notifier_block *nb)
12728c2ecf20Sopenharmony_ci{
12738c2ecf20Sopenharmony_ci	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
12748c2ecf20Sopenharmony_ci}
12758c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
12768c2ecf20Sopenharmony_ci
12778c2ecf20Sopenharmony_ci/*
12788c2ecf20Sopenharmony_ci * lazy_max_pages is the maximum amount of virtual address space we gather up
12798c2ecf20Sopenharmony_ci * before attempting to purge with a TLB flush.
12808c2ecf20Sopenharmony_ci *
12818c2ecf20Sopenharmony_ci * There is a tradeoff here: a larger number will cover more kernel page tables
12828c2ecf20Sopenharmony_ci * and take slightly longer to purge, but it will linearly reduce the number of
12838c2ecf20Sopenharmony_ci * global TLB flushes that must be performed. It would seem natural to scale
12848c2ecf20Sopenharmony_ci * this number up linearly with the number of CPUs (because vmapping activity
12858c2ecf20Sopenharmony_ci * could also scale linearly with the number of CPUs), however it is likely
12868c2ecf20Sopenharmony_ci * that in practice, workloads might be constrained in other ways that mean
12878c2ecf20Sopenharmony_ci * vmap activity will not scale linearly with CPUs. Also, I want to be
12888c2ecf20Sopenharmony_ci * conservative and not introduce a big latency on huge systems, so go with
12898c2ecf20Sopenharmony_ci * a less aggressive log scale. It will still be an improvement over the old
12908c2ecf20Sopenharmony_ci * code, and it will be simple to change the scale factor if we find that it
12918c2ecf20Sopenharmony_ci * becomes a problem on bigger systems.
12928c2ecf20Sopenharmony_ci */
12938c2ecf20Sopenharmony_cistatic unsigned long lazy_max_pages(void)
12948c2ecf20Sopenharmony_ci{
12958c2ecf20Sopenharmony_ci	unsigned int log;
12968c2ecf20Sopenharmony_ci
12978c2ecf20Sopenharmony_ci	log = fls(num_online_cpus());
12988c2ecf20Sopenharmony_ci
12998c2ecf20Sopenharmony_ci	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
13008c2ecf20Sopenharmony_ci}
13018c2ecf20Sopenharmony_ci
13028c2ecf20Sopenharmony_cistatic atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
13038c2ecf20Sopenharmony_ci
13048c2ecf20Sopenharmony_ci/*
13058c2ecf20Sopenharmony_ci * Serialize vmap purging.  There is no actual criticial section protected
13068c2ecf20Sopenharmony_ci * by this look, but we want to avoid concurrent calls for performance
13078c2ecf20Sopenharmony_ci * reasons and to make the pcpu_get_vm_areas more deterministic.
13088c2ecf20Sopenharmony_ci */
13098c2ecf20Sopenharmony_cistatic DEFINE_MUTEX(vmap_purge_lock);
13108c2ecf20Sopenharmony_ci
13118c2ecf20Sopenharmony_ci/* for per-CPU blocks */
13128c2ecf20Sopenharmony_cistatic void purge_fragmented_blocks_allcpus(void);
13138c2ecf20Sopenharmony_ci
13148c2ecf20Sopenharmony_ci/*
13158c2ecf20Sopenharmony_ci * called before a call to iounmap() if the caller wants vm_area_struct's
13168c2ecf20Sopenharmony_ci * immediately freed.
13178c2ecf20Sopenharmony_ci */
13188c2ecf20Sopenharmony_civoid set_iounmap_nonlazy(void)
13198c2ecf20Sopenharmony_ci{
13208c2ecf20Sopenharmony_ci	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
13218c2ecf20Sopenharmony_ci}
13228c2ecf20Sopenharmony_ci
13238c2ecf20Sopenharmony_ci/*
13248c2ecf20Sopenharmony_ci * Purges all lazily-freed vmap areas.
13258c2ecf20Sopenharmony_ci */
13268c2ecf20Sopenharmony_cistatic bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
13278c2ecf20Sopenharmony_ci{
13288c2ecf20Sopenharmony_ci	unsigned long resched_threshold;
13298c2ecf20Sopenharmony_ci	struct llist_node *valist;
13308c2ecf20Sopenharmony_ci	struct vmap_area *va;
13318c2ecf20Sopenharmony_ci	struct vmap_area *n_va;
13328c2ecf20Sopenharmony_ci
13338c2ecf20Sopenharmony_ci	lockdep_assert_held(&vmap_purge_lock);
13348c2ecf20Sopenharmony_ci
13358c2ecf20Sopenharmony_ci	valist = llist_del_all(&vmap_purge_list);
13368c2ecf20Sopenharmony_ci	if (unlikely(valist == NULL))
13378c2ecf20Sopenharmony_ci		return false;
13388c2ecf20Sopenharmony_ci
13398c2ecf20Sopenharmony_ci	/*
13408c2ecf20Sopenharmony_ci	 * TODO: to calculate a flush range without looping.
13418c2ecf20Sopenharmony_ci	 * The list can be up to lazy_max_pages() elements.
13428c2ecf20Sopenharmony_ci	 */
13438c2ecf20Sopenharmony_ci	llist_for_each_entry(va, valist, purge_list) {
13448c2ecf20Sopenharmony_ci		if (va->va_start < start)
13458c2ecf20Sopenharmony_ci			start = va->va_start;
13468c2ecf20Sopenharmony_ci		if (va->va_end > end)
13478c2ecf20Sopenharmony_ci			end = va->va_end;
13488c2ecf20Sopenharmony_ci	}
13498c2ecf20Sopenharmony_ci
13508c2ecf20Sopenharmony_ci	flush_tlb_kernel_range(start, end);
13518c2ecf20Sopenharmony_ci	resched_threshold = lazy_max_pages() << 1;
13528c2ecf20Sopenharmony_ci
13538c2ecf20Sopenharmony_ci	spin_lock(&free_vmap_area_lock);
13548c2ecf20Sopenharmony_ci	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
13558c2ecf20Sopenharmony_ci		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
13568c2ecf20Sopenharmony_ci		unsigned long orig_start = va->va_start;
13578c2ecf20Sopenharmony_ci		unsigned long orig_end = va->va_end;
13588c2ecf20Sopenharmony_ci
13598c2ecf20Sopenharmony_ci		/*
13608c2ecf20Sopenharmony_ci		 * Finally insert or merge lazily-freed area. It is
13618c2ecf20Sopenharmony_ci		 * detached and there is no need to "unlink" it from
13628c2ecf20Sopenharmony_ci		 * anything.
13638c2ecf20Sopenharmony_ci		 */
13648c2ecf20Sopenharmony_ci		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
13658c2ecf20Sopenharmony_ci					    &free_vmap_area_list);
13668c2ecf20Sopenharmony_ci
13678c2ecf20Sopenharmony_ci		if (!va)
13688c2ecf20Sopenharmony_ci			continue;
13698c2ecf20Sopenharmony_ci
13708c2ecf20Sopenharmony_ci		if (is_vmalloc_or_module_addr((void *)orig_start))
13718c2ecf20Sopenharmony_ci			kasan_release_vmalloc(orig_start, orig_end,
13728c2ecf20Sopenharmony_ci					      va->va_start, va->va_end);
13738c2ecf20Sopenharmony_ci
13748c2ecf20Sopenharmony_ci		atomic_long_sub(nr, &vmap_lazy_nr);
13758c2ecf20Sopenharmony_ci
13768c2ecf20Sopenharmony_ci		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
13778c2ecf20Sopenharmony_ci			cond_resched_lock(&free_vmap_area_lock);
13788c2ecf20Sopenharmony_ci	}
13798c2ecf20Sopenharmony_ci	spin_unlock(&free_vmap_area_lock);
13808c2ecf20Sopenharmony_ci	return true;
13818c2ecf20Sopenharmony_ci}
13828c2ecf20Sopenharmony_ci
13838c2ecf20Sopenharmony_ci/*
13848c2ecf20Sopenharmony_ci * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
13858c2ecf20Sopenharmony_ci * is already purging.
13868c2ecf20Sopenharmony_ci */
13878c2ecf20Sopenharmony_cistatic void try_purge_vmap_area_lazy(void)
13888c2ecf20Sopenharmony_ci{
13898c2ecf20Sopenharmony_ci	if (mutex_trylock(&vmap_purge_lock)) {
13908c2ecf20Sopenharmony_ci		__purge_vmap_area_lazy(ULONG_MAX, 0);
13918c2ecf20Sopenharmony_ci		mutex_unlock(&vmap_purge_lock);
13928c2ecf20Sopenharmony_ci	}
13938c2ecf20Sopenharmony_ci}
13948c2ecf20Sopenharmony_ci
13958c2ecf20Sopenharmony_ci/*
13968c2ecf20Sopenharmony_ci * Kick off a purge of the outstanding lazy areas.
13978c2ecf20Sopenharmony_ci */
13988c2ecf20Sopenharmony_cistatic void purge_vmap_area_lazy(void)
13998c2ecf20Sopenharmony_ci{
14008c2ecf20Sopenharmony_ci	mutex_lock(&vmap_purge_lock);
14018c2ecf20Sopenharmony_ci	purge_fragmented_blocks_allcpus();
14028c2ecf20Sopenharmony_ci	__purge_vmap_area_lazy(ULONG_MAX, 0);
14038c2ecf20Sopenharmony_ci	mutex_unlock(&vmap_purge_lock);
14048c2ecf20Sopenharmony_ci}
14058c2ecf20Sopenharmony_ci
14068c2ecf20Sopenharmony_ci/*
14078c2ecf20Sopenharmony_ci * Free a vmap area, caller ensuring that the area has been unmapped
14088c2ecf20Sopenharmony_ci * and flush_cache_vunmap had been called for the correct range
14098c2ecf20Sopenharmony_ci * previously.
14108c2ecf20Sopenharmony_ci */
14118c2ecf20Sopenharmony_cistatic void free_vmap_area_noflush(struct vmap_area *va)
14128c2ecf20Sopenharmony_ci{
14138c2ecf20Sopenharmony_ci	unsigned long nr_lazy;
14148c2ecf20Sopenharmony_ci
14158c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
14168c2ecf20Sopenharmony_ci	unlink_va(va, &vmap_area_root);
14178c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
14188c2ecf20Sopenharmony_ci
14198c2ecf20Sopenharmony_ci	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
14208c2ecf20Sopenharmony_ci				PAGE_SHIFT, &vmap_lazy_nr);
14218c2ecf20Sopenharmony_ci
14228c2ecf20Sopenharmony_ci	/* After this point, we may free va at any time */
14238c2ecf20Sopenharmony_ci	llist_add(&va->purge_list, &vmap_purge_list);
14248c2ecf20Sopenharmony_ci
14258c2ecf20Sopenharmony_ci	if (unlikely(nr_lazy > lazy_max_pages()))
14268c2ecf20Sopenharmony_ci		try_purge_vmap_area_lazy();
14278c2ecf20Sopenharmony_ci}
14288c2ecf20Sopenharmony_ci
14298c2ecf20Sopenharmony_ci/*
14308c2ecf20Sopenharmony_ci * Free and unmap a vmap area
14318c2ecf20Sopenharmony_ci */
14328c2ecf20Sopenharmony_cistatic void free_unmap_vmap_area(struct vmap_area *va)
14338c2ecf20Sopenharmony_ci{
14348c2ecf20Sopenharmony_ci	flush_cache_vunmap(va->va_start, va->va_end);
14358c2ecf20Sopenharmony_ci	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
14368c2ecf20Sopenharmony_ci	if (debug_pagealloc_enabled_static())
14378c2ecf20Sopenharmony_ci		flush_tlb_kernel_range(va->va_start, va->va_end);
14388c2ecf20Sopenharmony_ci
14398c2ecf20Sopenharmony_ci	free_vmap_area_noflush(va);
14408c2ecf20Sopenharmony_ci}
14418c2ecf20Sopenharmony_ci
14428c2ecf20Sopenharmony_cistatic struct vmap_area *find_vmap_area(unsigned long addr)
14438c2ecf20Sopenharmony_ci{
14448c2ecf20Sopenharmony_ci	struct vmap_area *va;
14458c2ecf20Sopenharmony_ci
14468c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
14478c2ecf20Sopenharmony_ci	va = __find_vmap_area(addr);
14488c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
14498c2ecf20Sopenharmony_ci
14508c2ecf20Sopenharmony_ci	return va;
14518c2ecf20Sopenharmony_ci}
14528c2ecf20Sopenharmony_ci
14538c2ecf20Sopenharmony_ci/*** Per cpu kva allocator ***/
14548c2ecf20Sopenharmony_ci
14558c2ecf20Sopenharmony_ci/*
14568c2ecf20Sopenharmony_ci * vmap space is limited especially on 32 bit architectures. Ensure there is
14578c2ecf20Sopenharmony_ci * room for at least 16 percpu vmap blocks per CPU.
14588c2ecf20Sopenharmony_ci */
14598c2ecf20Sopenharmony_ci/*
14608c2ecf20Sopenharmony_ci * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
14618c2ecf20Sopenharmony_ci * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
14628c2ecf20Sopenharmony_ci * instead (we just need a rough idea)
14638c2ecf20Sopenharmony_ci */
14648c2ecf20Sopenharmony_ci#if BITS_PER_LONG == 32
14658c2ecf20Sopenharmony_ci#define VMALLOC_SPACE		(128UL*1024*1024)
14668c2ecf20Sopenharmony_ci#else
14678c2ecf20Sopenharmony_ci#define VMALLOC_SPACE		(128UL*1024*1024*1024)
14688c2ecf20Sopenharmony_ci#endif
14698c2ecf20Sopenharmony_ci
14708c2ecf20Sopenharmony_ci#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
14718c2ecf20Sopenharmony_ci#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
14728c2ecf20Sopenharmony_ci#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
14738c2ecf20Sopenharmony_ci#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
14748c2ecf20Sopenharmony_ci#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
14758c2ecf20Sopenharmony_ci#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
14768c2ecf20Sopenharmony_ci#define VMAP_BBMAP_BITS		\
14778c2ecf20Sopenharmony_ci		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
14788c2ecf20Sopenharmony_ci		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
14798c2ecf20Sopenharmony_ci			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
14808c2ecf20Sopenharmony_ci
14818c2ecf20Sopenharmony_ci#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
14828c2ecf20Sopenharmony_ci
14838c2ecf20Sopenharmony_cistruct vmap_block_queue {
14848c2ecf20Sopenharmony_ci	spinlock_t lock;
14858c2ecf20Sopenharmony_ci	struct list_head free;
14868c2ecf20Sopenharmony_ci};
14878c2ecf20Sopenharmony_ci
14888c2ecf20Sopenharmony_cistruct vmap_block {
14898c2ecf20Sopenharmony_ci	spinlock_t lock;
14908c2ecf20Sopenharmony_ci	struct vmap_area *va;
14918c2ecf20Sopenharmony_ci	unsigned long free, dirty;
14928c2ecf20Sopenharmony_ci	unsigned long dirty_min, dirty_max; /*< dirty range */
14938c2ecf20Sopenharmony_ci	struct list_head free_list;
14948c2ecf20Sopenharmony_ci	struct rcu_head rcu_head;
14958c2ecf20Sopenharmony_ci	struct list_head purge;
14968c2ecf20Sopenharmony_ci};
14978c2ecf20Sopenharmony_ci
14988c2ecf20Sopenharmony_ci/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
14998c2ecf20Sopenharmony_cistatic DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
15008c2ecf20Sopenharmony_ci
15018c2ecf20Sopenharmony_ci/*
15028c2ecf20Sopenharmony_ci * XArray of vmap blocks, indexed by address, to quickly find a vmap block
15038c2ecf20Sopenharmony_ci * in the free path. Could get rid of this if we change the API to return a
15048c2ecf20Sopenharmony_ci * "cookie" from alloc, to be passed to free. But no big deal yet.
15058c2ecf20Sopenharmony_ci */
15068c2ecf20Sopenharmony_cistatic DEFINE_XARRAY(vmap_blocks);
15078c2ecf20Sopenharmony_ci
15088c2ecf20Sopenharmony_ci/*
15098c2ecf20Sopenharmony_ci * We should probably have a fallback mechanism to allocate virtual memory
15108c2ecf20Sopenharmony_ci * out of partially filled vmap blocks. However vmap block sizing should be
15118c2ecf20Sopenharmony_ci * fairly reasonable according to the vmalloc size, so it shouldn't be a
15128c2ecf20Sopenharmony_ci * big problem.
15138c2ecf20Sopenharmony_ci */
15148c2ecf20Sopenharmony_ci
15158c2ecf20Sopenharmony_cistatic unsigned long addr_to_vb_idx(unsigned long addr)
15168c2ecf20Sopenharmony_ci{
15178c2ecf20Sopenharmony_ci	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
15188c2ecf20Sopenharmony_ci	addr /= VMAP_BLOCK_SIZE;
15198c2ecf20Sopenharmony_ci	return addr;
15208c2ecf20Sopenharmony_ci}
15218c2ecf20Sopenharmony_ci
15228c2ecf20Sopenharmony_cistatic void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
15238c2ecf20Sopenharmony_ci{
15248c2ecf20Sopenharmony_ci	unsigned long addr;
15258c2ecf20Sopenharmony_ci
15268c2ecf20Sopenharmony_ci	addr = va_start + (pages_off << PAGE_SHIFT);
15278c2ecf20Sopenharmony_ci	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
15288c2ecf20Sopenharmony_ci	return (void *)addr;
15298c2ecf20Sopenharmony_ci}
15308c2ecf20Sopenharmony_ci
15318c2ecf20Sopenharmony_ci/**
15328c2ecf20Sopenharmony_ci * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
15338c2ecf20Sopenharmony_ci *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
15348c2ecf20Sopenharmony_ci * @order:    how many 2^order pages should be occupied in newly allocated block
15358c2ecf20Sopenharmony_ci * @gfp_mask: flags for the page level allocator
15368c2ecf20Sopenharmony_ci *
15378c2ecf20Sopenharmony_ci * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
15388c2ecf20Sopenharmony_ci */
15398c2ecf20Sopenharmony_cistatic void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
15408c2ecf20Sopenharmony_ci{
15418c2ecf20Sopenharmony_ci	struct vmap_block_queue *vbq;
15428c2ecf20Sopenharmony_ci	struct vmap_block *vb;
15438c2ecf20Sopenharmony_ci	struct vmap_area *va;
15448c2ecf20Sopenharmony_ci	unsigned long vb_idx;
15458c2ecf20Sopenharmony_ci	int node, err;
15468c2ecf20Sopenharmony_ci	void *vaddr;
15478c2ecf20Sopenharmony_ci
15488c2ecf20Sopenharmony_ci	node = numa_node_id();
15498c2ecf20Sopenharmony_ci
15508c2ecf20Sopenharmony_ci	vb = kmalloc_node(sizeof(struct vmap_block),
15518c2ecf20Sopenharmony_ci			gfp_mask & GFP_RECLAIM_MASK, node);
15528c2ecf20Sopenharmony_ci	if (unlikely(!vb))
15538c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
15548c2ecf20Sopenharmony_ci
15558c2ecf20Sopenharmony_ci	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
15568c2ecf20Sopenharmony_ci					VMALLOC_START, VMALLOC_END,
15578c2ecf20Sopenharmony_ci					node, gfp_mask);
15588c2ecf20Sopenharmony_ci	if (IS_ERR(va)) {
15598c2ecf20Sopenharmony_ci		kfree(vb);
15608c2ecf20Sopenharmony_ci		return ERR_CAST(va);
15618c2ecf20Sopenharmony_ci	}
15628c2ecf20Sopenharmony_ci
15638c2ecf20Sopenharmony_ci	vaddr = vmap_block_vaddr(va->va_start, 0);
15648c2ecf20Sopenharmony_ci	spin_lock_init(&vb->lock);
15658c2ecf20Sopenharmony_ci	vb->va = va;
15668c2ecf20Sopenharmony_ci	/* At least something should be left free */
15678c2ecf20Sopenharmony_ci	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
15688c2ecf20Sopenharmony_ci	vb->free = VMAP_BBMAP_BITS - (1UL << order);
15698c2ecf20Sopenharmony_ci	vb->dirty = 0;
15708c2ecf20Sopenharmony_ci	vb->dirty_min = VMAP_BBMAP_BITS;
15718c2ecf20Sopenharmony_ci	vb->dirty_max = 0;
15728c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&vb->free_list);
15738c2ecf20Sopenharmony_ci
15748c2ecf20Sopenharmony_ci	vb_idx = addr_to_vb_idx(va->va_start);
15758c2ecf20Sopenharmony_ci	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
15768c2ecf20Sopenharmony_ci	if (err) {
15778c2ecf20Sopenharmony_ci		kfree(vb);
15788c2ecf20Sopenharmony_ci		free_vmap_area(va);
15798c2ecf20Sopenharmony_ci		return ERR_PTR(err);
15808c2ecf20Sopenharmony_ci	}
15818c2ecf20Sopenharmony_ci
15828c2ecf20Sopenharmony_ci	vbq = &get_cpu_var(vmap_block_queue);
15838c2ecf20Sopenharmony_ci	spin_lock(&vbq->lock);
15848c2ecf20Sopenharmony_ci	list_add_tail_rcu(&vb->free_list, &vbq->free);
15858c2ecf20Sopenharmony_ci	spin_unlock(&vbq->lock);
15868c2ecf20Sopenharmony_ci	put_cpu_var(vmap_block_queue);
15878c2ecf20Sopenharmony_ci
15888c2ecf20Sopenharmony_ci	return vaddr;
15898c2ecf20Sopenharmony_ci}
15908c2ecf20Sopenharmony_ci
15918c2ecf20Sopenharmony_cistatic void free_vmap_block(struct vmap_block *vb)
15928c2ecf20Sopenharmony_ci{
15938c2ecf20Sopenharmony_ci	struct vmap_block *tmp;
15948c2ecf20Sopenharmony_ci
15958c2ecf20Sopenharmony_ci	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
15968c2ecf20Sopenharmony_ci	BUG_ON(tmp != vb);
15978c2ecf20Sopenharmony_ci
15988c2ecf20Sopenharmony_ci	free_vmap_area_noflush(vb->va);
15998c2ecf20Sopenharmony_ci	kfree_rcu(vb, rcu_head);
16008c2ecf20Sopenharmony_ci}
16018c2ecf20Sopenharmony_ci
16028c2ecf20Sopenharmony_cistatic void purge_fragmented_blocks(int cpu)
16038c2ecf20Sopenharmony_ci{
16048c2ecf20Sopenharmony_ci	LIST_HEAD(purge);
16058c2ecf20Sopenharmony_ci	struct vmap_block *vb;
16068c2ecf20Sopenharmony_ci	struct vmap_block *n_vb;
16078c2ecf20Sopenharmony_ci	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
16088c2ecf20Sopenharmony_ci
16098c2ecf20Sopenharmony_ci	rcu_read_lock();
16108c2ecf20Sopenharmony_ci	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
16118c2ecf20Sopenharmony_ci
16128c2ecf20Sopenharmony_ci		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
16138c2ecf20Sopenharmony_ci			continue;
16148c2ecf20Sopenharmony_ci
16158c2ecf20Sopenharmony_ci		spin_lock(&vb->lock);
16168c2ecf20Sopenharmony_ci		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
16178c2ecf20Sopenharmony_ci			vb->free = 0; /* prevent further allocs after releasing lock */
16188c2ecf20Sopenharmony_ci			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
16198c2ecf20Sopenharmony_ci			vb->dirty_min = 0;
16208c2ecf20Sopenharmony_ci			vb->dirty_max = VMAP_BBMAP_BITS;
16218c2ecf20Sopenharmony_ci			spin_lock(&vbq->lock);
16228c2ecf20Sopenharmony_ci			list_del_rcu(&vb->free_list);
16238c2ecf20Sopenharmony_ci			spin_unlock(&vbq->lock);
16248c2ecf20Sopenharmony_ci			spin_unlock(&vb->lock);
16258c2ecf20Sopenharmony_ci			list_add_tail(&vb->purge, &purge);
16268c2ecf20Sopenharmony_ci		} else
16278c2ecf20Sopenharmony_ci			spin_unlock(&vb->lock);
16288c2ecf20Sopenharmony_ci	}
16298c2ecf20Sopenharmony_ci	rcu_read_unlock();
16308c2ecf20Sopenharmony_ci
16318c2ecf20Sopenharmony_ci	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
16328c2ecf20Sopenharmony_ci		list_del(&vb->purge);
16338c2ecf20Sopenharmony_ci		free_vmap_block(vb);
16348c2ecf20Sopenharmony_ci	}
16358c2ecf20Sopenharmony_ci}
16368c2ecf20Sopenharmony_ci
16378c2ecf20Sopenharmony_cistatic void purge_fragmented_blocks_allcpus(void)
16388c2ecf20Sopenharmony_ci{
16398c2ecf20Sopenharmony_ci	int cpu;
16408c2ecf20Sopenharmony_ci
16418c2ecf20Sopenharmony_ci	for_each_possible_cpu(cpu)
16428c2ecf20Sopenharmony_ci		purge_fragmented_blocks(cpu);
16438c2ecf20Sopenharmony_ci}
16448c2ecf20Sopenharmony_ci
16458c2ecf20Sopenharmony_cistatic void *vb_alloc(unsigned long size, gfp_t gfp_mask)
16468c2ecf20Sopenharmony_ci{
16478c2ecf20Sopenharmony_ci	struct vmap_block_queue *vbq;
16488c2ecf20Sopenharmony_ci	struct vmap_block *vb;
16498c2ecf20Sopenharmony_ci	void *vaddr = NULL;
16508c2ecf20Sopenharmony_ci	unsigned int order;
16518c2ecf20Sopenharmony_ci
16528c2ecf20Sopenharmony_ci	BUG_ON(offset_in_page(size));
16538c2ecf20Sopenharmony_ci	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
16548c2ecf20Sopenharmony_ci	if (WARN_ON(size == 0)) {
16558c2ecf20Sopenharmony_ci		/*
16568c2ecf20Sopenharmony_ci		 * Allocating 0 bytes isn't what caller wants since
16578c2ecf20Sopenharmony_ci		 * get_order(0) returns funny result. Just warn and terminate
16588c2ecf20Sopenharmony_ci		 * early.
16598c2ecf20Sopenharmony_ci		 */
16608c2ecf20Sopenharmony_ci		return NULL;
16618c2ecf20Sopenharmony_ci	}
16628c2ecf20Sopenharmony_ci	order = get_order(size);
16638c2ecf20Sopenharmony_ci
16648c2ecf20Sopenharmony_ci	rcu_read_lock();
16658c2ecf20Sopenharmony_ci	vbq = &get_cpu_var(vmap_block_queue);
16668c2ecf20Sopenharmony_ci	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
16678c2ecf20Sopenharmony_ci		unsigned long pages_off;
16688c2ecf20Sopenharmony_ci
16698c2ecf20Sopenharmony_ci		spin_lock(&vb->lock);
16708c2ecf20Sopenharmony_ci		if (vb->free < (1UL << order)) {
16718c2ecf20Sopenharmony_ci			spin_unlock(&vb->lock);
16728c2ecf20Sopenharmony_ci			continue;
16738c2ecf20Sopenharmony_ci		}
16748c2ecf20Sopenharmony_ci
16758c2ecf20Sopenharmony_ci		pages_off = VMAP_BBMAP_BITS - vb->free;
16768c2ecf20Sopenharmony_ci		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
16778c2ecf20Sopenharmony_ci		vb->free -= 1UL << order;
16788c2ecf20Sopenharmony_ci		if (vb->free == 0) {
16798c2ecf20Sopenharmony_ci			spin_lock(&vbq->lock);
16808c2ecf20Sopenharmony_ci			list_del_rcu(&vb->free_list);
16818c2ecf20Sopenharmony_ci			spin_unlock(&vbq->lock);
16828c2ecf20Sopenharmony_ci		}
16838c2ecf20Sopenharmony_ci
16848c2ecf20Sopenharmony_ci		spin_unlock(&vb->lock);
16858c2ecf20Sopenharmony_ci		break;
16868c2ecf20Sopenharmony_ci	}
16878c2ecf20Sopenharmony_ci
16888c2ecf20Sopenharmony_ci	put_cpu_var(vmap_block_queue);
16898c2ecf20Sopenharmony_ci	rcu_read_unlock();
16908c2ecf20Sopenharmony_ci
16918c2ecf20Sopenharmony_ci	/* Allocate new block if nothing was found */
16928c2ecf20Sopenharmony_ci	if (!vaddr)
16938c2ecf20Sopenharmony_ci		vaddr = new_vmap_block(order, gfp_mask);
16948c2ecf20Sopenharmony_ci
16958c2ecf20Sopenharmony_ci	return vaddr;
16968c2ecf20Sopenharmony_ci}
16978c2ecf20Sopenharmony_ci
16988c2ecf20Sopenharmony_cistatic void vb_free(unsigned long addr, unsigned long size)
16998c2ecf20Sopenharmony_ci{
17008c2ecf20Sopenharmony_ci	unsigned long offset;
17018c2ecf20Sopenharmony_ci	unsigned int order;
17028c2ecf20Sopenharmony_ci	struct vmap_block *vb;
17038c2ecf20Sopenharmony_ci
17048c2ecf20Sopenharmony_ci	BUG_ON(offset_in_page(size));
17058c2ecf20Sopenharmony_ci	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
17068c2ecf20Sopenharmony_ci
17078c2ecf20Sopenharmony_ci	flush_cache_vunmap(addr, addr + size);
17088c2ecf20Sopenharmony_ci
17098c2ecf20Sopenharmony_ci	order = get_order(size);
17108c2ecf20Sopenharmony_ci	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
17118c2ecf20Sopenharmony_ci	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
17128c2ecf20Sopenharmony_ci
17138c2ecf20Sopenharmony_ci	unmap_kernel_range_noflush(addr, size);
17148c2ecf20Sopenharmony_ci
17158c2ecf20Sopenharmony_ci	if (debug_pagealloc_enabled_static())
17168c2ecf20Sopenharmony_ci		flush_tlb_kernel_range(addr, addr + size);
17178c2ecf20Sopenharmony_ci
17188c2ecf20Sopenharmony_ci	spin_lock(&vb->lock);
17198c2ecf20Sopenharmony_ci
17208c2ecf20Sopenharmony_ci	/* Expand dirty range */
17218c2ecf20Sopenharmony_ci	vb->dirty_min = min(vb->dirty_min, offset);
17228c2ecf20Sopenharmony_ci	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
17238c2ecf20Sopenharmony_ci
17248c2ecf20Sopenharmony_ci	vb->dirty += 1UL << order;
17258c2ecf20Sopenharmony_ci	if (vb->dirty == VMAP_BBMAP_BITS) {
17268c2ecf20Sopenharmony_ci		BUG_ON(vb->free);
17278c2ecf20Sopenharmony_ci		spin_unlock(&vb->lock);
17288c2ecf20Sopenharmony_ci		free_vmap_block(vb);
17298c2ecf20Sopenharmony_ci	} else
17308c2ecf20Sopenharmony_ci		spin_unlock(&vb->lock);
17318c2ecf20Sopenharmony_ci}
17328c2ecf20Sopenharmony_ci
17338c2ecf20Sopenharmony_cistatic void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
17348c2ecf20Sopenharmony_ci{
17358c2ecf20Sopenharmony_ci	int cpu;
17368c2ecf20Sopenharmony_ci
17378c2ecf20Sopenharmony_ci	if (unlikely(!vmap_initialized))
17388c2ecf20Sopenharmony_ci		return;
17398c2ecf20Sopenharmony_ci
17408c2ecf20Sopenharmony_ci	might_sleep();
17418c2ecf20Sopenharmony_ci
17428c2ecf20Sopenharmony_ci	for_each_possible_cpu(cpu) {
17438c2ecf20Sopenharmony_ci		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
17448c2ecf20Sopenharmony_ci		struct vmap_block *vb;
17458c2ecf20Sopenharmony_ci
17468c2ecf20Sopenharmony_ci		rcu_read_lock();
17478c2ecf20Sopenharmony_ci		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
17488c2ecf20Sopenharmony_ci			spin_lock(&vb->lock);
17498c2ecf20Sopenharmony_ci			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
17508c2ecf20Sopenharmony_ci				unsigned long va_start = vb->va->va_start;
17518c2ecf20Sopenharmony_ci				unsigned long s, e;
17528c2ecf20Sopenharmony_ci
17538c2ecf20Sopenharmony_ci				s = va_start + (vb->dirty_min << PAGE_SHIFT);
17548c2ecf20Sopenharmony_ci				e = va_start + (vb->dirty_max << PAGE_SHIFT);
17558c2ecf20Sopenharmony_ci
17568c2ecf20Sopenharmony_ci				start = min(s, start);
17578c2ecf20Sopenharmony_ci				end   = max(e, end);
17588c2ecf20Sopenharmony_ci
17598c2ecf20Sopenharmony_ci				flush = 1;
17608c2ecf20Sopenharmony_ci			}
17618c2ecf20Sopenharmony_ci			spin_unlock(&vb->lock);
17628c2ecf20Sopenharmony_ci		}
17638c2ecf20Sopenharmony_ci		rcu_read_unlock();
17648c2ecf20Sopenharmony_ci	}
17658c2ecf20Sopenharmony_ci
17668c2ecf20Sopenharmony_ci	mutex_lock(&vmap_purge_lock);
17678c2ecf20Sopenharmony_ci	purge_fragmented_blocks_allcpus();
17688c2ecf20Sopenharmony_ci	if (!__purge_vmap_area_lazy(start, end) && flush)
17698c2ecf20Sopenharmony_ci		flush_tlb_kernel_range(start, end);
17708c2ecf20Sopenharmony_ci	mutex_unlock(&vmap_purge_lock);
17718c2ecf20Sopenharmony_ci}
17728c2ecf20Sopenharmony_ci
17738c2ecf20Sopenharmony_ci/**
17748c2ecf20Sopenharmony_ci * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
17758c2ecf20Sopenharmony_ci *
17768c2ecf20Sopenharmony_ci * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
17778c2ecf20Sopenharmony_ci * to amortize TLB flushing overheads. What this means is that any page you
17788c2ecf20Sopenharmony_ci * have now, may, in a former life, have been mapped into kernel virtual
17798c2ecf20Sopenharmony_ci * address by the vmap layer and so there might be some CPUs with TLB entries
17808c2ecf20Sopenharmony_ci * still referencing that page (additional to the regular 1:1 kernel mapping).
17818c2ecf20Sopenharmony_ci *
17828c2ecf20Sopenharmony_ci * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
17838c2ecf20Sopenharmony_ci * be sure that none of the pages we have control over will have any aliases
17848c2ecf20Sopenharmony_ci * from the vmap layer.
17858c2ecf20Sopenharmony_ci */
17868c2ecf20Sopenharmony_civoid vm_unmap_aliases(void)
17878c2ecf20Sopenharmony_ci{
17888c2ecf20Sopenharmony_ci	unsigned long start = ULONG_MAX, end = 0;
17898c2ecf20Sopenharmony_ci	int flush = 0;
17908c2ecf20Sopenharmony_ci
17918c2ecf20Sopenharmony_ci	_vm_unmap_aliases(start, end, flush);
17928c2ecf20Sopenharmony_ci}
17938c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(vm_unmap_aliases);
17948c2ecf20Sopenharmony_ci
17958c2ecf20Sopenharmony_ci/**
17968c2ecf20Sopenharmony_ci * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
17978c2ecf20Sopenharmony_ci * @mem: the pointer returned by vm_map_ram
17988c2ecf20Sopenharmony_ci * @count: the count passed to that vm_map_ram call (cannot unmap partial)
17998c2ecf20Sopenharmony_ci */
18008c2ecf20Sopenharmony_civoid vm_unmap_ram(const void *mem, unsigned int count)
18018c2ecf20Sopenharmony_ci{
18028c2ecf20Sopenharmony_ci	unsigned long size = (unsigned long)count << PAGE_SHIFT;
18038c2ecf20Sopenharmony_ci	unsigned long addr = (unsigned long)mem;
18048c2ecf20Sopenharmony_ci	struct vmap_area *va;
18058c2ecf20Sopenharmony_ci
18068c2ecf20Sopenharmony_ci	might_sleep();
18078c2ecf20Sopenharmony_ci	BUG_ON(!addr);
18088c2ecf20Sopenharmony_ci	BUG_ON(addr < VMALLOC_START);
18098c2ecf20Sopenharmony_ci	BUG_ON(addr > VMALLOC_END);
18108c2ecf20Sopenharmony_ci	BUG_ON(!PAGE_ALIGNED(addr));
18118c2ecf20Sopenharmony_ci
18128c2ecf20Sopenharmony_ci	kasan_poison_vmalloc(mem, size);
18138c2ecf20Sopenharmony_ci
18148c2ecf20Sopenharmony_ci	if (likely(count <= VMAP_MAX_ALLOC)) {
18158c2ecf20Sopenharmony_ci		debug_check_no_locks_freed(mem, size);
18168c2ecf20Sopenharmony_ci		vb_free(addr, size);
18178c2ecf20Sopenharmony_ci		return;
18188c2ecf20Sopenharmony_ci	}
18198c2ecf20Sopenharmony_ci
18208c2ecf20Sopenharmony_ci	va = find_vmap_area(addr);
18218c2ecf20Sopenharmony_ci	BUG_ON(!va);
18228c2ecf20Sopenharmony_ci	debug_check_no_locks_freed((void *)va->va_start,
18238c2ecf20Sopenharmony_ci				    (va->va_end - va->va_start));
18248c2ecf20Sopenharmony_ci	free_unmap_vmap_area(va);
18258c2ecf20Sopenharmony_ci}
18268c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vm_unmap_ram);
18278c2ecf20Sopenharmony_ci
18288c2ecf20Sopenharmony_ci/**
18298c2ecf20Sopenharmony_ci * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
18308c2ecf20Sopenharmony_ci * @pages: an array of pointers to the pages to be mapped
18318c2ecf20Sopenharmony_ci * @count: number of pages
18328c2ecf20Sopenharmony_ci * @node: prefer to allocate data structures on this node
18338c2ecf20Sopenharmony_ci *
18348c2ecf20Sopenharmony_ci * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
18358c2ecf20Sopenharmony_ci * faster than vmap so it's good.  But if you mix long-life and short-life
18368c2ecf20Sopenharmony_ci * objects with vm_map_ram(), it could consume lots of address space through
18378c2ecf20Sopenharmony_ci * fragmentation (especially on a 32bit machine).  You could see failures in
18388c2ecf20Sopenharmony_ci * the end.  Please use this function for short-lived objects.
18398c2ecf20Sopenharmony_ci *
18408c2ecf20Sopenharmony_ci * Returns: a pointer to the address that has been mapped, or %NULL on failure
18418c2ecf20Sopenharmony_ci */
18428c2ecf20Sopenharmony_civoid *vm_map_ram(struct page **pages, unsigned int count, int node)
18438c2ecf20Sopenharmony_ci{
18448c2ecf20Sopenharmony_ci	unsigned long size = (unsigned long)count << PAGE_SHIFT;
18458c2ecf20Sopenharmony_ci	unsigned long addr;
18468c2ecf20Sopenharmony_ci	void *mem;
18478c2ecf20Sopenharmony_ci
18488c2ecf20Sopenharmony_ci	if (likely(count <= VMAP_MAX_ALLOC)) {
18498c2ecf20Sopenharmony_ci		mem = vb_alloc(size, GFP_KERNEL);
18508c2ecf20Sopenharmony_ci		if (IS_ERR(mem))
18518c2ecf20Sopenharmony_ci			return NULL;
18528c2ecf20Sopenharmony_ci		addr = (unsigned long)mem;
18538c2ecf20Sopenharmony_ci	} else {
18548c2ecf20Sopenharmony_ci		struct vmap_area *va;
18558c2ecf20Sopenharmony_ci		va = alloc_vmap_area(size, PAGE_SIZE,
18568c2ecf20Sopenharmony_ci				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
18578c2ecf20Sopenharmony_ci		if (IS_ERR(va))
18588c2ecf20Sopenharmony_ci			return NULL;
18598c2ecf20Sopenharmony_ci
18608c2ecf20Sopenharmony_ci		addr = va->va_start;
18618c2ecf20Sopenharmony_ci		mem = (void *)addr;
18628c2ecf20Sopenharmony_ci	}
18638c2ecf20Sopenharmony_ci
18648c2ecf20Sopenharmony_ci	kasan_unpoison_vmalloc(mem, size);
18658c2ecf20Sopenharmony_ci
18668c2ecf20Sopenharmony_ci	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
18678c2ecf20Sopenharmony_ci		vm_unmap_ram(mem, count);
18688c2ecf20Sopenharmony_ci		return NULL;
18698c2ecf20Sopenharmony_ci	}
18708c2ecf20Sopenharmony_ci	return mem;
18718c2ecf20Sopenharmony_ci}
18728c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vm_map_ram);
18738c2ecf20Sopenharmony_ci
18748c2ecf20Sopenharmony_cistatic struct vm_struct *vmlist __initdata;
18758c2ecf20Sopenharmony_ci
18768c2ecf20Sopenharmony_ci/**
18778c2ecf20Sopenharmony_ci * vm_area_add_early - add vmap area early during boot
18788c2ecf20Sopenharmony_ci * @vm: vm_struct to add
18798c2ecf20Sopenharmony_ci *
18808c2ecf20Sopenharmony_ci * This function is used to add fixed kernel vm area to vmlist before
18818c2ecf20Sopenharmony_ci * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
18828c2ecf20Sopenharmony_ci * should contain proper values and the other fields should be zero.
18838c2ecf20Sopenharmony_ci *
18848c2ecf20Sopenharmony_ci * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
18858c2ecf20Sopenharmony_ci */
18868c2ecf20Sopenharmony_civoid __init vm_area_add_early(struct vm_struct *vm)
18878c2ecf20Sopenharmony_ci{
18888c2ecf20Sopenharmony_ci	struct vm_struct *tmp, **p;
18898c2ecf20Sopenharmony_ci
18908c2ecf20Sopenharmony_ci	BUG_ON(vmap_initialized);
18918c2ecf20Sopenharmony_ci	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
18928c2ecf20Sopenharmony_ci		if (tmp->addr >= vm->addr) {
18938c2ecf20Sopenharmony_ci			BUG_ON(tmp->addr < vm->addr + vm->size);
18948c2ecf20Sopenharmony_ci			break;
18958c2ecf20Sopenharmony_ci		} else
18968c2ecf20Sopenharmony_ci			BUG_ON(tmp->addr + tmp->size > vm->addr);
18978c2ecf20Sopenharmony_ci	}
18988c2ecf20Sopenharmony_ci	vm->next = *p;
18998c2ecf20Sopenharmony_ci	*p = vm;
19008c2ecf20Sopenharmony_ci}
19018c2ecf20Sopenharmony_ci
19028c2ecf20Sopenharmony_ci/**
19038c2ecf20Sopenharmony_ci * vm_area_register_early - register vmap area early during boot
19048c2ecf20Sopenharmony_ci * @vm: vm_struct to register
19058c2ecf20Sopenharmony_ci * @align: requested alignment
19068c2ecf20Sopenharmony_ci *
19078c2ecf20Sopenharmony_ci * This function is used to register kernel vm area before
19088c2ecf20Sopenharmony_ci * vmalloc_init() is called.  @vm->size and @vm->flags should contain
19098c2ecf20Sopenharmony_ci * proper values on entry and other fields should be zero.  On return,
19108c2ecf20Sopenharmony_ci * vm->addr contains the allocated address.
19118c2ecf20Sopenharmony_ci *
19128c2ecf20Sopenharmony_ci * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
19138c2ecf20Sopenharmony_ci */
19148c2ecf20Sopenharmony_civoid __init vm_area_register_early(struct vm_struct *vm, size_t align)
19158c2ecf20Sopenharmony_ci{
19168c2ecf20Sopenharmony_ci	static size_t vm_init_off __initdata;
19178c2ecf20Sopenharmony_ci	unsigned long addr;
19188c2ecf20Sopenharmony_ci
19198c2ecf20Sopenharmony_ci	addr = ALIGN(VMALLOC_START + vm_init_off, align);
19208c2ecf20Sopenharmony_ci	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
19218c2ecf20Sopenharmony_ci
19228c2ecf20Sopenharmony_ci	vm->addr = (void *)addr;
19238c2ecf20Sopenharmony_ci
19248c2ecf20Sopenharmony_ci	vm_area_add_early(vm);
19258c2ecf20Sopenharmony_ci}
19268c2ecf20Sopenharmony_ci
19278c2ecf20Sopenharmony_cistatic void vmap_init_free_space(void)
19288c2ecf20Sopenharmony_ci{
19298c2ecf20Sopenharmony_ci	unsigned long vmap_start = 1;
19308c2ecf20Sopenharmony_ci	const unsigned long vmap_end = ULONG_MAX;
19318c2ecf20Sopenharmony_ci	struct vmap_area *busy, *free;
19328c2ecf20Sopenharmony_ci
19338c2ecf20Sopenharmony_ci	/*
19348c2ecf20Sopenharmony_ci	 *     B     F     B     B     B     F
19358c2ecf20Sopenharmony_ci	 * -|-----|.....|-----|-----|-----|.....|-
19368c2ecf20Sopenharmony_ci	 *  |           The KVA space           |
19378c2ecf20Sopenharmony_ci	 *  |<--------------------------------->|
19388c2ecf20Sopenharmony_ci	 */
19398c2ecf20Sopenharmony_ci	list_for_each_entry(busy, &vmap_area_list, list) {
19408c2ecf20Sopenharmony_ci		if (busy->va_start - vmap_start > 0) {
19418c2ecf20Sopenharmony_ci			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
19428c2ecf20Sopenharmony_ci			if (!WARN_ON_ONCE(!free)) {
19438c2ecf20Sopenharmony_ci				free->va_start = vmap_start;
19448c2ecf20Sopenharmony_ci				free->va_end = busy->va_start;
19458c2ecf20Sopenharmony_ci
19468c2ecf20Sopenharmony_ci				insert_vmap_area_augment(free, NULL,
19478c2ecf20Sopenharmony_ci					&free_vmap_area_root,
19488c2ecf20Sopenharmony_ci						&free_vmap_area_list);
19498c2ecf20Sopenharmony_ci			}
19508c2ecf20Sopenharmony_ci		}
19518c2ecf20Sopenharmony_ci
19528c2ecf20Sopenharmony_ci		vmap_start = busy->va_end;
19538c2ecf20Sopenharmony_ci	}
19548c2ecf20Sopenharmony_ci
19558c2ecf20Sopenharmony_ci	if (vmap_end - vmap_start > 0) {
19568c2ecf20Sopenharmony_ci		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
19578c2ecf20Sopenharmony_ci		if (!WARN_ON_ONCE(!free)) {
19588c2ecf20Sopenharmony_ci			free->va_start = vmap_start;
19598c2ecf20Sopenharmony_ci			free->va_end = vmap_end;
19608c2ecf20Sopenharmony_ci
19618c2ecf20Sopenharmony_ci			insert_vmap_area_augment(free, NULL,
19628c2ecf20Sopenharmony_ci				&free_vmap_area_root,
19638c2ecf20Sopenharmony_ci					&free_vmap_area_list);
19648c2ecf20Sopenharmony_ci		}
19658c2ecf20Sopenharmony_ci	}
19668c2ecf20Sopenharmony_ci}
19678c2ecf20Sopenharmony_ci
19688c2ecf20Sopenharmony_civoid __init vmalloc_init(void)
19698c2ecf20Sopenharmony_ci{
19708c2ecf20Sopenharmony_ci	struct vmap_area *va;
19718c2ecf20Sopenharmony_ci	struct vm_struct *tmp;
19728c2ecf20Sopenharmony_ci	int i;
19738c2ecf20Sopenharmony_ci
19748c2ecf20Sopenharmony_ci	/*
19758c2ecf20Sopenharmony_ci	 * Create the cache for vmap_area objects.
19768c2ecf20Sopenharmony_ci	 */
19778c2ecf20Sopenharmony_ci	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
19788c2ecf20Sopenharmony_ci
19798c2ecf20Sopenharmony_ci	for_each_possible_cpu(i) {
19808c2ecf20Sopenharmony_ci		struct vmap_block_queue *vbq;
19818c2ecf20Sopenharmony_ci		struct vfree_deferred *p;
19828c2ecf20Sopenharmony_ci
19838c2ecf20Sopenharmony_ci		vbq = &per_cpu(vmap_block_queue, i);
19848c2ecf20Sopenharmony_ci		spin_lock_init(&vbq->lock);
19858c2ecf20Sopenharmony_ci		INIT_LIST_HEAD(&vbq->free);
19868c2ecf20Sopenharmony_ci		p = &per_cpu(vfree_deferred, i);
19878c2ecf20Sopenharmony_ci		init_llist_head(&p->list);
19888c2ecf20Sopenharmony_ci		INIT_WORK(&p->wq, free_work);
19898c2ecf20Sopenharmony_ci	}
19908c2ecf20Sopenharmony_ci
19918c2ecf20Sopenharmony_ci	/* Import existing vmlist entries. */
19928c2ecf20Sopenharmony_ci	for (tmp = vmlist; tmp; tmp = tmp->next) {
19938c2ecf20Sopenharmony_ci		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
19948c2ecf20Sopenharmony_ci		if (WARN_ON_ONCE(!va))
19958c2ecf20Sopenharmony_ci			continue;
19968c2ecf20Sopenharmony_ci
19978c2ecf20Sopenharmony_ci		va->va_start = (unsigned long)tmp->addr;
19988c2ecf20Sopenharmony_ci		va->va_end = va->va_start + tmp->size;
19998c2ecf20Sopenharmony_ci		va->vm = tmp;
20008c2ecf20Sopenharmony_ci		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
20018c2ecf20Sopenharmony_ci	}
20028c2ecf20Sopenharmony_ci
20038c2ecf20Sopenharmony_ci	/*
20048c2ecf20Sopenharmony_ci	 * Now we can initialize a free vmap space.
20058c2ecf20Sopenharmony_ci	 */
20068c2ecf20Sopenharmony_ci	vmap_init_free_space();
20078c2ecf20Sopenharmony_ci	vmap_initialized = true;
20088c2ecf20Sopenharmony_ci}
20098c2ecf20Sopenharmony_ci
20108c2ecf20Sopenharmony_ci/**
20118c2ecf20Sopenharmony_ci * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
20128c2ecf20Sopenharmony_ci * @addr: start of the VM area to unmap
20138c2ecf20Sopenharmony_ci * @size: size of the VM area to unmap
20148c2ecf20Sopenharmony_ci *
20158c2ecf20Sopenharmony_ci * Similar to unmap_kernel_range_noflush() but flushes vcache before
20168c2ecf20Sopenharmony_ci * the unmapping and tlb after.
20178c2ecf20Sopenharmony_ci */
20188c2ecf20Sopenharmony_civoid unmap_kernel_range(unsigned long addr, unsigned long size)
20198c2ecf20Sopenharmony_ci{
20208c2ecf20Sopenharmony_ci	unsigned long end = addr + size;
20218c2ecf20Sopenharmony_ci
20228c2ecf20Sopenharmony_ci	flush_cache_vunmap(addr, end);
20238c2ecf20Sopenharmony_ci	unmap_kernel_range_noflush(addr, size);
20248c2ecf20Sopenharmony_ci	flush_tlb_kernel_range(addr, end);
20258c2ecf20Sopenharmony_ci}
20268c2ecf20Sopenharmony_ci
20278c2ecf20Sopenharmony_cistatic inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
20288c2ecf20Sopenharmony_ci	struct vmap_area *va, unsigned long flags, const void *caller)
20298c2ecf20Sopenharmony_ci{
20308c2ecf20Sopenharmony_ci	vm->flags = flags;
20318c2ecf20Sopenharmony_ci	vm->addr = (void *)va->va_start;
20328c2ecf20Sopenharmony_ci	vm->size = va->va_end - va->va_start;
20338c2ecf20Sopenharmony_ci	vm->caller = caller;
20348c2ecf20Sopenharmony_ci	va->vm = vm;
20358c2ecf20Sopenharmony_ci}
20368c2ecf20Sopenharmony_ci
20378c2ecf20Sopenharmony_cistatic void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
20388c2ecf20Sopenharmony_ci			      unsigned long flags, const void *caller)
20398c2ecf20Sopenharmony_ci{
20408c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
20418c2ecf20Sopenharmony_ci	setup_vmalloc_vm_locked(vm, va, flags, caller);
20428c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
20438c2ecf20Sopenharmony_ci}
20448c2ecf20Sopenharmony_ci
20458c2ecf20Sopenharmony_cistatic void clear_vm_uninitialized_flag(struct vm_struct *vm)
20468c2ecf20Sopenharmony_ci{
20478c2ecf20Sopenharmony_ci	/*
20488c2ecf20Sopenharmony_ci	 * Before removing VM_UNINITIALIZED,
20498c2ecf20Sopenharmony_ci	 * we should make sure that vm has proper values.
20508c2ecf20Sopenharmony_ci	 * Pair with smp_rmb() in show_numa_info().
20518c2ecf20Sopenharmony_ci	 */
20528c2ecf20Sopenharmony_ci	smp_wmb();
20538c2ecf20Sopenharmony_ci	vm->flags &= ~VM_UNINITIALIZED;
20548c2ecf20Sopenharmony_ci}
20558c2ecf20Sopenharmony_ci
20568c2ecf20Sopenharmony_cistatic struct vm_struct *__get_vm_area_node(unsigned long size,
20578c2ecf20Sopenharmony_ci		unsigned long align, unsigned long flags, unsigned long start,
20588c2ecf20Sopenharmony_ci		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
20598c2ecf20Sopenharmony_ci{
20608c2ecf20Sopenharmony_ci	struct vmap_area *va;
20618c2ecf20Sopenharmony_ci	struct vm_struct *area;
20628c2ecf20Sopenharmony_ci	unsigned long requested_size = size;
20638c2ecf20Sopenharmony_ci
20648c2ecf20Sopenharmony_ci	BUG_ON(in_interrupt());
20658c2ecf20Sopenharmony_ci	size = PAGE_ALIGN(size);
20668c2ecf20Sopenharmony_ci	if (unlikely(!size))
20678c2ecf20Sopenharmony_ci		return NULL;
20688c2ecf20Sopenharmony_ci
20698c2ecf20Sopenharmony_ci	if (flags & VM_IOREMAP)
20708c2ecf20Sopenharmony_ci		align = 1ul << clamp_t(int, get_count_order_long(size),
20718c2ecf20Sopenharmony_ci				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
20728c2ecf20Sopenharmony_ci
20738c2ecf20Sopenharmony_ci	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
20748c2ecf20Sopenharmony_ci	if (unlikely(!area))
20758c2ecf20Sopenharmony_ci		return NULL;
20768c2ecf20Sopenharmony_ci
20778c2ecf20Sopenharmony_ci	if (!(flags & VM_NO_GUARD))
20788c2ecf20Sopenharmony_ci		size += PAGE_SIZE;
20798c2ecf20Sopenharmony_ci
20808c2ecf20Sopenharmony_ci	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
20818c2ecf20Sopenharmony_ci	if (IS_ERR(va)) {
20828c2ecf20Sopenharmony_ci		kfree(area);
20838c2ecf20Sopenharmony_ci		return NULL;
20848c2ecf20Sopenharmony_ci	}
20858c2ecf20Sopenharmony_ci
20868c2ecf20Sopenharmony_ci	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
20878c2ecf20Sopenharmony_ci
20888c2ecf20Sopenharmony_ci	setup_vmalloc_vm(area, va, flags, caller);
20898c2ecf20Sopenharmony_ci
20908c2ecf20Sopenharmony_ci	return area;
20918c2ecf20Sopenharmony_ci}
20928c2ecf20Sopenharmony_ci
20938c2ecf20Sopenharmony_cistruct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
20948c2ecf20Sopenharmony_ci				       unsigned long start, unsigned long end,
20958c2ecf20Sopenharmony_ci				       const void *caller)
20968c2ecf20Sopenharmony_ci{
20978c2ecf20Sopenharmony_ci	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
20988c2ecf20Sopenharmony_ci				  GFP_KERNEL, caller);
20998c2ecf20Sopenharmony_ci}
21008c2ecf20Sopenharmony_ci
21018c2ecf20Sopenharmony_ci/**
21028c2ecf20Sopenharmony_ci * get_vm_area - reserve a contiguous kernel virtual area
21038c2ecf20Sopenharmony_ci * @size:	 size of the area
21048c2ecf20Sopenharmony_ci * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
21058c2ecf20Sopenharmony_ci *
21068c2ecf20Sopenharmony_ci * Search an area of @size in the kernel virtual mapping area,
21078c2ecf20Sopenharmony_ci * and reserved it for out purposes.  Returns the area descriptor
21088c2ecf20Sopenharmony_ci * on success or %NULL on failure.
21098c2ecf20Sopenharmony_ci *
21108c2ecf20Sopenharmony_ci * Return: the area descriptor on success or %NULL on failure.
21118c2ecf20Sopenharmony_ci */
21128c2ecf20Sopenharmony_cistruct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
21138c2ecf20Sopenharmony_ci{
21148c2ecf20Sopenharmony_ci	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
21158c2ecf20Sopenharmony_ci				  NUMA_NO_NODE, GFP_KERNEL,
21168c2ecf20Sopenharmony_ci				  __builtin_return_address(0));
21178c2ecf20Sopenharmony_ci}
21188c2ecf20Sopenharmony_ci
21198c2ecf20Sopenharmony_cistruct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
21208c2ecf20Sopenharmony_ci				const void *caller)
21218c2ecf20Sopenharmony_ci{
21228c2ecf20Sopenharmony_ci	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
21238c2ecf20Sopenharmony_ci				  NUMA_NO_NODE, GFP_KERNEL, caller);
21248c2ecf20Sopenharmony_ci}
21258c2ecf20Sopenharmony_ci
21268c2ecf20Sopenharmony_ci/**
21278c2ecf20Sopenharmony_ci * find_vm_area - find a continuous kernel virtual area
21288c2ecf20Sopenharmony_ci * @addr:	  base address
21298c2ecf20Sopenharmony_ci *
21308c2ecf20Sopenharmony_ci * Search for the kernel VM area starting at @addr, and return it.
21318c2ecf20Sopenharmony_ci * It is up to the caller to do all required locking to keep the returned
21328c2ecf20Sopenharmony_ci * pointer valid.
21338c2ecf20Sopenharmony_ci *
21348c2ecf20Sopenharmony_ci * Return: the area descriptor on success or %NULL on failure.
21358c2ecf20Sopenharmony_ci */
21368c2ecf20Sopenharmony_cistruct vm_struct *find_vm_area(const void *addr)
21378c2ecf20Sopenharmony_ci{
21388c2ecf20Sopenharmony_ci	struct vmap_area *va;
21398c2ecf20Sopenharmony_ci
21408c2ecf20Sopenharmony_ci	va = find_vmap_area((unsigned long)addr);
21418c2ecf20Sopenharmony_ci	if (!va)
21428c2ecf20Sopenharmony_ci		return NULL;
21438c2ecf20Sopenharmony_ci
21448c2ecf20Sopenharmony_ci	return va->vm;
21458c2ecf20Sopenharmony_ci}
21468c2ecf20Sopenharmony_ci
21478c2ecf20Sopenharmony_ci/**
21488c2ecf20Sopenharmony_ci * remove_vm_area - find and remove a continuous kernel virtual area
21498c2ecf20Sopenharmony_ci * @addr:	    base address
21508c2ecf20Sopenharmony_ci *
21518c2ecf20Sopenharmony_ci * Search for the kernel VM area starting at @addr, and remove it.
21528c2ecf20Sopenharmony_ci * This function returns the found VM area, but using it is NOT safe
21538c2ecf20Sopenharmony_ci * on SMP machines, except for its size or flags.
21548c2ecf20Sopenharmony_ci *
21558c2ecf20Sopenharmony_ci * Return: the area descriptor on success or %NULL on failure.
21568c2ecf20Sopenharmony_ci */
21578c2ecf20Sopenharmony_cistruct vm_struct *remove_vm_area(const void *addr)
21588c2ecf20Sopenharmony_ci{
21598c2ecf20Sopenharmony_ci	struct vmap_area *va;
21608c2ecf20Sopenharmony_ci
21618c2ecf20Sopenharmony_ci	might_sleep();
21628c2ecf20Sopenharmony_ci
21638c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
21648c2ecf20Sopenharmony_ci	va = __find_vmap_area((unsigned long)addr);
21658c2ecf20Sopenharmony_ci	if (va && va->vm) {
21668c2ecf20Sopenharmony_ci		struct vm_struct *vm = va->vm;
21678c2ecf20Sopenharmony_ci
21688c2ecf20Sopenharmony_ci		va->vm = NULL;
21698c2ecf20Sopenharmony_ci		spin_unlock(&vmap_area_lock);
21708c2ecf20Sopenharmony_ci
21718c2ecf20Sopenharmony_ci		kasan_free_shadow(vm);
21728c2ecf20Sopenharmony_ci		free_unmap_vmap_area(va);
21738c2ecf20Sopenharmony_ci
21748c2ecf20Sopenharmony_ci		return vm;
21758c2ecf20Sopenharmony_ci	}
21768c2ecf20Sopenharmony_ci
21778c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
21788c2ecf20Sopenharmony_ci	return NULL;
21798c2ecf20Sopenharmony_ci}
21808c2ecf20Sopenharmony_ci
21818c2ecf20Sopenharmony_cistatic inline void set_area_direct_map(const struct vm_struct *area,
21828c2ecf20Sopenharmony_ci				       int (*set_direct_map)(struct page *page))
21838c2ecf20Sopenharmony_ci{
21848c2ecf20Sopenharmony_ci	int i;
21858c2ecf20Sopenharmony_ci
21868c2ecf20Sopenharmony_ci	for (i = 0; i < area->nr_pages; i++)
21878c2ecf20Sopenharmony_ci		if (page_address(area->pages[i]))
21888c2ecf20Sopenharmony_ci			set_direct_map(area->pages[i]);
21898c2ecf20Sopenharmony_ci}
21908c2ecf20Sopenharmony_ci
21918c2ecf20Sopenharmony_ci/* Handle removing and resetting vm mappings related to the vm_struct. */
21928c2ecf20Sopenharmony_cistatic void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
21938c2ecf20Sopenharmony_ci{
21948c2ecf20Sopenharmony_ci	unsigned long start = ULONG_MAX, end = 0;
21958c2ecf20Sopenharmony_ci	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
21968c2ecf20Sopenharmony_ci	int flush_dmap = 0;
21978c2ecf20Sopenharmony_ci	int i;
21988c2ecf20Sopenharmony_ci
21998c2ecf20Sopenharmony_ci	remove_vm_area(area->addr);
22008c2ecf20Sopenharmony_ci
22018c2ecf20Sopenharmony_ci	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
22028c2ecf20Sopenharmony_ci	if (!flush_reset)
22038c2ecf20Sopenharmony_ci		return;
22048c2ecf20Sopenharmony_ci
22058c2ecf20Sopenharmony_ci	/*
22068c2ecf20Sopenharmony_ci	 * If not deallocating pages, just do the flush of the VM area and
22078c2ecf20Sopenharmony_ci	 * return.
22088c2ecf20Sopenharmony_ci	 */
22098c2ecf20Sopenharmony_ci	if (!deallocate_pages) {
22108c2ecf20Sopenharmony_ci		vm_unmap_aliases();
22118c2ecf20Sopenharmony_ci		return;
22128c2ecf20Sopenharmony_ci	}
22138c2ecf20Sopenharmony_ci
22148c2ecf20Sopenharmony_ci	/*
22158c2ecf20Sopenharmony_ci	 * If execution gets here, flush the vm mapping and reset the direct
22168c2ecf20Sopenharmony_ci	 * map. Find the start and end range of the direct mappings to make sure
22178c2ecf20Sopenharmony_ci	 * the vm_unmap_aliases() flush includes the direct map.
22188c2ecf20Sopenharmony_ci	 */
22198c2ecf20Sopenharmony_ci	for (i = 0; i < area->nr_pages; i++) {
22208c2ecf20Sopenharmony_ci		unsigned long addr = (unsigned long)page_address(area->pages[i]);
22218c2ecf20Sopenharmony_ci		if (addr) {
22228c2ecf20Sopenharmony_ci			start = min(addr, start);
22238c2ecf20Sopenharmony_ci			end = max(addr + PAGE_SIZE, end);
22248c2ecf20Sopenharmony_ci			flush_dmap = 1;
22258c2ecf20Sopenharmony_ci		}
22268c2ecf20Sopenharmony_ci	}
22278c2ecf20Sopenharmony_ci
22288c2ecf20Sopenharmony_ci	/*
22298c2ecf20Sopenharmony_ci	 * Set direct map to something invalid so that it won't be cached if
22308c2ecf20Sopenharmony_ci	 * there are any accesses after the TLB flush, then flush the TLB and
22318c2ecf20Sopenharmony_ci	 * reset the direct map permissions to the default.
22328c2ecf20Sopenharmony_ci	 */
22338c2ecf20Sopenharmony_ci	set_area_direct_map(area, set_direct_map_invalid_noflush);
22348c2ecf20Sopenharmony_ci	_vm_unmap_aliases(start, end, flush_dmap);
22358c2ecf20Sopenharmony_ci	set_area_direct_map(area, set_direct_map_default_noflush);
22368c2ecf20Sopenharmony_ci}
22378c2ecf20Sopenharmony_ci
22388c2ecf20Sopenharmony_cistatic void __vunmap(const void *addr, int deallocate_pages)
22398c2ecf20Sopenharmony_ci{
22408c2ecf20Sopenharmony_ci	struct vm_struct *area;
22418c2ecf20Sopenharmony_ci
22428c2ecf20Sopenharmony_ci	if (!addr)
22438c2ecf20Sopenharmony_ci		return;
22448c2ecf20Sopenharmony_ci
22458c2ecf20Sopenharmony_ci	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
22468c2ecf20Sopenharmony_ci			addr))
22478c2ecf20Sopenharmony_ci		return;
22488c2ecf20Sopenharmony_ci
22498c2ecf20Sopenharmony_ci	area = find_vm_area(addr);
22508c2ecf20Sopenharmony_ci	if (unlikely(!area)) {
22518c2ecf20Sopenharmony_ci		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
22528c2ecf20Sopenharmony_ci				addr);
22538c2ecf20Sopenharmony_ci		return;
22548c2ecf20Sopenharmony_ci	}
22558c2ecf20Sopenharmony_ci
22568c2ecf20Sopenharmony_ci	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
22578c2ecf20Sopenharmony_ci	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
22588c2ecf20Sopenharmony_ci
22598c2ecf20Sopenharmony_ci	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
22608c2ecf20Sopenharmony_ci
22618c2ecf20Sopenharmony_ci	vm_remove_mappings(area, deallocate_pages);
22628c2ecf20Sopenharmony_ci
22638c2ecf20Sopenharmony_ci	if (deallocate_pages) {
22648c2ecf20Sopenharmony_ci		int i;
22658c2ecf20Sopenharmony_ci
22668c2ecf20Sopenharmony_ci		for (i = 0; i < area->nr_pages; i++) {
22678c2ecf20Sopenharmony_ci			struct page *page = area->pages[i];
22688c2ecf20Sopenharmony_ci
22698c2ecf20Sopenharmony_ci			BUG_ON(!page);
22708c2ecf20Sopenharmony_ci			__free_pages(page, 0);
22718c2ecf20Sopenharmony_ci		}
22728c2ecf20Sopenharmony_ci		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
22738c2ecf20Sopenharmony_ci
22748c2ecf20Sopenharmony_ci		kvfree(area->pages);
22758c2ecf20Sopenharmony_ci	}
22768c2ecf20Sopenharmony_ci
22778c2ecf20Sopenharmony_ci	kfree(area);
22788c2ecf20Sopenharmony_ci	return;
22798c2ecf20Sopenharmony_ci}
22808c2ecf20Sopenharmony_ci
22818c2ecf20Sopenharmony_cistatic inline void __vfree_deferred(const void *addr)
22828c2ecf20Sopenharmony_ci{
22838c2ecf20Sopenharmony_ci	/*
22848c2ecf20Sopenharmony_ci	 * Use raw_cpu_ptr() because this can be called from preemptible
22858c2ecf20Sopenharmony_ci	 * context. Preemption is absolutely fine here, because the llist_add()
22868c2ecf20Sopenharmony_ci	 * implementation is lockless, so it works even if we are adding to
22878c2ecf20Sopenharmony_ci	 * another cpu's list. schedule_work() should be fine with this too.
22888c2ecf20Sopenharmony_ci	 */
22898c2ecf20Sopenharmony_ci	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
22908c2ecf20Sopenharmony_ci
22918c2ecf20Sopenharmony_ci	if (llist_add((struct llist_node *)addr, &p->list))
22928c2ecf20Sopenharmony_ci		schedule_work(&p->wq);
22938c2ecf20Sopenharmony_ci}
22948c2ecf20Sopenharmony_ci
22958c2ecf20Sopenharmony_ci/**
22968c2ecf20Sopenharmony_ci * vfree_atomic - release memory allocated by vmalloc()
22978c2ecf20Sopenharmony_ci * @addr:	  memory base address
22988c2ecf20Sopenharmony_ci *
22998c2ecf20Sopenharmony_ci * This one is just like vfree() but can be called in any atomic context
23008c2ecf20Sopenharmony_ci * except NMIs.
23018c2ecf20Sopenharmony_ci */
23028c2ecf20Sopenharmony_civoid vfree_atomic(const void *addr)
23038c2ecf20Sopenharmony_ci{
23048c2ecf20Sopenharmony_ci	BUG_ON(in_nmi());
23058c2ecf20Sopenharmony_ci
23068c2ecf20Sopenharmony_ci	kmemleak_free(addr);
23078c2ecf20Sopenharmony_ci
23088c2ecf20Sopenharmony_ci	if (!addr)
23098c2ecf20Sopenharmony_ci		return;
23108c2ecf20Sopenharmony_ci	__vfree_deferred(addr);
23118c2ecf20Sopenharmony_ci}
23128c2ecf20Sopenharmony_ci
23138c2ecf20Sopenharmony_cistatic void __vfree(const void *addr)
23148c2ecf20Sopenharmony_ci{
23158c2ecf20Sopenharmony_ci	if (unlikely(in_interrupt()))
23168c2ecf20Sopenharmony_ci		__vfree_deferred(addr);
23178c2ecf20Sopenharmony_ci	else
23188c2ecf20Sopenharmony_ci		__vunmap(addr, 1);
23198c2ecf20Sopenharmony_ci}
23208c2ecf20Sopenharmony_ci
23218c2ecf20Sopenharmony_ci/**
23228c2ecf20Sopenharmony_ci * vfree - Release memory allocated by vmalloc()
23238c2ecf20Sopenharmony_ci * @addr:  Memory base address
23248c2ecf20Sopenharmony_ci *
23258c2ecf20Sopenharmony_ci * Free the virtually continuous memory area starting at @addr, as obtained
23268c2ecf20Sopenharmony_ci * from one of the vmalloc() family of APIs.  This will usually also free the
23278c2ecf20Sopenharmony_ci * physical memory underlying the virtual allocation, but that memory is
23288c2ecf20Sopenharmony_ci * reference counted, so it will not be freed until the last user goes away.
23298c2ecf20Sopenharmony_ci *
23308c2ecf20Sopenharmony_ci * If @addr is NULL, no operation is performed.
23318c2ecf20Sopenharmony_ci *
23328c2ecf20Sopenharmony_ci * Context:
23338c2ecf20Sopenharmony_ci * May sleep if called *not* from interrupt context.
23348c2ecf20Sopenharmony_ci * Must not be called in NMI context (strictly speaking, it could be
23358c2ecf20Sopenharmony_ci * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
23368c2ecf20Sopenharmony_ci * conventions for vfree() arch-depenedent would be a really bad idea).
23378c2ecf20Sopenharmony_ci */
23388c2ecf20Sopenharmony_civoid vfree(const void *addr)
23398c2ecf20Sopenharmony_ci{
23408c2ecf20Sopenharmony_ci	BUG_ON(in_nmi());
23418c2ecf20Sopenharmony_ci
23428c2ecf20Sopenharmony_ci	kmemleak_free(addr);
23438c2ecf20Sopenharmony_ci
23448c2ecf20Sopenharmony_ci	might_sleep_if(!in_interrupt());
23458c2ecf20Sopenharmony_ci
23468c2ecf20Sopenharmony_ci	if (!addr)
23478c2ecf20Sopenharmony_ci		return;
23488c2ecf20Sopenharmony_ci
23498c2ecf20Sopenharmony_ci	__vfree(addr);
23508c2ecf20Sopenharmony_ci}
23518c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vfree);
23528c2ecf20Sopenharmony_ci
23538c2ecf20Sopenharmony_ci/**
23548c2ecf20Sopenharmony_ci * vunmap - release virtual mapping obtained by vmap()
23558c2ecf20Sopenharmony_ci * @addr:   memory base address
23568c2ecf20Sopenharmony_ci *
23578c2ecf20Sopenharmony_ci * Free the virtually contiguous memory area starting at @addr,
23588c2ecf20Sopenharmony_ci * which was created from the page array passed to vmap().
23598c2ecf20Sopenharmony_ci *
23608c2ecf20Sopenharmony_ci * Must not be called in interrupt context.
23618c2ecf20Sopenharmony_ci */
23628c2ecf20Sopenharmony_civoid vunmap(const void *addr)
23638c2ecf20Sopenharmony_ci{
23648c2ecf20Sopenharmony_ci	BUG_ON(in_interrupt());
23658c2ecf20Sopenharmony_ci	might_sleep();
23668c2ecf20Sopenharmony_ci	if (addr)
23678c2ecf20Sopenharmony_ci		__vunmap(addr, 0);
23688c2ecf20Sopenharmony_ci}
23698c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vunmap);
23708c2ecf20Sopenharmony_ci
23718c2ecf20Sopenharmony_ci/**
23728c2ecf20Sopenharmony_ci * vmap - map an array of pages into virtually contiguous space
23738c2ecf20Sopenharmony_ci * @pages: array of page pointers
23748c2ecf20Sopenharmony_ci * @count: number of pages to map
23758c2ecf20Sopenharmony_ci * @flags: vm_area->flags
23768c2ecf20Sopenharmony_ci * @prot: page protection for the mapping
23778c2ecf20Sopenharmony_ci *
23788c2ecf20Sopenharmony_ci * Maps @count pages from @pages into contiguous kernel virtual space.
23798c2ecf20Sopenharmony_ci * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
23808c2ecf20Sopenharmony_ci * (which must be kmalloc or vmalloc memory) and one reference per pages in it
23818c2ecf20Sopenharmony_ci * are transferred from the caller to vmap(), and will be freed / dropped when
23828c2ecf20Sopenharmony_ci * vfree() is called on the return value.
23838c2ecf20Sopenharmony_ci *
23848c2ecf20Sopenharmony_ci * Return: the address of the area or %NULL on failure
23858c2ecf20Sopenharmony_ci */
23868c2ecf20Sopenharmony_civoid *vmap(struct page **pages, unsigned int count,
23878c2ecf20Sopenharmony_ci	   unsigned long flags, pgprot_t prot)
23888c2ecf20Sopenharmony_ci{
23898c2ecf20Sopenharmony_ci	struct vm_struct *area;
23908c2ecf20Sopenharmony_ci	unsigned long size;		/* In bytes */
23918c2ecf20Sopenharmony_ci
23928c2ecf20Sopenharmony_ci	might_sleep();
23938c2ecf20Sopenharmony_ci
23948c2ecf20Sopenharmony_ci	if (count > totalram_pages())
23958c2ecf20Sopenharmony_ci		return NULL;
23968c2ecf20Sopenharmony_ci
23978c2ecf20Sopenharmony_ci	size = (unsigned long)count << PAGE_SHIFT;
23988c2ecf20Sopenharmony_ci	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
23998c2ecf20Sopenharmony_ci	if (!area)
24008c2ecf20Sopenharmony_ci		return NULL;
24018c2ecf20Sopenharmony_ci
24028c2ecf20Sopenharmony_ci	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
24038c2ecf20Sopenharmony_ci			pages) < 0) {
24048c2ecf20Sopenharmony_ci		vunmap(area->addr);
24058c2ecf20Sopenharmony_ci		return NULL;
24068c2ecf20Sopenharmony_ci	}
24078c2ecf20Sopenharmony_ci
24088c2ecf20Sopenharmony_ci	if (flags & VM_MAP_PUT_PAGES) {
24098c2ecf20Sopenharmony_ci		area->pages = pages;
24108c2ecf20Sopenharmony_ci		area->nr_pages = count;
24118c2ecf20Sopenharmony_ci	}
24128c2ecf20Sopenharmony_ci	return area->addr;
24138c2ecf20Sopenharmony_ci}
24148c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmap);
24158c2ecf20Sopenharmony_ci
24168c2ecf20Sopenharmony_ci#ifdef CONFIG_VMAP_PFN
24178c2ecf20Sopenharmony_cistruct vmap_pfn_data {
24188c2ecf20Sopenharmony_ci	unsigned long	*pfns;
24198c2ecf20Sopenharmony_ci	pgprot_t	prot;
24208c2ecf20Sopenharmony_ci	unsigned int	idx;
24218c2ecf20Sopenharmony_ci};
24228c2ecf20Sopenharmony_ci
24238c2ecf20Sopenharmony_cistatic int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
24248c2ecf20Sopenharmony_ci{
24258c2ecf20Sopenharmony_ci	struct vmap_pfn_data *data = private;
24268c2ecf20Sopenharmony_ci
24278c2ecf20Sopenharmony_ci	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
24288c2ecf20Sopenharmony_ci		return -EINVAL;
24298c2ecf20Sopenharmony_ci	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
24308c2ecf20Sopenharmony_ci	return 0;
24318c2ecf20Sopenharmony_ci}
24328c2ecf20Sopenharmony_ci
24338c2ecf20Sopenharmony_ci/**
24348c2ecf20Sopenharmony_ci * vmap_pfn - map an array of PFNs into virtually contiguous space
24358c2ecf20Sopenharmony_ci * @pfns: array of PFNs
24368c2ecf20Sopenharmony_ci * @count: number of pages to map
24378c2ecf20Sopenharmony_ci * @prot: page protection for the mapping
24388c2ecf20Sopenharmony_ci *
24398c2ecf20Sopenharmony_ci * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
24408c2ecf20Sopenharmony_ci * the start address of the mapping.
24418c2ecf20Sopenharmony_ci */
24428c2ecf20Sopenharmony_civoid *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
24438c2ecf20Sopenharmony_ci{
24448c2ecf20Sopenharmony_ci	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
24458c2ecf20Sopenharmony_ci	struct vm_struct *area;
24468c2ecf20Sopenharmony_ci
24478c2ecf20Sopenharmony_ci	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
24488c2ecf20Sopenharmony_ci			__builtin_return_address(0));
24498c2ecf20Sopenharmony_ci	if (!area)
24508c2ecf20Sopenharmony_ci		return NULL;
24518c2ecf20Sopenharmony_ci	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
24528c2ecf20Sopenharmony_ci			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
24538c2ecf20Sopenharmony_ci		free_vm_area(area);
24548c2ecf20Sopenharmony_ci		return NULL;
24558c2ecf20Sopenharmony_ci	}
24568c2ecf20Sopenharmony_ci
24578c2ecf20Sopenharmony_ci	flush_cache_vmap((unsigned long)area->addr,
24588c2ecf20Sopenharmony_ci			 (unsigned long)area->addr + count * PAGE_SIZE);
24598c2ecf20Sopenharmony_ci
24608c2ecf20Sopenharmony_ci	return area->addr;
24618c2ecf20Sopenharmony_ci}
24628c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(vmap_pfn);
24638c2ecf20Sopenharmony_ci#endif /* CONFIG_VMAP_PFN */
24648c2ecf20Sopenharmony_ci
24658c2ecf20Sopenharmony_cistatic void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
24668c2ecf20Sopenharmony_ci				 pgprot_t prot, int node)
24678c2ecf20Sopenharmony_ci{
24688c2ecf20Sopenharmony_ci	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
24698c2ecf20Sopenharmony_ci	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
24708c2ecf20Sopenharmony_ci	unsigned long array_size;
24718c2ecf20Sopenharmony_ci	unsigned int i;
24728c2ecf20Sopenharmony_ci	struct page **pages;
24738c2ecf20Sopenharmony_ci
24748c2ecf20Sopenharmony_ci	array_size = (unsigned long)nr_pages * sizeof(struct page *);
24758c2ecf20Sopenharmony_ci	gfp_mask |= __GFP_NOWARN;
24768c2ecf20Sopenharmony_ci	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
24778c2ecf20Sopenharmony_ci		gfp_mask |= __GFP_HIGHMEM;
24788c2ecf20Sopenharmony_ci
24798c2ecf20Sopenharmony_ci	/* Please note that the recursion is strictly bounded. */
24808c2ecf20Sopenharmony_ci	if (array_size > PAGE_SIZE) {
24818c2ecf20Sopenharmony_ci		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
24828c2ecf20Sopenharmony_ci					area->caller);
24838c2ecf20Sopenharmony_ci	} else {
24848c2ecf20Sopenharmony_ci		pages = kmalloc_node(array_size, nested_gfp, node);
24858c2ecf20Sopenharmony_ci	}
24868c2ecf20Sopenharmony_ci
24878c2ecf20Sopenharmony_ci	if (!pages) {
24888c2ecf20Sopenharmony_ci		remove_vm_area(area->addr);
24898c2ecf20Sopenharmony_ci		kfree(area);
24908c2ecf20Sopenharmony_ci		return NULL;
24918c2ecf20Sopenharmony_ci	}
24928c2ecf20Sopenharmony_ci
24938c2ecf20Sopenharmony_ci	area->pages = pages;
24948c2ecf20Sopenharmony_ci	area->nr_pages = nr_pages;
24958c2ecf20Sopenharmony_ci
24968c2ecf20Sopenharmony_ci	for (i = 0; i < area->nr_pages; i++) {
24978c2ecf20Sopenharmony_ci		struct page *page;
24988c2ecf20Sopenharmony_ci
24998c2ecf20Sopenharmony_ci		if (node == NUMA_NO_NODE)
25008c2ecf20Sopenharmony_ci			page = alloc_page(gfp_mask);
25018c2ecf20Sopenharmony_ci		else
25028c2ecf20Sopenharmony_ci			page = alloc_pages_node(node, gfp_mask, 0);
25038c2ecf20Sopenharmony_ci
25048c2ecf20Sopenharmony_ci		if (unlikely(!page)) {
25058c2ecf20Sopenharmony_ci			/* Successfully allocated i pages, free them in __vfree() */
25068c2ecf20Sopenharmony_ci			area->nr_pages = i;
25078c2ecf20Sopenharmony_ci			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
25088c2ecf20Sopenharmony_ci			goto fail;
25098c2ecf20Sopenharmony_ci		}
25108c2ecf20Sopenharmony_ci		area->pages[i] = page;
25118c2ecf20Sopenharmony_ci		if (gfpflags_allow_blocking(gfp_mask))
25128c2ecf20Sopenharmony_ci			cond_resched();
25138c2ecf20Sopenharmony_ci	}
25148c2ecf20Sopenharmony_ci	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
25158c2ecf20Sopenharmony_ci
25168c2ecf20Sopenharmony_ci	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
25178c2ecf20Sopenharmony_ci			prot, pages) < 0)
25188c2ecf20Sopenharmony_ci		goto fail;
25198c2ecf20Sopenharmony_ci
25208c2ecf20Sopenharmony_ci	return area->addr;
25218c2ecf20Sopenharmony_ci
25228c2ecf20Sopenharmony_cifail:
25238c2ecf20Sopenharmony_ci	warn_alloc(gfp_mask, NULL,
25248c2ecf20Sopenharmony_ci			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
25258c2ecf20Sopenharmony_ci			  (area->nr_pages*PAGE_SIZE), area->size);
25268c2ecf20Sopenharmony_ci	__vfree(area->addr);
25278c2ecf20Sopenharmony_ci	return NULL;
25288c2ecf20Sopenharmony_ci}
25298c2ecf20Sopenharmony_ci
25308c2ecf20Sopenharmony_ci/**
25318c2ecf20Sopenharmony_ci * __vmalloc_node_range - allocate virtually contiguous memory
25328c2ecf20Sopenharmony_ci * @size:		  allocation size
25338c2ecf20Sopenharmony_ci * @align:		  desired alignment
25348c2ecf20Sopenharmony_ci * @start:		  vm area range start
25358c2ecf20Sopenharmony_ci * @end:		  vm area range end
25368c2ecf20Sopenharmony_ci * @gfp_mask:		  flags for the page level allocator
25378c2ecf20Sopenharmony_ci * @prot:		  protection mask for the allocated pages
25388c2ecf20Sopenharmony_ci * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
25398c2ecf20Sopenharmony_ci * @node:		  node to use for allocation or NUMA_NO_NODE
25408c2ecf20Sopenharmony_ci * @caller:		  caller's return address
25418c2ecf20Sopenharmony_ci *
25428c2ecf20Sopenharmony_ci * Allocate enough pages to cover @size from the page level
25438c2ecf20Sopenharmony_ci * allocator with @gfp_mask flags.  Map them into contiguous
25448c2ecf20Sopenharmony_ci * kernel virtual space, using a pagetable protection of @prot.
25458c2ecf20Sopenharmony_ci *
25468c2ecf20Sopenharmony_ci * Return: the address of the area or %NULL on failure
25478c2ecf20Sopenharmony_ci */
25488c2ecf20Sopenharmony_civoid *__vmalloc_node_range(unsigned long size, unsigned long align,
25498c2ecf20Sopenharmony_ci			unsigned long start, unsigned long end, gfp_t gfp_mask,
25508c2ecf20Sopenharmony_ci			pgprot_t prot, unsigned long vm_flags, int node,
25518c2ecf20Sopenharmony_ci			const void *caller)
25528c2ecf20Sopenharmony_ci{
25538c2ecf20Sopenharmony_ci	struct vm_struct *area;
25548c2ecf20Sopenharmony_ci	void *addr;
25558c2ecf20Sopenharmony_ci	unsigned long real_size = size;
25568c2ecf20Sopenharmony_ci
25578c2ecf20Sopenharmony_ci	size = PAGE_ALIGN(size);
25588c2ecf20Sopenharmony_ci	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
25598c2ecf20Sopenharmony_ci		goto fail;
25608c2ecf20Sopenharmony_ci
25618c2ecf20Sopenharmony_ci	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
25628c2ecf20Sopenharmony_ci				vm_flags, start, end, node, gfp_mask, caller);
25638c2ecf20Sopenharmony_ci	if (!area)
25648c2ecf20Sopenharmony_ci		goto fail;
25658c2ecf20Sopenharmony_ci
25668c2ecf20Sopenharmony_ci	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
25678c2ecf20Sopenharmony_ci	if (!addr)
25688c2ecf20Sopenharmony_ci		return NULL;
25698c2ecf20Sopenharmony_ci
25708c2ecf20Sopenharmony_ci	/*
25718c2ecf20Sopenharmony_ci	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
25728c2ecf20Sopenharmony_ci	 * flag. It means that vm_struct is not fully initialized.
25738c2ecf20Sopenharmony_ci	 * Now, it is fully initialized, so remove this flag here.
25748c2ecf20Sopenharmony_ci	 */
25758c2ecf20Sopenharmony_ci	clear_vm_uninitialized_flag(area);
25768c2ecf20Sopenharmony_ci
25778c2ecf20Sopenharmony_ci	kmemleak_vmalloc(area, size, gfp_mask);
25788c2ecf20Sopenharmony_ci
25798c2ecf20Sopenharmony_ci	return addr;
25808c2ecf20Sopenharmony_ci
25818c2ecf20Sopenharmony_cifail:
25828c2ecf20Sopenharmony_ci	warn_alloc(gfp_mask, NULL,
25838c2ecf20Sopenharmony_ci			  "vmalloc: allocation failure: %lu bytes", real_size);
25848c2ecf20Sopenharmony_ci	return NULL;
25858c2ecf20Sopenharmony_ci}
25868c2ecf20Sopenharmony_ci
25878c2ecf20Sopenharmony_ci/**
25888c2ecf20Sopenharmony_ci * __vmalloc_node - allocate virtually contiguous memory
25898c2ecf20Sopenharmony_ci * @size:	    allocation size
25908c2ecf20Sopenharmony_ci * @align:	    desired alignment
25918c2ecf20Sopenharmony_ci * @gfp_mask:	    flags for the page level allocator
25928c2ecf20Sopenharmony_ci * @node:	    node to use for allocation or NUMA_NO_NODE
25938c2ecf20Sopenharmony_ci * @caller:	    caller's return address
25948c2ecf20Sopenharmony_ci *
25958c2ecf20Sopenharmony_ci * Allocate enough pages to cover @size from the page level allocator with
25968c2ecf20Sopenharmony_ci * @gfp_mask flags.  Map them into contiguous kernel virtual space.
25978c2ecf20Sopenharmony_ci *
25988c2ecf20Sopenharmony_ci * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
25998c2ecf20Sopenharmony_ci * and __GFP_NOFAIL are not supported
26008c2ecf20Sopenharmony_ci *
26018c2ecf20Sopenharmony_ci * Any use of gfp flags outside of GFP_KERNEL should be consulted
26028c2ecf20Sopenharmony_ci * with mm people.
26038c2ecf20Sopenharmony_ci *
26048c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
26058c2ecf20Sopenharmony_ci */
26068c2ecf20Sopenharmony_civoid *__vmalloc_node(unsigned long size, unsigned long align,
26078c2ecf20Sopenharmony_ci			    gfp_t gfp_mask, int node, const void *caller)
26088c2ecf20Sopenharmony_ci{
26098c2ecf20Sopenharmony_ci	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
26108c2ecf20Sopenharmony_ci				gfp_mask, PAGE_KERNEL, 0, node, caller);
26118c2ecf20Sopenharmony_ci}
26128c2ecf20Sopenharmony_ci/*
26138c2ecf20Sopenharmony_ci * This is only for performance analysis of vmalloc and stress purpose.
26148c2ecf20Sopenharmony_ci * It is required by vmalloc test module, therefore do not use it other
26158c2ecf20Sopenharmony_ci * than that.
26168c2ecf20Sopenharmony_ci */
26178c2ecf20Sopenharmony_ci#ifdef CONFIG_TEST_VMALLOC_MODULE
26188c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(__vmalloc_node);
26198c2ecf20Sopenharmony_ci#endif
26208c2ecf20Sopenharmony_ci
26218c2ecf20Sopenharmony_civoid *__vmalloc(unsigned long size, gfp_t gfp_mask)
26228c2ecf20Sopenharmony_ci{
26238c2ecf20Sopenharmony_ci	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
26248c2ecf20Sopenharmony_ci				__builtin_return_address(0));
26258c2ecf20Sopenharmony_ci}
26268c2ecf20Sopenharmony_ciEXPORT_SYMBOL(__vmalloc);
26278c2ecf20Sopenharmony_ci
26288c2ecf20Sopenharmony_ci/**
26298c2ecf20Sopenharmony_ci * vmalloc - allocate virtually contiguous memory
26308c2ecf20Sopenharmony_ci * @size:    allocation size
26318c2ecf20Sopenharmony_ci *
26328c2ecf20Sopenharmony_ci * Allocate enough pages to cover @size from the page level
26338c2ecf20Sopenharmony_ci * allocator and map them into contiguous kernel virtual space.
26348c2ecf20Sopenharmony_ci *
26358c2ecf20Sopenharmony_ci * For tight control over page level allocator and protection flags
26368c2ecf20Sopenharmony_ci * use __vmalloc() instead.
26378c2ecf20Sopenharmony_ci *
26388c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
26398c2ecf20Sopenharmony_ci */
26408c2ecf20Sopenharmony_civoid *vmalloc(unsigned long size)
26418c2ecf20Sopenharmony_ci{
26428c2ecf20Sopenharmony_ci	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
26438c2ecf20Sopenharmony_ci				__builtin_return_address(0));
26448c2ecf20Sopenharmony_ci}
26458c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmalloc);
26468c2ecf20Sopenharmony_ci
26478c2ecf20Sopenharmony_ci/**
26488c2ecf20Sopenharmony_ci * vzalloc - allocate virtually contiguous memory with zero fill
26498c2ecf20Sopenharmony_ci * @size:    allocation size
26508c2ecf20Sopenharmony_ci *
26518c2ecf20Sopenharmony_ci * Allocate enough pages to cover @size from the page level
26528c2ecf20Sopenharmony_ci * allocator and map them into contiguous kernel virtual space.
26538c2ecf20Sopenharmony_ci * The memory allocated is set to zero.
26548c2ecf20Sopenharmony_ci *
26558c2ecf20Sopenharmony_ci * For tight control over page level allocator and protection flags
26568c2ecf20Sopenharmony_ci * use __vmalloc() instead.
26578c2ecf20Sopenharmony_ci *
26588c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
26598c2ecf20Sopenharmony_ci */
26608c2ecf20Sopenharmony_civoid *vzalloc(unsigned long size)
26618c2ecf20Sopenharmony_ci{
26628c2ecf20Sopenharmony_ci	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
26638c2ecf20Sopenharmony_ci				__builtin_return_address(0));
26648c2ecf20Sopenharmony_ci}
26658c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vzalloc);
26668c2ecf20Sopenharmony_ci
26678c2ecf20Sopenharmony_ci/**
26688c2ecf20Sopenharmony_ci * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
26698c2ecf20Sopenharmony_ci * @size: allocation size
26708c2ecf20Sopenharmony_ci *
26718c2ecf20Sopenharmony_ci * The resulting memory area is zeroed so it can be mapped to userspace
26728c2ecf20Sopenharmony_ci * without leaking data.
26738c2ecf20Sopenharmony_ci *
26748c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
26758c2ecf20Sopenharmony_ci */
26768c2ecf20Sopenharmony_civoid *vmalloc_user(unsigned long size)
26778c2ecf20Sopenharmony_ci{
26788c2ecf20Sopenharmony_ci	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
26798c2ecf20Sopenharmony_ci				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
26808c2ecf20Sopenharmony_ci				    VM_USERMAP, NUMA_NO_NODE,
26818c2ecf20Sopenharmony_ci				    __builtin_return_address(0));
26828c2ecf20Sopenharmony_ci}
26838c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmalloc_user);
26848c2ecf20Sopenharmony_ci
26858c2ecf20Sopenharmony_ci/**
26868c2ecf20Sopenharmony_ci * vmalloc_node - allocate memory on a specific node
26878c2ecf20Sopenharmony_ci * @size:	  allocation size
26888c2ecf20Sopenharmony_ci * @node:	  numa node
26898c2ecf20Sopenharmony_ci *
26908c2ecf20Sopenharmony_ci * Allocate enough pages to cover @size from the page level
26918c2ecf20Sopenharmony_ci * allocator and map them into contiguous kernel virtual space.
26928c2ecf20Sopenharmony_ci *
26938c2ecf20Sopenharmony_ci * For tight control over page level allocator and protection flags
26948c2ecf20Sopenharmony_ci * use __vmalloc() instead.
26958c2ecf20Sopenharmony_ci *
26968c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
26978c2ecf20Sopenharmony_ci */
26988c2ecf20Sopenharmony_civoid *vmalloc_node(unsigned long size, int node)
26998c2ecf20Sopenharmony_ci{
27008c2ecf20Sopenharmony_ci	return __vmalloc_node(size, 1, GFP_KERNEL, node,
27018c2ecf20Sopenharmony_ci			__builtin_return_address(0));
27028c2ecf20Sopenharmony_ci}
27038c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmalloc_node);
27048c2ecf20Sopenharmony_ci
27058c2ecf20Sopenharmony_ci/**
27068c2ecf20Sopenharmony_ci * vzalloc_node - allocate memory on a specific node with zero fill
27078c2ecf20Sopenharmony_ci * @size:	allocation size
27088c2ecf20Sopenharmony_ci * @node:	numa node
27098c2ecf20Sopenharmony_ci *
27108c2ecf20Sopenharmony_ci * Allocate enough pages to cover @size from the page level
27118c2ecf20Sopenharmony_ci * allocator and map them into contiguous kernel virtual space.
27128c2ecf20Sopenharmony_ci * The memory allocated is set to zero.
27138c2ecf20Sopenharmony_ci *
27148c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
27158c2ecf20Sopenharmony_ci */
27168c2ecf20Sopenharmony_civoid *vzalloc_node(unsigned long size, int node)
27178c2ecf20Sopenharmony_ci{
27188c2ecf20Sopenharmony_ci	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
27198c2ecf20Sopenharmony_ci				__builtin_return_address(0));
27208c2ecf20Sopenharmony_ci}
27218c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vzalloc_node);
27228c2ecf20Sopenharmony_ci
27238c2ecf20Sopenharmony_ci#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
27248c2ecf20Sopenharmony_ci#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
27258c2ecf20Sopenharmony_ci#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
27268c2ecf20Sopenharmony_ci#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
27278c2ecf20Sopenharmony_ci#else
27288c2ecf20Sopenharmony_ci/*
27298c2ecf20Sopenharmony_ci * 64b systems should always have either DMA or DMA32 zones. For others
27308c2ecf20Sopenharmony_ci * GFP_DMA32 should do the right thing and use the normal zone.
27318c2ecf20Sopenharmony_ci */
27328c2ecf20Sopenharmony_ci#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
27338c2ecf20Sopenharmony_ci#endif
27348c2ecf20Sopenharmony_ci
27358c2ecf20Sopenharmony_ci/**
27368c2ecf20Sopenharmony_ci * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
27378c2ecf20Sopenharmony_ci * @size:	allocation size
27388c2ecf20Sopenharmony_ci *
27398c2ecf20Sopenharmony_ci * Allocate enough 32bit PA addressable pages to cover @size from the
27408c2ecf20Sopenharmony_ci * page level allocator and map them into contiguous kernel virtual space.
27418c2ecf20Sopenharmony_ci *
27428c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
27438c2ecf20Sopenharmony_ci */
27448c2ecf20Sopenharmony_civoid *vmalloc_32(unsigned long size)
27458c2ecf20Sopenharmony_ci{
27468c2ecf20Sopenharmony_ci	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
27478c2ecf20Sopenharmony_ci			__builtin_return_address(0));
27488c2ecf20Sopenharmony_ci}
27498c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmalloc_32);
27508c2ecf20Sopenharmony_ci
27518c2ecf20Sopenharmony_ci/**
27528c2ecf20Sopenharmony_ci * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
27538c2ecf20Sopenharmony_ci * @size:	     allocation size
27548c2ecf20Sopenharmony_ci *
27558c2ecf20Sopenharmony_ci * The resulting memory area is 32bit addressable and zeroed so it can be
27568c2ecf20Sopenharmony_ci * mapped to userspace without leaking data.
27578c2ecf20Sopenharmony_ci *
27588c2ecf20Sopenharmony_ci * Return: pointer to the allocated memory or %NULL on error
27598c2ecf20Sopenharmony_ci */
27608c2ecf20Sopenharmony_civoid *vmalloc_32_user(unsigned long size)
27618c2ecf20Sopenharmony_ci{
27628c2ecf20Sopenharmony_ci	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
27638c2ecf20Sopenharmony_ci				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
27648c2ecf20Sopenharmony_ci				    VM_USERMAP, NUMA_NO_NODE,
27658c2ecf20Sopenharmony_ci				    __builtin_return_address(0));
27668c2ecf20Sopenharmony_ci}
27678c2ecf20Sopenharmony_ciEXPORT_SYMBOL(vmalloc_32_user);
27688c2ecf20Sopenharmony_ci
27698c2ecf20Sopenharmony_ci/*
27708c2ecf20Sopenharmony_ci * small helper routine , copy contents to buf from addr.
27718c2ecf20Sopenharmony_ci * If the page is not present, fill zero.
27728c2ecf20Sopenharmony_ci */
27738c2ecf20Sopenharmony_ci
27748c2ecf20Sopenharmony_cistatic int aligned_vread(char *buf, char *addr, unsigned long count)
27758c2ecf20Sopenharmony_ci{
27768c2ecf20Sopenharmony_ci	struct page *p;
27778c2ecf20Sopenharmony_ci	int copied = 0;
27788c2ecf20Sopenharmony_ci
27798c2ecf20Sopenharmony_ci	while (count) {
27808c2ecf20Sopenharmony_ci		unsigned long offset, length;
27818c2ecf20Sopenharmony_ci
27828c2ecf20Sopenharmony_ci		offset = offset_in_page(addr);
27838c2ecf20Sopenharmony_ci		length = PAGE_SIZE - offset;
27848c2ecf20Sopenharmony_ci		if (length > count)
27858c2ecf20Sopenharmony_ci			length = count;
27868c2ecf20Sopenharmony_ci		p = vmalloc_to_page(addr);
27878c2ecf20Sopenharmony_ci		/*
27888c2ecf20Sopenharmony_ci		 * To do safe access to this _mapped_ area, we need
27898c2ecf20Sopenharmony_ci		 * lock. But adding lock here means that we need to add
27908c2ecf20Sopenharmony_ci		 * overhead of vmalloc()/vfree() calles for this _debug_
27918c2ecf20Sopenharmony_ci		 * interface, rarely used. Instead of that, we'll use
27928c2ecf20Sopenharmony_ci		 * kmap() and get small overhead in this access function.
27938c2ecf20Sopenharmony_ci		 */
27948c2ecf20Sopenharmony_ci		if (p) {
27958c2ecf20Sopenharmony_ci			/*
27968c2ecf20Sopenharmony_ci			 * we can expect USER0 is not used (see vread/vwrite's
27978c2ecf20Sopenharmony_ci			 * function description)
27988c2ecf20Sopenharmony_ci			 */
27998c2ecf20Sopenharmony_ci			void *map = kmap_atomic(p);
28008c2ecf20Sopenharmony_ci			memcpy(buf, map + offset, length);
28018c2ecf20Sopenharmony_ci			kunmap_atomic(map);
28028c2ecf20Sopenharmony_ci		} else
28038c2ecf20Sopenharmony_ci			memset(buf, 0, length);
28048c2ecf20Sopenharmony_ci
28058c2ecf20Sopenharmony_ci		addr += length;
28068c2ecf20Sopenharmony_ci		buf += length;
28078c2ecf20Sopenharmony_ci		copied += length;
28088c2ecf20Sopenharmony_ci		count -= length;
28098c2ecf20Sopenharmony_ci	}
28108c2ecf20Sopenharmony_ci	return copied;
28118c2ecf20Sopenharmony_ci}
28128c2ecf20Sopenharmony_ci
28138c2ecf20Sopenharmony_cistatic int aligned_vwrite(char *buf, char *addr, unsigned long count)
28148c2ecf20Sopenharmony_ci{
28158c2ecf20Sopenharmony_ci	struct page *p;
28168c2ecf20Sopenharmony_ci	int copied = 0;
28178c2ecf20Sopenharmony_ci
28188c2ecf20Sopenharmony_ci	while (count) {
28198c2ecf20Sopenharmony_ci		unsigned long offset, length;
28208c2ecf20Sopenharmony_ci
28218c2ecf20Sopenharmony_ci		offset = offset_in_page(addr);
28228c2ecf20Sopenharmony_ci		length = PAGE_SIZE - offset;
28238c2ecf20Sopenharmony_ci		if (length > count)
28248c2ecf20Sopenharmony_ci			length = count;
28258c2ecf20Sopenharmony_ci		p = vmalloc_to_page(addr);
28268c2ecf20Sopenharmony_ci		/*
28278c2ecf20Sopenharmony_ci		 * To do safe access to this _mapped_ area, we need
28288c2ecf20Sopenharmony_ci		 * lock. But adding lock here means that we need to add
28298c2ecf20Sopenharmony_ci		 * overhead of vmalloc()/vfree() calles for this _debug_
28308c2ecf20Sopenharmony_ci		 * interface, rarely used. Instead of that, we'll use
28318c2ecf20Sopenharmony_ci		 * kmap() and get small overhead in this access function.
28328c2ecf20Sopenharmony_ci		 */
28338c2ecf20Sopenharmony_ci		if (p) {
28348c2ecf20Sopenharmony_ci			/*
28358c2ecf20Sopenharmony_ci			 * we can expect USER0 is not used (see vread/vwrite's
28368c2ecf20Sopenharmony_ci			 * function description)
28378c2ecf20Sopenharmony_ci			 */
28388c2ecf20Sopenharmony_ci			void *map = kmap_atomic(p);
28398c2ecf20Sopenharmony_ci			memcpy(map + offset, buf, length);
28408c2ecf20Sopenharmony_ci			kunmap_atomic(map);
28418c2ecf20Sopenharmony_ci		}
28428c2ecf20Sopenharmony_ci		addr += length;
28438c2ecf20Sopenharmony_ci		buf += length;
28448c2ecf20Sopenharmony_ci		copied += length;
28458c2ecf20Sopenharmony_ci		count -= length;
28468c2ecf20Sopenharmony_ci	}
28478c2ecf20Sopenharmony_ci	return copied;
28488c2ecf20Sopenharmony_ci}
28498c2ecf20Sopenharmony_ci
28508c2ecf20Sopenharmony_ci/**
28518c2ecf20Sopenharmony_ci * vread() - read vmalloc area in a safe way.
28528c2ecf20Sopenharmony_ci * @buf:     buffer for reading data
28538c2ecf20Sopenharmony_ci * @addr:    vm address.
28548c2ecf20Sopenharmony_ci * @count:   number of bytes to be read.
28558c2ecf20Sopenharmony_ci *
28568c2ecf20Sopenharmony_ci * This function checks that addr is a valid vmalloc'ed area, and
28578c2ecf20Sopenharmony_ci * copy data from that area to a given buffer. If the given memory range
28588c2ecf20Sopenharmony_ci * of [addr...addr+count) includes some valid address, data is copied to
28598c2ecf20Sopenharmony_ci * proper area of @buf. If there are memory holes, they'll be zero-filled.
28608c2ecf20Sopenharmony_ci * IOREMAP area is treated as memory hole and no copy is done.
28618c2ecf20Sopenharmony_ci *
28628c2ecf20Sopenharmony_ci * If [addr...addr+count) doesn't includes any intersects with alive
28638c2ecf20Sopenharmony_ci * vm_struct area, returns 0. @buf should be kernel's buffer.
28648c2ecf20Sopenharmony_ci *
28658c2ecf20Sopenharmony_ci * Note: In usual ops, vread() is never necessary because the caller
28668c2ecf20Sopenharmony_ci * should know vmalloc() area is valid and can use memcpy().
28678c2ecf20Sopenharmony_ci * This is for routines which have to access vmalloc area without
28688c2ecf20Sopenharmony_ci * any information, as /dev/kmem.
28698c2ecf20Sopenharmony_ci *
28708c2ecf20Sopenharmony_ci * Return: number of bytes for which addr and buf should be increased
28718c2ecf20Sopenharmony_ci * (same number as @count) or %0 if [addr...addr+count) doesn't
28728c2ecf20Sopenharmony_ci * include any intersection with valid vmalloc area
28738c2ecf20Sopenharmony_ci */
28748c2ecf20Sopenharmony_cilong vread(char *buf, char *addr, unsigned long count)
28758c2ecf20Sopenharmony_ci{
28768c2ecf20Sopenharmony_ci	struct vmap_area *va;
28778c2ecf20Sopenharmony_ci	struct vm_struct *vm;
28788c2ecf20Sopenharmony_ci	char *vaddr, *buf_start = buf;
28798c2ecf20Sopenharmony_ci	unsigned long buflen = count;
28808c2ecf20Sopenharmony_ci	unsigned long n;
28818c2ecf20Sopenharmony_ci
28828c2ecf20Sopenharmony_ci	/* Don't allow overflow */
28838c2ecf20Sopenharmony_ci	if ((unsigned long) addr + count < count)
28848c2ecf20Sopenharmony_ci		count = -(unsigned long) addr;
28858c2ecf20Sopenharmony_ci
28868c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
28878c2ecf20Sopenharmony_ci	list_for_each_entry(va, &vmap_area_list, list) {
28888c2ecf20Sopenharmony_ci		if (!count)
28898c2ecf20Sopenharmony_ci			break;
28908c2ecf20Sopenharmony_ci
28918c2ecf20Sopenharmony_ci		if (!va->vm)
28928c2ecf20Sopenharmony_ci			continue;
28938c2ecf20Sopenharmony_ci
28948c2ecf20Sopenharmony_ci		vm = va->vm;
28958c2ecf20Sopenharmony_ci		vaddr = (char *) vm->addr;
28968c2ecf20Sopenharmony_ci		if (addr >= vaddr + get_vm_area_size(vm))
28978c2ecf20Sopenharmony_ci			continue;
28988c2ecf20Sopenharmony_ci		while (addr < vaddr) {
28998c2ecf20Sopenharmony_ci			if (count == 0)
29008c2ecf20Sopenharmony_ci				goto finished;
29018c2ecf20Sopenharmony_ci			*buf = '\0';
29028c2ecf20Sopenharmony_ci			buf++;
29038c2ecf20Sopenharmony_ci			addr++;
29048c2ecf20Sopenharmony_ci			count--;
29058c2ecf20Sopenharmony_ci		}
29068c2ecf20Sopenharmony_ci		n = vaddr + get_vm_area_size(vm) - addr;
29078c2ecf20Sopenharmony_ci		if (n > count)
29088c2ecf20Sopenharmony_ci			n = count;
29098c2ecf20Sopenharmony_ci		if (!(vm->flags & VM_IOREMAP))
29108c2ecf20Sopenharmony_ci			aligned_vread(buf, addr, n);
29118c2ecf20Sopenharmony_ci		else /* IOREMAP area is treated as memory hole */
29128c2ecf20Sopenharmony_ci			memset(buf, 0, n);
29138c2ecf20Sopenharmony_ci		buf += n;
29148c2ecf20Sopenharmony_ci		addr += n;
29158c2ecf20Sopenharmony_ci		count -= n;
29168c2ecf20Sopenharmony_ci	}
29178c2ecf20Sopenharmony_cifinished:
29188c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
29198c2ecf20Sopenharmony_ci
29208c2ecf20Sopenharmony_ci	if (buf == buf_start)
29218c2ecf20Sopenharmony_ci		return 0;
29228c2ecf20Sopenharmony_ci	/* zero-fill memory holes */
29238c2ecf20Sopenharmony_ci	if (buf != buf_start + buflen)
29248c2ecf20Sopenharmony_ci		memset(buf, 0, buflen - (buf - buf_start));
29258c2ecf20Sopenharmony_ci
29268c2ecf20Sopenharmony_ci	return buflen;
29278c2ecf20Sopenharmony_ci}
29288c2ecf20Sopenharmony_ci
29298c2ecf20Sopenharmony_ci/**
29308c2ecf20Sopenharmony_ci * vwrite() - write vmalloc area in a safe way.
29318c2ecf20Sopenharmony_ci * @buf:      buffer for source data
29328c2ecf20Sopenharmony_ci * @addr:     vm address.
29338c2ecf20Sopenharmony_ci * @count:    number of bytes to be read.
29348c2ecf20Sopenharmony_ci *
29358c2ecf20Sopenharmony_ci * This function checks that addr is a valid vmalloc'ed area, and
29368c2ecf20Sopenharmony_ci * copy data from a buffer to the given addr. If specified range of
29378c2ecf20Sopenharmony_ci * [addr...addr+count) includes some valid address, data is copied from
29388c2ecf20Sopenharmony_ci * proper area of @buf. If there are memory holes, no copy to hole.
29398c2ecf20Sopenharmony_ci * IOREMAP area is treated as memory hole and no copy is done.
29408c2ecf20Sopenharmony_ci *
29418c2ecf20Sopenharmony_ci * If [addr...addr+count) doesn't includes any intersects with alive
29428c2ecf20Sopenharmony_ci * vm_struct area, returns 0. @buf should be kernel's buffer.
29438c2ecf20Sopenharmony_ci *
29448c2ecf20Sopenharmony_ci * Note: In usual ops, vwrite() is never necessary because the caller
29458c2ecf20Sopenharmony_ci * should know vmalloc() area is valid and can use memcpy().
29468c2ecf20Sopenharmony_ci * This is for routines which have to access vmalloc area without
29478c2ecf20Sopenharmony_ci * any information, as /dev/kmem.
29488c2ecf20Sopenharmony_ci *
29498c2ecf20Sopenharmony_ci * Return: number of bytes for which addr and buf should be
29508c2ecf20Sopenharmony_ci * increased (same number as @count) or %0 if [addr...addr+count)
29518c2ecf20Sopenharmony_ci * doesn't include any intersection with valid vmalloc area
29528c2ecf20Sopenharmony_ci */
29538c2ecf20Sopenharmony_cilong vwrite(char *buf, char *addr, unsigned long count)
29548c2ecf20Sopenharmony_ci{
29558c2ecf20Sopenharmony_ci	struct vmap_area *va;
29568c2ecf20Sopenharmony_ci	struct vm_struct *vm;
29578c2ecf20Sopenharmony_ci	char *vaddr;
29588c2ecf20Sopenharmony_ci	unsigned long n, buflen;
29598c2ecf20Sopenharmony_ci	int copied = 0;
29608c2ecf20Sopenharmony_ci
29618c2ecf20Sopenharmony_ci	/* Don't allow overflow */
29628c2ecf20Sopenharmony_ci	if ((unsigned long) addr + count < count)
29638c2ecf20Sopenharmony_ci		count = -(unsigned long) addr;
29648c2ecf20Sopenharmony_ci	buflen = count;
29658c2ecf20Sopenharmony_ci
29668c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
29678c2ecf20Sopenharmony_ci	list_for_each_entry(va, &vmap_area_list, list) {
29688c2ecf20Sopenharmony_ci		if (!count)
29698c2ecf20Sopenharmony_ci			break;
29708c2ecf20Sopenharmony_ci
29718c2ecf20Sopenharmony_ci		if (!va->vm)
29728c2ecf20Sopenharmony_ci			continue;
29738c2ecf20Sopenharmony_ci
29748c2ecf20Sopenharmony_ci		vm = va->vm;
29758c2ecf20Sopenharmony_ci		vaddr = (char *) vm->addr;
29768c2ecf20Sopenharmony_ci		if (addr >= vaddr + get_vm_area_size(vm))
29778c2ecf20Sopenharmony_ci			continue;
29788c2ecf20Sopenharmony_ci		while (addr < vaddr) {
29798c2ecf20Sopenharmony_ci			if (count == 0)
29808c2ecf20Sopenharmony_ci				goto finished;
29818c2ecf20Sopenharmony_ci			buf++;
29828c2ecf20Sopenharmony_ci			addr++;
29838c2ecf20Sopenharmony_ci			count--;
29848c2ecf20Sopenharmony_ci		}
29858c2ecf20Sopenharmony_ci		n = vaddr + get_vm_area_size(vm) - addr;
29868c2ecf20Sopenharmony_ci		if (n > count)
29878c2ecf20Sopenharmony_ci			n = count;
29888c2ecf20Sopenharmony_ci		if (!(vm->flags & VM_IOREMAP)) {
29898c2ecf20Sopenharmony_ci			aligned_vwrite(buf, addr, n);
29908c2ecf20Sopenharmony_ci			copied++;
29918c2ecf20Sopenharmony_ci		}
29928c2ecf20Sopenharmony_ci		buf += n;
29938c2ecf20Sopenharmony_ci		addr += n;
29948c2ecf20Sopenharmony_ci		count -= n;
29958c2ecf20Sopenharmony_ci	}
29968c2ecf20Sopenharmony_cifinished:
29978c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
29988c2ecf20Sopenharmony_ci	if (!copied)
29998c2ecf20Sopenharmony_ci		return 0;
30008c2ecf20Sopenharmony_ci	return buflen;
30018c2ecf20Sopenharmony_ci}
30028c2ecf20Sopenharmony_ci
30038c2ecf20Sopenharmony_ci/**
30048c2ecf20Sopenharmony_ci * remap_vmalloc_range_partial - map vmalloc pages to userspace
30058c2ecf20Sopenharmony_ci * @vma:		vma to cover
30068c2ecf20Sopenharmony_ci * @uaddr:		target user address to start at
30078c2ecf20Sopenharmony_ci * @kaddr:		virtual address of vmalloc kernel memory
30088c2ecf20Sopenharmony_ci * @pgoff:		offset from @kaddr to start at
30098c2ecf20Sopenharmony_ci * @size:		size of map area
30108c2ecf20Sopenharmony_ci *
30118c2ecf20Sopenharmony_ci * Returns:	0 for success, -Exxx on failure
30128c2ecf20Sopenharmony_ci *
30138c2ecf20Sopenharmony_ci * This function checks that @kaddr is a valid vmalloc'ed area,
30148c2ecf20Sopenharmony_ci * and that it is big enough to cover the range starting at
30158c2ecf20Sopenharmony_ci * @uaddr in @vma. Will return failure if that criteria isn't
30168c2ecf20Sopenharmony_ci * met.
30178c2ecf20Sopenharmony_ci *
30188c2ecf20Sopenharmony_ci * Similar to remap_pfn_range() (see mm/memory.c)
30198c2ecf20Sopenharmony_ci */
30208c2ecf20Sopenharmony_ciint remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
30218c2ecf20Sopenharmony_ci				void *kaddr, unsigned long pgoff,
30228c2ecf20Sopenharmony_ci				unsigned long size)
30238c2ecf20Sopenharmony_ci{
30248c2ecf20Sopenharmony_ci	struct vm_struct *area;
30258c2ecf20Sopenharmony_ci	unsigned long off;
30268c2ecf20Sopenharmony_ci	unsigned long end_index;
30278c2ecf20Sopenharmony_ci
30288c2ecf20Sopenharmony_ci	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
30298c2ecf20Sopenharmony_ci		return -EINVAL;
30308c2ecf20Sopenharmony_ci
30318c2ecf20Sopenharmony_ci	size = PAGE_ALIGN(size);
30328c2ecf20Sopenharmony_ci
30338c2ecf20Sopenharmony_ci	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
30348c2ecf20Sopenharmony_ci		return -EINVAL;
30358c2ecf20Sopenharmony_ci
30368c2ecf20Sopenharmony_ci	area = find_vm_area(kaddr);
30378c2ecf20Sopenharmony_ci	if (!area)
30388c2ecf20Sopenharmony_ci		return -EINVAL;
30398c2ecf20Sopenharmony_ci
30408c2ecf20Sopenharmony_ci	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
30418c2ecf20Sopenharmony_ci		return -EINVAL;
30428c2ecf20Sopenharmony_ci
30438c2ecf20Sopenharmony_ci	if (check_add_overflow(size, off, &end_index) ||
30448c2ecf20Sopenharmony_ci	    end_index > get_vm_area_size(area))
30458c2ecf20Sopenharmony_ci		return -EINVAL;
30468c2ecf20Sopenharmony_ci	kaddr += off;
30478c2ecf20Sopenharmony_ci
30488c2ecf20Sopenharmony_ci	do {
30498c2ecf20Sopenharmony_ci		struct page *page = vmalloc_to_page(kaddr);
30508c2ecf20Sopenharmony_ci		int ret;
30518c2ecf20Sopenharmony_ci
30528c2ecf20Sopenharmony_ci		ret = vm_insert_page(vma, uaddr, page);
30538c2ecf20Sopenharmony_ci		if (ret)
30548c2ecf20Sopenharmony_ci			return ret;
30558c2ecf20Sopenharmony_ci
30568c2ecf20Sopenharmony_ci		uaddr += PAGE_SIZE;
30578c2ecf20Sopenharmony_ci		kaddr += PAGE_SIZE;
30588c2ecf20Sopenharmony_ci		size -= PAGE_SIZE;
30598c2ecf20Sopenharmony_ci	} while (size > 0);
30608c2ecf20Sopenharmony_ci
30618c2ecf20Sopenharmony_ci	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
30628c2ecf20Sopenharmony_ci
30638c2ecf20Sopenharmony_ci	return 0;
30648c2ecf20Sopenharmony_ci}
30658c2ecf20Sopenharmony_ciEXPORT_SYMBOL(remap_vmalloc_range_partial);
30668c2ecf20Sopenharmony_ci
30678c2ecf20Sopenharmony_ci/**
30688c2ecf20Sopenharmony_ci * remap_vmalloc_range - map vmalloc pages to userspace
30698c2ecf20Sopenharmony_ci * @vma:		vma to cover (map full range of vma)
30708c2ecf20Sopenharmony_ci * @addr:		vmalloc memory
30718c2ecf20Sopenharmony_ci * @pgoff:		number of pages into addr before first page to map
30728c2ecf20Sopenharmony_ci *
30738c2ecf20Sopenharmony_ci * Returns:	0 for success, -Exxx on failure
30748c2ecf20Sopenharmony_ci *
30758c2ecf20Sopenharmony_ci * This function checks that addr is a valid vmalloc'ed area, and
30768c2ecf20Sopenharmony_ci * that it is big enough to cover the vma. Will return failure if
30778c2ecf20Sopenharmony_ci * that criteria isn't met.
30788c2ecf20Sopenharmony_ci *
30798c2ecf20Sopenharmony_ci * Similar to remap_pfn_range() (see mm/memory.c)
30808c2ecf20Sopenharmony_ci */
30818c2ecf20Sopenharmony_ciint remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
30828c2ecf20Sopenharmony_ci						unsigned long pgoff)
30838c2ecf20Sopenharmony_ci{
30848c2ecf20Sopenharmony_ci	return remap_vmalloc_range_partial(vma, vma->vm_start,
30858c2ecf20Sopenharmony_ci					   addr, pgoff,
30868c2ecf20Sopenharmony_ci					   vma->vm_end - vma->vm_start);
30878c2ecf20Sopenharmony_ci}
30888c2ecf20Sopenharmony_ciEXPORT_SYMBOL(remap_vmalloc_range);
30898c2ecf20Sopenharmony_ci
30908c2ecf20Sopenharmony_civoid free_vm_area(struct vm_struct *area)
30918c2ecf20Sopenharmony_ci{
30928c2ecf20Sopenharmony_ci	struct vm_struct *ret;
30938c2ecf20Sopenharmony_ci	ret = remove_vm_area(area->addr);
30948c2ecf20Sopenharmony_ci	BUG_ON(ret != area);
30958c2ecf20Sopenharmony_ci	kfree(area);
30968c2ecf20Sopenharmony_ci}
30978c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(free_vm_area);
30988c2ecf20Sopenharmony_ci
30998c2ecf20Sopenharmony_ci#ifdef CONFIG_SMP
31008c2ecf20Sopenharmony_cistatic struct vmap_area *node_to_va(struct rb_node *n)
31018c2ecf20Sopenharmony_ci{
31028c2ecf20Sopenharmony_ci	return rb_entry_safe(n, struct vmap_area, rb_node);
31038c2ecf20Sopenharmony_ci}
31048c2ecf20Sopenharmony_ci
31058c2ecf20Sopenharmony_ci/**
31068c2ecf20Sopenharmony_ci * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
31078c2ecf20Sopenharmony_ci * @addr: target address
31088c2ecf20Sopenharmony_ci *
31098c2ecf20Sopenharmony_ci * Returns: vmap_area if it is found. If there is no such area
31108c2ecf20Sopenharmony_ci *   the first highest(reverse order) vmap_area is returned
31118c2ecf20Sopenharmony_ci *   i.e. va->va_start < addr && va->va_end < addr or NULL
31128c2ecf20Sopenharmony_ci *   if there are no any areas before @addr.
31138c2ecf20Sopenharmony_ci */
31148c2ecf20Sopenharmony_cistatic struct vmap_area *
31158c2ecf20Sopenharmony_cipvm_find_va_enclose_addr(unsigned long addr)
31168c2ecf20Sopenharmony_ci{
31178c2ecf20Sopenharmony_ci	struct vmap_area *va, *tmp;
31188c2ecf20Sopenharmony_ci	struct rb_node *n;
31198c2ecf20Sopenharmony_ci
31208c2ecf20Sopenharmony_ci	n = free_vmap_area_root.rb_node;
31218c2ecf20Sopenharmony_ci	va = NULL;
31228c2ecf20Sopenharmony_ci
31238c2ecf20Sopenharmony_ci	while (n) {
31248c2ecf20Sopenharmony_ci		tmp = rb_entry(n, struct vmap_area, rb_node);
31258c2ecf20Sopenharmony_ci		if (tmp->va_start <= addr) {
31268c2ecf20Sopenharmony_ci			va = tmp;
31278c2ecf20Sopenharmony_ci			if (tmp->va_end >= addr)
31288c2ecf20Sopenharmony_ci				break;
31298c2ecf20Sopenharmony_ci
31308c2ecf20Sopenharmony_ci			n = n->rb_right;
31318c2ecf20Sopenharmony_ci		} else {
31328c2ecf20Sopenharmony_ci			n = n->rb_left;
31338c2ecf20Sopenharmony_ci		}
31348c2ecf20Sopenharmony_ci	}
31358c2ecf20Sopenharmony_ci
31368c2ecf20Sopenharmony_ci	return va;
31378c2ecf20Sopenharmony_ci}
31388c2ecf20Sopenharmony_ci
31398c2ecf20Sopenharmony_ci/**
31408c2ecf20Sopenharmony_ci * pvm_determine_end_from_reverse - find the highest aligned address
31418c2ecf20Sopenharmony_ci * of free block below VMALLOC_END
31428c2ecf20Sopenharmony_ci * @va:
31438c2ecf20Sopenharmony_ci *   in - the VA we start the search(reverse order);
31448c2ecf20Sopenharmony_ci *   out - the VA with the highest aligned end address.
31458c2ecf20Sopenharmony_ci *
31468c2ecf20Sopenharmony_ci * Returns: determined end address within vmap_area
31478c2ecf20Sopenharmony_ci */
31488c2ecf20Sopenharmony_cistatic unsigned long
31498c2ecf20Sopenharmony_cipvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
31508c2ecf20Sopenharmony_ci{
31518c2ecf20Sopenharmony_ci	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
31528c2ecf20Sopenharmony_ci	unsigned long addr;
31538c2ecf20Sopenharmony_ci
31548c2ecf20Sopenharmony_ci	if (likely(*va)) {
31558c2ecf20Sopenharmony_ci		list_for_each_entry_from_reverse((*va),
31568c2ecf20Sopenharmony_ci				&free_vmap_area_list, list) {
31578c2ecf20Sopenharmony_ci			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
31588c2ecf20Sopenharmony_ci			if ((*va)->va_start < addr)
31598c2ecf20Sopenharmony_ci				return addr;
31608c2ecf20Sopenharmony_ci		}
31618c2ecf20Sopenharmony_ci	}
31628c2ecf20Sopenharmony_ci
31638c2ecf20Sopenharmony_ci	return 0;
31648c2ecf20Sopenharmony_ci}
31658c2ecf20Sopenharmony_ci
31668c2ecf20Sopenharmony_ci/**
31678c2ecf20Sopenharmony_ci * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
31688c2ecf20Sopenharmony_ci * @offsets: array containing offset of each area
31698c2ecf20Sopenharmony_ci * @sizes: array containing size of each area
31708c2ecf20Sopenharmony_ci * @nr_vms: the number of areas to allocate
31718c2ecf20Sopenharmony_ci * @align: alignment, all entries in @offsets and @sizes must be aligned to this
31728c2ecf20Sopenharmony_ci *
31738c2ecf20Sopenharmony_ci * Returns: kmalloc'd vm_struct pointer array pointing to allocated
31748c2ecf20Sopenharmony_ci *	    vm_structs on success, %NULL on failure
31758c2ecf20Sopenharmony_ci *
31768c2ecf20Sopenharmony_ci * Percpu allocator wants to use congruent vm areas so that it can
31778c2ecf20Sopenharmony_ci * maintain the offsets among percpu areas.  This function allocates
31788c2ecf20Sopenharmony_ci * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
31798c2ecf20Sopenharmony_ci * be scattered pretty far, distance between two areas easily going up
31808c2ecf20Sopenharmony_ci * to gigabytes.  To avoid interacting with regular vmallocs, these
31818c2ecf20Sopenharmony_ci * areas are allocated from top.
31828c2ecf20Sopenharmony_ci *
31838c2ecf20Sopenharmony_ci * Despite its complicated look, this allocator is rather simple. It
31848c2ecf20Sopenharmony_ci * does everything top-down and scans free blocks from the end looking
31858c2ecf20Sopenharmony_ci * for matching base. While scanning, if any of the areas do not fit the
31868c2ecf20Sopenharmony_ci * base address is pulled down to fit the area. Scanning is repeated till
31878c2ecf20Sopenharmony_ci * all the areas fit and then all necessary data structures are inserted
31888c2ecf20Sopenharmony_ci * and the result is returned.
31898c2ecf20Sopenharmony_ci */
31908c2ecf20Sopenharmony_cistruct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
31918c2ecf20Sopenharmony_ci				     const size_t *sizes, int nr_vms,
31928c2ecf20Sopenharmony_ci				     size_t align)
31938c2ecf20Sopenharmony_ci{
31948c2ecf20Sopenharmony_ci	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
31958c2ecf20Sopenharmony_ci	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
31968c2ecf20Sopenharmony_ci	struct vmap_area **vas, *va;
31978c2ecf20Sopenharmony_ci	struct vm_struct **vms;
31988c2ecf20Sopenharmony_ci	int area, area2, last_area, term_area;
31998c2ecf20Sopenharmony_ci	unsigned long base, start, size, end, last_end, orig_start, orig_end;
32008c2ecf20Sopenharmony_ci	bool purged = false;
32018c2ecf20Sopenharmony_ci	enum fit_type type;
32028c2ecf20Sopenharmony_ci
32038c2ecf20Sopenharmony_ci	/* verify parameters and allocate data structures */
32048c2ecf20Sopenharmony_ci	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
32058c2ecf20Sopenharmony_ci	for (last_area = 0, area = 0; area < nr_vms; area++) {
32068c2ecf20Sopenharmony_ci		start = offsets[area];
32078c2ecf20Sopenharmony_ci		end = start + sizes[area];
32088c2ecf20Sopenharmony_ci
32098c2ecf20Sopenharmony_ci		/* is everything aligned properly? */
32108c2ecf20Sopenharmony_ci		BUG_ON(!IS_ALIGNED(offsets[area], align));
32118c2ecf20Sopenharmony_ci		BUG_ON(!IS_ALIGNED(sizes[area], align));
32128c2ecf20Sopenharmony_ci
32138c2ecf20Sopenharmony_ci		/* detect the area with the highest address */
32148c2ecf20Sopenharmony_ci		if (start > offsets[last_area])
32158c2ecf20Sopenharmony_ci			last_area = area;
32168c2ecf20Sopenharmony_ci
32178c2ecf20Sopenharmony_ci		for (area2 = area + 1; area2 < nr_vms; area2++) {
32188c2ecf20Sopenharmony_ci			unsigned long start2 = offsets[area2];
32198c2ecf20Sopenharmony_ci			unsigned long end2 = start2 + sizes[area2];
32208c2ecf20Sopenharmony_ci
32218c2ecf20Sopenharmony_ci			BUG_ON(start2 < end && start < end2);
32228c2ecf20Sopenharmony_ci		}
32238c2ecf20Sopenharmony_ci	}
32248c2ecf20Sopenharmony_ci	last_end = offsets[last_area] + sizes[last_area];
32258c2ecf20Sopenharmony_ci
32268c2ecf20Sopenharmony_ci	if (vmalloc_end - vmalloc_start < last_end) {
32278c2ecf20Sopenharmony_ci		WARN_ON(true);
32288c2ecf20Sopenharmony_ci		return NULL;
32298c2ecf20Sopenharmony_ci	}
32308c2ecf20Sopenharmony_ci
32318c2ecf20Sopenharmony_ci	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
32328c2ecf20Sopenharmony_ci	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
32338c2ecf20Sopenharmony_ci	if (!vas || !vms)
32348c2ecf20Sopenharmony_ci		goto err_free2;
32358c2ecf20Sopenharmony_ci
32368c2ecf20Sopenharmony_ci	for (area = 0; area < nr_vms; area++) {
32378c2ecf20Sopenharmony_ci		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
32388c2ecf20Sopenharmony_ci		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
32398c2ecf20Sopenharmony_ci		if (!vas[area] || !vms[area])
32408c2ecf20Sopenharmony_ci			goto err_free;
32418c2ecf20Sopenharmony_ci	}
32428c2ecf20Sopenharmony_ciretry:
32438c2ecf20Sopenharmony_ci	spin_lock(&free_vmap_area_lock);
32448c2ecf20Sopenharmony_ci
32458c2ecf20Sopenharmony_ci	/* start scanning - we scan from the top, begin with the last area */
32468c2ecf20Sopenharmony_ci	area = term_area = last_area;
32478c2ecf20Sopenharmony_ci	start = offsets[area];
32488c2ecf20Sopenharmony_ci	end = start + sizes[area];
32498c2ecf20Sopenharmony_ci
32508c2ecf20Sopenharmony_ci	va = pvm_find_va_enclose_addr(vmalloc_end);
32518c2ecf20Sopenharmony_ci	base = pvm_determine_end_from_reverse(&va, align) - end;
32528c2ecf20Sopenharmony_ci
32538c2ecf20Sopenharmony_ci	while (true) {
32548c2ecf20Sopenharmony_ci		/*
32558c2ecf20Sopenharmony_ci		 * base might have underflowed, add last_end before
32568c2ecf20Sopenharmony_ci		 * comparing.
32578c2ecf20Sopenharmony_ci		 */
32588c2ecf20Sopenharmony_ci		if (base + last_end < vmalloc_start + last_end)
32598c2ecf20Sopenharmony_ci			goto overflow;
32608c2ecf20Sopenharmony_ci
32618c2ecf20Sopenharmony_ci		/*
32628c2ecf20Sopenharmony_ci		 * Fitting base has not been found.
32638c2ecf20Sopenharmony_ci		 */
32648c2ecf20Sopenharmony_ci		if (va == NULL)
32658c2ecf20Sopenharmony_ci			goto overflow;
32668c2ecf20Sopenharmony_ci
32678c2ecf20Sopenharmony_ci		/*
32688c2ecf20Sopenharmony_ci		 * If required width exceeds current VA block, move
32698c2ecf20Sopenharmony_ci		 * base downwards and then recheck.
32708c2ecf20Sopenharmony_ci		 */
32718c2ecf20Sopenharmony_ci		if (base + end > va->va_end) {
32728c2ecf20Sopenharmony_ci			base = pvm_determine_end_from_reverse(&va, align) - end;
32738c2ecf20Sopenharmony_ci			term_area = area;
32748c2ecf20Sopenharmony_ci			continue;
32758c2ecf20Sopenharmony_ci		}
32768c2ecf20Sopenharmony_ci
32778c2ecf20Sopenharmony_ci		/*
32788c2ecf20Sopenharmony_ci		 * If this VA does not fit, move base downwards and recheck.
32798c2ecf20Sopenharmony_ci		 */
32808c2ecf20Sopenharmony_ci		if (base + start < va->va_start) {
32818c2ecf20Sopenharmony_ci			va = node_to_va(rb_prev(&va->rb_node));
32828c2ecf20Sopenharmony_ci			base = pvm_determine_end_from_reverse(&va, align) - end;
32838c2ecf20Sopenharmony_ci			term_area = area;
32848c2ecf20Sopenharmony_ci			continue;
32858c2ecf20Sopenharmony_ci		}
32868c2ecf20Sopenharmony_ci
32878c2ecf20Sopenharmony_ci		/*
32888c2ecf20Sopenharmony_ci		 * This area fits, move on to the previous one.  If
32898c2ecf20Sopenharmony_ci		 * the previous one is the terminal one, we're done.
32908c2ecf20Sopenharmony_ci		 */
32918c2ecf20Sopenharmony_ci		area = (area + nr_vms - 1) % nr_vms;
32928c2ecf20Sopenharmony_ci		if (area == term_area)
32938c2ecf20Sopenharmony_ci			break;
32948c2ecf20Sopenharmony_ci
32958c2ecf20Sopenharmony_ci		start = offsets[area];
32968c2ecf20Sopenharmony_ci		end = start + sizes[area];
32978c2ecf20Sopenharmony_ci		va = pvm_find_va_enclose_addr(base + end);
32988c2ecf20Sopenharmony_ci	}
32998c2ecf20Sopenharmony_ci
33008c2ecf20Sopenharmony_ci	/* we've found a fitting base, insert all va's */
33018c2ecf20Sopenharmony_ci	for (area = 0; area < nr_vms; area++) {
33028c2ecf20Sopenharmony_ci		int ret;
33038c2ecf20Sopenharmony_ci
33048c2ecf20Sopenharmony_ci		start = base + offsets[area];
33058c2ecf20Sopenharmony_ci		size = sizes[area];
33068c2ecf20Sopenharmony_ci
33078c2ecf20Sopenharmony_ci		va = pvm_find_va_enclose_addr(start);
33088c2ecf20Sopenharmony_ci		if (WARN_ON_ONCE(va == NULL))
33098c2ecf20Sopenharmony_ci			/* It is a BUG(), but trigger recovery instead. */
33108c2ecf20Sopenharmony_ci			goto recovery;
33118c2ecf20Sopenharmony_ci
33128c2ecf20Sopenharmony_ci		type = classify_va_fit_type(va, start, size);
33138c2ecf20Sopenharmony_ci		if (WARN_ON_ONCE(type == NOTHING_FIT))
33148c2ecf20Sopenharmony_ci			/* It is a BUG(), but trigger recovery instead. */
33158c2ecf20Sopenharmony_ci			goto recovery;
33168c2ecf20Sopenharmony_ci
33178c2ecf20Sopenharmony_ci		ret = adjust_va_to_fit_type(va, start, size, type);
33188c2ecf20Sopenharmony_ci		if (unlikely(ret))
33198c2ecf20Sopenharmony_ci			goto recovery;
33208c2ecf20Sopenharmony_ci
33218c2ecf20Sopenharmony_ci		/* Allocated area. */
33228c2ecf20Sopenharmony_ci		va = vas[area];
33238c2ecf20Sopenharmony_ci		va->va_start = start;
33248c2ecf20Sopenharmony_ci		va->va_end = start + size;
33258c2ecf20Sopenharmony_ci	}
33268c2ecf20Sopenharmony_ci
33278c2ecf20Sopenharmony_ci	spin_unlock(&free_vmap_area_lock);
33288c2ecf20Sopenharmony_ci
33298c2ecf20Sopenharmony_ci	/* populate the kasan shadow space */
33308c2ecf20Sopenharmony_ci	for (area = 0; area < nr_vms; area++) {
33318c2ecf20Sopenharmony_ci		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
33328c2ecf20Sopenharmony_ci			goto err_free_shadow;
33338c2ecf20Sopenharmony_ci
33348c2ecf20Sopenharmony_ci		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
33358c2ecf20Sopenharmony_ci				       sizes[area]);
33368c2ecf20Sopenharmony_ci	}
33378c2ecf20Sopenharmony_ci
33388c2ecf20Sopenharmony_ci	/* insert all vm's */
33398c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
33408c2ecf20Sopenharmony_ci	for (area = 0; area < nr_vms; area++) {
33418c2ecf20Sopenharmony_ci		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
33428c2ecf20Sopenharmony_ci
33438c2ecf20Sopenharmony_ci		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
33448c2ecf20Sopenharmony_ci				 pcpu_get_vm_areas);
33458c2ecf20Sopenharmony_ci	}
33468c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
33478c2ecf20Sopenharmony_ci
33488c2ecf20Sopenharmony_ci	kfree(vas);
33498c2ecf20Sopenharmony_ci	return vms;
33508c2ecf20Sopenharmony_ci
33518c2ecf20Sopenharmony_cirecovery:
33528c2ecf20Sopenharmony_ci	/*
33538c2ecf20Sopenharmony_ci	 * Remove previously allocated areas. There is no
33548c2ecf20Sopenharmony_ci	 * need in removing these areas from the busy tree,
33558c2ecf20Sopenharmony_ci	 * because they are inserted only on the final step
33568c2ecf20Sopenharmony_ci	 * and when pcpu_get_vm_areas() is success.
33578c2ecf20Sopenharmony_ci	 */
33588c2ecf20Sopenharmony_ci	while (area--) {
33598c2ecf20Sopenharmony_ci		orig_start = vas[area]->va_start;
33608c2ecf20Sopenharmony_ci		orig_end = vas[area]->va_end;
33618c2ecf20Sopenharmony_ci		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
33628c2ecf20Sopenharmony_ci					    &free_vmap_area_list);
33638c2ecf20Sopenharmony_ci		if (va)
33648c2ecf20Sopenharmony_ci			kasan_release_vmalloc(orig_start, orig_end,
33658c2ecf20Sopenharmony_ci				va->va_start, va->va_end);
33668c2ecf20Sopenharmony_ci		vas[area] = NULL;
33678c2ecf20Sopenharmony_ci	}
33688c2ecf20Sopenharmony_ci
33698c2ecf20Sopenharmony_cioverflow:
33708c2ecf20Sopenharmony_ci	spin_unlock(&free_vmap_area_lock);
33718c2ecf20Sopenharmony_ci	if (!purged) {
33728c2ecf20Sopenharmony_ci		purge_vmap_area_lazy();
33738c2ecf20Sopenharmony_ci		purged = true;
33748c2ecf20Sopenharmony_ci
33758c2ecf20Sopenharmony_ci		/* Before "retry", check if we recover. */
33768c2ecf20Sopenharmony_ci		for (area = 0; area < nr_vms; area++) {
33778c2ecf20Sopenharmony_ci			if (vas[area])
33788c2ecf20Sopenharmony_ci				continue;
33798c2ecf20Sopenharmony_ci
33808c2ecf20Sopenharmony_ci			vas[area] = kmem_cache_zalloc(
33818c2ecf20Sopenharmony_ci				vmap_area_cachep, GFP_KERNEL);
33828c2ecf20Sopenharmony_ci			if (!vas[area])
33838c2ecf20Sopenharmony_ci				goto err_free;
33848c2ecf20Sopenharmony_ci		}
33858c2ecf20Sopenharmony_ci
33868c2ecf20Sopenharmony_ci		goto retry;
33878c2ecf20Sopenharmony_ci	}
33888c2ecf20Sopenharmony_ci
33898c2ecf20Sopenharmony_cierr_free:
33908c2ecf20Sopenharmony_ci	for (area = 0; area < nr_vms; area++) {
33918c2ecf20Sopenharmony_ci		if (vas[area])
33928c2ecf20Sopenharmony_ci			kmem_cache_free(vmap_area_cachep, vas[area]);
33938c2ecf20Sopenharmony_ci
33948c2ecf20Sopenharmony_ci		kfree(vms[area]);
33958c2ecf20Sopenharmony_ci	}
33968c2ecf20Sopenharmony_cierr_free2:
33978c2ecf20Sopenharmony_ci	kfree(vas);
33988c2ecf20Sopenharmony_ci	kfree(vms);
33998c2ecf20Sopenharmony_ci	return NULL;
34008c2ecf20Sopenharmony_ci
34018c2ecf20Sopenharmony_cierr_free_shadow:
34028c2ecf20Sopenharmony_ci	spin_lock(&free_vmap_area_lock);
34038c2ecf20Sopenharmony_ci	/*
34048c2ecf20Sopenharmony_ci	 * We release all the vmalloc shadows, even the ones for regions that
34058c2ecf20Sopenharmony_ci	 * hadn't been successfully added. This relies on kasan_release_vmalloc
34068c2ecf20Sopenharmony_ci	 * being able to tolerate this case.
34078c2ecf20Sopenharmony_ci	 */
34088c2ecf20Sopenharmony_ci	for (area = 0; area < nr_vms; area++) {
34098c2ecf20Sopenharmony_ci		orig_start = vas[area]->va_start;
34108c2ecf20Sopenharmony_ci		orig_end = vas[area]->va_end;
34118c2ecf20Sopenharmony_ci		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
34128c2ecf20Sopenharmony_ci					    &free_vmap_area_list);
34138c2ecf20Sopenharmony_ci		if (va)
34148c2ecf20Sopenharmony_ci			kasan_release_vmalloc(orig_start, orig_end,
34158c2ecf20Sopenharmony_ci				va->va_start, va->va_end);
34168c2ecf20Sopenharmony_ci		vas[area] = NULL;
34178c2ecf20Sopenharmony_ci		kfree(vms[area]);
34188c2ecf20Sopenharmony_ci	}
34198c2ecf20Sopenharmony_ci	spin_unlock(&free_vmap_area_lock);
34208c2ecf20Sopenharmony_ci	kfree(vas);
34218c2ecf20Sopenharmony_ci	kfree(vms);
34228c2ecf20Sopenharmony_ci	return NULL;
34238c2ecf20Sopenharmony_ci}
34248c2ecf20Sopenharmony_ci
34258c2ecf20Sopenharmony_ci/**
34268c2ecf20Sopenharmony_ci * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
34278c2ecf20Sopenharmony_ci * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
34288c2ecf20Sopenharmony_ci * @nr_vms: the number of allocated areas
34298c2ecf20Sopenharmony_ci *
34308c2ecf20Sopenharmony_ci * Free vm_structs and the array allocated by pcpu_get_vm_areas().
34318c2ecf20Sopenharmony_ci */
34328c2ecf20Sopenharmony_civoid pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
34338c2ecf20Sopenharmony_ci{
34348c2ecf20Sopenharmony_ci	int i;
34358c2ecf20Sopenharmony_ci
34368c2ecf20Sopenharmony_ci	for (i = 0; i < nr_vms; i++)
34378c2ecf20Sopenharmony_ci		free_vm_area(vms[i]);
34388c2ecf20Sopenharmony_ci	kfree(vms);
34398c2ecf20Sopenharmony_ci}
34408c2ecf20Sopenharmony_ci#endif	/* CONFIG_SMP */
34418c2ecf20Sopenharmony_ci
34428c2ecf20Sopenharmony_ci#ifdef CONFIG_PROC_FS
34438c2ecf20Sopenharmony_cistatic void *s_start(struct seq_file *m, loff_t *pos)
34448c2ecf20Sopenharmony_ci	__acquires(&vmap_purge_lock)
34458c2ecf20Sopenharmony_ci	__acquires(&vmap_area_lock)
34468c2ecf20Sopenharmony_ci{
34478c2ecf20Sopenharmony_ci	mutex_lock(&vmap_purge_lock);
34488c2ecf20Sopenharmony_ci	spin_lock(&vmap_area_lock);
34498c2ecf20Sopenharmony_ci
34508c2ecf20Sopenharmony_ci	return seq_list_start(&vmap_area_list, *pos);
34518c2ecf20Sopenharmony_ci}
34528c2ecf20Sopenharmony_ci
34538c2ecf20Sopenharmony_cistatic void *s_next(struct seq_file *m, void *p, loff_t *pos)
34548c2ecf20Sopenharmony_ci{
34558c2ecf20Sopenharmony_ci	return seq_list_next(p, &vmap_area_list, pos);
34568c2ecf20Sopenharmony_ci}
34578c2ecf20Sopenharmony_ci
34588c2ecf20Sopenharmony_cistatic void s_stop(struct seq_file *m, void *p)
34598c2ecf20Sopenharmony_ci	__releases(&vmap_area_lock)
34608c2ecf20Sopenharmony_ci	__releases(&vmap_purge_lock)
34618c2ecf20Sopenharmony_ci{
34628c2ecf20Sopenharmony_ci	spin_unlock(&vmap_area_lock);
34638c2ecf20Sopenharmony_ci	mutex_unlock(&vmap_purge_lock);
34648c2ecf20Sopenharmony_ci}
34658c2ecf20Sopenharmony_ci
34668c2ecf20Sopenharmony_cistatic void show_numa_info(struct seq_file *m, struct vm_struct *v)
34678c2ecf20Sopenharmony_ci{
34688c2ecf20Sopenharmony_ci	if (IS_ENABLED(CONFIG_NUMA)) {
34698c2ecf20Sopenharmony_ci		unsigned int nr, *counters = m->private;
34708c2ecf20Sopenharmony_ci
34718c2ecf20Sopenharmony_ci		if (!counters)
34728c2ecf20Sopenharmony_ci			return;
34738c2ecf20Sopenharmony_ci
34748c2ecf20Sopenharmony_ci		if (v->flags & VM_UNINITIALIZED)
34758c2ecf20Sopenharmony_ci			return;
34768c2ecf20Sopenharmony_ci		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
34778c2ecf20Sopenharmony_ci		smp_rmb();
34788c2ecf20Sopenharmony_ci
34798c2ecf20Sopenharmony_ci		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
34808c2ecf20Sopenharmony_ci
34818c2ecf20Sopenharmony_ci		for (nr = 0; nr < v->nr_pages; nr++)
34828c2ecf20Sopenharmony_ci			counters[page_to_nid(v->pages[nr])]++;
34838c2ecf20Sopenharmony_ci
34848c2ecf20Sopenharmony_ci		for_each_node_state(nr, N_HIGH_MEMORY)
34858c2ecf20Sopenharmony_ci			if (counters[nr])
34868c2ecf20Sopenharmony_ci				seq_printf(m, " N%u=%u", nr, counters[nr]);
34878c2ecf20Sopenharmony_ci	}
34888c2ecf20Sopenharmony_ci}
34898c2ecf20Sopenharmony_ci
34908c2ecf20Sopenharmony_cistatic void show_purge_info(struct seq_file *m)
34918c2ecf20Sopenharmony_ci{
34928c2ecf20Sopenharmony_ci	struct llist_node *head;
34938c2ecf20Sopenharmony_ci	struct vmap_area *va;
34948c2ecf20Sopenharmony_ci
34958c2ecf20Sopenharmony_ci	head = READ_ONCE(vmap_purge_list.first);
34968c2ecf20Sopenharmony_ci	if (head == NULL)
34978c2ecf20Sopenharmony_ci		return;
34988c2ecf20Sopenharmony_ci
34998c2ecf20Sopenharmony_ci	llist_for_each_entry(va, head, purge_list) {
35008c2ecf20Sopenharmony_ci		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
35018c2ecf20Sopenharmony_ci			(void *)va->va_start, (void *)va->va_end,
35028c2ecf20Sopenharmony_ci			va->va_end - va->va_start);
35038c2ecf20Sopenharmony_ci	}
35048c2ecf20Sopenharmony_ci}
35058c2ecf20Sopenharmony_ci
35068c2ecf20Sopenharmony_cistatic int s_show(struct seq_file *m, void *p)
35078c2ecf20Sopenharmony_ci{
35088c2ecf20Sopenharmony_ci	struct vmap_area *va;
35098c2ecf20Sopenharmony_ci	struct vm_struct *v;
35108c2ecf20Sopenharmony_ci
35118c2ecf20Sopenharmony_ci	va = list_entry(p, struct vmap_area, list);
35128c2ecf20Sopenharmony_ci
35138c2ecf20Sopenharmony_ci	/*
35148c2ecf20Sopenharmony_ci	 * s_show can encounter race with remove_vm_area, !vm on behalf
35158c2ecf20Sopenharmony_ci	 * of vmap area is being tear down or vm_map_ram allocation.
35168c2ecf20Sopenharmony_ci	 */
35178c2ecf20Sopenharmony_ci	if (!va->vm) {
35188c2ecf20Sopenharmony_ci		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
35198c2ecf20Sopenharmony_ci			(void *)va->va_start, (void *)va->va_end,
35208c2ecf20Sopenharmony_ci			va->va_end - va->va_start);
35218c2ecf20Sopenharmony_ci
35228c2ecf20Sopenharmony_ci		return 0;
35238c2ecf20Sopenharmony_ci	}
35248c2ecf20Sopenharmony_ci
35258c2ecf20Sopenharmony_ci	v = va->vm;
35268c2ecf20Sopenharmony_ci
35278c2ecf20Sopenharmony_ci	seq_printf(m, "0x%pK-0x%pK %7ld",
35288c2ecf20Sopenharmony_ci		v->addr, v->addr + v->size, v->size);
35298c2ecf20Sopenharmony_ci
35308c2ecf20Sopenharmony_ci	if (v->caller)
35318c2ecf20Sopenharmony_ci		seq_printf(m, " %pS", v->caller);
35328c2ecf20Sopenharmony_ci
35338c2ecf20Sopenharmony_ci	if (v->nr_pages)
35348c2ecf20Sopenharmony_ci		seq_printf(m, " pages=%d", v->nr_pages);
35358c2ecf20Sopenharmony_ci
35368c2ecf20Sopenharmony_ci	if (v->phys_addr)
35378c2ecf20Sopenharmony_ci		seq_printf(m, " phys=%pa", &v->phys_addr);
35388c2ecf20Sopenharmony_ci
35398c2ecf20Sopenharmony_ci	if (v->flags & VM_IOREMAP)
35408c2ecf20Sopenharmony_ci		seq_puts(m, " ioremap");
35418c2ecf20Sopenharmony_ci
35428c2ecf20Sopenharmony_ci	if (v->flags & VM_ALLOC)
35438c2ecf20Sopenharmony_ci		seq_puts(m, " vmalloc");
35448c2ecf20Sopenharmony_ci
35458c2ecf20Sopenharmony_ci	if (v->flags & VM_MAP)
35468c2ecf20Sopenharmony_ci		seq_puts(m, " vmap");
35478c2ecf20Sopenharmony_ci
35488c2ecf20Sopenharmony_ci	if (v->flags & VM_USERMAP)
35498c2ecf20Sopenharmony_ci		seq_puts(m, " user");
35508c2ecf20Sopenharmony_ci
35518c2ecf20Sopenharmony_ci	if (v->flags & VM_DMA_COHERENT)
35528c2ecf20Sopenharmony_ci		seq_puts(m, " dma-coherent");
35538c2ecf20Sopenharmony_ci
35548c2ecf20Sopenharmony_ci	if (is_vmalloc_addr(v->pages))
35558c2ecf20Sopenharmony_ci		seq_puts(m, " vpages");
35568c2ecf20Sopenharmony_ci
35578c2ecf20Sopenharmony_ci	show_numa_info(m, v);
35588c2ecf20Sopenharmony_ci	seq_putc(m, '\n');
35598c2ecf20Sopenharmony_ci
35608c2ecf20Sopenharmony_ci	/*
35618c2ecf20Sopenharmony_ci	 * As a final step, dump "unpurged" areas. Note,
35628c2ecf20Sopenharmony_ci	 * that entire "/proc/vmallocinfo" output will not
35638c2ecf20Sopenharmony_ci	 * be address sorted, because the purge list is not
35648c2ecf20Sopenharmony_ci	 * sorted.
35658c2ecf20Sopenharmony_ci	 */
35668c2ecf20Sopenharmony_ci	if (list_is_last(&va->list, &vmap_area_list))
35678c2ecf20Sopenharmony_ci		show_purge_info(m);
35688c2ecf20Sopenharmony_ci
35698c2ecf20Sopenharmony_ci	return 0;
35708c2ecf20Sopenharmony_ci}
35718c2ecf20Sopenharmony_ci
35728c2ecf20Sopenharmony_cistatic const struct seq_operations vmalloc_op = {
35738c2ecf20Sopenharmony_ci	.start = s_start,
35748c2ecf20Sopenharmony_ci	.next = s_next,
35758c2ecf20Sopenharmony_ci	.stop = s_stop,
35768c2ecf20Sopenharmony_ci	.show = s_show,
35778c2ecf20Sopenharmony_ci};
35788c2ecf20Sopenharmony_ci
35798c2ecf20Sopenharmony_cistatic int __init proc_vmalloc_init(void)
35808c2ecf20Sopenharmony_ci{
35818c2ecf20Sopenharmony_ci	if (IS_ENABLED(CONFIG_NUMA))
35828c2ecf20Sopenharmony_ci		proc_create_seq_private("vmallocinfo", 0400, NULL,
35838c2ecf20Sopenharmony_ci				&vmalloc_op,
35848c2ecf20Sopenharmony_ci				nr_node_ids * sizeof(unsigned int), NULL);
35858c2ecf20Sopenharmony_ci	else
35868c2ecf20Sopenharmony_ci		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
35878c2ecf20Sopenharmony_ci	return 0;
35888c2ecf20Sopenharmony_ci}
35898c2ecf20Sopenharmony_cimodule_init(proc_vmalloc_init);
35908c2ecf20Sopenharmony_ci
35918c2ecf20Sopenharmony_ci#endif
3592