xref: /kernel/linux/linux-5.10/mm/sparse.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * sparse memory mappings.
4 */
5#include <linux/mm.h>
6#include <linux/slab.h>
7#include <linux/mmzone.h>
8#include <linux/memblock.h>
9#include <linux/compiler.h>
10#include <linux/highmem.h>
11#include <linux/export.h>
12#include <linux/spinlock.h>
13#include <linux/vmalloc.h>
14#include <linux/swap.h>
15#include <linux/swapops.h>
16
17#include "internal.h"
18#include <asm/dma.h>
19
20/*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section	- memory sections, mem_map's for valid memory
24 */
25#ifdef CONFIG_SPARSEMEM_EXTREME
26struct mem_section **mem_section;
27#else
28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29	____cacheline_internodealigned_in_smp;
30#endif
31EXPORT_SYMBOL(mem_section);
32
33#ifdef NODE_NOT_IN_PAGE_FLAGS
34/*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39#if MAX_NUMNODES <= 256
40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#else
42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#endif
44
45int page_to_nid(const struct page *page)
46{
47	return section_to_node_table[page_to_section(page)];
48}
49EXPORT_SYMBOL(page_to_nid);
50
51static void set_section_nid(unsigned long section_nr, int nid)
52{
53	section_to_node_table[section_nr] = nid;
54}
55#else /* !NODE_NOT_IN_PAGE_FLAGS */
56static inline void set_section_nid(unsigned long section_nr, int nid)
57{
58}
59#endif
60
61#ifdef CONFIG_SPARSEMEM_EXTREME
62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63{
64	struct mem_section *section = NULL;
65	unsigned long array_size = SECTIONS_PER_ROOT *
66				   sizeof(struct mem_section);
67
68	if (slab_is_available()) {
69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70	} else {
71		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72					      nid);
73		if (!section)
74			panic("%s: Failed to allocate %lu bytes nid=%d\n",
75			      __func__, array_size, nid);
76	}
77
78	return section;
79}
80
81static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82{
83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84	struct mem_section *section;
85
86	/*
87	 * An existing section is possible in the sub-section hotplug
88	 * case. First hot-add instantiates, follow-on hot-add reuses
89	 * the existing section.
90	 *
91	 * The mem_hotplug_lock resolves the apparent race below.
92	 */
93	if (mem_section[root])
94		return 0;
95
96	section = sparse_index_alloc(nid);
97	if (!section)
98		return -ENOMEM;
99
100	mem_section[root] = section;
101
102	return 0;
103}
104#else /* !SPARSEMEM_EXTREME */
105static inline int sparse_index_init(unsigned long section_nr, int nid)
106{
107	return 0;
108}
109#endif
110
111#ifdef CONFIG_SPARSEMEM_EXTREME
112unsigned long __section_nr(struct mem_section *ms)
113{
114	unsigned long root_nr;
115	struct mem_section *root = NULL;
116
117	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119		if (!root)
120			continue;
121
122		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123		     break;
124	}
125
126	VM_BUG_ON(!root);
127
128	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129}
130#else
131unsigned long __section_nr(struct mem_section *ms)
132{
133	return (unsigned long)(ms - mem_section[0]);
134}
135#endif
136
137/*
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node.  This keeps us from having to use another data structure.  The
141 * node information is cleared just before we store the real mem_map.
142 */
143static inline unsigned long sparse_encode_early_nid(int nid)
144{
145	return (nid << SECTION_NID_SHIFT);
146}
147
148static inline int sparse_early_nid(struct mem_section *section)
149{
150	return (section->section_mem_map >> SECTION_NID_SHIFT);
151}
152
153/* Validate the physical addressing limitations of the model */
154void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155						unsigned long *end_pfn)
156{
157	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158
159	/*
160	 * Sanity checks - do not allow an architecture to pass
161	 * in larger pfns than the maximum scope of sparsemem:
162	 */
163	if (*start_pfn > max_sparsemem_pfn) {
164		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166			*start_pfn, *end_pfn, max_sparsemem_pfn);
167		WARN_ON_ONCE(1);
168		*start_pfn = max_sparsemem_pfn;
169		*end_pfn = max_sparsemem_pfn;
170	} else if (*end_pfn > max_sparsemem_pfn) {
171		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173			*start_pfn, *end_pfn, max_sparsemem_pfn);
174		WARN_ON_ONCE(1);
175		*end_pfn = max_sparsemem_pfn;
176	}
177}
178
179/*
180 * There are a number of times that we loop over NR_MEM_SECTIONS,
181 * looking for section_present() on each.  But, when we have very
182 * large physical address spaces, NR_MEM_SECTIONS can also be
183 * very large which makes the loops quite long.
184 *
185 * Keeping track of this gives us an easy way to break out of
186 * those loops early.
187 */
188unsigned long __highest_present_section_nr;
189static void section_mark_present(struct mem_section *ms)
190{
191	unsigned long section_nr = __section_nr(ms);
192
193	if (section_nr > __highest_present_section_nr)
194		__highest_present_section_nr = section_nr;
195
196	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197}
198
199#define for_each_present_section_nr(start, section_nr)		\
200	for (section_nr = next_present_section_nr(start-1);	\
201	     ((section_nr != -1) &&				\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
205static inline unsigned long first_present_section_nr(void)
206{
207	return next_present_section_nr(-1);
208}
209
210#ifdef CONFIG_SPARSEMEM_VMEMMAP
211static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212		unsigned long nr_pages)
213{
214	int idx = subsection_map_index(pfn);
215	int end = subsection_map_index(pfn + nr_pages - 1);
216
217	bitmap_set(map, idx, end - idx + 1);
218}
219
220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221{
222	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224
225	if (!nr_pages)
226		return;
227
228	for (nr = start_sec; nr <= end_sec; nr++) {
229		struct mem_section *ms;
230		unsigned long pfns;
231
232		pfns = min(nr_pages, PAGES_PER_SECTION
233				- (pfn & ~PAGE_SECTION_MASK));
234		ms = __nr_to_section(nr);
235		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236
237		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238				pfns, subsection_map_index(pfn),
239				subsection_map_index(pfn + pfns - 1));
240
241		pfn += pfns;
242		nr_pages -= pfns;
243	}
244}
245#else
246void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247{
248}
249#endif
250
251/* Record a memory area against a node. */
252static void __init memory_present(int nid, unsigned long start, unsigned long end)
253{
254	unsigned long pfn;
255
256#ifdef CONFIG_SPARSEMEM_EXTREME
257	if (unlikely(!mem_section)) {
258		unsigned long size, align;
259
260		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
261		align = 1 << (INTERNODE_CACHE_SHIFT);
262		mem_section = memblock_alloc(size, align);
263		if (!mem_section)
264			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265			      __func__, size, align);
266	}
267#endif
268
269	start &= PAGE_SECTION_MASK;
270	mminit_validate_memmodel_limits(&start, &end);
271	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272		unsigned long section = pfn_to_section_nr(pfn);
273		struct mem_section *ms;
274
275		sparse_index_init(section, nid);
276		set_section_nid(section, nid);
277
278		ms = __nr_to_section(section);
279		if (!ms->section_mem_map) {
280			ms->section_mem_map = sparse_encode_early_nid(nid) |
281							SECTION_IS_ONLINE;
282			section_mark_present(ms);
283		}
284	}
285}
286
287/*
288 * Mark all memblocks as present using memory_present().
289 * This is a convenience function that is useful to mark all of the systems
290 * memory as present during initialization.
291 */
292static void __init memblocks_present(void)
293{
294	unsigned long start, end;
295	int i, nid;
296
297	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
298		memory_present(nid, start, end);
299}
300
301/*
302 * Subtle, we encode the real pfn into the mem_map such that
303 * the identity pfn - section_mem_map will return the actual
304 * physical page frame number.
305 */
306static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
307{
308	unsigned long coded_mem_map =
309		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
310	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
311	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
312	return coded_mem_map;
313}
314
315#ifdef CONFIG_MEMORY_HOTPLUG
316/*
317 * Decode mem_map from the coded memmap
318 */
319struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
320{
321	/* mask off the extra low bits of information */
322	coded_mem_map &= SECTION_MAP_MASK;
323	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
324}
325#endif /* CONFIG_MEMORY_HOTPLUG */
326
327static void __meminit sparse_init_one_section(struct mem_section *ms,
328		unsigned long pnum, struct page *mem_map,
329		struct mem_section_usage *usage, unsigned long flags)
330{
331	ms->section_mem_map &= ~SECTION_MAP_MASK;
332	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333		| SECTION_HAS_MEM_MAP | flags;
334	ms->usage = usage;
335}
336
337static unsigned long usemap_size(void)
338{
339	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340}
341
342size_t mem_section_usage_size(void)
343{
344	return sizeof(struct mem_section_usage) + usemap_size();
345}
346
347#ifdef CONFIG_MEMORY_HOTREMOVE
348static struct mem_section_usage * __init
349sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350					 unsigned long size)
351{
352	struct mem_section_usage *usage;
353	unsigned long goal, limit;
354	int nid;
355	/*
356	 * A page may contain usemaps for other sections preventing the
357	 * page being freed and making a section unremovable while
358	 * other sections referencing the usemap remain active. Similarly,
359	 * a pgdat can prevent a section being removed. If section A
360	 * contains a pgdat and section B contains the usemap, both
361	 * sections become inter-dependent. This allocates usemaps
362	 * from the same section as the pgdat where possible to avoid
363	 * this problem.
364	 */
365	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366	limit = goal + (1UL << PA_SECTION_SHIFT);
367	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368again:
369	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370	if (!usage && limit) {
371		limit = 0;
372		goto again;
373	}
374	return usage;
375}
376
377static void __init check_usemap_section_nr(int nid,
378		struct mem_section_usage *usage)
379{
380	unsigned long usemap_snr, pgdat_snr;
381	static unsigned long old_usemap_snr;
382	static unsigned long old_pgdat_snr;
383	struct pglist_data *pgdat = NODE_DATA(nid);
384	int usemap_nid;
385
386	/* First call */
387	if (!old_usemap_snr) {
388		old_usemap_snr = NR_MEM_SECTIONS;
389		old_pgdat_snr = NR_MEM_SECTIONS;
390	}
391
392	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394	if (usemap_snr == pgdat_snr)
395		return;
396
397	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398		/* skip redundant message */
399		return;
400
401	old_usemap_snr = usemap_snr;
402	old_pgdat_snr = pgdat_snr;
403
404	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405	if (usemap_nid != nid) {
406		pr_info("node %d must be removed before remove section %ld\n",
407			nid, usemap_snr);
408		return;
409	}
410	/*
411	 * There is a circular dependency.
412	 * Some platforms allow un-removable section because they will just
413	 * gather other removable sections for dynamic partitioning.
414	 * Just notify un-removable section's number here.
415	 */
416	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417		usemap_snr, pgdat_snr, nid);
418}
419#else
420static struct mem_section_usage * __init
421sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422					 unsigned long size)
423{
424	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425}
426
427static void __init check_usemap_section_nr(int nid,
428		struct mem_section_usage *usage)
429{
430}
431#endif /* CONFIG_MEMORY_HOTREMOVE */
432
433#ifdef CONFIG_SPARSEMEM_VMEMMAP
434static unsigned long __init section_map_size(void)
435{
436	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437}
438
439#else
440static unsigned long __init section_map_size(void)
441{
442	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
443}
444
445struct page __init *__populate_section_memmap(unsigned long pfn,
446		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447{
448	unsigned long size = section_map_size();
449	struct page *map = sparse_buffer_alloc(size);
450	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451
452	if (map)
453		return map;
454
455	map = memblock_alloc_try_nid_raw(size, size, addr,
456					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457	if (!map)
458		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459		      __func__, size, PAGE_SIZE, nid, &addr);
460
461	return map;
462}
463#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
464
465static void *sparsemap_buf __meminitdata;
466static void *sparsemap_buf_end __meminitdata;
467
468static inline void __meminit sparse_buffer_free(unsigned long size)
469{
470	WARN_ON(!sparsemap_buf || size == 0);
471	memblock_free_early(__pa(sparsemap_buf), size);
472}
473
474static void __init sparse_buffer_init(unsigned long size, int nid)
475{
476	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
478	/*
479	 * Pre-allocated buffer is mainly used by __populate_section_memmap
480	 * and we want it to be properly aligned to the section size - this is
481	 * especially the case for VMEMMAP which maps memmap to PMDs
482	 */
483	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485	sparsemap_buf_end = sparsemap_buf + size;
486}
487
488static void __init sparse_buffer_fini(void)
489{
490	unsigned long size = sparsemap_buf_end - sparsemap_buf;
491
492	if (sparsemap_buf && size > 0)
493		sparse_buffer_free(size);
494	sparsemap_buf = NULL;
495}
496
497void * __meminit sparse_buffer_alloc(unsigned long size)
498{
499	void *ptr = NULL;
500
501	if (sparsemap_buf) {
502		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503		if (ptr + size > sparsemap_buf_end)
504			ptr = NULL;
505		else {
506			/* Free redundant aligned space */
507			if ((unsigned long)(ptr - sparsemap_buf) > 0)
508				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509			sparsemap_buf = ptr + size;
510		}
511	}
512	return ptr;
513}
514
515void __weak __meminit vmemmap_populate_print_last(void)
516{
517}
518
519/*
520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521 * And number of present sections in this node is map_count.
522 */
523static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524				   unsigned long pnum_end,
525				   unsigned long map_count)
526{
527	struct mem_section_usage *usage;
528	unsigned long pnum;
529	struct page *map;
530
531	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532			mem_section_usage_size() * map_count);
533	if (!usage) {
534		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535		goto failed;
536	}
537	sparse_buffer_init(map_count * section_map_size(), nid);
538	for_each_present_section_nr(pnum_begin, pnum) {
539		unsigned long pfn = section_nr_to_pfn(pnum);
540
541		if (pnum >= pnum_end)
542			break;
543
544		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545				nid, NULL);
546		if (!map) {
547			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548			       __func__, nid);
549			pnum_begin = pnum;
550			sparse_buffer_fini();
551			goto failed;
552		}
553		check_usemap_section_nr(nid, usage);
554		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
555				SECTION_IS_EARLY);
556		usage = (void *) usage + mem_section_usage_size();
557	}
558	sparse_buffer_fini();
559	return;
560failed:
561	/* We failed to allocate, mark all the following pnums as not present */
562	for_each_present_section_nr(pnum_begin, pnum) {
563		struct mem_section *ms;
564
565		if (pnum >= pnum_end)
566			break;
567		ms = __nr_to_section(pnum);
568		ms->section_mem_map = 0;
569	}
570}
571
572/*
573 * Allocate the accumulated non-linear sections, allocate a mem_map
574 * for each and record the physical to section mapping.
575 */
576void __init sparse_init(void)
577{
578	unsigned long pnum_end, pnum_begin, map_count = 1;
579	int nid_begin;
580
581	memblocks_present();
582
583	pnum_begin = first_present_section_nr();
584	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
585
586	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
587	set_pageblock_order();
588
589	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
590		int nid = sparse_early_nid(__nr_to_section(pnum_end));
591
592		if (nid == nid_begin) {
593			map_count++;
594			continue;
595		}
596		/* Init node with sections in range [pnum_begin, pnum_end) */
597		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
598		nid_begin = nid;
599		pnum_begin = pnum_end;
600		map_count = 1;
601	}
602	/* cover the last node */
603	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
604	vmemmap_populate_print_last();
605}
606
607#ifdef CONFIG_MEMORY_HOTPLUG
608
609/* Mark all memory sections within the pfn range as online */
610void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
611{
612	unsigned long pfn;
613
614	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
615		unsigned long section_nr = pfn_to_section_nr(pfn);
616		struct mem_section *ms;
617
618		/* onlining code should never touch invalid ranges */
619		if (WARN_ON(!valid_section_nr(section_nr)))
620			continue;
621
622		ms = __nr_to_section(section_nr);
623		ms->section_mem_map |= SECTION_IS_ONLINE;
624	}
625}
626
627#ifdef CONFIG_MEMORY_HOTREMOVE
628/* Mark all memory sections within the pfn range as offline */
629void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
630{
631	unsigned long pfn;
632
633	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
634		unsigned long section_nr = pfn_to_section_nr(pfn);
635		struct mem_section *ms;
636
637		/*
638		 * TODO this needs some double checking. Offlining code makes
639		 * sure to check pfn_valid but those checks might be just bogus
640		 */
641		if (WARN_ON(!valid_section_nr(section_nr)))
642			continue;
643
644		ms = __nr_to_section(section_nr);
645		ms->section_mem_map &= ~SECTION_IS_ONLINE;
646	}
647}
648#endif
649
650#ifdef CONFIG_SPARSEMEM_VMEMMAP
651static struct page * __meminit populate_section_memmap(unsigned long pfn,
652		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
653{
654	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
655}
656
657static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
658		struct vmem_altmap *altmap)
659{
660	unsigned long start = (unsigned long) pfn_to_page(pfn);
661	unsigned long end = start + nr_pages * sizeof(struct page);
662
663	vmemmap_free(start, end, altmap);
664}
665static void free_map_bootmem(struct page *memmap)
666{
667	unsigned long start = (unsigned long)memmap;
668	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
669
670	vmemmap_free(start, end, NULL);
671}
672
673static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
674{
675	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
676	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
677	struct mem_section *ms = __pfn_to_section(pfn);
678	unsigned long *subsection_map = ms->usage
679		? &ms->usage->subsection_map[0] : NULL;
680
681	subsection_mask_set(map, pfn, nr_pages);
682	if (subsection_map)
683		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
684
685	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
686				"section already deactivated (%#lx + %ld)\n",
687				pfn, nr_pages))
688		return -EINVAL;
689
690	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
691	return 0;
692}
693
694static bool is_subsection_map_empty(struct mem_section *ms)
695{
696	return bitmap_empty(&ms->usage->subsection_map[0],
697			    SUBSECTIONS_PER_SECTION);
698}
699
700static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
701{
702	struct mem_section *ms = __pfn_to_section(pfn);
703	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
704	unsigned long *subsection_map;
705	int rc = 0;
706
707	subsection_mask_set(map, pfn, nr_pages);
708
709	subsection_map = &ms->usage->subsection_map[0];
710
711	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
712		rc = -EINVAL;
713	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
714		rc = -EEXIST;
715	else
716		bitmap_or(subsection_map, map, subsection_map,
717				SUBSECTIONS_PER_SECTION);
718
719	return rc;
720}
721#else
722struct page * __meminit populate_section_memmap(unsigned long pfn,
723		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
724{
725	return kvmalloc_node(array_size(sizeof(struct page),
726					PAGES_PER_SECTION), GFP_KERNEL, nid);
727}
728
729static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
730		struct vmem_altmap *altmap)
731{
732	kvfree(pfn_to_page(pfn));
733}
734
735static void free_map_bootmem(struct page *memmap)
736{
737	unsigned long maps_section_nr, removing_section_nr, i;
738	unsigned long magic, nr_pages;
739	struct page *page = virt_to_page(memmap);
740
741	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
742		>> PAGE_SHIFT;
743
744	for (i = 0; i < nr_pages; i++, page++) {
745		magic = (unsigned long) page->freelist;
746
747		BUG_ON(magic == NODE_INFO);
748
749		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
750		removing_section_nr = page_private(page);
751
752		/*
753		 * When this function is called, the removing section is
754		 * logical offlined state. This means all pages are isolated
755		 * from page allocator. If removing section's memmap is placed
756		 * on the same section, it must not be freed.
757		 * If it is freed, page allocator may allocate it which will
758		 * be removed physically soon.
759		 */
760		if (maps_section_nr != removing_section_nr)
761			put_page_bootmem(page);
762	}
763}
764
765static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
766{
767	return 0;
768}
769
770static bool is_subsection_map_empty(struct mem_section *ms)
771{
772	return true;
773}
774
775static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
776{
777	return 0;
778}
779#endif /* CONFIG_SPARSEMEM_VMEMMAP */
780
781/*
782 * To deactivate a memory region, there are 3 cases to handle across
783 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
784 *
785 * 1. deactivation of a partial hot-added section (only possible in
786 *    the SPARSEMEM_VMEMMAP=y case).
787 *      a) section was present at memory init.
788 *      b) section was hot-added post memory init.
789 * 2. deactivation of a complete hot-added section.
790 * 3. deactivation of a complete section from memory init.
791 *
792 * For 1, when subsection_map does not empty we will not be freeing the
793 * usage map, but still need to free the vmemmap range.
794 *
795 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
796 */
797static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
798		struct vmem_altmap *altmap)
799{
800	struct mem_section *ms = __pfn_to_section(pfn);
801	bool section_is_early = early_section(ms);
802	struct page *memmap = NULL;
803	bool empty;
804
805	if (clear_subsection_map(pfn, nr_pages))
806		return;
807
808	empty = is_subsection_map_empty(ms);
809	if (empty) {
810		unsigned long section_nr = pfn_to_section_nr(pfn);
811
812		/*
813		 * Mark the section invalid so that valid_section()
814		 * return false. This prevents code from dereferencing
815		 * ms->usage array.
816		 */
817		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
818
819		/*
820		 * When removing an early section, the usage map is kept (as the
821		 * usage maps of other sections fall into the same page). It
822		 * will be re-used when re-adding the section - which is then no
823		 * longer an early section. If the usage map is PageReserved, it
824		 * was allocated during boot.
825		 */
826		if (!PageReserved(virt_to_page(ms->usage))) {
827			kfree_rcu(ms->usage, rcu);
828			WRITE_ONCE(ms->usage, NULL);
829		}
830		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
831	}
832
833	/*
834	 * The memmap of early sections is always fully populated. See
835	 * section_activate() and pfn_valid() .
836	 */
837	if (!section_is_early)
838		depopulate_section_memmap(pfn, nr_pages, altmap);
839	else if (memmap)
840		free_map_bootmem(memmap);
841
842	if (empty)
843		ms->section_mem_map = (unsigned long)NULL;
844}
845
846static struct page * __meminit section_activate(int nid, unsigned long pfn,
847		unsigned long nr_pages, struct vmem_altmap *altmap)
848{
849	struct mem_section *ms = __pfn_to_section(pfn);
850	struct mem_section_usage *usage = NULL;
851	struct page *memmap;
852	int rc = 0;
853
854	if (!ms->usage) {
855		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
856		if (!usage)
857			return ERR_PTR(-ENOMEM);
858		ms->usage = usage;
859	}
860
861	rc = fill_subsection_map(pfn, nr_pages);
862	if (rc) {
863		if (usage)
864			ms->usage = NULL;
865		kfree(usage);
866		return ERR_PTR(rc);
867	}
868
869	/*
870	 * The early init code does not consider partially populated
871	 * initial sections, it simply assumes that memory will never be
872	 * referenced.  If we hot-add memory into such a section then we
873	 * do not need to populate the memmap and can simply reuse what
874	 * is already there.
875	 */
876	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
877		return pfn_to_page(pfn);
878
879	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
880	if (!memmap) {
881		section_deactivate(pfn, nr_pages, altmap);
882		return ERR_PTR(-ENOMEM);
883	}
884
885	return memmap;
886}
887
888/**
889 * sparse_add_section - add a memory section, or populate an existing one
890 * @nid: The node to add section on
891 * @start_pfn: start pfn of the memory range
892 * @nr_pages: number of pfns to add in the section
893 * @altmap: device page map
894 *
895 * This is only intended for hotplug.
896 *
897 * Note that only VMEMMAP supports sub-section aligned hotplug,
898 * the proper alignment and size are gated by check_pfn_span().
899 *
900 *
901 * Return:
902 * * 0		- On success.
903 * * -EEXIST	- Section has been present.
904 * * -ENOMEM	- Out of memory.
905 */
906int __meminit sparse_add_section(int nid, unsigned long start_pfn,
907		unsigned long nr_pages, struct vmem_altmap *altmap)
908{
909	unsigned long section_nr = pfn_to_section_nr(start_pfn);
910	struct mem_section *ms;
911	struct page *memmap;
912	int ret;
913
914	ret = sparse_index_init(section_nr, nid);
915	if (ret < 0)
916		return ret;
917
918	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
919	if (IS_ERR(memmap))
920		return PTR_ERR(memmap);
921
922	/*
923	 * Poison uninitialized struct pages in order to catch invalid flags
924	 * combinations.
925	 */
926	page_init_poison(memmap, sizeof(struct page) * nr_pages);
927
928	ms = __nr_to_section(section_nr);
929	set_section_nid(section_nr, nid);
930	section_mark_present(ms);
931
932	/* Align memmap to section boundary in the subsection case */
933	if (section_nr_to_pfn(section_nr) != start_pfn)
934		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
935	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
936
937	return 0;
938}
939
940#ifdef CONFIG_MEMORY_FAILURE
941static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
942{
943	int i;
944
945	/*
946	 * A further optimization is to have per section refcounted
947	 * num_poisoned_pages.  But that would need more space per memmap, so
948	 * for now just do a quick global check to speed up this routine in the
949	 * absence of bad pages.
950	 */
951	if (atomic_long_read(&num_poisoned_pages) == 0)
952		return;
953
954	for (i = 0; i < nr_pages; i++) {
955		if (PageHWPoison(&memmap[i])) {
956			num_poisoned_pages_dec();
957			ClearPageHWPoison(&memmap[i]);
958		}
959	}
960}
961#else
962static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
963{
964}
965#endif
966
967void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
968		unsigned long nr_pages, unsigned long map_offset,
969		struct vmem_altmap *altmap)
970{
971	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
972			nr_pages - map_offset);
973	section_deactivate(pfn, nr_pages, altmap);
974}
975#endif /* CONFIG_MEMORY_HOTPLUG */
976