1// SPDX-License-Identifier: GPL-2.0 2/* 3 * sparse memory mappings. 4 */ 5#include <linux/mm.h> 6#include <linux/slab.h> 7#include <linux/mmzone.h> 8#include <linux/memblock.h> 9#include <linux/compiler.h> 10#include <linux/highmem.h> 11#include <linux/export.h> 12#include <linux/spinlock.h> 13#include <linux/vmalloc.h> 14#include <linux/swap.h> 15#include <linux/swapops.h> 16 17#include "internal.h" 18#include <asm/dma.h> 19 20/* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25#ifdef CONFIG_SPARSEMEM_EXTREME 26struct mem_section **mem_section; 27#else 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30#endif 31EXPORT_SYMBOL(mem_section); 32 33#ifdef NODE_NOT_IN_PAGE_FLAGS 34/* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39#if MAX_NUMNODES <= 256 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41#else 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43#endif 44 45int page_to_nid(const struct page *page) 46{ 47 return section_to_node_table[page_to_section(page)]; 48} 49EXPORT_SYMBOL(page_to_nid); 50 51static void set_section_nid(unsigned long section_nr, int nid) 52{ 53 section_to_node_table[section_nr] = nid; 54} 55#else /* !NODE_NOT_IN_PAGE_FLAGS */ 56static inline void set_section_nid(unsigned long section_nr, int nid) 57{ 58} 59#endif 60 61#ifdef CONFIG_SPARSEMEM_EXTREME 62static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63{ 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 } else { 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 if (!section) 74 panic("%s: Failed to allocate %lu bytes nid=%d\n", 75 __func__, array_size, nid); 76 } 77 78 return section; 79} 80 81static int __meminit sparse_index_init(unsigned long section_nr, int nid) 82{ 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 86 /* 87 * An existing section is possible in the sub-section hotplug 88 * case. First hot-add instantiates, follow-on hot-add reuses 89 * the existing section. 90 * 91 * The mem_hotplug_lock resolves the apparent race below. 92 */ 93 if (mem_section[root]) 94 return 0; 95 96 section = sparse_index_alloc(nid); 97 if (!section) 98 return -ENOMEM; 99 100 mem_section[root] = section; 101 102 return 0; 103} 104#else /* !SPARSEMEM_EXTREME */ 105static inline int sparse_index_init(unsigned long section_nr, int nid) 106{ 107 return 0; 108} 109#endif 110 111#ifdef CONFIG_SPARSEMEM_EXTREME 112unsigned long __section_nr(struct mem_section *ms) 113{ 114 unsigned long root_nr; 115 struct mem_section *root = NULL; 116 117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 119 if (!root) 120 continue; 121 122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 123 break; 124 } 125 126 VM_BUG_ON(!root); 127 128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 129} 130#else 131unsigned long __section_nr(struct mem_section *ms) 132{ 133 return (unsigned long)(ms - mem_section[0]); 134} 135#endif 136 137/* 138 * During early boot, before section_mem_map is used for an actual 139 * mem_map, we use section_mem_map to store the section's NUMA 140 * node. This keeps us from having to use another data structure. The 141 * node information is cleared just before we store the real mem_map. 142 */ 143static inline unsigned long sparse_encode_early_nid(int nid) 144{ 145 return (nid << SECTION_NID_SHIFT); 146} 147 148static inline int sparse_early_nid(struct mem_section *section) 149{ 150 return (section->section_mem_map >> SECTION_NID_SHIFT); 151} 152 153/* Validate the physical addressing limitations of the model */ 154void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 155 unsigned long *end_pfn) 156{ 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 158 159 /* 160 * Sanity checks - do not allow an architecture to pass 161 * in larger pfns than the maximum scope of sparsemem: 162 */ 163 if (*start_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *start_pfn = max_sparsemem_pfn; 169 *end_pfn = max_sparsemem_pfn; 170 } else if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177} 178 179/* 180 * There are a number of times that we loop over NR_MEM_SECTIONS, 181 * looking for section_present() on each. But, when we have very 182 * large physical address spaces, NR_MEM_SECTIONS can also be 183 * very large which makes the loops quite long. 184 * 185 * Keeping track of this gives us an easy way to break out of 186 * those loops early. 187 */ 188unsigned long __highest_present_section_nr; 189static void section_mark_present(struct mem_section *ms) 190{ 191 unsigned long section_nr = __section_nr(ms); 192 193 if (section_nr > __highest_present_section_nr) 194 __highest_present_section_nr = section_nr; 195 196 ms->section_mem_map |= SECTION_MARKED_PRESENT; 197} 198 199#define for_each_present_section_nr(start, section_nr) \ 200 for (section_nr = next_present_section_nr(start-1); \ 201 ((section_nr != -1) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205static inline unsigned long first_present_section_nr(void) 206{ 207 return next_present_section_nr(-1); 208} 209 210#ifdef CONFIG_SPARSEMEM_VMEMMAP 211static void subsection_mask_set(unsigned long *map, unsigned long pfn, 212 unsigned long nr_pages) 213{ 214 int idx = subsection_map_index(pfn); 215 int end = subsection_map_index(pfn + nr_pages - 1); 216 217 bitmap_set(map, idx, end - idx + 1); 218} 219 220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 221{ 222 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 223 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 224 225 if (!nr_pages) 226 return; 227 228 for (nr = start_sec; nr <= end_sec; nr++) { 229 struct mem_section *ms; 230 unsigned long pfns; 231 232 pfns = min(nr_pages, PAGES_PER_SECTION 233 - (pfn & ~PAGE_SECTION_MASK)); 234 ms = __nr_to_section(nr); 235 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 236 237 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 238 pfns, subsection_map_index(pfn), 239 subsection_map_index(pfn + pfns - 1)); 240 241 pfn += pfns; 242 nr_pages -= pfns; 243 } 244} 245#else 246void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 247{ 248} 249#endif 250 251/* Record a memory area against a node. */ 252static void __init memory_present(int nid, unsigned long start, unsigned long end) 253{ 254 unsigned long pfn; 255 256#ifdef CONFIG_SPARSEMEM_EXTREME 257 if (unlikely(!mem_section)) { 258 unsigned long size, align; 259 260 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 261 align = 1 << (INTERNODE_CACHE_SHIFT); 262 mem_section = memblock_alloc(size, align); 263 if (!mem_section) 264 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 265 __func__, size, align); 266 } 267#endif 268 269 start &= PAGE_SECTION_MASK; 270 mminit_validate_memmodel_limits(&start, &end); 271 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 272 unsigned long section = pfn_to_section_nr(pfn); 273 struct mem_section *ms; 274 275 sparse_index_init(section, nid); 276 set_section_nid(section, nid); 277 278 ms = __nr_to_section(section); 279 if (!ms->section_mem_map) { 280 ms->section_mem_map = sparse_encode_early_nid(nid) | 281 SECTION_IS_ONLINE; 282 section_mark_present(ms); 283 } 284 } 285} 286 287/* 288 * Mark all memblocks as present using memory_present(). 289 * This is a convenience function that is useful to mark all of the systems 290 * memory as present during initialization. 291 */ 292static void __init memblocks_present(void) 293{ 294 unsigned long start, end; 295 int i, nid; 296 297 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) 298 memory_present(nid, start, end); 299} 300 301/* 302 * Subtle, we encode the real pfn into the mem_map such that 303 * the identity pfn - section_mem_map will return the actual 304 * physical page frame number. 305 */ 306static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 307{ 308 unsigned long coded_mem_map = 309 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 310 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 311 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 312 return coded_mem_map; 313} 314 315#ifdef CONFIG_MEMORY_HOTPLUG 316/* 317 * Decode mem_map from the coded memmap 318 */ 319struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 320{ 321 /* mask off the extra low bits of information */ 322 coded_mem_map &= SECTION_MAP_MASK; 323 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 324} 325#endif /* CONFIG_MEMORY_HOTPLUG */ 326 327static void __meminit sparse_init_one_section(struct mem_section *ms, 328 unsigned long pnum, struct page *mem_map, 329 struct mem_section_usage *usage, unsigned long flags) 330{ 331 ms->section_mem_map &= ~SECTION_MAP_MASK; 332 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 333 | SECTION_HAS_MEM_MAP | flags; 334 ms->usage = usage; 335} 336 337static unsigned long usemap_size(void) 338{ 339 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 340} 341 342size_t mem_section_usage_size(void) 343{ 344 return sizeof(struct mem_section_usage) + usemap_size(); 345} 346 347#ifdef CONFIG_MEMORY_HOTREMOVE 348static struct mem_section_usage * __init 349sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 350 unsigned long size) 351{ 352 struct mem_section_usage *usage; 353 unsigned long goal, limit; 354 int nid; 355 /* 356 * A page may contain usemaps for other sections preventing the 357 * page being freed and making a section unremovable while 358 * other sections referencing the usemap remain active. Similarly, 359 * a pgdat can prevent a section being removed. If section A 360 * contains a pgdat and section B contains the usemap, both 361 * sections become inter-dependent. This allocates usemaps 362 * from the same section as the pgdat where possible to avoid 363 * this problem. 364 */ 365 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 366 limit = goal + (1UL << PA_SECTION_SHIFT); 367 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 368again: 369 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 370 if (!usage && limit) { 371 limit = 0; 372 goto again; 373 } 374 return usage; 375} 376 377static void __init check_usemap_section_nr(int nid, 378 struct mem_section_usage *usage) 379{ 380 unsigned long usemap_snr, pgdat_snr; 381 static unsigned long old_usemap_snr; 382 static unsigned long old_pgdat_snr; 383 struct pglist_data *pgdat = NODE_DATA(nid); 384 int usemap_nid; 385 386 /* First call */ 387 if (!old_usemap_snr) { 388 old_usemap_snr = NR_MEM_SECTIONS; 389 old_pgdat_snr = NR_MEM_SECTIONS; 390 } 391 392 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 393 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 394 if (usemap_snr == pgdat_snr) 395 return; 396 397 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 398 /* skip redundant message */ 399 return; 400 401 old_usemap_snr = usemap_snr; 402 old_pgdat_snr = pgdat_snr; 403 404 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 405 if (usemap_nid != nid) { 406 pr_info("node %d must be removed before remove section %ld\n", 407 nid, usemap_snr); 408 return; 409 } 410 /* 411 * There is a circular dependency. 412 * Some platforms allow un-removable section because they will just 413 * gather other removable sections for dynamic partitioning. 414 * Just notify un-removable section's number here. 415 */ 416 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 417 usemap_snr, pgdat_snr, nid); 418} 419#else 420static struct mem_section_usage * __init 421sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 422 unsigned long size) 423{ 424 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 425} 426 427static void __init check_usemap_section_nr(int nid, 428 struct mem_section_usage *usage) 429{ 430} 431#endif /* CONFIG_MEMORY_HOTREMOVE */ 432 433#ifdef CONFIG_SPARSEMEM_VMEMMAP 434static unsigned long __init section_map_size(void) 435{ 436 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 437} 438 439#else 440static unsigned long __init section_map_size(void) 441{ 442 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 443} 444 445struct page __init *__populate_section_memmap(unsigned long pfn, 446 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 447{ 448 unsigned long size = section_map_size(); 449 struct page *map = sparse_buffer_alloc(size); 450 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 451 452 if (map) 453 return map; 454 455 map = memblock_alloc_try_nid_raw(size, size, addr, 456 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 457 if (!map) 458 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 459 __func__, size, PAGE_SIZE, nid, &addr); 460 461 return map; 462} 463#endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 464 465static void *sparsemap_buf __meminitdata; 466static void *sparsemap_buf_end __meminitdata; 467 468static inline void __meminit sparse_buffer_free(unsigned long size) 469{ 470 WARN_ON(!sparsemap_buf || size == 0); 471 memblock_free_early(__pa(sparsemap_buf), size); 472} 473 474static void __init sparse_buffer_init(unsigned long size, int nid) 475{ 476 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 477 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 478 /* 479 * Pre-allocated buffer is mainly used by __populate_section_memmap 480 * and we want it to be properly aligned to the section size - this is 481 * especially the case for VMEMMAP which maps memmap to PMDs 482 */ 483 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 484 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 485 sparsemap_buf_end = sparsemap_buf + size; 486} 487 488static void __init sparse_buffer_fini(void) 489{ 490 unsigned long size = sparsemap_buf_end - sparsemap_buf; 491 492 if (sparsemap_buf && size > 0) 493 sparse_buffer_free(size); 494 sparsemap_buf = NULL; 495} 496 497void * __meminit sparse_buffer_alloc(unsigned long size) 498{ 499 void *ptr = NULL; 500 501 if (sparsemap_buf) { 502 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 503 if (ptr + size > sparsemap_buf_end) 504 ptr = NULL; 505 else { 506 /* Free redundant aligned space */ 507 if ((unsigned long)(ptr - sparsemap_buf) > 0) 508 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 509 sparsemap_buf = ptr + size; 510 } 511 } 512 return ptr; 513} 514 515void __weak __meminit vmemmap_populate_print_last(void) 516{ 517} 518 519/* 520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 521 * And number of present sections in this node is map_count. 522 */ 523static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 524 unsigned long pnum_end, 525 unsigned long map_count) 526{ 527 struct mem_section_usage *usage; 528 unsigned long pnum; 529 struct page *map; 530 531 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 532 mem_section_usage_size() * map_count); 533 if (!usage) { 534 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 535 goto failed; 536 } 537 sparse_buffer_init(map_count * section_map_size(), nid); 538 for_each_present_section_nr(pnum_begin, pnum) { 539 unsigned long pfn = section_nr_to_pfn(pnum); 540 541 if (pnum >= pnum_end) 542 break; 543 544 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 545 nid, NULL); 546 if (!map) { 547 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 548 __func__, nid); 549 pnum_begin = pnum; 550 sparse_buffer_fini(); 551 goto failed; 552 } 553 check_usemap_section_nr(nid, usage); 554 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 555 SECTION_IS_EARLY); 556 usage = (void *) usage + mem_section_usage_size(); 557 } 558 sparse_buffer_fini(); 559 return; 560failed: 561 /* We failed to allocate, mark all the following pnums as not present */ 562 for_each_present_section_nr(pnum_begin, pnum) { 563 struct mem_section *ms; 564 565 if (pnum >= pnum_end) 566 break; 567 ms = __nr_to_section(pnum); 568 ms->section_mem_map = 0; 569 } 570} 571 572/* 573 * Allocate the accumulated non-linear sections, allocate a mem_map 574 * for each and record the physical to section mapping. 575 */ 576void __init sparse_init(void) 577{ 578 unsigned long pnum_end, pnum_begin, map_count = 1; 579 int nid_begin; 580 581 memblocks_present(); 582 583 pnum_begin = first_present_section_nr(); 584 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 585 586 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 587 set_pageblock_order(); 588 589 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 590 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 591 592 if (nid == nid_begin) { 593 map_count++; 594 continue; 595 } 596 /* Init node with sections in range [pnum_begin, pnum_end) */ 597 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 598 nid_begin = nid; 599 pnum_begin = pnum_end; 600 map_count = 1; 601 } 602 /* cover the last node */ 603 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 604 vmemmap_populate_print_last(); 605} 606 607#ifdef CONFIG_MEMORY_HOTPLUG 608 609/* Mark all memory sections within the pfn range as online */ 610void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 611{ 612 unsigned long pfn; 613 614 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 615 unsigned long section_nr = pfn_to_section_nr(pfn); 616 struct mem_section *ms; 617 618 /* onlining code should never touch invalid ranges */ 619 if (WARN_ON(!valid_section_nr(section_nr))) 620 continue; 621 622 ms = __nr_to_section(section_nr); 623 ms->section_mem_map |= SECTION_IS_ONLINE; 624 } 625} 626 627#ifdef CONFIG_MEMORY_HOTREMOVE 628/* Mark all memory sections within the pfn range as offline */ 629void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 630{ 631 unsigned long pfn; 632 633 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 634 unsigned long section_nr = pfn_to_section_nr(pfn); 635 struct mem_section *ms; 636 637 /* 638 * TODO this needs some double checking. Offlining code makes 639 * sure to check pfn_valid but those checks might be just bogus 640 */ 641 if (WARN_ON(!valid_section_nr(section_nr))) 642 continue; 643 644 ms = __nr_to_section(section_nr); 645 ms->section_mem_map &= ~SECTION_IS_ONLINE; 646 } 647} 648#endif 649 650#ifdef CONFIG_SPARSEMEM_VMEMMAP 651static struct page * __meminit populate_section_memmap(unsigned long pfn, 652 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 653{ 654 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 655} 656 657static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 658 struct vmem_altmap *altmap) 659{ 660 unsigned long start = (unsigned long) pfn_to_page(pfn); 661 unsigned long end = start + nr_pages * sizeof(struct page); 662 663 vmemmap_free(start, end, altmap); 664} 665static void free_map_bootmem(struct page *memmap) 666{ 667 unsigned long start = (unsigned long)memmap; 668 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 669 670 vmemmap_free(start, end, NULL); 671} 672 673static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 674{ 675 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 676 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 677 struct mem_section *ms = __pfn_to_section(pfn); 678 unsigned long *subsection_map = ms->usage 679 ? &ms->usage->subsection_map[0] : NULL; 680 681 subsection_mask_set(map, pfn, nr_pages); 682 if (subsection_map) 683 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 684 685 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 686 "section already deactivated (%#lx + %ld)\n", 687 pfn, nr_pages)) 688 return -EINVAL; 689 690 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 691 return 0; 692} 693 694static bool is_subsection_map_empty(struct mem_section *ms) 695{ 696 return bitmap_empty(&ms->usage->subsection_map[0], 697 SUBSECTIONS_PER_SECTION); 698} 699 700static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 701{ 702 struct mem_section *ms = __pfn_to_section(pfn); 703 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 704 unsigned long *subsection_map; 705 int rc = 0; 706 707 subsection_mask_set(map, pfn, nr_pages); 708 709 subsection_map = &ms->usage->subsection_map[0]; 710 711 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 712 rc = -EINVAL; 713 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 714 rc = -EEXIST; 715 else 716 bitmap_or(subsection_map, map, subsection_map, 717 SUBSECTIONS_PER_SECTION); 718 719 return rc; 720} 721#else 722struct page * __meminit populate_section_memmap(unsigned long pfn, 723 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 724{ 725 return kvmalloc_node(array_size(sizeof(struct page), 726 PAGES_PER_SECTION), GFP_KERNEL, nid); 727} 728 729static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 730 struct vmem_altmap *altmap) 731{ 732 kvfree(pfn_to_page(pfn)); 733} 734 735static void free_map_bootmem(struct page *memmap) 736{ 737 unsigned long maps_section_nr, removing_section_nr, i; 738 unsigned long magic, nr_pages; 739 struct page *page = virt_to_page(memmap); 740 741 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 742 >> PAGE_SHIFT; 743 744 for (i = 0; i < nr_pages; i++, page++) { 745 magic = (unsigned long) page->freelist; 746 747 BUG_ON(magic == NODE_INFO); 748 749 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 750 removing_section_nr = page_private(page); 751 752 /* 753 * When this function is called, the removing section is 754 * logical offlined state. This means all pages are isolated 755 * from page allocator. If removing section's memmap is placed 756 * on the same section, it must not be freed. 757 * If it is freed, page allocator may allocate it which will 758 * be removed physically soon. 759 */ 760 if (maps_section_nr != removing_section_nr) 761 put_page_bootmem(page); 762 } 763} 764 765static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 766{ 767 return 0; 768} 769 770static bool is_subsection_map_empty(struct mem_section *ms) 771{ 772 return true; 773} 774 775static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 776{ 777 return 0; 778} 779#endif /* CONFIG_SPARSEMEM_VMEMMAP */ 780 781/* 782 * To deactivate a memory region, there are 3 cases to handle across 783 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 784 * 785 * 1. deactivation of a partial hot-added section (only possible in 786 * the SPARSEMEM_VMEMMAP=y case). 787 * a) section was present at memory init. 788 * b) section was hot-added post memory init. 789 * 2. deactivation of a complete hot-added section. 790 * 3. deactivation of a complete section from memory init. 791 * 792 * For 1, when subsection_map does not empty we will not be freeing the 793 * usage map, but still need to free the vmemmap range. 794 * 795 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 796 */ 797static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 798 struct vmem_altmap *altmap) 799{ 800 struct mem_section *ms = __pfn_to_section(pfn); 801 bool section_is_early = early_section(ms); 802 struct page *memmap = NULL; 803 bool empty; 804 805 if (clear_subsection_map(pfn, nr_pages)) 806 return; 807 808 empty = is_subsection_map_empty(ms); 809 if (empty) { 810 unsigned long section_nr = pfn_to_section_nr(pfn); 811 812 /* 813 * Mark the section invalid so that valid_section() 814 * return false. This prevents code from dereferencing 815 * ms->usage array. 816 */ 817 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 818 819 /* 820 * When removing an early section, the usage map is kept (as the 821 * usage maps of other sections fall into the same page). It 822 * will be re-used when re-adding the section - which is then no 823 * longer an early section. If the usage map is PageReserved, it 824 * was allocated during boot. 825 */ 826 if (!PageReserved(virt_to_page(ms->usage))) { 827 kfree_rcu(ms->usage, rcu); 828 WRITE_ONCE(ms->usage, NULL); 829 } 830 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 831 } 832 833 /* 834 * The memmap of early sections is always fully populated. See 835 * section_activate() and pfn_valid() . 836 */ 837 if (!section_is_early) 838 depopulate_section_memmap(pfn, nr_pages, altmap); 839 else if (memmap) 840 free_map_bootmem(memmap); 841 842 if (empty) 843 ms->section_mem_map = (unsigned long)NULL; 844} 845 846static struct page * __meminit section_activate(int nid, unsigned long pfn, 847 unsigned long nr_pages, struct vmem_altmap *altmap) 848{ 849 struct mem_section *ms = __pfn_to_section(pfn); 850 struct mem_section_usage *usage = NULL; 851 struct page *memmap; 852 int rc = 0; 853 854 if (!ms->usage) { 855 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 856 if (!usage) 857 return ERR_PTR(-ENOMEM); 858 ms->usage = usage; 859 } 860 861 rc = fill_subsection_map(pfn, nr_pages); 862 if (rc) { 863 if (usage) 864 ms->usage = NULL; 865 kfree(usage); 866 return ERR_PTR(rc); 867 } 868 869 /* 870 * The early init code does not consider partially populated 871 * initial sections, it simply assumes that memory will never be 872 * referenced. If we hot-add memory into such a section then we 873 * do not need to populate the memmap and can simply reuse what 874 * is already there. 875 */ 876 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 877 return pfn_to_page(pfn); 878 879 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 880 if (!memmap) { 881 section_deactivate(pfn, nr_pages, altmap); 882 return ERR_PTR(-ENOMEM); 883 } 884 885 return memmap; 886} 887 888/** 889 * sparse_add_section - add a memory section, or populate an existing one 890 * @nid: The node to add section on 891 * @start_pfn: start pfn of the memory range 892 * @nr_pages: number of pfns to add in the section 893 * @altmap: device page map 894 * 895 * This is only intended for hotplug. 896 * 897 * Note that only VMEMMAP supports sub-section aligned hotplug, 898 * the proper alignment and size are gated by check_pfn_span(). 899 * 900 * 901 * Return: 902 * * 0 - On success. 903 * * -EEXIST - Section has been present. 904 * * -ENOMEM - Out of memory. 905 */ 906int __meminit sparse_add_section(int nid, unsigned long start_pfn, 907 unsigned long nr_pages, struct vmem_altmap *altmap) 908{ 909 unsigned long section_nr = pfn_to_section_nr(start_pfn); 910 struct mem_section *ms; 911 struct page *memmap; 912 int ret; 913 914 ret = sparse_index_init(section_nr, nid); 915 if (ret < 0) 916 return ret; 917 918 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 919 if (IS_ERR(memmap)) 920 return PTR_ERR(memmap); 921 922 /* 923 * Poison uninitialized struct pages in order to catch invalid flags 924 * combinations. 925 */ 926 page_init_poison(memmap, sizeof(struct page) * nr_pages); 927 928 ms = __nr_to_section(section_nr); 929 set_section_nid(section_nr, nid); 930 section_mark_present(ms); 931 932 /* Align memmap to section boundary in the subsection case */ 933 if (section_nr_to_pfn(section_nr) != start_pfn) 934 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 935 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 936 937 return 0; 938} 939 940#ifdef CONFIG_MEMORY_FAILURE 941static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 942{ 943 int i; 944 945 /* 946 * A further optimization is to have per section refcounted 947 * num_poisoned_pages. But that would need more space per memmap, so 948 * for now just do a quick global check to speed up this routine in the 949 * absence of bad pages. 950 */ 951 if (atomic_long_read(&num_poisoned_pages) == 0) 952 return; 953 954 for (i = 0; i < nr_pages; i++) { 955 if (PageHWPoison(&memmap[i])) { 956 num_poisoned_pages_dec(); 957 ClearPageHWPoison(&memmap[i]); 958 } 959 } 960} 961#else 962static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 963{ 964} 965#endif 966 967void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 968 unsigned long nr_pages, unsigned long map_offset, 969 struct vmem_altmap *altmap) 970{ 971 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 972 nr_pages - map_offset); 973 section_deactivate(pfn, nr_pages, altmap); 974} 975#endif /* CONFIG_MEMORY_HOTPLUG */ 976