1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21#include <linux/oom.h> 22#include <linux/mm.h> 23#include <linux/err.h> 24#include <linux/gfp.h> 25#include <linux/sched.h> 26#include <linux/sched/mm.h> 27#include <linux/sched/coredump.h> 28#include <linux/sched/task.h> 29#include <linux/sched/debug.h> 30#include <linux/swap.h> 31#include <linux/timex.h> 32#include <linux/jiffies.h> 33#include <linux/cpuset.h> 34#include <linux/export.h> 35#include <linux/notifier.h> 36#include <linux/memcontrol.h> 37#include <linux/mempolicy.h> 38#include <linux/security.h> 39#include <linux/ptrace.h> 40#include <linux/freezer.h> 41#include <linux/ftrace.h> 42#include <linux/ratelimit.h> 43#include <linux/kthread.h> 44#include <linux/init.h> 45#include <linux/mmu_notifier.h> 46 47#include <asm/tlb.h> 48#include "internal.h" 49#include "slab.h" 50 51#define CREATE_TRACE_POINTS 52#include <trace/events/oom.h> 53 54int sysctl_panic_on_oom; 55int sysctl_oom_kill_allocating_task; 56int sysctl_oom_dump_tasks = 1; 57 58/* 59 * Serializes oom killer invocations (out_of_memory()) from all contexts to 60 * prevent from over eager oom killing (e.g. when the oom killer is invoked 61 * from different domains). 62 * 63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 64 * and mark_oom_victim 65 */ 66DEFINE_MUTEX(oom_lock); 67/* Serializes oom_score_adj and oom_score_adj_min updates */ 68DEFINE_MUTEX(oom_adj_mutex); 69 70static inline bool is_memcg_oom(struct oom_control *oc) 71{ 72 return oc->memcg != NULL; 73} 74 75#ifdef CONFIG_NUMA 76/** 77 * oom_cpuset_eligible() - check task eligiblity for kill 78 * @start: task struct of which task to consider 79 * @oc: pointer to struct oom_control 80 * 81 * Task eligibility is determined by whether or not a candidate task, @tsk, 82 * shares the same mempolicy nodes as current if it is bound by such a policy 83 * and whether or not it has the same set of allowed cpuset nodes. 84 * 85 * This function is assuming oom-killer context and 'current' has triggered 86 * the oom-killer. 87 */ 88static bool oom_cpuset_eligible(struct task_struct *start, 89 struct oom_control *oc) 90{ 91 struct task_struct *tsk; 92 bool ret = false; 93 const nodemask_t *mask = oc->nodemask; 94 95 if (is_memcg_oom(oc)) 96 return true; 97 98 rcu_read_lock(); 99 for_each_thread(start, tsk) { 100 if (mask) { 101 /* 102 * If this is a mempolicy constrained oom, tsk's 103 * cpuset is irrelevant. Only return true if its 104 * mempolicy intersects current, otherwise it may be 105 * needlessly killed. 106 */ 107 ret = mempolicy_nodemask_intersects(tsk, mask); 108 } else { 109 /* 110 * This is not a mempolicy constrained oom, so only 111 * check the mems of tsk's cpuset. 112 */ 113 ret = cpuset_mems_allowed_intersects(current, tsk); 114 } 115 if (ret) 116 break; 117 } 118 rcu_read_unlock(); 119 120 return ret; 121} 122#else 123static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 124{ 125 return true; 126} 127#endif /* CONFIG_NUMA */ 128 129/* 130 * The process p may have detached its own ->mm while exiting or through 131 * kthread_use_mm(), but one or more of its subthreads may still have a valid 132 * pointer. Return p, or any of its subthreads with a valid ->mm, with 133 * task_lock() held. 134 */ 135struct task_struct *find_lock_task_mm(struct task_struct *p) 136{ 137 struct task_struct *t; 138 139 rcu_read_lock(); 140 141 for_each_thread(p, t) { 142 task_lock(t); 143 if (likely(t->mm)) 144 goto found; 145 task_unlock(t); 146 } 147 t = NULL; 148found: 149 rcu_read_unlock(); 150 151 return t; 152} 153 154/* 155 * order == -1 means the oom kill is required by sysrq, otherwise only 156 * for display purposes. 157 */ 158static inline bool is_sysrq_oom(struct oom_control *oc) 159{ 160 return oc->order == -1; 161} 162 163/* return true if the task is not adequate as candidate victim task. */ 164static bool oom_unkillable_task(struct task_struct *p) 165{ 166 if (is_global_init(p)) 167 return true; 168 if (p->flags & PF_KTHREAD) 169 return true; 170 return false; 171} 172 173/* 174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 175 * than all user memory (LRU pages) 176 */ 177static bool is_dump_unreclaim_slabs(void) 178{ 179 unsigned long nr_lru; 180 181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 182 global_node_page_state(NR_INACTIVE_ANON) + 183 global_node_page_state(NR_ACTIVE_FILE) + 184 global_node_page_state(NR_INACTIVE_FILE) + 185 global_node_page_state(NR_ISOLATED_ANON) + 186 global_node_page_state(NR_ISOLATED_FILE) + 187 global_node_page_state(NR_UNEVICTABLE); 188 189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 190} 191 192/** 193 * oom_badness - heuristic function to determine which candidate task to kill 194 * @p: task struct of which task we should calculate 195 * @totalpages: total present RAM allowed for page allocation 196 * 197 * The heuristic for determining which task to kill is made to be as simple and 198 * predictable as possible. The goal is to return the highest value for the 199 * task consuming the most memory to avoid subsequent oom failures. 200 */ 201long oom_badness(struct task_struct *p, unsigned long totalpages) 202{ 203 long points; 204 long adj; 205 206 if (oom_unkillable_task(p)) 207 return LONG_MIN; 208 209 p = find_lock_task_mm(p); 210 if (!p) 211 return LONG_MIN; 212 213 /* 214 * Do not even consider tasks which are explicitly marked oom 215 * unkillable or have been already oom reaped or the are in 216 * the middle of vfork 217 */ 218 adj = (long)p->signal->oom_score_adj; 219 if (adj == OOM_SCORE_ADJ_MIN || 220 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 221 in_vfork(p)) { 222 task_unlock(p); 223 return LONG_MIN; 224 } 225 226 /* 227 * The baseline for the badness score is the proportion of RAM that each 228 * task's rss, pagetable and swap space use. 229 */ 230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 231 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 232 task_unlock(p); 233 234 /* Normalize to oom_score_adj units */ 235 adj *= totalpages / 1000; 236 points += adj; 237 238 return points; 239} 240 241static const char * const oom_constraint_text[] = { 242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 246}; 247 248/* 249 * Determine the type of allocation constraint. 250 */ 251static enum oom_constraint constrained_alloc(struct oom_control *oc) 252{ 253 struct zone *zone; 254 struct zoneref *z; 255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 256 bool cpuset_limited = false; 257 int nid; 258 259 if (is_memcg_oom(oc)) { 260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 261 return CONSTRAINT_MEMCG; 262 } 263 264 /* Default to all available memory */ 265 oc->totalpages = totalram_pages() + total_swap_pages; 266 267 if (!IS_ENABLED(CONFIG_NUMA)) 268 return CONSTRAINT_NONE; 269 270 if (!oc->zonelist) 271 return CONSTRAINT_NONE; 272 /* 273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 274 * to kill current.We have to random task kill in this case. 275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 276 */ 277 if (oc->gfp_mask & __GFP_THISNODE) 278 return CONSTRAINT_NONE; 279 280 /* 281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 282 * the page allocator means a mempolicy is in effect. Cpuset policy 283 * is enforced in get_page_from_freelist(). 284 */ 285 if (oc->nodemask && 286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 287 oc->totalpages = total_swap_pages; 288 for_each_node_mask(nid, *oc->nodemask) 289 oc->totalpages += node_present_pages(nid); 290 return CONSTRAINT_MEMORY_POLICY; 291 } 292 293 /* Check this allocation failure is caused by cpuset's wall function */ 294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 295 highest_zoneidx, oc->nodemask) 296 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 297 cpuset_limited = true; 298 299 if (cpuset_limited) { 300 oc->totalpages = total_swap_pages; 301 for_each_node_mask(nid, cpuset_current_mems_allowed) 302 oc->totalpages += node_present_pages(nid); 303 return CONSTRAINT_CPUSET; 304 } 305 return CONSTRAINT_NONE; 306} 307 308static int oom_evaluate_task(struct task_struct *task, void *arg) 309{ 310 struct oom_control *oc = arg; 311 long points; 312 313 if (oom_unkillable_task(task)) 314 goto next; 315 316 /* p may not have freeable memory in nodemask */ 317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 318 goto next; 319 320 /* 321 * This task already has access to memory reserves and is being killed. 322 * Don't allow any other task to have access to the reserves unless 323 * the task has MMF_OOM_SKIP because chances that it would release 324 * any memory is quite low. 325 */ 326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 328 goto next; 329 goto abort; 330 } 331 332 /* 333 * If task is allocating a lot of memory and has been marked to be 334 * killed first if it triggers an oom, then select it. 335 */ 336 if (oom_task_origin(task)) { 337 points = LONG_MAX; 338 goto select; 339 } 340 341 points = oom_badness(task, oc->totalpages); 342 if (points == LONG_MIN || points < oc->chosen_points) 343 goto next; 344 345select: 346 if (oc->chosen) 347 put_task_struct(oc->chosen); 348 get_task_struct(task); 349 oc->chosen = task; 350 oc->chosen_points = points; 351next: 352 return 0; 353abort: 354 if (oc->chosen) 355 put_task_struct(oc->chosen); 356 oc->chosen = (void *)-1UL; 357 return 1; 358} 359 360/* 361 * Simple selection loop. We choose the process with the highest number of 362 * 'points'. In case scan was aborted, oc->chosen is set to -1. 363 */ 364static void select_bad_process(struct oom_control *oc) 365{ 366 oc->chosen_points = LONG_MIN; 367 368 if (is_memcg_oom(oc)) 369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 370 else { 371 struct task_struct *p; 372 373 rcu_read_lock(); 374 for_each_process(p) 375 if (oom_evaluate_task(p, oc)) 376 break; 377 rcu_read_unlock(); 378 } 379} 380 381static int dump_task(struct task_struct *p, void *arg) 382{ 383 struct oom_control *oc = arg; 384 struct task_struct *task; 385 386 if (oom_unkillable_task(p)) 387 return 0; 388 389 /* p may not have freeable memory in nodemask */ 390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 391 return 0; 392 393 task = find_lock_task_mm(p); 394 if (!task) { 395 /* 396 * This is a kthread or all of p's threads have already 397 * detached their mm's. There's no need to report 398 * them; they can't be oom killed anyway. 399 */ 400 return 0; 401 } 402 403 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 404 task->pid, from_kuid(&init_user_ns, task_uid(task)), 405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 406 mm_pgtables_bytes(task->mm), 407 get_mm_counter(task->mm, MM_SWAPENTS), 408 task->signal->oom_score_adj, task->comm); 409 task_unlock(task); 410 411 return 0; 412} 413 414/** 415 * dump_tasks - dump current memory state of all system tasks 416 * @oc: pointer to struct oom_control 417 * 418 * Dumps the current memory state of all eligible tasks. Tasks not in the same 419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 420 * are not shown. 421 * State information includes task's pid, uid, tgid, vm size, rss, 422 * pgtables_bytes, swapents, oom_score_adj value, and name. 423 */ 424static void dump_tasks(struct oom_control *oc) 425{ 426 pr_info("Tasks state (memory values in pages):\n"); 427 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 428 429 if (is_memcg_oom(oc)) 430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 431 else { 432 struct task_struct *p; 433 434 rcu_read_lock(); 435 for_each_process(p) 436 dump_task(p, oc); 437 rcu_read_unlock(); 438 } 439} 440 441static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 442{ 443 /* one line summary of the oom killer context. */ 444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 445 oom_constraint_text[oc->constraint], 446 nodemask_pr_args(oc->nodemask)); 447 cpuset_print_current_mems_allowed(); 448 mem_cgroup_print_oom_context(oc->memcg, victim); 449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 450 from_kuid(&init_user_ns, task_uid(victim))); 451} 452 453static void dump_header(struct oom_control *oc, struct task_struct *p) 454{ 455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 457 current->signal->oom_score_adj); 458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 459 pr_warn("COMPACTION is disabled!!!\n"); 460 461 dump_stack(); 462 if (is_memcg_oom(oc)) 463 mem_cgroup_print_oom_meminfo(oc->memcg); 464 else { 465 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 466 if (is_dump_unreclaim_slabs()) 467 dump_unreclaimable_slab(); 468 } 469 if (sysctl_oom_dump_tasks) 470 dump_tasks(oc); 471 if (p) 472 dump_oom_summary(oc, p); 473} 474 475/* 476 * Number of OOM victims in flight 477 */ 478static atomic_t oom_victims = ATOMIC_INIT(0); 479static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 480 481static bool oom_killer_disabled __read_mostly; 482 483#define K(x) ((x) << (PAGE_SHIFT-10)) 484 485/* 486 * task->mm can be NULL if the task is the exited group leader. So to 487 * determine whether the task is using a particular mm, we examine all the 488 * task's threads: if one of those is using this mm then this task was also 489 * using it. 490 */ 491bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 492{ 493 struct task_struct *t; 494 495 for_each_thread(p, t) { 496 struct mm_struct *t_mm = READ_ONCE(t->mm); 497 if (t_mm) 498 return t_mm == mm; 499 } 500 return false; 501} 502 503#ifdef CONFIG_MMU 504/* 505 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 506 * victim (if that is possible) to help the OOM killer to move on. 507 */ 508static struct task_struct *oom_reaper_th; 509static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 510static struct task_struct *oom_reaper_list; 511static DEFINE_SPINLOCK(oom_reaper_lock); 512 513bool __oom_reap_task_mm(struct mm_struct *mm) 514{ 515 struct vm_area_struct *vma; 516 bool ret = true; 517 518 /* 519 * Tell all users of get_user/copy_from_user etc... that the content 520 * is no longer stable. No barriers really needed because unmapping 521 * should imply barriers already and the reader would hit a page fault 522 * if it stumbled over a reaped memory. 523 */ 524 set_bit(MMF_UNSTABLE, &mm->flags); 525 526 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 527 if (!can_madv_lru_vma(vma)) 528 continue; 529 530 /* 531 * Only anonymous pages have a good chance to be dropped 532 * without additional steps which we cannot afford as we 533 * are OOM already. 534 * 535 * We do not even care about fs backed pages because all 536 * which are reclaimable have already been reclaimed and 537 * we do not want to block exit_mmap by keeping mm ref 538 * count elevated without a good reason. 539 */ 540 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 541 struct mmu_notifier_range range; 542 struct mmu_gather tlb; 543 544 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 545 vma, mm, vma->vm_start, 546 vma->vm_end); 547 tlb_gather_mmu(&tlb, mm, range.start, range.end); 548 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 549 tlb_finish_mmu(&tlb, range.start, range.end); 550 ret = false; 551 continue; 552 } 553 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 554 mmu_notifier_invalidate_range_end(&range); 555 tlb_finish_mmu(&tlb, range.start, range.end); 556 } 557 } 558 559 return ret; 560} 561 562/* 563 * Reaps the address space of the give task. 564 * 565 * Returns true on success and false if none or part of the address space 566 * has been reclaimed and the caller should retry later. 567 */ 568static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 569{ 570 bool ret = true; 571 572 if (!mmap_read_trylock(mm)) { 573 trace_skip_task_reaping(tsk->pid); 574 return false; 575 } 576 577 /* 578 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 579 * work on the mm anymore. The check for MMF_OOM_SKIP must run 580 * under mmap_lock for reading because it serializes against the 581 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 582 */ 583 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 584 trace_skip_task_reaping(tsk->pid); 585 goto out_unlock; 586 } 587 588 trace_start_task_reaping(tsk->pid); 589 590 /* failed to reap part of the address space. Try again later */ 591 ret = __oom_reap_task_mm(mm); 592 if (!ret) 593 goto out_finish; 594 595 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 596 task_pid_nr(tsk), tsk->comm, 597 K(get_mm_counter(mm, MM_ANONPAGES)), 598 K(get_mm_counter(mm, MM_FILEPAGES)), 599 K(get_mm_counter(mm, MM_SHMEMPAGES))); 600out_finish: 601 trace_finish_task_reaping(tsk->pid); 602out_unlock: 603 mmap_read_unlock(mm); 604 605 return ret; 606} 607 608#define MAX_OOM_REAP_RETRIES 10 609static void oom_reap_task(struct task_struct *tsk) 610{ 611 int attempts = 0; 612 struct mm_struct *mm = tsk->signal->oom_mm; 613 614 /* Retry the mmap_read_trylock(mm) a few times */ 615 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 616 schedule_timeout_idle(HZ/10); 617 618 if (attempts <= MAX_OOM_REAP_RETRIES || 619 test_bit(MMF_OOM_SKIP, &mm->flags)) 620 goto done; 621 622 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 623 task_pid_nr(tsk), tsk->comm); 624 sched_show_task(tsk); 625 debug_show_all_locks(); 626 627done: 628 tsk->oom_reaper_list = NULL; 629 630 /* 631 * Hide this mm from OOM killer because it has been either reaped or 632 * somebody can't call mmap_write_unlock(mm). 633 */ 634 set_bit(MMF_OOM_SKIP, &mm->flags); 635 636 /* Drop a reference taken by queue_oom_reaper */ 637 put_task_struct(tsk); 638} 639 640static int oom_reaper(void *unused) 641{ 642 while (true) { 643 struct task_struct *tsk = NULL; 644 645 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 646 spin_lock_irq(&oom_reaper_lock); 647 if (oom_reaper_list != NULL) { 648 tsk = oom_reaper_list; 649 oom_reaper_list = tsk->oom_reaper_list; 650 } 651 spin_unlock_irq(&oom_reaper_lock); 652 653 if (tsk) 654 oom_reap_task(tsk); 655 } 656 657 return 0; 658} 659 660static void wake_oom_reaper(struct timer_list *timer) 661{ 662 struct task_struct *tsk = container_of(timer, struct task_struct, 663 oom_reaper_timer); 664 struct mm_struct *mm = tsk->signal->oom_mm; 665 unsigned long flags; 666 667 /* The victim managed to terminate on its own - see exit_mmap */ 668 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 669 put_task_struct(tsk); 670 return; 671 } 672 673 spin_lock_irqsave(&oom_reaper_lock, flags); 674 tsk->oom_reaper_list = oom_reaper_list; 675 oom_reaper_list = tsk; 676 spin_unlock_irqrestore(&oom_reaper_lock, flags); 677 trace_wake_reaper(tsk->pid); 678 wake_up(&oom_reaper_wait); 679} 680 681/* 682 * Give the OOM victim time to exit naturally before invoking the oom_reaping. 683 * The timers timeout is arbitrary... the longer it is, the longer the worst 684 * case scenario for the OOM can take. If it is too small, the oom_reaper can 685 * get in the way and release resources needed by the process exit path. 686 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped 687 * before the exit path is able to wake the futex waiters. 688 */ 689#define OOM_REAPER_DELAY (2*HZ) 690static void queue_oom_reaper(struct task_struct *tsk) 691{ 692 /* mm is already queued? */ 693 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 694 return; 695 696 get_task_struct(tsk); 697 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); 698 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; 699 add_timer(&tsk->oom_reaper_timer); 700} 701 702static int __init oom_init(void) 703{ 704 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 705 return 0; 706} 707subsys_initcall(oom_init) 708#else 709static inline void queue_oom_reaper(struct task_struct *tsk) 710{ 711} 712#endif /* CONFIG_MMU */ 713 714/** 715 * mark_oom_victim - mark the given task as OOM victim 716 * @tsk: task to mark 717 * 718 * Has to be called with oom_lock held and never after 719 * oom has been disabled already. 720 * 721 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 722 * under task_lock or operate on the current). 723 */ 724static void mark_oom_victim(struct task_struct *tsk) 725{ 726 struct mm_struct *mm = tsk->mm; 727 728 WARN_ON(oom_killer_disabled); 729 /* OOM killer might race with memcg OOM */ 730 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 731 return; 732 733 /* oom_mm is bound to the signal struct life time. */ 734 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 735 mmgrab(tsk->signal->oom_mm); 736 set_bit(MMF_OOM_VICTIM, &mm->flags); 737 } 738 739 /* 740 * Make sure that the task is woken up from uninterruptible sleep 741 * if it is frozen because OOM killer wouldn't be able to free 742 * any memory and livelock. freezing_slow_path will tell the freezer 743 * that TIF_MEMDIE tasks should be ignored. 744 */ 745 __thaw_task(tsk); 746 atomic_inc(&oom_victims); 747 trace_mark_victim(tsk->pid); 748} 749 750/** 751 * exit_oom_victim - note the exit of an OOM victim 752 */ 753void exit_oom_victim(void) 754{ 755 clear_thread_flag(TIF_MEMDIE); 756 757 if (!atomic_dec_return(&oom_victims)) 758 wake_up_all(&oom_victims_wait); 759} 760 761/** 762 * oom_killer_enable - enable OOM killer 763 */ 764void oom_killer_enable(void) 765{ 766 oom_killer_disabled = false; 767 pr_info("OOM killer enabled.\n"); 768} 769 770/** 771 * oom_killer_disable - disable OOM killer 772 * @timeout: maximum timeout to wait for oom victims in jiffies 773 * 774 * Forces all page allocations to fail rather than trigger OOM killer. 775 * Will block and wait until all OOM victims are killed or the given 776 * timeout expires. 777 * 778 * The function cannot be called when there are runnable user tasks because 779 * the userspace would see unexpected allocation failures as a result. Any 780 * new usage of this function should be consulted with MM people. 781 * 782 * Returns true if successful and false if the OOM killer cannot be 783 * disabled. 784 */ 785bool oom_killer_disable(signed long timeout) 786{ 787 signed long ret; 788 789 /* 790 * Make sure to not race with an ongoing OOM killer. Check that the 791 * current is not killed (possibly due to sharing the victim's memory). 792 */ 793 if (mutex_lock_killable(&oom_lock)) 794 return false; 795 oom_killer_disabled = true; 796 mutex_unlock(&oom_lock); 797 798 ret = wait_event_interruptible_timeout(oom_victims_wait, 799 !atomic_read(&oom_victims), timeout); 800 if (ret <= 0) { 801 oom_killer_enable(); 802 return false; 803 } 804 pr_info("OOM killer disabled.\n"); 805 806 return true; 807} 808 809static inline bool __task_will_free_mem(struct task_struct *task) 810{ 811 struct signal_struct *sig = task->signal; 812 813 /* 814 * A coredumping process may sleep for an extended period in exit_mm(), 815 * so the oom killer cannot assume that the process will promptly exit 816 * and release memory. 817 */ 818 if (sig->flags & SIGNAL_GROUP_COREDUMP) 819 return false; 820 821 if (sig->flags & SIGNAL_GROUP_EXIT) 822 return true; 823 824 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 825 return true; 826 827 return false; 828} 829 830/* 831 * Checks whether the given task is dying or exiting and likely to 832 * release its address space. This means that all threads and processes 833 * sharing the same mm have to be killed or exiting. 834 * Caller has to make sure that task->mm is stable (hold task_lock or 835 * it operates on the current). 836 */ 837static bool task_will_free_mem(struct task_struct *task) 838{ 839 struct mm_struct *mm = task->mm; 840 struct task_struct *p; 841 bool ret = true; 842 843 /* 844 * Skip tasks without mm because it might have passed its exit_mm and 845 * exit_oom_victim. oom_reaper could have rescued that but do not rely 846 * on that for now. We can consider find_lock_task_mm in future. 847 */ 848 if (!mm) 849 return false; 850 851 if (!__task_will_free_mem(task)) 852 return false; 853 854 /* 855 * This task has already been drained by the oom reaper so there are 856 * only small chances it will free some more 857 */ 858 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 859 return false; 860 861 if (atomic_read(&mm->mm_users) <= 1) 862 return true; 863 864 /* 865 * Make sure that all tasks which share the mm with the given tasks 866 * are dying as well to make sure that a) nobody pins its mm and 867 * b) the task is also reapable by the oom reaper. 868 */ 869 rcu_read_lock(); 870 for_each_process(p) { 871 if (!process_shares_mm(p, mm)) 872 continue; 873 if (same_thread_group(task, p)) 874 continue; 875 ret = __task_will_free_mem(p); 876 if (!ret) 877 break; 878 } 879 rcu_read_unlock(); 880 881 return ret; 882} 883 884static void __oom_kill_process(struct task_struct *victim, const char *message) 885{ 886 struct task_struct *p; 887 struct mm_struct *mm; 888 bool can_oom_reap = true; 889 890 p = find_lock_task_mm(victim); 891 if (!p) { 892 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 893 message, task_pid_nr(victim), victim->comm); 894 put_task_struct(victim); 895 return; 896 } else if (victim != p) { 897 get_task_struct(p); 898 put_task_struct(victim); 899 victim = p; 900 } 901 902 /* Get a reference to safely compare mm after task_unlock(victim) */ 903 mm = victim->mm; 904 mmgrab(mm); 905 906 /* Raise event before sending signal: task reaper must see this */ 907 count_vm_event(OOM_KILL); 908 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 909 910 /* 911 * We should send SIGKILL before granting access to memory reserves 912 * in order to prevent the OOM victim from depleting the memory 913 * reserves from the user space under its control. 914 */ 915 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 916 mark_oom_victim(victim); 917 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 918 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 919 K(get_mm_counter(mm, MM_ANONPAGES)), 920 K(get_mm_counter(mm, MM_FILEPAGES)), 921 K(get_mm_counter(mm, MM_SHMEMPAGES)), 922 from_kuid(&init_user_ns, task_uid(victim)), 923 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 924 task_unlock(victim); 925 926 /* 927 * Kill all user processes sharing victim->mm in other thread groups, if 928 * any. They don't get access to memory reserves, though, to avoid 929 * depletion of all memory. This prevents mm->mmap_lock livelock when an 930 * oom killed thread cannot exit because it requires the semaphore and 931 * its contended by another thread trying to allocate memory itself. 932 * That thread will now get access to memory reserves since it has a 933 * pending fatal signal. 934 */ 935 rcu_read_lock(); 936 for_each_process(p) { 937 if (!process_shares_mm(p, mm)) 938 continue; 939 if (same_thread_group(p, victim)) 940 continue; 941 if (is_global_init(p)) { 942 can_oom_reap = false; 943 set_bit(MMF_OOM_SKIP, &mm->flags); 944 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 945 task_pid_nr(victim), victim->comm, 946 task_pid_nr(p), p->comm); 947 continue; 948 } 949 /* 950 * No kthead_use_mm() user needs to read from the userspace so 951 * we are ok to reap it. 952 */ 953 if (unlikely(p->flags & PF_KTHREAD)) 954 continue; 955 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 956 } 957 rcu_read_unlock(); 958 959 if (can_oom_reap) 960 queue_oom_reaper(victim); 961 962 mmdrop(mm); 963 put_task_struct(victim); 964} 965#undef K 966 967/* 968 * Kill provided task unless it's secured by setting 969 * oom_score_adj to OOM_SCORE_ADJ_MIN. 970 */ 971static int oom_kill_memcg_member(struct task_struct *task, void *message) 972{ 973 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 974 !is_global_init(task)) { 975 get_task_struct(task); 976 __oom_kill_process(task, message); 977 } 978 return 0; 979} 980 981static void oom_kill_process(struct oom_control *oc, const char *message) 982{ 983 struct task_struct *victim = oc->chosen; 984 struct mem_cgroup *oom_group; 985 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 986 DEFAULT_RATELIMIT_BURST); 987 988 /* 989 * If the task is already exiting, don't alarm the sysadmin or kill 990 * its children or threads, just give it access to memory reserves 991 * so it can die quickly 992 */ 993 task_lock(victim); 994 if (task_will_free_mem(victim)) { 995 mark_oom_victim(victim); 996 queue_oom_reaper(victim); 997 task_unlock(victim); 998 put_task_struct(victim); 999 return; 1000 } 1001 task_unlock(victim); 1002 1003 if (__ratelimit(&oom_rs)) 1004 dump_header(oc, victim); 1005 1006 /* 1007 * Do we need to kill the entire memory cgroup? 1008 * Or even one of the ancestor memory cgroups? 1009 * Check this out before killing the victim task. 1010 */ 1011 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 1012 1013 __oom_kill_process(victim, message); 1014 1015 /* 1016 * If necessary, kill all tasks in the selected memory cgroup. 1017 */ 1018 if (oom_group) { 1019 mem_cgroup_print_oom_group(oom_group); 1020 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 1021 (void*)message); 1022 mem_cgroup_put(oom_group); 1023 } 1024} 1025 1026/* 1027 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1028 */ 1029static void check_panic_on_oom(struct oom_control *oc) 1030{ 1031 if (likely(!sysctl_panic_on_oom)) 1032 return; 1033 if (sysctl_panic_on_oom != 2) { 1034 /* 1035 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1036 * does not panic for cpuset, mempolicy, or memcg allocation 1037 * failures. 1038 */ 1039 if (oc->constraint != CONSTRAINT_NONE) 1040 return; 1041 } 1042 /* Do not panic for oom kills triggered by sysrq */ 1043 if (is_sysrq_oom(oc)) 1044 return; 1045 dump_header(oc, NULL); 1046 panic("Out of memory: %s panic_on_oom is enabled\n", 1047 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1048} 1049 1050static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1051 1052int register_oom_notifier(struct notifier_block *nb) 1053{ 1054 return blocking_notifier_chain_register(&oom_notify_list, nb); 1055} 1056EXPORT_SYMBOL_GPL(register_oom_notifier); 1057 1058int unregister_oom_notifier(struct notifier_block *nb) 1059{ 1060 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1061} 1062EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1063 1064/** 1065 * out_of_memory - kill the "best" process when we run out of memory 1066 * @oc: pointer to struct oom_control 1067 * 1068 * If we run out of memory, we have the choice between either 1069 * killing a random task (bad), letting the system crash (worse) 1070 * OR try to be smart about which process to kill. Note that we 1071 * don't have to be perfect here, we just have to be good. 1072 */ 1073bool out_of_memory(struct oom_control *oc) 1074{ 1075 unsigned long freed = 0; 1076 1077 if (oom_killer_disabled) 1078 return false; 1079 1080 if (!is_memcg_oom(oc)) { 1081 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1082 if (freed > 0) 1083 /* Got some memory back in the last second. */ 1084 return true; 1085 } 1086 1087 /* 1088 * If current has a pending SIGKILL or is exiting, then automatically 1089 * select it. The goal is to allow it to allocate so that it may 1090 * quickly exit and free its memory. 1091 */ 1092 if (task_will_free_mem(current)) { 1093 mark_oom_victim(current); 1094 queue_oom_reaper(current); 1095 return true; 1096 } 1097 1098 /* 1099 * The OOM killer does not compensate for IO-less reclaim. 1100 * pagefault_out_of_memory lost its gfp context so we have to 1101 * make sure exclude 0 mask - all other users should have at least 1102 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to 1103 * invoke the OOM killer even if it is a GFP_NOFS allocation. 1104 */ 1105 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1106 return true; 1107 1108 /* 1109 * Check if there were limitations on the allocation (only relevant for 1110 * NUMA and memcg) that may require different handling. 1111 */ 1112 oc->constraint = constrained_alloc(oc); 1113 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1114 oc->nodemask = NULL; 1115 check_panic_on_oom(oc); 1116 1117 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1118 current->mm && !oom_unkillable_task(current) && 1119 oom_cpuset_eligible(current, oc) && 1120 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1121 get_task_struct(current); 1122 oc->chosen = current; 1123 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1124 return true; 1125 } 1126 1127 select_bad_process(oc); 1128 /* Found nothing?!?! */ 1129 if (!oc->chosen) { 1130 dump_header(oc, NULL); 1131 pr_warn("Out of memory and no killable processes...\n"); 1132 /* 1133 * If we got here due to an actual allocation at the 1134 * system level, we cannot survive this and will enter 1135 * an endless loop in the allocator. Bail out now. 1136 */ 1137 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1138 panic("System is deadlocked on memory\n"); 1139 } 1140 if (oc->chosen && oc->chosen != (void *)-1UL) 1141 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1142 "Memory cgroup out of memory"); 1143 return !!oc->chosen; 1144} 1145 1146/* 1147 * The pagefault handler calls here because some allocation has failed. We have 1148 * to take care of the memcg OOM here because this is the only safe context without 1149 * any locks held but let the oom killer triggered from the allocation context care 1150 * about the global OOM. 1151 */ 1152void pagefault_out_of_memory(void) 1153{ 1154 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, 1155 DEFAULT_RATELIMIT_BURST); 1156 1157 if (mem_cgroup_oom_synchronize(true)) 1158 return; 1159 1160 if (fatal_signal_pending(current)) 1161 return; 1162 1163 if (__ratelimit(&pfoom_rs)) 1164 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); 1165} 1166