xref: /kernel/linux/linux-5.10/mm/oom_kill.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/oom_kill.c
4 *
5 *  Copyright (C)  1998,2000  Rik van Riel
6 *	Thanks go out to Claus Fischer for some serious inspiration and
7 *	for goading me into coding this file...
8 *  Copyright (C)  2010  Google, Inc.
9 *	Rewritten by David Rientjes
10 *
11 *  The routines in this file are used to kill a process when
12 *  we're seriously out of memory. This gets called from __alloc_pages()
13 *  in mm/page_alloc.c when we really run out of memory.
14 *
15 *  Since we won't call these routines often (on a well-configured
16 *  machine) this file will double as a 'coding guide' and a signpost
17 *  for newbie kernel hackers. It features several pointers to major
18 *  kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/coredump.h>
28#include <linux/sched/task.h>
29#include <linux/sched/debug.h>
30#include <linux/swap.h>
31#include <linux/timex.h>
32#include <linux/jiffies.h>
33#include <linux/cpuset.h>
34#include <linux/export.h>
35#include <linux/notifier.h>
36#include <linux/memcontrol.h>
37#include <linux/mempolicy.h>
38#include <linux/security.h>
39#include <linux/ptrace.h>
40#include <linux/freezer.h>
41#include <linux/ftrace.h>
42#include <linux/ratelimit.h>
43#include <linux/kthread.h>
44#include <linux/init.h>
45#include <linux/mmu_notifier.h>
46
47#include <asm/tlb.h>
48#include "internal.h"
49#include "slab.h"
50
51#define CREATE_TRACE_POINTS
52#include <trace/events/oom.h>
53
54int sysctl_panic_on_oom;
55int sysctl_oom_kill_allocating_task;
56int sysctl_oom_dump_tasks = 1;
57
58/*
59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
61 * from different domains).
62 *
63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 * and mark_oom_victim
65 */
66DEFINE_MUTEX(oom_lock);
67/* Serializes oom_score_adj and oom_score_adj_min updates */
68DEFINE_MUTEX(oom_adj_mutex);
69
70static inline bool is_memcg_oom(struct oom_control *oc)
71{
72	return oc->memcg != NULL;
73}
74
75#ifdef CONFIG_NUMA
76/**
77 * oom_cpuset_eligible() - check task eligiblity for kill
78 * @start: task struct of which task to consider
79 * @oc: pointer to struct oom_control
80 *
81 * Task eligibility is determined by whether or not a candidate task, @tsk,
82 * shares the same mempolicy nodes as current if it is bound by such a policy
83 * and whether or not it has the same set of allowed cpuset nodes.
84 *
85 * This function is assuming oom-killer context and 'current' has triggered
86 * the oom-killer.
87 */
88static bool oom_cpuset_eligible(struct task_struct *start,
89				struct oom_control *oc)
90{
91	struct task_struct *tsk;
92	bool ret = false;
93	const nodemask_t *mask = oc->nodemask;
94
95	if (is_memcg_oom(oc))
96		return true;
97
98	rcu_read_lock();
99	for_each_thread(start, tsk) {
100		if (mask) {
101			/*
102			 * If this is a mempolicy constrained oom, tsk's
103			 * cpuset is irrelevant.  Only return true if its
104			 * mempolicy intersects current, otherwise it may be
105			 * needlessly killed.
106			 */
107			ret = mempolicy_nodemask_intersects(tsk, mask);
108		} else {
109			/*
110			 * This is not a mempolicy constrained oom, so only
111			 * check the mems of tsk's cpuset.
112			 */
113			ret = cpuset_mems_allowed_intersects(current, tsk);
114		}
115		if (ret)
116			break;
117	}
118	rcu_read_unlock();
119
120	return ret;
121}
122#else
123static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
124{
125	return true;
126}
127#endif /* CONFIG_NUMA */
128
129/*
130 * The process p may have detached its own ->mm while exiting or through
131 * kthread_use_mm(), but one or more of its subthreads may still have a valid
132 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
133 * task_lock() held.
134 */
135struct task_struct *find_lock_task_mm(struct task_struct *p)
136{
137	struct task_struct *t;
138
139	rcu_read_lock();
140
141	for_each_thread(p, t) {
142		task_lock(t);
143		if (likely(t->mm))
144			goto found;
145		task_unlock(t);
146	}
147	t = NULL;
148found:
149	rcu_read_unlock();
150
151	return t;
152}
153
154/*
155 * order == -1 means the oom kill is required by sysrq, otherwise only
156 * for display purposes.
157 */
158static inline bool is_sysrq_oom(struct oom_control *oc)
159{
160	return oc->order == -1;
161}
162
163/* return true if the task is not adequate as candidate victim task. */
164static bool oom_unkillable_task(struct task_struct *p)
165{
166	if (is_global_init(p))
167		return true;
168	if (p->flags & PF_KTHREAD)
169		return true;
170	return false;
171}
172
173/*
174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
175 * than all user memory (LRU pages)
176 */
177static bool is_dump_unreclaim_slabs(void)
178{
179	unsigned long nr_lru;
180
181	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182		 global_node_page_state(NR_INACTIVE_ANON) +
183		 global_node_page_state(NR_ACTIVE_FILE) +
184		 global_node_page_state(NR_INACTIVE_FILE) +
185		 global_node_page_state(NR_ISOLATED_ANON) +
186		 global_node_page_state(NR_ISOLATED_FILE) +
187		 global_node_page_state(NR_UNEVICTABLE);
188
189	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190}
191
192/**
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 *
197 * The heuristic for determining which task to kill is made to be as simple and
198 * predictable as possible.  The goal is to return the highest value for the
199 * task consuming the most memory to avoid subsequent oom failures.
200 */
201long oom_badness(struct task_struct *p, unsigned long totalpages)
202{
203	long points;
204	long adj;
205
206	if (oom_unkillable_task(p))
207		return LONG_MIN;
208
209	p = find_lock_task_mm(p);
210	if (!p)
211		return LONG_MIN;
212
213	/*
214	 * Do not even consider tasks which are explicitly marked oom
215	 * unkillable or have been already oom reaped or the are in
216	 * the middle of vfork
217	 */
218	adj = (long)p->signal->oom_score_adj;
219	if (adj == OOM_SCORE_ADJ_MIN ||
220			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221			in_vfork(p)) {
222		task_unlock(p);
223		return LONG_MIN;
224	}
225
226	/*
227	 * The baseline for the badness score is the proportion of RAM that each
228	 * task's rss, pagetable and swap space use.
229	 */
230	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232	task_unlock(p);
233
234	/* Normalize to oom_score_adj units */
235	adj *= totalpages / 1000;
236	points += adj;
237
238	return points;
239}
240
241static const char * const oom_constraint_text[] = {
242	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246};
247
248/*
249 * Determine the type of allocation constraint.
250 */
251static enum oom_constraint constrained_alloc(struct oom_control *oc)
252{
253	struct zone *zone;
254	struct zoneref *z;
255	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256	bool cpuset_limited = false;
257	int nid;
258
259	if (is_memcg_oom(oc)) {
260		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261		return CONSTRAINT_MEMCG;
262	}
263
264	/* Default to all available memory */
265	oc->totalpages = totalram_pages() + total_swap_pages;
266
267	if (!IS_ENABLED(CONFIG_NUMA))
268		return CONSTRAINT_NONE;
269
270	if (!oc->zonelist)
271		return CONSTRAINT_NONE;
272	/*
273	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274	 * to kill current.We have to random task kill in this case.
275	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276	 */
277	if (oc->gfp_mask & __GFP_THISNODE)
278		return CONSTRAINT_NONE;
279
280	/*
281	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282	 * the page allocator means a mempolicy is in effect.  Cpuset policy
283	 * is enforced in get_page_from_freelist().
284	 */
285	if (oc->nodemask &&
286	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287		oc->totalpages = total_swap_pages;
288		for_each_node_mask(nid, *oc->nodemask)
289			oc->totalpages += node_present_pages(nid);
290		return CONSTRAINT_MEMORY_POLICY;
291	}
292
293	/* Check this allocation failure is caused by cpuset's wall function */
294	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295			highest_zoneidx, oc->nodemask)
296		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297			cpuset_limited = true;
298
299	if (cpuset_limited) {
300		oc->totalpages = total_swap_pages;
301		for_each_node_mask(nid, cpuset_current_mems_allowed)
302			oc->totalpages += node_present_pages(nid);
303		return CONSTRAINT_CPUSET;
304	}
305	return CONSTRAINT_NONE;
306}
307
308static int oom_evaluate_task(struct task_struct *task, void *arg)
309{
310	struct oom_control *oc = arg;
311	long points;
312
313	if (oom_unkillable_task(task))
314		goto next;
315
316	/* p may not have freeable memory in nodemask */
317	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318		goto next;
319
320	/*
321	 * This task already has access to memory reserves and is being killed.
322	 * Don't allow any other task to have access to the reserves unless
323	 * the task has MMF_OOM_SKIP because chances that it would release
324	 * any memory is quite low.
325	 */
326	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328			goto next;
329		goto abort;
330	}
331
332	/*
333	 * If task is allocating a lot of memory and has been marked to be
334	 * killed first if it triggers an oom, then select it.
335	 */
336	if (oom_task_origin(task)) {
337		points = LONG_MAX;
338		goto select;
339	}
340
341	points = oom_badness(task, oc->totalpages);
342	if (points == LONG_MIN || points < oc->chosen_points)
343		goto next;
344
345select:
346	if (oc->chosen)
347		put_task_struct(oc->chosen);
348	get_task_struct(task);
349	oc->chosen = task;
350	oc->chosen_points = points;
351next:
352	return 0;
353abort:
354	if (oc->chosen)
355		put_task_struct(oc->chosen);
356	oc->chosen = (void *)-1UL;
357	return 1;
358}
359
360/*
361 * Simple selection loop. We choose the process with the highest number of
362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
363 */
364static void select_bad_process(struct oom_control *oc)
365{
366	oc->chosen_points = LONG_MIN;
367
368	if (is_memcg_oom(oc))
369		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370	else {
371		struct task_struct *p;
372
373		rcu_read_lock();
374		for_each_process(p)
375			if (oom_evaluate_task(p, oc))
376				break;
377		rcu_read_unlock();
378	}
379}
380
381static int dump_task(struct task_struct *p, void *arg)
382{
383	struct oom_control *oc = arg;
384	struct task_struct *task;
385
386	if (oom_unkillable_task(p))
387		return 0;
388
389	/* p may not have freeable memory in nodemask */
390	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391		return 0;
392
393	task = find_lock_task_mm(p);
394	if (!task) {
395		/*
396		 * This is a kthread or all of p's threads have already
397		 * detached their mm's.  There's no need to report
398		 * them; they can't be oom killed anyway.
399		 */
400		return 0;
401	}
402
403	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
404		task->pid, from_kuid(&init_user_ns, task_uid(task)),
405		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406		mm_pgtables_bytes(task->mm),
407		get_mm_counter(task->mm, MM_SWAPENTS),
408		task->signal->oom_score_adj, task->comm);
409	task_unlock(task);
410
411	return 0;
412}
413
414/**
415 * dump_tasks - dump current memory state of all system tasks
416 * @oc: pointer to struct oom_control
417 *
418 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420 * are not shown.
421 * State information includes task's pid, uid, tgid, vm size, rss,
422 * pgtables_bytes, swapents, oom_score_adj value, and name.
423 */
424static void dump_tasks(struct oom_control *oc)
425{
426	pr_info("Tasks state (memory values in pages):\n");
427	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
428
429	if (is_memcg_oom(oc))
430		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
431	else {
432		struct task_struct *p;
433
434		rcu_read_lock();
435		for_each_process(p)
436			dump_task(p, oc);
437		rcu_read_unlock();
438	}
439}
440
441static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
442{
443	/* one line summary of the oom killer context. */
444	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445			oom_constraint_text[oc->constraint],
446			nodemask_pr_args(oc->nodemask));
447	cpuset_print_current_mems_allowed();
448	mem_cgroup_print_oom_context(oc->memcg, victim);
449	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
450		from_kuid(&init_user_ns, task_uid(victim)));
451}
452
453static void dump_header(struct oom_control *oc, struct task_struct *p)
454{
455	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
457			current->signal->oom_score_adj);
458	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
459		pr_warn("COMPACTION is disabled!!!\n");
460
461	dump_stack();
462	if (is_memcg_oom(oc))
463		mem_cgroup_print_oom_meminfo(oc->memcg);
464	else {
465		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
466		if (is_dump_unreclaim_slabs())
467			dump_unreclaimable_slab();
468	}
469	if (sysctl_oom_dump_tasks)
470		dump_tasks(oc);
471	if (p)
472		dump_oom_summary(oc, p);
473}
474
475/*
476 * Number of OOM victims in flight
477 */
478static atomic_t oom_victims = ATOMIC_INIT(0);
479static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
480
481static bool oom_killer_disabled __read_mostly;
482
483#define K(x) ((x) << (PAGE_SHIFT-10))
484
485/*
486 * task->mm can be NULL if the task is the exited group leader.  So to
487 * determine whether the task is using a particular mm, we examine all the
488 * task's threads: if one of those is using this mm then this task was also
489 * using it.
490 */
491bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
492{
493	struct task_struct *t;
494
495	for_each_thread(p, t) {
496		struct mm_struct *t_mm = READ_ONCE(t->mm);
497		if (t_mm)
498			return t_mm == mm;
499	}
500	return false;
501}
502
503#ifdef CONFIG_MMU
504/*
505 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
506 * victim (if that is possible) to help the OOM killer to move on.
507 */
508static struct task_struct *oom_reaper_th;
509static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
510static struct task_struct *oom_reaper_list;
511static DEFINE_SPINLOCK(oom_reaper_lock);
512
513bool __oom_reap_task_mm(struct mm_struct *mm)
514{
515	struct vm_area_struct *vma;
516	bool ret = true;
517
518	/*
519	 * Tell all users of get_user/copy_from_user etc... that the content
520	 * is no longer stable. No barriers really needed because unmapping
521	 * should imply barriers already and the reader would hit a page fault
522	 * if it stumbled over a reaped memory.
523	 */
524	set_bit(MMF_UNSTABLE, &mm->flags);
525
526	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
527		if (!can_madv_lru_vma(vma))
528			continue;
529
530		/*
531		 * Only anonymous pages have a good chance to be dropped
532		 * without additional steps which we cannot afford as we
533		 * are OOM already.
534		 *
535		 * We do not even care about fs backed pages because all
536		 * which are reclaimable have already been reclaimed and
537		 * we do not want to block exit_mmap by keeping mm ref
538		 * count elevated without a good reason.
539		 */
540		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
541			struct mmu_notifier_range range;
542			struct mmu_gather tlb;
543
544			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
545						vma, mm, vma->vm_start,
546						vma->vm_end);
547			tlb_gather_mmu(&tlb, mm, range.start, range.end);
548			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
549				tlb_finish_mmu(&tlb, range.start, range.end);
550				ret = false;
551				continue;
552			}
553			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
554			mmu_notifier_invalidate_range_end(&range);
555			tlb_finish_mmu(&tlb, range.start, range.end);
556		}
557	}
558
559	return ret;
560}
561
562/*
563 * Reaps the address space of the give task.
564 *
565 * Returns true on success and false if none or part of the address space
566 * has been reclaimed and the caller should retry later.
567 */
568static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
569{
570	bool ret = true;
571
572	if (!mmap_read_trylock(mm)) {
573		trace_skip_task_reaping(tsk->pid);
574		return false;
575	}
576
577	/*
578	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
579	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
580	 * under mmap_lock for reading because it serializes against the
581	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
582	 */
583	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
584		trace_skip_task_reaping(tsk->pid);
585		goto out_unlock;
586	}
587
588	trace_start_task_reaping(tsk->pid);
589
590	/* failed to reap part of the address space. Try again later */
591	ret = __oom_reap_task_mm(mm);
592	if (!ret)
593		goto out_finish;
594
595	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
596			task_pid_nr(tsk), tsk->comm,
597			K(get_mm_counter(mm, MM_ANONPAGES)),
598			K(get_mm_counter(mm, MM_FILEPAGES)),
599			K(get_mm_counter(mm, MM_SHMEMPAGES)));
600out_finish:
601	trace_finish_task_reaping(tsk->pid);
602out_unlock:
603	mmap_read_unlock(mm);
604
605	return ret;
606}
607
608#define MAX_OOM_REAP_RETRIES 10
609static void oom_reap_task(struct task_struct *tsk)
610{
611	int attempts = 0;
612	struct mm_struct *mm = tsk->signal->oom_mm;
613
614	/* Retry the mmap_read_trylock(mm) a few times */
615	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
616		schedule_timeout_idle(HZ/10);
617
618	if (attempts <= MAX_OOM_REAP_RETRIES ||
619	    test_bit(MMF_OOM_SKIP, &mm->flags))
620		goto done;
621
622	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
623		task_pid_nr(tsk), tsk->comm);
624	sched_show_task(tsk);
625	debug_show_all_locks();
626
627done:
628	tsk->oom_reaper_list = NULL;
629
630	/*
631	 * Hide this mm from OOM killer because it has been either reaped or
632	 * somebody can't call mmap_write_unlock(mm).
633	 */
634	set_bit(MMF_OOM_SKIP, &mm->flags);
635
636	/* Drop a reference taken by queue_oom_reaper */
637	put_task_struct(tsk);
638}
639
640static int oom_reaper(void *unused)
641{
642	while (true) {
643		struct task_struct *tsk = NULL;
644
645		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646		spin_lock_irq(&oom_reaper_lock);
647		if (oom_reaper_list != NULL) {
648			tsk = oom_reaper_list;
649			oom_reaper_list = tsk->oom_reaper_list;
650		}
651		spin_unlock_irq(&oom_reaper_lock);
652
653		if (tsk)
654			oom_reap_task(tsk);
655	}
656
657	return 0;
658}
659
660static void wake_oom_reaper(struct timer_list *timer)
661{
662	struct task_struct *tsk = container_of(timer, struct task_struct,
663			oom_reaper_timer);
664	struct mm_struct *mm = tsk->signal->oom_mm;
665	unsigned long flags;
666
667	/* The victim managed to terminate on its own - see exit_mmap */
668	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
669		put_task_struct(tsk);
670		return;
671	}
672
673	spin_lock_irqsave(&oom_reaper_lock, flags);
674	tsk->oom_reaper_list = oom_reaper_list;
675	oom_reaper_list = tsk;
676	spin_unlock_irqrestore(&oom_reaper_lock, flags);
677	trace_wake_reaper(tsk->pid);
678	wake_up(&oom_reaper_wait);
679}
680
681/*
682 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
683 * The timers timeout is arbitrary... the longer it is, the longer the worst
684 * case scenario for the OOM can take. If it is too small, the oom_reaper can
685 * get in the way and release resources needed by the process exit path.
686 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
687 * before the exit path is able to wake the futex waiters.
688 */
689#define OOM_REAPER_DELAY (2*HZ)
690static void queue_oom_reaper(struct task_struct *tsk)
691{
692	/* mm is already queued? */
693	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
694		return;
695
696	get_task_struct(tsk);
697	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
698	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
699	add_timer(&tsk->oom_reaper_timer);
700}
701
702static int __init oom_init(void)
703{
704	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
705	return 0;
706}
707subsys_initcall(oom_init)
708#else
709static inline void queue_oom_reaper(struct task_struct *tsk)
710{
711}
712#endif /* CONFIG_MMU */
713
714/**
715 * mark_oom_victim - mark the given task as OOM victim
716 * @tsk: task to mark
717 *
718 * Has to be called with oom_lock held and never after
719 * oom has been disabled already.
720 *
721 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
722 * under task_lock or operate on the current).
723 */
724static void mark_oom_victim(struct task_struct *tsk)
725{
726	struct mm_struct *mm = tsk->mm;
727
728	WARN_ON(oom_killer_disabled);
729	/* OOM killer might race with memcg OOM */
730	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
731		return;
732
733	/* oom_mm is bound to the signal struct life time. */
734	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
735		mmgrab(tsk->signal->oom_mm);
736		set_bit(MMF_OOM_VICTIM, &mm->flags);
737	}
738
739	/*
740	 * Make sure that the task is woken up from uninterruptible sleep
741	 * if it is frozen because OOM killer wouldn't be able to free
742	 * any memory and livelock. freezing_slow_path will tell the freezer
743	 * that TIF_MEMDIE tasks should be ignored.
744	 */
745	__thaw_task(tsk);
746	atomic_inc(&oom_victims);
747	trace_mark_victim(tsk->pid);
748}
749
750/**
751 * exit_oom_victim - note the exit of an OOM victim
752 */
753void exit_oom_victim(void)
754{
755	clear_thread_flag(TIF_MEMDIE);
756
757	if (!atomic_dec_return(&oom_victims))
758		wake_up_all(&oom_victims_wait);
759}
760
761/**
762 * oom_killer_enable - enable OOM killer
763 */
764void oom_killer_enable(void)
765{
766	oom_killer_disabled = false;
767	pr_info("OOM killer enabled.\n");
768}
769
770/**
771 * oom_killer_disable - disable OOM killer
772 * @timeout: maximum timeout to wait for oom victims in jiffies
773 *
774 * Forces all page allocations to fail rather than trigger OOM killer.
775 * Will block and wait until all OOM victims are killed or the given
776 * timeout expires.
777 *
778 * The function cannot be called when there are runnable user tasks because
779 * the userspace would see unexpected allocation failures as a result. Any
780 * new usage of this function should be consulted with MM people.
781 *
782 * Returns true if successful and false if the OOM killer cannot be
783 * disabled.
784 */
785bool oom_killer_disable(signed long timeout)
786{
787	signed long ret;
788
789	/*
790	 * Make sure to not race with an ongoing OOM killer. Check that the
791	 * current is not killed (possibly due to sharing the victim's memory).
792	 */
793	if (mutex_lock_killable(&oom_lock))
794		return false;
795	oom_killer_disabled = true;
796	mutex_unlock(&oom_lock);
797
798	ret = wait_event_interruptible_timeout(oom_victims_wait,
799			!atomic_read(&oom_victims), timeout);
800	if (ret <= 0) {
801		oom_killer_enable();
802		return false;
803	}
804	pr_info("OOM killer disabled.\n");
805
806	return true;
807}
808
809static inline bool __task_will_free_mem(struct task_struct *task)
810{
811	struct signal_struct *sig = task->signal;
812
813	/*
814	 * A coredumping process may sleep for an extended period in exit_mm(),
815	 * so the oom killer cannot assume that the process will promptly exit
816	 * and release memory.
817	 */
818	if (sig->flags & SIGNAL_GROUP_COREDUMP)
819		return false;
820
821	if (sig->flags & SIGNAL_GROUP_EXIT)
822		return true;
823
824	if (thread_group_empty(task) && (task->flags & PF_EXITING))
825		return true;
826
827	return false;
828}
829
830/*
831 * Checks whether the given task is dying or exiting and likely to
832 * release its address space. This means that all threads and processes
833 * sharing the same mm have to be killed or exiting.
834 * Caller has to make sure that task->mm is stable (hold task_lock or
835 * it operates on the current).
836 */
837static bool task_will_free_mem(struct task_struct *task)
838{
839	struct mm_struct *mm = task->mm;
840	struct task_struct *p;
841	bool ret = true;
842
843	/*
844	 * Skip tasks without mm because it might have passed its exit_mm and
845	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
846	 * on that for now. We can consider find_lock_task_mm in future.
847	 */
848	if (!mm)
849		return false;
850
851	if (!__task_will_free_mem(task))
852		return false;
853
854	/*
855	 * This task has already been drained by the oom reaper so there are
856	 * only small chances it will free some more
857	 */
858	if (test_bit(MMF_OOM_SKIP, &mm->flags))
859		return false;
860
861	if (atomic_read(&mm->mm_users) <= 1)
862		return true;
863
864	/*
865	 * Make sure that all tasks which share the mm with the given tasks
866	 * are dying as well to make sure that a) nobody pins its mm and
867	 * b) the task is also reapable by the oom reaper.
868	 */
869	rcu_read_lock();
870	for_each_process(p) {
871		if (!process_shares_mm(p, mm))
872			continue;
873		if (same_thread_group(task, p))
874			continue;
875		ret = __task_will_free_mem(p);
876		if (!ret)
877			break;
878	}
879	rcu_read_unlock();
880
881	return ret;
882}
883
884static void __oom_kill_process(struct task_struct *victim, const char *message)
885{
886	struct task_struct *p;
887	struct mm_struct *mm;
888	bool can_oom_reap = true;
889
890	p = find_lock_task_mm(victim);
891	if (!p) {
892		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
893			message, task_pid_nr(victim), victim->comm);
894		put_task_struct(victim);
895		return;
896	} else if (victim != p) {
897		get_task_struct(p);
898		put_task_struct(victim);
899		victim = p;
900	}
901
902	/* Get a reference to safely compare mm after task_unlock(victim) */
903	mm = victim->mm;
904	mmgrab(mm);
905
906	/* Raise event before sending signal: task reaper must see this */
907	count_vm_event(OOM_KILL);
908	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
909
910	/*
911	 * We should send SIGKILL before granting access to memory reserves
912	 * in order to prevent the OOM victim from depleting the memory
913	 * reserves from the user space under its control.
914	 */
915	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
916	mark_oom_victim(victim);
917	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
918		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
919		K(get_mm_counter(mm, MM_ANONPAGES)),
920		K(get_mm_counter(mm, MM_FILEPAGES)),
921		K(get_mm_counter(mm, MM_SHMEMPAGES)),
922		from_kuid(&init_user_ns, task_uid(victim)),
923		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
924	task_unlock(victim);
925
926	/*
927	 * Kill all user processes sharing victim->mm in other thread groups, if
928	 * any.  They don't get access to memory reserves, though, to avoid
929	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
930	 * oom killed thread cannot exit because it requires the semaphore and
931	 * its contended by another thread trying to allocate memory itself.
932	 * That thread will now get access to memory reserves since it has a
933	 * pending fatal signal.
934	 */
935	rcu_read_lock();
936	for_each_process(p) {
937		if (!process_shares_mm(p, mm))
938			continue;
939		if (same_thread_group(p, victim))
940			continue;
941		if (is_global_init(p)) {
942			can_oom_reap = false;
943			set_bit(MMF_OOM_SKIP, &mm->flags);
944			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
945					task_pid_nr(victim), victim->comm,
946					task_pid_nr(p), p->comm);
947			continue;
948		}
949		/*
950		 * No kthead_use_mm() user needs to read from the userspace so
951		 * we are ok to reap it.
952		 */
953		if (unlikely(p->flags & PF_KTHREAD))
954			continue;
955		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
956	}
957	rcu_read_unlock();
958
959	if (can_oom_reap)
960		queue_oom_reaper(victim);
961
962	mmdrop(mm);
963	put_task_struct(victim);
964}
965#undef K
966
967/*
968 * Kill provided task unless it's secured by setting
969 * oom_score_adj to OOM_SCORE_ADJ_MIN.
970 */
971static int oom_kill_memcg_member(struct task_struct *task, void *message)
972{
973	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
974	    !is_global_init(task)) {
975		get_task_struct(task);
976		__oom_kill_process(task, message);
977	}
978	return 0;
979}
980
981static void oom_kill_process(struct oom_control *oc, const char *message)
982{
983	struct task_struct *victim = oc->chosen;
984	struct mem_cgroup *oom_group;
985	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
986					      DEFAULT_RATELIMIT_BURST);
987
988	/*
989	 * If the task is already exiting, don't alarm the sysadmin or kill
990	 * its children or threads, just give it access to memory reserves
991	 * so it can die quickly
992	 */
993	task_lock(victim);
994	if (task_will_free_mem(victim)) {
995		mark_oom_victim(victim);
996		queue_oom_reaper(victim);
997		task_unlock(victim);
998		put_task_struct(victim);
999		return;
1000	}
1001	task_unlock(victim);
1002
1003	if (__ratelimit(&oom_rs))
1004		dump_header(oc, victim);
1005
1006	/*
1007	 * Do we need to kill the entire memory cgroup?
1008	 * Or even one of the ancestor memory cgroups?
1009	 * Check this out before killing the victim task.
1010	 */
1011	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1012
1013	__oom_kill_process(victim, message);
1014
1015	/*
1016	 * If necessary, kill all tasks in the selected memory cgroup.
1017	 */
1018	if (oom_group) {
1019		mem_cgroup_print_oom_group(oom_group);
1020		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1021				      (void*)message);
1022		mem_cgroup_put(oom_group);
1023	}
1024}
1025
1026/*
1027 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1028 */
1029static void check_panic_on_oom(struct oom_control *oc)
1030{
1031	if (likely(!sysctl_panic_on_oom))
1032		return;
1033	if (sysctl_panic_on_oom != 2) {
1034		/*
1035		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1036		 * does not panic for cpuset, mempolicy, or memcg allocation
1037		 * failures.
1038		 */
1039		if (oc->constraint != CONSTRAINT_NONE)
1040			return;
1041	}
1042	/* Do not panic for oom kills triggered by sysrq */
1043	if (is_sysrq_oom(oc))
1044		return;
1045	dump_header(oc, NULL);
1046	panic("Out of memory: %s panic_on_oom is enabled\n",
1047		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1048}
1049
1050static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1051
1052int register_oom_notifier(struct notifier_block *nb)
1053{
1054	return blocking_notifier_chain_register(&oom_notify_list, nb);
1055}
1056EXPORT_SYMBOL_GPL(register_oom_notifier);
1057
1058int unregister_oom_notifier(struct notifier_block *nb)
1059{
1060	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1061}
1062EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1063
1064/**
1065 * out_of_memory - kill the "best" process when we run out of memory
1066 * @oc: pointer to struct oom_control
1067 *
1068 * If we run out of memory, we have the choice between either
1069 * killing a random task (bad), letting the system crash (worse)
1070 * OR try to be smart about which process to kill. Note that we
1071 * don't have to be perfect here, we just have to be good.
1072 */
1073bool out_of_memory(struct oom_control *oc)
1074{
1075	unsigned long freed = 0;
1076
1077	if (oom_killer_disabled)
1078		return false;
1079
1080	if (!is_memcg_oom(oc)) {
1081		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1082		if (freed > 0)
1083			/* Got some memory back in the last second. */
1084			return true;
1085	}
1086
1087	/*
1088	 * If current has a pending SIGKILL or is exiting, then automatically
1089	 * select it.  The goal is to allow it to allocate so that it may
1090	 * quickly exit and free its memory.
1091	 */
1092	if (task_will_free_mem(current)) {
1093		mark_oom_victim(current);
1094		queue_oom_reaper(current);
1095		return true;
1096	}
1097
1098	/*
1099	 * The OOM killer does not compensate for IO-less reclaim.
1100	 * pagefault_out_of_memory lost its gfp context so we have to
1101	 * make sure exclude 0 mask - all other users should have at least
1102	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1103	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1104	 */
1105	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1106		return true;
1107
1108	/*
1109	 * Check if there were limitations on the allocation (only relevant for
1110	 * NUMA and memcg) that may require different handling.
1111	 */
1112	oc->constraint = constrained_alloc(oc);
1113	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1114		oc->nodemask = NULL;
1115	check_panic_on_oom(oc);
1116
1117	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1118	    current->mm && !oom_unkillable_task(current) &&
1119	    oom_cpuset_eligible(current, oc) &&
1120	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1121		get_task_struct(current);
1122		oc->chosen = current;
1123		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1124		return true;
1125	}
1126
1127	select_bad_process(oc);
1128	/* Found nothing?!?! */
1129	if (!oc->chosen) {
1130		dump_header(oc, NULL);
1131		pr_warn("Out of memory and no killable processes...\n");
1132		/*
1133		 * If we got here due to an actual allocation at the
1134		 * system level, we cannot survive this and will enter
1135		 * an endless loop in the allocator. Bail out now.
1136		 */
1137		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1138			panic("System is deadlocked on memory\n");
1139	}
1140	if (oc->chosen && oc->chosen != (void *)-1UL)
1141		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1142				 "Memory cgroup out of memory");
1143	return !!oc->chosen;
1144}
1145
1146/*
1147 * The pagefault handler calls here because some allocation has failed. We have
1148 * to take care of the memcg OOM here because this is the only safe context without
1149 * any locks held but let the oom killer triggered from the allocation context care
1150 * about the global OOM.
1151 */
1152void pagefault_out_of_memory(void)
1153{
1154	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1155				      DEFAULT_RATELIMIT_BURST);
1156
1157	if (mem_cgroup_oom_synchronize(true))
1158		return;
1159
1160	if (fatal_signal_pending(current))
1161		return;
1162
1163	if (__ratelimit(&pfoom_rs))
1164		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1165}
1166