xref: /kernel/linux/linux-5.10/mm/page_alloc.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/page_alloc.c
4 *
5 *  Manages the free list, the system allocates free pages here.
6 *  Note that kmalloc() lives in slab.c
7 *
8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9 *  Swap reorganised 29.12.95, Stephen Tweedie
10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/random.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
70#include <linux/psi.h>
71#include <linux/padata.h>
72#include <linux/khugepaged.h>
73#include <linux/zswapd.h>
74#ifdef CONFIG_RECLAIM_ACCT
75#include <linux/reclaim_acct.h>
76#endif
77
78#include <asm/sections.h>
79#include <asm/tlbflush.h>
80#include <asm/div64.h>
81#include "internal.h"
82#include "shuffle.h"
83#include "page_reporting.h"
84
85/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86typedef int __bitwise fpi_t;
87
88/* No special request */
89#define FPI_NONE		((__force fpi_t)0)
90
91/*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" -  it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100
101/*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 *       to allow for optimizations when handing back either fresh pages
108 *       (memory onlining) or untouched pages (page isolation, free page
109 *       reporting).
110 */
111#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112
113/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114static DEFINE_MUTEX(pcp_batch_high_lock);
115#define MIN_PERCPU_PAGELIST_FRACTION	(8)
116
117#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
118DEFINE_PER_CPU(int, numa_node);
119EXPORT_PER_CPU_SYMBOL(numa_node);
120#endif
121
122DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
123
124#ifdef CONFIG_HAVE_MEMORYLESS_NODES
125/*
126 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
127 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
128 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
129 * defined in <linux/topology.h>.
130 */
131DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
132EXPORT_PER_CPU_SYMBOL(_numa_mem_);
133#endif
134
135/* work_structs for global per-cpu drains */
136struct pcpu_drain {
137	struct zone *zone;
138	struct work_struct work;
139};
140static DEFINE_MUTEX(pcpu_drain_mutex);
141static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
142
143#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
144volatile unsigned long latent_entropy __latent_entropy;
145EXPORT_SYMBOL(latent_entropy);
146#endif
147
148/*
149 * Array of node states.
150 */
151nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
152	[N_POSSIBLE] = NODE_MASK_ALL,
153	[N_ONLINE] = { { [0] = 1UL } },
154#ifndef CONFIG_NUMA
155	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
156#ifdef CONFIG_HIGHMEM
157	[N_HIGH_MEMORY] = { { [0] = 1UL } },
158#endif
159	[N_MEMORY] = { { [0] = 1UL } },
160	[N_CPU] = { { [0] = 1UL } },
161#endif	/* NUMA */
162};
163EXPORT_SYMBOL(node_states);
164
165atomic_long_t _totalram_pages __read_mostly;
166EXPORT_SYMBOL(_totalram_pages);
167unsigned long totalreserve_pages __read_mostly;
168unsigned long totalcma_pages __read_mostly;
169
170int percpu_pagelist_fraction;
171gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
172#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
173DEFINE_STATIC_KEY_TRUE(init_on_alloc);
174#else
175DEFINE_STATIC_KEY_FALSE(init_on_alloc);
176#endif
177EXPORT_SYMBOL(init_on_alloc);
178
179#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
180DEFINE_STATIC_KEY_TRUE(init_on_free);
181#else
182DEFINE_STATIC_KEY_FALSE(init_on_free);
183#endif
184EXPORT_SYMBOL(init_on_free);
185
186static int __init early_init_on_alloc(char *buf)
187{
188	int ret;
189	bool bool_result;
190
191	ret = kstrtobool(buf, &bool_result);
192	if (ret)
193		return ret;
194	if (bool_result && page_poisoning_enabled())
195		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
196	if (bool_result)
197		static_branch_enable(&init_on_alloc);
198	else
199		static_branch_disable(&init_on_alloc);
200	return 0;
201}
202early_param("init_on_alloc", early_init_on_alloc);
203
204static int __init early_init_on_free(char *buf)
205{
206	int ret;
207	bool bool_result;
208
209	ret = kstrtobool(buf, &bool_result);
210	if (ret)
211		return ret;
212	if (bool_result && page_poisoning_enabled())
213		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
214	if (bool_result)
215		static_branch_enable(&init_on_free);
216	else
217		static_branch_disable(&init_on_free);
218	return 0;
219}
220early_param("init_on_free", early_init_on_free);
221
222/*
223 * A cached value of the page's pageblock's migratetype, used when the page is
224 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
225 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
226 * Also the migratetype set in the page does not necessarily match the pcplist
227 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
228 * other index - this ensures that it will be put on the correct CMA freelist.
229 */
230static inline int get_pcppage_migratetype(struct page *page)
231{
232	return page->index;
233}
234
235static inline void set_pcppage_migratetype(struct page *page, int migratetype)
236{
237	page->index = migratetype;
238}
239
240#ifdef CONFIG_PM_SLEEP
241/*
242 * The following functions are used by the suspend/hibernate code to temporarily
243 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
244 * while devices are suspended.  To avoid races with the suspend/hibernate code,
245 * they should always be called with system_transition_mutex held
246 * (gfp_allowed_mask also should only be modified with system_transition_mutex
247 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
248 * with that modification).
249 */
250
251static gfp_t saved_gfp_mask;
252
253void pm_restore_gfp_mask(void)
254{
255	WARN_ON(!mutex_is_locked(&system_transition_mutex));
256	if (saved_gfp_mask) {
257		gfp_allowed_mask = saved_gfp_mask;
258		saved_gfp_mask = 0;
259	}
260}
261
262void pm_restrict_gfp_mask(void)
263{
264	WARN_ON(!mutex_is_locked(&system_transition_mutex));
265	WARN_ON(saved_gfp_mask);
266	saved_gfp_mask = gfp_allowed_mask;
267	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
268}
269
270bool pm_suspended_storage(void)
271{
272	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
273		return false;
274	return true;
275}
276#endif /* CONFIG_PM_SLEEP */
277
278#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
279unsigned int pageblock_order __read_mostly;
280#endif
281
282static void __free_pages_ok(struct page *page, unsigned int order,
283			    fpi_t fpi_flags);
284
285/*
286 * results with 256, 32 in the lowmem_reserve sysctl:
287 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
288 *	1G machine -> (16M dma, 784M normal, 224M high)
289 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
290 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
291 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
292 *
293 * TBD: should special case ZONE_DMA32 machines here - in those we normally
294 * don't need any ZONE_NORMAL reservation
295 */
296int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
297#ifdef CONFIG_ZONE_DMA
298	[ZONE_DMA] = 256,
299#endif
300#ifdef CONFIG_ZONE_DMA32
301	[ZONE_DMA32] = 256,
302#endif
303	[ZONE_NORMAL] = 32,
304#ifdef CONFIG_HIGHMEM
305	[ZONE_HIGHMEM] = 0,
306#endif
307	[ZONE_MOVABLE] = 0,
308};
309
310static char * const zone_names[MAX_NR_ZONES] = {
311#ifdef CONFIG_ZONE_DMA
312	 "DMA",
313#endif
314#ifdef CONFIG_ZONE_DMA32
315	 "DMA32",
316#endif
317	 "Normal",
318#ifdef CONFIG_HIGHMEM
319	 "HighMem",
320#endif
321	 "Movable",
322#ifdef CONFIG_ZONE_DEVICE
323	 "Device",
324#endif
325};
326
327const char * const migratetype_names[MIGRATE_TYPES] = {
328	"Unmovable",
329	"Movable",
330	"Reclaimable",
331#ifdef CONFIG_CMA_REUSE
332	"CMA",
333#endif
334	"HighAtomic",
335#if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
336	"CMA",
337#endif
338#ifdef CONFIG_MEMORY_ISOLATION
339	"Isolate",
340#endif
341};
342
343compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
344	[NULL_COMPOUND_DTOR] = NULL,
345	[COMPOUND_PAGE_DTOR] = free_compound_page,
346#ifdef CONFIG_HUGETLB_PAGE
347	[HUGETLB_PAGE_DTOR] = free_huge_page,
348#endif
349#ifdef CONFIG_TRANSPARENT_HUGEPAGE
350	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
351#endif
352};
353
354int min_free_kbytes = 1024;
355int user_min_free_kbytes = -1;
356#ifdef CONFIG_DISCONTIGMEM
357/*
358 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
359 * are not on separate NUMA nodes. Functionally this works but with
360 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
361 * quite small. By default, do not boost watermarks on discontigmem as in
362 * many cases very high-order allocations like THP are likely to be
363 * unsupported and the premature reclaim offsets the advantage of long-term
364 * fragmentation avoidance.
365 */
366int watermark_boost_factor __read_mostly;
367#else
368int watermark_boost_factor __read_mostly = 15000;
369#endif
370int watermark_scale_factor = 10;
371
372static unsigned long nr_kernel_pages __initdata;
373static unsigned long nr_all_pages __initdata;
374static unsigned long dma_reserve __initdata;
375
376static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
377static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
378static unsigned long required_kernelcore __initdata;
379static unsigned long required_kernelcore_percent __initdata;
380static unsigned long required_movablecore __initdata;
381static unsigned long required_movablecore_percent __initdata;
382static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
383static bool mirrored_kernelcore __meminitdata;
384
385/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
386int movable_zone;
387EXPORT_SYMBOL(movable_zone);
388
389#if MAX_NUMNODES > 1
390unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
391unsigned int nr_online_nodes __read_mostly = 1;
392EXPORT_SYMBOL(nr_node_ids);
393EXPORT_SYMBOL(nr_online_nodes);
394#endif
395
396int page_group_by_mobility_disabled __read_mostly;
397
398#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
399/*
400 * During boot we initialize deferred pages on-demand, as needed, but once
401 * page_alloc_init_late() has finished, the deferred pages are all initialized,
402 * and we can permanently disable that path.
403 */
404static DEFINE_STATIC_KEY_TRUE(deferred_pages);
405
406/*
407 * Calling kasan_free_pages() only after deferred memory initialization
408 * has completed. Poisoning pages during deferred memory init will greatly
409 * lengthen the process and cause problem in large memory systems as the
410 * deferred pages initialization is done with interrupt disabled.
411 *
412 * Assuming that there will be no reference to those newly initialized
413 * pages before they are ever allocated, this should have no effect on
414 * KASAN memory tracking as the poison will be properly inserted at page
415 * allocation time. The only corner case is when pages are allocated by
416 * on-demand allocation and then freed again before the deferred pages
417 * initialization is done, but this is not likely to happen.
418 */
419static inline void kasan_free_nondeferred_pages(struct page *page, int order)
420{
421	if (!static_branch_unlikely(&deferred_pages))
422		kasan_free_pages(page, order);
423}
424
425/* Returns true if the struct page for the pfn is uninitialised */
426static inline bool __meminit early_page_uninitialised(unsigned long pfn)
427{
428	int nid = early_pfn_to_nid(pfn);
429
430	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
431		return true;
432
433	return false;
434}
435
436/*
437 * Returns true when the remaining initialisation should be deferred until
438 * later in the boot cycle when it can be parallelised.
439 */
440static bool __meminit
441defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442{
443	static unsigned long prev_end_pfn, nr_initialised;
444
445	/*
446	 * prev_end_pfn static that contains the end of previous zone
447	 * No need to protect because called very early in boot before smp_init.
448	 */
449	if (prev_end_pfn != end_pfn) {
450		prev_end_pfn = end_pfn;
451		nr_initialised = 0;
452	}
453
454	/* Always populate low zones for address-constrained allocations */
455	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
456		return false;
457
458	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
459		return true;
460	/*
461	 * We start only with one section of pages, more pages are added as
462	 * needed until the rest of deferred pages are initialized.
463	 */
464	nr_initialised++;
465	if ((nr_initialised > PAGES_PER_SECTION) &&
466	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
467		NODE_DATA(nid)->first_deferred_pfn = pfn;
468		return true;
469	}
470	return false;
471}
472#else
473#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
474
475static inline bool early_page_uninitialised(unsigned long pfn)
476{
477	return false;
478}
479
480static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
481{
482	return false;
483}
484#endif
485
486/* Return a pointer to the bitmap storing bits affecting a block of pages */
487static inline unsigned long *get_pageblock_bitmap(struct page *page,
488							unsigned long pfn)
489{
490#ifdef CONFIG_SPARSEMEM
491	return section_to_usemap(__pfn_to_section(pfn));
492#else
493	return page_zone(page)->pageblock_flags;
494#endif /* CONFIG_SPARSEMEM */
495}
496
497static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
498{
499#ifdef CONFIG_SPARSEMEM
500	pfn &= (PAGES_PER_SECTION-1);
501#else
502	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
503#endif /* CONFIG_SPARSEMEM */
504	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
505}
506
507/**
508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509 * @page: The page within the block of interest
510 * @pfn: The target page frame number
511 * @mask: mask of bits that the caller is interested in
512 *
513 * Return: pageblock_bits flags
514 */
515static __always_inline
516unsigned long __get_pfnblock_flags_mask(struct page *page,
517					unsigned long pfn,
518					unsigned long mask)
519{
520	unsigned long *bitmap;
521	unsigned long bitidx, word_bitidx;
522	unsigned long word;
523
524	bitmap = get_pageblock_bitmap(page, pfn);
525	bitidx = pfn_to_bitidx(page, pfn);
526	word_bitidx = bitidx / BITS_PER_LONG;
527	bitidx &= (BITS_PER_LONG-1);
528
529	word = bitmap[word_bitidx];
530	return (word >> bitidx) & mask;
531}
532
533unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
534					unsigned long mask)
535{
536	return __get_pfnblock_flags_mask(page, pfn, mask);
537}
538
539static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
540{
541	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
542}
543
544/**
545 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
546 * @page: The page within the block of interest
547 * @flags: The flags to set
548 * @pfn: The target page frame number
549 * @mask: mask of bits that the caller is interested in
550 */
551void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
552					unsigned long pfn,
553					unsigned long mask)
554{
555	unsigned long *bitmap;
556	unsigned long bitidx, word_bitidx;
557	unsigned long old_word, word;
558
559	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
560	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
561
562	bitmap = get_pageblock_bitmap(page, pfn);
563	bitidx = pfn_to_bitidx(page, pfn);
564	word_bitidx = bitidx / BITS_PER_LONG;
565	bitidx &= (BITS_PER_LONG-1);
566
567	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
568
569	mask <<= bitidx;
570	flags <<= bitidx;
571
572	word = READ_ONCE(bitmap[word_bitidx]);
573	for (;;) {
574		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
575		if (word == old_word)
576			break;
577		word = old_word;
578	}
579}
580
581void set_pageblock_migratetype(struct page *page, int migratetype)
582{
583	if (unlikely(page_group_by_mobility_disabled &&
584		     migratetype < MIGRATE_PCPTYPES))
585		migratetype = MIGRATE_UNMOVABLE;
586
587	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
588				page_to_pfn(page), MIGRATETYPE_MASK);
589}
590
591#ifdef CONFIG_DEBUG_VM
592static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
593{
594	int ret = 0;
595	unsigned seq;
596	unsigned long pfn = page_to_pfn(page);
597	unsigned long sp, start_pfn;
598
599	do {
600		seq = zone_span_seqbegin(zone);
601		start_pfn = zone->zone_start_pfn;
602		sp = zone->spanned_pages;
603		if (!zone_spans_pfn(zone, pfn))
604			ret = 1;
605	} while (zone_span_seqretry(zone, seq));
606
607	if (ret)
608		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
609			pfn, zone_to_nid(zone), zone->name,
610			start_pfn, start_pfn + sp);
611
612	return ret;
613}
614
615static int page_is_consistent(struct zone *zone, struct page *page)
616{
617	if (!pfn_valid_within(page_to_pfn(page)))
618		return 0;
619	if (zone != page_zone(page))
620		return 0;
621
622	return 1;
623}
624/*
625 * Temporary debugging check for pages not lying within a given zone.
626 */
627static int __maybe_unused bad_range(struct zone *zone, struct page *page)
628{
629	if (page_outside_zone_boundaries(zone, page))
630		return 1;
631	if (!page_is_consistent(zone, page))
632		return 1;
633
634	return 0;
635}
636#else
637static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
638{
639	return 0;
640}
641#endif
642
643static void bad_page(struct page *page, const char *reason)
644{
645	static unsigned long resume;
646	static unsigned long nr_shown;
647	static unsigned long nr_unshown;
648
649	/*
650	 * Allow a burst of 60 reports, then keep quiet for that minute;
651	 * or allow a steady drip of one report per second.
652	 */
653	if (nr_shown == 60) {
654		if (time_before(jiffies, resume)) {
655			nr_unshown++;
656			goto out;
657		}
658		if (nr_unshown) {
659			pr_alert(
660			      "BUG: Bad page state: %lu messages suppressed\n",
661				nr_unshown);
662			nr_unshown = 0;
663		}
664		nr_shown = 0;
665	}
666	if (nr_shown++ == 0)
667		resume = jiffies + 60 * HZ;
668
669	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
670		current->comm, page_to_pfn(page));
671	__dump_page(page, reason);
672	dump_page_owner(page);
673
674	print_modules();
675	dump_stack();
676out:
677	/* Leave bad fields for debug, except PageBuddy could make trouble */
678	page_mapcount_reset(page); /* remove PageBuddy */
679	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
680}
681
682/*
683 * Higher-order pages are called "compound pages".  They are structured thusly:
684 *
685 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
686 *
687 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
688 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
689 *
690 * The first tail page's ->compound_dtor holds the offset in array of compound
691 * page destructors. See compound_page_dtors.
692 *
693 * The first tail page's ->compound_order holds the order of allocation.
694 * This usage means that zero-order pages may not be compound.
695 */
696
697void free_compound_page(struct page *page)
698{
699	mem_cgroup_uncharge(page);
700	__free_pages_ok(page, compound_order(page), FPI_NONE);
701}
702
703void prep_compound_page(struct page *page, unsigned int order)
704{
705	int i;
706	int nr_pages = 1 << order;
707
708	__SetPageHead(page);
709	for (i = 1; i < nr_pages; i++) {
710		struct page *p = page + i;
711		set_page_count(p, 0);
712		p->mapping = TAIL_MAPPING;
713		set_compound_head(p, page);
714	}
715
716	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717	set_compound_order(page, order);
718	atomic_set(compound_mapcount_ptr(page), -1);
719	if (hpage_pincount_available(page))
720		atomic_set(compound_pincount_ptr(page), 0);
721}
722
723#ifdef CONFIG_DEBUG_PAGEALLOC
724unsigned int _debug_guardpage_minorder;
725
726bool _debug_pagealloc_enabled_early __read_mostly
727			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
728EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
729DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
730EXPORT_SYMBOL(_debug_pagealloc_enabled);
731
732DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
733
734static int __init early_debug_pagealloc(char *buf)
735{
736	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
737}
738early_param("debug_pagealloc", early_debug_pagealloc);
739
740void init_debug_pagealloc(void)
741{
742	if (!debug_pagealloc_enabled())
743		return;
744
745	static_branch_enable(&_debug_pagealloc_enabled);
746
747	if (!debug_guardpage_minorder())
748		return;
749
750	static_branch_enable(&_debug_guardpage_enabled);
751}
752
753static int __init debug_guardpage_minorder_setup(char *buf)
754{
755	unsigned long res;
756
757	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
758		pr_err("Bad debug_guardpage_minorder value\n");
759		return 0;
760	}
761	_debug_guardpage_minorder = res;
762	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
763	return 0;
764}
765early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
766
767static inline bool set_page_guard(struct zone *zone, struct page *page,
768				unsigned int order, int migratetype)
769{
770	if (!debug_guardpage_enabled())
771		return false;
772
773	if (order >= debug_guardpage_minorder())
774		return false;
775
776	__SetPageGuard(page);
777	INIT_LIST_HEAD(&page->lru);
778	set_page_private(page, order);
779	/* Guard pages are not available for any usage */
780	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
781
782	return true;
783}
784
785static inline void clear_page_guard(struct zone *zone, struct page *page,
786				unsigned int order, int migratetype)
787{
788	if (!debug_guardpage_enabled())
789		return;
790
791	__ClearPageGuard(page);
792
793	set_page_private(page, 0);
794	if (!is_migrate_isolate(migratetype))
795		__mod_zone_freepage_state(zone, (1 << order), migratetype);
796}
797#else
798static inline bool set_page_guard(struct zone *zone, struct page *page,
799			unsigned int order, int migratetype) { return false; }
800static inline void clear_page_guard(struct zone *zone, struct page *page,
801				unsigned int order, int migratetype) {}
802#endif
803
804static inline void set_buddy_order(struct page *page, unsigned int order)
805{
806	set_page_private(page, order);
807	__SetPageBuddy(page);
808}
809
810/*
811 * This function checks whether a page is free && is the buddy
812 * we can coalesce a page and its buddy if
813 * (a) the buddy is not in a hole (check before calling!) &&
814 * (b) the buddy is in the buddy system &&
815 * (c) a page and its buddy have the same order &&
816 * (d) a page and its buddy are in the same zone.
817 *
818 * For recording whether a page is in the buddy system, we set PageBuddy.
819 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
820 *
821 * For recording page's order, we use page_private(page).
822 */
823static inline bool page_is_buddy(struct page *page, struct page *buddy,
824							unsigned int order)
825{
826	if (!page_is_guard(buddy) && !PageBuddy(buddy))
827		return false;
828
829	if (buddy_order(buddy) != order)
830		return false;
831
832	/*
833	 * zone check is done late to avoid uselessly calculating
834	 * zone/node ids for pages that could never merge.
835	 */
836	if (page_zone_id(page) != page_zone_id(buddy))
837		return false;
838
839	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
840
841	return true;
842}
843
844#ifdef CONFIG_COMPACTION
845static inline struct capture_control *task_capc(struct zone *zone)
846{
847	struct capture_control *capc = current->capture_control;
848
849	return unlikely(capc) &&
850		!(current->flags & PF_KTHREAD) &&
851		!capc->page &&
852		capc->cc->zone == zone ? capc : NULL;
853}
854
855static inline bool
856compaction_capture(struct capture_control *capc, struct page *page,
857		   int order, int migratetype)
858{
859	if (!capc || order != capc->cc->order)
860		return false;
861
862	/* Do not accidentally pollute CMA or isolated regions*/
863	if (is_migrate_cma(migratetype) ||
864	    is_migrate_isolate(migratetype))
865		return false;
866
867	/*
868	 * Do not let lower order allocations polluate a movable pageblock.
869	 * This might let an unmovable request use a reclaimable pageblock
870	 * and vice-versa but no more than normal fallback logic which can
871	 * have trouble finding a high-order free page.
872	 */
873	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
874		return false;
875
876	capc->page = page;
877	return true;
878}
879
880#else
881static inline struct capture_control *task_capc(struct zone *zone)
882{
883	return NULL;
884}
885
886static inline bool
887compaction_capture(struct capture_control *capc, struct page *page,
888		   int order, int migratetype)
889{
890	return false;
891}
892#endif /* CONFIG_COMPACTION */
893
894/* Used for pages not on another list */
895static inline void add_to_free_list(struct page *page, struct zone *zone,
896				    unsigned int order, int migratetype)
897{
898	struct free_area *area = &zone->free_area[order];
899
900	list_add(&page->lru, &area->free_list[migratetype]);
901	area->nr_free++;
902}
903
904/* Used for pages not on another list */
905static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
906					 unsigned int order, int migratetype)
907{
908	struct free_area *area = &zone->free_area[order];
909
910	list_add_tail(&page->lru, &area->free_list[migratetype]);
911	area->nr_free++;
912}
913
914/*
915 * Used for pages which are on another list. Move the pages to the tail
916 * of the list - so the moved pages won't immediately be considered for
917 * allocation again (e.g., optimization for memory onlining).
918 */
919static inline void move_to_free_list(struct page *page, struct zone *zone,
920				     unsigned int order, int migratetype)
921{
922	struct free_area *area = &zone->free_area[order];
923
924	list_move_tail(&page->lru, &area->free_list[migratetype]);
925}
926
927static inline void del_page_from_free_list(struct page *page, struct zone *zone,
928					   unsigned int order)
929{
930	/* clear reported state and update reported page count */
931	if (page_reported(page))
932		__ClearPageReported(page);
933
934	list_del(&page->lru);
935	__ClearPageBuddy(page);
936	set_page_private(page, 0);
937	zone->free_area[order].nr_free--;
938}
939
940/*
941 * If this is not the largest possible page, check if the buddy
942 * of the next-highest order is free. If it is, it's possible
943 * that pages are being freed that will coalesce soon. In case,
944 * that is happening, add the free page to the tail of the list
945 * so it's less likely to be used soon and more likely to be merged
946 * as a higher order page
947 */
948static inline bool
949buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
950		   struct page *page, unsigned int order)
951{
952	struct page *higher_page, *higher_buddy;
953	unsigned long combined_pfn;
954
955	if (order >= MAX_ORDER - 2)
956		return false;
957
958	if (!pfn_valid_within(buddy_pfn))
959		return false;
960
961	combined_pfn = buddy_pfn & pfn;
962	higher_page = page + (combined_pfn - pfn);
963	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
964	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
965
966	return pfn_valid_within(buddy_pfn) &&
967	       page_is_buddy(higher_page, higher_buddy, order + 1);
968}
969
970/*
971 * Freeing function for a buddy system allocator.
972 *
973 * The concept of a buddy system is to maintain direct-mapped table
974 * (containing bit values) for memory blocks of various "orders".
975 * The bottom level table contains the map for the smallest allocatable
976 * units of memory (here, pages), and each level above it describes
977 * pairs of units from the levels below, hence, "buddies".
978 * At a high level, all that happens here is marking the table entry
979 * at the bottom level available, and propagating the changes upward
980 * as necessary, plus some accounting needed to play nicely with other
981 * parts of the VM system.
982 * At each level, we keep a list of pages, which are heads of continuous
983 * free pages of length of (1 << order) and marked with PageBuddy.
984 * Page's order is recorded in page_private(page) field.
985 * So when we are allocating or freeing one, we can derive the state of the
986 * other.  That is, if we allocate a small block, and both were
987 * free, the remainder of the region must be split into blocks.
988 * If a block is freed, and its buddy is also free, then this
989 * triggers coalescing into a block of larger size.
990 *
991 * -- nyc
992 */
993
994static inline void __free_one_page(struct page *page,
995		unsigned long pfn,
996		struct zone *zone, unsigned int order,
997		int migratetype, fpi_t fpi_flags)
998{
999	struct capture_control *capc = task_capc(zone);
1000	unsigned long buddy_pfn;
1001	unsigned long combined_pfn;
1002	unsigned int max_order;
1003	struct page *buddy;
1004	bool to_tail;
1005
1006	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1007
1008	VM_BUG_ON(!zone_is_initialized(zone));
1009	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1010
1011	VM_BUG_ON(migratetype == -1);
1012	if (likely(!is_migrate_isolate(migratetype)))
1013		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1014
1015	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1016	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1017
1018continue_merging:
1019	while (order < max_order) {
1020		if (compaction_capture(capc, page, order, migratetype)) {
1021			__mod_zone_freepage_state(zone, -(1 << order),
1022								migratetype);
1023			return;
1024		}
1025		buddy_pfn = __find_buddy_pfn(pfn, order);
1026		buddy = page + (buddy_pfn - pfn);
1027
1028		if (!pfn_valid_within(buddy_pfn))
1029			goto done_merging;
1030		if (!page_is_buddy(page, buddy, order))
1031			goto done_merging;
1032		/*
1033		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1034		 * merge with it and move up one order.
1035		 */
1036		if (page_is_guard(buddy))
1037			clear_page_guard(zone, buddy, order, migratetype);
1038		else
1039			del_page_from_free_list(buddy, zone, order);
1040		combined_pfn = buddy_pfn & pfn;
1041		page = page + (combined_pfn - pfn);
1042		pfn = combined_pfn;
1043		order++;
1044	}
1045	if (order < MAX_ORDER - 1) {
1046		/* If we are here, it means order is >= pageblock_order.
1047		 * We want to prevent merge between freepages on isolate
1048		 * pageblock and normal pageblock. Without this, pageblock
1049		 * isolation could cause incorrect freepage or CMA accounting.
1050		 *
1051		 * We don't want to hit this code for the more frequent
1052		 * low-order merging.
1053		 */
1054		if (unlikely(has_isolate_pageblock(zone))) {
1055			int buddy_mt;
1056
1057			buddy_pfn = __find_buddy_pfn(pfn, order);
1058			buddy = page + (buddy_pfn - pfn);
1059			buddy_mt = get_pageblock_migratetype(buddy);
1060
1061			if (migratetype != buddy_mt
1062					&& (is_migrate_isolate(migratetype) ||
1063						is_migrate_isolate(buddy_mt)))
1064				goto done_merging;
1065		}
1066		max_order = order + 1;
1067		goto continue_merging;
1068	}
1069
1070done_merging:
1071	set_buddy_order(page, order);
1072
1073	if (fpi_flags & FPI_TO_TAIL)
1074		to_tail = true;
1075	else if (is_shuffle_order(order))
1076		to_tail = shuffle_pick_tail();
1077	else
1078		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1079
1080	if (to_tail)
1081		add_to_free_list_tail(page, zone, order, migratetype);
1082	else
1083		add_to_free_list(page, zone, order, migratetype);
1084
1085	/* Notify page reporting subsystem of freed page */
1086	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1087		page_reporting_notify_free(order);
1088}
1089
1090/*
1091 * A bad page could be due to a number of fields. Instead of multiple branches,
1092 * try and check multiple fields with one check. The caller must do a detailed
1093 * check if necessary.
1094 */
1095static inline bool page_expected_state(struct page *page,
1096					unsigned long check_flags)
1097{
1098	if (unlikely(atomic_read(&page->_mapcount) != -1))
1099		return false;
1100
1101	if (unlikely((unsigned long)page->mapping |
1102			page_ref_count(page) |
1103#ifdef CONFIG_MEMCG
1104			(unsigned long)page->mem_cgroup |
1105#endif
1106			(page->flags & check_flags)))
1107		return false;
1108
1109	return true;
1110}
1111
1112static const char *page_bad_reason(struct page *page, unsigned long flags)
1113{
1114	const char *bad_reason = NULL;
1115
1116	if (unlikely(atomic_read(&page->_mapcount) != -1))
1117		bad_reason = "nonzero mapcount";
1118	if (unlikely(page->mapping != NULL))
1119		bad_reason = "non-NULL mapping";
1120	if (unlikely(page_ref_count(page) != 0))
1121		bad_reason = "nonzero _refcount";
1122	if (unlikely(page->flags & flags)) {
1123		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1124			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1125		else
1126			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1127	}
1128#ifdef CONFIG_MEMCG
1129	if (unlikely(page->mem_cgroup))
1130		bad_reason = "page still charged to cgroup";
1131#endif
1132	return bad_reason;
1133}
1134
1135static void check_free_page_bad(struct page *page)
1136{
1137	bad_page(page,
1138		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1139}
1140
1141static inline int check_free_page(struct page *page)
1142{
1143	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1144		return 0;
1145
1146	/* Something has gone sideways, find it */
1147	check_free_page_bad(page);
1148	return 1;
1149}
1150
1151static int free_tail_pages_check(struct page *head_page, struct page *page)
1152{
1153	int ret = 1;
1154
1155	/*
1156	 * We rely page->lru.next never has bit 0 set, unless the page
1157	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1158	 */
1159	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1160
1161	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1162		ret = 0;
1163		goto out;
1164	}
1165	switch (page - head_page) {
1166	case 1:
1167		/* the first tail page: ->mapping may be compound_mapcount() */
1168		if (unlikely(compound_mapcount(page))) {
1169			bad_page(page, "nonzero compound_mapcount");
1170			goto out;
1171		}
1172		break;
1173	case 2:
1174		/*
1175		 * the second tail page: ->mapping is
1176		 * deferred_list.next -- ignore value.
1177		 */
1178		break;
1179	default:
1180		if (page->mapping != TAIL_MAPPING) {
1181			bad_page(page, "corrupted mapping in tail page");
1182			goto out;
1183		}
1184		break;
1185	}
1186	if (unlikely(!PageTail(page))) {
1187		bad_page(page, "PageTail not set");
1188		goto out;
1189	}
1190	if (unlikely(compound_head(page) != head_page)) {
1191		bad_page(page, "compound_head not consistent");
1192		goto out;
1193	}
1194	ret = 0;
1195out:
1196	page->mapping = NULL;
1197	clear_compound_head(page);
1198	return ret;
1199}
1200
1201static void kernel_init_free_pages(struct page *page, int numpages)
1202{
1203	int i;
1204
1205	/* s390's use of memset() could override KASAN redzones. */
1206	kasan_disable_current();
1207	for (i = 0; i < numpages; i++)
1208		clear_highpage(page + i);
1209	kasan_enable_current();
1210}
1211
1212static __always_inline bool free_pages_prepare(struct page *page,
1213					unsigned int order, bool check_free)
1214{
1215	int bad = 0;
1216
1217	VM_BUG_ON_PAGE(PageTail(page), page);
1218
1219	trace_mm_page_free(page, order);
1220
1221	if (unlikely(PageHWPoison(page)) && !order) {
1222		/*
1223		 * Do not let hwpoison pages hit pcplists/buddy
1224		 * Untie memcg state and reset page's owner
1225		 */
1226		if (memcg_kmem_enabled() && PageKmemcg(page))
1227			__memcg_kmem_uncharge_page(page, order);
1228		reset_page_owner(page, order);
1229		return false;
1230	}
1231
1232	/*
1233	 * Check tail pages before head page information is cleared to
1234	 * avoid checking PageCompound for order-0 pages.
1235	 */
1236	if (unlikely(order)) {
1237		bool compound = PageCompound(page);
1238		int i;
1239
1240		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1241
1242		if (compound)
1243			ClearPageDoubleMap(page);
1244		for (i = 1; i < (1 << order); i++) {
1245			if (compound)
1246				bad += free_tail_pages_check(page, page + i);
1247			if (unlikely(check_free_page(page + i))) {
1248				bad++;
1249				continue;
1250			}
1251			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1252		}
1253	}
1254	if (PageMappingFlags(page))
1255		page->mapping = NULL;
1256	if (memcg_kmem_enabled() && PageKmemcg(page))
1257		__memcg_kmem_uncharge_page(page, order);
1258	if (check_free)
1259		bad += check_free_page(page);
1260	if (bad)
1261		return false;
1262
1263	page_cpupid_reset_last(page);
1264	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1265	reset_page_owner(page, order);
1266
1267	if (!PageHighMem(page)) {
1268		debug_check_no_locks_freed(page_address(page),
1269					   PAGE_SIZE << order);
1270		debug_check_no_obj_freed(page_address(page),
1271					   PAGE_SIZE << order);
1272	}
1273	if (want_init_on_free())
1274		kernel_init_free_pages(page, 1 << order);
1275
1276	kernel_poison_pages(page, 1 << order, 0);
1277	/*
1278	 * arch_free_page() can make the page's contents inaccessible.  s390
1279	 * does this.  So nothing which can access the page's contents should
1280	 * happen after this.
1281	 */
1282	arch_free_page(page, order);
1283
1284	if (debug_pagealloc_enabled_static())
1285		kernel_map_pages(page, 1 << order, 0);
1286
1287	kasan_free_nondeferred_pages(page, order);
1288
1289	return true;
1290}
1291
1292#ifdef CONFIG_DEBUG_VM
1293/*
1294 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1295 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1296 * moved from pcp lists to free lists.
1297 */
1298static bool free_pcp_prepare(struct page *page)
1299{
1300	return free_pages_prepare(page, 0, true);
1301}
1302
1303static bool bulkfree_pcp_prepare(struct page *page)
1304{
1305	if (debug_pagealloc_enabled_static())
1306		return check_free_page(page);
1307	else
1308		return false;
1309}
1310#else
1311/*
1312 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1313 * moving from pcp lists to free list in order to reduce overhead. With
1314 * debug_pagealloc enabled, they are checked also immediately when being freed
1315 * to the pcp lists.
1316 */
1317static bool free_pcp_prepare(struct page *page)
1318{
1319	if (debug_pagealloc_enabled_static())
1320		return free_pages_prepare(page, 0, true);
1321	else
1322		return free_pages_prepare(page, 0, false);
1323}
1324
1325static bool bulkfree_pcp_prepare(struct page *page)
1326{
1327	return check_free_page(page);
1328}
1329#endif /* CONFIG_DEBUG_VM */
1330
1331static inline void prefetch_buddy(struct page *page)
1332{
1333	unsigned long pfn = page_to_pfn(page);
1334	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1335	struct page *buddy = page + (buddy_pfn - pfn);
1336
1337	prefetch(buddy);
1338}
1339
1340/*
1341 * Frees a number of pages from the PCP lists
1342 * Assumes all pages on list are in same zone, and of same order.
1343 * count is the number of pages to free.
1344 *
1345 * If the zone was previously in an "all pages pinned" state then look to
1346 * see if this freeing clears that state.
1347 *
1348 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1349 * pinned" detection logic.
1350 */
1351static void free_pcppages_bulk(struct zone *zone, int count,
1352					struct per_cpu_pages *pcp)
1353{
1354	int migratetype = 0;
1355	int batch_free = 0;
1356	int prefetch_nr = 0;
1357	bool isolated_pageblocks;
1358	struct page *page, *tmp;
1359	LIST_HEAD(head);
1360
1361	/*
1362	 * Ensure proper count is passed which otherwise would stuck in the
1363	 * below while (list_empty(list)) loop.
1364	 */
1365	count = min(pcp->count, count);
1366	while (count) {
1367		struct list_head *list;
1368
1369		/*
1370		 * Remove pages from lists in a round-robin fashion. A
1371		 * batch_free count is maintained that is incremented when an
1372		 * empty list is encountered.  This is so more pages are freed
1373		 * off fuller lists instead of spinning excessively around empty
1374		 * lists
1375		 */
1376		do {
1377			batch_free++;
1378			if (++migratetype == MIGRATE_PCPTYPES)
1379				migratetype = 0;
1380			list = &pcp->lists[migratetype];
1381		} while (list_empty(list));
1382
1383		/* This is the only non-empty list. Free them all. */
1384		if (batch_free == MIGRATE_PCPTYPES)
1385			batch_free = count;
1386
1387		do {
1388			page = list_last_entry(list, struct page, lru);
1389			/* must delete to avoid corrupting pcp list */
1390			list_del(&page->lru);
1391			pcp->count--;
1392
1393			if (bulkfree_pcp_prepare(page))
1394				continue;
1395
1396			list_add_tail(&page->lru, &head);
1397
1398			/*
1399			 * We are going to put the page back to the global
1400			 * pool, prefetch its buddy to speed up later access
1401			 * under zone->lock. It is believed the overhead of
1402			 * an additional test and calculating buddy_pfn here
1403			 * can be offset by reduced memory latency later. To
1404			 * avoid excessive prefetching due to large count, only
1405			 * prefetch buddy for the first pcp->batch nr of pages.
1406			 */
1407			if (prefetch_nr++ < pcp->batch)
1408				prefetch_buddy(page);
1409		} while (--count && --batch_free && !list_empty(list));
1410	}
1411
1412	spin_lock(&zone->lock);
1413	isolated_pageblocks = has_isolate_pageblock(zone);
1414
1415	/*
1416	 * Use safe version since after __free_one_page(),
1417	 * page->lru.next will not point to original list.
1418	 */
1419	list_for_each_entry_safe(page, tmp, &head, lru) {
1420		int mt = get_pcppage_migratetype(page);
1421		/* MIGRATE_ISOLATE page should not go to pcplists */
1422		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1423		/* Pageblock could have been isolated meanwhile */
1424		if (unlikely(isolated_pageblocks))
1425			mt = get_pageblock_migratetype(page);
1426
1427		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1428		trace_mm_page_pcpu_drain(page, 0, mt);
1429	}
1430	spin_unlock(&zone->lock);
1431}
1432
1433static void free_one_page(struct zone *zone,
1434				struct page *page, unsigned long pfn,
1435				unsigned int order,
1436				int migratetype, fpi_t fpi_flags)
1437{
1438	spin_lock(&zone->lock);
1439	if (unlikely(has_isolate_pageblock(zone) ||
1440		is_migrate_isolate(migratetype))) {
1441		migratetype = get_pfnblock_migratetype(page, pfn);
1442	}
1443	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1444	spin_unlock(&zone->lock);
1445}
1446
1447static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1448				unsigned long zone, int nid)
1449{
1450	mm_zero_struct_page(page);
1451	set_page_links(page, zone, nid, pfn);
1452	init_page_count(page);
1453	page_mapcount_reset(page);
1454	page_cpupid_reset_last(page);
1455	page_kasan_tag_reset(page);
1456
1457	INIT_LIST_HEAD(&page->lru);
1458#ifdef WANT_PAGE_VIRTUAL
1459	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1460	if (!is_highmem_idx(zone))
1461		set_page_address(page, __va(pfn << PAGE_SHIFT));
1462#endif
1463}
1464
1465#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1466static void __meminit init_reserved_page(unsigned long pfn)
1467{
1468	pg_data_t *pgdat;
1469	int nid, zid;
1470
1471	if (!early_page_uninitialised(pfn))
1472		return;
1473
1474	nid = early_pfn_to_nid(pfn);
1475	pgdat = NODE_DATA(nid);
1476
1477	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478		struct zone *zone = &pgdat->node_zones[zid];
1479
1480		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1481			break;
1482	}
1483	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1484}
1485#else
1486static inline void init_reserved_page(unsigned long pfn)
1487{
1488}
1489#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1490
1491/*
1492 * Initialised pages do not have PageReserved set. This function is
1493 * called for each range allocated by the bootmem allocator and
1494 * marks the pages PageReserved. The remaining valid pages are later
1495 * sent to the buddy page allocator.
1496 */
1497void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1498{
1499	unsigned long start_pfn = PFN_DOWN(start);
1500	unsigned long end_pfn = PFN_UP(end);
1501
1502	for (; start_pfn < end_pfn; start_pfn++) {
1503		if (pfn_valid(start_pfn)) {
1504			struct page *page = pfn_to_page(start_pfn);
1505
1506			init_reserved_page(start_pfn);
1507
1508			/* Avoid false-positive PageTail() */
1509			INIT_LIST_HEAD(&page->lru);
1510
1511			/*
1512			 * no need for atomic set_bit because the struct
1513			 * page is not visible yet so nobody should
1514			 * access it yet.
1515			 */
1516			__SetPageReserved(page);
1517		}
1518	}
1519}
1520
1521static void __free_pages_ok(struct page *page, unsigned int order,
1522			    fpi_t fpi_flags)
1523{
1524	unsigned long flags;
1525	int migratetype;
1526	unsigned long pfn = page_to_pfn(page);
1527
1528	if (!free_pages_prepare(page, order, true))
1529		return;
1530
1531	migratetype = get_pfnblock_migratetype(page, pfn);
1532	local_irq_save(flags);
1533	__count_vm_events(PGFREE, 1 << order);
1534	free_one_page(page_zone(page), page, pfn, order, migratetype,
1535		      fpi_flags);
1536	local_irq_restore(flags);
1537}
1538
1539void __free_pages_core(struct page *page, unsigned int order)
1540{
1541	unsigned int nr_pages = 1 << order;
1542	struct page *p = page;
1543	unsigned int loop;
1544
1545	/*
1546	 * When initializing the memmap, __init_single_page() sets the refcount
1547	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1548	 * refcount of all involved pages to 0.
1549	 */
1550	prefetchw(p);
1551	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1552		prefetchw(p + 1);
1553		__ClearPageReserved(p);
1554		set_page_count(p, 0);
1555	}
1556	__ClearPageReserved(p);
1557	set_page_count(p, 0);
1558
1559	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1560
1561	/*
1562	 * Bypass PCP and place fresh pages right to the tail, primarily
1563	 * relevant for memory onlining.
1564	 */
1565	__free_pages_ok(page, order, FPI_TO_TAIL);
1566}
1567
1568#ifdef CONFIG_NEED_MULTIPLE_NODES
1569
1570static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1571
1572#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1573
1574/*
1575 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1576 */
1577int __meminit __early_pfn_to_nid(unsigned long pfn,
1578					struct mminit_pfnnid_cache *state)
1579{
1580	unsigned long start_pfn, end_pfn;
1581	int nid;
1582
1583	if (state->last_start <= pfn && pfn < state->last_end)
1584		return state->last_nid;
1585
1586	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1587	if (nid != NUMA_NO_NODE) {
1588		state->last_start = start_pfn;
1589		state->last_end = end_pfn;
1590		state->last_nid = nid;
1591	}
1592
1593	return nid;
1594}
1595#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1596
1597int __meminit early_pfn_to_nid(unsigned long pfn)
1598{
1599	static DEFINE_SPINLOCK(early_pfn_lock);
1600	int nid;
1601
1602	spin_lock(&early_pfn_lock);
1603	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1604	if (nid < 0)
1605		nid = first_online_node;
1606	spin_unlock(&early_pfn_lock);
1607
1608	return nid;
1609}
1610#endif /* CONFIG_NEED_MULTIPLE_NODES */
1611
1612void __init memblock_free_pages(struct page *page, unsigned long pfn,
1613							unsigned int order)
1614{
1615	if (early_page_uninitialised(pfn))
1616		return;
1617	__free_pages_core(page, order);
1618}
1619
1620/*
1621 * Check that the whole (or subset of) a pageblock given by the interval of
1622 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1623 * with the migration of free compaction scanner. The scanners then need to
1624 * use only pfn_valid_within() check for arches that allow holes within
1625 * pageblocks.
1626 *
1627 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1628 *
1629 * It's possible on some configurations to have a setup like node0 node1 node0
1630 * i.e. it's possible that all pages within a zones range of pages do not
1631 * belong to a single zone. We assume that a border between node0 and node1
1632 * can occur within a single pageblock, but not a node0 node1 node0
1633 * interleaving within a single pageblock. It is therefore sufficient to check
1634 * the first and last page of a pageblock and avoid checking each individual
1635 * page in a pageblock.
1636 */
1637struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1638				     unsigned long end_pfn, struct zone *zone)
1639{
1640	struct page *start_page;
1641	struct page *end_page;
1642
1643	/* end_pfn is one past the range we are checking */
1644	end_pfn--;
1645
1646	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1647		return NULL;
1648
1649	start_page = pfn_to_online_page(start_pfn);
1650	if (!start_page)
1651		return NULL;
1652
1653	if (page_zone(start_page) != zone)
1654		return NULL;
1655
1656	end_page = pfn_to_page(end_pfn);
1657
1658	/* This gives a shorter code than deriving page_zone(end_page) */
1659	if (page_zone_id(start_page) != page_zone_id(end_page))
1660		return NULL;
1661
1662	return start_page;
1663}
1664
1665void set_zone_contiguous(struct zone *zone)
1666{
1667	unsigned long block_start_pfn = zone->zone_start_pfn;
1668	unsigned long block_end_pfn;
1669
1670	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1671	for (; block_start_pfn < zone_end_pfn(zone);
1672			block_start_pfn = block_end_pfn,
1673			 block_end_pfn += pageblock_nr_pages) {
1674
1675		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1676
1677		if (!__pageblock_pfn_to_page(block_start_pfn,
1678					     block_end_pfn, zone))
1679			return;
1680		cond_resched();
1681	}
1682
1683	/* We confirm that there is no hole */
1684	zone->contiguous = true;
1685}
1686
1687void clear_zone_contiguous(struct zone *zone)
1688{
1689	zone->contiguous = false;
1690}
1691
1692#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1693static void __init deferred_free_range(unsigned long pfn,
1694				       unsigned long nr_pages)
1695{
1696	struct page *page;
1697	unsigned long i;
1698
1699	if (!nr_pages)
1700		return;
1701
1702	page = pfn_to_page(pfn);
1703
1704	/* Free a large naturally-aligned chunk if possible */
1705	if (nr_pages == pageblock_nr_pages &&
1706	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1707		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1708		__free_pages_core(page, pageblock_order);
1709		return;
1710	}
1711
1712	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1713		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1714			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1715		__free_pages_core(page, 0);
1716	}
1717}
1718
1719/* Completion tracking for deferred_init_memmap() threads */
1720static atomic_t pgdat_init_n_undone __initdata;
1721static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1722
1723static inline void __init pgdat_init_report_one_done(void)
1724{
1725	if (atomic_dec_and_test(&pgdat_init_n_undone))
1726		complete(&pgdat_init_all_done_comp);
1727}
1728
1729/*
1730 * Returns true if page needs to be initialized or freed to buddy allocator.
1731 *
1732 * First we check if pfn is valid on architectures where it is possible to have
1733 * holes within pageblock_nr_pages. On systems where it is not possible, this
1734 * function is optimized out.
1735 *
1736 * Then, we check if a current large page is valid by only checking the validity
1737 * of the head pfn.
1738 */
1739static inline bool __init deferred_pfn_valid(unsigned long pfn)
1740{
1741	if (!pfn_valid_within(pfn))
1742		return false;
1743	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1744		return false;
1745	return true;
1746}
1747
1748/*
1749 * Free pages to buddy allocator. Try to free aligned pages in
1750 * pageblock_nr_pages sizes.
1751 */
1752static void __init deferred_free_pages(unsigned long pfn,
1753				       unsigned long end_pfn)
1754{
1755	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1756	unsigned long nr_free = 0;
1757
1758	for (; pfn < end_pfn; pfn++) {
1759		if (!deferred_pfn_valid(pfn)) {
1760			deferred_free_range(pfn - nr_free, nr_free);
1761			nr_free = 0;
1762		} else if (!(pfn & nr_pgmask)) {
1763			deferred_free_range(pfn - nr_free, nr_free);
1764			nr_free = 1;
1765		} else {
1766			nr_free++;
1767		}
1768	}
1769	/* Free the last block of pages to allocator */
1770	deferred_free_range(pfn - nr_free, nr_free);
1771}
1772
1773/*
1774 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1775 * by performing it only once every pageblock_nr_pages.
1776 * Return number of pages initialized.
1777 */
1778static unsigned long  __init deferred_init_pages(struct zone *zone,
1779						 unsigned long pfn,
1780						 unsigned long end_pfn)
1781{
1782	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1783	int nid = zone_to_nid(zone);
1784	unsigned long nr_pages = 0;
1785	int zid = zone_idx(zone);
1786	struct page *page = NULL;
1787
1788	for (; pfn < end_pfn; pfn++) {
1789		if (!deferred_pfn_valid(pfn)) {
1790			page = NULL;
1791			continue;
1792		} else if (!page || !(pfn & nr_pgmask)) {
1793			page = pfn_to_page(pfn);
1794		} else {
1795			page++;
1796		}
1797		__init_single_page(page, pfn, zid, nid);
1798		nr_pages++;
1799	}
1800	return (nr_pages);
1801}
1802
1803/*
1804 * This function is meant to pre-load the iterator for the zone init.
1805 * Specifically it walks through the ranges until we are caught up to the
1806 * first_init_pfn value and exits there. If we never encounter the value we
1807 * return false indicating there are no valid ranges left.
1808 */
1809static bool __init
1810deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1811				    unsigned long *spfn, unsigned long *epfn,
1812				    unsigned long first_init_pfn)
1813{
1814	u64 j;
1815
1816	/*
1817	 * Start out by walking through the ranges in this zone that have
1818	 * already been initialized. We don't need to do anything with them
1819	 * so we just need to flush them out of the system.
1820	 */
1821	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1822		if (*epfn <= first_init_pfn)
1823			continue;
1824		if (*spfn < first_init_pfn)
1825			*spfn = first_init_pfn;
1826		*i = j;
1827		return true;
1828	}
1829
1830	return false;
1831}
1832
1833/*
1834 * Initialize and free pages. We do it in two loops: first we initialize
1835 * struct page, then free to buddy allocator, because while we are
1836 * freeing pages we can access pages that are ahead (computing buddy
1837 * page in __free_one_page()).
1838 *
1839 * In order to try and keep some memory in the cache we have the loop
1840 * broken along max page order boundaries. This way we will not cause
1841 * any issues with the buddy page computation.
1842 */
1843static unsigned long __init
1844deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1845		       unsigned long *end_pfn)
1846{
1847	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1848	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1849	unsigned long nr_pages = 0;
1850	u64 j = *i;
1851
1852	/* First we loop through and initialize the page values */
1853	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1854		unsigned long t;
1855
1856		if (mo_pfn <= *start_pfn)
1857			break;
1858
1859		t = min(mo_pfn, *end_pfn);
1860		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1861
1862		if (mo_pfn < *end_pfn) {
1863			*start_pfn = mo_pfn;
1864			break;
1865		}
1866	}
1867
1868	/* Reset values and now loop through freeing pages as needed */
1869	swap(j, *i);
1870
1871	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1872		unsigned long t;
1873
1874		if (mo_pfn <= spfn)
1875			break;
1876
1877		t = min(mo_pfn, epfn);
1878		deferred_free_pages(spfn, t);
1879
1880		if (mo_pfn <= epfn)
1881			break;
1882	}
1883
1884	return nr_pages;
1885}
1886
1887static void __init
1888deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1889			   void *arg)
1890{
1891	unsigned long spfn, epfn;
1892	struct zone *zone = arg;
1893	u64 i;
1894
1895	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1896
1897	/*
1898	 * Initialize and free pages in MAX_ORDER sized increments so that we
1899	 * can avoid introducing any issues with the buddy allocator.
1900	 */
1901	while (spfn < end_pfn) {
1902		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1903		cond_resched();
1904	}
1905}
1906
1907/* An arch may override for more concurrency. */
1908__weak int __init
1909deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1910{
1911	return 1;
1912}
1913
1914/* Initialise remaining memory on a node */
1915static int __init deferred_init_memmap(void *data)
1916{
1917	pg_data_t *pgdat = data;
1918	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1919	unsigned long spfn = 0, epfn = 0;
1920	unsigned long first_init_pfn, flags;
1921	unsigned long start = jiffies;
1922	struct zone *zone;
1923	int zid, max_threads;
1924	u64 i;
1925
1926	/* Bind memory initialisation thread to a local node if possible */
1927	if (!cpumask_empty(cpumask))
1928		set_cpus_allowed_ptr(current, cpumask);
1929
1930	pgdat_resize_lock(pgdat, &flags);
1931	first_init_pfn = pgdat->first_deferred_pfn;
1932	if (first_init_pfn == ULONG_MAX) {
1933		pgdat_resize_unlock(pgdat, &flags);
1934		pgdat_init_report_one_done();
1935		return 0;
1936	}
1937
1938	/* Sanity check boundaries */
1939	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1940	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1941	pgdat->first_deferred_pfn = ULONG_MAX;
1942
1943	/*
1944	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1945	 * interrupt thread must allocate this early in boot, zone must be
1946	 * pre-grown prior to start of deferred page initialization.
1947	 */
1948	pgdat_resize_unlock(pgdat, &flags);
1949
1950	/* Only the highest zone is deferred so find it */
1951	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1952		zone = pgdat->node_zones + zid;
1953		if (first_init_pfn < zone_end_pfn(zone))
1954			break;
1955	}
1956
1957	/* If the zone is empty somebody else may have cleared out the zone */
1958	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1959						 first_init_pfn))
1960		goto zone_empty;
1961
1962	max_threads = deferred_page_init_max_threads(cpumask);
1963
1964	while (spfn < epfn) {
1965		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1966		struct padata_mt_job job = {
1967			.thread_fn   = deferred_init_memmap_chunk,
1968			.fn_arg      = zone,
1969			.start       = spfn,
1970			.size        = epfn_align - spfn,
1971			.align       = PAGES_PER_SECTION,
1972			.min_chunk   = PAGES_PER_SECTION,
1973			.max_threads = max_threads,
1974		};
1975
1976		padata_do_multithreaded(&job);
1977		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1978						    epfn_align);
1979	}
1980zone_empty:
1981	/* Sanity check that the next zone really is unpopulated */
1982	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1983
1984	pr_info("node %d deferred pages initialised in %ums\n",
1985		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1986
1987	pgdat_init_report_one_done();
1988	return 0;
1989}
1990
1991/*
1992 * If this zone has deferred pages, try to grow it by initializing enough
1993 * deferred pages to satisfy the allocation specified by order, rounded up to
1994 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1995 * of SECTION_SIZE bytes by initializing struct pages in increments of
1996 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1997 *
1998 * Return true when zone was grown, otherwise return false. We return true even
1999 * when we grow less than requested, to let the caller decide if there are
2000 * enough pages to satisfy the allocation.
2001 *
2002 * Note: We use noinline because this function is needed only during boot, and
2003 * it is called from a __ref function _deferred_grow_zone. This way we are
2004 * making sure that it is not inlined into permanent text section.
2005 */
2006static noinline bool __init
2007deferred_grow_zone(struct zone *zone, unsigned int order)
2008{
2009	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2010	pg_data_t *pgdat = zone->zone_pgdat;
2011	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2012	unsigned long spfn, epfn, flags;
2013	unsigned long nr_pages = 0;
2014	u64 i;
2015
2016	/* Only the last zone may have deferred pages */
2017	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2018		return false;
2019
2020	pgdat_resize_lock(pgdat, &flags);
2021
2022	/*
2023	 * If someone grew this zone while we were waiting for spinlock, return
2024	 * true, as there might be enough pages already.
2025	 */
2026	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2027		pgdat_resize_unlock(pgdat, &flags);
2028		return true;
2029	}
2030
2031	/* If the zone is empty somebody else may have cleared out the zone */
2032	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2033						 first_deferred_pfn)) {
2034		pgdat->first_deferred_pfn = ULONG_MAX;
2035		pgdat_resize_unlock(pgdat, &flags);
2036		/* Retry only once. */
2037		return first_deferred_pfn != ULONG_MAX;
2038	}
2039
2040	/*
2041	 * Initialize and free pages in MAX_ORDER sized increments so
2042	 * that we can avoid introducing any issues with the buddy
2043	 * allocator.
2044	 */
2045	while (spfn < epfn) {
2046		/* update our first deferred PFN for this section */
2047		first_deferred_pfn = spfn;
2048
2049		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2050		touch_nmi_watchdog();
2051
2052		/* We should only stop along section boundaries */
2053		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2054			continue;
2055
2056		/* If our quota has been met we can stop here */
2057		if (nr_pages >= nr_pages_needed)
2058			break;
2059	}
2060
2061	pgdat->first_deferred_pfn = spfn;
2062	pgdat_resize_unlock(pgdat, &flags);
2063
2064	return nr_pages > 0;
2065}
2066
2067/*
2068 * deferred_grow_zone() is __init, but it is called from
2069 * get_page_from_freelist() during early boot until deferred_pages permanently
2070 * disables this call. This is why we have refdata wrapper to avoid warning,
2071 * and to ensure that the function body gets unloaded.
2072 */
2073static bool __ref
2074_deferred_grow_zone(struct zone *zone, unsigned int order)
2075{
2076	return deferred_grow_zone(zone, order);
2077}
2078
2079#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2080
2081void __init page_alloc_init_late(void)
2082{
2083	struct zone *zone;
2084	int nid;
2085
2086#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2087
2088	/* There will be num_node_state(N_MEMORY) threads */
2089	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2090	for_each_node_state(nid, N_MEMORY) {
2091		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2092	}
2093
2094	/* Block until all are initialised */
2095	wait_for_completion(&pgdat_init_all_done_comp);
2096
2097	/*
2098	 * The number of managed pages has changed due to the initialisation
2099	 * so the pcpu batch and high limits needs to be updated or the limits
2100	 * will be artificially small.
2101	 */
2102	for_each_populated_zone(zone)
2103		zone_pcp_update(zone);
2104
2105	/*
2106	 * We initialized the rest of the deferred pages.  Permanently disable
2107	 * on-demand struct page initialization.
2108	 */
2109	static_branch_disable(&deferred_pages);
2110
2111	/* Reinit limits that are based on free pages after the kernel is up */
2112	files_maxfiles_init();
2113#endif
2114
2115	/* Discard memblock private memory */
2116	memblock_discard();
2117
2118	for_each_node_state(nid, N_MEMORY)
2119		shuffle_free_memory(NODE_DATA(nid));
2120
2121	for_each_populated_zone(zone)
2122		set_zone_contiguous(zone);
2123}
2124
2125#ifdef CONFIG_CMA
2126/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2127void __init init_cma_reserved_pageblock(struct page *page)
2128{
2129	unsigned i = pageblock_nr_pages;
2130	struct page *p = page;
2131
2132	do {
2133		__ClearPageReserved(p);
2134		set_page_count(p, 0);
2135	} while (++p, --i);
2136
2137	set_pageblock_migratetype(page, MIGRATE_CMA);
2138
2139	if (pageblock_order >= MAX_ORDER) {
2140		i = pageblock_nr_pages;
2141		p = page;
2142		do {
2143			set_page_refcounted(p);
2144			__free_pages(p, MAX_ORDER - 1);
2145			p += MAX_ORDER_NR_PAGES;
2146		} while (i -= MAX_ORDER_NR_PAGES);
2147	} else {
2148		set_page_refcounted(page);
2149		__free_pages(page, pageblock_order);
2150	}
2151
2152	adjust_managed_page_count(page, pageblock_nr_pages);
2153}
2154#endif
2155
2156/*
2157 * The order of subdivision here is critical for the IO subsystem.
2158 * Please do not alter this order without good reasons and regression
2159 * testing. Specifically, as large blocks of memory are subdivided,
2160 * the order in which smaller blocks are delivered depends on the order
2161 * they're subdivided in this function. This is the primary factor
2162 * influencing the order in which pages are delivered to the IO
2163 * subsystem according to empirical testing, and this is also justified
2164 * by considering the behavior of a buddy system containing a single
2165 * large block of memory acted on by a series of small allocations.
2166 * This behavior is a critical factor in sglist merging's success.
2167 *
2168 * -- nyc
2169 */
2170static inline void expand(struct zone *zone, struct page *page,
2171	int low, int high, int migratetype)
2172{
2173	unsigned long size = 1 << high;
2174
2175	while (high > low) {
2176		high--;
2177		size >>= 1;
2178		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2179
2180		/*
2181		 * Mark as guard pages (or page), that will allow to
2182		 * merge back to allocator when buddy will be freed.
2183		 * Corresponding page table entries will not be touched,
2184		 * pages will stay not present in virtual address space
2185		 */
2186		if (set_page_guard(zone, &page[size], high, migratetype))
2187			continue;
2188
2189		add_to_free_list(&page[size], zone, high, migratetype);
2190		set_buddy_order(&page[size], high);
2191	}
2192}
2193
2194static void check_new_page_bad(struct page *page)
2195{
2196	if (unlikely(page->flags & __PG_HWPOISON)) {
2197		/* Don't complain about hwpoisoned pages */
2198		page_mapcount_reset(page); /* remove PageBuddy */
2199		return;
2200	}
2201
2202	bad_page(page,
2203		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2204}
2205
2206/*
2207 * This page is about to be returned from the page allocator
2208 */
2209static inline int check_new_page(struct page *page)
2210{
2211	if (likely(page_expected_state(page,
2212				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2213		return 0;
2214
2215	check_new_page_bad(page);
2216	return 1;
2217}
2218
2219static inline bool free_pages_prezeroed(void)
2220{
2221	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2222		page_poisoning_enabled()) || want_init_on_free();
2223}
2224
2225#ifdef CONFIG_DEBUG_VM
2226/*
2227 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2228 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2229 * also checked when pcp lists are refilled from the free lists.
2230 */
2231static inline bool check_pcp_refill(struct page *page)
2232{
2233	if (debug_pagealloc_enabled_static())
2234		return check_new_page(page);
2235	else
2236		return false;
2237}
2238
2239static inline bool check_new_pcp(struct page *page)
2240{
2241	return check_new_page(page);
2242}
2243#else
2244/*
2245 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2246 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2247 * enabled, they are also checked when being allocated from the pcp lists.
2248 */
2249static inline bool check_pcp_refill(struct page *page)
2250{
2251	return check_new_page(page);
2252}
2253static inline bool check_new_pcp(struct page *page)
2254{
2255	if (debug_pagealloc_enabled_static())
2256		return check_new_page(page);
2257	else
2258		return false;
2259}
2260#endif /* CONFIG_DEBUG_VM */
2261
2262static bool check_new_pages(struct page *page, unsigned int order)
2263{
2264	int i;
2265	for (i = 0; i < (1 << order); i++) {
2266		struct page *p = page + i;
2267
2268		if (unlikely(check_new_page(p)))
2269			return true;
2270	}
2271
2272	return false;
2273}
2274
2275inline void post_alloc_hook(struct page *page, unsigned int order,
2276				gfp_t gfp_flags)
2277{
2278	set_page_private(page, 0);
2279	set_page_refcounted(page);
2280
2281	arch_alloc_page(page, order);
2282	if (debug_pagealloc_enabled_static())
2283		kernel_map_pages(page, 1 << order, 1);
2284	kasan_alloc_pages(page, order);
2285	kernel_poison_pages(page, 1 << order, 1);
2286	set_page_owner(page, order, gfp_flags);
2287}
2288
2289static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2290							unsigned int alloc_flags)
2291{
2292	post_alloc_hook(page, order, gfp_flags);
2293
2294	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2295		kernel_init_free_pages(page, 1 << order);
2296
2297	if (order && (gfp_flags & __GFP_COMP))
2298		prep_compound_page(page, order);
2299
2300	/*
2301	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2302	 * allocate the page. The expectation is that the caller is taking
2303	 * steps that will free more memory. The caller should avoid the page
2304	 * being used for !PFMEMALLOC purposes.
2305	 */
2306	if (alloc_flags & ALLOC_NO_WATERMARKS)
2307		set_page_pfmemalloc(page);
2308	else
2309		clear_page_pfmemalloc(page);
2310}
2311
2312/*
2313 * Go through the free lists for the given migratetype and remove
2314 * the smallest available page from the freelists
2315 */
2316static __always_inline
2317struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2318						int migratetype)
2319{
2320	unsigned int current_order;
2321	struct free_area *area;
2322	struct page *page;
2323
2324	/* Find a page of the appropriate size in the preferred list */
2325	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2326		area = &(zone->free_area[current_order]);
2327		page = get_page_from_free_area(area, migratetype);
2328		if (!page)
2329			continue;
2330		del_page_from_free_list(page, zone, current_order);
2331		expand(zone, page, order, current_order, migratetype);
2332		set_pcppage_migratetype(page, migratetype);
2333		return page;
2334	}
2335
2336	return NULL;
2337}
2338
2339
2340/*
2341 * This array describes the order lists are fallen back to when
2342 * the free lists for the desirable migrate type are depleted
2343 */
2344static int fallbacks[MIGRATE_TYPES][3] = {
2345	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2346	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2347	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2348#ifdef CONFIG_CMA
2349	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2350#endif
2351#ifdef CONFIG_MEMORY_ISOLATION
2352	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2353#endif
2354};
2355
2356#ifdef CONFIG_CMA
2357static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2358					unsigned int order)
2359{
2360	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2361}
2362#else
2363static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2364					unsigned int order) { return NULL; }
2365#endif
2366
2367/*
2368 * Move the free pages in a range to the freelist tail of the requested type.
2369 * Note that start_page and end_pages are not aligned on a pageblock
2370 * boundary. If alignment is required, use move_freepages_block()
2371 */
2372static int move_freepages(struct zone *zone,
2373			  unsigned long start_pfn, unsigned long end_pfn,
2374			  int migratetype, int *num_movable)
2375{
2376	struct page *page;
2377	unsigned long pfn;
2378	unsigned int order;
2379	int pages_moved = 0;
2380
2381	for (pfn = start_pfn; pfn <= end_pfn;) {
2382		if (!pfn_valid_within(pfn)) {
2383			pfn++;
2384			continue;
2385		}
2386
2387		page = pfn_to_page(pfn);
2388		if (!PageBuddy(page)) {
2389			/*
2390			 * We assume that pages that could be isolated for
2391			 * migration are movable. But we don't actually try
2392			 * isolating, as that would be expensive.
2393			 */
2394			if (num_movable &&
2395					(PageLRU(page) || __PageMovable(page)))
2396				(*num_movable)++;
2397			pfn++;
2398			continue;
2399		}
2400
2401		/* Make sure we are not inadvertently changing nodes */
2402		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2403		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2404
2405		order = buddy_order(page);
2406		move_to_free_list(page, zone, order, migratetype);
2407		pfn += 1 << order;
2408		pages_moved += 1 << order;
2409	}
2410
2411	return pages_moved;
2412}
2413
2414int move_freepages_block(struct zone *zone, struct page *page,
2415				int migratetype, int *num_movable)
2416{
2417	unsigned long start_pfn, end_pfn, pfn;
2418
2419	if (num_movable)
2420		*num_movable = 0;
2421
2422	pfn = page_to_pfn(page);
2423	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2424	end_pfn = start_pfn + pageblock_nr_pages - 1;
2425
2426	/* Do not cross zone boundaries */
2427	if (!zone_spans_pfn(zone, start_pfn))
2428		start_pfn = pfn;
2429	if (!zone_spans_pfn(zone, end_pfn))
2430		return 0;
2431
2432	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2433								num_movable);
2434}
2435
2436static void change_pageblock_range(struct page *pageblock_page,
2437					int start_order, int migratetype)
2438{
2439	int nr_pageblocks = 1 << (start_order - pageblock_order);
2440
2441	while (nr_pageblocks--) {
2442		set_pageblock_migratetype(pageblock_page, migratetype);
2443		pageblock_page += pageblock_nr_pages;
2444	}
2445}
2446
2447/*
2448 * When we are falling back to another migratetype during allocation, try to
2449 * steal extra free pages from the same pageblocks to satisfy further
2450 * allocations, instead of polluting multiple pageblocks.
2451 *
2452 * If we are stealing a relatively large buddy page, it is likely there will
2453 * be more free pages in the pageblock, so try to steal them all. For
2454 * reclaimable and unmovable allocations, we steal regardless of page size,
2455 * as fragmentation caused by those allocations polluting movable pageblocks
2456 * is worse than movable allocations stealing from unmovable and reclaimable
2457 * pageblocks.
2458 */
2459static bool can_steal_fallback(unsigned int order, int start_mt)
2460{
2461	/*
2462	 * Leaving this order check is intended, although there is
2463	 * relaxed order check in next check. The reason is that
2464	 * we can actually steal whole pageblock if this condition met,
2465	 * but, below check doesn't guarantee it and that is just heuristic
2466	 * so could be changed anytime.
2467	 */
2468	if (order >= pageblock_order)
2469		return true;
2470
2471	if (order >= pageblock_order / 2 ||
2472		start_mt == MIGRATE_RECLAIMABLE ||
2473		start_mt == MIGRATE_UNMOVABLE ||
2474		page_group_by_mobility_disabled)
2475		return true;
2476
2477	return false;
2478}
2479
2480static inline bool boost_watermark(struct zone *zone)
2481{
2482	unsigned long max_boost;
2483
2484	if (!watermark_boost_factor)
2485		return false;
2486	/*
2487	 * Don't bother in zones that are unlikely to produce results.
2488	 * On small machines, including kdump capture kernels running
2489	 * in a small area, boosting the watermark can cause an out of
2490	 * memory situation immediately.
2491	 */
2492	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2493		return false;
2494
2495	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2496			watermark_boost_factor, 10000);
2497
2498	/*
2499	 * high watermark may be uninitialised if fragmentation occurs
2500	 * very early in boot so do not boost. We do not fall
2501	 * through and boost by pageblock_nr_pages as failing
2502	 * allocations that early means that reclaim is not going
2503	 * to help and it may even be impossible to reclaim the
2504	 * boosted watermark resulting in a hang.
2505	 */
2506	if (!max_boost)
2507		return false;
2508
2509	max_boost = max(pageblock_nr_pages, max_boost);
2510
2511	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2512		max_boost);
2513
2514	return true;
2515}
2516
2517/*
2518 * This function implements actual steal behaviour. If order is large enough,
2519 * we can steal whole pageblock. If not, we first move freepages in this
2520 * pageblock to our migratetype and determine how many already-allocated pages
2521 * are there in the pageblock with a compatible migratetype. If at least half
2522 * of pages are free or compatible, we can change migratetype of the pageblock
2523 * itself, so pages freed in the future will be put on the correct free list.
2524 */
2525static void steal_suitable_fallback(struct zone *zone, struct page *page,
2526		unsigned int alloc_flags, int start_type, bool whole_block)
2527{
2528	unsigned int current_order = buddy_order(page);
2529	int free_pages, movable_pages, alike_pages;
2530	int old_block_type;
2531
2532	old_block_type = get_pageblock_migratetype(page);
2533
2534	/*
2535	 * This can happen due to races and we want to prevent broken
2536	 * highatomic accounting.
2537	 */
2538	if (is_migrate_highatomic(old_block_type))
2539		goto single_page;
2540
2541	/* Take ownership for orders >= pageblock_order */
2542	if (current_order >= pageblock_order) {
2543		change_pageblock_range(page, current_order, start_type);
2544		goto single_page;
2545	}
2546
2547	/*
2548	 * Boost watermarks to increase reclaim pressure to reduce the
2549	 * likelihood of future fallbacks. Wake kswapd now as the node
2550	 * may be balanced overall and kswapd will not wake naturally.
2551	 */
2552	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2553		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2554
2555	/* We are not allowed to try stealing from the whole block */
2556	if (!whole_block)
2557		goto single_page;
2558
2559	free_pages = move_freepages_block(zone, page, start_type,
2560						&movable_pages);
2561	/*
2562	 * Determine how many pages are compatible with our allocation.
2563	 * For movable allocation, it's the number of movable pages which
2564	 * we just obtained. For other types it's a bit more tricky.
2565	 */
2566	if (start_type == MIGRATE_MOVABLE) {
2567		alike_pages = movable_pages;
2568	} else {
2569		/*
2570		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2571		 * to MOVABLE pageblock, consider all non-movable pages as
2572		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2573		 * vice versa, be conservative since we can't distinguish the
2574		 * exact migratetype of non-movable pages.
2575		 */
2576		if (old_block_type == MIGRATE_MOVABLE)
2577			alike_pages = pageblock_nr_pages
2578						- (free_pages + movable_pages);
2579		else
2580			alike_pages = 0;
2581	}
2582
2583	/* moving whole block can fail due to zone boundary conditions */
2584	if (!free_pages)
2585		goto single_page;
2586
2587	/*
2588	 * If a sufficient number of pages in the block are either free or of
2589	 * comparable migratability as our allocation, claim the whole block.
2590	 */
2591	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2592			page_group_by_mobility_disabled)
2593		set_pageblock_migratetype(page, start_type);
2594
2595	return;
2596
2597single_page:
2598	move_to_free_list(page, zone, current_order, start_type);
2599}
2600
2601/*
2602 * Check whether there is a suitable fallback freepage with requested order.
2603 * If only_stealable is true, this function returns fallback_mt only if
2604 * we can steal other freepages all together. This would help to reduce
2605 * fragmentation due to mixed migratetype pages in one pageblock.
2606 */
2607int find_suitable_fallback(struct free_area *area, unsigned int order,
2608			int migratetype, bool only_stealable, bool *can_steal)
2609{
2610	int i;
2611	int fallback_mt;
2612
2613	if (area->nr_free == 0)
2614		return -1;
2615
2616	*can_steal = false;
2617	for (i = 0;; i++) {
2618		fallback_mt = fallbacks[migratetype][i];
2619		if (fallback_mt == MIGRATE_TYPES)
2620			break;
2621
2622		if (free_area_empty(area, fallback_mt))
2623			continue;
2624
2625		if (can_steal_fallback(order, migratetype))
2626			*can_steal = true;
2627
2628		if (!only_stealable)
2629			return fallback_mt;
2630
2631		if (*can_steal)
2632			return fallback_mt;
2633	}
2634
2635	return -1;
2636}
2637
2638/*
2639 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2640 * there are no empty page blocks that contain a page with a suitable order
2641 */
2642static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2643				unsigned int alloc_order)
2644{
2645	int mt;
2646	unsigned long max_managed, flags;
2647
2648	/*
2649	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2650	 * Check is race-prone but harmless.
2651	 */
2652	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2653	if (zone->nr_reserved_highatomic >= max_managed)
2654		return;
2655
2656	spin_lock_irqsave(&zone->lock, flags);
2657
2658	/* Recheck the nr_reserved_highatomic limit under the lock */
2659	if (zone->nr_reserved_highatomic >= max_managed)
2660		goto out_unlock;
2661
2662	/* Yoink! */
2663	mt = get_pageblock_migratetype(page);
2664	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2665	    && !is_migrate_cma(mt)) {
2666		zone->nr_reserved_highatomic += pageblock_nr_pages;
2667		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2668		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2669	}
2670
2671out_unlock:
2672	spin_unlock_irqrestore(&zone->lock, flags);
2673}
2674
2675/*
2676 * Used when an allocation is about to fail under memory pressure. This
2677 * potentially hurts the reliability of high-order allocations when under
2678 * intense memory pressure but failed atomic allocations should be easier
2679 * to recover from than an OOM.
2680 *
2681 * If @force is true, try to unreserve a pageblock even though highatomic
2682 * pageblock is exhausted.
2683 */
2684static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2685						bool force)
2686{
2687	struct zonelist *zonelist = ac->zonelist;
2688	unsigned long flags;
2689	struct zoneref *z;
2690	struct zone *zone;
2691	struct page *page;
2692	int order;
2693	bool ret;
2694
2695	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2696								ac->nodemask) {
2697		/*
2698		 * Preserve at least one pageblock unless memory pressure
2699		 * is really high.
2700		 */
2701		if (!force && zone->nr_reserved_highatomic <=
2702					pageblock_nr_pages)
2703			continue;
2704
2705		spin_lock_irqsave(&zone->lock, flags);
2706		for (order = 0; order < MAX_ORDER; order++) {
2707			struct free_area *area = &(zone->free_area[order]);
2708
2709			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2710			if (!page)
2711				continue;
2712
2713			/*
2714			 * In page freeing path, migratetype change is racy so
2715			 * we can counter several free pages in a pageblock
2716			 * in this loop althoug we changed the pageblock type
2717			 * from highatomic to ac->migratetype. So we should
2718			 * adjust the count once.
2719			 */
2720			if (is_migrate_highatomic_page(page)) {
2721				/*
2722				 * It should never happen but changes to
2723				 * locking could inadvertently allow a per-cpu
2724				 * drain to add pages to MIGRATE_HIGHATOMIC
2725				 * while unreserving so be safe and watch for
2726				 * underflows.
2727				 */
2728				zone->nr_reserved_highatomic -= min(
2729						pageblock_nr_pages,
2730						zone->nr_reserved_highatomic);
2731			}
2732
2733			/*
2734			 * Convert to ac->migratetype and avoid the normal
2735			 * pageblock stealing heuristics. Minimally, the caller
2736			 * is doing the work and needs the pages. More
2737			 * importantly, if the block was always converted to
2738			 * MIGRATE_UNMOVABLE or another type then the number
2739			 * of pageblocks that cannot be completely freed
2740			 * may increase.
2741			 */
2742			set_pageblock_migratetype(page, ac->migratetype);
2743			ret = move_freepages_block(zone, page, ac->migratetype,
2744									NULL);
2745			if (ret) {
2746				spin_unlock_irqrestore(&zone->lock, flags);
2747				return ret;
2748			}
2749		}
2750		spin_unlock_irqrestore(&zone->lock, flags);
2751	}
2752
2753	return false;
2754}
2755
2756/*
2757 * Try finding a free buddy page on the fallback list and put it on the free
2758 * list of requested migratetype, possibly along with other pages from the same
2759 * block, depending on fragmentation avoidance heuristics. Returns true if
2760 * fallback was found so that __rmqueue_smallest() can grab it.
2761 *
2762 * The use of signed ints for order and current_order is a deliberate
2763 * deviation from the rest of this file, to make the for loop
2764 * condition simpler.
2765 */
2766static __always_inline bool
2767__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2768						unsigned int alloc_flags)
2769{
2770	struct free_area *area;
2771	int current_order;
2772	int min_order = order;
2773	struct page *page;
2774	int fallback_mt;
2775	bool can_steal;
2776
2777	/*
2778	 * Do not steal pages from freelists belonging to other pageblocks
2779	 * i.e. orders < pageblock_order. If there are no local zones free,
2780	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2781	 */
2782	if (alloc_flags & ALLOC_NOFRAGMENT)
2783		min_order = pageblock_order;
2784
2785	/*
2786	 * Find the largest available free page in the other list. This roughly
2787	 * approximates finding the pageblock with the most free pages, which
2788	 * would be too costly to do exactly.
2789	 */
2790	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2791				--current_order) {
2792		area = &(zone->free_area[current_order]);
2793		fallback_mt = find_suitable_fallback(area, current_order,
2794				start_migratetype, false, &can_steal);
2795		if (fallback_mt == -1)
2796			continue;
2797
2798		/*
2799		 * We cannot steal all free pages from the pageblock and the
2800		 * requested migratetype is movable. In that case it's better to
2801		 * steal and split the smallest available page instead of the
2802		 * largest available page, because even if the next movable
2803		 * allocation falls back into a different pageblock than this
2804		 * one, it won't cause permanent fragmentation.
2805		 */
2806		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2807					&& current_order > order)
2808			goto find_smallest;
2809
2810		goto do_steal;
2811	}
2812
2813	return false;
2814
2815find_smallest:
2816	for (current_order = order; current_order < MAX_ORDER;
2817							current_order++) {
2818		area = &(zone->free_area[current_order]);
2819		fallback_mt = find_suitable_fallback(area, current_order,
2820				start_migratetype, false, &can_steal);
2821		if (fallback_mt != -1)
2822			break;
2823	}
2824
2825	/*
2826	 * This should not happen - we already found a suitable fallback
2827	 * when looking for the largest page.
2828	 */
2829	VM_BUG_ON(current_order == MAX_ORDER);
2830
2831do_steal:
2832	page = get_page_from_free_area(area, fallback_mt);
2833
2834	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2835								can_steal);
2836
2837	trace_mm_page_alloc_extfrag(page, order, current_order,
2838		start_migratetype, fallback_mt);
2839
2840	return true;
2841
2842}
2843
2844static __always_inline struct page *
2845__rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2846					int migratetype, unsigned int alloc_flags)
2847{
2848	struct page *page = NULL;
2849retry:
2850	page = __rmqueue_smallest(zone, order, migratetype);
2851
2852	if (unlikely(!page) && is_migrate_cma(migratetype)) {
2853		migratetype = MIGRATE_MOVABLE;
2854		alloc_flags &= ~ALLOC_CMA;
2855		page = __rmqueue_smallest(zone, order, migratetype);
2856	}
2857
2858	if (unlikely(!page) &&
2859		__rmqueue_fallback(zone, order, migratetype, alloc_flags))
2860		goto retry;
2861
2862	return page;
2863}
2864
2865/*
2866 * Do the hard work of removing an element from the buddy allocator.
2867 * Call me with the zone->lock already held.
2868 */
2869static __always_inline struct page *
2870__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2871						unsigned int alloc_flags)
2872{
2873	struct page *page;
2874
2875#ifdef CONFIG_CMA_REUSE
2876	page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2877	goto out;
2878#endif
2879
2880	if (IS_ENABLED(CONFIG_CMA)) {
2881		/*
2882		 * Balance movable allocations between regular and CMA areas by
2883		 * allocating from CMA when over half of the zone's free memory
2884		 * is in the CMA area.
2885		 */
2886		if (alloc_flags & ALLOC_CMA &&
2887		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2888		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2889			page = __rmqueue_cma_fallback(zone, order);
2890			if (page)
2891				goto out;
2892		}
2893	}
2894retry:
2895	page = __rmqueue_smallest(zone, order, migratetype);
2896	if (unlikely(!page)) {
2897		if (alloc_flags & ALLOC_CMA)
2898			page = __rmqueue_cma_fallback(zone, order);
2899
2900		if (!page && __rmqueue_fallback(zone, order, migratetype,
2901								alloc_flags))
2902			goto retry;
2903	}
2904out:
2905	if (page)
2906		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2907	return page;
2908}
2909
2910/*
2911 * Obtain a specified number of elements from the buddy allocator, all under
2912 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2913 * Returns the number of new pages which were placed at *list.
2914 */
2915static int rmqueue_bulk(struct zone *zone, unsigned int order,
2916			unsigned long count, struct list_head *list,
2917			int migratetype, unsigned int alloc_flags)
2918{
2919	int i, alloced = 0;
2920
2921	spin_lock(&zone->lock);
2922	for (i = 0; i < count; ++i) {
2923		struct page *page = __rmqueue(zone, order, migratetype,
2924								alloc_flags);
2925		if (unlikely(page == NULL))
2926			break;
2927
2928		if (unlikely(check_pcp_refill(page)))
2929			continue;
2930
2931		/*
2932		 * Split buddy pages returned by expand() are received here in
2933		 * physical page order. The page is added to the tail of
2934		 * caller's list. From the callers perspective, the linked list
2935		 * is ordered by page number under some conditions. This is
2936		 * useful for IO devices that can forward direction from the
2937		 * head, thus also in the physical page order. This is useful
2938		 * for IO devices that can merge IO requests if the physical
2939		 * pages are ordered properly.
2940		 */
2941		list_add_tail(&page->lru, list);
2942		alloced++;
2943		if (is_migrate_cma(get_pcppage_migratetype(page)))
2944			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2945					      -(1 << order));
2946	}
2947
2948	/*
2949	 * i pages were removed from the buddy list even if some leak due
2950	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2951	 * on i. Do not confuse with 'alloced' which is the number of
2952	 * pages added to the pcp list.
2953	 */
2954	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2955	spin_unlock(&zone->lock);
2956	return alloced;
2957}
2958
2959#ifdef CONFIG_NUMA
2960/*
2961 * Called from the vmstat counter updater to drain pagesets of this
2962 * currently executing processor on remote nodes after they have
2963 * expired.
2964 *
2965 * Note that this function must be called with the thread pinned to
2966 * a single processor.
2967 */
2968void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2969{
2970	unsigned long flags;
2971	int to_drain, batch;
2972
2973	local_irq_save(flags);
2974	batch = READ_ONCE(pcp->batch);
2975	to_drain = min(pcp->count, batch);
2976	if (to_drain > 0)
2977		free_pcppages_bulk(zone, to_drain, pcp);
2978	local_irq_restore(flags);
2979}
2980#endif
2981
2982/*
2983 * Drain pcplists of the indicated processor and zone.
2984 *
2985 * The processor must either be the current processor and the
2986 * thread pinned to the current processor or a processor that
2987 * is not online.
2988 */
2989static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2990{
2991	unsigned long flags;
2992	struct per_cpu_pageset *pset;
2993	struct per_cpu_pages *pcp;
2994
2995	local_irq_save(flags);
2996	pset = per_cpu_ptr(zone->pageset, cpu);
2997
2998	pcp = &pset->pcp;
2999	if (pcp->count)
3000		free_pcppages_bulk(zone, pcp->count, pcp);
3001	local_irq_restore(flags);
3002}
3003
3004/*
3005 * Drain pcplists of all zones on the indicated processor.
3006 *
3007 * The processor must either be the current processor and the
3008 * thread pinned to the current processor or a processor that
3009 * is not online.
3010 */
3011static void drain_pages(unsigned int cpu)
3012{
3013	struct zone *zone;
3014
3015	for_each_populated_zone(zone) {
3016		drain_pages_zone(cpu, zone);
3017	}
3018}
3019
3020/*
3021 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3022 *
3023 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3024 * the single zone's pages.
3025 */
3026void drain_local_pages(struct zone *zone)
3027{
3028	int cpu = smp_processor_id();
3029
3030	if (zone)
3031		drain_pages_zone(cpu, zone);
3032	else
3033		drain_pages(cpu);
3034}
3035
3036static void drain_local_pages_wq(struct work_struct *work)
3037{
3038	struct pcpu_drain *drain;
3039
3040	drain = container_of(work, struct pcpu_drain, work);
3041
3042	/*
3043	 * drain_all_pages doesn't use proper cpu hotplug protection so
3044	 * we can race with cpu offline when the WQ can move this from
3045	 * a cpu pinned worker to an unbound one. We can operate on a different
3046	 * cpu which is allright but we also have to make sure to not move to
3047	 * a different one.
3048	 */
3049	preempt_disable();
3050	drain_local_pages(drain->zone);
3051	preempt_enable();
3052}
3053
3054/*
3055 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3056 *
3057 * When zone parameter is non-NULL, spill just the single zone's pages.
3058 *
3059 * Note that this can be extremely slow as the draining happens in a workqueue.
3060 */
3061void drain_all_pages(struct zone *zone)
3062{
3063	int cpu;
3064
3065	/*
3066	 * Allocate in the BSS so we wont require allocation in
3067	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3068	 */
3069	static cpumask_t cpus_with_pcps;
3070
3071	/*
3072	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3073	 * initialized.
3074	 */
3075	if (WARN_ON_ONCE(!mm_percpu_wq))
3076		return;
3077
3078	/*
3079	 * Do not drain if one is already in progress unless it's specific to
3080	 * a zone. Such callers are primarily CMA and memory hotplug and need
3081	 * the drain to be complete when the call returns.
3082	 */
3083	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3084		if (!zone)
3085			return;
3086		mutex_lock(&pcpu_drain_mutex);
3087	}
3088
3089	/*
3090	 * We don't care about racing with CPU hotplug event
3091	 * as offline notification will cause the notified
3092	 * cpu to drain that CPU pcps and on_each_cpu_mask
3093	 * disables preemption as part of its processing
3094	 */
3095	for_each_online_cpu(cpu) {
3096		struct per_cpu_pageset *pcp;
3097		struct zone *z;
3098		bool has_pcps = false;
3099
3100		if (zone) {
3101			pcp = per_cpu_ptr(zone->pageset, cpu);
3102			if (pcp->pcp.count)
3103				has_pcps = true;
3104		} else {
3105			for_each_populated_zone(z) {
3106				pcp = per_cpu_ptr(z->pageset, cpu);
3107				if (pcp->pcp.count) {
3108					has_pcps = true;
3109					break;
3110				}
3111			}
3112		}
3113
3114		if (has_pcps)
3115			cpumask_set_cpu(cpu, &cpus_with_pcps);
3116		else
3117			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3118	}
3119
3120	for_each_cpu(cpu, &cpus_with_pcps) {
3121		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3122
3123		drain->zone = zone;
3124		INIT_WORK(&drain->work, drain_local_pages_wq);
3125		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3126	}
3127	for_each_cpu(cpu, &cpus_with_pcps)
3128		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3129
3130	mutex_unlock(&pcpu_drain_mutex);
3131}
3132
3133#ifdef CONFIG_HIBERNATION
3134
3135/*
3136 * Touch the watchdog for every WD_PAGE_COUNT pages.
3137 */
3138#define WD_PAGE_COUNT	(128*1024)
3139
3140void mark_free_pages(struct zone *zone)
3141{
3142	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3143	unsigned long flags;
3144	unsigned int order, t;
3145	struct page *page;
3146
3147	if (zone_is_empty(zone))
3148		return;
3149
3150	spin_lock_irqsave(&zone->lock, flags);
3151
3152	max_zone_pfn = zone_end_pfn(zone);
3153	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3154		if (pfn_valid(pfn)) {
3155			page = pfn_to_page(pfn);
3156
3157			if (!--page_count) {
3158				touch_nmi_watchdog();
3159				page_count = WD_PAGE_COUNT;
3160			}
3161
3162			if (page_zone(page) != zone)
3163				continue;
3164
3165			if (!swsusp_page_is_forbidden(page))
3166				swsusp_unset_page_free(page);
3167		}
3168
3169	for_each_migratetype_order(order, t) {
3170		list_for_each_entry(page,
3171				&zone->free_area[order].free_list[t], lru) {
3172			unsigned long i;
3173
3174			pfn = page_to_pfn(page);
3175			for (i = 0; i < (1UL << order); i++) {
3176				if (!--page_count) {
3177					touch_nmi_watchdog();
3178					page_count = WD_PAGE_COUNT;
3179				}
3180				swsusp_set_page_free(pfn_to_page(pfn + i));
3181			}
3182		}
3183	}
3184	spin_unlock_irqrestore(&zone->lock, flags);
3185}
3186#endif /* CONFIG_PM */
3187
3188static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3189{
3190	int migratetype;
3191
3192	if (!free_pcp_prepare(page))
3193		return false;
3194
3195	migratetype = get_pfnblock_migratetype(page, pfn);
3196	set_pcppage_migratetype(page, migratetype);
3197	return true;
3198}
3199
3200static void free_unref_page_commit(struct page *page, unsigned long pfn)
3201{
3202	struct zone *zone = page_zone(page);
3203	struct per_cpu_pages *pcp;
3204	int migratetype;
3205
3206	migratetype = get_pcppage_migratetype(page);
3207	__count_vm_event(PGFREE);
3208
3209	/*
3210	 * We only track unmovable, reclaimable and movable on pcp lists.
3211	 * Free ISOLATE pages back to the allocator because they are being
3212	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3213	 * areas back if necessary. Otherwise, we may have to free
3214	 * excessively into the page allocator
3215	 */
3216	if (migratetype >= MIGRATE_PCPTYPES) {
3217		if (unlikely(is_migrate_isolate(migratetype))) {
3218			free_one_page(zone, page, pfn, 0, migratetype,
3219				      FPI_NONE);
3220			return;
3221		}
3222		migratetype = MIGRATE_MOVABLE;
3223	}
3224
3225	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3226	list_add(&page->lru, &pcp->lists[migratetype]);
3227	pcp->count++;
3228	if (pcp->count >= pcp->high) {
3229		unsigned long batch = READ_ONCE(pcp->batch);
3230		free_pcppages_bulk(zone, batch, pcp);
3231	}
3232}
3233
3234/*
3235 * Free a 0-order page
3236 */
3237void free_unref_page(struct page *page)
3238{
3239	unsigned long flags;
3240	unsigned long pfn = page_to_pfn(page);
3241
3242	if (!free_unref_page_prepare(page, pfn))
3243		return;
3244
3245	local_irq_save(flags);
3246	free_unref_page_commit(page, pfn);
3247	local_irq_restore(flags);
3248}
3249
3250/*
3251 * Free a list of 0-order pages
3252 */
3253void free_unref_page_list(struct list_head *list)
3254{
3255	struct page *page, *next;
3256	unsigned long flags, pfn;
3257	int batch_count = 0;
3258
3259	/* Prepare pages for freeing */
3260	list_for_each_entry_safe(page, next, list, lru) {
3261		pfn = page_to_pfn(page);
3262		if (!free_unref_page_prepare(page, pfn))
3263			list_del(&page->lru);
3264		set_page_private(page, pfn);
3265	}
3266
3267	local_irq_save(flags);
3268	list_for_each_entry_safe(page, next, list, lru) {
3269		unsigned long pfn = page_private(page);
3270
3271		set_page_private(page, 0);
3272		trace_mm_page_free_batched(page);
3273		free_unref_page_commit(page, pfn);
3274
3275		/*
3276		 * Guard against excessive IRQ disabled times when we get
3277		 * a large list of pages to free.
3278		 */
3279		if (++batch_count == SWAP_CLUSTER_MAX) {
3280			local_irq_restore(flags);
3281			batch_count = 0;
3282			local_irq_save(flags);
3283		}
3284	}
3285	local_irq_restore(flags);
3286}
3287
3288/*
3289 * split_page takes a non-compound higher-order page, and splits it into
3290 * n (1<<order) sub-pages: page[0..n]
3291 * Each sub-page must be freed individually.
3292 *
3293 * Note: this is probably too low level an operation for use in drivers.
3294 * Please consult with lkml before using this in your driver.
3295 */
3296void split_page(struct page *page, unsigned int order)
3297{
3298	int i;
3299
3300	VM_BUG_ON_PAGE(PageCompound(page), page);
3301	VM_BUG_ON_PAGE(!page_count(page), page);
3302
3303	for (i = 1; i < (1 << order); i++)
3304		set_page_refcounted(page + i);
3305	split_page_owner(page, 1 << order);
3306	split_page_memcg(page, 1 << order);
3307}
3308EXPORT_SYMBOL_GPL(split_page);
3309
3310int __isolate_free_page(struct page *page, unsigned int order)
3311{
3312	unsigned long watermark;
3313	struct zone *zone;
3314	int mt;
3315
3316	BUG_ON(!PageBuddy(page));
3317
3318	zone = page_zone(page);
3319	mt = get_pageblock_migratetype(page);
3320
3321	if (!is_migrate_isolate(mt)) {
3322		/*
3323		 * Obey watermarks as if the page was being allocated. We can
3324		 * emulate a high-order watermark check with a raised order-0
3325		 * watermark, because we already know our high-order page
3326		 * exists.
3327		 */
3328		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3329		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3330			return 0;
3331
3332		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3333	}
3334
3335	/* Remove page from free list */
3336
3337	del_page_from_free_list(page, zone, order);
3338
3339	/*
3340	 * Set the pageblock if the isolated page is at least half of a
3341	 * pageblock
3342	 */
3343	if (order >= pageblock_order - 1) {
3344		struct page *endpage = page + (1 << order) - 1;
3345		for (; page < endpage; page += pageblock_nr_pages) {
3346			int mt = get_pageblock_migratetype(page);
3347			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3348			    && !is_migrate_highatomic(mt))
3349				set_pageblock_migratetype(page,
3350							  MIGRATE_MOVABLE);
3351		}
3352	}
3353
3354
3355	return 1UL << order;
3356}
3357
3358/**
3359 * __putback_isolated_page - Return a now-isolated page back where we got it
3360 * @page: Page that was isolated
3361 * @order: Order of the isolated page
3362 * @mt: The page's pageblock's migratetype
3363 *
3364 * This function is meant to return a page pulled from the free lists via
3365 * __isolate_free_page back to the free lists they were pulled from.
3366 */
3367void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3368{
3369	struct zone *zone = page_zone(page);
3370
3371	/* zone lock should be held when this function is called */
3372	lockdep_assert_held(&zone->lock);
3373
3374	/* Return isolated page to tail of freelist. */
3375	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3376			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3377}
3378
3379/*
3380 * Update NUMA hit/miss statistics
3381 *
3382 * Must be called with interrupts disabled.
3383 */
3384static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3385{
3386#ifdef CONFIG_NUMA
3387	enum numa_stat_item local_stat = NUMA_LOCAL;
3388
3389	/* skip numa counters update if numa stats is disabled */
3390	if (!static_branch_likely(&vm_numa_stat_key))
3391		return;
3392
3393	if (zone_to_nid(z) != numa_node_id())
3394		local_stat = NUMA_OTHER;
3395
3396	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3397		__inc_numa_state(z, NUMA_HIT);
3398	else {
3399		__inc_numa_state(z, NUMA_MISS);
3400		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3401	}
3402	__inc_numa_state(z, local_stat);
3403#endif
3404}
3405
3406/* Remove page from the per-cpu list, caller must protect the list */
3407static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3408			unsigned int alloc_flags,
3409			struct per_cpu_pages *pcp,
3410			struct list_head *list)
3411{
3412	struct page *page;
3413
3414	do {
3415		if (list_empty(list)) {
3416			pcp->count += rmqueue_bulk(zone, 0,
3417					pcp->batch, list,
3418					migratetype, alloc_flags);
3419			if (unlikely(list_empty(list)))
3420				return NULL;
3421		}
3422
3423		page = list_first_entry(list, struct page, lru);
3424		list_del(&page->lru);
3425		pcp->count--;
3426	} while (check_new_pcp(page));
3427
3428	return page;
3429}
3430
3431/* Lock and remove page from the per-cpu list */
3432static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3433			struct zone *zone, gfp_t gfp_flags,
3434			int migratetype, unsigned int alloc_flags)
3435{
3436	struct per_cpu_pages *pcp;
3437	struct list_head *list;
3438	struct page *page;
3439	unsigned long flags;
3440
3441	local_irq_save(flags);
3442	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3443	list = &pcp->lists[migratetype];
3444	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3445	if (page) {
3446		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3447		zone_statistics(preferred_zone, zone);
3448	}
3449	local_irq_restore(flags);
3450	return page;
3451}
3452
3453/*
3454 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3455 */
3456static inline
3457struct page *rmqueue(struct zone *preferred_zone,
3458			struct zone *zone, unsigned int order,
3459			gfp_t gfp_flags, unsigned int alloc_flags,
3460			int migratetype)
3461{
3462	unsigned long flags;
3463	struct page *page;
3464
3465	if (likely(order == 0)) {
3466		/*
3467		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3468		 * we need to skip it when CMA area isn't allowed.
3469		 */
3470		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3471				migratetype != MIGRATE_MOVABLE ||
3472				IS_ENABLED(CONFIG_CMA_REUSE)) {
3473			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3474					migratetype, alloc_flags);
3475			goto out;
3476		}
3477	}
3478
3479	/*
3480	 * We most definitely don't want callers attempting to
3481	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3482	 */
3483	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3484	spin_lock_irqsave(&zone->lock, flags);
3485
3486	do {
3487		page = NULL;
3488		/*
3489		 * order-0 request can reach here when the pcplist is skipped
3490		 * due to non-CMA allocation context. HIGHATOMIC area is
3491		 * reserved for high-order atomic allocation, so order-0
3492		 * request should skip it.
3493		 */
3494		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3495			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3496			if (page)
3497				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3498		}
3499		if (!page)
3500			page = __rmqueue(zone, order, migratetype, alloc_flags);
3501	} while (page && check_new_pages(page, order));
3502	spin_unlock(&zone->lock);
3503	if (!page)
3504		goto failed;
3505	__mod_zone_freepage_state(zone, -(1 << order),
3506				  get_pcppage_migratetype(page));
3507
3508	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3509	zone_statistics(preferred_zone, zone);
3510	local_irq_restore(flags);
3511
3512out:
3513	/* Separate test+clear to avoid unnecessary atomics */
3514	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3515		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3516		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3517	}
3518
3519	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3520	return page;
3521
3522failed:
3523	local_irq_restore(flags);
3524	return NULL;
3525}
3526
3527#ifdef CONFIG_FAIL_PAGE_ALLOC
3528
3529static struct {
3530	struct fault_attr attr;
3531
3532	bool ignore_gfp_highmem;
3533	bool ignore_gfp_reclaim;
3534	u32 min_order;
3535} fail_page_alloc = {
3536	.attr = FAULT_ATTR_INITIALIZER,
3537	.ignore_gfp_reclaim = true,
3538	.ignore_gfp_highmem = true,
3539	.min_order = 1,
3540};
3541
3542static int __init setup_fail_page_alloc(char *str)
3543{
3544	return setup_fault_attr(&fail_page_alloc.attr, str);
3545}
3546__setup("fail_page_alloc=", setup_fail_page_alloc);
3547
3548static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3549{
3550	if (order < fail_page_alloc.min_order)
3551		return false;
3552	if (gfp_mask & __GFP_NOFAIL)
3553		return false;
3554	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3555		return false;
3556	if (fail_page_alloc.ignore_gfp_reclaim &&
3557			(gfp_mask & __GFP_DIRECT_RECLAIM))
3558		return false;
3559
3560	return should_fail(&fail_page_alloc.attr, 1 << order);
3561}
3562
3563#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3564
3565static int __init fail_page_alloc_debugfs(void)
3566{
3567	umode_t mode = S_IFREG | 0600;
3568	struct dentry *dir;
3569
3570	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3571					&fail_page_alloc.attr);
3572
3573	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3574			    &fail_page_alloc.ignore_gfp_reclaim);
3575	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3576			    &fail_page_alloc.ignore_gfp_highmem);
3577	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3578
3579	return 0;
3580}
3581
3582late_initcall(fail_page_alloc_debugfs);
3583
3584#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3585
3586#else /* CONFIG_FAIL_PAGE_ALLOC */
3587
3588static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3589{
3590	return false;
3591}
3592
3593#endif /* CONFIG_FAIL_PAGE_ALLOC */
3594
3595noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3596{
3597	return __should_fail_alloc_page(gfp_mask, order);
3598}
3599ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3600
3601static inline long __zone_watermark_unusable_free(struct zone *z,
3602				unsigned int order, unsigned int alloc_flags)
3603{
3604	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3605	long unusable_free = (1 << order) - 1;
3606
3607	/*
3608	 * If the caller does not have rights to ALLOC_HARDER then subtract
3609	 * the high-atomic reserves. This will over-estimate the size of the
3610	 * atomic reserve but it avoids a search.
3611	 */
3612	if (likely(!alloc_harder))
3613		unusable_free += z->nr_reserved_highatomic;
3614
3615#ifdef CONFIG_CMA
3616	/* If allocation can't use CMA areas don't use free CMA pages */
3617	if (!(alloc_flags & ALLOC_CMA))
3618		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3619#endif
3620
3621	return unusable_free;
3622}
3623
3624/*
3625 * Return true if free base pages are above 'mark'. For high-order checks it
3626 * will return true of the order-0 watermark is reached and there is at least
3627 * one free page of a suitable size. Checking now avoids taking the zone lock
3628 * to check in the allocation paths if no pages are free.
3629 */
3630bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3631			 int highest_zoneidx, unsigned int alloc_flags,
3632			 long free_pages)
3633{
3634	long min = mark;
3635	int o;
3636	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3637
3638	/* free_pages may go negative - that's OK */
3639	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3640
3641	if (alloc_flags & ALLOC_HIGH)
3642		min -= min / 2;
3643
3644	if (unlikely(alloc_harder)) {
3645		/*
3646		 * OOM victims can try even harder than normal ALLOC_HARDER
3647		 * users on the grounds that it's definitely going to be in
3648		 * the exit path shortly and free memory. Any allocation it
3649		 * makes during the free path will be small and short-lived.
3650		 */
3651		if (alloc_flags & ALLOC_OOM)
3652			min -= min / 2;
3653		else
3654			min -= min / 4;
3655	}
3656
3657	/*
3658	 * Check watermarks for an order-0 allocation request. If these
3659	 * are not met, then a high-order request also cannot go ahead
3660	 * even if a suitable page happened to be free.
3661	 */
3662	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3663		return false;
3664
3665	/* If this is an order-0 request then the watermark is fine */
3666	if (!order)
3667		return true;
3668
3669	/* For a high-order request, check at least one suitable page is free */
3670	for (o = order; o < MAX_ORDER; o++) {
3671		struct free_area *area = &z->free_area[o];
3672		int mt;
3673
3674		if (!area->nr_free)
3675			continue;
3676
3677		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3678			if (!free_area_empty(area, mt))
3679				return true;
3680		}
3681
3682#ifdef CONFIG_CMA
3683		if ((alloc_flags & ALLOC_CMA) &&
3684		    !free_area_empty(area, MIGRATE_CMA)) {
3685			return true;
3686		}
3687#endif
3688		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3689			return true;
3690	}
3691	return false;
3692}
3693
3694bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3695		      int highest_zoneidx, unsigned int alloc_flags)
3696{
3697	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3698					zone_page_state(z, NR_FREE_PAGES));
3699}
3700
3701static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3702				unsigned long mark, int highest_zoneidx,
3703				unsigned int alloc_flags, gfp_t gfp_mask)
3704{
3705	long free_pages;
3706
3707	free_pages = zone_page_state(z, NR_FREE_PAGES);
3708
3709	/*
3710	 * Fast check for order-0 only. If this fails then the reserves
3711	 * need to be calculated.
3712	 */
3713	if (!order) {
3714		long usable_free;
3715		long reserved;
3716
3717		usable_free = free_pages;
3718		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3719
3720		/* reserved may over estimate high-atomic reserves. */
3721		usable_free -= min(usable_free, reserved);
3722		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3723			return true;
3724	}
3725
3726	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3727					free_pages))
3728		return true;
3729	/*
3730	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3731	 * when checking the min watermark. The min watermark is the
3732	 * point where boosting is ignored so that kswapd is woken up
3733	 * when below the low watermark.
3734	 */
3735	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3736		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3737		mark = z->_watermark[WMARK_MIN];
3738		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3739					alloc_flags, free_pages);
3740	}
3741
3742	return false;
3743}
3744
3745bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3746			unsigned long mark, int highest_zoneidx)
3747{
3748	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3749
3750	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3751		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3752
3753	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3754								free_pages);
3755}
3756
3757#ifdef CONFIG_NUMA
3758static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3759{
3760	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3761				node_reclaim_distance;
3762}
3763#else	/* CONFIG_NUMA */
3764static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765{
3766	return true;
3767}
3768#endif	/* CONFIG_NUMA */
3769
3770/*
3771 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3772 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3773 * premature use of a lower zone may cause lowmem pressure problems that
3774 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3775 * probably too small. It only makes sense to spread allocations to avoid
3776 * fragmentation between the Normal and DMA32 zones.
3777 */
3778static inline unsigned int
3779alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3780{
3781	unsigned int alloc_flags;
3782
3783	/*
3784	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3785	 * to save a branch.
3786	 */
3787	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3788
3789#ifdef CONFIG_ZONE_DMA32
3790	if (!zone)
3791		return alloc_flags;
3792
3793	if (zone_idx(zone) != ZONE_NORMAL)
3794		return alloc_flags;
3795
3796	/*
3797	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3798	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3799	 * on UMA that if Normal is populated then so is DMA32.
3800	 */
3801	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3802	if (nr_online_nodes > 1 && !populated_zone(--zone))
3803		return alloc_flags;
3804
3805	alloc_flags |= ALLOC_NOFRAGMENT;
3806#endif /* CONFIG_ZONE_DMA32 */
3807	return alloc_flags;
3808}
3809
3810static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3811					unsigned int alloc_flags)
3812{
3813#ifdef CONFIG_CMA
3814	unsigned int pflags = current->flags;
3815
3816	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3817			gfp_migratetype(gfp_mask) == get_cma_migratetype())
3818		alloc_flags |= ALLOC_CMA;
3819
3820#endif
3821	return alloc_flags;
3822}
3823
3824/*
3825 * get_page_from_freelist goes through the zonelist trying to allocate
3826 * a page.
3827 */
3828static struct page *
3829get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3830						const struct alloc_context *ac)
3831{
3832	struct zoneref *z;
3833	struct zone *zone;
3834	struct pglist_data *last_pgdat_dirty_limit = NULL;
3835	bool no_fallback;
3836
3837retry:
3838	/*
3839	 * Scan zonelist, looking for a zone with enough free.
3840	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3841	 */
3842	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3843	z = ac->preferred_zoneref;
3844	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3845					ac->nodemask) {
3846		struct page *page;
3847		unsigned long mark;
3848
3849		if (cpusets_enabled() &&
3850			(alloc_flags & ALLOC_CPUSET) &&
3851			!__cpuset_zone_allowed(zone, gfp_mask))
3852				continue;
3853		/*
3854		 * When allocating a page cache page for writing, we
3855		 * want to get it from a node that is within its dirty
3856		 * limit, such that no single node holds more than its
3857		 * proportional share of globally allowed dirty pages.
3858		 * The dirty limits take into account the node's
3859		 * lowmem reserves and high watermark so that kswapd
3860		 * should be able to balance it without having to
3861		 * write pages from its LRU list.
3862		 *
3863		 * XXX: For now, allow allocations to potentially
3864		 * exceed the per-node dirty limit in the slowpath
3865		 * (spread_dirty_pages unset) before going into reclaim,
3866		 * which is important when on a NUMA setup the allowed
3867		 * nodes are together not big enough to reach the
3868		 * global limit.  The proper fix for these situations
3869		 * will require awareness of nodes in the
3870		 * dirty-throttling and the flusher threads.
3871		 */
3872		if (ac->spread_dirty_pages) {
3873			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3874				continue;
3875
3876			if (!node_dirty_ok(zone->zone_pgdat)) {
3877				last_pgdat_dirty_limit = zone->zone_pgdat;
3878				continue;
3879			}
3880		}
3881
3882		if (no_fallback && nr_online_nodes > 1 &&
3883		    zone != ac->preferred_zoneref->zone) {
3884			int local_nid;
3885
3886			/*
3887			 * If moving to a remote node, retry but allow
3888			 * fragmenting fallbacks. Locality is more important
3889			 * than fragmentation avoidance.
3890			 */
3891			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3892			if (zone_to_nid(zone) != local_nid) {
3893				alloc_flags &= ~ALLOC_NOFRAGMENT;
3894				goto retry;
3895			}
3896		}
3897
3898		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3899		if (!zone_watermark_fast(zone, order, mark,
3900				       ac->highest_zoneidx, alloc_flags,
3901				       gfp_mask)) {
3902			int ret;
3903
3904#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3905			/*
3906			 * Watermark failed for this zone, but see if we can
3907			 * grow this zone if it contains deferred pages.
3908			 */
3909			if (static_branch_unlikely(&deferred_pages)) {
3910				if (_deferred_grow_zone(zone, order))
3911					goto try_this_zone;
3912			}
3913#endif
3914			/* Checked here to keep the fast path fast */
3915			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3916			if (alloc_flags & ALLOC_NO_WATERMARKS)
3917				goto try_this_zone;
3918
3919			if (node_reclaim_mode == 0 ||
3920			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3921				continue;
3922
3923			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3924			switch (ret) {
3925			case NODE_RECLAIM_NOSCAN:
3926				/* did not scan */
3927				continue;
3928			case NODE_RECLAIM_FULL:
3929				/* scanned but unreclaimable */
3930				continue;
3931			default:
3932				/* did we reclaim enough */
3933				if (zone_watermark_ok(zone, order, mark,
3934					ac->highest_zoneidx, alloc_flags))
3935					goto try_this_zone;
3936
3937				continue;
3938			}
3939		}
3940
3941try_this_zone:
3942		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3943				gfp_mask, alloc_flags, ac->migratetype);
3944		if (page) {
3945			prep_new_page(page, order, gfp_mask, alloc_flags);
3946
3947			/*
3948			 * If this is a high-order atomic allocation then check
3949			 * if the pageblock should be reserved for the future
3950			 */
3951			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3952				reserve_highatomic_pageblock(page, zone, order);
3953
3954			return page;
3955		} else {
3956#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957			/* Try again if zone has deferred pages */
3958			if (static_branch_unlikely(&deferred_pages)) {
3959				if (_deferred_grow_zone(zone, order))
3960					goto try_this_zone;
3961			}
3962#endif
3963		}
3964	}
3965
3966	/*
3967	 * It's possible on a UMA machine to get through all zones that are
3968	 * fragmented. If avoiding fragmentation, reset and try again.
3969	 */
3970	if (no_fallback) {
3971		alloc_flags &= ~ALLOC_NOFRAGMENT;
3972		goto retry;
3973	}
3974
3975	return NULL;
3976}
3977
3978static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3979{
3980	unsigned int filter = SHOW_MEM_FILTER_NODES;
3981
3982	/*
3983	 * This documents exceptions given to allocations in certain
3984	 * contexts that are allowed to allocate outside current's set
3985	 * of allowed nodes.
3986	 */
3987	if (!(gfp_mask & __GFP_NOMEMALLOC))
3988		if (tsk_is_oom_victim(current) ||
3989		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3990			filter &= ~SHOW_MEM_FILTER_NODES;
3991	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3992		filter &= ~SHOW_MEM_FILTER_NODES;
3993
3994	show_mem(filter, nodemask);
3995}
3996
3997void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3998{
3999	struct va_format vaf;
4000	va_list args;
4001	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4002
4003	if ((gfp_mask & __GFP_NOWARN) ||
4004	     !__ratelimit(&nopage_rs) ||
4005	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4006		return;
4007
4008	va_start(args, fmt);
4009	vaf.fmt = fmt;
4010	vaf.va = &args;
4011	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4012			current->comm, &vaf, gfp_mask, &gfp_mask,
4013			nodemask_pr_args(nodemask));
4014	va_end(args);
4015
4016	cpuset_print_current_mems_allowed();
4017	pr_cont("\n");
4018	dump_stack();
4019	warn_alloc_show_mem(gfp_mask, nodemask);
4020}
4021
4022static inline struct page *
4023__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4024			      unsigned int alloc_flags,
4025			      const struct alloc_context *ac)
4026{
4027	struct page *page;
4028
4029	page = get_page_from_freelist(gfp_mask, order,
4030			alloc_flags|ALLOC_CPUSET, ac);
4031	/*
4032	 * fallback to ignore cpuset restriction if our nodes
4033	 * are depleted
4034	 */
4035	if (!page)
4036		page = get_page_from_freelist(gfp_mask, order,
4037				alloc_flags, ac);
4038
4039	return page;
4040}
4041
4042static inline struct page *
4043__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4044	const struct alloc_context *ac, unsigned long *did_some_progress)
4045{
4046	struct oom_control oc = {
4047		.zonelist = ac->zonelist,
4048		.nodemask = ac->nodemask,
4049		.memcg = NULL,
4050		.gfp_mask = gfp_mask,
4051		.order = order,
4052	};
4053	struct page *page;
4054
4055	*did_some_progress = 0;
4056
4057	/*
4058	 * Acquire the oom lock.  If that fails, somebody else is
4059	 * making progress for us.
4060	 */
4061	if (!mutex_trylock(&oom_lock)) {
4062		*did_some_progress = 1;
4063		schedule_timeout_uninterruptible(1);
4064		return NULL;
4065	}
4066
4067	/*
4068	 * Go through the zonelist yet one more time, keep very high watermark
4069	 * here, this is only to catch a parallel oom killing, we must fail if
4070	 * we're still under heavy pressure. But make sure that this reclaim
4071	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4072	 * allocation which will never fail due to oom_lock already held.
4073	 */
4074	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4075				      ~__GFP_DIRECT_RECLAIM, order,
4076				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4077	if (page)
4078		goto out;
4079
4080	/* Coredumps can quickly deplete all memory reserves */
4081	if (current->flags & PF_DUMPCORE)
4082		goto out;
4083	/* The OOM killer will not help higher order allocs */
4084	if (order > PAGE_ALLOC_COSTLY_ORDER)
4085		goto out;
4086	/*
4087	 * We have already exhausted all our reclaim opportunities without any
4088	 * success so it is time to admit defeat. We will skip the OOM killer
4089	 * because it is very likely that the caller has a more reasonable
4090	 * fallback than shooting a random task.
4091	 *
4092	 * The OOM killer may not free memory on a specific node.
4093	 */
4094	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4095		goto out;
4096	/* The OOM killer does not needlessly kill tasks for lowmem */
4097	if (ac->highest_zoneidx < ZONE_NORMAL)
4098		goto out;
4099	if (pm_suspended_storage())
4100		goto out;
4101	/*
4102	 * XXX: GFP_NOFS allocations should rather fail than rely on
4103	 * other request to make a forward progress.
4104	 * We are in an unfortunate situation where out_of_memory cannot
4105	 * do much for this context but let's try it to at least get
4106	 * access to memory reserved if the current task is killed (see
4107	 * out_of_memory). Once filesystems are ready to handle allocation
4108	 * failures more gracefully we should just bail out here.
4109	 */
4110
4111	/* Exhausted what can be done so it's blame time */
4112	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4113		*did_some_progress = 1;
4114
4115		/*
4116		 * Help non-failing allocations by giving them access to memory
4117		 * reserves
4118		 */
4119		if (gfp_mask & __GFP_NOFAIL)
4120			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4121					ALLOC_NO_WATERMARKS, ac);
4122	}
4123out:
4124	mutex_unlock(&oom_lock);
4125	return page;
4126}
4127
4128/*
4129 * Maximum number of compaction retries wit a progress before OOM
4130 * killer is consider as the only way to move forward.
4131 */
4132#define MAX_COMPACT_RETRIES 16
4133
4134#ifdef CONFIG_COMPACTION
4135/* Try memory compaction for high-order allocations before reclaim */
4136static struct page *
4137__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4138		unsigned int alloc_flags, const struct alloc_context *ac,
4139		enum compact_priority prio, enum compact_result *compact_result)
4140{
4141	struct page *page = NULL;
4142	unsigned long pflags;
4143	unsigned int noreclaim_flag;
4144
4145	if (!order)
4146		return NULL;
4147
4148	psi_memstall_enter(&pflags);
4149	noreclaim_flag = memalloc_noreclaim_save();
4150
4151	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4152								prio, &page);
4153
4154	memalloc_noreclaim_restore(noreclaim_flag);
4155	psi_memstall_leave(&pflags);
4156
4157	/*
4158	 * At least in one zone compaction wasn't deferred or skipped, so let's
4159	 * count a compaction stall
4160	 */
4161	count_vm_event(COMPACTSTALL);
4162
4163	/* Prep a captured page if available */
4164	if (page)
4165		prep_new_page(page, order, gfp_mask, alloc_flags);
4166
4167	/* Try get a page from the freelist if available */
4168	if (!page)
4169		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4170
4171	if (page) {
4172		struct zone *zone = page_zone(page);
4173
4174		zone->compact_blockskip_flush = false;
4175		compaction_defer_reset(zone, order, true);
4176		count_vm_event(COMPACTSUCCESS);
4177		return page;
4178	}
4179
4180	/*
4181	 * It's bad if compaction run occurs and fails. The most likely reason
4182	 * is that pages exist, but not enough to satisfy watermarks.
4183	 */
4184	count_vm_event(COMPACTFAIL);
4185
4186	cond_resched();
4187
4188	return NULL;
4189}
4190
4191static inline bool
4192should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4193		     enum compact_result compact_result,
4194		     enum compact_priority *compact_priority,
4195		     int *compaction_retries)
4196{
4197	int max_retries = MAX_COMPACT_RETRIES;
4198	int min_priority;
4199	bool ret = false;
4200	int retries = *compaction_retries;
4201	enum compact_priority priority = *compact_priority;
4202
4203	if (!order)
4204		return false;
4205
4206	if (compaction_made_progress(compact_result))
4207		(*compaction_retries)++;
4208
4209	/*
4210	 * compaction considers all the zone as desperately out of memory
4211	 * so it doesn't really make much sense to retry except when the
4212	 * failure could be caused by insufficient priority
4213	 */
4214	if (compaction_failed(compact_result))
4215		goto check_priority;
4216
4217	/*
4218	 * compaction was skipped because there are not enough order-0 pages
4219	 * to work with, so we retry only if it looks like reclaim can help.
4220	 */
4221	if (compaction_needs_reclaim(compact_result)) {
4222		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4223		goto out;
4224	}
4225
4226	/*
4227	 * make sure the compaction wasn't deferred or didn't bail out early
4228	 * due to locks contention before we declare that we should give up.
4229	 * But the next retry should use a higher priority if allowed, so
4230	 * we don't just keep bailing out endlessly.
4231	 */
4232	if (compaction_withdrawn(compact_result)) {
4233		goto check_priority;
4234	}
4235
4236	/*
4237	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4238	 * costly ones because they are de facto nofail and invoke OOM
4239	 * killer to move on while costly can fail and users are ready
4240	 * to cope with that. 1/4 retries is rather arbitrary but we
4241	 * would need much more detailed feedback from compaction to
4242	 * make a better decision.
4243	 */
4244	if (order > PAGE_ALLOC_COSTLY_ORDER)
4245		max_retries /= 4;
4246	if (*compaction_retries <= max_retries) {
4247		ret = true;
4248		goto out;
4249	}
4250
4251	/*
4252	 * Make sure there are attempts at the highest priority if we exhausted
4253	 * all retries or failed at the lower priorities.
4254	 */
4255check_priority:
4256	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4257			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4258
4259	if (*compact_priority > min_priority) {
4260		(*compact_priority)--;
4261		*compaction_retries = 0;
4262		ret = true;
4263	}
4264out:
4265	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4266	return ret;
4267}
4268#else
4269static inline struct page *
4270__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4271		unsigned int alloc_flags, const struct alloc_context *ac,
4272		enum compact_priority prio, enum compact_result *compact_result)
4273{
4274	*compact_result = COMPACT_SKIPPED;
4275	return NULL;
4276}
4277
4278static inline bool
4279should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4280		     enum compact_result compact_result,
4281		     enum compact_priority *compact_priority,
4282		     int *compaction_retries)
4283{
4284	struct zone *zone;
4285	struct zoneref *z;
4286
4287	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4288		return false;
4289
4290	/*
4291	 * There are setups with compaction disabled which would prefer to loop
4292	 * inside the allocator rather than hit the oom killer prematurely.
4293	 * Let's give them a good hope and keep retrying while the order-0
4294	 * watermarks are OK.
4295	 */
4296	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4297				ac->highest_zoneidx, ac->nodemask) {
4298		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4299					ac->highest_zoneidx, alloc_flags))
4300			return true;
4301	}
4302	return false;
4303}
4304#endif /* CONFIG_COMPACTION */
4305
4306#ifdef CONFIG_LOCKDEP
4307static struct lockdep_map __fs_reclaim_map =
4308	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4309
4310static bool __need_fs_reclaim(gfp_t gfp_mask)
4311{
4312	gfp_mask = current_gfp_context(gfp_mask);
4313
4314	/* no reclaim without waiting on it */
4315	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4316		return false;
4317
4318	/* this guy won't enter reclaim */
4319	if (current->flags & PF_MEMALLOC)
4320		return false;
4321
4322	/* We're only interested __GFP_FS allocations for now */
4323	if (!(gfp_mask & __GFP_FS))
4324		return false;
4325
4326	if (gfp_mask & __GFP_NOLOCKDEP)
4327		return false;
4328
4329	return true;
4330}
4331
4332void __fs_reclaim_acquire(void)
4333{
4334	lock_map_acquire(&__fs_reclaim_map);
4335}
4336
4337void __fs_reclaim_release(void)
4338{
4339	lock_map_release(&__fs_reclaim_map);
4340}
4341
4342void fs_reclaim_acquire(gfp_t gfp_mask)
4343{
4344	if (__need_fs_reclaim(gfp_mask))
4345		__fs_reclaim_acquire();
4346}
4347EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4348
4349void fs_reclaim_release(gfp_t gfp_mask)
4350{
4351	if (__need_fs_reclaim(gfp_mask))
4352		__fs_reclaim_release();
4353}
4354EXPORT_SYMBOL_GPL(fs_reclaim_release);
4355#endif
4356
4357/*
4358 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4359 * have been rebuilt so allocation retries. Reader side does not lock and
4360 * retries the allocation if zonelist changes. Writer side is protected by the
4361 * embedded spin_lock.
4362 */
4363static DEFINE_SEQLOCK(zonelist_update_seq);
4364
4365static unsigned int zonelist_iter_begin(void)
4366{
4367	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4368		return read_seqbegin(&zonelist_update_seq);
4369
4370	return 0;
4371}
4372
4373static unsigned int check_retry_zonelist(unsigned int seq)
4374{
4375	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4376		return read_seqretry(&zonelist_update_seq, seq);
4377
4378	return seq;
4379}
4380
4381/* Perform direct synchronous page reclaim */
4382static unsigned long
4383__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4384					const struct alloc_context *ac)
4385{
4386	unsigned int noreclaim_flag;
4387	unsigned long pflags, progress;
4388
4389	cond_resched();
4390
4391	/* We now go into synchronous reclaim */
4392	cpuset_memory_pressure_bump();
4393	psi_memstall_enter(&pflags);
4394	fs_reclaim_acquire(gfp_mask);
4395	noreclaim_flag = memalloc_noreclaim_save();
4396
4397	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4398								ac->nodemask);
4399
4400	memalloc_noreclaim_restore(noreclaim_flag);
4401	fs_reclaim_release(gfp_mask);
4402	psi_memstall_leave(&pflags);
4403
4404	cond_resched();
4405
4406	return progress;
4407}
4408
4409/* The really slow allocator path where we enter direct reclaim */
4410static inline struct page *
4411__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4412		unsigned int alloc_flags, const struct alloc_context *ac,
4413		unsigned long *did_some_progress)
4414{
4415	struct page *page = NULL;
4416	bool drained = false;
4417
4418	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4419	if (unlikely(!(*did_some_progress)))
4420		return NULL;
4421
4422retry:
4423	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4424
4425	/*
4426	 * If an allocation failed after direct reclaim, it could be because
4427	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4428	 * Shrink them and try again
4429	 */
4430	if (!page && !drained) {
4431		unreserve_highatomic_pageblock(ac, false);
4432#ifdef CONFIG_RECLAIM_ACCT
4433		reclaimacct_substage_start(RA_DRAINALLPAGES);
4434#endif
4435		drain_all_pages(NULL);
4436#ifdef CONFIG_RECLAIM_ACCT
4437		reclaimacct_substage_end(RA_DRAINALLPAGES, 0, NULL);
4438#endif
4439		drained = true;
4440		goto retry;
4441	}
4442
4443	return page;
4444}
4445
4446static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4447			     const struct alloc_context *ac)
4448{
4449	struct zoneref *z;
4450	struct zone *zone;
4451	pg_data_t *last_pgdat = NULL;
4452	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4453
4454	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4455					ac->nodemask) {
4456		if (last_pgdat != zone->zone_pgdat)
4457			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4458		last_pgdat = zone->zone_pgdat;
4459	}
4460}
4461
4462static inline unsigned int
4463gfp_to_alloc_flags(gfp_t gfp_mask)
4464{
4465	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4466
4467	/*
4468	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4469	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4470	 * to save two branches.
4471	 */
4472	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4473	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4474
4475	/*
4476	 * The caller may dip into page reserves a bit more if the caller
4477	 * cannot run direct reclaim, or if the caller has realtime scheduling
4478	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4479	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4480	 */
4481	alloc_flags |= (__force int)
4482		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4483
4484	if (gfp_mask & __GFP_ATOMIC) {
4485		/*
4486		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4487		 * if it can't schedule.
4488		 */
4489		if (!(gfp_mask & __GFP_NOMEMALLOC))
4490			alloc_flags |= ALLOC_HARDER;
4491		/*
4492		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4493		 * comment for __cpuset_node_allowed().
4494		 */
4495		alloc_flags &= ~ALLOC_CPUSET;
4496	} else if (unlikely(rt_task(current)) && !in_interrupt())
4497		alloc_flags |= ALLOC_HARDER;
4498
4499	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4500
4501	return alloc_flags;
4502}
4503
4504static bool oom_reserves_allowed(struct task_struct *tsk)
4505{
4506	if (!tsk_is_oom_victim(tsk))
4507		return false;
4508
4509	/*
4510	 * !MMU doesn't have oom reaper so give access to memory reserves
4511	 * only to the thread with TIF_MEMDIE set
4512	 */
4513	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4514		return false;
4515
4516	return true;
4517}
4518
4519/*
4520 * Distinguish requests which really need access to full memory
4521 * reserves from oom victims which can live with a portion of it
4522 */
4523static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4524{
4525	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4526		return 0;
4527	if (gfp_mask & __GFP_MEMALLOC)
4528		return ALLOC_NO_WATERMARKS;
4529	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4530		return ALLOC_NO_WATERMARKS;
4531	if (!in_interrupt()) {
4532		if (current->flags & PF_MEMALLOC)
4533			return ALLOC_NO_WATERMARKS;
4534		else if (oom_reserves_allowed(current))
4535			return ALLOC_OOM;
4536	}
4537
4538	return 0;
4539}
4540
4541bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4542{
4543	return !!__gfp_pfmemalloc_flags(gfp_mask);
4544}
4545
4546/*
4547 * Checks whether it makes sense to retry the reclaim to make a forward progress
4548 * for the given allocation request.
4549 *
4550 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4551 * without success, or when we couldn't even meet the watermark if we
4552 * reclaimed all remaining pages on the LRU lists.
4553 *
4554 * Returns true if a retry is viable or false to enter the oom path.
4555 */
4556static inline bool
4557should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4558		     struct alloc_context *ac, int alloc_flags,
4559		     bool did_some_progress, int *no_progress_loops)
4560{
4561	struct zone *zone;
4562	struct zoneref *z;
4563	bool ret = false;
4564
4565	/*
4566	 * Costly allocations might have made a progress but this doesn't mean
4567	 * their order will become available due to high fragmentation so
4568	 * always increment the no progress counter for them
4569	 */
4570	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4571		*no_progress_loops = 0;
4572	else
4573		(*no_progress_loops)++;
4574
4575	/*
4576	 * Make sure we converge to OOM if we cannot make any progress
4577	 * several times in the row.
4578	 */
4579	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4580		/* Before OOM, exhaust highatomic_reserve */
4581		return unreserve_highatomic_pageblock(ac, true);
4582	}
4583
4584	/*
4585	 * Keep reclaiming pages while there is a chance this will lead
4586	 * somewhere.  If none of the target zones can satisfy our allocation
4587	 * request even if all reclaimable pages are considered then we are
4588	 * screwed and have to go OOM.
4589	 */
4590	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4591				ac->highest_zoneidx, ac->nodemask) {
4592		unsigned long available;
4593		unsigned long reclaimable;
4594		unsigned long min_wmark = min_wmark_pages(zone);
4595		bool wmark;
4596
4597		available = reclaimable = zone_reclaimable_pages(zone);
4598		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4599
4600		/*
4601		 * Would the allocation succeed if we reclaimed all
4602		 * reclaimable pages?
4603		 */
4604		wmark = __zone_watermark_ok(zone, order, min_wmark,
4605				ac->highest_zoneidx, alloc_flags, available);
4606		trace_reclaim_retry_zone(z, order, reclaimable,
4607				available, min_wmark, *no_progress_loops, wmark);
4608		if (wmark) {
4609			/*
4610			 * If we didn't make any progress and have a lot of
4611			 * dirty + writeback pages then we should wait for
4612			 * an IO to complete to slow down the reclaim and
4613			 * prevent from pre mature OOM
4614			 */
4615			if (!did_some_progress) {
4616				unsigned long write_pending;
4617
4618				write_pending = zone_page_state_snapshot(zone,
4619							NR_ZONE_WRITE_PENDING);
4620
4621				if (2 * write_pending > reclaimable) {
4622					congestion_wait(BLK_RW_ASYNC, HZ/10);
4623					return true;
4624				}
4625			}
4626
4627			ret = true;
4628			goto out;
4629		}
4630	}
4631
4632out:
4633	/*
4634	 * Memory allocation/reclaim might be called from a WQ context and the
4635	 * current implementation of the WQ concurrency control doesn't
4636	 * recognize that a particular WQ is congested if the worker thread is
4637	 * looping without ever sleeping. Therefore we have to do a short sleep
4638	 * here rather than calling cond_resched().
4639	 */
4640	if (current->flags & PF_WQ_WORKER)
4641		schedule_timeout_uninterruptible(1);
4642	else
4643		cond_resched();
4644	return ret;
4645}
4646
4647static inline bool
4648check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4649{
4650	/*
4651	 * It's possible that cpuset's mems_allowed and the nodemask from
4652	 * mempolicy don't intersect. This should be normally dealt with by
4653	 * policy_nodemask(), but it's possible to race with cpuset update in
4654	 * such a way the check therein was true, and then it became false
4655	 * before we got our cpuset_mems_cookie here.
4656	 * This assumes that for all allocations, ac->nodemask can come only
4657	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4658	 * when it does not intersect with the cpuset restrictions) or the
4659	 * caller can deal with a violated nodemask.
4660	 */
4661	if (cpusets_enabled() && ac->nodemask &&
4662			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4663		ac->nodemask = NULL;
4664		return true;
4665	}
4666
4667	/*
4668	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4669	 * possible to race with parallel threads in such a way that our
4670	 * allocation can fail while the mask is being updated. If we are about
4671	 * to fail, check if the cpuset changed during allocation and if so,
4672	 * retry.
4673	 */
4674	if (read_mems_allowed_retry(cpuset_mems_cookie))
4675		return true;
4676
4677	return false;
4678}
4679
4680static inline struct page *
4681__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4682						struct alloc_context *ac)
4683{
4684	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4685	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4686	struct page *page = NULL;
4687	unsigned int alloc_flags;
4688	unsigned long did_some_progress;
4689	enum compact_priority compact_priority;
4690	enum compact_result compact_result;
4691	int compaction_retries;
4692	int no_progress_loops;
4693	unsigned int cpuset_mems_cookie;
4694	unsigned int zonelist_iter_cookie;
4695	int reserve_flags;
4696#ifdef CONFIG_RECLAIM_ACCT
4697	struct reclaim_acct ra = {0};
4698#endif
4699
4700	/*
4701	 * We also sanity check to catch abuse of atomic reserves being used by
4702	 * callers that are not in atomic context.
4703	 */
4704	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4705				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4706		gfp_mask &= ~__GFP_ATOMIC;
4707
4708restart:
4709	compaction_retries = 0;
4710	no_progress_loops = 0;
4711	compact_priority = DEF_COMPACT_PRIORITY;
4712	cpuset_mems_cookie = read_mems_allowed_begin();
4713	zonelist_iter_cookie = zonelist_iter_begin();
4714
4715	/*
4716	 * The fast path uses conservative alloc_flags to succeed only until
4717	 * kswapd needs to be woken up, and to avoid the cost of setting up
4718	 * alloc_flags precisely. So we do that now.
4719	 */
4720	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4721
4722	/*
4723	 * We need to recalculate the starting point for the zonelist iterator
4724	 * because we might have used different nodemask in the fast path, or
4725	 * there was a cpuset modification and we are retrying - otherwise we
4726	 * could end up iterating over non-eligible zones endlessly.
4727	 */
4728	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4729					ac->highest_zoneidx, ac->nodemask);
4730	if (!ac->preferred_zoneref->zone)
4731		goto nopage;
4732
4733	if (alloc_flags & ALLOC_KSWAPD)
4734		wake_all_kswapds(order, gfp_mask, ac);
4735
4736	/*
4737	 * The adjusted alloc_flags might result in immediate success, so try
4738	 * that first
4739	 */
4740	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4741	if (page)
4742		goto got_pg;
4743
4744	/*
4745	 * For costly allocations, try direct compaction first, as it's likely
4746	 * that we have enough base pages and don't need to reclaim. For non-
4747	 * movable high-order allocations, do that as well, as compaction will
4748	 * try prevent permanent fragmentation by migrating from blocks of the
4749	 * same migratetype.
4750	 * Don't try this for allocations that are allowed to ignore
4751	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4752	 */
4753	if (can_direct_reclaim &&
4754			(costly_order ||
4755			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4756			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4757		page = __alloc_pages_direct_compact(gfp_mask, order,
4758						alloc_flags, ac,
4759						INIT_COMPACT_PRIORITY,
4760						&compact_result);
4761		if (page)
4762			goto got_pg;
4763
4764		/*
4765		 * Checks for costly allocations with __GFP_NORETRY, which
4766		 * includes some THP page fault allocations
4767		 */
4768		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4769			/*
4770			 * If allocating entire pageblock(s) and compaction
4771			 * failed because all zones are below low watermarks
4772			 * or is prohibited because it recently failed at this
4773			 * order, fail immediately unless the allocator has
4774			 * requested compaction and reclaim retry.
4775			 *
4776			 * Reclaim is
4777			 *  - potentially very expensive because zones are far
4778			 *    below their low watermarks or this is part of very
4779			 *    bursty high order allocations,
4780			 *  - not guaranteed to help because isolate_freepages()
4781			 *    may not iterate over freed pages as part of its
4782			 *    linear scan, and
4783			 *  - unlikely to make entire pageblocks free on its
4784			 *    own.
4785			 */
4786			if (compact_result == COMPACT_SKIPPED ||
4787			    compact_result == COMPACT_DEFERRED)
4788				goto nopage;
4789
4790			/*
4791			 * Looks like reclaim/compaction is worth trying, but
4792			 * sync compaction could be very expensive, so keep
4793			 * using async compaction.
4794			 */
4795			compact_priority = INIT_COMPACT_PRIORITY;
4796		}
4797	}
4798
4799retry:
4800	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4801	if (alloc_flags & ALLOC_KSWAPD)
4802		wake_all_kswapds(order, gfp_mask, ac);
4803
4804	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4805	if (reserve_flags)
4806		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4807
4808	/*
4809	 * Reset the nodemask and zonelist iterators if memory policies can be
4810	 * ignored. These allocations are high priority and system rather than
4811	 * user oriented.
4812	 */
4813	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4814		ac->nodemask = NULL;
4815		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4816					ac->highest_zoneidx, ac->nodemask);
4817	}
4818
4819	/* Attempt with potentially adjusted zonelist and alloc_flags */
4820	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4821	if (page)
4822		goto got_pg;
4823
4824	/* Caller is not willing to reclaim, we can't balance anything */
4825	if (!can_direct_reclaim)
4826		goto nopage;
4827
4828	/* Avoid recursion of direct reclaim */
4829	if (current->flags & PF_MEMALLOC)
4830		goto nopage;
4831
4832	/* Try direct reclaim and then allocating */
4833#ifdef CONFIG_RECLAIM_ACCT
4834	reclaimacct_start(DIRECT_RECLAIMS, &ra);
4835#endif
4836	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4837							&did_some_progress);
4838#ifdef CONFIG_RECLAIM_ACCT
4839	reclaimacct_end(DIRECT_RECLAIMS);
4840#endif
4841	if (page)
4842		goto got_pg;
4843
4844	/* Try direct compaction and then allocating */
4845	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4846					compact_priority, &compact_result);
4847	if (page)
4848		goto got_pg;
4849
4850	/* Do not loop if specifically requested */
4851	if (gfp_mask & __GFP_NORETRY)
4852		goto nopage;
4853
4854	/*
4855	 * Do not retry costly high order allocations unless they are
4856	 * __GFP_RETRY_MAYFAIL
4857	 */
4858	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4859		goto nopage;
4860
4861	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4862				 did_some_progress > 0, &no_progress_loops))
4863		goto retry;
4864
4865	/*
4866	 * It doesn't make any sense to retry for the compaction if the order-0
4867	 * reclaim is not able to make any progress because the current
4868	 * implementation of the compaction depends on the sufficient amount
4869	 * of free memory (see __compaction_suitable)
4870	 */
4871	if (did_some_progress > 0 &&
4872			should_compact_retry(ac, order, alloc_flags,
4873				compact_result, &compact_priority,
4874				&compaction_retries))
4875		goto retry;
4876
4877
4878	/*
4879	 * Deal with possible cpuset update races or zonelist updates to avoid
4880	 * a unnecessary OOM kill.
4881	 */
4882	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4883	    check_retry_zonelist(zonelist_iter_cookie))
4884		goto restart;
4885
4886	/* Reclaim has failed us, start killing things */
4887	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4888	if (page)
4889		goto got_pg;
4890
4891	/* Avoid allocations with no watermarks from looping endlessly */
4892	if (tsk_is_oom_victim(current) &&
4893	    (alloc_flags & ALLOC_OOM ||
4894	     (gfp_mask & __GFP_NOMEMALLOC)))
4895		goto nopage;
4896
4897	/* Retry as long as the OOM killer is making progress */
4898	if (did_some_progress) {
4899		no_progress_loops = 0;
4900		goto retry;
4901	}
4902
4903nopage:
4904	/*
4905	 * Deal with possible cpuset update races or zonelist updates to avoid
4906	 * a unnecessary OOM kill.
4907	 */
4908	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4909	    check_retry_zonelist(zonelist_iter_cookie))
4910		goto restart;
4911
4912	/*
4913	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4914	 * we always retry
4915	 */
4916	if (gfp_mask & __GFP_NOFAIL) {
4917		/*
4918		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4919		 * of any new users that actually require GFP_NOWAIT
4920		 */
4921		if (WARN_ON_ONCE(!can_direct_reclaim))
4922			goto fail;
4923
4924		/*
4925		 * PF_MEMALLOC request from this context is rather bizarre
4926		 * because we cannot reclaim anything and only can loop waiting
4927		 * for somebody to do a work for us
4928		 */
4929		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4930
4931		/*
4932		 * non failing costly orders are a hard requirement which we
4933		 * are not prepared for much so let's warn about these users
4934		 * so that we can identify them and convert them to something
4935		 * else.
4936		 */
4937		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4938
4939		/*
4940		 * Help non-failing allocations by giving them access to memory
4941		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4942		 * could deplete whole memory reserves which would just make
4943		 * the situation worse
4944		 */
4945		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4946		if (page)
4947			goto got_pg;
4948
4949		cond_resched();
4950		goto retry;
4951	}
4952fail:
4953	warn_alloc(gfp_mask, ac->nodemask,
4954			"page allocation failure: order:%u", order);
4955got_pg:
4956	return page;
4957}
4958
4959static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4960		int preferred_nid, nodemask_t *nodemask,
4961		struct alloc_context *ac, gfp_t *alloc_mask,
4962		unsigned int *alloc_flags)
4963{
4964	ac->highest_zoneidx = gfp_zone(gfp_mask);
4965	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4966	ac->nodemask = nodemask;
4967	ac->migratetype = gfp_migratetype(gfp_mask);
4968
4969	if (cpusets_enabled()) {
4970		*alloc_mask |= __GFP_HARDWALL;
4971		/*
4972		 * When we are in the interrupt context, it is irrelevant
4973		 * to the current task context. It means that any node ok.
4974		 */
4975		if (!in_interrupt() && !ac->nodemask)
4976			ac->nodemask = &cpuset_current_mems_allowed;
4977		else
4978			*alloc_flags |= ALLOC_CPUSET;
4979	}
4980
4981	fs_reclaim_acquire(gfp_mask);
4982	fs_reclaim_release(gfp_mask);
4983
4984	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4985
4986#ifdef CONFIG_HYPERHOLD_ZSWAPD
4987	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4988		wake_all_zswapd();
4989#endif
4990
4991	if (should_fail_alloc_page(gfp_mask, order))
4992		return false;
4993
4994	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4995
4996	/* Dirty zone balancing only done in the fast path */
4997	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4998
4999	/*
5000	 * The preferred zone is used for statistics but crucially it is
5001	 * also used as the starting point for the zonelist iterator. It
5002	 * may get reset for allocations that ignore memory policies.
5003	 */
5004	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5005					ac->highest_zoneidx, ac->nodemask);
5006
5007	return true;
5008}
5009
5010/*
5011 * This is the 'heart' of the zoned buddy allocator.
5012 */
5013struct page *
5014__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
5015							nodemask_t *nodemask)
5016{
5017	struct page *page;
5018	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5019	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
5020	struct alloc_context ac = { };
5021
5022	/*
5023	 * There are several places where we assume that the order value is sane
5024	 * so bail out early if the request is out of bound.
5025	 */
5026	if (unlikely(order >= MAX_ORDER)) {
5027		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
5028		return NULL;
5029	}
5030
5031	gfp_mask &= gfp_allowed_mask;
5032	alloc_mask = gfp_mask;
5033	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
5034		return NULL;
5035
5036	/*
5037	 * Forbid the first pass from falling back to types that fragment
5038	 * memory until all local zones are considered.
5039	 */
5040	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
5041
5042	/* First allocation attempt */
5043	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5044	if (likely(page))
5045		goto out;
5046
5047	/*
5048	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5049	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5050	 * from a particular context which has been marked by
5051	 * memalloc_no{fs,io}_{save,restore}.
5052	 */
5053	alloc_mask = current_gfp_context(gfp_mask);
5054	ac.spread_dirty_pages = false;
5055
5056	/*
5057	 * Restore the original nodemask if it was potentially replaced with
5058	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5059	 */
5060	ac.nodemask = nodemask;
5061
5062	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5063
5064out:
5065	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5066	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5067		__free_pages(page, order);
5068		page = NULL;
5069	}
5070
5071	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5072
5073	return page;
5074}
5075EXPORT_SYMBOL(__alloc_pages_nodemask);
5076
5077/*
5078 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5079 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5080 * you need to access high mem.
5081 */
5082unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5083{
5084	struct page *page;
5085
5086	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5087	if (!page)
5088		return 0;
5089	return (unsigned long) page_address(page);
5090}
5091EXPORT_SYMBOL(__get_free_pages);
5092
5093unsigned long get_zeroed_page(gfp_t gfp_mask)
5094{
5095	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5096}
5097EXPORT_SYMBOL(get_zeroed_page);
5098
5099static inline void free_the_page(struct page *page, unsigned int order)
5100{
5101	if (order == 0)		/* Via pcp? */
5102		free_unref_page(page);
5103	else
5104		__free_pages_ok(page, order, FPI_NONE);
5105}
5106
5107void __free_pages(struct page *page, unsigned int order)
5108{
5109	/* get PageHead before we drop reference */
5110	int head = PageHead(page);
5111
5112	if (put_page_testzero(page))
5113		free_the_page(page, order);
5114	else if (!head)
5115		while (order-- > 0)
5116			free_the_page(page + (1 << order), order);
5117}
5118EXPORT_SYMBOL(__free_pages);
5119
5120void free_pages(unsigned long addr, unsigned int order)
5121{
5122	if (addr != 0) {
5123		VM_BUG_ON(!virt_addr_valid((void *)addr));
5124		__free_pages(virt_to_page((void *)addr), order);
5125	}
5126}
5127
5128EXPORT_SYMBOL(free_pages);
5129
5130/*
5131 * Page Fragment:
5132 *  An arbitrary-length arbitrary-offset area of memory which resides
5133 *  within a 0 or higher order page.  Multiple fragments within that page
5134 *  are individually refcounted, in the page's reference counter.
5135 *
5136 * The page_frag functions below provide a simple allocation framework for
5137 * page fragments.  This is used by the network stack and network device
5138 * drivers to provide a backing region of memory for use as either an
5139 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5140 */
5141static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5142					     gfp_t gfp_mask)
5143{
5144	struct page *page = NULL;
5145	gfp_t gfp = gfp_mask;
5146
5147#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5148	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5149		    __GFP_NOMEMALLOC;
5150	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5151				PAGE_FRAG_CACHE_MAX_ORDER);
5152	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5153#endif
5154	if (unlikely(!page))
5155		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5156
5157	nc->va = page ? page_address(page) : NULL;
5158
5159#ifdef CONFIG_PAGE_TRACING
5160	if (likely(page)) {
5161		int order = get_order(nc->size);
5162		int i;
5163		struct page *newpage = page;
5164		unsigned int deta = 1U << (unsigned int)order;
5165
5166		for (i = 0; i < (1 << order); i++) {
5167			if (!newpage)
5168				break;
5169			SetPageSKB(newpage);
5170			newpage++;
5171		}
5172		mod_zone_page_state(page_zone(page), NR_SKB_PAGES, (long)deta);
5173	}
5174#endif
5175
5176	return page;
5177}
5178
5179void __page_frag_cache_drain(struct page *page, unsigned int count)
5180{
5181	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5182
5183	if (page_ref_sub_and_test(page, count)) {
5184#ifdef CONFIG_PAGE_TRACING
5185		if (likely(page)) {
5186			unsigned int deta = 1U << compound_order(page);
5187
5188			mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5189		}
5190#endif
5191		free_the_page(page, compound_order(page));
5192	}
5193}
5194EXPORT_SYMBOL(__page_frag_cache_drain);
5195
5196void *page_frag_alloc(struct page_frag_cache *nc,
5197		      unsigned int fragsz, gfp_t gfp_mask)
5198{
5199	unsigned int size = PAGE_SIZE;
5200	struct page *page;
5201	int offset;
5202
5203	if (unlikely(!nc->va)) {
5204refill:
5205		page = __page_frag_cache_refill(nc, gfp_mask);
5206		if (!page)
5207			return NULL;
5208
5209#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5210		/* if size can vary use size else just use PAGE_SIZE */
5211		size = nc->size;
5212#endif
5213		/* Even if we own the page, we do not use atomic_set().
5214		 * This would break get_page_unless_zero() users.
5215		 */
5216		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5217
5218		/* reset page count bias and offset to start of new frag */
5219		nc->pfmemalloc = page_is_pfmemalloc(page);
5220		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5221		nc->offset = size;
5222	}
5223
5224	offset = nc->offset - fragsz;
5225	if (unlikely(offset < 0)) {
5226		page = virt_to_page(nc->va);
5227
5228		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5229			goto refill;
5230
5231		if (unlikely(nc->pfmemalloc)) {
5232			free_the_page(page, compound_order(page));
5233			goto refill;
5234		}
5235
5236#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5237		/* if size can vary use size else just use PAGE_SIZE */
5238		size = nc->size;
5239#endif
5240		/* OK, page count is 0, we can safely set it */
5241		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5242
5243		/* reset page count bias and offset to start of new frag */
5244		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5245		offset = size - fragsz;
5246		if (unlikely(offset < 0)) {
5247			/*
5248			 * The caller is trying to allocate a fragment
5249			 * with fragsz > PAGE_SIZE but the cache isn't big
5250			 * enough to satisfy the request, this may
5251			 * happen in low memory conditions.
5252			 * We don't release the cache page because
5253			 * it could make memory pressure worse
5254			 * so we simply return NULL here.
5255			 */
5256			return NULL;
5257		}
5258	}
5259
5260	nc->pagecnt_bias--;
5261	nc->offset = offset;
5262
5263	return nc->va + offset;
5264}
5265EXPORT_SYMBOL(page_frag_alloc);
5266
5267/*
5268 * Frees a page fragment allocated out of either a compound or order 0 page.
5269 */
5270void page_frag_free(void *addr)
5271{
5272	struct page *page = virt_to_head_page(addr);
5273
5274	if (unlikely(put_page_testzero(page))) {
5275#ifdef CONFIG_PAGE_TRACING
5276		if (likely(page)) {
5277			unsigned int deta = 1U << compound_order(page);
5278
5279			mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5280		}
5281#endif
5282		free_the_page(page, compound_order(page));
5283	}
5284}
5285EXPORT_SYMBOL(page_frag_free);
5286
5287static void *make_alloc_exact(unsigned long addr, unsigned int order,
5288		size_t size)
5289{
5290	if (addr) {
5291		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5292		unsigned long used = addr + PAGE_ALIGN(size);
5293
5294		split_page(virt_to_page((void *)addr), order);
5295		while (used < alloc_end) {
5296			free_page(used);
5297			used += PAGE_SIZE;
5298		}
5299	}
5300	return (void *)addr;
5301}
5302
5303/**
5304 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5305 * @size: the number of bytes to allocate
5306 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5307 *
5308 * This function is similar to alloc_pages(), except that it allocates the
5309 * minimum number of pages to satisfy the request.  alloc_pages() can only
5310 * allocate memory in power-of-two pages.
5311 *
5312 * This function is also limited by MAX_ORDER.
5313 *
5314 * Memory allocated by this function must be released by free_pages_exact().
5315 *
5316 * Return: pointer to the allocated area or %NULL in case of error.
5317 */
5318void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5319{
5320	unsigned int order = get_order(size);
5321	unsigned long addr;
5322
5323	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5324		gfp_mask &= ~__GFP_COMP;
5325
5326	addr = __get_free_pages(gfp_mask, order);
5327	return make_alloc_exact(addr, order, size);
5328}
5329EXPORT_SYMBOL(alloc_pages_exact);
5330
5331/**
5332 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5333 *			   pages on a node.
5334 * @nid: the preferred node ID where memory should be allocated
5335 * @size: the number of bytes to allocate
5336 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5337 *
5338 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5339 * back.
5340 *
5341 * Return: pointer to the allocated area or %NULL in case of error.
5342 */
5343void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5344{
5345	unsigned int order = get_order(size);
5346	struct page *p;
5347
5348	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5349		gfp_mask &= ~__GFP_COMP;
5350
5351	p = alloc_pages_node(nid, gfp_mask, order);
5352	if (!p)
5353		return NULL;
5354	return make_alloc_exact((unsigned long)page_address(p), order, size);
5355}
5356
5357/**
5358 * free_pages_exact - release memory allocated via alloc_pages_exact()
5359 * @virt: the value returned by alloc_pages_exact.
5360 * @size: size of allocation, same value as passed to alloc_pages_exact().
5361 *
5362 * Release the memory allocated by a previous call to alloc_pages_exact.
5363 */
5364void free_pages_exact(void *virt, size_t size)
5365{
5366	unsigned long addr = (unsigned long)virt;
5367	unsigned long end = addr + PAGE_ALIGN(size);
5368
5369	while (addr < end) {
5370		free_page(addr);
5371		addr += PAGE_SIZE;
5372	}
5373}
5374EXPORT_SYMBOL(free_pages_exact);
5375
5376/**
5377 * nr_free_zone_pages - count number of pages beyond high watermark
5378 * @offset: The zone index of the highest zone
5379 *
5380 * nr_free_zone_pages() counts the number of pages which are beyond the
5381 * high watermark within all zones at or below a given zone index.  For each
5382 * zone, the number of pages is calculated as:
5383 *
5384 *     nr_free_zone_pages = managed_pages - high_pages
5385 *
5386 * Return: number of pages beyond high watermark.
5387 */
5388static unsigned long nr_free_zone_pages(int offset)
5389{
5390	struct zoneref *z;
5391	struct zone *zone;
5392
5393	/* Just pick one node, since fallback list is circular */
5394	unsigned long sum = 0;
5395
5396	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5397
5398	for_each_zone_zonelist(zone, z, zonelist, offset) {
5399		unsigned long size = zone_managed_pages(zone);
5400		unsigned long high = high_wmark_pages(zone);
5401		if (size > high)
5402			sum += size - high;
5403	}
5404
5405	return sum;
5406}
5407
5408/**
5409 * nr_free_buffer_pages - count number of pages beyond high watermark
5410 *
5411 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5412 * watermark within ZONE_DMA and ZONE_NORMAL.
5413 *
5414 * Return: number of pages beyond high watermark within ZONE_DMA and
5415 * ZONE_NORMAL.
5416 */
5417unsigned long nr_free_buffer_pages(void)
5418{
5419	return nr_free_zone_pages(gfp_zone(GFP_USER));
5420}
5421EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5422
5423static inline void show_node(struct zone *zone)
5424{
5425	if (IS_ENABLED(CONFIG_NUMA))
5426		printk("Node %d ", zone_to_nid(zone));
5427}
5428
5429long si_mem_available(void)
5430{
5431	long available;
5432	unsigned long pagecache;
5433	unsigned long wmark_low = 0;
5434	unsigned long pages[NR_LRU_LISTS];
5435	unsigned long reclaimable;
5436	struct zone *zone;
5437	int lru;
5438
5439	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5440		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5441
5442	for_each_zone(zone)
5443		wmark_low += low_wmark_pages(zone);
5444
5445	/*
5446	 * Estimate the amount of memory available for userspace allocations,
5447	 * without causing swapping.
5448	 */
5449	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5450
5451	/*
5452	 * Not all the page cache can be freed, otherwise the system will
5453	 * start swapping. Assume at least half of the page cache, or the
5454	 * low watermark worth of cache, needs to stay.
5455	 */
5456	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5457	pagecache -= min(pagecache / 2, wmark_low);
5458	available += pagecache;
5459
5460	/*
5461	 * Part of the reclaimable slab and other kernel memory consists of
5462	 * items that are in use, and cannot be freed. Cap this estimate at the
5463	 * low watermark.
5464	 */
5465	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5466		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5467	available += reclaimable - min(reclaimable / 2, wmark_low);
5468
5469	if (available < 0)
5470		available = 0;
5471	return available;
5472}
5473EXPORT_SYMBOL_GPL(si_mem_available);
5474
5475void si_meminfo(struct sysinfo *val)
5476{
5477	val->totalram = totalram_pages();
5478	val->sharedram = global_node_page_state(NR_SHMEM);
5479	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5480	val->bufferram = nr_blockdev_pages();
5481	val->totalhigh = totalhigh_pages();
5482	val->freehigh = nr_free_highpages();
5483	val->mem_unit = PAGE_SIZE;
5484}
5485
5486EXPORT_SYMBOL(si_meminfo);
5487
5488#ifdef CONFIG_NUMA
5489void si_meminfo_node(struct sysinfo *val, int nid)
5490{
5491	int zone_type;		/* needs to be signed */
5492	unsigned long managed_pages = 0;
5493	unsigned long managed_highpages = 0;
5494	unsigned long free_highpages = 0;
5495	pg_data_t *pgdat = NODE_DATA(nid);
5496
5497	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5498		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5499	val->totalram = managed_pages;
5500	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5501	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5502#ifdef CONFIG_HIGHMEM
5503	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5504		struct zone *zone = &pgdat->node_zones[zone_type];
5505
5506		if (is_highmem(zone)) {
5507			managed_highpages += zone_managed_pages(zone);
5508			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5509		}
5510	}
5511	val->totalhigh = managed_highpages;
5512	val->freehigh = free_highpages;
5513#else
5514	val->totalhigh = managed_highpages;
5515	val->freehigh = free_highpages;
5516#endif
5517	val->mem_unit = PAGE_SIZE;
5518}
5519#endif
5520
5521/*
5522 * Determine whether the node should be displayed or not, depending on whether
5523 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5524 */
5525static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5526{
5527	if (!(flags & SHOW_MEM_FILTER_NODES))
5528		return false;
5529
5530	/*
5531	 * no node mask - aka implicit memory numa policy. Do not bother with
5532	 * the synchronization - read_mems_allowed_begin - because we do not
5533	 * have to be precise here.
5534	 */
5535	if (!nodemask)
5536		nodemask = &cpuset_current_mems_allowed;
5537
5538	return !node_isset(nid, *nodemask);
5539}
5540
5541#define K(x) ((x) << (PAGE_SHIFT-10))
5542
5543static void show_migration_types(unsigned char type)
5544{
5545	static const char types[MIGRATE_TYPES] = {
5546		[MIGRATE_UNMOVABLE]	= 'U',
5547		[MIGRATE_MOVABLE]	= 'M',
5548		[MIGRATE_RECLAIMABLE]	= 'E',
5549		[MIGRATE_HIGHATOMIC]	= 'H',
5550#ifdef CONFIG_CMA
5551		[MIGRATE_CMA]		= 'C',
5552#endif
5553#ifdef CONFIG_MEMORY_ISOLATION
5554		[MIGRATE_ISOLATE]	= 'I',
5555#endif
5556	};
5557	char tmp[MIGRATE_TYPES + 1];
5558	char *p = tmp;
5559	int i;
5560
5561	for (i = 0; i < MIGRATE_TYPES; i++) {
5562		if (type & (1 << i))
5563			*p++ = types[i];
5564	}
5565
5566	*p = '\0';
5567	printk(KERN_CONT "(%s) ", tmp);
5568}
5569
5570/*
5571 * Show free area list (used inside shift_scroll-lock stuff)
5572 * We also calculate the percentage fragmentation. We do this by counting the
5573 * memory on each free list with the exception of the first item on the list.
5574 *
5575 * Bits in @filter:
5576 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5577 *   cpuset.
5578 */
5579void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5580{
5581	unsigned long free_pcp = 0;
5582	int cpu;
5583	struct zone *zone;
5584	pg_data_t *pgdat;
5585
5586	for_each_populated_zone(zone) {
5587		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5588			continue;
5589
5590		for_each_online_cpu(cpu)
5591			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5592	}
5593
5594	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5595		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5596		" unevictable:%lu dirty:%lu writeback:%lu\n"
5597		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5598		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5599		" free:%lu free_pcp:%lu free_cma:%lu\n",
5600		global_node_page_state(NR_ACTIVE_ANON),
5601		global_node_page_state(NR_INACTIVE_ANON),
5602		global_node_page_state(NR_ISOLATED_ANON),
5603		global_node_page_state(NR_ACTIVE_FILE),
5604		global_node_page_state(NR_INACTIVE_FILE),
5605		global_node_page_state(NR_ISOLATED_FILE),
5606		global_node_page_state(NR_UNEVICTABLE),
5607		global_node_page_state(NR_FILE_DIRTY),
5608		global_node_page_state(NR_WRITEBACK),
5609		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5610		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5611		global_node_page_state(NR_FILE_MAPPED),
5612		global_node_page_state(NR_SHMEM),
5613		global_zone_page_state(NR_PAGETABLE),
5614		global_zone_page_state(NR_BOUNCE),
5615		global_zone_page_state(NR_FREE_PAGES),
5616		free_pcp,
5617		global_zone_page_state(NR_FREE_CMA_PAGES));
5618
5619	for_each_online_pgdat(pgdat) {
5620		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5621			continue;
5622
5623		printk("Node %d"
5624			" active_anon:%lukB"
5625			" inactive_anon:%lukB"
5626			" active_file:%lukB"
5627			" inactive_file:%lukB"
5628			" unevictable:%lukB"
5629			" isolated(anon):%lukB"
5630			" isolated(file):%lukB"
5631			" mapped:%lukB"
5632			" dirty:%lukB"
5633			" writeback:%lukB"
5634			" shmem:%lukB"
5635#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5636			" shmem_thp: %lukB"
5637			" shmem_pmdmapped: %lukB"
5638			" anon_thp: %lukB"
5639#endif
5640			" writeback_tmp:%lukB"
5641			" kernel_stack:%lukB"
5642#ifdef CONFIG_SHADOW_CALL_STACK
5643			" shadow_call_stack:%lukB"
5644#endif
5645			" all_unreclaimable? %s"
5646			"\n",
5647			pgdat->node_id,
5648			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5649			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5650			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5651			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5652			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5653			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5654			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5655			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5656			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5657			K(node_page_state(pgdat, NR_WRITEBACK)),
5658			K(node_page_state(pgdat, NR_SHMEM)),
5659#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5660			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5661			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5662					* HPAGE_PMD_NR),
5663			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5664#endif
5665			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5666			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5667#ifdef CONFIG_SHADOW_CALL_STACK
5668			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5669#endif
5670			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5671				"yes" : "no");
5672	}
5673
5674	for_each_populated_zone(zone) {
5675		int i;
5676
5677		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5678			continue;
5679
5680		free_pcp = 0;
5681		for_each_online_cpu(cpu)
5682			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5683
5684		show_node(zone);
5685		printk(KERN_CONT
5686			"%s"
5687			" free:%lukB"
5688			" min:%lukB"
5689			" low:%lukB"
5690			" high:%lukB"
5691			" reserved_highatomic:%luKB"
5692			" active_anon:%lukB"
5693			" inactive_anon:%lukB"
5694			" active_file:%lukB"
5695			" inactive_file:%lukB"
5696			" unevictable:%lukB"
5697			" writepending:%lukB"
5698			" present:%lukB"
5699			" managed:%lukB"
5700			" mlocked:%lukB"
5701			" pagetables:%lukB"
5702			" bounce:%lukB"
5703			" free_pcp:%lukB"
5704			" local_pcp:%ukB"
5705			" free_cma:%lukB"
5706			"\n",
5707			zone->name,
5708			K(zone_page_state(zone, NR_FREE_PAGES)),
5709			K(min_wmark_pages(zone)),
5710			K(low_wmark_pages(zone)),
5711			K(high_wmark_pages(zone)),
5712			K(zone->nr_reserved_highatomic),
5713			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5714			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5715			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5716			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5717			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5718			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5719			K(zone->present_pages),
5720			K(zone_managed_pages(zone)),
5721			K(zone_page_state(zone, NR_MLOCK)),
5722			K(zone_page_state(zone, NR_PAGETABLE)),
5723			K(zone_page_state(zone, NR_BOUNCE)),
5724			K(free_pcp),
5725			K(this_cpu_read(zone->pageset->pcp.count)),
5726			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5727		printk("lowmem_reserve[]:");
5728		for (i = 0; i < MAX_NR_ZONES; i++)
5729			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5730		printk(KERN_CONT "\n");
5731	}
5732
5733	for_each_populated_zone(zone) {
5734		unsigned int order;
5735		unsigned long nr[MAX_ORDER], flags, total = 0;
5736		unsigned char types[MAX_ORDER];
5737
5738		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5739			continue;
5740		show_node(zone);
5741		printk(KERN_CONT "%s: ", zone->name);
5742
5743		spin_lock_irqsave(&zone->lock, flags);
5744		for (order = 0; order < MAX_ORDER; order++) {
5745			struct free_area *area = &zone->free_area[order];
5746			int type;
5747
5748			nr[order] = area->nr_free;
5749			total += nr[order] << order;
5750
5751			types[order] = 0;
5752			for (type = 0; type < MIGRATE_TYPES; type++) {
5753				if (!free_area_empty(area, type))
5754					types[order] |= 1 << type;
5755			}
5756		}
5757		spin_unlock_irqrestore(&zone->lock, flags);
5758		for (order = 0; order < MAX_ORDER; order++) {
5759			printk(KERN_CONT "%lu*%lukB ",
5760			       nr[order], K(1UL) << order);
5761			if (nr[order])
5762				show_migration_types(types[order]);
5763		}
5764		printk(KERN_CONT "= %lukB\n", K(total));
5765	}
5766
5767	hugetlb_show_meminfo();
5768
5769	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5770
5771	show_swap_cache_info();
5772}
5773
5774static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5775{
5776	zoneref->zone = zone;
5777	zoneref->zone_idx = zone_idx(zone);
5778}
5779
5780/*
5781 * Builds allocation fallback zone lists.
5782 *
5783 * Add all populated zones of a node to the zonelist.
5784 */
5785static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5786{
5787	struct zone *zone;
5788	enum zone_type zone_type = MAX_NR_ZONES;
5789	int nr_zones = 0;
5790
5791	do {
5792		zone_type--;
5793		zone = pgdat->node_zones + zone_type;
5794		if (populated_zone(zone)) {
5795			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5796			check_highest_zone(zone_type);
5797		}
5798	} while (zone_type);
5799
5800	return nr_zones;
5801}
5802
5803#ifdef CONFIG_NUMA
5804
5805static int __parse_numa_zonelist_order(char *s)
5806{
5807	/*
5808	 * We used to support different zonlists modes but they turned
5809	 * out to be just not useful. Let's keep the warning in place
5810	 * if somebody still use the cmd line parameter so that we do
5811	 * not fail it silently
5812	 */
5813	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5814		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5815		return -EINVAL;
5816	}
5817	return 0;
5818}
5819
5820char numa_zonelist_order[] = "Node";
5821
5822/*
5823 * sysctl handler for numa_zonelist_order
5824 */
5825int numa_zonelist_order_handler(struct ctl_table *table, int write,
5826		void *buffer, size_t *length, loff_t *ppos)
5827{
5828	if (write)
5829		return __parse_numa_zonelist_order(buffer);
5830	return proc_dostring(table, write, buffer, length, ppos);
5831}
5832
5833
5834#define MAX_NODE_LOAD (nr_online_nodes)
5835static int node_load[MAX_NUMNODES];
5836
5837/**
5838 * find_next_best_node - find the next node that should appear in a given node's fallback list
5839 * @node: node whose fallback list we're appending
5840 * @used_node_mask: nodemask_t of already used nodes
5841 *
5842 * We use a number of factors to determine which is the next node that should
5843 * appear on a given node's fallback list.  The node should not have appeared
5844 * already in @node's fallback list, and it should be the next closest node
5845 * according to the distance array (which contains arbitrary distance values
5846 * from each node to each node in the system), and should also prefer nodes
5847 * with no CPUs, since presumably they'll have very little allocation pressure
5848 * on them otherwise.
5849 *
5850 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5851 */
5852static int find_next_best_node(int node, nodemask_t *used_node_mask)
5853{
5854	int n, val;
5855	int min_val = INT_MAX;
5856	int best_node = NUMA_NO_NODE;
5857
5858	/* Use the local node if we haven't already */
5859	if (!node_isset(node, *used_node_mask)) {
5860		node_set(node, *used_node_mask);
5861		return node;
5862	}
5863
5864	for_each_node_state(n, N_MEMORY) {
5865
5866		/* Don't want a node to appear more than once */
5867		if (node_isset(n, *used_node_mask))
5868			continue;
5869
5870		/* Use the distance array to find the distance */
5871		val = node_distance(node, n);
5872
5873		/* Penalize nodes under us ("prefer the next node") */
5874		val += (n < node);
5875
5876		/* Give preference to headless and unused nodes */
5877		if (!cpumask_empty(cpumask_of_node(n)))
5878			val += PENALTY_FOR_NODE_WITH_CPUS;
5879
5880		/* Slight preference for less loaded node */
5881		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5882		val += node_load[n];
5883
5884		if (val < min_val) {
5885			min_val = val;
5886			best_node = n;
5887		}
5888	}
5889
5890	if (best_node >= 0)
5891		node_set(best_node, *used_node_mask);
5892
5893	return best_node;
5894}
5895
5896
5897/*
5898 * Build zonelists ordered by node and zones within node.
5899 * This results in maximum locality--normal zone overflows into local
5900 * DMA zone, if any--but risks exhausting DMA zone.
5901 */
5902static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5903		unsigned nr_nodes)
5904{
5905	struct zoneref *zonerefs;
5906	int i;
5907
5908	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5909
5910	for (i = 0; i < nr_nodes; i++) {
5911		int nr_zones;
5912
5913		pg_data_t *node = NODE_DATA(node_order[i]);
5914
5915		nr_zones = build_zonerefs_node(node, zonerefs);
5916		zonerefs += nr_zones;
5917	}
5918	zonerefs->zone = NULL;
5919	zonerefs->zone_idx = 0;
5920}
5921
5922/*
5923 * Build gfp_thisnode zonelists
5924 */
5925static void build_thisnode_zonelists(pg_data_t *pgdat)
5926{
5927	struct zoneref *zonerefs;
5928	int nr_zones;
5929
5930	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5931	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5932	zonerefs += nr_zones;
5933	zonerefs->zone = NULL;
5934	zonerefs->zone_idx = 0;
5935}
5936
5937/*
5938 * Build zonelists ordered by zone and nodes within zones.
5939 * This results in conserving DMA zone[s] until all Normal memory is
5940 * exhausted, but results in overflowing to remote node while memory
5941 * may still exist in local DMA zone.
5942 */
5943
5944static void build_zonelists(pg_data_t *pgdat)
5945{
5946	static int node_order[MAX_NUMNODES];
5947	int node, load, nr_nodes = 0;
5948	nodemask_t used_mask = NODE_MASK_NONE;
5949	int local_node, prev_node;
5950
5951	/* NUMA-aware ordering of nodes */
5952	local_node = pgdat->node_id;
5953	load = nr_online_nodes;
5954	prev_node = local_node;
5955
5956	memset(node_order, 0, sizeof(node_order));
5957	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5958		/*
5959		 * We don't want to pressure a particular node.
5960		 * So adding penalty to the first node in same
5961		 * distance group to make it round-robin.
5962		 */
5963		if (node_distance(local_node, node) !=
5964		    node_distance(local_node, prev_node))
5965			node_load[node] = load;
5966
5967		node_order[nr_nodes++] = node;
5968		prev_node = node;
5969		load--;
5970	}
5971
5972	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5973	build_thisnode_zonelists(pgdat);
5974}
5975
5976#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5977/*
5978 * Return node id of node used for "local" allocations.
5979 * I.e., first node id of first zone in arg node's generic zonelist.
5980 * Used for initializing percpu 'numa_mem', which is used primarily
5981 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5982 */
5983int local_memory_node(int node)
5984{
5985	struct zoneref *z;
5986
5987	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5988				   gfp_zone(GFP_KERNEL),
5989				   NULL);
5990	return zone_to_nid(z->zone);
5991}
5992#endif
5993
5994static void setup_min_unmapped_ratio(void);
5995static void setup_min_slab_ratio(void);
5996#else	/* CONFIG_NUMA */
5997
5998static void build_zonelists(pg_data_t *pgdat)
5999{
6000	int node, local_node;
6001	struct zoneref *zonerefs;
6002	int nr_zones;
6003
6004	local_node = pgdat->node_id;
6005
6006	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6007	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6008	zonerefs += nr_zones;
6009
6010	/*
6011	 * Now we build the zonelist so that it contains the zones
6012	 * of all the other nodes.
6013	 * We don't want to pressure a particular node, so when
6014	 * building the zones for node N, we make sure that the
6015	 * zones coming right after the local ones are those from
6016	 * node N+1 (modulo N)
6017	 */
6018	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6019		if (!node_online(node))
6020			continue;
6021		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6022		zonerefs += nr_zones;
6023	}
6024	for (node = 0; node < local_node; node++) {
6025		if (!node_online(node))
6026			continue;
6027		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6028		zonerefs += nr_zones;
6029	}
6030
6031	zonerefs->zone = NULL;
6032	zonerefs->zone_idx = 0;
6033}
6034
6035#endif	/* CONFIG_NUMA */
6036
6037/*
6038 * Boot pageset table. One per cpu which is going to be used for all
6039 * zones and all nodes. The parameters will be set in such a way
6040 * that an item put on a list will immediately be handed over to
6041 * the buddy list. This is safe since pageset manipulation is done
6042 * with interrupts disabled.
6043 *
6044 * The boot_pagesets must be kept even after bootup is complete for
6045 * unused processors and/or zones. They do play a role for bootstrapping
6046 * hotplugged processors.
6047 *
6048 * zoneinfo_show() and maybe other functions do
6049 * not check if the processor is online before following the pageset pointer.
6050 * Other parts of the kernel may not check if the zone is available.
6051 */
6052static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
6053static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6054static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6055
6056static void __build_all_zonelists(void *data)
6057{
6058	int nid;
6059	int __maybe_unused cpu;
6060	pg_data_t *self = data;
6061	unsigned long flags;
6062
6063	/*
6064	 * Explicitly disable this CPU's interrupts before taking seqlock
6065	 * to prevent any IRQ handler from calling into the page allocator
6066	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
6067	 */
6068	local_irq_save(flags);
6069	/*
6070	 * Explicitly disable this CPU's synchronous printk() before taking
6071	 * seqlock to prevent any printk() from trying to hold port->lock, for
6072	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
6073	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
6074	 */
6075	printk_deferred_enter();
6076	write_seqlock(&zonelist_update_seq);
6077
6078#ifdef CONFIG_NUMA
6079	memset(node_load, 0, sizeof(node_load));
6080#endif
6081
6082	/*
6083	 * This node is hotadded and no memory is yet present.   So just
6084	 * building zonelists is fine - no need to touch other nodes.
6085	 */
6086	if (self && !node_online(self->node_id)) {
6087		build_zonelists(self);
6088	} else {
6089		for_each_online_node(nid) {
6090			pg_data_t *pgdat = NODE_DATA(nid);
6091
6092			build_zonelists(pgdat);
6093		}
6094
6095#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6096		/*
6097		 * We now know the "local memory node" for each node--
6098		 * i.e., the node of the first zone in the generic zonelist.
6099		 * Set up numa_mem percpu variable for on-line cpus.  During
6100		 * boot, only the boot cpu should be on-line;  we'll init the
6101		 * secondary cpus' numa_mem as they come on-line.  During
6102		 * node/memory hotplug, we'll fixup all on-line cpus.
6103		 */
6104		for_each_online_cpu(cpu)
6105			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6106#endif
6107	}
6108
6109	write_sequnlock(&zonelist_update_seq);
6110	printk_deferred_exit();
6111	local_irq_restore(flags);
6112}
6113
6114static noinline void __init
6115build_all_zonelists_init(void)
6116{
6117	int cpu;
6118
6119	__build_all_zonelists(NULL);
6120
6121	/*
6122	 * Initialize the boot_pagesets that are going to be used
6123	 * for bootstrapping processors. The real pagesets for
6124	 * each zone will be allocated later when the per cpu
6125	 * allocator is available.
6126	 *
6127	 * boot_pagesets are used also for bootstrapping offline
6128	 * cpus if the system is already booted because the pagesets
6129	 * are needed to initialize allocators on a specific cpu too.
6130	 * F.e. the percpu allocator needs the page allocator which
6131	 * needs the percpu allocator in order to allocate its pagesets
6132	 * (a chicken-egg dilemma).
6133	 */
6134	for_each_possible_cpu(cpu)
6135		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
6136
6137	mminit_verify_zonelist();
6138	cpuset_init_current_mems_allowed();
6139}
6140
6141/*
6142 * unless system_state == SYSTEM_BOOTING.
6143 *
6144 * __ref due to call of __init annotated helper build_all_zonelists_init
6145 * [protected by SYSTEM_BOOTING].
6146 */
6147void __ref build_all_zonelists(pg_data_t *pgdat)
6148{
6149	unsigned long vm_total_pages;
6150
6151	if (system_state == SYSTEM_BOOTING) {
6152		build_all_zonelists_init();
6153	} else {
6154		__build_all_zonelists(pgdat);
6155		/* cpuset refresh routine should be here */
6156	}
6157	/* Get the number of free pages beyond high watermark in all zones. */
6158	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6159	/*
6160	 * Disable grouping by mobility if the number of pages in the
6161	 * system is too low to allow the mechanism to work. It would be
6162	 * more accurate, but expensive to check per-zone. This check is
6163	 * made on memory-hotadd so a system can start with mobility
6164	 * disabled and enable it later
6165	 */
6166	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6167		page_group_by_mobility_disabled = 1;
6168	else
6169		page_group_by_mobility_disabled = 0;
6170
6171	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6172		nr_online_nodes,
6173		page_group_by_mobility_disabled ? "off" : "on",
6174		vm_total_pages);
6175#ifdef CONFIG_NUMA
6176	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6177#endif
6178}
6179
6180/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6181static bool __meminit
6182overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6183{
6184	static struct memblock_region *r;
6185
6186	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6187		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6188			for_each_mem_region(r) {
6189				if (*pfn < memblock_region_memory_end_pfn(r))
6190					break;
6191			}
6192		}
6193		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6194		    memblock_is_mirror(r)) {
6195			*pfn = memblock_region_memory_end_pfn(r);
6196			return true;
6197		}
6198	}
6199	return false;
6200}
6201
6202/*
6203 * Initially all pages are reserved - free ones are freed
6204 * up by memblock_free_all() once the early boot process is
6205 * done. Non-atomic initialization, single-pass.
6206 *
6207 * All aligned pageblocks are initialized to the specified migratetype
6208 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6209 * zone stats (e.g., nr_isolate_pageblock) are touched.
6210 */
6211void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6212		unsigned long start_pfn, unsigned long zone_end_pfn,
6213		enum meminit_context context,
6214		struct vmem_altmap *altmap, int migratetype)
6215{
6216	unsigned long pfn, end_pfn = start_pfn + size;
6217	struct page *page;
6218
6219	if (highest_memmap_pfn < end_pfn - 1)
6220		highest_memmap_pfn = end_pfn - 1;
6221
6222#ifdef CONFIG_ZONE_DEVICE
6223	/*
6224	 * Honor reservation requested by the driver for this ZONE_DEVICE
6225	 * memory. We limit the total number of pages to initialize to just
6226	 * those that might contain the memory mapping. We will defer the
6227	 * ZONE_DEVICE page initialization until after we have released
6228	 * the hotplug lock.
6229	 */
6230	if (zone == ZONE_DEVICE) {
6231		if (!altmap)
6232			return;
6233
6234		if (start_pfn == altmap->base_pfn)
6235			start_pfn += altmap->reserve;
6236		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6237	}
6238#endif
6239
6240	for (pfn = start_pfn; pfn < end_pfn; ) {
6241		/*
6242		 * There can be holes in boot-time mem_map[]s handed to this
6243		 * function.  They do not exist on hotplugged memory.
6244		 */
6245		if (context == MEMINIT_EARLY) {
6246			if (overlap_memmap_init(zone, &pfn))
6247				continue;
6248			if (defer_init(nid, pfn, zone_end_pfn))
6249				break;
6250		}
6251
6252		page = pfn_to_page(pfn);
6253		__init_single_page(page, pfn, zone, nid);
6254		if (context == MEMINIT_HOTPLUG)
6255			__SetPageReserved(page);
6256
6257		/*
6258		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6259		 * such that unmovable allocations won't be scattered all
6260		 * over the place during system boot.
6261		 */
6262		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6263			set_pageblock_migratetype(page, migratetype);
6264			cond_resched();
6265		}
6266		pfn++;
6267	}
6268}
6269
6270#ifdef CONFIG_ZONE_DEVICE
6271void __ref memmap_init_zone_device(struct zone *zone,
6272				   unsigned long start_pfn,
6273				   unsigned long nr_pages,
6274				   struct dev_pagemap *pgmap)
6275{
6276	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6277	struct pglist_data *pgdat = zone->zone_pgdat;
6278	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6279	unsigned long zone_idx = zone_idx(zone);
6280	unsigned long start = jiffies;
6281	int nid = pgdat->node_id;
6282
6283	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6284		return;
6285
6286	/*
6287	 * The call to memmap_init should have already taken care
6288	 * of the pages reserved for the memmap, so we can just jump to
6289	 * the end of that region and start processing the device pages.
6290	 */
6291	if (altmap) {
6292		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6293		nr_pages = end_pfn - start_pfn;
6294	}
6295
6296	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6297		struct page *page = pfn_to_page(pfn);
6298
6299		__init_single_page(page, pfn, zone_idx, nid);
6300
6301		/*
6302		 * Mark page reserved as it will need to wait for onlining
6303		 * phase for it to be fully associated with a zone.
6304		 *
6305		 * We can use the non-atomic __set_bit operation for setting
6306		 * the flag as we are still initializing the pages.
6307		 */
6308		__SetPageReserved(page);
6309
6310		/*
6311		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6312		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6313		 * ever freed or placed on a driver-private list.
6314		 */
6315		page->pgmap = pgmap;
6316		page->zone_device_data = NULL;
6317
6318		/*
6319		 * Mark the block movable so that blocks are reserved for
6320		 * movable at startup. This will force kernel allocations
6321		 * to reserve their blocks rather than leaking throughout
6322		 * the address space during boot when many long-lived
6323		 * kernel allocations are made.
6324		 *
6325		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6326		 * because this is done early in section_activate()
6327		 */
6328		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6329			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6330			cond_resched();
6331		}
6332	}
6333
6334	pr_info("%s initialised %lu pages in %ums\n", __func__,
6335		nr_pages, jiffies_to_msecs(jiffies - start));
6336}
6337
6338#endif
6339static void __meminit zone_init_free_lists(struct zone *zone)
6340{
6341	unsigned int order, t;
6342	for_each_migratetype_order(order, t) {
6343		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6344		zone->free_area[order].nr_free = 0;
6345	}
6346}
6347
6348#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6349/*
6350 * Only struct pages that correspond to ranges defined by memblock.memory
6351 * are zeroed and initialized by going through __init_single_page() during
6352 * memmap_init_zone_range().
6353 *
6354 * But, there could be struct pages that correspond to holes in
6355 * memblock.memory. This can happen because of the following reasons:
6356 * - physical memory bank size is not necessarily the exact multiple of the
6357 *   arbitrary section size
6358 * - early reserved memory may not be listed in memblock.memory
6359 * - memory layouts defined with memmap= kernel parameter may not align
6360 *   nicely with memmap sections
6361 *
6362 * Explicitly initialize those struct pages so that:
6363 * - PG_Reserved is set
6364 * - zone and node links point to zone and node that span the page if the
6365 *   hole is in the middle of a zone
6366 * - zone and node links point to adjacent zone/node if the hole falls on
6367 *   the zone boundary; the pages in such holes will be prepended to the
6368 *   zone/node above the hole except for the trailing pages in the last
6369 *   section that will be appended to the zone/node below.
6370 */
6371static void __init init_unavailable_range(unsigned long spfn,
6372					  unsigned long epfn,
6373					  int zone, int node)
6374{
6375	unsigned long pfn;
6376	u64 pgcnt = 0;
6377
6378	for (pfn = spfn; pfn < epfn; pfn++) {
6379		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6380			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6381				+ pageblock_nr_pages - 1;
6382			continue;
6383		}
6384		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6385		__SetPageReserved(pfn_to_page(pfn));
6386		pgcnt++;
6387	}
6388
6389	if (pgcnt)
6390		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6391			node, zone_names[zone], pgcnt);
6392}
6393#else
6394static inline void init_unavailable_range(unsigned long spfn,
6395					  unsigned long epfn,
6396					  int zone, int node)
6397{
6398}
6399#endif
6400
6401static void __init memmap_init_zone_range(struct zone *zone,
6402					  unsigned long start_pfn,
6403					  unsigned long end_pfn,
6404					  unsigned long *hole_pfn)
6405{
6406	unsigned long zone_start_pfn = zone->zone_start_pfn;
6407	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6408	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6409
6410	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6411	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6412
6413	if (start_pfn >= end_pfn)
6414		return;
6415
6416	memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6417			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6418
6419	if (*hole_pfn < start_pfn)
6420		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6421
6422	*hole_pfn = end_pfn;
6423}
6424
6425void __init __weak memmap_init(void)
6426{
6427	unsigned long start_pfn, end_pfn;
6428	unsigned long hole_pfn = 0;
6429	int i, j, zone_id, nid;
6430
6431	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6432		struct pglist_data *node = NODE_DATA(nid);
6433
6434		for (j = 0; j < MAX_NR_ZONES; j++) {
6435			struct zone *zone = node->node_zones + j;
6436
6437			if (!populated_zone(zone))
6438				continue;
6439
6440			memmap_init_zone_range(zone, start_pfn, end_pfn,
6441					       &hole_pfn);
6442			zone_id = j;
6443		}
6444	}
6445
6446#ifdef CONFIG_SPARSEMEM
6447	/*
6448	 * Initialize the memory map for hole in the range [memory_end,
6449	 * section_end].
6450	 * Append the pages in this hole to the highest zone in the last
6451	 * node.
6452	 * The call to init_unavailable_range() is outside the ifdef to
6453	 * silence the compiler warining about zone_id set but not used;
6454	 * for FLATMEM it is a nop anyway
6455	 */
6456	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6457	if (hole_pfn < end_pfn)
6458#endif
6459		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6460}
6461
6462/* A stub for backwards compatibility with custom implementatin on IA-64 */
6463void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6464				       unsigned long zone,
6465				       unsigned long range_start_pfn)
6466{
6467}
6468
6469static int zone_batchsize(struct zone *zone)
6470{
6471#ifdef CONFIG_MMU
6472	int batch;
6473
6474	/*
6475	 * The per-cpu-pages pools are set to around 1000th of the
6476	 * size of the zone.
6477	 */
6478	batch = zone_managed_pages(zone) / 1024;
6479	/* But no more than a meg. */
6480	if (batch * PAGE_SIZE > 1024 * 1024)
6481		batch = (1024 * 1024) / PAGE_SIZE;
6482	batch /= 4;		/* We effectively *= 4 below */
6483	if (batch < 1)
6484		batch = 1;
6485
6486	/*
6487	 * Clamp the batch to a 2^n - 1 value. Having a power
6488	 * of 2 value was found to be more likely to have
6489	 * suboptimal cache aliasing properties in some cases.
6490	 *
6491	 * For example if 2 tasks are alternately allocating
6492	 * batches of pages, one task can end up with a lot
6493	 * of pages of one half of the possible page colors
6494	 * and the other with pages of the other colors.
6495	 */
6496	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6497
6498	return batch;
6499
6500#else
6501	/* The deferral and batching of frees should be suppressed under NOMMU
6502	 * conditions.
6503	 *
6504	 * The problem is that NOMMU needs to be able to allocate large chunks
6505	 * of contiguous memory as there's no hardware page translation to
6506	 * assemble apparent contiguous memory from discontiguous pages.
6507	 *
6508	 * Queueing large contiguous runs of pages for batching, however,
6509	 * causes the pages to actually be freed in smaller chunks.  As there
6510	 * can be a significant delay between the individual batches being
6511	 * recycled, this leads to the once large chunks of space being
6512	 * fragmented and becoming unavailable for high-order allocations.
6513	 */
6514	return 0;
6515#endif
6516}
6517
6518/*
6519 * pcp->high and pcp->batch values are related and dependent on one another:
6520 * ->batch must never be higher then ->high.
6521 * The following function updates them in a safe manner without read side
6522 * locking.
6523 *
6524 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6525 * those fields changing asynchronously (acording to the above rule).
6526 *
6527 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6528 * outside of boot time (or some other assurance that no concurrent updaters
6529 * exist).
6530 */
6531static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6532		unsigned long batch)
6533{
6534       /* start with a fail safe value for batch */
6535	pcp->batch = 1;
6536	smp_wmb();
6537
6538       /* Update high, then batch, in order */
6539	pcp->high = high;
6540	smp_wmb();
6541
6542	pcp->batch = batch;
6543}
6544
6545/* a companion to pageset_set_high() */
6546static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6547{
6548	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6549}
6550
6551static void pageset_init(struct per_cpu_pageset *p)
6552{
6553	struct per_cpu_pages *pcp;
6554	int migratetype;
6555
6556	memset(p, 0, sizeof(*p));
6557
6558	pcp = &p->pcp;
6559	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6560		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6561}
6562
6563static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6564{
6565	pageset_init(p);
6566	pageset_set_batch(p, batch);
6567}
6568
6569/*
6570 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6571 * to the value high for the pageset p.
6572 */
6573static void pageset_set_high(struct per_cpu_pageset *p,
6574				unsigned long high)
6575{
6576	unsigned long batch = max(1UL, high / 4);
6577	if ((high / 4) > (PAGE_SHIFT * 8))
6578		batch = PAGE_SHIFT * 8;
6579
6580	pageset_update(&p->pcp, high, batch);
6581}
6582
6583static void pageset_set_high_and_batch(struct zone *zone,
6584				       struct per_cpu_pageset *pcp)
6585{
6586	if (percpu_pagelist_fraction)
6587		pageset_set_high(pcp,
6588			(zone_managed_pages(zone) /
6589				percpu_pagelist_fraction));
6590	else
6591		pageset_set_batch(pcp, zone_batchsize(zone));
6592}
6593
6594static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6595{
6596	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6597
6598	pageset_init(pcp);
6599	pageset_set_high_and_batch(zone, pcp);
6600}
6601
6602void __meminit setup_zone_pageset(struct zone *zone)
6603{
6604	int cpu;
6605	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6606	for_each_possible_cpu(cpu)
6607		zone_pageset_init(zone, cpu);
6608}
6609
6610/*
6611 * Allocate per cpu pagesets and initialize them.
6612 * Before this call only boot pagesets were available.
6613 */
6614void __init setup_per_cpu_pageset(void)
6615{
6616	struct pglist_data *pgdat;
6617	struct zone *zone;
6618	int __maybe_unused cpu;
6619
6620	for_each_populated_zone(zone)
6621		setup_zone_pageset(zone);
6622
6623#ifdef CONFIG_NUMA
6624	/*
6625	 * Unpopulated zones continue using the boot pagesets.
6626	 * The numa stats for these pagesets need to be reset.
6627	 * Otherwise, they will end up skewing the stats of
6628	 * the nodes these zones are associated with.
6629	 */
6630	for_each_possible_cpu(cpu) {
6631		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6632		memset(pcp->vm_numa_stat_diff, 0,
6633		       sizeof(pcp->vm_numa_stat_diff));
6634	}
6635#endif
6636
6637	for_each_online_pgdat(pgdat)
6638		pgdat->per_cpu_nodestats =
6639			alloc_percpu(struct per_cpu_nodestat);
6640}
6641
6642static __meminit void zone_pcp_init(struct zone *zone)
6643{
6644	/*
6645	 * per cpu subsystem is not up at this point. The following code
6646	 * relies on the ability of the linker to provide the
6647	 * offset of a (static) per cpu variable into the per cpu area.
6648	 */
6649	zone->pageset = &boot_pageset;
6650
6651	if (populated_zone(zone))
6652		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6653			zone->name, zone->present_pages,
6654					 zone_batchsize(zone));
6655}
6656
6657void __meminit init_currently_empty_zone(struct zone *zone,
6658					unsigned long zone_start_pfn,
6659					unsigned long size)
6660{
6661	struct pglist_data *pgdat = zone->zone_pgdat;
6662	int zone_idx = zone_idx(zone) + 1;
6663
6664	if (zone_idx > pgdat->nr_zones)
6665		pgdat->nr_zones = zone_idx;
6666
6667	zone->zone_start_pfn = zone_start_pfn;
6668
6669	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6670			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6671			pgdat->node_id,
6672			(unsigned long)zone_idx(zone),
6673			zone_start_pfn, (zone_start_pfn + size));
6674
6675	zone_init_free_lists(zone);
6676	zone->initialized = 1;
6677}
6678
6679/**
6680 * get_pfn_range_for_nid - Return the start and end page frames for a node
6681 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6682 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6683 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6684 *
6685 * It returns the start and end page frame of a node based on information
6686 * provided by memblock_set_node(). If called for a node
6687 * with no available memory, a warning is printed and the start and end
6688 * PFNs will be 0.
6689 */
6690void __init get_pfn_range_for_nid(unsigned int nid,
6691			unsigned long *start_pfn, unsigned long *end_pfn)
6692{
6693	unsigned long this_start_pfn, this_end_pfn;
6694	int i;
6695
6696	*start_pfn = -1UL;
6697	*end_pfn = 0;
6698
6699	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6700		*start_pfn = min(*start_pfn, this_start_pfn);
6701		*end_pfn = max(*end_pfn, this_end_pfn);
6702	}
6703
6704	if (*start_pfn == -1UL)
6705		*start_pfn = 0;
6706}
6707
6708/*
6709 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6710 * assumption is made that zones within a node are ordered in monotonic
6711 * increasing memory addresses so that the "highest" populated zone is used
6712 */
6713static void __init find_usable_zone_for_movable(void)
6714{
6715	int zone_index;
6716	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6717		if (zone_index == ZONE_MOVABLE)
6718			continue;
6719
6720		if (arch_zone_highest_possible_pfn[zone_index] >
6721				arch_zone_lowest_possible_pfn[zone_index])
6722			break;
6723	}
6724
6725	VM_BUG_ON(zone_index == -1);
6726	movable_zone = zone_index;
6727}
6728
6729/*
6730 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6731 * because it is sized independent of architecture. Unlike the other zones,
6732 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6733 * in each node depending on the size of each node and how evenly kernelcore
6734 * is distributed. This helper function adjusts the zone ranges
6735 * provided by the architecture for a given node by using the end of the
6736 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6737 * zones within a node are in order of monotonic increases memory addresses
6738 */
6739static void __init adjust_zone_range_for_zone_movable(int nid,
6740					unsigned long zone_type,
6741					unsigned long node_start_pfn,
6742					unsigned long node_end_pfn,
6743					unsigned long *zone_start_pfn,
6744					unsigned long *zone_end_pfn)
6745{
6746	/* Only adjust if ZONE_MOVABLE is on this node */
6747	if (zone_movable_pfn[nid]) {
6748		/* Size ZONE_MOVABLE */
6749		if (zone_type == ZONE_MOVABLE) {
6750			*zone_start_pfn = zone_movable_pfn[nid];
6751			*zone_end_pfn = min(node_end_pfn,
6752				arch_zone_highest_possible_pfn[movable_zone]);
6753
6754		/* Adjust for ZONE_MOVABLE starting within this range */
6755		} else if (!mirrored_kernelcore &&
6756			*zone_start_pfn < zone_movable_pfn[nid] &&
6757			*zone_end_pfn > zone_movable_pfn[nid]) {
6758			*zone_end_pfn = zone_movable_pfn[nid];
6759
6760		/* Check if this whole range is within ZONE_MOVABLE */
6761		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6762			*zone_start_pfn = *zone_end_pfn;
6763	}
6764}
6765
6766/*
6767 * Return the number of pages a zone spans in a node, including holes
6768 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6769 */
6770static unsigned long __init zone_spanned_pages_in_node(int nid,
6771					unsigned long zone_type,
6772					unsigned long node_start_pfn,
6773					unsigned long node_end_pfn,
6774					unsigned long *zone_start_pfn,
6775					unsigned long *zone_end_pfn)
6776{
6777	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6778	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6779	/* When hotadd a new node from cpu_up(), the node should be empty */
6780	if (!node_start_pfn && !node_end_pfn)
6781		return 0;
6782
6783	/* Get the start and end of the zone */
6784	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6785	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6786	adjust_zone_range_for_zone_movable(nid, zone_type,
6787				node_start_pfn, node_end_pfn,
6788				zone_start_pfn, zone_end_pfn);
6789
6790	/* Check that this node has pages within the zone's required range */
6791	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6792		return 0;
6793
6794	/* Move the zone boundaries inside the node if necessary */
6795	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6796	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6797
6798	/* Return the spanned pages */
6799	return *zone_end_pfn - *zone_start_pfn;
6800}
6801
6802/*
6803 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6804 * then all holes in the requested range will be accounted for.
6805 */
6806unsigned long __init __absent_pages_in_range(int nid,
6807				unsigned long range_start_pfn,
6808				unsigned long range_end_pfn)
6809{
6810	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6811	unsigned long start_pfn, end_pfn;
6812	int i;
6813
6814	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6815		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6816		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6817		nr_absent -= end_pfn - start_pfn;
6818	}
6819	return nr_absent;
6820}
6821
6822/**
6823 * absent_pages_in_range - Return number of page frames in holes within a range
6824 * @start_pfn: The start PFN to start searching for holes
6825 * @end_pfn: The end PFN to stop searching for holes
6826 *
6827 * Return: the number of pages frames in memory holes within a range.
6828 */
6829unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6830							unsigned long end_pfn)
6831{
6832	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6833}
6834
6835/* Return the number of page frames in holes in a zone on a node */
6836static unsigned long __init zone_absent_pages_in_node(int nid,
6837					unsigned long zone_type,
6838					unsigned long node_start_pfn,
6839					unsigned long node_end_pfn)
6840{
6841	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6842	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6843	unsigned long zone_start_pfn, zone_end_pfn;
6844	unsigned long nr_absent;
6845
6846	/* When hotadd a new node from cpu_up(), the node should be empty */
6847	if (!node_start_pfn && !node_end_pfn)
6848		return 0;
6849
6850	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6851	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6852
6853	adjust_zone_range_for_zone_movable(nid, zone_type,
6854			node_start_pfn, node_end_pfn,
6855			&zone_start_pfn, &zone_end_pfn);
6856	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6857
6858	/*
6859	 * ZONE_MOVABLE handling.
6860	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6861	 * and vice versa.
6862	 */
6863	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6864		unsigned long start_pfn, end_pfn;
6865		struct memblock_region *r;
6866
6867		for_each_mem_region(r) {
6868			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6869					  zone_start_pfn, zone_end_pfn);
6870			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6871					zone_start_pfn, zone_end_pfn);
6872
6873			if (zone_type == ZONE_MOVABLE &&
6874			    memblock_is_mirror(r))
6875				nr_absent += end_pfn - start_pfn;
6876
6877			if (zone_type == ZONE_NORMAL &&
6878			    !memblock_is_mirror(r))
6879				nr_absent += end_pfn - start_pfn;
6880		}
6881	}
6882
6883	return nr_absent;
6884}
6885
6886static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6887						unsigned long node_start_pfn,
6888						unsigned long node_end_pfn)
6889{
6890	unsigned long realtotalpages = 0, totalpages = 0;
6891	enum zone_type i;
6892
6893	for (i = 0; i < MAX_NR_ZONES; i++) {
6894		struct zone *zone = pgdat->node_zones + i;
6895		unsigned long zone_start_pfn, zone_end_pfn;
6896		unsigned long spanned, absent;
6897		unsigned long size, real_size;
6898
6899		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6900						     node_start_pfn,
6901						     node_end_pfn,
6902						     &zone_start_pfn,
6903						     &zone_end_pfn);
6904		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6905						   node_start_pfn,
6906						   node_end_pfn);
6907
6908		size = spanned;
6909		real_size = size - absent;
6910
6911		if (size)
6912			zone->zone_start_pfn = zone_start_pfn;
6913		else
6914			zone->zone_start_pfn = 0;
6915		zone->spanned_pages = size;
6916		zone->present_pages = real_size;
6917
6918		totalpages += size;
6919		realtotalpages += real_size;
6920	}
6921
6922	pgdat->node_spanned_pages = totalpages;
6923	pgdat->node_present_pages = realtotalpages;
6924	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6925							realtotalpages);
6926}
6927
6928#ifndef CONFIG_SPARSEMEM
6929/*
6930 * Calculate the size of the zone->blockflags rounded to an unsigned long
6931 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6932 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6933 * round what is now in bits to nearest long in bits, then return it in
6934 * bytes.
6935 */
6936static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6937{
6938	unsigned long usemapsize;
6939
6940	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6941	usemapsize = roundup(zonesize, pageblock_nr_pages);
6942	usemapsize = usemapsize >> pageblock_order;
6943	usemapsize *= NR_PAGEBLOCK_BITS;
6944	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6945
6946	return usemapsize / 8;
6947}
6948
6949static void __ref setup_usemap(struct pglist_data *pgdat,
6950				struct zone *zone,
6951				unsigned long zone_start_pfn,
6952				unsigned long zonesize)
6953{
6954	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6955	zone->pageblock_flags = NULL;
6956	if (usemapsize) {
6957		zone->pageblock_flags =
6958			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6959					    pgdat->node_id);
6960		if (!zone->pageblock_flags)
6961			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6962			      usemapsize, zone->name, pgdat->node_id);
6963	}
6964}
6965#else
6966static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6967				unsigned long zone_start_pfn, unsigned long zonesize) {}
6968#endif /* CONFIG_SPARSEMEM */
6969
6970#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6971
6972/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6973void __init set_pageblock_order(void)
6974{
6975	unsigned int order;
6976
6977	/* Check that pageblock_nr_pages has not already been setup */
6978	if (pageblock_order)
6979		return;
6980
6981	if (HPAGE_SHIFT > PAGE_SHIFT)
6982		order = HUGETLB_PAGE_ORDER;
6983	else
6984		order = MAX_ORDER - 1;
6985
6986	/*
6987	 * Assume the largest contiguous order of interest is a huge page.
6988	 * This value may be variable depending on boot parameters on IA64 and
6989	 * powerpc.
6990	 */
6991	pageblock_order = order;
6992}
6993#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6994
6995/*
6996 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6997 * is unused as pageblock_order is set at compile-time. See
6998 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6999 * the kernel config
7000 */
7001void __init set_pageblock_order(void)
7002{
7003}
7004
7005#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7006
7007static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7008						unsigned long present_pages)
7009{
7010	unsigned long pages = spanned_pages;
7011
7012	/*
7013	 * Provide a more accurate estimation if there are holes within
7014	 * the zone and SPARSEMEM is in use. If there are holes within the
7015	 * zone, each populated memory region may cost us one or two extra
7016	 * memmap pages due to alignment because memmap pages for each
7017	 * populated regions may not be naturally aligned on page boundary.
7018	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7019	 */
7020	if (spanned_pages > present_pages + (present_pages >> 4) &&
7021	    IS_ENABLED(CONFIG_SPARSEMEM))
7022		pages = present_pages;
7023
7024	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7025}
7026
7027#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7028static void pgdat_init_split_queue(struct pglist_data *pgdat)
7029{
7030	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7031
7032	spin_lock_init(&ds_queue->split_queue_lock);
7033	INIT_LIST_HEAD(&ds_queue->split_queue);
7034	ds_queue->split_queue_len = 0;
7035}
7036#else
7037static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7038#endif
7039
7040#ifdef CONFIG_COMPACTION
7041static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7042{
7043	init_waitqueue_head(&pgdat->kcompactd_wait);
7044}
7045#else
7046static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7047#endif
7048
7049static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7050{
7051	pgdat_resize_init(pgdat);
7052
7053	pgdat_init_split_queue(pgdat);
7054	pgdat_init_kcompactd(pgdat);
7055
7056	init_waitqueue_head(&pgdat->kswapd_wait);
7057	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7058#ifdef CONFIG_HYPERHOLD_ZSWAPD
7059	init_waitqueue_head(&pgdat->zswapd_wait);
7060#endif
7061
7062	pgdat_page_ext_init(pgdat);
7063	spin_lock_init(&pgdat->lru_lock);
7064	lruvec_init(&pgdat->__lruvec);
7065#if defined(CONFIG_HYPERHOLD_FILE_LRU) && defined(CONFIG_MEMCG)
7066	pgdat->__lruvec.pgdat = pgdat;
7067#endif
7068}
7069
7070static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7071							unsigned long remaining_pages)
7072{
7073	atomic_long_set(&zone->managed_pages, remaining_pages);
7074	zone_set_nid(zone, nid);
7075	zone->name = zone_names[idx];
7076	zone->zone_pgdat = NODE_DATA(nid);
7077	spin_lock_init(&zone->lock);
7078	zone_seqlock_init(zone);
7079	zone_pcp_init(zone);
7080}
7081
7082/*
7083 * Set up the zone data structures
7084 * - init pgdat internals
7085 * - init all zones belonging to this node
7086 *
7087 * NOTE: this function is only called during memory hotplug
7088 */
7089#ifdef CONFIG_MEMORY_HOTPLUG
7090void __ref free_area_init_core_hotplug(int nid)
7091{
7092	enum zone_type z;
7093	pg_data_t *pgdat = NODE_DATA(nid);
7094
7095	pgdat_init_internals(pgdat);
7096	for (z = 0; z < MAX_NR_ZONES; z++)
7097		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7098}
7099#endif
7100
7101/*
7102 * Set up the zone data structures:
7103 *   - mark all pages reserved
7104 *   - mark all memory queues empty
7105 *   - clear the memory bitmaps
7106 *
7107 * NOTE: pgdat should get zeroed by caller.
7108 * NOTE: this function is only called during early init.
7109 */
7110static void __init free_area_init_core(struct pglist_data *pgdat)
7111{
7112	enum zone_type j;
7113	int nid = pgdat->node_id;
7114
7115	pgdat_init_internals(pgdat);
7116	pgdat->per_cpu_nodestats = &boot_nodestats;
7117
7118	for (j = 0; j < MAX_NR_ZONES; j++) {
7119		struct zone *zone = pgdat->node_zones + j;
7120		unsigned long size, freesize, memmap_pages;
7121		unsigned long zone_start_pfn = zone->zone_start_pfn;
7122
7123		size = zone->spanned_pages;
7124		freesize = zone->present_pages;
7125
7126		/*
7127		 * Adjust freesize so that it accounts for how much memory
7128		 * is used by this zone for memmap. This affects the watermark
7129		 * and per-cpu initialisations
7130		 */
7131		memmap_pages = calc_memmap_size(size, freesize);
7132		if (!is_highmem_idx(j)) {
7133			if (freesize >= memmap_pages) {
7134				freesize -= memmap_pages;
7135				if (memmap_pages)
7136					printk(KERN_DEBUG
7137					       "  %s zone: %lu pages used for memmap\n",
7138					       zone_names[j], memmap_pages);
7139			} else
7140				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7141					zone_names[j], memmap_pages, freesize);
7142		}
7143
7144		/* Account for reserved pages */
7145		if (j == 0 && freesize > dma_reserve) {
7146			freesize -= dma_reserve;
7147			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7148					zone_names[0], dma_reserve);
7149		}
7150
7151		if (!is_highmem_idx(j))
7152			nr_kernel_pages += freesize;
7153		/* Charge for highmem memmap if there are enough kernel pages */
7154		else if (nr_kernel_pages > memmap_pages * 2)
7155			nr_kernel_pages -= memmap_pages;
7156		nr_all_pages += freesize;
7157
7158		/*
7159		 * Set an approximate value for lowmem here, it will be adjusted
7160		 * when the bootmem allocator frees pages into the buddy system.
7161		 * And all highmem pages will be managed by the buddy system.
7162		 */
7163		zone_init_internals(zone, j, nid, freesize);
7164
7165		if (!size)
7166			continue;
7167
7168		set_pageblock_order();
7169		setup_usemap(pgdat, zone, zone_start_pfn, size);
7170		init_currently_empty_zone(zone, zone_start_pfn, size);
7171		arch_memmap_init(size, nid, j, zone_start_pfn);
7172	}
7173}
7174
7175#ifdef CONFIG_FLAT_NODE_MEM_MAP
7176static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7177{
7178	unsigned long __maybe_unused start = 0;
7179	unsigned long __maybe_unused offset = 0;
7180
7181	/* Skip empty nodes */
7182	if (!pgdat->node_spanned_pages)
7183		return;
7184
7185	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7186	offset = pgdat->node_start_pfn - start;
7187	/* ia64 gets its own node_mem_map, before this, without bootmem */
7188	if (!pgdat->node_mem_map) {
7189		unsigned long size, end;
7190		struct page *map;
7191
7192		/*
7193		 * The zone's endpoints aren't required to be MAX_ORDER
7194		 * aligned but the node_mem_map endpoints must be in order
7195		 * for the buddy allocator to function correctly.
7196		 */
7197		end = pgdat_end_pfn(pgdat);
7198		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7199		size =  (end - start) * sizeof(struct page);
7200		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7201					  pgdat->node_id);
7202		if (!map)
7203			panic("Failed to allocate %ld bytes for node %d memory map\n",
7204			      size, pgdat->node_id);
7205		pgdat->node_mem_map = map + offset;
7206	}
7207	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7208				__func__, pgdat->node_id, (unsigned long)pgdat,
7209				(unsigned long)pgdat->node_mem_map);
7210#ifndef CONFIG_NEED_MULTIPLE_NODES
7211	/*
7212	 * With no DISCONTIG, the global mem_map is just set as node 0's
7213	 */
7214	if (pgdat == NODE_DATA(0)) {
7215		mem_map = NODE_DATA(0)->node_mem_map;
7216		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7217			mem_map -= offset;
7218	}
7219#endif
7220}
7221#else
7222static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7223#endif /* CONFIG_FLAT_NODE_MEM_MAP */
7224
7225#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7226static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7227{
7228	pgdat->first_deferred_pfn = ULONG_MAX;
7229}
7230#else
7231static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7232#endif
7233
7234static void __init free_area_init_node(int nid)
7235{
7236	pg_data_t *pgdat = NODE_DATA(nid);
7237	unsigned long start_pfn = 0;
7238	unsigned long end_pfn = 0;
7239
7240	/* pg_data_t should be reset to zero when it's allocated */
7241	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7242
7243	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7244
7245	pgdat->node_id = nid;
7246	pgdat->node_start_pfn = start_pfn;
7247	pgdat->per_cpu_nodestats = NULL;
7248
7249	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7250		(u64)start_pfn << PAGE_SHIFT,
7251		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7252	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7253
7254	alloc_node_mem_map(pgdat);
7255	pgdat_set_deferred_range(pgdat);
7256
7257	free_area_init_core(pgdat);
7258}
7259
7260void __init free_area_init_memoryless_node(int nid)
7261{
7262	free_area_init_node(nid);
7263}
7264
7265#if MAX_NUMNODES > 1
7266/*
7267 * Figure out the number of possible node ids.
7268 */
7269void __init setup_nr_node_ids(void)
7270{
7271	unsigned int highest;
7272
7273	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7274	nr_node_ids = highest + 1;
7275}
7276#endif
7277
7278/**
7279 * node_map_pfn_alignment - determine the maximum internode alignment
7280 *
7281 * This function should be called after node map is populated and sorted.
7282 * It calculates the maximum power of two alignment which can distinguish
7283 * all the nodes.
7284 *
7285 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7286 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7287 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7288 * shifted, 1GiB is enough and this function will indicate so.
7289 *
7290 * This is used to test whether pfn -> nid mapping of the chosen memory
7291 * model has fine enough granularity to avoid incorrect mapping for the
7292 * populated node map.
7293 *
7294 * Return: the determined alignment in pfn's.  0 if there is no alignment
7295 * requirement (single node).
7296 */
7297unsigned long __init node_map_pfn_alignment(void)
7298{
7299	unsigned long accl_mask = 0, last_end = 0;
7300	unsigned long start, end, mask;
7301	int last_nid = NUMA_NO_NODE;
7302	int i, nid;
7303
7304	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7305		if (!start || last_nid < 0 || last_nid == nid) {
7306			last_nid = nid;
7307			last_end = end;
7308			continue;
7309		}
7310
7311		/*
7312		 * Start with a mask granular enough to pin-point to the
7313		 * start pfn and tick off bits one-by-one until it becomes
7314		 * too coarse to separate the current node from the last.
7315		 */
7316		mask = ~((1 << __ffs(start)) - 1);
7317		while (mask && last_end <= (start & (mask << 1)))
7318			mask <<= 1;
7319
7320		/* accumulate all internode masks */
7321		accl_mask |= mask;
7322	}
7323
7324	/* convert mask to number of pages */
7325	return ~accl_mask + 1;
7326}
7327
7328/**
7329 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7330 *
7331 * Return: the minimum PFN based on information provided via
7332 * memblock_set_node().
7333 */
7334unsigned long __init find_min_pfn_with_active_regions(void)
7335{
7336	return PHYS_PFN(memblock_start_of_DRAM());
7337}
7338
7339/*
7340 * early_calculate_totalpages()
7341 * Sum pages in active regions for movable zone.
7342 * Populate N_MEMORY for calculating usable_nodes.
7343 */
7344static unsigned long __init early_calculate_totalpages(void)
7345{
7346	unsigned long totalpages = 0;
7347	unsigned long start_pfn, end_pfn;
7348	int i, nid;
7349
7350	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7351		unsigned long pages = end_pfn - start_pfn;
7352
7353		totalpages += pages;
7354		if (pages)
7355			node_set_state(nid, N_MEMORY);
7356	}
7357	return totalpages;
7358}
7359
7360/*
7361 * Find the PFN the Movable zone begins in each node. Kernel memory
7362 * is spread evenly between nodes as long as the nodes have enough
7363 * memory. When they don't, some nodes will have more kernelcore than
7364 * others
7365 */
7366static void __init find_zone_movable_pfns_for_nodes(void)
7367{
7368	int i, nid;
7369	unsigned long usable_startpfn;
7370	unsigned long kernelcore_node, kernelcore_remaining;
7371	/* save the state before borrow the nodemask */
7372	nodemask_t saved_node_state = node_states[N_MEMORY];
7373	unsigned long totalpages = early_calculate_totalpages();
7374	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7375	struct memblock_region *r;
7376
7377	/* Need to find movable_zone earlier when movable_node is specified. */
7378	find_usable_zone_for_movable();
7379
7380	/*
7381	 * If movable_node is specified, ignore kernelcore and movablecore
7382	 * options.
7383	 */
7384	if (movable_node_is_enabled()) {
7385		for_each_mem_region(r) {
7386			if (!memblock_is_hotpluggable(r))
7387				continue;
7388
7389			nid = memblock_get_region_node(r);
7390
7391			usable_startpfn = PFN_DOWN(r->base);
7392			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7393				min(usable_startpfn, zone_movable_pfn[nid]) :
7394				usable_startpfn;
7395		}
7396
7397		goto out2;
7398	}
7399
7400	/*
7401	 * If kernelcore=mirror is specified, ignore movablecore option
7402	 */
7403	if (mirrored_kernelcore) {
7404		bool mem_below_4gb_not_mirrored = false;
7405
7406		for_each_mem_region(r) {
7407			if (memblock_is_mirror(r))
7408				continue;
7409
7410			nid = memblock_get_region_node(r);
7411
7412			usable_startpfn = memblock_region_memory_base_pfn(r);
7413
7414			if (usable_startpfn < 0x100000) {
7415				mem_below_4gb_not_mirrored = true;
7416				continue;
7417			}
7418
7419			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7420				min(usable_startpfn, zone_movable_pfn[nid]) :
7421				usable_startpfn;
7422		}
7423
7424		if (mem_below_4gb_not_mirrored)
7425			pr_warn("This configuration results in unmirrored kernel memory.\n");
7426
7427		goto out2;
7428	}
7429
7430	/*
7431	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7432	 * amount of necessary memory.
7433	 */
7434	if (required_kernelcore_percent)
7435		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7436				       10000UL;
7437	if (required_movablecore_percent)
7438		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7439					10000UL;
7440
7441	/*
7442	 * If movablecore= was specified, calculate what size of
7443	 * kernelcore that corresponds so that memory usable for
7444	 * any allocation type is evenly spread. If both kernelcore
7445	 * and movablecore are specified, then the value of kernelcore
7446	 * will be used for required_kernelcore if it's greater than
7447	 * what movablecore would have allowed.
7448	 */
7449	if (required_movablecore) {
7450		unsigned long corepages;
7451
7452		/*
7453		 * Round-up so that ZONE_MOVABLE is at least as large as what
7454		 * was requested by the user
7455		 */
7456		required_movablecore =
7457			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7458		required_movablecore = min(totalpages, required_movablecore);
7459		corepages = totalpages - required_movablecore;
7460
7461		required_kernelcore = max(required_kernelcore, corepages);
7462	}
7463
7464	/*
7465	 * If kernelcore was not specified or kernelcore size is larger
7466	 * than totalpages, there is no ZONE_MOVABLE.
7467	 */
7468	if (!required_kernelcore || required_kernelcore >= totalpages)
7469		goto out;
7470
7471	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7472	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7473
7474restart:
7475	/* Spread kernelcore memory as evenly as possible throughout nodes */
7476	kernelcore_node = required_kernelcore / usable_nodes;
7477	for_each_node_state(nid, N_MEMORY) {
7478		unsigned long start_pfn, end_pfn;
7479
7480		/*
7481		 * Recalculate kernelcore_node if the division per node
7482		 * now exceeds what is necessary to satisfy the requested
7483		 * amount of memory for the kernel
7484		 */
7485		if (required_kernelcore < kernelcore_node)
7486			kernelcore_node = required_kernelcore / usable_nodes;
7487
7488		/*
7489		 * As the map is walked, we track how much memory is usable
7490		 * by the kernel using kernelcore_remaining. When it is
7491		 * 0, the rest of the node is usable by ZONE_MOVABLE
7492		 */
7493		kernelcore_remaining = kernelcore_node;
7494
7495		/* Go through each range of PFNs within this node */
7496		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7497			unsigned long size_pages;
7498
7499			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7500			if (start_pfn >= end_pfn)
7501				continue;
7502
7503			/* Account for what is only usable for kernelcore */
7504			if (start_pfn < usable_startpfn) {
7505				unsigned long kernel_pages;
7506				kernel_pages = min(end_pfn, usable_startpfn)
7507								- start_pfn;
7508
7509				kernelcore_remaining -= min(kernel_pages,
7510							kernelcore_remaining);
7511				required_kernelcore -= min(kernel_pages,
7512							required_kernelcore);
7513
7514				/* Continue if range is now fully accounted */
7515				if (end_pfn <= usable_startpfn) {
7516
7517					/*
7518					 * Push zone_movable_pfn to the end so
7519					 * that if we have to rebalance
7520					 * kernelcore across nodes, we will
7521					 * not double account here
7522					 */
7523					zone_movable_pfn[nid] = end_pfn;
7524					continue;
7525				}
7526				start_pfn = usable_startpfn;
7527			}
7528
7529			/*
7530			 * The usable PFN range for ZONE_MOVABLE is from
7531			 * start_pfn->end_pfn. Calculate size_pages as the
7532			 * number of pages used as kernelcore
7533			 */
7534			size_pages = end_pfn - start_pfn;
7535			if (size_pages > kernelcore_remaining)
7536				size_pages = kernelcore_remaining;
7537			zone_movable_pfn[nid] = start_pfn + size_pages;
7538
7539			/*
7540			 * Some kernelcore has been met, update counts and
7541			 * break if the kernelcore for this node has been
7542			 * satisfied
7543			 */
7544			required_kernelcore -= min(required_kernelcore,
7545								size_pages);
7546			kernelcore_remaining -= size_pages;
7547			if (!kernelcore_remaining)
7548				break;
7549		}
7550	}
7551
7552	/*
7553	 * If there is still required_kernelcore, we do another pass with one
7554	 * less node in the count. This will push zone_movable_pfn[nid] further
7555	 * along on the nodes that still have memory until kernelcore is
7556	 * satisfied
7557	 */
7558	usable_nodes--;
7559	if (usable_nodes && required_kernelcore > usable_nodes)
7560		goto restart;
7561
7562out2:
7563	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7564	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7565		unsigned long start_pfn, end_pfn;
7566
7567		zone_movable_pfn[nid] =
7568			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7569
7570		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7571		if (zone_movable_pfn[nid] >= end_pfn)
7572			zone_movable_pfn[nid] = 0;
7573	}
7574
7575out:
7576	/* restore the node_state */
7577	node_states[N_MEMORY] = saved_node_state;
7578}
7579
7580/* Any regular or high memory on that node ? */
7581static void check_for_memory(pg_data_t *pgdat, int nid)
7582{
7583	enum zone_type zone_type;
7584
7585	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7586		struct zone *zone = &pgdat->node_zones[zone_type];
7587		if (populated_zone(zone)) {
7588			if (IS_ENABLED(CONFIG_HIGHMEM))
7589				node_set_state(nid, N_HIGH_MEMORY);
7590			if (zone_type <= ZONE_NORMAL)
7591				node_set_state(nid, N_NORMAL_MEMORY);
7592			break;
7593		}
7594	}
7595}
7596
7597/*
7598 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7599 * such cases we allow max_zone_pfn sorted in the descending order
7600 */
7601bool __weak arch_has_descending_max_zone_pfns(void)
7602{
7603	return false;
7604}
7605
7606/**
7607 * free_area_init - Initialise all pg_data_t and zone data
7608 * @max_zone_pfn: an array of max PFNs for each zone
7609 *
7610 * This will call free_area_init_node() for each active node in the system.
7611 * Using the page ranges provided by memblock_set_node(), the size of each
7612 * zone in each node and their holes is calculated. If the maximum PFN
7613 * between two adjacent zones match, it is assumed that the zone is empty.
7614 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7615 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7616 * starts where the previous one ended. For example, ZONE_DMA32 starts
7617 * at arch_max_dma_pfn.
7618 */
7619void __init free_area_init(unsigned long *max_zone_pfn)
7620{
7621	unsigned long start_pfn, end_pfn;
7622	int i, nid, zone;
7623	bool descending;
7624
7625	/* Record where the zone boundaries are */
7626	memset(arch_zone_lowest_possible_pfn, 0,
7627				sizeof(arch_zone_lowest_possible_pfn));
7628	memset(arch_zone_highest_possible_pfn, 0,
7629				sizeof(arch_zone_highest_possible_pfn));
7630
7631	start_pfn = find_min_pfn_with_active_regions();
7632	descending = arch_has_descending_max_zone_pfns();
7633
7634	for (i = 0; i < MAX_NR_ZONES; i++) {
7635		if (descending)
7636			zone = MAX_NR_ZONES - i - 1;
7637		else
7638			zone = i;
7639
7640		if (zone == ZONE_MOVABLE)
7641			continue;
7642
7643		end_pfn = max(max_zone_pfn[zone], start_pfn);
7644		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7645		arch_zone_highest_possible_pfn[zone] = end_pfn;
7646
7647		start_pfn = end_pfn;
7648	}
7649
7650	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7651	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7652	find_zone_movable_pfns_for_nodes();
7653
7654	/* Print out the zone ranges */
7655	pr_info("Zone ranges:\n");
7656	for (i = 0; i < MAX_NR_ZONES; i++) {
7657		if (i == ZONE_MOVABLE)
7658			continue;
7659		pr_info("  %-8s ", zone_names[i]);
7660		if (arch_zone_lowest_possible_pfn[i] ==
7661				arch_zone_highest_possible_pfn[i])
7662			pr_cont("empty\n");
7663		else
7664			pr_cont("[mem %#018Lx-%#018Lx]\n",
7665				(u64)arch_zone_lowest_possible_pfn[i]
7666					<< PAGE_SHIFT,
7667				((u64)arch_zone_highest_possible_pfn[i]
7668					<< PAGE_SHIFT) - 1);
7669	}
7670
7671	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7672	pr_info("Movable zone start for each node\n");
7673	for (i = 0; i < MAX_NUMNODES; i++) {
7674		if (zone_movable_pfn[i])
7675			pr_info("  Node %d: %#018Lx\n", i,
7676			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7677	}
7678
7679	/*
7680	 * Print out the early node map, and initialize the
7681	 * subsection-map relative to active online memory ranges to
7682	 * enable future "sub-section" extensions of the memory map.
7683	 */
7684	pr_info("Early memory node ranges\n");
7685	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7686		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7687			(u64)start_pfn << PAGE_SHIFT,
7688			((u64)end_pfn << PAGE_SHIFT) - 1);
7689		subsection_map_init(start_pfn, end_pfn - start_pfn);
7690	}
7691
7692	/* Initialise every node */
7693	mminit_verify_pageflags_layout();
7694	setup_nr_node_ids();
7695	for_each_online_node(nid) {
7696		pg_data_t *pgdat = NODE_DATA(nid);
7697		free_area_init_node(nid);
7698
7699		/* Any memory on that node */
7700		if (pgdat->node_present_pages)
7701			node_set_state(nid, N_MEMORY);
7702		check_for_memory(pgdat, nid);
7703	}
7704
7705	memmap_init();
7706}
7707
7708static int __init cmdline_parse_core(char *p, unsigned long *core,
7709				     unsigned long *percent)
7710{
7711	unsigned long long coremem;
7712	char *endptr;
7713
7714	if (!p)
7715		return -EINVAL;
7716
7717	/* Value may be a percentage of total memory, otherwise bytes */
7718	coremem = simple_strtoull(p, &endptr, 0);
7719	if (*endptr == '%') {
7720		/* Paranoid check for percent values greater than 100 */
7721		WARN_ON(coremem > 100);
7722
7723		*percent = coremem;
7724	} else {
7725		coremem = memparse(p, &p);
7726		/* Paranoid check that UL is enough for the coremem value */
7727		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7728
7729		*core = coremem >> PAGE_SHIFT;
7730		*percent = 0UL;
7731	}
7732	return 0;
7733}
7734
7735/*
7736 * kernelcore=size sets the amount of memory for use for allocations that
7737 * cannot be reclaimed or migrated.
7738 */
7739static int __init cmdline_parse_kernelcore(char *p)
7740{
7741	/* parse kernelcore=mirror */
7742	if (parse_option_str(p, "mirror")) {
7743		mirrored_kernelcore = true;
7744		return 0;
7745	}
7746
7747	return cmdline_parse_core(p, &required_kernelcore,
7748				  &required_kernelcore_percent);
7749}
7750
7751/*
7752 * movablecore=size sets the amount of memory for use for allocations that
7753 * can be reclaimed or migrated.
7754 */
7755static int __init cmdline_parse_movablecore(char *p)
7756{
7757	return cmdline_parse_core(p, &required_movablecore,
7758				  &required_movablecore_percent);
7759}
7760
7761early_param("kernelcore", cmdline_parse_kernelcore);
7762early_param("movablecore", cmdline_parse_movablecore);
7763
7764void adjust_managed_page_count(struct page *page, long count)
7765{
7766	atomic_long_add(count, &page_zone(page)->managed_pages);
7767	totalram_pages_add(count);
7768#ifdef CONFIG_HIGHMEM
7769	if (PageHighMem(page))
7770		totalhigh_pages_add(count);
7771#endif
7772}
7773EXPORT_SYMBOL(adjust_managed_page_count);
7774
7775unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7776{
7777	void *pos;
7778	unsigned long pages = 0;
7779
7780	start = (void *)PAGE_ALIGN((unsigned long)start);
7781	end = (void *)((unsigned long)end & PAGE_MASK);
7782	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7783		struct page *page = virt_to_page(pos);
7784		void *direct_map_addr;
7785
7786		/*
7787		 * 'direct_map_addr' might be different from 'pos'
7788		 * because some architectures' virt_to_page()
7789		 * work with aliases.  Getting the direct map
7790		 * address ensures that we get a _writeable_
7791		 * alias for the memset().
7792		 */
7793		direct_map_addr = page_address(page);
7794		if ((unsigned int)poison <= 0xFF)
7795			memset(direct_map_addr, poison, PAGE_SIZE);
7796
7797		free_reserved_page(page);
7798	}
7799
7800	if (pages && s)
7801		pr_info("Freeing %s memory: %ldK\n",
7802			s, pages << (PAGE_SHIFT - 10));
7803
7804	return pages;
7805}
7806
7807#ifdef	CONFIG_HIGHMEM
7808void free_highmem_page(struct page *page)
7809{
7810	__free_reserved_page(page);
7811	totalram_pages_inc();
7812	atomic_long_inc(&page_zone(page)->managed_pages);
7813	totalhigh_pages_inc();
7814}
7815#endif
7816
7817
7818void __init mem_init_print_info(const char *str)
7819{
7820	unsigned long physpages, codesize, datasize, rosize, bss_size;
7821	unsigned long init_code_size, init_data_size;
7822
7823	physpages = get_num_physpages();
7824	codesize = _etext - _stext;
7825	datasize = _edata - _sdata;
7826	rosize = __end_rodata - __start_rodata;
7827	bss_size = __bss_stop - __bss_start;
7828	init_data_size = __init_end - __init_begin;
7829	init_code_size = _einittext - _sinittext;
7830
7831	/*
7832	 * Detect special cases and adjust section sizes accordingly:
7833	 * 1) .init.* may be embedded into .data sections
7834	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7835	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7836	 * 3) .rodata.* may be embedded into .text or .data sections.
7837	 */
7838#define adj_init_size(start, end, size, pos, adj) \
7839	do { \
7840		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
7841			size -= adj; \
7842	} while (0)
7843
7844	adj_init_size(__init_begin, __init_end, init_data_size,
7845		     _sinittext, init_code_size);
7846	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7847	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7848	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7849	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7850
7851#undef	adj_init_size
7852
7853	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7854#ifdef	CONFIG_HIGHMEM
7855		", %luK highmem"
7856#endif
7857		"%s%s)\n",
7858		nr_free_pages() << (PAGE_SHIFT - 10),
7859		physpages << (PAGE_SHIFT - 10),
7860		codesize >> 10, datasize >> 10, rosize >> 10,
7861		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7862		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7863		totalcma_pages << (PAGE_SHIFT - 10),
7864#ifdef	CONFIG_HIGHMEM
7865		totalhigh_pages() << (PAGE_SHIFT - 10),
7866#endif
7867		str ? ", " : "", str ? str : "");
7868}
7869
7870/**
7871 * set_dma_reserve - set the specified number of pages reserved in the first zone
7872 * @new_dma_reserve: The number of pages to mark reserved
7873 *
7874 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7875 * In the DMA zone, a significant percentage may be consumed by kernel image
7876 * and other unfreeable allocations which can skew the watermarks badly. This
7877 * function may optionally be used to account for unfreeable pages in the
7878 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7879 * smaller per-cpu batchsize.
7880 */
7881void __init set_dma_reserve(unsigned long new_dma_reserve)
7882{
7883	dma_reserve = new_dma_reserve;
7884}
7885
7886static int page_alloc_cpu_dead(unsigned int cpu)
7887{
7888
7889	lru_add_drain_cpu(cpu);
7890	drain_pages(cpu);
7891
7892	/*
7893	 * Spill the event counters of the dead processor
7894	 * into the current processors event counters.
7895	 * This artificially elevates the count of the current
7896	 * processor.
7897	 */
7898	vm_events_fold_cpu(cpu);
7899
7900	/*
7901	 * Zero the differential counters of the dead processor
7902	 * so that the vm statistics are consistent.
7903	 *
7904	 * This is only okay since the processor is dead and cannot
7905	 * race with what we are doing.
7906	 */
7907	cpu_vm_stats_fold(cpu);
7908	return 0;
7909}
7910
7911#ifdef CONFIG_NUMA
7912int hashdist = HASHDIST_DEFAULT;
7913
7914static int __init set_hashdist(char *str)
7915{
7916	if (!str)
7917		return 0;
7918	hashdist = simple_strtoul(str, &str, 0);
7919	return 1;
7920}
7921__setup("hashdist=", set_hashdist);
7922#endif
7923
7924void __init page_alloc_init(void)
7925{
7926	int ret;
7927
7928#ifdef CONFIG_NUMA
7929	if (num_node_state(N_MEMORY) == 1)
7930		hashdist = 0;
7931#endif
7932
7933	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7934					"mm/page_alloc:dead", NULL,
7935					page_alloc_cpu_dead);
7936	WARN_ON(ret < 0);
7937}
7938
7939/*
7940 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7941 *	or min_free_kbytes changes.
7942 */
7943static void calculate_totalreserve_pages(void)
7944{
7945	struct pglist_data *pgdat;
7946	unsigned long reserve_pages = 0;
7947	enum zone_type i, j;
7948
7949	for_each_online_pgdat(pgdat) {
7950
7951		pgdat->totalreserve_pages = 0;
7952
7953		for (i = 0; i < MAX_NR_ZONES; i++) {
7954			struct zone *zone = pgdat->node_zones + i;
7955			long max = 0;
7956			unsigned long managed_pages = zone_managed_pages(zone);
7957
7958			/* Find valid and maximum lowmem_reserve in the zone */
7959			for (j = i; j < MAX_NR_ZONES; j++) {
7960				if (zone->lowmem_reserve[j] > max)
7961					max = zone->lowmem_reserve[j];
7962			}
7963
7964			/* we treat the high watermark as reserved pages. */
7965			max += high_wmark_pages(zone);
7966
7967			if (max > managed_pages)
7968				max = managed_pages;
7969
7970			pgdat->totalreserve_pages += max;
7971
7972			reserve_pages += max;
7973		}
7974	}
7975	totalreserve_pages = reserve_pages;
7976}
7977
7978/*
7979 * setup_per_zone_lowmem_reserve - called whenever
7980 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7981 *	has a correct pages reserved value, so an adequate number of
7982 *	pages are left in the zone after a successful __alloc_pages().
7983 */
7984static void setup_per_zone_lowmem_reserve(void)
7985{
7986	struct pglist_data *pgdat;
7987	enum zone_type i, j;
7988
7989	for_each_online_pgdat(pgdat) {
7990		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7991			struct zone *zone = &pgdat->node_zones[i];
7992			int ratio = sysctl_lowmem_reserve_ratio[i];
7993			bool clear = !ratio || !zone_managed_pages(zone);
7994			unsigned long managed_pages = 0;
7995
7996			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7997				struct zone *upper_zone = &pgdat->node_zones[j];
7998
7999				managed_pages += zone_managed_pages(upper_zone);
8000
8001				if (clear)
8002					zone->lowmem_reserve[j] = 0;
8003				else
8004					zone->lowmem_reserve[j] = managed_pages / ratio;
8005			}
8006		}
8007	}
8008
8009	/* update totalreserve_pages */
8010	calculate_totalreserve_pages();
8011}
8012
8013static void __setup_per_zone_wmarks(void)
8014{
8015	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8016	unsigned long lowmem_pages = 0;
8017	struct zone *zone;
8018	unsigned long flags;
8019
8020	/* Calculate total number of !ZONE_HIGHMEM pages */
8021	for_each_zone(zone) {
8022		if (!is_highmem(zone))
8023			lowmem_pages += zone_managed_pages(zone);
8024	}
8025
8026	for_each_zone(zone) {
8027		u64 tmp;
8028
8029		spin_lock_irqsave(&zone->lock, flags);
8030		tmp = (u64)pages_min * zone_managed_pages(zone);
8031		do_div(tmp, lowmem_pages);
8032		if (is_highmem(zone)) {
8033			/*
8034			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8035			 * need highmem pages, so cap pages_min to a small
8036			 * value here.
8037			 *
8038			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8039			 * deltas control async page reclaim, and so should
8040			 * not be capped for highmem.
8041			 */
8042			unsigned long min_pages;
8043
8044			min_pages = zone_managed_pages(zone) / 1024;
8045			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8046			zone->_watermark[WMARK_MIN] = min_pages;
8047		} else {
8048			/*
8049			 * If it's a lowmem zone, reserve a number of pages
8050			 * proportionate to the zone's size.
8051			 */
8052			zone->_watermark[WMARK_MIN] = tmp;
8053		}
8054
8055		/*
8056		 * Set the kswapd watermarks distance according to the
8057		 * scale factor in proportion to available memory, but
8058		 * ensure a minimum size on small systems.
8059		 */
8060		tmp = max_t(u64, tmp >> 2,
8061			    mult_frac(zone_managed_pages(zone),
8062				      watermark_scale_factor, 10000));
8063
8064		zone->watermark_boost = 0;
8065		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8066		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8067
8068		spin_unlock_irqrestore(&zone->lock, flags);
8069	}
8070
8071	/* update totalreserve_pages */
8072	calculate_totalreserve_pages();
8073}
8074
8075/**
8076 * setup_per_zone_wmarks - called when min_free_kbytes changes
8077 * or when memory is hot-{added|removed}
8078 *
8079 * Ensures that the watermark[min,low,high] values for each zone are set
8080 * correctly with respect to min_free_kbytes.
8081 */
8082void setup_per_zone_wmarks(void)
8083{
8084	static DEFINE_SPINLOCK(lock);
8085
8086	spin_lock(&lock);
8087	__setup_per_zone_wmarks();
8088	spin_unlock(&lock);
8089}
8090
8091/*
8092 * Initialise min_free_kbytes.
8093 *
8094 * For small machines we want it small (128k min).  For large machines
8095 * we want it large (256MB max).  But it is not linear, because network
8096 * bandwidth does not increase linearly with machine size.  We use
8097 *
8098 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8099 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8100 *
8101 * which yields
8102 *
8103 * 16MB:	512k
8104 * 32MB:	724k
8105 * 64MB:	1024k
8106 * 128MB:	1448k
8107 * 256MB:	2048k
8108 * 512MB:	2896k
8109 * 1024MB:	4096k
8110 * 2048MB:	5792k
8111 * 4096MB:	8192k
8112 * 8192MB:	11584k
8113 * 16384MB:	16384k
8114 */
8115int __meminit init_per_zone_wmark_min(void)
8116{
8117	unsigned long lowmem_kbytes;
8118	int new_min_free_kbytes;
8119
8120	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8121	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8122
8123	if (new_min_free_kbytes > user_min_free_kbytes) {
8124		min_free_kbytes = new_min_free_kbytes;
8125		if (min_free_kbytes < 128)
8126			min_free_kbytes = 128;
8127		if (min_free_kbytes > 262144)
8128			min_free_kbytes = 262144;
8129	} else {
8130		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8131				new_min_free_kbytes, user_min_free_kbytes);
8132	}
8133	setup_per_zone_wmarks();
8134	refresh_zone_stat_thresholds();
8135	setup_per_zone_lowmem_reserve();
8136
8137#ifdef CONFIG_NUMA
8138	setup_min_unmapped_ratio();
8139	setup_min_slab_ratio();
8140#endif
8141
8142	khugepaged_min_free_kbytes_update();
8143
8144	return 0;
8145}
8146postcore_initcall(init_per_zone_wmark_min)
8147
8148/*
8149 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8150 *	that we can call two helper functions whenever min_free_kbytes
8151 *	changes.
8152 */
8153int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8154		void *buffer, size_t *length, loff_t *ppos)
8155{
8156	int rc;
8157
8158	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8159	if (rc)
8160		return rc;
8161
8162	if (write) {
8163		user_min_free_kbytes = min_free_kbytes;
8164		setup_per_zone_wmarks();
8165	}
8166	return 0;
8167}
8168
8169int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8170		void *buffer, size_t *length, loff_t *ppos)
8171{
8172	int rc;
8173
8174	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8175	if (rc)
8176		return rc;
8177
8178	if (write)
8179		setup_per_zone_wmarks();
8180
8181	return 0;
8182}
8183
8184#ifdef CONFIG_NUMA
8185static void setup_min_unmapped_ratio(void)
8186{
8187	pg_data_t *pgdat;
8188	struct zone *zone;
8189
8190	for_each_online_pgdat(pgdat)
8191		pgdat->min_unmapped_pages = 0;
8192
8193	for_each_zone(zone)
8194		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8195						         sysctl_min_unmapped_ratio) / 100;
8196}
8197
8198
8199int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8200		void *buffer, size_t *length, loff_t *ppos)
8201{
8202	int rc;
8203
8204	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8205	if (rc)
8206		return rc;
8207
8208	setup_min_unmapped_ratio();
8209
8210	return 0;
8211}
8212
8213static void setup_min_slab_ratio(void)
8214{
8215	pg_data_t *pgdat;
8216	struct zone *zone;
8217
8218	for_each_online_pgdat(pgdat)
8219		pgdat->min_slab_pages = 0;
8220
8221	for_each_zone(zone)
8222		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8223						     sysctl_min_slab_ratio) / 100;
8224}
8225
8226int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8227		void *buffer, size_t *length, loff_t *ppos)
8228{
8229	int rc;
8230
8231	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8232	if (rc)
8233		return rc;
8234
8235	setup_min_slab_ratio();
8236
8237	return 0;
8238}
8239#endif
8240
8241/*
8242 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8243 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8244 *	whenever sysctl_lowmem_reserve_ratio changes.
8245 *
8246 * The reserve ratio obviously has absolutely no relation with the
8247 * minimum watermarks. The lowmem reserve ratio can only make sense
8248 * if in function of the boot time zone sizes.
8249 */
8250int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8251		void *buffer, size_t *length, loff_t *ppos)
8252{
8253	int i;
8254
8255	proc_dointvec_minmax(table, write, buffer, length, ppos);
8256
8257	for (i = 0; i < MAX_NR_ZONES; i++) {
8258		if (sysctl_lowmem_reserve_ratio[i] < 1)
8259			sysctl_lowmem_reserve_ratio[i] = 0;
8260	}
8261
8262	setup_per_zone_lowmem_reserve();
8263	return 0;
8264}
8265
8266static void __zone_pcp_update(struct zone *zone)
8267{
8268	unsigned int cpu;
8269
8270	for_each_possible_cpu(cpu)
8271		pageset_set_high_and_batch(zone,
8272				per_cpu_ptr(zone->pageset, cpu));
8273}
8274
8275/*
8276 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8277 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8278 * pagelist can have before it gets flushed back to buddy allocator.
8279 */
8280int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8281		void *buffer, size_t *length, loff_t *ppos)
8282{
8283	struct zone *zone;
8284	int old_percpu_pagelist_fraction;
8285	int ret;
8286
8287	mutex_lock(&pcp_batch_high_lock);
8288	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8289
8290	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8291	if (!write || ret < 0)
8292		goto out;
8293
8294	/* Sanity checking to avoid pcp imbalance */
8295	if (percpu_pagelist_fraction &&
8296	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8297		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8298		ret = -EINVAL;
8299		goto out;
8300	}
8301
8302	/* No change? */
8303	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8304		goto out;
8305
8306	for_each_populated_zone(zone)
8307		__zone_pcp_update(zone);
8308out:
8309	mutex_unlock(&pcp_batch_high_lock);
8310	return ret;
8311}
8312
8313#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8314/*
8315 * Returns the number of pages that arch has reserved but
8316 * is not known to alloc_large_system_hash().
8317 */
8318static unsigned long __init arch_reserved_kernel_pages(void)
8319{
8320	return 0;
8321}
8322#endif
8323
8324/*
8325 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8326 * machines. As memory size is increased the scale is also increased but at
8327 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8328 * quadruples the scale is increased by one, which means the size of hash table
8329 * only doubles, instead of quadrupling as well.
8330 * Because 32-bit systems cannot have large physical memory, where this scaling
8331 * makes sense, it is disabled on such platforms.
8332 */
8333#if __BITS_PER_LONG > 32
8334#define ADAPT_SCALE_BASE	(64ul << 30)
8335#define ADAPT_SCALE_SHIFT	2
8336#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8337#endif
8338
8339/*
8340 * allocate a large system hash table from bootmem
8341 * - it is assumed that the hash table must contain an exact power-of-2
8342 *   quantity of entries
8343 * - limit is the number of hash buckets, not the total allocation size
8344 */
8345void *__init alloc_large_system_hash(const char *tablename,
8346				     unsigned long bucketsize,
8347				     unsigned long numentries,
8348				     int scale,
8349				     int flags,
8350				     unsigned int *_hash_shift,
8351				     unsigned int *_hash_mask,
8352				     unsigned long low_limit,
8353				     unsigned long high_limit)
8354{
8355	unsigned long long max = high_limit;
8356	unsigned long log2qty, size;
8357	void *table = NULL;
8358	gfp_t gfp_flags;
8359	bool virt;
8360
8361	/* allow the kernel cmdline to have a say */
8362	if (!numentries) {
8363		/* round applicable memory size up to nearest megabyte */
8364		numentries = nr_kernel_pages;
8365		numentries -= arch_reserved_kernel_pages();
8366
8367		/* It isn't necessary when PAGE_SIZE >= 1MB */
8368		if (PAGE_SHIFT < 20)
8369			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8370
8371#if __BITS_PER_LONG > 32
8372		if (!high_limit) {
8373			unsigned long adapt;
8374
8375			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8376			     adapt <<= ADAPT_SCALE_SHIFT)
8377				scale++;
8378		}
8379#endif
8380
8381		/* limit to 1 bucket per 2^scale bytes of low memory */
8382		if (scale > PAGE_SHIFT)
8383			numentries >>= (scale - PAGE_SHIFT);
8384		else
8385			numentries <<= (PAGE_SHIFT - scale);
8386
8387		/* Make sure we've got at least a 0-order allocation.. */
8388		if (unlikely(flags & HASH_SMALL)) {
8389			/* Makes no sense without HASH_EARLY */
8390			WARN_ON(!(flags & HASH_EARLY));
8391			if (!(numentries >> *_hash_shift)) {
8392				numentries = 1UL << *_hash_shift;
8393				BUG_ON(!numentries);
8394			}
8395		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8396			numentries = PAGE_SIZE / bucketsize;
8397	}
8398	numentries = roundup_pow_of_two(numentries);
8399
8400	/* limit allocation size to 1/16 total memory by default */
8401	if (max == 0) {
8402		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8403		do_div(max, bucketsize);
8404	}
8405	max = min(max, 0x80000000ULL);
8406
8407	if (numentries < low_limit)
8408		numentries = low_limit;
8409	if (numentries > max)
8410		numentries = max;
8411
8412	log2qty = ilog2(numentries);
8413
8414	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8415	do {
8416		virt = false;
8417		size = bucketsize << log2qty;
8418		if (flags & HASH_EARLY) {
8419			if (flags & HASH_ZERO)
8420				table = memblock_alloc(size, SMP_CACHE_BYTES);
8421			else
8422				table = memblock_alloc_raw(size,
8423							   SMP_CACHE_BYTES);
8424		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8425			table = __vmalloc(size, gfp_flags);
8426			virt = true;
8427		} else {
8428			/*
8429			 * If bucketsize is not a power-of-two, we may free
8430			 * some pages at the end of hash table which
8431			 * alloc_pages_exact() automatically does
8432			 */
8433			table = alloc_pages_exact(size, gfp_flags);
8434			kmemleak_alloc(table, size, 1, gfp_flags);
8435		}
8436	} while (!table && size > PAGE_SIZE && --log2qty);
8437
8438	if (!table)
8439		panic("Failed to allocate %s hash table\n", tablename);
8440
8441	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8442		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8443		virt ? "vmalloc" : "linear");
8444
8445	if (_hash_shift)
8446		*_hash_shift = log2qty;
8447	if (_hash_mask)
8448		*_hash_mask = (1 << log2qty) - 1;
8449
8450	return table;
8451}
8452
8453/*
8454 * This function checks whether pageblock includes unmovable pages or not.
8455 *
8456 * PageLRU check without isolation or lru_lock could race so that
8457 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8458 * check without lock_page also may miss some movable non-lru pages at
8459 * race condition. So you can't expect this function should be exact.
8460 *
8461 * Returns a page without holding a reference. If the caller wants to
8462 * dereference that page (e.g., dumping), it has to make sure that it
8463 * cannot get removed (e.g., via memory unplug) concurrently.
8464 *
8465 */
8466struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8467				 int migratetype, int flags)
8468{
8469	unsigned long iter = 0;
8470	unsigned long pfn = page_to_pfn(page);
8471	unsigned long offset = pfn % pageblock_nr_pages;
8472
8473	if (is_migrate_cma_page(page)) {
8474		/*
8475		 * CMA allocations (alloc_contig_range) really need to mark
8476		 * isolate CMA pageblocks even when they are not movable in fact
8477		 * so consider them movable here.
8478		 */
8479		if (is_migrate_cma(migratetype))
8480			return NULL;
8481
8482		return page;
8483	}
8484
8485	for (; iter < pageblock_nr_pages - offset; iter++) {
8486		if (!pfn_valid_within(pfn + iter))
8487			continue;
8488
8489		page = pfn_to_page(pfn + iter);
8490
8491		/*
8492		 * Both, bootmem allocations and memory holes are marked
8493		 * PG_reserved and are unmovable. We can even have unmovable
8494		 * allocations inside ZONE_MOVABLE, for example when
8495		 * specifying "movablecore".
8496		 */
8497		if (PageReserved(page))
8498			return page;
8499
8500		/*
8501		 * If the zone is movable and we have ruled out all reserved
8502		 * pages then it should be reasonably safe to assume the rest
8503		 * is movable.
8504		 */
8505		if (zone_idx(zone) == ZONE_MOVABLE)
8506			continue;
8507
8508		/*
8509		 * Hugepages are not in LRU lists, but they're movable.
8510		 * THPs are on the LRU, but need to be counted as #small pages.
8511		 * We need not scan over tail pages because we don't
8512		 * handle each tail page individually in migration.
8513		 */
8514		if (PageHuge(page) || PageTransCompound(page)) {
8515			struct page *head = compound_head(page);
8516			unsigned int skip_pages;
8517
8518			if (PageHuge(page)) {
8519				if (!hugepage_migration_supported(page_hstate(head)))
8520					return page;
8521			} else if (!PageLRU(head) && !__PageMovable(head)) {
8522				return page;
8523			}
8524
8525			skip_pages = compound_nr(head) - (page - head);
8526			iter += skip_pages - 1;
8527			continue;
8528		}
8529
8530		/*
8531		 * We can't use page_count without pin a page
8532		 * because another CPU can free compound page.
8533		 * This check already skips compound tails of THP
8534		 * because their page->_refcount is zero at all time.
8535		 */
8536		if (!page_ref_count(page)) {
8537			if (PageBuddy(page))
8538				iter += (1 << buddy_order(page)) - 1;
8539			continue;
8540		}
8541
8542		/*
8543		 * The HWPoisoned page may be not in buddy system, and
8544		 * page_count() is not 0.
8545		 */
8546		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8547			continue;
8548
8549		/*
8550		 * We treat all PageOffline() pages as movable when offlining
8551		 * to give drivers a chance to decrement their reference count
8552		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8553		 * can be offlined as there are no direct references anymore.
8554		 * For actually unmovable PageOffline() where the driver does
8555		 * not support this, we will fail later when trying to actually
8556		 * move these pages that still have a reference count > 0.
8557		 * (false negatives in this function only)
8558		 */
8559		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8560			continue;
8561
8562		if (__PageMovable(page) || PageLRU(page))
8563			continue;
8564
8565		/*
8566		 * If there are RECLAIMABLE pages, we need to check
8567		 * it.  But now, memory offline itself doesn't call
8568		 * shrink_node_slabs() and it still to be fixed.
8569		 */
8570		return page;
8571	}
8572	return NULL;
8573}
8574
8575#ifdef CONFIG_CONTIG_ALLOC
8576static unsigned long pfn_max_align_down(unsigned long pfn)
8577{
8578	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8579			     pageblock_nr_pages) - 1);
8580}
8581
8582static unsigned long pfn_max_align_up(unsigned long pfn)
8583{
8584	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8585				pageblock_nr_pages));
8586}
8587
8588/* [start, end) must belong to a single zone. */
8589static int __alloc_contig_migrate_range(struct compact_control *cc,
8590					unsigned long start, unsigned long end)
8591{
8592	/* This function is based on compact_zone() from compaction.c. */
8593	unsigned int nr_reclaimed;
8594	unsigned long pfn = start;
8595	unsigned int tries = 0;
8596	int ret = 0;
8597	struct migration_target_control mtc = {
8598		.nid = zone_to_nid(cc->zone),
8599		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8600	};
8601
8602	migrate_prep();
8603
8604	while (pfn < end || !list_empty(&cc->migratepages)) {
8605		if (fatal_signal_pending(current)) {
8606			ret = -EINTR;
8607			break;
8608		}
8609
8610		if (list_empty(&cc->migratepages)) {
8611			cc->nr_migratepages = 0;
8612			pfn = isolate_migratepages_range(cc, pfn, end);
8613			if (!pfn) {
8614				ret = -EINTR;
8615				break;
8616			}
8617			tries = 0;
8618		} else if (++tries == 5) {
8619			ret = ret < 0 ? ret : -EBUSY;
8620			break;
8621		}
8622
8623		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8624							&cc->migratepages);
8625		cc->nr_migratepages -= nr_reclaimed;
8626
8627		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8628				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8629	}
8630	if (ret < 0) {
8631		putback_movable_pages(&cc->migratepages);
8632		return ret;
8633	}
8634	return 0;
8635}
8636
8637/**
8638 * alloc_contig_range() -- tries to allocate given range of pages
8639 * @start:	start PFN to allocate
8640 * @end:	one-past-the-last PFN to allocate
8641 * @migratetype:	migratetype of the underlaying pageblocks (either
8642 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8643 *			in range must have the same migratetype and it must
8644 *			be either of the two.
8645 * @gfp_mask:	GFP mask to use during compaction
8646 *
8647 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8648 * aligned.  The PFN range must belong to a single zone.
8649 *
8650 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8651 * pageblocks in the range.  Once isolated, the pageblocks should not
8652 * be modified by others.
8653 *
8654 * Return: zero on success or negative error code.  On success all
8655 * pages which PFN is in [start, end) are allocated for the caller and
8656 * need to be freed with free_contig_range().
8657 */
8658int alloc_contig_range(unsigned long start, unsigned long end,
8659		       unsigned migratetype, gfp_t gfp_mask)
8660{
8661	unsigned long outer_start, outer_end;
8662	unsigned int order;
8663	int ret = 0;
8664
8665	struct compact_control cc = {
8666		.nr_migratepages = 0,
8667		.order = -1,
8668		.zone = page_zone(pfn_to_page(start)),
8669		.mode = MIGRATE_SYNC,
8670		.ignore_skip_hint = true,
8671		.no_set_skip_hint = true,
8672		.gfp_mask = current_gfp_context(gfp_mask),
8673		.alloc_contig = true,
8674	};
8675	INIT_LIST_HEAD(&cc.migratepages);
8676
8677	/*
8678	 * What we do here is we mark all pageblocks in range as
8679	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8680	 * have different sizes, and due to the way page allocator
8681	 * work, we align the range to biggest of the two pages so
8682	 * that page allocator won't try to merge buddies from
8683	 * different pageblocks and change MIGRATE_ISOLATE to some
8684	 * other migration type.
8685	 *
8686	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8687	 * migrate the pages from an unaligned range (ie. pages that
8688	 * we are interested in).  This will put all the pages in
8689	 * range back to page allocator as MIGRATE_ISOLATE.
8690	 *
8691	 * When this is done, we take the pages in range from page
8692	 * allocator removing them from the buddy system.  This way
8693	 * page allocator will never consider using them.
8694	 *
8695	 * This lets us mark the pageblocks back as
8696	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8697	 * aligned range but not in the unaligned, original range are
8698	 * put back to page allocator so that buddy can use them.
8699	 */
8700
8701	ret = start_isolate_page_range(pfn_max_align_down(start),
8702				       pfn_max_align_up(end), migratetype, 0);
8703	if (ret)
8704		return ret;
8705
8706	/*
8707	 * In case of -EBUSY, we'd like to know which page causes problem.
8708	 * So, just fall through. test_pages_isolated() has a tracepoint
8709	 * which will report the busy page.
8710	 *
8711	 * It is possible that busy pages could become available before
8712	 * the call to test_pages_isolated, and the range will actually be
8713	 * allocated.  So, if we fall through be sure to clear ret so that
8714	 * -EBUSY is not accidentally used or returned to caller.
8715	 */
8716	ret = __alloc_contig_migrate_range(&cc, start, end);
8717	if (ret && ret != -EBUSY)
8718		goto done;
8719	ret =0;
8720
8721	/*
8722	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8723	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8724	 * more, all pages in [start, end) are free in page allocator.
8725	 * What we are going to do is to allocate all pages from
8726	 * [start, end) (that is remove them from page allocator).
8727	 *
8728	 * The only problem is that pages at the beginning and at the
8729	 * end of interesting range may be not aligned with pages that
8730	 * page allocator holds, ie. they can be part of higher order
8731	 * pages.  Because of this, we reserve the bigger range and
8732	 * once this is done free the pages we are not interested in.
8733	 *
8734	 * We don't have to hold zone->lock here because the pages are
8735	 * isolated thus they won't get removed from buddy.
8736	 */
8737
8738	lru_add_drain_all();
8739
8740	order = 0;
8741	outer_start = start;
8742	while (!PageBuddy(pfn_to_page(outer_start))) {
8743		if (++order >= MAX_ORDER) {
8744			outer_start = start;
8745			break;
8746		}
8747		outer_start &= ~0UL << order;
8748	}
8749
8750	if (outer_start != start) {
8751		order = buddy_order(pfn_to_page(outer_start));
8752
8753		/*
8754		 * outer_start page could be small order buddy page and
8755		 * it doesn't include start page. Adjust outer_start
8756		 * in this case to report failed page properly
8757		 * on tracepoint in test_pages_isolated()
8758		 */
8759		if (outer_start + (1UL << order) <= start)
8760			outer_start = start;
8761	}
8762
8763	/* Make sure the range is really isolated. */
8764	if (test_pages_isolated(outer_start, end, 0)) {
8765		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8766			__func__, outer_start, end);
8767		ret = -EBUSY;
8768		goto done;
8769	}
8770
8771	/* Grab isolated pages from freelists. */
8772	outer_end = isolate_freepages_range(&cc, outer_start, end);
8773	if (!outer_end) {
8774		ret = -EBUSY;
8775		goto done;
8776	}
8777
8778	/* Free head and tail (if any) */
8779	if (start != outer_start)
8780		free_contig_range(outer_start, start - outer_start);
8781	if (end != outer_end)
8782		free_contig_range(end, outer_end - end);
8783
8784done:
8785	undo_isolate_page_range(pfn_max_align_down(start),
8786				pfn_max_align_up(end), migratetype);
8787	return ret;
8788}
8789EXPORT_SYMBOL(alloc_contig_range);
8790
8791static int __alloc_contig_pages(unsigned long start_pfn,
8792				unsigned long nr_pages, gfp_t gfp_mask)
8793{
8794	unsigned long end_pfn = start_pfn + nr_pages;
8795
8796	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8797				  gfp_mask);
8798}
8799
8800static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8801				   unsigned long nr_pages)
8802{
8803	unsigned long i, end_pfn = start_pfn + nr_pages;
8804	struct page *page;
8805
8806	for (i = start_pfn; i < end_pfn; i++) {
8807		page = pfn_to_online_page(i);
8808		if (!page)
8809			return false;
8810
8811		if (page_zone(page) != z)
8812			return false;
8813
8814		if (PageReserved(page))
8815			return false;
8816
8817		if (page_count(page) > 0)
8818			return false;
8819
8820		if (PageHuge(page))
8821			return false;
8822	}
8823	return true;
8824}
8825
8826static bool zone_spans_last_pfn(const struct zone *zone,
8827				unsigned long start_pfn, unsigned long nr_pages)
8828{
8829	unsigned long last_pfn = start_pfn + nr_pages - 1;
8830
8831	return zone_spans_pfn(zone, last_pfn);
8832}
8833
8834/**
8835 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8836 * @nr_pages:	Number of contiguous pages to allocate
8837 * @gfp_mask:	GFP mask to limit search and used during compaction
8838 * @nid:	Target node
8839 * @nodemask:	Mask for other possible nodes
8840 *
8841 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8842 * on an applicable zonelist to find a contiguous pfn range which can then be
8843 * tried for allocation with alloc_contig_range(). This routine is intended
8844 * for allocation requests which can not be fulfilled with the buddy allocator.
8845 *
8846 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8847 * power of two then the alignment is guaranteed to be to the given nr_pages
8848 * (e.g. 1GB request would be aligned to 1GB).
8849 *
8850 * Allocated pages can be freed with free_contig_range() or by manually calling
8851 * __free_page() on each allocated page.
8852 *
8853 * Return: pointer to contiguous pages on success, or NULL if not successful.
8854 */
8855struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8856				int nid, nodemask_t *nodemask)
8857{
8858	unsigned long ret, pfn, flags;
8859	struct zonelist *zonelist;
8860	struct zone *zone;
8861	struct zoneref *z;
8862
8863	zonelist = node_zonelist(nid, gfp_mask);
8864	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8865					gfp_zone(gfp_mask), nodemask) {
8866		spin_lock_irqsave(&zone->lock, flags);
8867
8868		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8869		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8870			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8871				/*
8872				 * We release the zone lock here because
8873				 * alloc_contig_range() will also lock the zone
8874				 * at some point. If there's an allocation
8875				 * spinning on this lock, it may win the race
8876				 * and cause alloc_contig_range() to fail...
8877				 */
8878				spin_unlock_irqrestore(&zone->lock, flags);
8879				ret = __alloc_contig_pages(pfn, nr_pages,
8880							gfp_mask);
8881				if (!ret)
8882					return pfn_to_page(pfn);
8883				spin_lock_irqsave(&zone->lock, flags);
8884			}
8885			pfn += nr_pages;
8886		}
8887		spin_unlock_irqrestore(&zone->lock, flags);
8888	}
8889	return NULL;
8890}
8891#endif /* CONFIG_CONTIG_ALLOC */
8892
8893void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8894{
8895	unsigned int count = 0;
8896
8897	for (; nr_pages--; pfn++) {
8898		struct page *page = pfn_to_page(pfn);
8899
8900		count += page_count(page) != 1;
8901		__free_page(page);
8902	}
8903	WARN(count != 0, "%d pages are still in use!\n", count);
8904}
8905EXPORT_SYMBOL(free_contig_range);
8906
8907/*
8908 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8909 * page high values need to be recalulated.
8910 */
8911void __meminit zone_pcp_update(struct zone *zone)
8912{
8913	mutex_lock(&pcp_batch_high_lock);
8914	__zone_pcp_update(zone);
8915	mutex_unlock(&pcp_batch_high_lock);
8916}
8917
8918void zone_pcp_reset(struct zone *zone)
8919{
8920	unsigned long flags;
8921	int cpu;
8922	struct per_cpu_pageset *pset;
8923
8924	/* avoid races with drain_pages()  */
8925	local_irq_save(flags);
8926	if (zone->pageset != &boot_pageset) {
8927		for_each_online_cpu(cpu) {
8928			pset = per_cpu_ptr(zone->pageset, cpu);
8929			drain_zonestat(zone, pset);
8930		}
8931		free_percpu(zone->pageset);
8932		zone->pageset = &boot_pageset;
8933	}
8934	local_irq_restore(flags);
8935}
8936
8937#ifdef CONFIG_MEMORY_HOTREMOVE
8938/*
8939 * All pages in the range must be in a single zone, must not contain holes,
8940 * must span full sections, and must be isolated before calling this function.
8941 */
8942void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8943{
8944	unsigned long pfn = start_pfn;
8945	struct page *page;
8946	struct zone *zone;
8947	unsigned int order;
8948	unsigned long flags;
8949
8950	offline_mem_sections(pfn, end_pfn);
8951	zone = page_zone(pfn_to_page(pfn));
8952	spin_lock_irqsave(&zone->lock, flags);
8953	while (pfn < end_pfn) {
8954		page = pfn_to_page(pfn);
8955		/*
8956		 * The HWPoisoned page may be not in buddy system, and
8957		 * page_count() is not 0.
8958		 */
8959		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8960			pfn++;
8961			continue;
8962		}
8963		/*
8964		 * At this point all remaining PageOffline() pages have a
8965		 * reference count of 0 and can simply be skipped.
8966		 */
8967		if (PageOffline(page)) {
8968			BUG_ON(page_count(page));
8969			BUG_ON(PageBuddy(page));
8970			pfn++;
8971			continue;
8972		}
8973
8974		BUG_ON(page_count(page));
8975		BUG_ON(!PageBuddy(page));
8976		order = buddy_order(page);
8977		del_page_from_free_list(page, zone, order);
8978		pfn += (1 << order);
8979	}
8980	spin_unlock_irqrestore(&zone->lock, flags);
8981}
8982#endif
8983
8984bool is_free_buddy_page(struct page *page)
8985{
8986	struct zone *zone = page_zone(page);
8987	unsigned long pfn = page_to_pfn(page);
8988	unsigned long flags;
8989	unsigned int order;
8990
8991	spin_lock_irqsave(&zone->lock, flags);
8992	for (order = 0; order < MAX_ORDER; order++) {
8993		struct page *page_head = page - (pfn & ((1 << order) - 1));
8994
8995		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8996			break;
8997	}
8998	spin_unlock_irqrestore(&zone->lock, flags);
8999
9000	return order < MAX_ORDER;
9001}
9002
9003#ifdef CONFIG_MEMORY_FAILURE
9004/*
9005 * Break down a higher-order page in sub-pages, and keep our target out of
9006 * buddy allocator.
9007 */
9008static void break_down_buddy_pages(struct zone *zone, struct page *page,
9009				   struct page *target, int low, int high,
9010				   int migratetype)
9011{
9012	unsigned long size = 1 << high;
9013	struct page *current_buddy, *next_page;
9014
9015	while (high > low) {
9016		high--;
9017		size >>= 1;
9018
9019		if (target >= &page[size]) {
9020			next_page = page + size;
9021			current_buddy = page;
9022		} else {
9023			next_page = page;
9024			current_buddy = page + size;
9025		}
9026		page = next_page;
9027
9028		if (set_page_guard(zone, current_buddy, high, migratetype))
9029			continue;
9030
9031		if (current_buddy != target) {
9032			add_to_free_list(current_buddy, zone, high, migratetype);
9033			set_buddy_order(current_buddy, high);
9034		}
9035	}
9036}
9037
9038/*
9039 * Take a page that will be marked as poisoned off the buddy allocator.
9040 */
9041bool take_page_off_buddy(struct page *page)
9042{
9043	struct zone *zone = page_zone(page);
9044	unsigned long pfn = page_to_pfn(page);
9045	unsigned long flags;
9046	unsigned int order;
9047	bool ret = false;
9048
9049	spin_lock_irqsave(&zone->lock, flags);
9050	for (order = 0; order < MAX_ORDER; order++) {
9051		struct page *page_head = page - (pfn & ((1 << order) - 1));
9052		int page_order = buddy_order(page_head);
9053
9054		if (PageBuddy(page_head) && page_order >= order) {
9055			unsigned long pfn_head = page_to_pfn(page_head);
9056			int migratetype = get_pfnblock_migratetype(page_head,
9057								   pfn_head);
9058
9059			del_page_from_free_list(page_head, zone, page_order);
9060			break_down_buddy_pages(zone, page_head, page, 0,
9061						page_order, migratetype);
9062			if (!is_migrate_isolate(migratetype))
9063				__mod_zone_freepage_state(zone, -1, migratetype);
9064			ret = true;
9065			break;
9066		}
9067		if (page_count(page_head) > 0)
9068			break;
9069	}
9070	spin_unlock_irqrestore(&zone->lock, flags);
9071	return ret;
9072}
9073#endif
9074
9075#ifdef CONFIG_ZONE_DMA
9076bool has_managed_dma(void)
9077{
9078	struct pglist_data *pgdat;
9079
9080	for_each_online_pgdat(pgdat) {
9081		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9082
9083		if (managed_zone(zone))
9084			return true;
9085	}
9086	return false;
9087}
9088#endif /* CONFIG_ZONE_DMA */
9089