xref: /kernel/linux/linux-5.10/mm/memcontrol.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25#include <linux/page_counter.h>
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
28#include <linux/pagewalk.h>
29#include <linux/sched/mm.h>
30#include <linux/shmem_fs.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vm_event_item.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/swap_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include <linux/tracehook.h>
60#include <linux/psi.h>
61#include <linux/seq_buf.h>
62#include "internal.h"
63#include <net/sock.h>
64#include <net/ip.h>
65#include "slab.h"
66
67#include <linux/uaccess.h>
68#include <linux/zswapd.h>
69
70#include <trace/events/vmscan.h>
71
72struct cgroup_subsys memory_cgrp_subsys __read_mostly;
73EXPORT_SYMBOL(memory_cgrp_subsys);
74
75struct mem_cgroup *root_mem_cgroup __read_mostly;
76
77/* Active memory cgroup to use from an interrupt context */
78DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
79
80/* Socket memory accounting disabled? */
81static bool cgroup_memory_nosocket;
82
83/* Kernel memory accounting disabled */
84static bool cgroup_memory_nokmem = true;
85
86/* Whether the swap controller is active */
87#ifdef CONFIG_MEMCG_SWAP
88bool cgroup_memory_noswap __read_mostly;
89#else
90#define cgroup_memory_noswap		1
91#endif
92
93#ifdef CONFIG_CGROUP_WRITEBACK
94static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95#endif
96
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
101}
102
103#define THRESHOLDS_EVENTS_TARGET 128
104#define SOFTLIMIT_EVENTS_TARGET 1024
105
106/*
107 * Cgroups above their limits are maintained in a RB-Tree, independent of
108 * their hierarchy representation
109 */
110
111struct mem_cgroup_tree_per_node {
112	struct rb_root rb_root;
113	struct rb_node *rb_rightmost;
114	spinlock_t lock;
115};
116
117struct mem_cgroup_tree {
118	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119};
120
121static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122
123/* for OOM */
124struct mem_cgroup_eventfd_list {
125	struct list_head list;
126	struct eventfd_ctx *eventfd;
127};
128
129/*
130 * cgroup_event represents events which userspace want to receive.
131 */
132struct mem_cgroup_event {
133	/*
134	 * memcg which the event belongs to.
135	 */
136	struct mem_cgroup *memcg;
137	/*
138	 * eventfd to signal userspace about the event.
139	 */
140	struct eventfd_ctx *eventfd;
141	/*
142	 * Each of these stored in a list by the cgroup.
143	 */
144	struct list_head list;
145	/*
146	 * register_event() callback will be used to add new userspace
147	 * waiter for changes related to this event.  Use eventfd_signal()
148	 * on eventfd to send notification to userspace.
149	 */
150	int (*register_event)(struct mem_cgroup *memcg,
151			      struct eventfd_ctx *eventfd, const char *args);
152	/*
153	 * unregister_event() callback will be called when userspace closes
154	 * the eventfd or on cgroup removing.  This callback must be set,
155	 * if you want provide notification functionality.
156	 */
157	void (*unregister_event)(struct mem_cgroup *memcg,
158				 struct eventfd_ctx *eventfd);
159	/*
160	 * All fields below needed to unregister event when
161	 * userspace closes eventfd.
162	 */
163	poll_table pt;
164	wait_queue_head_t *wqh;
165	wait_queue_entry_t wait;
166	struct work_struct remove;
167};
168
169static void mem_cgroup_threshold(struct mem_cgroup *memcg);
170static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
171
172/* Stuffs for move charges at task migration. */
173/*
174 * Types of charges to be moved.
175 */
176#define MOVE_ANON	0x1U
177#define MOVE_FILE	0x2U
178#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
179
180/* "mc" and its members are protected by cgroup_mutex */
181static struct move_charge_struct {
182	spinlock_t	  lock; /* for from, to */
183	struct mm_struct  *mm;
184	struct mem_cgroup *from;
185	struct mem_cgroup *to;
186	unsigned long flags;
187	unsigned long precharge;
188	unsigned long moved_charge;
189	unsigned long moved_swap;
190	struct task_struct *moving_task;	/* a task moving charges */
191	wait_queue_head_t waitq;		/* a waitq for other context */
192} mc = {
193	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
194	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
195};
196
197/*
198 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
199 * limit reclaim to prevent infinite loops, if they ever occur.
200 */
201#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
202#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
203
204/* for encoding cft->private value on file */
205enum res_type {
206	_MEM,
207	_MEMSWAP,
208	_OOM_TYPE,
209	_KMEM,
210	_TCP,
211};
212
213#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
214#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
215#define MEMFILE_ATTR(val)	((val) & 0xffff)
216/* Used for OOM nofiier */
217#define OOM_CONTROL		(0)
218
219/*
220 * Iteration constructs for visiting all cgroups (under a tree).  If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224#define for_each_mem_cgroup_tree(iter, root)		\
225	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
226	     iter != NULL;				\
227	     iter = mem_cgroup_iter(root, iter, NULL))
228
229#define for_each_mem_cgroup(iter)			\
230	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
231	     iter != NULL;				\
232	     iter = mem_cgroup_iter(NULL, iter, NULL))
233
234static inline bool task_is_dying(void)
235{
236	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237		(current->flags & PF_EXITING);
238}
239
240/* Some nice accessors for the vmpressure. */
241struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242{
243	if (!memcg)
244		memcg = root_mem_cgroup;
245	return &memcg->vmpressure;
246}
247
248struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
249{
250	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
251}
252
253#ifdef CONFIG_MEMCG_KMEM
254static DEFINE_SPINLOCK(objcg_lock);
255
256static void obj_cgroup_release(struct percpu_ref *ref)
257{
258	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
259	struct mem_cgroup *memcg;
260	unsigned int nr_bytes;
261	unsigned int nr_pages;
262	unsigned long flags;
263
264	/*
265	 * At this point all allocated objects are freed, and
266	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
267	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
268	 *
269	 * The following sequence can lead to it:
270	 * 1) CPU0: objcg == stock->cached_objcg
271	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
272	 *          PAGE_SIZE bytes are charged
273	 * 3) CPU1: a process from another memcg is allocating something,
274	 *          the stock if flushed,
275	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
276	 * 5) CPU0: we do release this object,
277	 *          92 bytes are added to stock->nr_bytes
278	 * 6) CPU0: stock is flushed,
279	 *          92 bytes are added to objcg->nr_charged_bytes
280	 *
281	 * In the result, nr_charged_bytes == PAGE_SIZE.
282	 * This page will be uncharged in obj_cgroup_release().
283	 */
284	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
285	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
286	nr_pages = nr_bytes >> PAGE_SHIFT;
287
288	spin_lock_irqsave(&objcg_lock, flags);
289	memcg = obj_cgroup_memcg(objcg);
290	if (nr_pages)
291		__memcg_kmem_uncharge(memcg, nr_pages);
292	list_del(&objcg->list);
293	mem_cgroup_put(memcg);
294	spin_unlock_irqrestore(&objcg_lock, flags);
295
296	percpu_ref_exit(ref);
297	kfree_rcu(objcg, rcu);
298}
299
300static struct obj_cgroup *obj_cgroup_alloc(void)
301{
302	struct obj_cgroup *objcg;
303	int ret;
304
305	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
306	if (!objcg)
307		return NULL;
308
309	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
310			      GFP_KERNEL);
311	if (ret) {
312		kfree(objcg);
313		return NULL;
314	}
315	INIT_LIST_HEAD(&objcg->list);
316	return objcg;
317}
318
319static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
320				  struct mem_cgroup *parent)
321{
322	struct obj_cgroup *objcg, *iter;
323
324	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
325
326	spin_lock_irq(&objcg_lock);
327
328	/* Move active objcg to the parent's list */
329	xchg(&objcg->memcg, parent);
330	css_get(&parent->css);
331	list_add(&objcg->list, &parent->objcg_list);
332
333	/* Move already reparented objcgs to the parent's list */
334	list_for_each_entry(iter, &memcg->objcg_list, list) {
335		css_get(&parent->css);
336		xchg(&iter->memcg, parent);
337		css_put(&memcg->css);
338	}
339	list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341	spin_unlock_irq(&objcg_lock);
342
343	percpu_ref_kill(&objcg->refcnt);
344}
345
346/*
347 * This will be used as a shrinker list's index.
348 * The main reason for not using cgroup id for this:
349 *  this works better in sparse environments, where we have a lot of memcgs,
350 *  but only a few kmem-limited. Or also, if we have, for instance, 200
351 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
352 *  200 entry array for that.
353 *
354 * The current size of the caches array is stored in memcg_nr_cache_ids. It
355 * will double each time we have to increase it.
356 */
357static DEFINE_IDA(memcg_cache_ida);
358int memcg_nr_cache_ids;
359
360/* Protects memcg_nr_cache_ids */
361static DECLARE_RWSEM(memcg_cache_ids_sem);
362
363void memcg_get_cache_ids(void)
364{
365	down_read(&memcg_cache_ids_sem);
366}
367
368void memcg_put_cache_ids(void)
369{
370	up_read(&memcg_cache_ids_sem);
371}
372
373/*
374 * MIN_SIZE is different than 1, because we would like to avoid going through
375 * the alloc/free process all the time. In a small machine, 4 kmem-limited
376 * cgroups is a reasonable guess. In the future, it could be a parameter or
377 * tunable, but that is strictly not necessary.
378 *
379 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
380 * this constant directly from cgroup, but it is understandable that this is
381 * better kept as an internal representation in cgroup.c. In any case, the
382 * cgrp_id space is not getting any smaller, and we don't have to necessarily
383 * increase ours as well if it increases.
384 */
385#define MEMCG_CACHES_MIN_SIZE 4
386#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
387
388/*
389 * A lot of the calls to the cache allocation functions are expected to be
390 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
391 * conditional to this static branch, we'll have to allow modules that does
392 * kmem_cache_alloc and the such to see this symbol as well
393 */
394DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
395EXPORT_SYMBOL(memcg_kmem_enabled_key);
396#endif
397
398static int memcg_shrinker_map_size;
399static DEFINE_MUTEX(memcg_shrinker_map_mutex);
400
401static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
402{
403	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
404}
405
406static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
407					 int size, int old_size)
408{
409	struct memcg_shrinker_map *new, *old;
410	int nid;
411
412	lockdep_assert_held(&memcg_shrinker_map_mutex);
413
414	for_each_node(nid) {
415		old = rcu_dereference_protected(
416			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
417		/* Not yet online memcg */
418		if (!old)
419			return 0;
420
421		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
422		if (!new)
423			return -ENOMEM;
424
425		/* Set all old bits, clear all new bits */
426		memset(new->map, (int)0xff, old_size);
427		memset((void *)new->map + old_size, 0, size - old_size);
428
429		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
430		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
431	}
432
433	return 0;
434}
435
436static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
437{
438	struct mem_cgroup_per_node *pn;
439	struct memcg_shrinker_map *map;
440	int nid;
441
442	if (mem_cgroup_is_root(memcg))
443		return;
444
445	for_each_node(nid) {
446		pn = mem_cgroup_nodeinfo(memcg, nid);
447		map = rcu_dereference_protected(pn->shrinker_map, true);
448		if (map)
449			kvfree(map);
450		rcu_assign_pointer(pn->shrinker_map, NULL);
451	}
452}
453
454static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
455{
456	struct memcg_shrinker_map *map;
457	int nid, size, ret = 0;
458
459	if (mem_cgroup_is_root(memcg))
460		return 0;
461
462	mutex_lock(&memcg_shrinker_map_mutex);
463	size = memcg_shrinker_map_size;
464	for_each_node(nid) {
465		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
466		if (!map) {
467			memcg_free_shrinker_maps(memcg);
468			ret = -ENOMEM;
469			break;
470		}
471		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
472	}
473	mutex_unlock(&memcg_shrinker_map_mutex);
474
475	return ret;
476}
477
478int memcg_expand_shrinker_maps(int new_id)
479{
480	int size, old_size, ret = 0;
481	struct mem_cgroup *memcg;
482
483	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
484	old_size = memcg_shrinker_map_size;
485	if (size <= old_size)
486		return 0;
487
488	mutex_lock(&memcg_shrinker_map_mutex);
489	if (!root_mem_cgroup)
490		goto unlock;
491
492	for_each_mem_cgroup(memcg) {
493		if (mem_cgroup_is_root(memcg))
494			continue;
495		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
496		if (ret) {
497			mem_cgroup_iter_break(NULL, memcg);
498			goto unlock;
499		}
500	}
501unlock:
502	if (!ret)
503		memcg_shrinker_map_size = size;
504	mutex_unlock(&memcg_shrinker_map_mutex);
505	return ret;
506}
507
508void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
509{
510	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
511		struct memcg_shrinker_map *map;
512
513		rcu_read_lock();
514		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
515		/* Pairs with smp mb in shrink_slab() */
516		smp_mb__before_atomic();
517		set_bit(shrinker_id, map->map);
518		rcu_read_unlock();
519	}
520}
521
522/**
523 * mem_cgroup_css_from_page - css of the memcg associated with a page
524 * @page: page of interest
525 *
526 * If memcg is bound to the default hierarchy, css of the memcg associated
527 * with @page is returned.  The returned css remains associated with @page
528 * until it is released.
529 *
530 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
531 * is returned.
532 */
533struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
534{
535	struct mem_cgroup *memcg;
536
537	memcg = page->mem_cgroup;
538
539	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
540		memcg = root_mem_cgroup;
541
542	return &memcg->css;
543}
544
545/**
546 * page_cgroup_ino - return inode number of the memcg a page is charged to
547 * @page: the page
548 *
549 * Look up the closest online ancestor of the memory cgroup @page is charged to
550 * and return its inode number or 0 if @page is not charged to any cgroup. It
551 * is safe to call this function without holding a reference to @page.
552 *
553 * Note, this function is inherently racy, because there is nothing to prevent
554 * the cgroup inode from getting torn down and potentially reallocated a moment
555 * after page_cgroup_ino() returns, so it only should be used by callers that
556 * do not care (such as procfs interfaces).
557 */
558ino_t page_cgroup_ino(struct page *page)
559{
560	struct mem_cgroup *memcg;
561	unsigned long ino = 0;
562
563	rcu_read_lock();
564	memcg = page->mem_cgroup;
565
566	/*
567	 * The lowest bit set means that memcg isn't a valid
568	 * memcg pointer, but a obj_cgroups pointer.
569	 * In this case the page is shared and doesn't belong
570	 * to any specific memory cgroup.
571	 */
572	if ((unsigned long) memcg & 0x1UL)
573		memcg = NULL;
574
575	while (memcg && !(memcg->css.flags & CSS_ONLINE))
576		memcg = parent_mem_cgroup(memcg);
577	if (memcg)
578		ino = cgroup_ino(memcg->css.cgroup);
579	rcu_read_unlock();
580	return ino;
581}
582
583static struct mem_cgroup_per_node *
584mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
585{
586	int nid = page_to_nid(page);
587
588	return memcg->nodeinfo[nid];
589}
590
591static struct mem_cgroup_tree_per_node *
592soft_limit_tree_node(int nid)
593{
594	return soft_limit_tree.rb_tree_per_node[nid];
595}
596
597static struct mem_cgroup_tree_per_node *
598soft_limit_tree_from_page(struct page *page)
599{
600	int nid = page_to_nid(page);
601
602	return soft_limit_tree.rb_tree_per_node[nid];
603}
604
605static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
606					 struct mem_cgroup_tree_per_node *mctz,
607					 unsigned long new_usage_in_excess)
608{
609	struct rb_node **p = &mctz->rb_root.rb_node;
610	struct rb_node *parent = NULL;
611	struct mem_cgroup_per_node *mz_node;
612	bool rightmost = true;
613
614	if (mz->on_tree)
615		return;
616
617	mz->usage_in_excess = new_usage_in_excess;
618	if (!mz->usage_in_excess)
619		return;
620	while (*p) {
621		parent = *p;
622		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
623					tree_node);
624		if (mz->usage_in_excess < mz_node->usage_in_excess) {
625			p = &(*p)->rb_left;
626			rightmost = false;
627		}
628
629		/*
630		 * We can't avoid mem cgroups that are over their soft
631		 * limit by the same amount
632		 */
633		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
634			p = &(*p)->rb_right;
635	}
636
637	if (rightmost)
638		mctz->rb_rightmost = &mz->tree_node;
639
640	rb_link_node(&mz->tree_node, parent, p);
641	rb_insert_color(&mz->tree_node, &mctz->rb_root);
642	mz->on_tree = true;
643}
644
645static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
646					 struct mem_cgroup_tree_per_node *mctz)
647{
648	if (!mz->on_tree)
649		return;
650
651	if (&mz->tree_node == mctz->rb_rightmost)
652		mctz->rb_rightmost = rb_prev(&mz->tree_node);
653
654	rb_erase(&mz->tree_node, &mctz->rb_root);
655	mz->on_tree = false;
656}
657
658static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
659				       struct mem_cgroup_tree_per_node *mctz)
660{
661	unsigned long flags;
662
663	spin_lock_irqsave(&mctz->lock, flags);
664	__mem_cgroup_remove_exceeded(mz, mctz);
665	spin_unlock_irqrestore(&mctz->lock, flags);
666}
667
668static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
669{
670#ifdef CONFIG_HYPERHOLD_FILE_LRU
671	struct mem_cgroup_per_node *mz = mem_cgroup_nodeinfo(memcg, 0);
672	struct lruvec *lruvec = &mz->lruvec;
673	unsigned long nr_pages = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON,
674			MAX_NR_ZONES) + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON,
675			MAX_NR_ZONES);
676#else
677	unsigned long nr_pages = page_counter_read(&memcg->memory);
678#endif
679	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
680	unsigned long excess = 0;
681
682	if (nr_pages > soft_limit)
683		excess = nr_pages - soft_limit;
684
685	return excess;
686}
687
688static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
689{
690	unsigned long excess;
691	struct mem_cgroup_per_node *mz;
692	struct mem_cgroup_tree_per_node *mctz;
693
694	mctz = soft_limit_tree_from_page(page);
695	if (!mctz)
696		return;
697	/*
698	 * Necessary to update all ancestors when hierarchy is used.
699	 * because their event counter is not touched.
700	 */
701	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
702		mz = mem_cgroup_page_nodeinfo(memcg, page);
703		excess = soft_limit_excess(memcg);
704		/*
705		 * We have to update the tree if mz is on RB-tree or
706		 * mem is over its softlimit.
707		 */
708		if (excess || mz->on_tree) {
709			unsigned long flags;
710
711			spin_lock_irqsave(&mctz->lock, flags);
712			/* if on-tree, remove it */
713			if (mz->on_tree)
714				__mem_cgroup_remove_exceeded(mz, mctz);
715			/*
716			 * Insert again. mz->usage_in_excess will be updated.
717			 * If excess is 0, no tree ops.
718			 */
719			__mem_cgroup_insert_exceeded(mz, mctz, excess);
720			spin_unlock_irqrestore(&mctz->lock, flags);
721		}
722	}
723}
724
725static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
726{
727	struct mem_cgroup_tree_per_node *mctz;
728	struct mem_cgroup_per_node *mz;
729	int nid;
730
731	for_each_node(nid) {
732		mz = mem_cgroup_nodeinfo(memcg, nid);
733		mctz = soft_limit_tree_node(nid);
734		if (mctz)
735			mem_cgroup_remove_exceeded(mz, mctz);
736	}
737}
738
739static struct mem_cgroup_per_node *
740__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
741{
742	struct mem_cgroup_per_node *mz;
743
744retry:
745	mz = NULL;
746	if (!mctz->rb_rightmost)
747		goto done;		/* Nothing to reclaim from */
748
749	mz = rb_entry(mctz->rb_rightmost,
750		      struct mem_cgroup_per_node, tree_node);
751	/*
752	 * Remove the node now but someone else can add it back,
753	 * we will to add it back at the end of reclaim to its correct
754	 * position in the tree.
755	 */
756	__mem_cgroup_remove_exceeded(mz, mctz);
757	if (!soft_limit_excess(mz->memcg) ||
758	    !css_tryget(&mz->memcg->css))
759		goto retry;
760done:
761	return mz;
762}
763
764static struct mem_cgroup_per_node *
765mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
766{
767	struct mem_cgroup_per_node *mz;
768
769	spin_lock_irq(&mctz->lock);
770	mz = __mem_cgroup_largest_soft_limit_node(mctz);
771	spin_unlock_irq(&mctz->lock);
772	return mz;
773}
774
775/**
776 * __mod_memcg_state - update cgroup memory statistics
777 * @memcg: the memory cgroup
778 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
779 * @val: delta to add to the counter, can be negative
780 */
781void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
782{
783	long x, threshold = MEMCG_CHARGE_BATCH;
784
785	if (mem_cgroup_disabled())
786		return;
787
788	if (memcg_stat_item_in_bytes(idx))
789		threshold <<= PAGE_SHIFT;
790
791	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
792	if (unlikely(abs(x) > threshold)) {
793		struct mem_cgroup *mi;
794
795		/*
796		 * Batch local counters to keep them in sync with
797		 * the hierarchical ones.
798		 */
799		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
800		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
801			atomic_long_add(x, &mi->vmstats[idx]);
802		x = 0;
803	}
804	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
805}
806
807static struct mem_cgroup_per_node *
808parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
809{
810	struct mem_cgroup *parent;
811
812	parent = parent_mem_cgroup(pn->memcg);
813	if (!parent)
814		return NULL;
815	return mem_cgroup_nodeinfo(parent, nid);
816}
817
818void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
819			      int val)
820{
821	struct mem_cgroup_per_node *pn;
822	struct mem_cgroup *memcg;
823	long x, threshold = MEMCG_CHARGE_BATCH;
824
825	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
826	memcg = pn->memcg;
827
828	/* Update memcg */
829	__mod_memcg_state(memcg, idx, val);
830
831	/* Update lruvec */
832	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
833
834	if (vmstat_item_in_bytes(idx))
835		threshold <<= PAGE_SHIFT;
836
837	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
838	if (unlikely(abs(x) > threshold)) {
839		pg_data_t *pgdat = lruvec_pgdat(lruvec);
840		struct mem_cgroup_per_node *pi;
841
842		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
843			atomic_long_add(x, &pi->lruvec_stat[idx]);
844		x = 0;
845	}
846	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
847}
848
849/**
850 * __mod_lruvec_state - update lruvec memory statistics
851 * @lruvec: the lruvec
852 * @idx: the stat item
853 * @val: delta to add to the counter, can be negative
854 *
855 * The lruvec is the intersection of the NUMA node and a cgroup. This
856 * function updates the all three counters that are affected by a
857 * change of state at this level: per-node, per-cgroup, per-lruvec.
858 */
859void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
860			int val)
861{
862	/* Update node */
863	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
864
865	/* Update memcg and lruvec */
866	if (!mem_cgroup_disabled()) {
867#ifdef CONFIG_HYPERHOLD_FILE_LRU
868		if (is_node_lruvec(lruvec))
869			return;
870#endif
871		__mod_memcg_lruvec_state(lruvec, idx, val);
872	}
873}
874
875void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
876{
877	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878	struct mem_cgroup *memcg;
879	struct lruvec *lruvec;
880
881	rcu_read_lock();
882	memcg = mem_cgroup_from_obj(p);
883
884	/*
885	 * Untracked pages have no memcg, no lruvec. Update only the
886	 * node. If we reparent the slab objects to the root memcg,
887	 * when we free the slab object, we need to update the per-memcg
888	 * vmstats to keep it correct for the root memcg.
889	 */
890	if (!memcg) {
891		__mod_node_page_state(pgdat, idx, val);
892	} else {
893		lruvec = mem_cgroup_lruvec(memcg, pgdat);
894		__mod_lruvec_state(lruvec, idx, val);
895	}
896	rcu_read_unlock();
897}
898
899void mod_memcg_obj_state(void *p, int idx, int val)
900{
901	struct mem_cgroup *memcg;
902
903	rcu_read_lock();
904	memcg = mem_cgroup_from_obj(p);
905	if (memcg)
906		mod_memcg_state(memcg, idx, val);
907	rcu_read_unlock();
908}
909
910/**
911 * __count_memcg_events - account VM events in a cgroup
912 * @memcg: the memory cgroup
913 * @idx: the event item
914 * @count: the number of events that occured
915 */
916void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
917			  unsigned long count)
918{
919	unsigned long x;
920
921	if (mem_cgroup_disabled())
922		return;
923#ifdef CONFIG_HYPERHOLD_FILE_LRU
924	if (!memcg)
925		return;
926#endif
927
928	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
929	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
930		struct mem_cgroup *mi;
931
932		/*
933		 * Batch local counters to keep them in sync with
934		 * the hierarchical ones.
935		 */
936		__this_cpu_add(memcg->vmstats_local->events[idx], x);
937		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
938			atomic_long_add(x, &mi->vmevents[idx]);
939		x = 0;
940	}
941	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
942}
943
944static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
945{
946	return atomic_long_read(&memcg->vmevents[event]);
947}
948
949static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950{
951	long x = 0;
952	int cpu;
953
954	for_each_possible_cpu(cpu)
955		x += per_cpu(memcg->vmstats_local->events[event], cpu);
956	return x;
957}
958
959static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
960					 struct page *page,
961					 int nr_pages)
962{
963	/* pagein of a big page is an event. So, ignore page size */
964	if (nr_pages > 0)
965		__count_memcg_events(memcg, PGPGIN, 1);
966	else {
967		__count_memcg_events(memcg, PGPGOUT, 1);
968		nr_pages = -nr_pages; /* for event */
969	}
970
971	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
972}
973
974static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
975				       enum mem_cgroup_events_target target)
976{
977	unsigned long val, next;
978
979	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
980	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
981	/* from time_after() in jiffies.h */
982	if ((long)(next - val) < 0) {
983		switch (target) {
984		case MEM_CGROUP_TARGET_THRESH:
985			next = val + THRESHOLDS_EVENTS_TARGET;
986			break;
987		case MEM_CGROUP_TARGET_SOFTLIMIT:
988			next = val + SOFTLIMIT_EVENTS_TARGET;
989			break;
990		default:
991			break;
992		}
993		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
994		return true;
995	}
996	return false;
997}
998
999/*
1000 * Check events in order.
1001 *
1002 */
1003static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004{
1005	/* threshold event is triggered in finer grain than soft limit */
1006	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007						MEM_CGROUP_TARGET_THRESH))) {
1008		bool do_softlimit;
1009
1010		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1011						MEM_CGROUP_TARGET_SOFTLIMIT);
1012		mem_cgroup_threshold(memcg);
1013		if (unlikely(do_softlimit))
1014			mem_cgroup_update_tree(memcg, page);
1015	}
1016}
1017
1018struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1019{
1020	/*
1021	 * mm_update_next_owner() may clear mm->owner to NULL
1022	 * if it races with swapoff, page migration, etc.
1023	 * So this can be called with p == NULL.
1024	 */
1025	if (unlikely(!p))
1026		return NULL;
1027
1028	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1029}
1030EXPORT_SYMBOL(mem_cgroup_from_task);
1031
1032/**
1033 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1034 * @mm: mm from which memcg should be extracted. It can be NULL.
1035 *
1036 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1037 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1038 * returned.
1039 */
1040struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1041{
1042	struct mem_cgroup *memcg;
1043
1044	if (mem_cgroup_disabled())
1045		return NULL;
1046
1047	rcu_read_lock();
1048	do {
1049		/*
1050		 * Page cache insertions can happen withou an
1051		 * actual mm context, e.g. during disk probing
1052		 * on boot, loopback IO, acct() writes etc.
1053		 */
1054		if (unlikely(!mm))
1055			memcg = root_mem_cgroup;
1056		else {
1057			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1058			if (unlikely(!memcg))
1059				memcg = root_mem_cgroup;
1060		}
1061	} while (!css_tryget(&memcg->css));
1062	rcu_read_unlock();
1063	return memcg;
1064}
1065EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1066
1067/**
1068 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1069 * @page: page from which memcg should be extracted.
1070 *
1071 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1072 * root_mem_cgroup is returned.
1073 */
1074struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1075{
1076	struct mem_cgroup *memcg = page->mem_cgroup;
1077
1078	if (mem_cgroup_disabled())
1079		return NULL;
1080
1081	rcu_read_lock();
1082	/* Page should not get uncharged and freed memcg under us. */
1083	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1084		memcg = root_mem_cgroup;
1085	rcu_read_unlock();
1086	return memcg;
1087}
1088EXPORT_SYMBOL(get_mem_cgroup_from_page);
1089
1090static __always_inline struct mem_cgroup *active_memcg(void)
1091{
1092	if (in_interrupt())
1093		return this_cpu_read(int_active_memcg);
1094	else
1095		return current->active_memcg;
1096}
1097
1098static __always_inline struct mem_cgroup *get_active_memcg(void)
1099{
1100	struct mem_cgroup *memcg;
1101
1102	rcu_read_lock();
1103	memcg = active_memcg();
1104	/* remote memcg must hold a ref. */
1105	if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1106		memcg = root_mem_cgroup;
1107	rcu_read_unlock();
1108
1109	return memcg;
1110}
1111
1112static __always_inline bool memcg_kmem_bypass(void)
1113{
1114	/* Allow remote memcg charging from any context. */
1115	if (unlikely(active_memcg()))
1116		return false;
1117
1118	/* Memcg to charge can't be determined. */
1119	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1120		return true;
1121
1122	return false;
1123}
1124
1125/**
1126 * If active memcg is set, do not fallback to current->mm->memcg.
1127 */
1128static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1129{
1130	if (memcg_kmem_bypass())
1131		return NULL;
1132
1133	if (unlikely(active_memcg()))
1134		return get_active_memcg();
1135
1136	return get_mem_cgroup_from_mm(current->mm);
1137}
1138
1139/**
1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141 * @root: hierarchy root
1142 * @prev: previously returned memcg, NULL on first invocation
1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144 *
1145 * Returns references to children of the hierarchy below @root, or
1146 * @root itself, or %NULL after a full round-trip.
1147 *
1148 * Caller must pass the return value in @prev on subsequent
1149 * invocations for reference counting, or use mem_cgroup_iter_break()
1150 * to cancel a hierarchy walk before the round-trip is complete.
1151 *
1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153 * in the hierarchy among all concurrent reclaimers operating on the
1154 * same node.
1155 */
1156struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157				   struct mem_cgroup *prev,
1158				   struct mem_cgroup_reclaim_cookie *reclaim)
1159{
1160	struct mem_cgroup_reclaim_iter *iter;
1161	struct cgroup_subsys_state *css = NULL;
1162	struct mem_cgroup *memcg = NULL;
1163	struct mem_cgroup *pos = NULL;
1164
1165	if (mem_cgroup_disabled())
1166		return NULL;
1167
1168	if (!root)
1169		root = root_mem_cgroup;
1170
1171	if (prev && !reclaim)
1172		pos = prev;
1173
1174	if (!root->use_hierarchy && root != root_mem_cgroup) {
1175		if (prev)
1176			goto out;
1177		return root;
1178	}
1179
1180	rcu_read_lock();
1181
1182	if (reclaim) {
1183		struct mem_cgroup_per_node *mz;
1184
1185		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1186		iter = &mz->iter;
1187
1188		if (prev && reclaim->generation != iter->generation)
1189			goto out_unlock;
1190
1191		while (1) {
1192			pos = READ_ONCE(iter->position);
1193			if (!pos || css_tryget(&pos->css))
1194				break;
1195			/*
1196			 * css reference reached zero, so iter->position will
1197			 * be cleared by ->css_released. However, we should not
1198			 * rely on this happening soon, because ->css_released
1199			 * is called from a work queue, and by busy-waiting we
1200			 * might block it. So we clear iter->position right
1201			 * away.
1202			 */
1203			(void)cmpxchg(&iter->position, pos, NULL);
1204		}
1205	}
1206
1207	if (pos)
1208		css = &pos->css;
1209
1210	for (;;) {
1211		css = css_next_descendant_pre(css, &root->css);
1212		if (!css) {
1213			/*
1214			 * Reclaimers share the hierarchy walk, and a
1215			 * new one might jump in right at the end of
1216			 * the hierarchy - make sure they see at least
1217			 * one group and restart from the beginning.
1218			 */
1219			if (!prev)
1220				continue;
1221			break;
1222		}
1223
1224		/*
1225		 * Verify the css and acquire a reference.  The root
1226		 * is provided by the caller, so we know it's alive
1227		 * and kicking, and don't take an extra reference.
1228		 */
1229		memcg = mem_cgroup_from_css(css);
1230
1231		if (css == &root->css)
1232			break;
1233
1234		if (css_tryget(css))
1235			break;
1236
1237		memcg = NULL;
1238	}
1239
1240	if (reclaim) {
1241		/*
1242		 * The position could have already been updated by a competing
1243		 * thread, so check that the value hasn't changed since we read
1244		 * it to avoid reclaiming from the same cgroup twice.
1245		 */
1246		(void)cmpxchg(&iter->position, pos, memcg);
1247
1248		if (pos)
1249			css_put(&pos->css);
1250
1251		if (!memcg)
1252			iter->generation++;
1253		else if (!prev)
1254			reclaim->generation = iter->generation;
1255	}
1256
1257out_unlock:
1258	rcu_read_unlock();
1259out:
1260	if (prev && prev != root)
1261		css_put(&prev->css);
1262
1263	return memcg;
1264}
1265
1266/**
1267 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1268 * @root: hierarchy root
1269 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1270 */
1271void mem_cgroup_iter_break(struct mem_cgroup *root,
1272			   struct mem_cgroup *prev)
1273{
1274	if (!root)
1275		root = root_mem_cgroup;
1276	if (prev && prev != root)
1277		css_put(&prev->css);
1278}
1279
1280static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1281					struct mem_cgroup *dead_memcg)
1282{
1283	struct mem_cgroup_reclaim_iter *iter;
1284	struct mem_cgroup_per_node *mz;
1285	int nid;
1286
1287	for_each_node(nid) {
1288		mz = mem_cgroup_nodeinfo(from, nid);
1289		iter = &mz->iter;
1290		cmpxchg(&iter->position, dead_memcg, NULL);
1291	}
1292}
1293
1294static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1295{
1296	struct mem_cgroup *memcg = dead_memcg;
1297	struct mem_cgroup *last;
1298
1299	do {
1300		__invalidate_reclaim_iterators(memcg, dead_memcg);
1301		last = memcg;
1302	} while ((memcg = parent_mem_cgroup(memcg)));
1303
1304	/*
1305	 * When cgruop1 non-hierarchy mode is used,
1306	 * parent_mem_cgroup() does not walk all the way up to the
1307	 * cgroup root (root_mem_cgroup). So we have to handle
1308	 * dead_memcg from cgroup root separately.
1309	 */
1310	if (last != root_mem_cgroup)
1311		__invalidate_reclaim_iterators(root_mem_cgroup,
1312						dead_memcg);
1313}
1314
1315/**
1316 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1317 * @memcg: hierarchy root
1318 * @fn: function to call for each task
1319 * @arg: argument passed to @fn
1320 *
1321 * This function iterates over tasks attached to @memcg or to any of its
1322 * descendants and calls @fn for each task. If @fn returns a non-zero
1323 * value, the function breaks the iteration loop and returns the value.
1324 * Otherwise, it will iterate over all tasks and return 0.
1325 *
1326 * This function must not be called for the root memory cgroup.
1327 */
1328int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1329			  int (*fn)(struct task_struct *, void *), void *arg)
1330{
1331	struct mem_cgroup *iter;
1332	int ret = 0;
1333
1334	BUG_ON(memcg == root_mem_cgroup);
1335
1336	for_each_mem_cgroup_tree(iter, memcg) {
1337		struct css_task_iter it;
1338		struct task_struct *task;
1339
1340		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1341		while (!ret && (task = css_task_iter_next(&it)))
1342			ret = fn(task, arg);
1343		css_task_iter_end(&it);
1344		if (ret) {
1345			mem_cgroup_iter_break(memcg, iter);
1346			break;
1347		}
1348	}
1349	return ret;
1350}
1351
1352/**
1353 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1354 * @page: the page
1355 * @pgdat: pgdat of the page
1356 *
1357 * This function relies on page->mem_cgroup being stable - see the
1358 * access rules in commit_charge().
1359 */
1360struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1361{
1362	struct mem_cgroup_per_node *mz;
1363	struct mem_cgroup *memcg;
1364	struct lruvec *lruvec;
1365
1366	if (mem_cgroup_disabled()) {
1367		lruvec = &pgdat->__lruvec;
1368		goto out;
1369	}
1370
1371#ifdef CONFIG_HYPERHOLD_FILE_LRU
1372	if (page_is_file_lru(page) &&
1373	    !is_prot_page(page)) {
1374		lruvec = node_lruvec(pgdat);
1375		goto out;
1376	}
1377#endif
1378	memcg = page->mem_cgroup;
1379	/*
1380	 * Swapcache readahead pages are added to the LRU - and
1381	 * possibly migrated - before they are charged.
1382	 */
1383	if (!memcg)
1384		memcg = root_mem_cgroup;
1385
1386	mz = mem_cgroup_page_nodeinfo(memcg, page);
1387	lruvec = &mz->lruvec;
1388out:
1389	/*
1390	 * Since a node can be onlined after the mem_cgroup was created,
1391	 * we have to be prepared to initialize lruvec->zone here;
1392	 * and if offlined then reonlined, we need to reinitialize it.
1393	 */
1394	if (unlikely(lruvec->pgdat != pgdat))
1395		lruvec->pgdat = pgdat;
1396	return lruvec;
1397}
1398
1399/**
1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401 * @lruvec: mem_cgroup per zone lru vector
1402 * @lru: index of lru list the page is sitting on
1403 * @zid: zone id of the accounted pages
1404 * @nr_pages: positive when adding or negative when removing
1405 *
1406 * This function must be called under lru_lock, just before a page is added
1407 * to or just after a page is removed from an lru list (that ordering being
1408 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1409 */
1410void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411				int zid, int nr_pages)
1412{
1413	struct mem_cgroup_per_node *mz;
1414	unsigned long *lru_size;
1415	long size;
1416
1417	if (mem_cgroup_disabled())
1418		return;
1419
1420#ifdef CONFIG_HYPERHOLD_FILE_LRU
1421	if (is_node_lruvec(lruvec))
1422		return;
1423#endif
1424	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1425	lru_size = &mz->lru_zone_size[zid][lru];
1426
1427	if (nr_pages < 0)
1428		*lru_size += nr_pages;
1429
1430	size = *lru_size;
1431	if (WARN_ONCE(size < 0,
1432		"%s(%p, %d, %d): lru_size %ld\n",
1433		__func__, lruvec, lru, nr_pages, size)) {
1434		VM_BUG_ON(1);
1435		*lru_size = 0;
1436	}
1437
1438	if (nr_pages > 0)
1439		*lru_size += nr_pages;
1440}
1441
1442/**
1443 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1444 * @memcg: the memory cgroup
1445 *
1446 * Returns the maximum amount of memory @mem can be charged with, in
1447 * pages.
1448 */
1449static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1450{
1451	unsigned long margin = 0;
1452	unsigned long count;
1453	unsigned long limit;
1454
1455	count = page_counter_read(&memcg->memory);
1456	limit = READ_ONCE(memcg->memory.max);
1457	if (count < limit)
1458		margin = limit - count;
1459
1460	if (do_memsw_account()) {
1461		count = page_counter_read(&memcg->memsw);
1462		limit = READ_ONCE(memcg->memsw.max);
1463		if (count < limit)
1464			margin = min(margin, limit - count);
1465		else
1466			margin = 0;
1467	}
1468
1469	return margin;
1470}
1471
1472/*
1473 * A routine for checking "mem" is under move_account() or not.
1474 *
1475 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1476 * moving cgroups. This is for waiting at high-memory pressure
1477 * caused by "move".
1478 */
1479static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1480{
1481	struct mem_cgroup *from;
1482	struct mem_cgroup *to;
1483	bool ret = false;
1484	/*
1485	 * Unlike task_move routines, we access mc.to, mc.from not under
1486	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1487	 */
1488	spin_lock(&mc.lock);
1489	from = mc.from;
1490	to = mc.to;
1491	if (!from)
1492		goto unlock;
1493
1494	ret = mem_cgroup_is_descendant(from, memcg) ||
1495		mem_cgroup_is_descendant(to, memcg);
1496unlock:
1497	spin_unlock(&mc.lock);
1498	return ret;
1499}
1500
1501static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1502{
1503	if (mc.moving_task && current != mc.moving_task) {
1504		if (mem_cgroup_under_move(memcg)) {
1505			DEFINE_WAIT(wait);
1506			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1507			/* moving charge context might have finished. */
1508			if (mc.moving_task)
1509				schedule();
1510			finish_wait(&mc.waitq, &wait);
1511			return true;
1512		}
1513	}
1514	return false;
1515}
1516
1517struct memory_stat {
1518	const char *name;
1519	unsigned int ratio;
1520	unsigned int idx;
1521};
1522
1523static struct memory_stat memory_stats[] = {
1524	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
1525	{ "file", PAGE_SIZE, NR_FILE_PAGES },
1526	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1527	{ "percpu", 1, MEMCG_PERCPU_B },
1528	{ "sock", PAGE_SIZE, MEMCG_SOCK },
1529	{ "shmem", PAGE_SIZE, NR_SHMEM },
1530	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1531	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1532	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1533#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1534	/*
1535	 * The ratio will be initialized in memory_stats_init(). Because
1536	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1537	 * constant(e.g. powerpc).
1538	 */
1539	{ "anon_thp", 0, NR_ANON_THPS },
1540#endif
1541	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1542	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1543	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1544	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1545	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1546
1547	/*
1548	 * Note: The slab_reclaimable and slab_unreclaimable must be
1549	 * together and slab_reclaimable must be in front.
1550	 */
1551	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1552	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1553
1554	/* The memory events */
1555	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1556	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1557	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1558	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1559	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1560	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1561	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1562};
1563
1564static int __init memory_stats_init(void)
1565{
1566	int i;
1567
1568	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1569#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1570		if (memory_stats[i].idx == NR_ANON_THPS)
1571			memory_stats[i].ratio = HPAGE_PMD_SIZE;
1572#endif
1573		VM_BUG_ON(!memory_stats[i].ratio);
1574		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1575	}
1576
1577	return 0;
1578}
1579pure_initcall(memory_stats_init);
1580
1581static char *memory_stat_format(struct mem_cgroup *memcg)
1582{
1583	struct seq_buf s;
1584	int i;
1585
1586	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1587	if (!s.buffer)
1588		return NULL;
1589
1590	/*
1591	 * Provide statistics on the state of the memory subsystem as
1592	 * well as cumulative event counters that show past behavior.
1593	 *
1594	 * This list is ordered following a combination of these gradients:
1595	 * 1) generic big picture -> specifics and details
1596	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1597	 *
1598	 * Current memory state:
1599	 */
1600
1601	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1602		u64 size;
1603
1604		size = memcg_page_state(memcg, memory_stats[i].idx);
1605		size *= memory_stats[i].ratio;
1606		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1607
1608		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1609			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1610			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1611			seq_buf_printf(&s, "slab %llu\n", size);
1612		}
1613	}
1614
1615	/* Accumulated memory events */
1616
1617	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1618		       memcg_events(memcg, PGFAULT));
1619	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1620		       memcg_events(memcg, PGMAJFAULT));
1621	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1622		       memcg_events(memcg, PGREFILL));
1623	seq_buf_printf(&s, "pgscan %lu\n",
1624		       memcg_events(memcg, PGSCAN_KSWAPD) +
1625		       memcg_events(memcg, PGSCAN_DIRECT));
1626	seq_buf_printf(&s, "pgsteal %lu\n",
1627		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1628		       memcg_events(memcg, PGSTEAL_DIRECT));
1629	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1630		       memcg_events(memcg, PGACTIVATE));
1631	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1632		       memcg_events(memcg, PGDEACTIVATE));
1633	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1634		       memcg_events(memcg, PGLAZYFREE));
1635	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1636		       memcg_events(memcg, PGLAZYFREED));
1637
1638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1639	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1640		       memcg_events(memcg, THP_FAULT_ALLOC));
1641	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1642		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1643#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1644
1645	/* The above should easily fit into one page */
1646	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1647
1648	return s.buffer;
1649}
1650
1651#define K(x) ((x) << (PAGE_SHIFT-10))
1652/**
1653 * mem_cgroup_print_oom_context: Print OOM information relevant to
1654 * memory controller.
1655 * @memcg: The memory cgroup that went over limit
1656 * @p: Task that is going to be killed
1657 *
1658 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1659 * enabled
1660 */
1661void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1662{
1663	rcu_read_lock();
1664
1665	if (memcg) {
1666		pr_cont(",oom_memcg=");
1667		pr_cont_cgroup_path(memcg->css.cgroup);
1668	} else
1669		pr_cont(",global_oom");
1670	if (p) {
1671		pr_cont(",task_memcg=");
1672		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1673	}
1674	rcu_read_unlock();
1675}
1676
1677/**
1678 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1679 * memory controller.
1680 * @memcg: The memory cgroup that went over limit
1681 */
1682void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1683{
1684	char *buf;
1685
1686	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1687		K((u64)page_counter_read(&memcg->memory)),
1688		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1689	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1690		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1691			K((u64)page_counter_read(&memcg->swap)),
1692			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1693	else {
1694		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1695			K((u64)page_counter_read(&memcg->memsw)),
1696			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1697		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1698			K((u64)page_counter_read(&memcg->kmem)),
1699			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1700	}
1701
1702	pr_info("Memory cgroup stats for ");
1703	pr_cont_cgroup_path(memcg->css.cgroup);
1704	pr_cont(":");
1705	buf = memory_stat_format(memcg);
1706	if (!buf)
1707		return;
1708	pr_info("%s", buf);
1709	kfree(buf);
1710}
1711
1712/*
1713 * Return the memory (and swap, if configured) limit for a memcg.
1714 */
1715unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1716{
1717	unsigned long max = READ_ONCE(memcg->memory.max);
1718
1719	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1720		if (mem_cgroup_swappiness(memcg))
1721			max += min(READ_ONCE(memcg->swap.max),
1722				   (unsigned long)total_swap_pages);
1723	} else { /* v1 */
1724		if (mem_cgroup_swappiness(memcg)) {
1725			/* Calculate swap excess capacity from memsw limit */
1726			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1727
1728			max += min(swap, (unsigned long)total_swap_pages);
1729		}
1730	}
1731	return max;
1732}
1733
1734unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1735{
1736	return page_counter_read(&memcg->memory);
1737}
1738
1739static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1740				     int order)
1741{
1742	struct oom_control oc = {
1743		.zonelist = NULL,
1744		.nodemask = NULL,
1745		.memcg = memcg,
1746		.gfp_mask = gfp_mask,
1747		.order = order,
1748	};
1749	bool ret = true;
1750
1751	if (mutex_lock_killable(&oom_lock))
1752		return true;
1753
1754	if (mem_cgroup_margin(memcg) >= (1 << order))
1755		goto unlock;
1756
1757	/*
1758	 * A few threads which were not waiting at mutex_lock_killable() can
1759	 * fail to bail out. Therefore, check again after holding oom_lock.
1760	 */
1761	ret = task_is_dying() || out_of_memory(&oc);
1762
1763unlock:
1764	mutex_unlock(&oom_lock);
1765	return ret;
1766}
1767
1768static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1769				   pg_data_t *pgdat,
1770				   gfp_t gfp_mask,
1771				   unsigned long *total_scanned)
1772{
1773	struct mem_cgroup *victim = NULL;
1774	int total = 0;
1775	int loop = 0;
1776	unsigned long excess;
1777	unsigned long nr_scanned;
1778	struct mem_cgroup_reclaim_cookie reclaim = {
1779		.pgdat = pgdat,
1780	};
1781
1782	excess = soft_limit_excess(root_memcg);
1783
1784	while (1) {
1785		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1786		if (!victim) {
1787			loop++;
1788			if (loop >= 2) {
1789				/*
1790				 * If we have not been able to reclaim
1791				 * anything, it might because there are
1792				 * no reclaimable pages under this hierarchy
1793				 */
1794				if (!total)
1795					break;
1796				/*
1797				 * We want to do more targeted reclaim.
1798				 * excess >> 2 is not to excessive so as to
1799				 * reclaim too much, nor too less that we keep
1800				 * coming back to reclaim from this cgroup
1801				 */
1802				if (total >= (excess >> 2) ||
1803					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1804					break;
1805			}
1806			continue;
1807		}
1808		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1809					pgdat, &nr_scanned);
1810		*total_scanned += nr_scanned;
1811		if (!soft_limit_excess(root_memcg))
1812			break;
1813	}
1814	mem_cgroup_iter_break(root_memcg, victim);
1815	return total;
1816}
1817
1818#ifdef CONFIG_LOCKDEP
1819static struct lockdep_map memcg_oom_lock_dep_map = {
1820	.name = "memcg_oom_lock",
1821};
1822#endif
1823
1824static DEFINE_SPINLOCK(memcg_oom_lock);
1825
1826/*
1827 * Check OOM-Killer is already running under our hierarchy.
1828 * If someone is running, return false.
1829 */
1830static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1831{
1832	struct mem_cgroup *iter, *failed = NULL;
1833
1834	spin_lock(&memcg_oom_lock);
1835
1836	for_each_mem_cgroup_tree(iter, memcg) {
1837		if (iter->oom_lock) {
1838			/*
1839			 * this subtree of our hierarchy is already locked
1840			 * so we cannot give a lock.
1841			 */
1842			failed = iter;
1843			mem_cgroup_iter_break(memcg, iter);
1844			break;
1845		} else
1846			iter->oom_lock = true;
1847	}
1848
1849	if (failed) {
1850		/*
1851		 * OK, we failed to lock the whole subtree so we have
1852		 * to clean up what we set up to the failing subtree
1853		 */
1854		for_each_mem_cgroup_tree(iter, memcg) {
1855			if (iter == failed) {
1856				mem_cgroup_iter_break(memcg, iter);
1857				break;
1858			}
1859			iter->oom_lock = false;
1860		}
1861	} else
1862		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1863
1864	spin_unlock(&memcg_oom_lock);
1865
1866	return !failed;
1867}
1868
1869static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1870{
1871	struct mem_cgroup *iter;
1872
1873	spin_lock(&memcg_oom_lock);
1874	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1875	for_each_mem_cgroup_tree(iter, memcg)
1876		iter->oom_lock = false;
1877	spin_unlock(&memcg_oom_lock);
1878}
1879
1880static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1881{
1882	struct mem_cgroup *iter;
1883
1884	spin_lock(&memcg_oom_lock);
1885	for_each_mem_cgroup_tree(iter, memcg)
1886		iter->under_oom++;
1887	spin_unlock(&memcg_oom_lock);
1888}
1889
1890static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1891{
1892	struct mem_cgroup *iter;
1893
1894	/*
1895	 * Be careful about under_oom underflows becase a child memcg
1896	 * could have been added after mem_cgroup_mark_under_oom.
1897	 */
1898	spin_lock(&memcg_oom_lock);
1899	for_each_mem_cgroup_tree(iter, memcg)
1900		if (iter->under_oom > 0)
1901			iter->under_oom--;
1902	spin_unlock(&memcg_oom_lock);
1903}
1904
1905static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1906
1907struct oom_wait_info {
1908	struct mem_cgroup *memcg;
1909	wait_queue_entry_t	wait;
1910};
1911
1912static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1913	unsigned mode, int sync, void *arg)
1914{
1915	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1916	struct mem_cgroup *oom_wait_memcg;
1917	struct oom_wait_info *oom_wait_info;
1918
1919	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1920	oom_wait_memcg = oom_wait_info->memcg;
1921
1922	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1923	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1924		return 0;
1925	return autoremove_wake_function(wait, mode, sync, arg);
1926}
1927
1928static void memcg_oom_recover(struct mem_cgroup *memcg)
1929{
1930	/*
1931	 * For the following lockless ->under_oom test, the only required
1932	 * guarantee is that it must see the state asserted by an OOM when
1933	 * this function is called as a result of userland actions
1934	 * triggered by the notification of the OOM.  This is trivially
1935	 * achieved by invoking mem_cgroup_mark_under_oom() before
1936	 * triggering notification.
1937	 */
1938	if (memcg && memcg->under_oom)
1939		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1940}
1941
1942enum oom_status {
1943	OOM_SUCCESS,
1944	OOM_FAILED,
1945	OOM_ASYNC,
1946	OOM_SKIPPED
1947};
1948
1949static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1950{
1951	enum oom_status ret;
1952	bool locked;
1953
1954	if (order > PAGE_ALLOC_COSTLY_ORDER)
1955		return OOM_SKIPPED;
1956
1957	memcg_memory_event(memcg, MEMCG_OOM);
1958
1959	/*
1960	 * We are in the middle of the charge context here, so we
1961	 * don't want to block when potentially sitting on a callstack
1962	 * that holds all kinds of filesystem and mm locks.
1963	 *
1964	 * cgroup1 allows disabling the OOM killer and waiting for outside
1965	 * handling until the charge can succeed; remember the context and put
1966	 * the task to sleep at the end of the page fault when all locks are
1967	 * released.
1968	 *
1969	 * On the other hand, in-kernel OOM killer allows for an async victim
1970	 * memory reclaim (oom_reaper) and that means that we are not solely
1971	 * relying on the oom victim to make a forward progress and we can
1972	 * invoke the oom killer here.
1973	 *
1974	 * Please note that mem_cgroup_out_of_memory might fail to find a
1975	 * victim and then we have to bail out from the charge path.
1976	 */
1977	if (memcg->oom_kill_disable) {
1978		if (!current->in_user_fault)
1979			return OOM_SKIPPED;
1980		css_get(&memcg->css);
1981		current->memcg_in_oom = memcg;
1982		current->memcg_oom_gfp_mask = mask;
1983		current->memcg_oom_order = order;
1984
1985		return OOM_ASYNC;
1986	}
1987
1988	mem_cgroup_mark_under_oom(memcg);
1989
1990	locked = mem_cgroup_oom_trylock(memcg);
1991
1992	if (locked)
1993		mem_cgroup_oom_notify(memcg);
1994
1995	mem_cgroup_unmark_under_oom(memcg);
1996	if (mem_cgroup_out_of_memory(memcg, mask, order))
1997		ret = OOM_SUCCESS;
1998	else
1999		ret = OOM_FAILED;
2000
2001	if (locked)
2002		mem_cgroup_oom_unlock(memcg);
2003
2004	return ret;
2005}
2006
2007/**
2008 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2009 * @handle: actually kill/wait or just clean up the OOM state
2010 *
2011 * This has to be called at the end of a page fault if the memcg OOM
2012 * handler was enabled.
2013 *
2014 * Memcg supports userspace OOM handling where failed allocations must
2015 * sleep on a waitqueue until the userspace task resolves the
2016 * situation.  Sleeping directly in the charge context with all kinds
2017 * of locks held is not a good idea, instead we remember an OOM state
2018 * in the task and mem_cgroup_oom_synchronize() has to be called at
2019 * the end of the page fault to complete the OOM handling.
2020 *
2021 * Returns %true if an ongoing memcg OOM situation was detected and
2022 * completed, %false otherwise.
2023 */
2024bool mem_cgroup_oom_synchronize(bool handle)
2025{
2026	struct mem_cgroup *memcg = current->memcg_in_oom;
2027	struct oom_wait_info owait;
2028	bool locked;
2029
2030	/* OOM is global, do not handle */
2031	if (!memcg)
2032		return false;
2033
2034	if (!handle)
2035		goto cleanup;
2036
2037	owait.memcg = memcg;
2038	owait.wait.flags = 0;
2039	owait.wait.func = memcg_oom_wake_function;
2040	owait.wait.private = current;
2041	INIT_LIST_HEAD(&owait.wait.entry);
2042
2043	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2044	mem_cgroup_mark_under_oom(memcg);
2045
2046	locked = mem_cgroup_oom_trylock(memcg);
2047
2048	if (locked)
2049		mem_cgroup_oom_notify(memcg);
2050
2051	if (locked && !memcg->oom_kill_disable) {
2052		mem_cgroup_unmark_under_oom(memcg);
2053		finish_wait(&memcg_oom_waitq, &owait.wait);
2054		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2055					 current->memcg_oom_order);
2056	} else {
2057		schedule();
2058		mem_cgroup_unmark_under_oom(memcg);
2059		finish_wait(&memcg_oom_waitq, &owait.wait);
2060	}
2061
2062	if (locked) {
2063		mem_cgroup_oom_unlock(memcg);
2064		/*
2065		 * There is no guarantee that an OOM-lock contender
2066		 * sees the wakeups triggered by the OOM kill
2067		 * uncharges.  Wake any sleepers explicitely.
2068		 */
2069		memcg_oom_recover(memcg);
2070	}
2071cleanup:
2072	current->memcg_in_oom = NULL;
2073	css_put(&memcg->css);
2074	return true;
2075}
2076
2077/**
2078 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2079 * @victim: task to be killed by the OOM killer
2080 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2081 *
2082 * Returns a pointer to a memory cgroup, which has to be cleaned up
2083 * by killing all belonging OOM-killable tasks.
2084 *
2085 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2086 */
2087struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2088					    struct mem_cgroup *oom_domain)
2089{
2090	struct mem_cgroup *oom_group = NULL;
2091	struct mem_cgroup *memcg;
2092
2093	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2094		return NULL;
2095
2096	if (!oom_domain)
2097		oom_domain = root_mem_cgroup;
2098
2099	rcu_read_lock();
2100
2101	memcg = mem_cgroup_from_task(victim);
2102	if (memcg == root_mem_cgroup)
2103		goto out;
2104
2105	/*
2106	 * If the victim task has been asynchronously moved to a different
2107	 * memory cgroup, we might end up killing tasks outside oom_domain.
2108	 * In this case it's better to ignore memory.group.oom.
2109	 */
2110	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2111		goto out;
2112
2113	/*
2114	 * Traverse the memory cgroup hierarchy from the victim task's
2115	 * cgroup up to the OOMing cgroup (or root) to find the
2116	 * highest-level memory cgroup with oom.group set.
2117	 */
2118	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2119		if (memcg->oom_group)
2120			oom_group = memcg;
2121
2122		if (memcg == oom_domain)
2123			break;
2124	}
2125
2126	if (oom_group)
2127		css_get(&oom_group->css);
2128out:
2129	rcu_read_unlock();
2130
2131	return oom_group;
2132}
2133
2134void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2135{
2136	pr_info("Tasks in ");
2137	pr_cont_cgroup_path(memcg->css.cgroup);
2138	pr_cont(" are going to be killed due to memory.oom.group set\n");
2139}
2140
2141/**
2142 * lock_page_memcg - lock a page->mem_cgroup binding
2143 * @page: the page
2144 *
2145 * This function protects unlocked LRU pages from being moved to
2146 * another cgroup.
2147 *
2148 * It ensures lifetime of the returned memcg. Caller is responsible
2149 * for the lifetime of the page; __unlock_page_memcg() is available
2150 * when @page might get freed inside the locked section.
2151 */
2152struct mem_cgroup *lock_page_memcg(struct page *page)
2153{
2154	struct page *head = compound_head(page); /* rmap on tail pages */
2155	struct mem_cgroup *memcg;
2156	unsigned long flags;
2157
2158	/*
2159	 * The RCU lock is held throughout the transaction.  The fast
2160	 * path can get away without acquiring the memcg->move_lock
2161	 * because page moving starts with an RCU grace period.
2162	 *
2163	 * The RCU lock also protects the memcg from being freed when
2164	 * the page state that is going to change is the only thing
2165	 * preventing the page itself from being freed. E.g. writeback
2166	 * doesn't hold a page reference and relies on PG_writeback to
2167	 * keep off truncation, migration and so forth.
2168         */
2169	rcu_read_lock();
2170
2171	if (mem_cgroup_disabled())
2172		return NULL;
2173again:
2174	memcg = head->mem_cgroup;
2175	if (unlikely(!memcg))
2176		return NULL;
2177
2178	if (atomic_read(&memcg->moving_account) <= 0)
2179		return memcg;
2180
2181	spin_lock_irqsave(&memcg->move_lock, flags);
2182	if (memcg != head->mem_cgroup) {
2183		spin_unlock_irqrestore(&memcg->move_lock, flags);
2184		goto again;
2185	}
2186
2187	/*
2188	 * When charge migration first begins, we can have locked and
2189	 * unlocked page stat updates happening concurrently.  Track
2190	 * the task who has the lock for unlock_page_memcg().
2191	 */
2192	memcg->move_lock_task = current;
2193	memcg->move_lock_flags = flags;
2194
2195	return memcg;
2196}
2197EXPORT_SYMBOL(lock_page_memcg);
2198
2199/**
2200 * __unlock_page_memcg - unlock and unpin a memcg
2201 * @memcg: the memcg
2202 *
2203 * Unlock and unpin a memcg returned by lock_page_memcg().
2204 */
2205void __unlock_page_memcg(struct mem_cgroup *memcg)
2206{
2207	if (memcg && memcg->move_lock_task == current) {
2208		unsigned long flags = memcg->move_lock_flags;
2209
2210		memcg->move_lock_task = NULL;
2211		memcg->move_lock_flags = 0;
2212
2213		spin_unlock_irqrestore(&memcg->move_lock, flags);
2214	}
2215
2216	rcu_read_unlock();
2217}
2218
2219/**
2220 * unlock_page_memcg - unlock a page->mem_cgroup binding
2221 * @page: the page
2222 */
2223void unlock_page_memcg(struct page *page)
2224{
2225	struct page *head = compound_head(page);
2226
2227	__unlock_page_memcg(head->mem_cgroup);
2228}
2229EXPORT_SYMBOL(unlock_page_memcg);
2230
2231struct memcg_stock_pcp {
2232	struct mem_cgroup *cached; /* this never be root cgroup */
2233	unsigned int nr_pages;
2234
2235#ifdef CONFIG_MEMCG_KMEM
2236	struct obj_cgroup *cached_objcg;
2237	unsigned int nr_bytes;
2238#endif
2239
2240	struct work_struct work;
2241	unsigned long flags;
2242#define FLUSHING_CACHED_CHARGE	0
2243};
2244static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2245static DEFINE_MUTEX(percpu_charge_mutex);
2246
2247#ifdef CONFIG_MEMCG_KMEM
2248static void drain_obj_stock(struct memcg_stock_pcp *stock);
2249static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2250				     struct mem_cgroup *root_memcg);
2251
2252#else
2253static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2254{
2255}
2256static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2257				     struct mem_cgroup *root_memcg)
2258{
2259	return false;
2260}
2261#endif
2262
2263/**
2264 * consume_stock: Try to consume stocked charge on this cpu.
2265 * @memcg: memcg to consume from.
2266 * @nr_pages: how many pages to charge.
2267 *
2268 * The charges will only happen if @memcg matches the current cpu's memcg
2269 * stock, and at least @nr_pages are available in that stock.  Failure to
2270 * service an allocation will refill the stock.
2271 *
2272 * returns true if successful, false otherwise.
2273 */
2274static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2275{
2276	struct memcg_stock_pcp *stock;
2277	unsigned long flags;
2278	bool ret = false;
2279
2280	if (nr_pages > MEMCG_CHARGE_BATCH)
2281		return ret;
2282
2283	local_irq_save(flags);
2284
2285	stock = this_cpu_ptr(&memcg_stock);
2286	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2287		stock->nr_pages -= nr_pages;
2288		ret = true;
2289	}
2290
2291	local_irq_restore(flags);
2292
2293	return ret;
2294}
2295
2296/*
2297 * Returns stocks cached in percpu and reset cached information.
2298 */
2299static void drain_stock(struct memcg_stock_pcp *stock)
2300{
2301	struct mem_cgroup *old = stock->cached;
2302
2303	if (!old)
2304		return;
2305
2306	if (stock->nr_pages) {
2307		page_counter_uncharge(&old->memory, stock->nr_pages);
2308		if (do_memsw_account())
2309			page_counter_uncharge(&old->memsw, stock->nr_pages);
2310		stock->nr_pages = 0;
2311	}
2312
2313	css_put(&old->css);
2314	stock->cached = NULL;
2315}
2316
2317static void drain_local_stock(struct work_struct *dummy)
2318{
2319	struct memcg_stock_pcp *stock;
2320	unsigned long flags;
2321
2322	/*
2323	 * The only protection from memory hotplug vs. drain_stock races is
2324	 * that we always operate on local CPU stock here with IRQ disabled
2325	 */
2326	local_irq_save(flags);
2327
2328	stock = this_cpu_ptr(&memcg_stock);
2329	drain_obj_stock(stock);
2330	drain_stock(stock);
2331	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2332
2333	local_irq_restore(flags);
2334}
2335
2336/*
2337 * Cache charges(val) to local per_cpu area.
2338 * This will be consumed by consume_stock() function, later.
2339 */
2340static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2341{
2342	struct memcg_stock_pcp *stock;
2343	unsigned long flags;
2344
2345	local_irq_save(flags);
2346
2347	stock = this_cpu_ptr(&memcg_stock);
2348	if (stock->cached != memcg) { /* reset if necessary */
2349		drain_stock(stock);
2350		css_get(&memcg->css);
2351		stock->cached = memcg;
2352	}
2353	stock->nr_pages += nr_pages;
2354
2355	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2356		drain_stock(stock);
2357
2358	local_irq_restore(flags);
2359}
2360
2361/*
2362 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363 * of the hierarchy under it.
2364 */
2365static void drain_all_stock(struct mem_cgroup *root_memcg)
2366{
2367	int cpu, curcpu;
2368
2369	/* If someone's already draining, avoid adding running more workers. */
2370	if (!mutex_trylock(&percpu_charge_mutex))
2371		return;
2372	/*
2373	 * Notify other cpus that system-wide "drain" is running
2374	 * We do not care about races with the cpu hotplug because cpu down
2375	 * as well as workers from this path always operate on the local
2376	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377	 */
2378	curcpu = get_cpu();
2379	for_each_online_cpu(cpu) {
2380		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2381		struct mem_cgroup *memcg;
2382		bool flush = false;
2383
2384		rcu_read_lock();
2385		memcg = stock->cached;
2386		if (memcg && stock->nr_pages &&
2387		    mem_cgroup_is_descendant(memcg, root_memcg))
2388			flush = true;
2389		if (obj_stock_flush_required(stock, root_memcg))
2390			flush = true;
2391		rcu_read_unlock();
2392
2393		if (flush &&
2394		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2395			if (cpu == curcpu)
2396				drain_local_stock(&stock->work);
2397			else
2398				schedule_work_on(cpu, &stock->work);
2399		}
2400	}
2401	put_cpu();
2402	mutex_unlock(&percpu_charge_mutex);
2403}
2404
2405static int memcg_hotplug_cpu_dead(unsigned int cpu)
2406{
2407	struct memcg_stock_pcp *stock;
2408	struct mem_cgroup *memcg, *mi;
2409
2410	stock = &per_cpu(memcg_stock, cpu);
2411	drain_stock(stock);
2412
2413	for_each_mem_cgroup(memcg) {
2414		int i;
2415
2416		for (i = 0; i < MEMCG_NR_STAT; i++) {
2417			int nid;
2418			long x;
2419
2420			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2421			if (x)
2422				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2423					atomic_long_add(x, &memcg->vmstats[i]);
2424
2425			if (i >= NR_VM_NODE_STAT_ITEMS)
2426				continue;
2427
2428			for_each_node(nid) {
2429				struct mem_cgroup_per_node *pn;
2430
2431				pn = mem_cgroup_nodeinfo(memcg, nid);
2432				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2433				if (x)
2434					do {
2435						atomic_long_add(x, &pn->lruvec_stat[i]);
2436					} while ((pn = parent_nodeinfo(pn, nid)));
2437			}
2438		}
2439
2440		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2441			long x;
2442
2443			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2444			if (x)
2445				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2446					atomic_long_add(x, &memcg->vmevents[i]);
2447		}
2448	}
2449
2450	return 0;
2451}
2452
2453static unsigned long reclaim_high(struct mem_cgroup *memcg,
2454				  unsigned int nr_pages,
2455				  gfp_t gfp_mask)
2456{
2457	unsigned long nr_reclaimed = 0;
2458
2459	do {
2460		unsigned long pflags;
2461
2462		if (page_counter_read(&memcg->memory) <=
2463		    READ_ONCE(memcg->memory.high))
2464			continue;
2465
2466		memcg_memory_event(memcg, MEMCG_HIGH);
2467
2468		psi_memstall_enter(&pflags);
2469		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2470							     gfp_mask, true);
2471		psi_memstall_leave(&pflags);
2472	} while ((memcg = parent_mem_cgroup(memcg)) &&
2473		 !mem_cgroup_is_root(memcg));
2474
2475	return nr_reclaimed;
2476}
2477
2478static void high_work_func(struct work_struct *work)
2479{
2480	struct mem_cgroup *memcg;
2481
2482	memcg = container_of(work, struct mem_cgroup, high_work);
2483	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2484}
2485
2486/*
2487 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2488 * enough to still cause a significant slowdown in most cases, while still
2489 * allowing diagnostics and tracing to proceed without becoming stuck.
2490 */
2491#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2492
2493/*
2494 * When calculating the delay, we use these either side of the exponentiation to
2495 * maintain precision and scale to a reasonable number of jiffies (see the table
2496 * below.
2497 *
2498 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2499 *   overage ratio to a delay.
2500 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2501 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2502 *   to produce a reasonable delay curve.
2503 *
2504 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2505 * reasonable delay curve compared to precision-adjusted overage, not
2506 * penalising heavily at first, but still making sure that growth beyond the
2507 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2508 * example, with a high of 100 megabytes:
2509 *
2510 *  +-------+------------------------+
2511 *  | usage | time to allocate in ms |
2512 *  +-------+------------------------+
2513 *  | 100M  |                      0 |
2514 *  | 101M  |                      6 |
2515 *  | 102M  |                     25 |
2516 *  | 103M  |                     57 |
2517 *  | 104M  |                    102 |
2518 *  | 105M  |                    159 |
2519 *  | 106M  |                    230 |
2520 *  | 107M  |                    313 |
2521 *  | 108M  |                    409 |
2522 *  | 109M  |                    518 |
2523 *  | 110M  |                    639 |
2524 *  | 111M  |                    774 |
2525 *  | 112M  |                    921 |
2526 *  | 113M  |                   1081 |
2527 *  | 114M  |                   1254 |
2528 *  | 115M  |                   1439 |
2529 *  | 116M  |                   1638 |
2530 *  | 117M  |                   1849 |
2531 *  | 118M  |                   2000 |
2532 *  | 119M  |                   2000 |
2533 *  | 120M  |                   2000 |
2534 *  +-------+------------------------+
2535 */
2536 #define MEMCG_DELAY_PRECISION_SHIFT 20
2537 #define MEMCG_DELAY_SCALING_SHIFT 14
2538
2539static u64 calculate_overage(unsigned long usage, unsigned long high)
2540{
2541	u64 overage;
2542
2543	if (usage <= high)
2544		return 0;
2545
2546	/*
2547	 * Prevent division by 0 in overage calculation by acting as if
2548	 * it was a threshold of 1 page
2549	 */
2550	high = max(high, 1UL);
2551
2552	overage = usage - high;
2553	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2554	return div64_u64(overage, high);
2555}
2556
2557static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2558{
2559	u64 overage, max_overage = 0;
2560
2561	do {
2562		overage = calculate_overage(page_counter_read(&memcg->memory),
2563					    READ_ONCE(memcg->memory.high));
2564		max_overage = max(overage, max_overage);
2565	} while ((memcg = parent_mem_cgroup(memcg)) &&
2566		 !mem_cgroup_is_root(memcg));
2567
2568	return max_overage;
2569}
2570
2571static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2572{
2573	u64 overage, max_overage = 0;
2574
2575	do {
2576		overage = calculate_overage(page_counter_read(&memcg->swap),
2577					    READ_ONCE(memcg->swap.high));
2578		if (overage)
2579			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2580		max_overage = max(overage, max_overage);
2581	} while ((memcg = parent_mem_cgroup(memcg)) &&
2582		 !mem_cgroup_is_root(memcg));
2583
2584	return max_overage;
2585}
2586
2587/*
2588 * Get the number of jiffies that we should penalise a mischievous cgroup which
2589 * is exceeding its memory.high by checking both it and its ancestors.
2590 */
2591static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2592					  unsigned int nr_pages,
2593					  u64 max_overage)
2594{
2595	unsigned long penalty_jiffies;
2596
2597	if (!max_overage)
2598		return 0;
2599
2600	/*
2601	 * We use overage compared to memory.high to calculate the number of
2602	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2603	 * fairly lenient on small overages, and increasingly harsh when the
2604	 * memcg in question makes it clear that it has no intention of stopping
2605	 * its crazy behaviour, so we exponentially increase the delay based on
2606	 * overage amount.
2607	 */
2608	penalty_jiffies = max_overage * max_overage * HZ;
2609	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2610	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2611
2612	/*
2613	 * Factor in the task's own contribution to the overage, such that four
2614	 * N-sized allocations are throttled approximately the same as one
2615	 * 4N-sized allocation.
2616	 *
2617	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2618	 * larger the current charge patch is than that.
2619	 */
2620	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2621}
2622
2623/*
2624 * Scheduled by try_charge() to be executed from the userland return path
2625 * and reclaims memory over the high limit.
2626 */
2627void mem_cgroup_handle_over_high(void)
2628{
2629	unsigned long penalty_jiffies;
2630	unsigned long pflags;
2631	unsigned long nr_reclaimed;
2632	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2633	int nr_retries = MAX_RECLAIM_RETRIES;
2634	struct mem_cgroup *memcg;
2635	bool in_retry = false;
2636
2637	if (likely(!nr_pages))
2638		return;
2639
2640	memcg = get_mem_cgroup_from_mm(current->mm);
2641	current->memcg_nr_pages_over_high = 0;
2642
2643retry_reclaim:
2644	/*
2645	 * The allocating task should reclaim at least the batch size, but for
2646	 * subsequent retries we only want to do what's necessary to prevent oom
2647	 * or breaching resource isolation.
2648	 *
2649	 * This is distinct from memory.max or page allocator behaviour because
2650	 * memory.high is currently batched, whereas memory.max and the page
2651	 * allocator run every time an allocation is made.
2652	 */
2653	nr_reclaimed = reclaim_high(memcg,
2654				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2655				    GFP_KERNEL);
2656
2657	/*
2658	 * memory.high is breached and reclaim is unable to keep up. Throttle
2659	 * allocators proactively to slow down excessive growth.
2660	 */
2661	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2662					       mem_find_max_overage(memcg));
2663
2664	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2665						swap_find_max_overage(memcg));
2666
2667	/*
2668	 * Clamp the max delay per usermode return so as to still keep the
2669	 * application moving forwards and also permit diagnostics, albeit
2670	 * extremely slowly.
2671	 */
2672	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2673
2674	/*
2675	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2676	 * that it's not even worth doing, in an attempt to be nice to those who
2677	 * go only a small amount over their memory.high value and maybe haven't
2678	 * been aggressively reclaimed enough yet.
2679	 */
2680	if (penalty_jiffies <= HZ / 100)
2681		goto out;
2682
2683	/*
2684	 * If reclaim is making forward progress but we're still over
2685	 * memory.high, we want to encourage that rather than doing allocator
2686	 * throttling.
2687	 */
2688	if (nr_reclaimed || nr_retries--) {
2689		in_retry = true;
2690		goto retry_reclaim;
2691	}
2692
2693	/*
2694	 * If we exit early, we're guaranteed to die (since
2695	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2696	 * need to account for any ill-begotten jiffies to pay them off later.
2697	 */
2698	psi_memstall_enter(&pflags);
2699	schedule_timeout_killable(penalty_jiffies);
2700	psi_memstall_leave(&pflags);
2701
2702out:
2703	css_put(&memcg->css);
2704}
2705
2706static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2707		      unsigned int nr_pages)
2708{
2709	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2710	int nr_retries = MAX_RECLAIM_RETRIES;
2711	struct mem_cgroup *mem_over_limit;
2712	struct page_counter *counter;
2713	enum oom_status oom_status;
2714	unsigned long nr_reclaimed;
2715	bool passed_oom = false;
2716	bool may_swap = true;
2717	bool drained = false;
2718	unsigned long pflags;
2719
2720	if (mem_cgroup_is_root(memcg))
2721		return 0;
2722retry:
2723	if (consume_stock(memcg, nr_pages))
2724		return 0;
2725
2726	if (!do_memsw_account() ||
2727	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2728		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2729			goto done_restock;
2730		if (do_memsw_account())
2731			page_counter_uncharge(&memcg->memsw, batch);
2732		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2733	} else {
2734		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2735		may_swap = false;
2736	}
2737
2738	if (batch > nr_pages) {
2739		batch = nr_pages;
2740		goto retry;
2741	}
2742
2743	/*
2744	 * Memcg doesn't have a dedicated reserve for atomic
2745	 * allocations. But like the global atomic pool, we need to
2746	 * put the burden of reclaim on regular allocation requests
2747	 * and let these go through as privileged allocations.
2748	 */
2749	if (gfp_mask & __GFP_ATOMIC)
2750		goto force;
2751
2752	/*
2753	 * Prevent unbounded recursion when reclaim operations need to
2754	 * allocate memory. This might exceed the limits temporarily,
2755	 * but we prefer facilitating memory reclaim and getting back
2756	 * under the limit over triggering OOM kills in these cases.
2757	 */
2758	if (unlikely(current->flags & PF_MEMALLOC))
2759		goto force;
2760
2761	if (unlikely(task_in_memcg_oom(current)))
2762		goto nomem;
2763
2764	if (!gfpflags_allow_blocking(gfp_mask))
2765		goto nomem;
2766
2767	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2768
2769	psi_memstall_enter(&pflags);
2770	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2771						    gfp_mask, may_swap);
2772	psi_memstall_leave(&pflags);
2773
2774	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2775		goto retry;
2776
2777	if (!drained) {
2778		drain_all_stock(mem_over_limit);
2779		drained = true;
2780		goto retry;
2781	}
2782
2783	if (gfp_mask & __GFP_NORETRY)
2784		goto nomem;
2785	/*
2786	 * Even though the limit is exceeded at this point, reclaim
2787	 * may have been able to free some pages.  Retry the charge
2788	 * before killing the task.
2789	 *
2790	 * Only for regular pages, though: huge pages are rather
2791	 * unlikely to succeed so close to the limit, and we fall back
2792	 * to regular pages anyway in case of failure.
2793	 */
2794	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2795		goto retry;
2796	/*
2797	 * At task move, charge accounts can be doubly counted. So, it's
2798	 * better to wait until the end of task_move if something is going on.
2799	 */
2800	if (mem_cgroup_wait_acct_move(mem_over_limit))
2801		goto retry;
2802
2803	if (nr_retries--)
2804		goto retry;
2805
2806	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2807		goto nomem;
2808
2809	if (gfp_mask & __GFP_NOFAIL)
2810		goto force;
2811
2812	/* Avoid endless loop for tasks bypassed by the oom killer */
2813	if (passed_oom && task_is_dying())
2814		goto nomem;
2815
2816	/*
2817	 * keep retrying as long as the memcg oom killer is able to make
2818	 * a forward progress or bypass the charge if the oom killer
2819	 * couldn't make any progress.
2820	 */
2821	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2822		       get_order(nr_pages * PAGE_SIZE));
2823	if (oom_status == OOM_SUCCESS) {
2824		passed_oom = true;
2825		nr_retries = MAX_RECLAIM_RETRIES;
2826		goto retry;
2827	}
2828nomem:
2829	if (!(gfp_mask & __GFP_NOFAIL))
2830		return -ENOMEM;
2831force:
2832	/*
2833	 * The allocation either can't fail or will lead to more memory
2834	 * being freed very soon.  Allow memory usage go over the limit
2835	 * temporarily by force charging it.
2836	 */
2837	page_counter_charge(&memcg->memory, nr_pages);
2838	if (do_memsw_account())
2839		page_counter_charge(&memcg->memsw, nr_pages);
2840
2841	return 0;
2842
2843done_restock:
2844	if (batch > nr_pages)
2845		refill_stock(memcg, batch - nr_pages);
2846
2847	/*
2848	 * If the hierarchy is above the normal consumption range, schedule
2849	 * reclaim on returning to userland.  We can perform reclaim here
2850	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2851	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2852	 * not recorded as it most likely matches current's and won't
2853	 * change in the meantime.  As high limit is checked again before
2854	 * reclaim, the cost of mismatch is negligible.
2855	 */
2856	do {
2857		bool mem_high, swap_high;
2858
2859		mem_high = page_counter_read(&memcg->memory) >
2860			READ_ONCE(memcg->memory.high);
2861		swap_high = page_counter_read(&memcg->swap) >
2862			READ_ONCE(memcg->swap.high);
2863
2864		/* Don't bother a random interrupted task */
2865		if (in_interrupt()) {
2866			if (mem_high) {
2867				schedule_work(&memcg->high_work);
2868				break;
2869			}
2870			continue;
2871		}
2872
2873		if (mem_high || swap_high) {
2874			/*
2875			 * The allocating tasks in this cgroup will need to do
2876			 * reclaim or be throttled to prevent further growth
2877			 * of the memory or swap footprints.
2878			 *
2879			 * Target some best-effort fairness between the tasks,
2880			 * and distribute reclaim work and delay penalties
2881			 * based on how much each task is actually allocating.
2882			 */
2883			current->memcg_nr_pages_over_high += batch;
2884			set_notify_resume(current);
2885			break;
2886		}
2887	} while ((memcg = parent_mem_cgroup(memcg)));
2888
2889	return 0;
2890}
2891
2892#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2893static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2894{
2895	if (mem_cgroup_is_root(memcg))
2896		return;
2897
2898	page_counter_uncharge(&memcg->memory, nr_pages);
2899	if (do_memsw_account())
2900		page_counter_uncharge(&memcg->memsw, nr_pages);
2901}
2902#endif
2903
2904static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2905{
2906	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2907	/*
2908	 * Any of the following ensures page->mem_cgroup stability:
2909	 *
2910	 * - the page lock
2911	 * - LRU isolation
2912	 * - lock_page_memcg()
2913	 * - exclusive reference
2914	 */
2915	page->mem_cgroup = memcg;
2916}
2917
2918#ifdef CONFIG_MEMCG_KMEM
2919/*
2920 * The allocated objcg pointers array is not accounted directly.
2921 * Moreover, it should not come from DMA buffer and is not readily
2922 * reclaimable. So those GFP bits should be masked off.
2923 */
2924#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2925				 __GFP_ACCOUNT | __GFP_NOFAIL)
2926
2927int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2928				 gfp_t gfp)
2929{
2930	unsigned int objects = objs_per_slab_page(s, page);
2931	void *vec;
2932
2933	gfp &= ~OBJCGS_CLEAR_MASK;
2934	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2935			   page_to_nid(page));
2936	if (!vec)
2937		return -ENOMEM;
2938
2939	if (cmpxchg(&page->obj_cgroups, NULL,
2940		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2941		kfree(vec);
2942	else
2943		kmemleak_not_leak(vec);
2944
2945	return 0;
2946}
2947
2948/*
2949 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2950 *
2951 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2952 * cgroup_mutex, etc.
2953 */
2954struct mem_cgroup *mem_cgroup_from_obj(void *p)
2955{
2956	struct page *page;
2957
2958	if (mem_cgroup_disabled())
2959		return NULL;
2960
2961	page = virt_to_head_page(p);
2962
2963	/*
2964	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2965	 * or a pointer to obj_cgroup vector. In the latter case the lowest
2966	 * bit of the pointer is set.
2967	 * The page->mem_cgroup pointer can be asynchronously changed
2968	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2969	 * from a valid memcg pointer to objcg vector or back.
2970	 */
2971	if (!page->mem_cgroup)
2972		return NULL;
2973
2974	/*
2975	 * Slab objects are accounted individually, not per-page.
2976	 * Memcg membership data for each individual object is saved in
2977	 * the page->obj_cgroups.
2978	 */
2979	if (page_has_obj_cgroups(page)) {
2980		struct obj_cgroup *objcg;
2981		unsigned int off;
2982
2983		off = obj_to_index(page->slab_cache, page, p);
2984		objcg = page_obj_cgroups(page)[off];
2985		if (objcg)
2986			return obj_cgroup_memcg(objcg);
2987
2988		return NULL;
2989	}
2990
2991	/* All other pages use page->mem_cgroup */
2992	return page->mem_cgroup;
2993}
2994
2995__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2996{
2997	struct obj_cgroup *objcg = NULL;
2998	struct mem_cgroup *memcg;
2999
3000	if (memcg_kmem_bypass())
3001		return NULL;
3002
3003	rcu_read_lock();
3004	if (unlikely(active_memcg()))
3005		memcg = active_memcg();
3006	else
3007		memcg = mem_cgroup_from_task(current);
3008
3009	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3010		objcg = rcu_dereference(memcg->objcg);
3011		if (objcg && obj_cgroup_tryget(objcg))
3012			break;
3013		objcg = NULL;
3014	}
3015	rcu_read_unlock();
3016
3017	return objcg;
3018}
3019
3020static int memcg_alloc_cache_id(void)
3021{
3022	int id, size;
3023	int err;
3024
3025	id = ida_simple_get(&memcg_cache_ida,
3026			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3027	if (id < 0)
3028		return id;
3029
3030	if (id < memcg_nr_cache_ids)
3031		return id;
3032
3033	/*
3034	 * There's no space for the new id in memcg_caches arrays,
3035	 * so we have to grow them.
3036	 */
3037	down_write(&memcg_cache_ids_sem);
3038
3039	size = 2 * (id + 1);
3040	if (size < MEMCG_CACHES_MIN_SIZE)
3041		size = MEMCG_CACHES_MIN_SIZE;
3042	else if (size > MEMCG_CACHES_MAX_SIZE)
3043		size = MEMCG_CACHES_MAX_SIZE;
3044
3045	err = memcg_update_all_list_lrus(size);
3046	if (!err)
3047		memcg_nr_cache_ids = size;
3048
3049	up_write(&memcg_cache_ids_sem);
3050
3051	if (err) {
3052		ida_simple_remove(&memcg_cache_ida, id);
3053		return err;
3054	}
3055	return id;
3056}
3057
3058static void memcg_free_cache_id(int id)
3059{
3060	ida_simple_remove(&memcg_cache_ida, id);
3061}
3062
3063/**
3064 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3065 * @memcg: memory cgroup to charge
3066 * @gfp: reclaim mode
3067 * @nr_pages: number of pages to charge
3068 *
3069 * Returns 0 on success, an error code on failure.
3070 */
3071int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3072			unsigned int nr_pages)
3073{
3074	struct page_counter *counter;
3075	int ret;
3076
3077	ret = try_charge(memcg, gfp, nr_pages);
3078	if (ret)
3079		return ret;
3080
3081	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3082	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3083
3084		/*
3085		 * Enforce __GFP_NOFAIL allocation because callers are not
3086		 * prepared to see failures and likely do not have any failure
3087		 * handling code.
3088		 */
3089		if (gfp & __GFP_NOFAIL) {
3090			page_counter_charge(&memcg->kmem, nr_pages);
3091			return 0;
3092		}
3093		cancel_charge(memcg, nr_pages);
3094		return -ENOMEM;
3095	}
3096	return 0;
3097}
3098
3099/**
3100 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3101 * @memcg: memcg to uncharge
3102 * @nr_pages: number of pages to uncharge
3103 */
3104void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3105{
3106	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3107		page_counter_uncharge(&memcg->kmem, nr_pages);
3108
3109	refill_stock(memcg, nr_pages);
3110}
3111
3112/**
3113 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3114 * @page: page to charge
3115 * @gfp: reclaim mode
3116 * @order: allocation order
3117 *
3118 * Returns 0 on success, an error code on failure.
3119 */
3120int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3121{
3122	struct mem_cgroup *memcg;
3123	int ret = 0;
3124
3125	memcg = get_mem_cgroup_from_current();
3126	if (memcg && !mem_cgroup_is_root(memcg)) {
3127		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3128		if (!ret) {
3129			page->mem_cgroup = memcg;
3130			__SetPageKmemcg(page);
3131			return 0;
3132		}
3133		css_put(&memcg->css);
3134	}
3135	return ret;
3136}
3137
3138/**
3139 * __memcg_kmem_uncharge_page: uncharge a kmem page
3140 * @page: page to uncharge
3141 * @order: allocation order
3142 */
3143void __memcg_kmem_uncharge_page(struct page *page, int order)
3144{
3145	struct mem_cgroup *memcg = page->mem_cgroup;
3146	unsigned int nr_pages = 1 << order;
3147
3148	if (!memcg)
3149		return;
3150
3151	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3152	__memcg_kmem_uncharge(memcg, nr_pages);
3153	page->mem_cgroup = NULL;
3154	css_put(&memcg->css);
3155
3156	/* slab pages do not have PageKmemcg flag set */
3157	if (PageKmemcg(page))
3158		__ClearPageKmemcg(page);
3159}
3160
3161static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3162{
3163	struct memcg_stock_pcp *stock;
3164	unsigned long flags;
3165	bool ret = false;
3166
3167	local_irq_save(flags);
3168
3169	stock = this_cpu_ptr(&memcg_stock);
3170	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3171		stock->nr_bytes -= nr_bytes;
3172		ret = true;
3173	}
3174
3175	local_irq_restore(flags);
3176
3177	return ret;
3178}
3179
3180static void drain_obj_stock(struct memcg_stock_pcp *stock)
3181{
3182	struct obj_cgroup *old = stock->cached_objcg;
3183
3184	if (!old)
3185		return;
3186
3187	if (stock->nr_bytes) {
3188		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3189		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3190
3191		if (nr_pages) {
3192			struct mem_cgroup *memcg;
3193
3194			rcu_read_lock();
3195retry:
3196			memcg = obj_cgroup_memcg(old);
3197			if (unlikely(!css_tryget(&memcg->css)))
3198				goto retry;
3199			rcu_read_unlock();
3200
3201			__memcg_kmem_uncharge(memcg, nr_pages);
3202			css_put(&memcg->css);
3203		}
3204
3205		/*
3206		 * The leftover is flushed to the centralized per-memcg value.
3207		 * On the next attempt to refill obj stock it will be moved
3208		 * to a per-cpu stock (probably, on an other CPU), see
3209		 * refill_obj_stock().
3210		 *
3211		 * How often it's flushed is a trade-off between the memory
3212		 * limit enforcement accuracy and potential CPU contention,
3213		 * so it might be changed in the future.
3214		 */
3215		atomic_add(nr_bytes, &old->nr_charged_bytes);
3216		stock->nr_bytes = 0;
3217	}
3218
3219	obj_cgroup_put(old);
3220	stock->cached_objcg = NULL;
3221}
3222
3223static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3224				     struct mem_cgroup *root_memcg)
3225{
3226	struct mem_cgroup *memcg;
3227
3228	if (stock->cached_objcg) {
3229		memcg = obj_cgroup_memcg(stock->cached_objcg);
3230		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3231			return true;
3232	}
3233
3234	return false;
3235}
3236
3237static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3238{
3239	struct memcg_stock_pcp *stock;
3240	unsigned long flags;
3241
3242	local_irq_save(flags);
3243
3244	stock = this_cpu_ptr(&memcg_stock);
3245	if (stock->cached_objcg != objcg) { /* reset if necessary */
3246		drain_obj_stock(stock);
3247		obj_cgroup_get(objcg);
3248		stock->cached_objcg = objcg;
3249		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3250	}
3251	stock->nr_bytes += nr_bytes;
3252
3253	if (stock->nr_bytes > PAGE_SIZE)
3254		drain_obj_stock(stock);
3255
3256	local_irq_restore(flags);
3257}
3258
3259int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3260{
3261	struct mem_cgroup *memcg;
3262	unsigned int nr_pages, nr_bytes;
3263	int ret;
3264
3265	if (consume_obj_stock(objcg, size))
3266		return 0;
3267
3268	/*
3269	 * In theory, memcg->nr_charged_bytes can have enough
3270	 * pre-charged bytes to satisfy the allocation. However,
3271	 * flushing memcg->nr_charged_bytes requires two atomic
3272	 * operations, and memcg->nr_charged_bytes can't be big,
3273	 * so it's better to ignore it and try grab some new pages.
3274	 * memcg->nr_charged_bytes will be flushed in
3275	 * refill_obj_stock(), called from this function or
3276	 * independently later.
3277	 */
3278	rcu_read_lock();
3279retry:
3280	memcg = obj_cgroup_memcg(objcg);
3281	if (unlikely(!css_tryget(&memcg->css)))
3282		goto retry;
3283	rcu_read_unlock();
3284
3285	nr_pages = size >> PAGE_SHIFT;
3286	nr_bytes = size & (PAGE_SIZE - 1);
3287
3288	if (nr_bytes)
3289		nr_pages += 1;
3290
3291	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3292	if (!ret && nr_bytes)
3293		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3294
3295	css_put(&memcg->css);
3296	return ret;
3297}
3298
3299void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3300{
3301	refill_obj_stock(objcg, size);
3302}
3303
3304#endif /* CONFIG_MEMCG_KMEM */
3305
3306/*
3307 * Because head->mem_cgroup is not set on tails, set it now.
3308 */
3309void split_page_memcg(struct page *head, unsigned int nr)
3310{
3311	struct mem_cgroup *memcg = head->mem_cgroup;
3312	int kmemcg = PageKmemcg(head);
3313	int i;
3314
3315	if (mem_cgroup_disabled() || !memcg)
3316		return;
3317
3318	for (i = 1; i < nr; i++) {
3319		head[i].mem_cgroup = memcg;
3320		if (kmemcg)
3321			__SetPageKmemcg(head + i);
3322	}
3323	css_get_many(&memcg->css, nr - 1);
3324}
3325
3326#ifdef CONFIG_MEMCG_SWAP
3327/**
3328 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3329 * @entry: swap entry to be moved
3330 * @from:  mem_cgroup which the entry is moved from
3331 * @to:  mem_cgroup which the entry is moved to
3332 *
3333 * It succeeds only when the swap_cgroup's record for this entry is the same
3334 * as the mem_cgroup's id of @from.
3335 *
3336 * Returns 0 on success, -EINVAL on failure.
3337 *
3338 * The caller must have charged to @to, IOW, called page_counter_charge() about
3339 * both res and memsw, and called css_get().
3340 */
3341static int mem_cgroup_move_swap_account(swp_entry_t entry,
3342				struct mem_cgroup *from, struct mem_cgroup *to)
3343{
3344	unsigned short old_id, new_id;
3345
3346	old_id = mem_cgroup_id(from);
3347	new_id = mem_cgroup_id(to);
3348
3349	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3350		mod_memcg_state(from, MEMCG_SWAP, -1);
3351		mod_memcg_state(to, MEMCG_SWAP, 1);
3352		return 0;
3353	}
3354	return -EINVAL;
3355}
3356#else
3357static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3358				struct mem_cgroup *from, struct mem_cgroup *to)
3359{
3360	return -EINVAL;
3361}
3362#endif
3363
3364static DEFINE_MUTEX(memcg_max_mutex);
3365
3366static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3367				 unsigned long max, bool memsw)
3368{
3369	bool enlarge = false;
3370	bool drained = false;
3371	int ret;
3372	bool limits_invariant;
3373	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3374
3375	do {
3376		if (signal_pending(current)) {
3377			ret = -EINTR;
3378			break;
3379		}
3380
3381		mutex_lock(&memcg_max_mutex);
3382		/*
3383		 * Make sure that the new limit (memsw or memory limit) doesn't
3384		 * break our basic invariant rule memory.max <= memsw.max.
3385		 */
3386		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3387					   max <= memcg->memsw.max;
3388		if (!limits_invariant) {
3389			mutex_unlock(&memcg_max_mutex);
3390			ret = -EINVAL;
3391			break;
3392		}
3393		if (max > counter->max)
3394			enlarge = true;
3395		ret = page_counter_set_max(counter, max);
3396		mutex_unlock(&memcg_max_mutex);
3397
3398		if (!ret)
3399			break;
3400
3401		if (!drained) {
3402			drain_all_stock(memcg);
3403			drained = true;
3404			continue;
3405		}
3406
3407		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3408					GFP_KERNEL, !memsw)) {
3409			ret = -EBUSY;
3410			break;
3411		}
3412	} while (true);
3413
3414	if (!ret && enlarge)
3415		memcg_oom_recover(memcg);
3416
3417	return ret;
3418}
3419
3420unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3421					    gfp_t gfp_mask,
3422					    unsigned long *total_scanned)
3423{
3424	unsigned long nr_reclaimed = 0;
3425	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3426	unsigned long reclaimed;
3427	int loop = 0;
3428	struct mem_cgroup_tree_per_node *mctz;
3429	unsigned long excess;
3430	unsigned long nr_scanned;
3431
3432	if (order > 0)
3433		return 0;
3434
3435	mctz = soft_limit_tree_node(pgdat->node_id);
3436
3437	/*
3438	 * Do not even bother to check the largest node if the root
3439	 * is empty. Do it lockless to prevent lock bouncing. Races
3440	 * are acceptable as soft limit is best effort anyway.
3441	 */
3442	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3443		return 0;
3444
3445	/*
3446	 * This loop can run a while, specially if mem_cgroup's continuously
3447	 * keep exceeding their soft limit and putting the system under
3448	 * pressure
3449	 */
3450	do {
3451		if (next_mz)
3452			mz = next_mz;
3453		else
3454			mz = mem_cgroup_largest_soft_limit_node(mctz);
3455		if (!mz)
3456			break;
3457
3458		nr_scanned = 0;
3459		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3460						    gfp_mask, &nr_scanned);
3461		nr_reclaimed += reclaimed;
3462		*total_scanned += nr_scanned;
3463		spin_lock_irq(&mctz->lock);
3464		__mem_cgroup_remove_exceeded(mz, mctz);
3465
3466		/*
3467		 * If we failed to reclaim anything from this memory cgroup
3468		 * it is time to move on to the next cgroup
3469		 */
3470		next_mz = NULL;
3471		if (!reclaimed)
3472			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3473
3474		excess = soft_limit_excess(mz->memcg);
3475		/*
3476		 * One school of thought says that we should not add
3477		 * back the node to the tree if reclaim returns 0.
3478		 * But our reclaim could return 0, simply because due
3479		 * to priority we are exposing a smaller subset of
3480		 * memory to reclaim from. Consider this as a longer
3481		 * term TODO.
3482		 */
3483		/* If excess == 0, no tree ops */
3484		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3485		spin_unlock_irq(&mctz->lock);
3486		css_put(&mz->memcg->css);
3487		loop++;
3488		/*
3489		 * Could not reclaim anything and there are no more
3490		 * mem cgroups to try or we seem to be looping without
3491		 * reclaiming anything.
3492		 */
3493		if (!nr_reclaimed &&
3494			(next_mz == NULL ||
3495			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3496			break;
3497	} while (!nr_reclaimed);
3498	if (next_mz)
3499		css_put(&next_mz->memcg->css);
3500	return nr_reclaimed;
3501}
3502
3503/*
3504 * Test whether @memcg has children, dead or alive.  Note that this
3505 * function doesn't care whether @memcg has use_hierarchy enabled and
3506 * returns %true if there are child csses according to the cgroup
3507 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3508 */
3509static inline bool memcg_has_children(struct mem_cgroup *memcg)
3510{
3511	bool ret;
3512
3513	rcu_read_lock();
3514	ret = css_next_child(NULL, &memcg->css);
3515	rcu_read_unlock();
3516	return ret;
3517}
3518
3519/*
3520 * Reclaims as many pages from the given memcg as possible.
3521 *
3522 * Caller is responsible for holding css reference for memcg.
3523 */
3524static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3525{
3526	int nr_retries = MAX_RECLAIM_RETRIES;
3527
3528	/* we call try-to-free pages for make this cgroup empty */
3529	lru_add_drain_all();
3530
3531	drain_all_stock(memcg);
3532
3533	/* try to free all pages in this cgroup */
3534	while (nr_retries && page_counter_read(&memcg->memory)) {
3535		int progress;
3536
3537		if (signal_pending(current))
3538			return -EINTR;
3539
3540		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3541							GFP_KERNEL, true);
3542		if (!progress) {
3543			nr_retries--;
3544			/* maybe some writeback is necessary */
3545			congestion_wait(BLK_RW_ASYNC, HZ/10);
3546		}
3547
3548	}
3549
3550	return 0;
3551}
3552
3553static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3554					    char *buf, size_t nbytes,
3555					    loff_t off)
3556{
3557	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3558
3559	if (mem_cgroup_is_root(memcg))
3560		return -EINVAL;
3561	return mem_cgroup_force_empty(memcg) ?: nbytes;
3562}
3563
3564static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3565				     struct cftype *cft)
3566{
3567	return mem_cgroup_from_css(css)->use_hierarchy;
3568}
3569
3570static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3571				      struct cftype *cft, u64 val)
3572{
3573	int retval = 0;
3574	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3575	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3576
3577	if (memcg->use_hierarchy == val)
3578		return 0;
3579
3580	/*
3581	 * If parent's use_hierarchy is set, we can't make any modifications
3582	 * in the child subtrees. If it is unset, then the change can
3583	 * occur, provided the current cgroup has no children.
3584	 *
3585	 * For the root cgroup, parent_mem is NULL, we allow value to be
3586	 * set if there are no children.
3587	 */
3588	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3589				(val == 1 || val == 0)) {
3590		if (!memcg_has_children(memcg))
3591			memcg->use_hierarchy = val;
3592		else
3593			retval = -EBUSY;
3594	} else
3595		retval = -EINVAL;
3596
3597	return retval;
3598}
3599
3600static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3601{
3602	unsigned long val;
3603
3604	if (mem_cgroup_is_root(memcg)) {
3605		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3606			memcg_page_state(memcg, NR_ANON_MAPPED);
3607		if (swap)
3608			val += memcg_page_state(memcg, MEMCG_SWAP);
3609	} else {
3610		if (!swap)
3611			val = page_counter_read(&memcg->memory);
3612		else
3613			val = page_counter_read(&memcg->memsw);
3614	}
3615	return val;
3616}
3617
3618enum {
3619	RES_USAGE,
3620	RES_LIMIT,
3621	RES_MAX_USAGE,
3622	RES_FAILCNT,
3623	RES_SOFT_LIMIT,
3624};
3625
3626static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3627			       struct cftype *cft)
3628{
3629	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3630	struct page_counter *counter;
3631
3632	switch (MEMFILE_TYPE(cft->private)) {
3633	case _MEM:
3634		counter = &memcg->memory;
3635		break;
3636	case _MEMSWAP:
3637		counter = &memcg->memsw;
3638		break;
3639	case _KMEM:
3640		counter = &memcg->kmem;
3641		break;
3642	case _TCP:
3643		counter = &memcg->tcpmem;
3644		break;
3645	default:
3646		BUG();
3647	}
3648
3649	switch (MEMFILE_ATTR(cft->private)) {
3650	case RES_USAGE:
3651		if (counter == &memcg->memory)
3652			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3653		if (counter == &memcg->memsw)
3654			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3655		return (u64)page_counter_read(counter) * PAGE_SIZE;
3656	case RES_LIMIT:
3657		return (u64)counter->max * PAGE_SIZE;
3658	case RES_MAX_USAGE:
3659		return (u64)counter->watermark * PAGE_SIZE;
3660	case RES_FAILCNT:
3661		return counter->failcnt;
3662	case RES_SOFT_LIMIT:
3663		return (u64)memcg->soft_limit * PAGE_SIZE;
3664	default:
3665		BUG();
3666	}
3667}
3668
3669static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3670{
3671	unsigned long stat[MEMCG_NR_STAT] = {0};
3672	struct mem_cgroup *mi;
3673	int node, cpu, i;
3674
3675	for_each_online_cpu(cpu)
3676		for (i = 0; i < MEMCG_NR_STAT; i++)
3677			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3678
3679	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3680		for (i = 0; i < MEMCG_NR_STAT; i++)
3681			atomic_long_add(stat[i], &mi->vmstats[i]);
3682
3683	for_each_node(node) {
3684		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3685		struct mem_cgroup_per_node *pi;
3686
3687		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3688			stat[i] = 0;
3689
3690		for_each_online_cpu(cpu)
3691			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3692				stat[i] += per_cpu(
3693					pn->lruvec_stat_cpu->count[i], cpu);
3694
3695		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3696			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3697				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3698	}
3699}
3700
3701static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3702{
3703	unsigned long events[NR_VM_EVENT_ITEMS];
3704	struct mem_cgroup *mi;
3705	int cpu, i;
3706
3707	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3708		events[i] = 0;
3709
3710	for_each_online_cpu(cpu)
3711		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3712			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3713					     cpu);
3714
3715	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3716		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3717			atomic_long_add(events[i], &mi->vmevents[i]);
3718}
3719
3720#ifdef CONFIG_MEMCG_KMEM
3721static int memcg_online_kmem(struct mem_cgroup *memcg)
3722{
3723	struct obj_cgroup *objcg;
3724	int memcg_id;
3725
3726	if (cgroup_memory_nokmem)
3727		return 0;
3728
3729	BUG_ON(memcg->kmemcg_id >= 0);
3730	BUG_ON(memcg->kmem_state);
3731
3732	memcg_id = memcg_alloc_cache_id();
3733	if (memcg_id < 0)
3734		return memcg_id;
3735
3736	objcg = obj_cgroup_alloc();
3737	if (!objcg) {
3738		memcg_free_cache_id(memcg_id);
3739		return -ENOMEM;
3740	}
3741	objcg->memcg = memcg;
3742	rcu_assign_pointer(memcg->objcg, objcg);
3743
3744	static_branch_enable(&memcg_kmem_enabled_key);
3745
3746	/*
3747	 * A memory cgroup is considered kmem-online as soon as it gets
3748	 * kmemcg_id. Setting the id after enabling static branching will
3749	 * guarantee no one starts accounting before all call sites are
3750	 * patched.
3751	 */
3752	memcg->kmemcg_id = memcg_id;
3753	memcg->kmem_state = KMEM_ONLINE;
3754
3755	return 0;
3756}
3757
3758static void memcg_offline_kmem(struct mem_cgroup *memcg)
3759{
3760	struct cgroup_subsys_state *css;
3761	struct mem_cgroup *parent, *child;
3762	int kmemcg_id;
3763
3764	if (memcg->kmem_state != KMEM_ONLINE)
3765		return;
3766
3767	memcg->kmem_state = KMEM_ALLOCATED;
3768
3769	parent = parent_mem_cgroup(memcg);
3770	if (!parent)
3771		parent = root_mem_cgroup;
3772
3773	memcg_reparent_objcgs(memcg, parent);
3774
3775	kmemcg_id = memcg->kmemcg_id;
3776	BUG_ON(kmemcg_id < 0);
3777
3778	/*
3779	 * Change kmemcg_id of this cgroup and all its descendants to the
3780	 * parent's id, and then move all entries from this cgroup's list_lrus
3781	 * to ones of the parent. After we have finished, all list_lrus
3782	 * corresponding to this cgroup are guaranteed to remain empty. The
3783	 * ordering is imposed by list_lru_node->lock taken by
3784	 * memcg_drain_all_list_lrus().
3785	 */
3786	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3787	css_for_each_descendant_pre(css, &memcg->css) {
3788		child = mem_cgroup_from_css(css);
3789		BUG_ON(child->kmemcg_id != kmemcg_id);
3790		child->kmemcg_id = parent->kmemcg_id;
3791		if (!memcg->use_hierarchy)
3792			break;
3793	}
3794	rcu_read_unlock();
3795
3796	memcg_drain_all_list_lrus(kmemcg_id, parent);
3797
3798	memcg_free_cache_id(kmemcg_id);
3799}
3800
3801static void memcg_free_kmem(struct mem_cgroup *memcg)
3802{
3803	/* css_alloc() failed, offlining didn't happen */
3804	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3805		memcg_offline_kmem(memcg);
3806}
3807#else
3808static int memcg_online_kmem(struct mem_cgroup *memcg)
3809{
3810	return 0;
3811}
3812static void memcg_offline_kmem(struct mem_cgroup *memcg)
3813{
3814}
3815static void memcg_free_kmem(struct mem_cgroup *memcg)
3816{
3817}
3818#endif /* CONFIG_MEMCG_KMEM */
3819
3820static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3821				 unsigned long max)
3822{
3823	int ret;
3824
3825	mutex_lock(&memcg_max_mutex);
3826	ret = page_counter_set_max(&memcg->kmem, max);
3827	mutex_unlock(&memcg_max_mutex);
3828	return ret;
3829}
3830
3831static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3832{
3833	int ret;
3834
3835	mutex_lock(&memcg_max_mutex);
3836
3837	ret = page_counter_set_max(&memcg->tcpmem, max);
3838	if (ret)
3839		goto out;
3840
3841	if (!memcg->tcpmem_active) {
3842		/*
3843		 * The active flag needs to be written after the static_key
3844		 * update. This is what guarantees that the socket activation
3845		 * function is the last one to run. See mem_cgroup_sk_alloc()
3846		 * for details, and note that we don't mark any socket as
3847		 * belonging to this memcg until that flag is up.
3848		 *
3849		 * We need to do this, because static_keys will span multiple
3850		 * sites, but we can't control their order. If we mark a socket
3851		 * as accounted, but the accounting functions are not patched in
3852		 * yet, we'll lose accounting.
3853		 *
3854		 * We never race with the readers in mem_cgroup_sk_alloc(),
3855		 * because when this value change, the code to process it is not
3856		 * patched in yet.
3857		 */
3858		static_branch_inc(&memcg_sockets_enabled_key);
3859		memcg->tcpmem_active = true;
3860	}
3861out:
3862	mutex_unlock(&memcg_max_mutex);
3863	return ret;
3864}
3865
3866/*
3867 * The user of this function is...
3868 * RES_LIMIT.
3869 */
3870static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3871				char *buf, size_t nbytes, loff_t off)
3872{
3873	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3874	unsigned long nr_pages;
3875	int ret;
3876
3877	buf = strstrip(buf);
3878	ret = page_counter_memparse(buf, "-1", &nr_pages);
3879	if (ret)
3880		return ret;
3881
3882	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3883	case RES_LIMIT:
3884		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3885			ret = -EINVAL;
3886			break;
3887		}
3888		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3889		case _MEM:
3890			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3891			break;
3892		case _MEMSWAP:
3893			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3894			break;
3895		case _KMEM:
3896			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3897				     "Please report your usecase to linux-mm@kvack.org if you "
3898				     "depend on this functionality.\n");
3899			ret = memcg_update_kmem_max(memcg, nr_pages);
3900			break;
3901		case _TCP:
3902			ret = memcg_update_tcp_max(memcg, nr_pages);
3903			break;
3904		}
3905		break;
3906	case RES_SOFT_LIMIT:
3907		memcg->soft_limit = nr_pages;
3908		ret = 0;
3909		break;
3910	}
3911	return ret ?: nbytes;
3912}
3913
3914static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3915				size_t nbytes, loff_t off)
3916{
3917	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3918	struct page_counter *counter;
3919
3920	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3921	case _MEM:
3922		counter = &memcg->memory;
3923		break;
3924	case _MEMSWAP:
3925		counter = &memcg->memsw;
3926		break;
3927	case _KMEM:
3928		counter = &memcg->kmem;
3929		break;
3930	case _TCP:
3931		counter = &memcg->tcpmem;
3932		break;
3933	default:
3934		BUG();
3935	}
3936
3937	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3938	case RES_MAX_USAGE:
3939		page_counter_reset_watermark(counter);
3940		break;
3941	case RES_FAILCNT:
3942		counter->failcnt = 0;
3943		break;
3944	default:
3945		BUG();
3946	}
3947
3948	return nbytes;
3949}
3950
3951static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3952					struct cftype *cft)
3953{
3954	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3955}
3956
3957#ifdef CONFIG_MMU
3958static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3959					struct cftype *cft, u64 val)
3960{
3961	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3962
3963	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3964		     "Please report your usecase to linux-mm@kvack.org if you "
3965		     "depend on this functionality.\n");
3966
3967	if (val & ~MOVE_MASK)
3968		return -EINVAL;
3969
3970	/*
3971	 * No kind of locking is needed in here, because ->can_attach() will
3972	 * check this value once in the beginning of the process, and then carry
3973	 * on with stale data. This means that changes to this value will only
3974	 * affect task migrations starting after the change.
3975	 */
3976	memcg->move_charge_at_immigrate = val;
3977	return 0;
3978}
3979#else
3980static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3981					struct cftype *cft, u64 val)
3982{
3983	return -ENOSYS;
3984}
3985#endif
3986
3987#ifdef CONFIG_NUMA
3988
3989#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3990#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3991#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3992
3993static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3994				int nid, unsigned int lru_mask, bool tree)
3995{
3996	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3997	unsigned long nr = 0;
3998	enum lru_list lru;
3999
4000	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4001
4002	for_each_lru(lru) {
4003		if (!(BIT(lru) & lru_mask))
4004			continue;
4005		if (tree)
4006			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4007		else
4008			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4009	}
4010	return nr;
4011}
4012
4013static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4014					     unsigned int lru_mask,
4015					     bool tree)
4016{
4017	unsigned long nr = 0;
4018	enum lru_list lru;
4019
4020	for_each_lru(lru) {
4021		if (!(BIT(lru) & lru_mask))
4022			continue;
4023		if (tree)
4024			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4025		else
4026			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4027	}
4028	return nr;
4029}
4030
4031static int memcg_numa_stat_show(struct seq_file *m, void *v)
4032{
4033	struct numa_stat {
4034		const char *name;
4035		unsigned int lru_mask;
4036	};
4037
4038	static const struct numa_stat stats[] = {
4039		{ "total", LRU_ALL },
4040		{ "file", LRU_ALL_FILE },
4041		{ "anon", LRU_ALL_ANON },
4042		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4043	};
4044	const struct numa_stat *stat;
4045	int nid;
4046	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4047
4048	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4049		seq_printf(m, "%s=%lu", stat->name,
4050			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4051						   false));
4052		for_each_node_state(nid, N_MEMORY)
4053			seq_printf(m, " N%d=%lu", nid,
4054				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4055							stat->lru_mask, false));
4056		seq_putc(m, '\n');
4057	}
4058
4059	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4060
4061		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4062			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4063						   true));
4064		for_each_node_state(nid, N_MEMORY)
4065			seq_printf(m, " N%d=%lu", nid,
4066				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4067							stat->lru_mask, true));
4068		seq_putc(m, '\n');
4069	}
4070
4071	return 0;
4072}
4073#endif /* CONFIG_NUMA */
4074
4075static const unsigned int memcg1_stats[] = {
4076	NR_FILE_PAGES,
4077	NR_ANON_MAPPED,
4078#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4079	NR_ANON_THPS,
4080#endif
4081	NR_SHMEM,
4082	NR_FILE_MAPPED,
4083	NR_FILE_DIRTY,
4084	NR_WRITEBACK,
4085	MEMCG_SWAP,
4086};
4087
4088static const char *const memcg1_stat_names[] = {
4089	"cache",
4090	"rss",
4091#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4092	"rss_huge",
4093#endif
4094	"shmem",
4095	"mapped_file",
4096	"dirty",
4097	"writeback",
4098	"swap",
4099};
4100
4101/* Universal VM events cgroup1 shows, original sort order */
4102static const unsigned int memcg1_events[] = {
4103	PGPGIN,
4104	PGPGOUT,
4105	PGFAULT,
4106	PGMAJFAULT,
4107};
4108
4109static int memcg_stat_show(struct seq_file *m, void *v)
4110{
4111	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4112	unsigned long memory, memsw;
4113	struct mem_cgroup *mi;
4114	unsigned int i;
4115
4116	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4117
4118	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4119		unsigned long nr;
4120
4121		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4122			continue;
4123		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4124#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4125		if (memcg1_stats[i] == NR_ANON_THPS)
4126			nr *= HPAGE_PMD_NR;
4127#endif
4128		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4129	}
4130
4131	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4132		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4133			   memcg_events_local(memcg, memcg1_events[i]));
4134
4135	for (i = 0; i < NR_LRU_LISTS; i++) {
4136#ifdef CONFIG_MEM_PURGEABLE
4137		if (i == LRU_INACTIVE_PURGEABLE || i == LRU_ACTIVE_PURGEABLE)
4138			continue;
4139#endif
4140		seq_printf(m, "%s %lu\n", lru_list_name(i),
4141			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4142			   PAGE_SIZE);
4143	}
4144
4145	/* Hierarchical information */
4146	memory = memsw = PAGE_COUNTER_MAX;
4147	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4148		memory = min(memory, READ_ONCE(mi->memory.max));
4149		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4150	}
4151	seq_printf(m, "hierarchical_memory_limit %llu\n",
4152		   (u64)memory * PAGE_SIZE);
4153	if (do_memsw_account())
4154		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4155			   (u64)memsw * PAGE_SIZE);
4156
4157	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4158		unsigned long nr;
4159
4160		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4161			continue;
4162		nr = memcg_page_state(memcg, memcg1_stats[i]);
4163#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4164		if (memcg1_stats[i] == NR_ANON_THPS)
4165			nr *= HPAGE_PMD_NR;
4166#endif
4167		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4168						(u64)nr * PAGE_SIZE);
4169	}
4170
4171	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4172		seq_printf(m, "total_%s %llu\n",
4173			   vm_event_name(memcg1_events[i]),
4174			   (u64)memcg_events(memcg, memcg1_events[i]));
4175
4176	for (i = 0; i < NR_LRU_LISTS; i++) {
4177#ifdef CONFIG_MEM_PURGEABLE
4178		if (i == LRU_INACTIVE_PURGEABLE || i == LRU_ACTIVE_PURGEABLE)
4179			continue;
4180#endif
4181		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4182			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4183			   PAGE_SIZE);
4184	}
4185
4186#ifdef CONFIG_DEBUG_VM
4187	{
4188		pg_data_t *pgdat;
4189		struct mem_cgroup_per_node *mz;
4190		unsigned long anon_cost = 0;
4191		unsigned long file_cost = 0;
4192
4193		for_each_online_pgdat(pgdat) {
4194			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4195
4196			anon_cost += mz->lruvec.anon_cost;
4197			file_cost += mz->lruvec.file_cost;
4198		}
4199		seq_printf(m, "anon_cost %lu\n", anon_cost);
4200		seq_printf(m, "file_cost %lu\n", file_cost);
4201	}
4202#endif
4203
4204#ifdef CONFIG_HYPERHOLD_DEBUG
4205	memcg_eswap_info_show(m);
4206#endif
4207	return 0;
4208}
4209
4210static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4211				      struct cftype *cft)
4212{
4213	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4214
4215	return mem_cgroup_swappiness(memcg);
4216}
4217
4218static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4219				       struct cftype *cft, u64 val)
4220{
4221	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4222
4223	if (val > 200)
4224		return -EINVAL;
4225
4226	if (css->parent)
4227		memcg->swappiness = val;
4228	else
4229		vm_swappiness = val;
4230
4231	return 0;
4232}
4233
4234static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4235{
4236	struct mem_cgroup_threshold_ary *t;
4237	unsigned long usage;
4238	int i;
4239
4240	rcu_read_lock();
4241	if (!swap)
4242		t = rcu_dereference(memcg->thresholds.primary);
4243	else
4244		t = rcu_dereference(memcg->memsw_thresholds.primary);
4245
4246	if (!t)
4247		goto unlock;
4248
4249	usage = mem_cgroup_usage(memcg, swap);
4250
4251	/*
4252	 * current_threshold points to threshold just below or equal to usage.
4253	 * If it's not true, a threshold was crossed after last
4254	 * call of __mem_cgroup_threshold().
4255	 */
4256	i = t->current_threshold;
4257
4258	/*
4259	 * Iterate backward over array of thresholds starting from
4260	 * current_threshold and check if a threshold is crossed.
4261	 * If none of thresholds below usage is crossed, we read
4262	 * only one element of the array here.
4263	 */
4264	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4265		eventfd_signal(t->entries[i].eventfd, 1);
4266
4267	/* i = current_threshold + 1 */
4268	i++;
4269
4270	/*
4271	 * Iterate forward over array of thresholds starting from
4272	 * current_threshold+1 and check if a threshold is crossed.
4273	 * If none of thresholds above usage is crossed, we read
4274	 * only one element of the array here.
4275	 */
4276	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4277		eventfd_signal(t->entries[i].eventfd, 1);
4278
4279	/* Update current_threshold */
4280	t->current_threshold = i - 1;
4281unlock:
4282	rcu_read_unlock();
4283}
4284
4285static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4286{
4287	while (memcg) {
4288		__mem_cgroup_threshold(memcg, false);
4289		if (do_memsw_account())
4290			__mem_cgroup_threshold(memcg, true);
4291
4292		memcg = parent_mem_cgroup(memcg);
4293	}
4294}
4295
4296static int compare_thresholds(const void *a, const void *b)
4297{
4298	const struct mem_cgroup_threshold *_a = a;
4299	const struct mem_cgroup_threshold *_b = b;
4300
4301	if (_a->threshold > _b->threshold)
4302		return 1;
4303
4304	if (_a->threshold < _b->threshold)
4305		return -1;
4306
4307	return 0;
4308}
4309
4310static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4311{
4312	struct mem_cgroup_eventfd_list *ev;
4313
4314	spin_lock(&memcg_oom_lock);
4315
4316	list_for_each_entry(ev, &memcg->oom_notify, list)
4317		eventfd_signal(ev->eventfd, 1);
4318
4319	spin_unlock(&memcg_oom_lock);
4320	return 0;
4321}
4322
4323static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4324{
4325	struct mem_cgroup *iter;
4326
4327	for_each_mem_cgroup_tree(iter, memcg)
4328		mem_cgroup_oom_notify_cb(iter);
4329}
4330
4331static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4332	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4333{
4334	struct mem_cgroup_thresholds *thresholds;
4335	struct mem_cgroup_threshold_ary *new;
4336	unsigned long threshold;
4337	unsigned long usage;
4338	int i, size, ret;
4339
4340	ret = page_counter_memparse(args, "-1", &threshold);
4341	if (ret)
4342		return ret;
4343
4344	mutex_lock(&memcg->thresholds_lock);
4345
4346	if (type == _MEM) {
4347		thresholds = &memcg->thresholds;
4348		usage = mem_cgroup_usage(memcg, false);
4349	} else if (type == _MEMSWAP) {
4350		thresholds = &memcg->memsw_thresholds;
4351		usage = mem_cgroup_usage(memcg, true);
4352	} else
4353		BUG();
4354
4355	/* Check if a threshold crossed before adding a new one */
4356	if (thresholds->primary)
4357		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4358
4359	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4360
4361	/* Allocate memory for new array of thresholds */
4362	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4363	if (!new) {
4364		ret = -ENOMEM;
4365		goto unlock;
4366	}
4367	new->size = size;
4368
4369	/* Copy thresholds (if any) to new array */
4370	if (thresholds->primary)
4371		memcpy(new->entries, thresholds->primary->entries,
4372		       flex_array_size(new, entries, size - 1));
4373
4374	/* Add new threshold */
4375	new->entries[size - 1].eventfd = eventfd;
4376	new->entries[size - 1].threshold = threshold;
4377
4378	/* Sort thresholds. Registering of new threshold isn't time-critical */
4379	sort(new->entries, size, sizeof(*new->entries),
4380			compare_thresholds, NULL);
4381
4382	/* Find current threshold */
4383	new->current_threshold = -1;
4384	for (i = 0; i < size; i++) {
4385		if (new->entries[i].threshold <= usage) {
4386			/*
4387			 * new->current_threshold will not be used until
4388			 * rcu_assign_pointer(), so it's safe to increment
4389			 * it here.
4390			 */
4391			++new->current_threshold;
4392		} else
4393			break;
4394	}
4395
4396	/* Free old spare buffer and save old primary buffer as spare */
4397	kfree(thresholds->spare);
4398	thresholds->spare = thresholds->primary;
4399
4400	rcu_assign_pointer(thresholds->primary, new);
4401
4402	/* To be sure that nobody uses thresholds */
4403	synchronize_rcu();
4404
4405unlock:
4406	mutex_unlock(&memcg->thresholds_lock);
4407
4408	return ret;
4409}
4410
4411static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4412	struct eventfd_ctx *eventfd, const char *args)
4413{
4414	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4415}
4416
4417static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4418	struct eventfd_ctx *eventfd, const char *args)
4419{
4420	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4421}
4422
4423static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4424	struct eventfd_ctx *eventfd, enum res_type type)
4425{
4426	struct mem_cgroup_thresholds *thresholds;
4427	struct mem_cgroup_threshold_ary *new;
4428	unsigned long usage;
4429	int i, j, size, entries;
4430
4431	mutex_lock(&memcg->thresholds_lock);
4432
4433	if (type == _MEM) {
4434		thresholds = &memcg->thresholds;
4435		usage = mem_cgroup_usage(memcg, false);
4436	} else if (type == _MEMSWAP) {
4437		thresholds = &memcg->memsw_thresholds;
4438		usage = mem_cgroup_usage(memcg, true);
4439	} else
4440		BUG();
4441
4442	if (!thresholds->primary)
4443		goto unlock;
4444
4445	/* Check if a threshold crossed before removing */
4446	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4447
4448	/* Calculate new number of threshold */
4449	size = entries = 0;
4450	for (i = 0; i < thresholds->primary->size; i++) {
4451		if (thresholds->primary->entries[i].eventfd != eventfd)
4452			size++;
4453		else
4454			entries++;
4455	}
4456
4457	new = thresholds->spare;
4458
4459	/* If no items related to eventfd have been cleared, nothing to do */
4460	if (!entries)
4461		goto unlock;
4462
4463	/* Set thresholds array to NULL if we don't have thresholds */
4464	if (!size) {
4465		kfree(new);
4466		new = NULL;
4467		goto swap_buffers;
4468	}
4469
4470	new->size = size;
4471
4472	/* Copy thresholds and find current threshold */
4473	new->current_threshold = -1;
4474	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4475		if (thresholds->primary->entries[i].eventfd == eventfd)
4476			continue;
4477
4478		new->entries[j] = thresholds->primary->entries[i];
4479		if (new->entries[j].threshold <= usage) {
4480			/*
4481			 * new->current_threshold will not be used
4482			 * until rcu_assign_pointer(), so it's safe to increment
4483			 * it here.
4484			 */
4485			++new->current_threshold;
4486		}
4487		j++;
4488	}
4489
4490swap_buffers:
4491	/* Swap primary and spare array */
4492	thresholds->spare = thresholds->primary;
4493
4494	rcu_assign_pointer(thresholds->primary, new);
4495
4496	/* To be sure that nobody uses thresholds */
4497	synchronize_rcu();
4498
4499	/* If all events are unregistered, free the spare array */
4500	if (!new) {
4501		kfree(thresholds->spare);
4502		thresholds->spare = NULL;
4503	}
4504unlock:
4505	mutex_unlock(&memcg->thresholds_lock);
4506}
4507
4508static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4509	struct eventfd_ctx *eventfd)
4510{
4511	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4512}
4513
4514static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4515	struct eventfd_ctx *eventfd)
4516{
4517	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4518}
4519
4520static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4521	struct eventfd_ctx *eventfd, const char *args)
4522{
4523	struct mem_cgroup_eventfd_list *event;
4524
4525	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4526	if (!event)
4527		return -ENOMEM;
4528
4529	spin_lock(&memcg_oom_lock);
4530
4531	event->eventfd = eventfd;
4532	list_add(&event->list, &memcg->oom_notify);
4533
4534	/* already in OOM ? */
4535	if (memcg->under_oom)
4536		eventfd_signal(eventfd, 1);
4537	spin_unlock(&memcg_oom_lock);
4538
4539	return 0;
4540}
4541
4542static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4543	struct eventfd_ctx *eventfd)
4544{
4545	struct mem_cgroup_eventfd_list *ev, *tmp;
4546
4547	spin_lock(&memcg_oom_lock);
4548
4549	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4550		if (ev->eventfd == eventfd) {
4551			list_del(&ev->list);
4552			kfree(ev);
4553		}
4554	}
4555
4556	spin_unlock(&memcg_oom_lock);
4557}
4558
4559static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4560{
4561	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4562
4563	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4564	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4565	seq_printf(sf, "oom_kill %lu\n",
4566		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4567	return 0;
4568}
4569
4570static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4571	struct cftype *cft, u64 val)
4572{
4573	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4574
4575	/* cannot set to root cgroup and only 0 and 1 are allowed */
4576	if (!css->parent || !((val == 0) || (val == 1)))
4577		return -EINVAL;
4578
4579	memcg->oom_kill_disable = val;
4580	if (!val)
4581		memcg_oom_recover(memcg);
4582
4583	return 0;
4584}
4585
4586#ifdef CONFIG_CGROUP_WRITEBACK
4587
4588#include <trace/events/writeback.h>
4589
4590static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4591{
4592	return wb_domain_init(&memcg->cgwb_domain, gfp);
4593}
4594
4595static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4596{
4597	wb_domain_exit(&memcg->cgwb_domain);
4598}
4599
4600static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4601{
4602	wb_domain_size_changed(&memcg->cgwb_domain);
4603}
4604
4605struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4606{
4607	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4608
4609	if (!memcg->css.parent)
4610		return NULL;
4611
4612	return &memcg->cgwb_domain;
4613}
4614
4615/*
4616 * idx can be of type enum memcg_stat_item or node_stat_item.
4617 * Keep in sync with memcg_exact_page().
4618 */
4619static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4620{
4621	long x = atomic_long_read(&memcg->vmstats[idx]);
4622	int cpu;
4623
4624	for_each_online_cpu(cpu)
4625		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4626	if (x < 0)
4627		x = 0;
4628	return x;
4629}
4630
4631/**
4632 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4633 * @wb: bdi_writeback in question
4634 * @pfilepages: out parameter for number of file pages
4635 * @pheadroom: out parameter for number of allocatable pages according to memcg
4636 * @pdirty: out parameter for number of dirty pages
4637 * @pwriteback: out parameter for number of pages under writeback
4638 *
4639 * Determine the numbers of file, headroom, dirty, and writeback pages in
4640 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4641 * is a bit more involved.
4642 *
4643 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4644 * headroom is calculated as the lowest headroom of itself and the
4645 * ancestors.  Note that this doesn't consider the actual amount of
4646 * available memory in the system.  The caller should further cap
4647 * *@pheadroom accordingly.
4648 */
4649void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4650			 unsigned long *pheadroom, unsigned long *pdirty,
4651			 unsigned long *pwriteback)
4652{
4653	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654	struct mem_cgroup *parent;
4655
4656	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4657
4658	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4659	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4660			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4661	*pheadroom = PAGE_COUNTER_MAX;
4662
4663	while ((parent = parent_mem_cgroup(memcg))) {
4664		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4665					    READ_ONCE(memcg->memory.high));
4666		unsigned long used = page_counter_read(&memcg->memory);
4667
4668		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4669		memcg = parent;
4670	}
4671}
4672
4673/*
4674 * Foreign dirty flushing
4675 *
4676 * There's an inherent mismatch between memcg and writeback.  The former
4677 * trackes ownership per-page while the latter per-inode.  This was a
4678 * deliberate design decision because honoring per-page ownership in the
4679 * writeback path is complicated, may lead to higher CPU and IO overheads
4680 * and deemed unnecessary given that write-sharing an inode across
4681 * different cgroups isn't a common use-case.
4682 *
4683 * Combined with inode majority-writer ownership switching, this works well
4684 * enough in most cases but there are some pathological cases.  For
4685 * example, let's say there are two cgroups A and B which keep writing to
4686 * different but confined parts of the same inode.  B owns the inode and
4687 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4688 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4689 * triggering background writeback.  A will be slowed down without a way to
4690 * make writeback of the dirty pages happen.
4691 *
4692 * Conditions like the above can lead to a cgroup getting repatedly and
4693 * severely throttled after making some progress after each
4694 * dirty_expire_interval while the underyling IO device is almost
4695 * completely idle.
4696 *
4697 * Solving this problem completely requires matching the ownership tracking
4698 * granularities between memcg and writeback in either direction.  However,
4699 * the more egregious behaviors can be avoided by simply remembering the
4700 * most recent foreign dirtying events and initiating remote flushes on
4701 * them when local writeback isn't enough to keep the memory clean enough.
4702 *
4703 * The following two functions implement such mechanism.  When a foreign
4704 * page - a page whose memcg and writeback ownerships don't match - is
4705 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4706 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4707 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4708 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4709 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4710 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4711 * limited to MEMCG_CGWB_FRN_CNT.
4712 *
4713 * The mechanism only remembers IDs and doesn't hold any object references.
4714 * As being wrong occasionally doesn't matter, updates and accesses to the
4715 * records are lockless and racy.
4716 */
4717void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4718					     struct bdi_writeback *wb)
4719{
4720	struct mem_cgroup *memcg = page->mem_cgroup;
4721	struct memcg_cgwb_frn *frn;
4722	u64 now = get_jiffies_64();
4723	u64 oldest_at = now;
4724	int oldest = -1;
4725	int i;
4726
4727	trace_track_foreign_dirty(page, wb);
4728
4729	/*
4730	 * Pick the slot to use.  If there is already a slot for @wb, keep
4731	 * using it.  If not replace the oldest one which isn't being
4732	 * written out.
4733	 */
4734	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4735		frn = &memcg->cgwb_frn[i];
4736		if (frn->bdi_id == wb->bdi->id &&
4737		    frn->memcg_id == wb->memcg_css->id)
4738			break;
4739		if (time_before64(frn->at, oldest_at) &&
4740		    atomic_read(&frn->done.cnt) == 1) {
4741			oldest = i;
4742			oldest_at = frn->at;
4743		}
4744	}
4745
4746	if (i < MEMCG_CGWB_FRN_CNT) {
4747		/*
4748		 * Re-using an existing one.  Update timestamp lazily to
4749		 * avoid making the cacheline hot.  We want them to be
4750		 * reasonably up-to-date and significantly shorter than
4751		 * dirty_expire_interval as that's what expires the record.
4752		 * Use the shorter of 1s and dirty_expire_interval / 8.
4753		 */
4754		unsigned long update_intv =
4755			min_t(unsigned long, HZ,
4756			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4757
4758		if (time_before64(frn->at, now - update_intv))
4759			frn->at = now;
4760	} else if (oldest >= 0) {
4761		/* replace the oldest free one */
4762		frn = &memcg->cgwb_frn[oldest];
4763		frn->bdi_id = wb->bdi->id;
4764		frn->memcg_id = wb->memcg_css->id;
4765		frn->at = now;
4766	}
4767}
4768
4769/* issue foreign writeback flushes for recorded foreign dirtying events */
4770void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4771{
4772	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4773	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4774	u64 now = jiffies_64;
4775	int i;
4776
4777	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4778		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4779
4780		/*
4781		 * If the record is older than dirty_expire_interval,
4782		 * writeback on it has already started.  No need to kick it
4783		 * off again.  Also, don't start a new one if there's
4784		 * already one in flight.
4785		 */
4786		if (time_after64(frn->at, now - intv) &&
4787		    atomic_read(&frn->done.cnt) == 1) {
4788			frn->at = 0;
4789			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4790			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4791					       WB_REASON_FOREIGN_FLUSH,
4792					       &frn->done);
4793		}
4794	}
4795}
4796
4797#else	/* CONFIG_CGROUP_WRITEBACK */
4798
4799static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4800{
4801	return 0;
4802}
4803
4804static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4805{
4806}
4807
4808static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4809{
4810}
4811
4812#endif	/* CONFIG_CGROUP_WRITEBACK */
4813
4814/*
4815 * DO NOT USE IN NEW FILES.
4816 *
4817 * "cgroup.event_control" implementation.
4818 *
4819 * This is way over-engineered.  It tries to support fully configurable
4820 * events for each user.  Such level of flexibility is completely
4821 * unnecessary especially in the light of the planned unified hierarchy.
4822 *
4823 * Please deprecate this and replace with something simpler if at all
4824 * possible.
4825 */
4826
4827/*
4828 * Unregister event and free resources.
4829 *
4830 * Gets called from workqueue.
4831 */
4832static void memcg_event_remove(struct work_struct *work)
4833{
4834	struct mem_cgroup_event *event =
4835		container_of(work, struct mem_cgroup_event, remove);
4836	struct mem_cgroup *memcg = event->memcg;
4837
4838	remove_wait_queue(event->wqh, &event->wait);
4839
4840	event->unregister_event(memcg, event->eventfd);
4841
4842	/* Notify userspace the event is going away. */
4843	eventfd_signal(event->eventfd, 1);
4844
4845	eventfd_ctx_put(event->eventfd);
4846	kfree(event);
4847	css_put(&memcg->css);
4848}
4849
4850/*
4851 * Gets called on EPOLLHUP on eventfd when user closes it.
4852 *
4853 * Called with wqh->lock held and interrupts disabled.
4854 */
4855static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4856			    int sync, void *key)
4857{
4858	struct mem_cgroup_event *event =
4859		container_of(wait, struct mem_cgroup_event, wait);
4860	struct mem_cgroup *memcg = event->memcg;
4861	__poll_t flags = key_to_poll(key);
4862
4863	if (flags & EPOLLHUP) {
4864		/*
4865		 * If the event has been detached at cgroup removal, we
4866		 * can simply return knowing the other side will cleanup
4867		 * for us.
4868		 *
4869		 * We can't race against event freeing since the other
4870		 * side will require wqh->lock via remove_wait_queue(),
4871		 * which we hold.
4872		 */
4873		spin_lock(&memcg->event_list_lock);
4874		if (!list_empty(&event->list)) {
4875			list_del_init(&event->list);
4876			/*
4877			 * We are in atomic context, but cgroup_event_remove()
4878			 * may sleep, so we have to call it in workqueue.
4879			 */
4880			schedule_work(&event->remove);
4881		}
4882		spin_unlock(&memcg->event_list_lock);
4883	}
4884
4885	return 0;
4886}
4887
4888static void memcg_event_ptable_queue_proc(struct file *file,
4889		wait_queue_head_t *wqh, poll_table *pt)
4890{
4891	struct mem_cgroup_event *event =
4892		container_of(pt, struct mem_cgroup_event, pt);
4893
4894	event->wqh = wqh;
4895	add_wait_queue(wqh, &event->wait);
4896}
4897
4898/*
4899 * DO NOT USE IN NEW FILES.
4900 *
4901 * Parse input and register new cgroup event handler.
4902 *
4903 * Input must be in format '<event_fd> <control_fd> <args>'.
4904 * Interpretation of args is defined by control file implementation.
4905 */
4906static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4907					 char *buf, size_t nbytes, loff_t off)
4908{
4909	struct cgroup_subsys_state *css = of_css(of);
4910	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4911	struct mem_cgroup_event *event;
4912	struct cgroup_subsys_state *cfile_css;
4913	unsigned int efd, cfd;
4914	struct fd efile;
4915	struct fd cfile;
4916	struct dentry *cdentry;
4917	const char *name;
4918	char *endp;
4919	int ret;
4920
4921	buf = strstrip(buf);
4922
4923	efd = simple_strtoul(buf, &endp, 10);
4924	if (*endp != ' ')
4925		return -EINVAL;
4926	buf = endp + 1;
4927
4928	cfd = simple_strtoul(buf, &endp, 10);
4929	if (*endp == '\0')
4930		buf = endp;
4931	else if (*endp == ' ')
4932		buf = endp + 1;
4933	else
4934		return -EINVAL;
4935
4936	event = kzalloc(sizeof(*event), GFP_KERNEL);
4937	if (!event)
4938		return -ENOMEM;
4939
4940	event->memcg = memcg;
4941	INIT_LIST_HEAD(&event->list);
4942	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4943	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4944	INIT_WORK(&event->remove, memcg_event_remove);
4945
4946	efile = fdget(efd);
4947	if (!efile.file) {
4948		ret = -EBADF;
4949		goto out_kfree;
4950	}
4951
4952	event->eventfd = eventfd_ctx_fileget(efile.file);
4953	if (IS_ERR(event->eventfd)) {
4954		ret = PTR_ERR(event->eventfd);
4955		goto out_put_efile;
4956	}
4957
4958	cfile = fdget(cfd);
4959	if (!cfile.file) {
4960		ret = -EBADF;
4961		goto out_put_eventfd;
4962	}
4963
4964	/* the process need read permission on control file */
4965	/* AV: shouldn't we check that it's been opened for read instead? */
4966	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4967	if (ret < 0)
4968		goto out_put_cfile;
4969
4970	/*
4971	 * The control file must be a regular cgroup1 file. As a regular cgroup
4972	 * file can't be renamed, it's safe to access its name afterwards.
4973	 */
4974	cdentry = cfile.file->f_path.dentry;
4975	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4976		ret = -EINVAL;
4977		goto out_put_cfile;
4978	}
4979
4980	/*
4981	 * Determine the event callbacks and set them in @event.  This used
4982	 * to be done via struct cftype but cgroup core no longer knows
4983	 * about these events.  The following is crude but the whole thing
4984	 * is for compatibility anyway.
4985	 *
4986	 * DO NOT ADD NEW FILES.
4987	 */
4988	name = cdentry->d_name.name;
4989
4990	if (!strcmp(name, "memory.usage_in_bytes")) {
4991		event->register_event = mem_cgroup_usage_register_event;
4992		event->unregister_event = mem_cgroup_usage_unregister_event;
4993	} else if (!strcmp(name, "memory.oom_control")) {
4994		event->register_event = mem_cgroup_oom_register_event;
4995		event->unregister_event = mem_cgroup_oom_unregister_event;
4996	} else if (!strcmp(name, "memory.pressure_level")) {
4997		event->register_event = vmpressure_register_event;
4998		event->unregister_event = vmpressure_unregister_event;
4999	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5000		event->register_event = memsw_cgroup_usage_register_event;
5001		event->unregister_event = memsw_cgroup_usage_unregister_event;
5002	} else {
5003		ret = -EINVAL;
5004		goto out_put_cfile;
5005	}
5006
5007	/*
5008	 * Verify @cfile should belong to @css.  Also, remaining events are
5009	 * automatically removed on cgroup destruction but the removal is
5010	 * asynchronous, so take an extra ref on @css.
5011	 */
5012	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5013					       &memory_cgrp_subsys);
5014	ret = -EINVAL;
5015	if (IS_ERR(cfile_css))
5016		goto out_put_cfile;
5017	if (cfile_css != css) {
5018		css_put(cfile_css);
5019		goto out_put_cfile;
5020	}
5021
5022	ret = event->register_event(memcg, event->eventfd, buf);
5023	if (ret)
5024		goto out_put_css;
5025
5026	vfs_poll(efile.file, &event->pt);
5027
5028	spin_lock(&memcg->event_list_lock);
5029	list_add(&event->list, &memcg->event_list);
5030	spin_unlock(&memcg->event_list_lock);
5031
5032	fdput(cfile);
5033	fdput(efile);
5034
5035	return nbytes;
5036
5037out_put_css:
5038	css_put(css);
5039out_put_cfile:
5040	fdput(cfile);
5041out_put_eventfd:
5042	eventfd_ctx_put(event->eventfd);
5043out_put_efile:
5044	fdput(efile);
5045out_kfree:
5046	kfree(event);
5047
5048	return ret;
5049}
5050
5051static struct cftype mem_cgroup_legacy_files[] = {
5052	{
5053		.name = "usage_in_bytes",
5054		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5055		.read_u64 = mem_cgroup_read_u64,
5056	},
5057	{
5058		.name = "max_usage_in_bytes",
5059		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5060		.write = mem_cgroup_reset,
5061		.read_u64 = mem_cgroup_read_u64,
5062	},
5063	{
5064		.name = "limit_in_bytes",
5065		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5066		.write = mem_cgroup_write,
5067		.read_u64 = mem_cgroup_read_u64,
5068	},
5069	{
5070		.name = "soft_limit_in_bytes",
5071		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5072		.write = mem_cgroup_write,
5073		.read_u64 = mem_cgroup_read_u64,
5074	},
5075	{
5076		.name = "failcnt",
5077		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5078		.write = mem_cgroup_reset,
5079		.read_u64 = mem_cgroup_read_u64,
5080	},
5081	{
5082		.name = "stat",
5083		.seq_show = memcg_stat_show,
5084	},
5085	{
5086		.name = "force_empty",
5087		.write = mem_cgroup_force_empty_write,
5088	},
5089	{
5090		.name = "use_hierarchy",
5091		.write_u64 = mem_cgroup_hierarchy_write,
5092		.read_u64 = mem_cgroup_hierarchy_read,
5093	},
5094	{
5095		.name = "cgroup.event_control",		/* XXX: for compat */
5096		.write = memcg_write_event_control,
5097		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5098	},
5099	{
5100		.name = "swappiness",
5101		.read_u64 = mem_cgroup_swappiness_read,
5102		.write_u64 = mem_cgroup_swappiness_write,
5103	},
5104	{
5105		.name = "move_charge_at_immigrate",
5106		.read_u64 = mem_cgroup_move_charge_read,
5107		.write_u64 = mem_cgroup_move_charge_write,
5108	},
5109	{
5110		.name = "oom_control",
5111		.seq_show = mem_cgroup_oom_control_read,
5112		.write_u64 = mem_cgroup_oom_control_write,
5113		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5114	},
5115	{
5116		.name = "pressure_level",
5117	},
5118#ifdef CONFIG_NUMA
5119	{
5120		.name = "numa_stat",
5121		.seq_show = memcg_numa_stat_show,
5122	},
5123#endif
5124	{
5125		.name = "kmem.limit_in_bytes",
5126		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5127		.write = mem_cgroup_write,
5128		.read_u64 = mem_cgroup_read_u64,
5129	},
5130	{
5131		.name = "kmem.usage_in_bytes",
5132		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5133		.read_u64 = mem_cgroup_read_u64,
5134	},
5135	{
5136		.name = "kmem.failcnt",
5137		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5138		.write = mem_cgroup_reset,
5139		.read_u64 = mem_cgroup_read_u64,
5140	},
5141	{
5142		.name = "kmem.max_usage_in_bytes",
5143		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5144		.write = mem_cgroup_reset,
5145		.read_u64 = mem_cgroup_read_u64,
5146	},
5147#if defined(CONFIG_MEMCG_KMEM) && \
5148	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5149	{
5150		.name = "kmem.slabinfo",
5151		.seq_show = memcg_slab_show,
5152	},
5153#endif
5154	{
5155		.name = "kmem.tcp.limit_in_bytes",
5156		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5157		.write = mem_cgroup_write,
5158		.read_u64 = mem_cgroup_read_u64,
5159	},
5160	{
5161		.name = "kmem.tcp.usage_in_bytes",
5162		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5163		.read_u64 = mem_cgroup_read_u64,
5164	},
5165	{
5166		.name = "kmem.tcp.failcnt",
5167		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5168		.write = mem_cgroup_reset,
5169		.read_u64 = mem_cgroup_read_u64,
5170	},
5171	{
5172		.name = "kmem.tcp.max_usage_in_bytes",
5173		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5174		.write = mem_cgroup_reset,
5175		.read_u64 = mem_cgroup_read_u64,
5176	},
5177	{ },	/* terminate */
5178};
5179
5180/*
5181 * Private memory cgroup IDR
5182 *
5183 * Swap-out records and page cache shadow entries need to store memcg
5184 * references in constrained space, so we maintain an ID space that is
5185 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5186 * memory-controlled cgroups to 64k.
5187 *
5188 * However, there usually are many references to the offline CSS after
5189 * the cgroup has been destroyed, such as page cache or reclaimable
5190 * slab objects, that don't need to hang on to the ID. We want to keep
5191 * those dead CSS from occupying IDs, or we might quickly exhaust the
5192 * relatively small ID space and prevent the creation of new cgroups
5193 * even when there are much fewer than 64k cgroups - possibly none.
5194 *
5195 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5196 * be freed and recycled when it's no longer needed, which is usually
5197 * when the CSS is offlined.
5198 *
5199 * The only exception to that are records of swapped out tmpfs/shmem
5200 * pages that need to be attributed to live ancestors on swapin. But
5201 * those references are manageable from userspace.
5202 */
5203
5204static DEFINE_IDR(mem_cgroup_idr);
5205static DEFINE_SPINLOCK(memcg_idr_lock);
5206
5207static int mem_cgroup_alloc_id(void)
5208{
5209	int ret;
5210
5211	idr_preload(GFP_KERNEL);
5212	spin_lock(&memcg_idr_lock);
5213	ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX,
5214			GFP_NOWAIT);
5215	spin_unlock(&memcg_idr_lock);
5216	idr_preload_end();
5217	return ret;
5218}
5219
5220static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5221{
5222	if (memcg->id.id > 0) {
5223		spin_lock(&memcg_idr_lock);
5224		idr_remove(&mem_cgroup_idr, memcg->id.id);
5225		spin_unlock(&memcg_idr_lock);
5226
5227		memcg->id.id = 0;
5228	}
5229}
5230
5231static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5232						  unsigned int n)
5233{
5234	refcount_add(n, &memcg->id.ref);
5235}
5236
5237static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5238{
5239	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5240		mem_cgroup_id_remove(memcg);
5241
5242		/* Memcg ID pins CSS */
5243		css_put(&memcg->css);
5244	}
5245}
5246
5247static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5248{
5249	mem_cgroup_id_put_many(memcg, 1);
5250}
5251
5252/**
5253 * mem_cgroup_from_id - look up a memcg from a memcg id
5254 * @id: the memcg id to look up
5255 *
5256 * Caller must hold rcu_read_lock().
5257 */
5258struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5259{
5260	WARN_ON_ONCE(!rcu_read_lock_held());
5261#ifdef CONFIG_HYPERHOLD_FILE_LRU
5262	if (id == -1)
5263		return NULL;
5264#endif
5265	return idr_find(&mem_cgroup_idr, id);
5266}
5267
5268static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5269{
5270	struct mem_cgroup_per_node *pn;
5271	int tmp = node;
5272	/*
5273	 * This routine is called against possible nodes.
5274	 * But it's BUG to call kmalloc() against offline node.
5275	 *
5276	 * TODO: this routine can waste much memory for nodes which will
5277	 *       never be onlined. It's better to use memory hotplug callback
5278	 *       function.
5279	 */
5280	if (!node_state(node, N_NORMAL_MEMORY))
5281		tmp = -1;
5282	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5283	if (!pn)
5284		return 1;
5285
5286	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5287						 GFP_KERNEL_ACCOUNT);
5288	if (!pn->lruvec_stat_local) {
5289		kfree(pn);
5290		return 1;
5291	}
5292
5293	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5294					       GFP_KERNEL_ACCOUNT);
5295	if (!pn->lruvec_stat_cpu) {
5296		free_percpu(pn->lruvec_stat_local);
5297		kfree(pn);
5298		return 1;
5299	}
5300
5301	lruvec_init(&pn->lruvec);
5302	pn->usage_in_excess = 0;
5303	pn->lruvec.pgdat = NODE_DATA(node);
5304	pn->on_tree = false;
5305	pn->memcg = memcg;
5306
5307	memcg->nodeinfo[node] = pn;
5308	return 0;
5309}
5310
5311static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5312{
5313	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5314
5315	if (!pn)
5316		return;
5317
5318	free_percpu(pn->lruvec_stat_cpu);
5319	free_percpu(pn->lruvec_stat_local);
5320	kfree(pn);
5321}
5322
5323static void __mem_cgroup_free(struct mem_cgroup *memcg)
5324{
5325	int node;
5326
5327	for_each_node(node)
5328		free_mem_cgroup_per_node_info(memcg, node);
5329	free_percpu(memcg->vmstats_percpu);
5330	free_percpu(memcg->vmstats_local);
5331	kfree(memcg);
5332}
5333
5334static void mem_cgroup_free(struct mem_cgroup *memcg)
5335{
5336	memcg_wb_domain_exit(memcg);
5337	/*
5338	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5339	 * on parent's and all ancestor levels.
5340	 */
5341	memcg_flush_percpu_vmstats(memcg);
5342	memcg_flush_percpu_vmevents(memcg);
5343	__mem_cgroup_free(memcg);
5344}
5345
5346static struct mem_cgroup *mem_cgroup_alloc(void)
5347{
5348	struct mem_cgroup *memcg;
5349	unsigned int size;
5350	int node;
5351	int __maybe_unused i;
5352	long error = -ENOMEM;
5353
5354	size = sizeof(struct mem_cgroup);
5355	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5356
5357	memcg = kzalloc(size, GFP_KERNEL);
5358	if (!memcg)
5359		return ERR_PTR(error);
5360
5361	memcg->id.id = mem_cgroup_alloc_id();
5362	if (memcg->id.id < 0) {
5363		error = memcg->id.id;
5364		goto fail;
5365	}
5366
5367	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5368						GFP_KERNEL_ACCOUNT);
5369	if (!memcg->vmstats_local)
5370		goto fail;
5371
5372	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5373						 GFP_KERNEL_ACCOUNT);
5374	if (!memcg->vmstats_percpu)
5375		goto fail;
5376
5377	for_each_node(node)
5378		if (alloc_mem_cgroup_per_node_info(memcg, node))
5379			goto fail;
5380
5381	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5382		goto fail;
5383
5384	INIT_WORK(&memcg->high_work, high_work_func);
5385	INIT_LIST_HEAD(&memcg->oom_notify);
5386	mutex_init(&memcg->thresholds_lock);
5387	spin_lock_init(&memcg->move_lock);
5388	vmpressure_init(&memcg->vmpressure);
5389	INIT_LIST_HEAD(&memcg->event_list);
5390	spin_lock_init(&memcg->event_list_lock);
5391	memcg->socket_pressure = jiffies;
5392#ifdef CONFIG_MEMCG_KMEM
5393	memcg->kmemcg_id = -1;
5394	INIT_LIST_HEAD(&memcg->objcg_list);
5395#endif
5396#ifdef CONFIG_CGROUP_WRITEBACK
5397	INIT_LIST_HEAD(&memcg->cgwb_list);
5398	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5399		memcg->cgwb_frn[i].done =
5400			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5401#endif
5402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5403	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5404	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5405	memcg->deferred_split_queue.split_queue_len = 0;
5406#endif
5407
5408#ifdef CONFIG_HYPERHOLD_MEMCG
5409	if (unlikely(!score_head_inited)) {
5410		INIT_LIST_HEAD(&score_head);
5411		score_head_inited = true;
5412	}
5413#endif
5414
5415#ifdef CONFIG_HYPERHOLD_MEMCG
5416	INIT_LIST_HEAD(&memcg->score_node);
5417#endif
5418	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5419	return memcg;
5420fail:
5421	mem_cgroup_id_remove(memcg);
5422	__mem_cgroup_free(memcg);
5423	return ERR_PTR(error);
5424}
5425
5426static struct cgroup_subsys_state * __ref
5427mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5428{
5429	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5430	struct mem_cgroup *memcg, *old_memcg;
5431	long error = -ENOMEM;
5432
5433	old_memcg = set_active_memcg(parent);
5434	memcg = mem_cgroup_alloc();
5435	set_active_memcg(old_memcg);
5436	if (IS_ERR(memcg))
5437		return ERR_CAST(memcg);
5438
5439#ifdef CONFIG_HYPERHOLD_MEMCG
5440	atomic64_set(&memcg->memcg_reclaimed.app_score, 300);
5441#endif
5442#ifdef CONFIG_HYPERHOLD_ZSWAPD
5443	atomic_set(&memcg->memcg_reclaimed.ub_zram2ufs_ratio, 10);
5444	atomic_set(&memcg->memcg_reclaimed.ub_mem2zram_ratio, 60);
5445	atomic_set(&memcg->memcg_reclaimed.refault_threshold, 50);
5446#endif
5447	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5448	memcg->soft_limit = PAGE_COUNTER_MAX;
5449	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5450	if (parent) {
5451		memcg->swappiness = mem_cgroup_swappiness(parent);
5452		memcg->oom_kill_disable = parent->oom_kill_disable;
5453	}
5454	if (!parent) {
5455		page_counter_init(&memcg->memory, NULL);
5456		page_counter_init(&memcg->swap, NULL);
5457		page_counter_init(&memcg->kmem, NULL);
5458		page_counter_init(&memcg->tcpmem, NULL);
5459	} else if (parent->use_hierarchy) {
5460		memcg->use_hierarchy = true;
5461		page_counter_init(&memcg->memory, &parent->memory);
5462		page_counter_init(&memcg->swap, &parent->swap);
5463		page_counter_init(&memcg->kmem, &parent->kmem);
5464		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5465	} else {
5466		page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5467		page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5468		page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5469		page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5470		/*
5471		 * Deeper hierachy with use_hierarchy == false doesn't make
5472		 * much sense so let cgroup subsystem know about this
5473		 * unfortunate state in our controller.
5474		 */
5475		if (parent != root_mem_cgroup)
5476			memory_cgrp_subsys.broken_hierarchy = true;
5477	}
5478
5479	/* The following stuff does not apply to the root */
5480	if (!parent) {
5481		root_mem_cgroup = memcg;
5482		return &memcg->css;
5483	}
5484
5485	error = memcg_online_kmem(memcg);
5486	if (error)
5487		goto fail;
5488
5489	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5490		static_branch_inc(&memcg_sockets_enabled_key);
5491
5492	return &memcg->css;
5493fail:
5494	mem_cgroup_id_remove(memcg);
5495	mem_cgroup_free(memcg);
5496	return ERR_PTR(error);
5497}
5498
5499static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5500{
5501	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5502
5503	/*
5504	 * A memcg must be visible for memcg_expand_shrinker_maps()
5505	 * by the time the maps are allocated. So, we allocate maps
5506	 * here, when for_each_mem_cgroup() can't skip it.
5507	 */
5508	if (memcg_alloc_shrinker_maps(memcg)) {
5509		mem_cgroup_id_remove(memcg);
5510		return -ENOMEM;
5511	}
5512
5513#ifdef CONFIG_HYPERHOLD_MEMCG
5514	memcg_app_score_update(memcg);
5515	css_get(css);
5516#endif
5517
5518	/* Online state pins memcg ID, memcg ID pins CSS */
5519	refcount_set(&memcg->id.ref, 1);
5520	css_get(css);
5521	return 0;
5522}
5523
5524static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5525{
5526	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5527	struct mem_cgroup_event *event, *tmp;
5528
5529#ifdef CONFIG_HYPERHOLD_MEMCG
5530	unsigned long flags;
5531
5532	write_lock_irqsave(&score_list_lock, flags);
5533	list_del_init(&memcg->score_node);
5534	write_unlock_irqrestore(&score_list_lock, flags);
5535	css_put(css);
5536#endif
5537
5538	/*
5539	 * Unregister events and notify userspace.
5540	 * Notify userspace about cgroup removing only after rmdir of cgroup
5541	 * directory to avoid race between userspace and kernelspace.
5542	 */
5543	spin_lock(&memcg->event_list_lock);
5544	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5545		list_del_init(&event->list);
5546		schedule_work(&event->remove);
5547	}
5548	spin_unlock(&memcg->event_list_lock);
5549
5550	page_counter_set_min(&memcg->memory, 0);
5551	page_counter_set_low(&memcg->memory, 0);
5552
5553	memcg_offline_kmem(memcg);
5554	wb_memcg_offline(memcg);
5555
5556	drain_all_stock(memcg);
5557
5558	mem_cgroup_id_put(memcg);
5559}
5560
5561static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5562{
5563	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5564
5565	invalidate_reclaim_iterators(memcg);
5566}
5567
5568static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5569{
5570	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5571	int __maybe_unused i;
5572
5573#ifdef CONFIG_CGROUP_WRITEBACK
5574	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5575		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5576#endif
5577	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5578		static_branch_dec(&memcg_sockets_enabled_key);
5579
5580	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5581		static_branch_dec(&memcg_sockets_enabled_key);
5582
5583	vmpressure_cleanup(&memcg->vmpressure);
5584	cancel_work_sync(&memcg->high_work);
5585	mem_cgroup_remove_from_trees(memcg);
5586	memcg_free_shrinker_maps(memcg);
5587	memcg_free_kmem(memcg);
5588	mem_cgroup_free(memcg);
5589}
5590
5591/**
5592 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5593 * @css: the target css
5594 *
5595 * Reset the states of the mem_cgroup associated with @css.  This is
5596 * invoked when the userland requests disabling on the default hierarchy
5597 * but the memcg is pinned through dependency.  The memcg should stop
5598 * applying policies and should revert to the vanilla state as it may be
5599 * made visible again.
5600 *
5601 * The current implementation only resets the essential configurations.
5602 * This needs to be expanded to cover all the visible parts.
5603 */
5604static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5605{
5606	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5607
5608	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5609	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5610	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5611	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5612	page_counter_set_min(&memcg->memory, 0);
5613	page_counter_set_low(&memcg->memory, 0);
5614	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5615	memcg->soft_limit = PAGE_COUNTER_MAX;
5616	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5617	memcg_wb_domain_size_changed(memcg);
5618}
5619
5620#ifdef CONFIG_MMU
5621/* Handlers for move charge at task migration. */
5622static int mem_cgroup_do_precharge(unsigned long count)
5623{
5624	int ret;
5625
5626	/* Try a single bulk charge without reclaim first, kswapd may wake */
5627	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5628	if (!ret) {
5629		mc.precharge += count;
5630		return ret;
5631	}
5632
5633	/* Try charges one by one with reclaim, but do not retry */
5634	while (count--) {
5635		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5636		if (ret)
5637			return ret;
5638		mc.precharge++;
5639		cond_resched();
5640	}
5641	return 0;
5642}
5643
5644union mc_target {
5645	struct page	*page;
5646	swp_entry_t	ent;
5647};
5648
5649enum mc_target_type {
5650	MC_TARGET_NONE = 0,
5651	MC_TARGET_PAGE,
5652	MC_TARGET_SWAP,
5653	MC_TARGET_DEVICE,
5654};
5655
5656static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5657						unsigned long addr, pte_t ptent)
5658{
5659	struct page *page = vm_normal_page(vma, addr, ptent);
5660
5661	if (!page || !page_mapped(page))
5662		return NULL;
5663	if (PageAnon(page)) {
5664		if (!(mc.flags & MOVE_ANON))
5665			return NULL;
5666	} else {
5667		if (!(mc.flags & MOVE_FILE))
5668			return NULL;
5669	}
5670	if (!get_page_unless_zero(page))
5671		return NULL;
5672
5673	return page;
5674}
5675
5676#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5677static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5678			pte_t ptent, swp_entry_t *entry)
5679{
5680	struct page *page = NULL;
5681	swp_entry_t ent = pte_to_swp_entry(ptent);
5682
5683	if (!(mc.flags & MOVE_ANON))
5684		return NULL;
5685
5686	/*
5687	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5688	 * a device and because they are not accessible by CPU they are store
5689	 * as special swap entry in the CPU page table.
5690	 */
5691	if (is_device_private_entry(ent)) {
5692		page = device_private_entry_to_page(ent);
5693		/*
5694		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5695		 * a refcount of 1 when free (unlike normal page)
5696		 */
5697		if (!page_ref_add_unless(page, 1, 1))
5698			return NULL;
5699		return page;
5700	}
5701
5702	if (non_swap_entry(ent))
5703		return NULL;
5704
5705	/*
5706	 * Because lookup_swap_cache() updates some statistics counter,
5707	 * we call find_get_page() with swapper_space directly.
5708	 */
5709	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5710	entry->val = ent.val;
5711
5712	return page;
5713}
5714#else
5715static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5716			pte_t ptent, swp_entry_t *entry)
5717{
5718	return NULL;
5719}
5720#endif
5721
5722static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5723			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5724{
5725	if (!vma->vm_file) /* anonymous vma */
5726		return NULL;
5727	if (!(mc.flags & MOVE_FILE))
5728		return NULL;
5729
5730	/* page is moved even if it's not RSS of this task(page-faulted). */
5731	/* shmem/tmpfs may report page out on swap: account for that too. */
5732	return find_get_incore_page(vma->vm_file->f_mapping,
5733			linear_page_index(vma, addr));
5734}
5735
5736/**
5737 * mem_cgroup_move_account - move account of the page
5738 * @page: the page
5739 * @compound: charge the page as compound or small page
5740 * @from: mem_cgroup which the page is moved from.
5741 * @to:	mem_cgroup which the page is moved to. @from != @to.
5742 *
5743 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5744 *
5745 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5746 * from old cgroup.
5747 */
5748static int mem_cgroup_move_account(struct page *page,
5749				   bool compound,
5750				   struct mem_cgroup *from,
5751				   struct mem_cgroup *to)
5752{
5753	struct lruvec *from_vec, *to_vec;
5754	struct pglist_data *pgdat;
5755	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5756	int ret;
5757
5758	VM_BUG_ON(from == to);
5759	VM_BUG_ON_PAGE(PageLRU(page), page);
5760	VM_BUG_ON(compound && !PageTransHuge(page));
5761
5762	/*
5763	 * Prevent mem_cgroup_migrate() from looking at
5764	 * page->mem_cgroup of its source page while we change it.
5765	 */
5766	ret = -EBUSY;
5767	if (!trylock_page(page))
5768		goto out;
5769
5770	ret = -EINVAL;
5771	if (page->mem_cgroup != from)
5772		goto out_unlock;
5773
5774	pgdat = page_pgdat(page);
5775	from_vec = mem_cgroup_lruvec(from, pgdat);
5776	to_vec = mem_cgroup_lruvec(to, pgdat);
5777
5778	lock_page_memcg(page);
5779
5780	if (PageAnon(page)) {
5781		if (page_mapped(page)) {
5782			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5783			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5784			if (PageTransHuge(page)) {
5785				__dec_lruvec_state(from_vec, NR_ANON_THPS);
5786				__inc_lruvec_state(to_vec, NR_ANON_THPS);
5787			}
5788
5789		}
5790	} else {
5791		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5792		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5793
5794		if (PageSwapBacked(page)) {
5795			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5796			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5797		}
5798
5799		if (page_mapped(page)) {
5800			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5801			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5802		}
5803
5804		if (PageDirty(page)) {
5805			struct address_space *mapping = page_mapping(page);
5806
5807			if (mapping_can_writeback(mapping)) {
5808				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5809						   -nr_pages);
5810				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5811						   nr_pages);
5812			}
5813		}
5814	}
5815
5816	if (PageWriteback(page)) {
5817		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5818		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5819	}
5820
5821	/*
5822	 * All state has been migrated, let's switch to the new memcg.
5823	 *
5824	 * It is safe to change page->mem_cgroup here because the page
5825	 * is referenced, charged, isolated, and locked: we can't race
5826	 * with (un)charging, migration, LRU putback, or anything else
5827	 * that would rely on a stable page->mem_cgroup.
5828	 *
5829	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5830	 * to save space. As soon as we switch page->mem_cgroup to a
5831	 * new memcg that isn't locked, the above state can change
5832	 * concurrently again. Make sure we're truly done with it.
5833	 */
5834	smp_mb();
5835
5836	css_get(&to->css);
5837	css_put(&from->css);
5838
5839	page->mem_cgroup = to;
5840
5841	__unlock_page_memcg(from);
5842
5843	ret = 0;
5844
5845	local_irq_disable();
5846	mem_cgroup_charge_statistics(to, page, nr_pages);
5847	memcg_check_events(to, page);
5848	mem_cgroup_charge_statistics(from, page, -nr_pages);
5849	memcg_check_events(from, page);
5850	local_irq_enable();
5851out_unlock:
5852	unlock_page(page);
5853out:
5854	return ret;
5855}
5856
5857/**
5858 * get_mctgt_type - get target type of moving charge
5859 * @vma: the vma the pte to be checked belongs
5860 * @addr: the address corresponding to the pte to be checked
5861 * @ptent: the pte to be checked
5862 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5863 *
5864 * Returns
5865 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5866 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5867 *     move charge. if @target is not NULL, the page is stored in target->page
5868 *     with extra refcnt got(Callers should handle it).
5869 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5870 *     target for charge migration. if @target is not NULL, the entry is stored
5871 *     in target->ent.
5872 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5873 *     (so ZONE_DEVICE page and thus not on the lru).
5874 *     For now we such page is charge like a regular page would be as for all
5875 *     intent and purposes it is just special memory taking the place of a
5876 *     regular page.
5877 *
5878 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5879 *
5880 * Called with pte lock held.
5881 */
5882
5883static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5884		unsigned long addr, pte_t ptent, union mc_target *target)
5885{
5886	struct page *page = NULL;
5887	enum mc_target_type ret = MC_TARGET_NONE;
5888	swp_entry_t ent = { .val = 0 };
5889
5890	if (pte_present(ptent))
5891		page = mc_handle_present_pte(vma, addr, ptent);
5892	else if (is_swap_pte(ptent))
5893		page = mc_handle_swap_pte(vma, ptent, &ent);
5894	else if (pte_none(ptent))
5895		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5896
5897	if (!page && !ent.val)
5898		return ret;
5899	if (page) {
5900		/*
5901		 * Do only loose check w/o serialization.
5902		 * mem_cgroup_move_account() checks the page is valid or
5903		 * not under LRU exclusion.
5904		 */
5905		if (page->mem_cgroup == mc.from) {
5906			ret = MC_TARGET_PAGE;
5907			if (is_device_private_page(page))
5908				ret = MC_TARGET_DEVICE;
5909			if (target)
5910				target->page = page;
5911		}
5912		if (!ret || !target)
5913			put_page(page);
5914	}
5915	/*
5916	 * There is a swap entry and a page doesn't exist or isn't charged.
5917	 * But we cannot move a tail-page in a THP.
5918	 */
5919	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5920	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5921		ret = MC_TARGET_SWAP;
5922		if (target)
5923			target->ent = ent;
5924	}
5925	return ret;
5926}
5927
5928#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5929/*
5930 * We don't consider PMD mapped swapping or file mapped pages because THP does
5931 * not support them for now.
5932 * Caller should make sure that pmd_trans_huge(pmd) is true.
5933 */
5934static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5935		unsigned long addr, pmd_t pmd, union mc_target *target)
5936{
5937	struct page *page = NULL;
5938	enum mc_target_type ret = MC_TARGET_NONE;
5939
5940	if (unlikely(is_swap_pmd(pmd))) {
5941		VM_BUG_ON(thp_migration_supported() &&
5942				  !is_pmd_migration_entry(pmd));
5943		return ret;
5944	}
5945	page = pmd_page(pmd);
5946	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5947	if (!(mc.flags & MOVE_ANON))
5948		return ret;
5949	if (page->mem_cgroup == mc.from) {
5950		ret = MC_TARGET_PAGE;
5951		if (target) {
5952			get_page(page);
5953			target->page = page;
5954		}
5955	}
5956	return ret;
5957}
5958#else
5959static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5960		unsigned long addr, pmd_t pmd, union mc_target *target)
5961{
5962	return MC_TARGET_NONE;
5963}
5964#endif
5965
5966static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5967					unsigned long addr, unsigned long end,
5968					struct mm_walk *walk)
5969{
5970	struct vm_area_struct *vma = walk->vma;
5971	pte_t *pte;
5972	spinlock_t *ptl;
5973
5974	ptl = pmd_trans_huge_lock(pmd, vma);
5975	if (ptl) {
5976		/*
5977		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5978		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5979		 * this might change.
5980		 */
5981		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5982			mc.precharge += HPAGE_PMD_NR;
5983		spin_unlock(ptl);
5984		return 0;
5985	}
5986
5987	if (pmd_trans_unstable(pmd))
5988		return 0;
5989	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5990	for (; addr != end; pte++, addr += PAGE_SIZE)
5991		if (get_mctgt_type(vma, addr, *pte, NULL))
5992			mc.precharge++;	/* increment precharge temporarily */
5993	pte_unmap_unlock(pte - 1, ptl);
5994	cond_resched();
5995
5996	return 0;
5997}
5998
5999static const struct mm_walk_ops precharge_walk_ops = {
6000	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6001};
6002
6003static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6004{
6005	unsigned long precharge;
6006
6007	mmap_read_lock(mm);
6008	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
6009	mmap_read_unlock(mm);
6010
6011	precharge = mc.precharge;
6012	mc.precharge = 0;
6013
6014	return precharge;
6015}
6016
6017static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6018{
6019	unsigned long precharge = mem_cgroup_count_precharge(mm);
6020
6021	VM_BUG_ON(mc.moving_task);
6022	mc.moving_task = current;
6023	return mem_cgroup_do_precharge(precharge);
6024}
6025
6026/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6027static void __mem_cgroup_clear_mc(void)
6028{
6029	struct mem_cgroup *from = mc.from;
6030	struct mem_cgroup *to = mc.to;
6031
6032	/* we must uncharge all the leftover precharges from mc.to */
6033	if (mc.precharge) {
6034		cancel_charge(mc.to, mc.precharge);
6035		mc.precharge = 0;
6036	}
6037	/*
6038	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6039	 * we must uncharge here.
6040	 */
6041	if (mc.moved_charge) {
6042		cancel_charge(mc.from, mc.moved_charge);
6043		mc.moved_charge = 0;
6044	}
6045	/* we must fixup refcnts and charges */
6046	if (mc.moved_swap) {
6047		/* uncharge swap account from the old cgroup */
6048		if (!mem_cgroup_is_root(mc.from))
6049			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6050
6051		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6052
6053		/*
6054		 * we charged both to->memory and to->memsw, so we
6055		 * should uncharge to->memory.
6056		 */
6057		if (!mem_cgroup_is_root(mc.to))
6058			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6059
6060		mc.moved_swap = 0;
6061	}
6062	memcg_oom_recover(from);
6063	memcg_oom_recover(to);
6064	wake_up_all(&mc.waitq);
6065}
6066
6067static void mem_cgroup_clear_mc(void)
6068{
6069	struct mm_struct *mm = mc.mm;
6070
6071	/*
6072	 * we must clear moving_task before waking up waiters at the end of
6073	 * task migration.
6074	 */
6075	mc.moving_task = NULL;
6076	__mem_cgroup_clear_mc();
6077	spin_lock(&mc.lock);
6078	mc.from = NULL;
6079	mc.to = NULL;
6080	mc.mm = NULL;
6081	spin_unlock(&mc.lock);
6082
6083	mmput(mm);
6084}
6085
6086static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6087{
6088	struct cgroup_subsys_state *css;
6089	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6090	struct mem_cgroup *from;
6091	struct task_struct *leader, *p;
6092	struct mm_struct *mm;
6093	unsigned long move_flags;
6094	int ret = 0;
6095
6096	/* charge immigration isn't supported on the default hierarchy */
6097	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6098		return 0;
6099
6100	/*
6101	 * Multi-process migrations only happen on the default hierarchy
6102	 * where charge immigration is not used.  Perform charge
6103	 * immigration if @tset contains a leader and whine if there are
6104	 * multiple.
6105	 */
6106	p = NULL;
6107	cgroup_taskset_for_each_leader(leader, css, tset) {
6108		WARN_ON_ONCE(p);
6109		p = leader;
6110		memcg = mem_cgroup_from_css(css);
6111	}
6112	if (!p)
6113		return 0;
6114
6115	/*
6116	 * We are now commited to this value whatever it is. Changes in this
6117	 * tunable will only affect upcoming migrations, not the current one.
6118	 * So we need to save it, and keep it going.
6119	 */
6120	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6121	if (!move_flags)
6122		return 0;
6123
6124	from = mem_cgroup_from_task(p);
6125
6126	VM_BUG_ON(from == memcg);
6127
6128	mm = get_task_mm(p);
6129	if (!mm)
6130		return 0;
6131	/* We move charges only when we move a owner of the mm */
6132	if (mm->owner == p) {
6133		VM_BUG_ON(mc.from);
6134		VM_BUG_ON(mc.to);
6135		VM_BUG_ON(mc.precharge);
6136		VM_BUG_ON(mc.moved_charge);
6137		VM_BUG_ON(mc.moved_swap);
6138
6139		spin_lock(&mc.lock);
6140		mc.mm = mm;
6141		mc.from = from;
6142		mc.to = memcg;
6143		mc.flags = move_flags;
6144		spin_unlock(&mc.lock);
6145		/* We set mc.moving_task later */
6146
6147		ret = mem_cgroup_precharge_mc(mm);
6148		if (ret)
6149			mem_cgroup_clear_mc();
6150	} else {
6151		mmput(mm);
6152	}
6153	return ret;
6154}
6155
6156static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6157{
6158	if (mc.to)
6159		mem_cgroup_clear_mc();
6160}
6161
6162static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6163				unsigned long addr, unsigned long end,
6164				struct mm_walk *walk)
6165{
6166	int ret = 0;
6167	struct vm_area_struct *vma = walk->vma;
6168	pte_t *pte;
6169	spinlock_t *ptl;
6170	enum mc_target_type target_type;
6171	union mc_target target;
6172	struct page *page;
6173
6174	ptl = pmd_trans_huge_lock(pmd, vma);
6175	if (ptl) {
6176		if (mc.precharge < HPAGE_PMD_NR) {
6177			spin_unlock(ptl);
6178			return 0;
6179		}
6180		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6181		if (target_type == MC_TARGET_PAGE) {
6182			page = target.page;
6183			if (!isolate_lru_page(page)) {
6184				if (!mem_cgroup_move_account(page, true,
6185							     mc.from, mc.to)) {
6186					mc.precharge -= HPAGE_PMD_NR;
6187					mc.moved_charge += HPAGE_PMD_NR;
6188				}
6189				putback_lru_page(page);
6190			}
6191			put_page(page);
6192		} else if (target_type == MC_TARGET_DEVICE) {
6193			page = target.page;
6194			if (!mem_cgroup_move_account(page, true,
6195						     mc.from, mc.to)) {
6196				mc.precharge -= HPAGE_PMD_NR;
6197				mc.moved_charge += HPAGE_PMD_NR;
6198			}
6199			put_page(page);
6200		}
6201		spin_unlock(ptl);
6202		return 0;
6203	}
6204
6205	if (pmd_trans_unstable(pmd))
6206		return 0;
6207retry:
6208	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6209	for (; addr != end; addr += PAGE_SIZE) {
6210		pte_t ptent = *(pte++);
6211		bool device = false;
6212		swp_entry_t ent;
6213
6214		if (!mc.precharge)
6215			break;
6216
6217		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6218		case MC_TARGET_DEVICE:
6219			device = true;
6220			fallthrough;
6221		case MC_TARGET_PAGE:
6222			page = target.page;
6223			/*
6224			 * We can have a part of the split pmd here. Moving it
6225			 * can be done but it would be too convoluted so simply
6226			 * ignore such a partial THP and keep it in original
6227			 * memcg. There should be somebody mapping the head.
6228			 */
6229			if (PageTransCompound(page))
6230				goto put;
6231			if (!device && isolate_lru_page(page))
6232				goto put;
6233			if (!mem_cgroup_move_account(page, false,
6234						mc.from, mc.to)) {
6235				mc.precharge--;
6236				/* we uncharge from mc.from later. */
6237				mc.moved_charge++;
6238			}
6239			if (!device)
6240				putback_lru_page(page);
6241put:			/* get_mctgt_type() gets the page */
6242			put_page(page);
6243			break;
6244		case MC_TARGET_SWAP:
6245			ent = target.ent;
6246			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6247				mc.precharge--;
6248				mem_cgroup_id_get_many(mc.to, 1);
6249				/* we fixup other refcnts and charges later. */
6250				mc.moved_swap++;
6251			}
6252			break;
6253		default:
6254			break;
6255		}
6256	}
6257	pte_unmap_unlock(pte - 1, ptl);
6258	cond_resched();
6259
6260	if (addr != end) {
6261		/*
6262		 * We have consumed all precharges we got in can_attach().
6263		 * We try charge one by one, but don't do any additional
6264		 * charges to mc.to if we have failed in charge once in attach()
6265		 * phase.
6266		 */
6267		ret = mem_cgroup_do_precharge(1);
6268		if (!ret)
6269			goto retry;
6270	}
6271
6272	return ret;
6273}
6274
6275static const struct mm_walk_ops charge_walk_ops = {
6276	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6277};
6278
6279static void mem_cgroup_move_charge(void)
6280{
6281	lru_add_drain_all();
6282	/*
6283	 * Signal lock_page_memcg() to take the memcg's move_lock
6284	 * while we're moving its pages to another memcg. Then wait
6285	 * for already started RCU-only updates to finish.
6286	 */
6287	atomic_inc(&mc.from->moving_account);
6288	synchronize_rcu();
6289retry:
6290	if (unlikely(!mmap_read_trylock(mc.mm))) {
6291		/*
6292		 * Someone who are holding the mmap_lock might be waiting in
6293		 * waitq. So we cancel all extra charges, wake up all waiters,
6294		 * and retry. Because we cancel precharges, we might not be able
6295		 * to move enough charges, but moving charge is a best-effort
6296		 * feature anyway, so it wouldn't be a big problem.
6297		 */
6298		__mem_cgroup_clear_mc();
6299		cond_resched();
6300		goto retry;
6301	}
6302	/*
6303	 * When we have consumed all precharges and failed in doing
6304	 * additional charge, the page walk just aborts.
6305	 */
6306	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6307			NULL);
6308
6309	mmap_read_unlock(mc.mm);
6310	atomic_dec(&mc.from->moving_account);
6311}
6312
6313static void mem_cgroup_move_task(void)
6314{
6315	if (mc.to) {
6316		mem_cgroup_move_charge();
6317		mem_cgroup_clear_mc();
6318	}
6319}
6320#else	/* !CONFIG_MMU */
6321static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6322{
6323	return 0;
6324}
6325static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6326{
6327}
6328static void mem_cgroup_move_task(void)
6329{
6330}
6331#endif
6332
6333/*
6334 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6335 * to verify whether we're attached to the default hierarchy on each mount
6336 * attempt.
6337 */
6338static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6339{
6340	/*
6341	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6342	 * guarantees that @root doesn't have any children, so turning it
6343	 * on for the root memcg is enough.
6344	 */
6345	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6346		root_mem_cgroup->use_hierarchy = true;
6347	else
6348		root_mem_cgroup->use_hierarchy = false;
6349}
6350
6351static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6352{
6353	if (value == PAGE_COUNTER_MAX)
6354		seq_puts(m, "max\n");
6355	else
6356		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6357
6358	return 0;
6359}
6360
6361static u64 memory_current_read(struct cgroup_subsys_state *css,
6362			       struct cftype *cft)
6363{
6364	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6365
6366	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6367}
6368
6369static int memory_min_show(struct seq_file *m, void *v)
6370{
6371	return seq_puts_memcg_tunable(m,
6372		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6373}
6374
6375static ssize_t memory_min_write(struct kernfs_open_file *of,
6376				char *buf, size_t nbytes, loff_t off)
6377{
6378	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6379	unsigned long min;
6380	int err;
6381
6382	buf = strstrip(buf);
6383	err = page_counter_memparse(buf, "max", &min);
6384	if (err)
6385		return err;
6386
6387	page_counter_set_min(&memcg->memory, min);
6388
6389	return nbytes;
6390}
6391
6392static int memory_low_show(struct seq_file *m, void *v)
6393{
6394	return seq_puts_memcg_tunable(m,
6395		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6396}
6397
6398static ssize_t memory_low_write(struct kernfs_open_file *of,
6399				char *buf, size_t nbytes, loff_t off)
6400{
6401	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6402	unsigned long low;
6403	int err;
6404
6405	buf = strstrip(buf);
6406	err = page_counter_memparse(buf, "max", &low);
6407	if (err)
6408		return err;
6409
6410	page_counter_set_low(&memcg->memory, low);
6411
6412	return nbytes;
6413}
6414
6415static int memory_high_show(struct seq_file *m, void *v)
6416{
6417	return seq_puts_memcg_tunable(m,
6418		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6419}
6420
6421static ssize_t memory_high_write(struct kernfs_open_file *of,
6422				 char *buf, size_t nbytes, loff_t off)
6423{
6424	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6425	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6426	bool drained = false;
6427	unsigned long high;
6428	int err;
6429
6430	buf = strstrip(buf);
6431	err = page_counter_memparse(buf, "max", &high);
6432	if (err)
6433		return err;
6434
6435	page_counter_set_high(&memcg->memory, high);
6436
6437	for (;;) {
6438		unsigned long nr_pages = page_counter_read(&memcg->memory);
6439		unsigned long reclaimed;
6440
6441		if (nr_pages <= high)
6442			break;
6443
6444		if (signal_pending(current))
6445			break;
6446
6447		if (!drained) {
6448			drain_all_stock(memcg);
6449			drained = true;
6450			continue;
6451		}
6452
6453		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6454							 GFP_KERNEL, true);
6455
6456		if (!reclaimed && !nr_retries--)
6457			break;
6458	}
6459
6460	memcg_wb_domain_size_changed(memcg);
6461	return nbytes;
6462}
6463
6464static int memory_max_show(struct seq_file *m, void *v)
6465{
6466	return seq_puts_memcg_tunable(m,
6467		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6468}
6469
6470static ssize_t memory_max_write(struct kernfs_open_file *of,
6471				char *buf, size_t nbytes, loff_t off)
6472{
6473	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6474	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6475	bool drained = false;
6476	unsigned long max;
6477	int err;
6478
6479	buf = strstrip(buf);
6480	err = page_counter_memparse(buf, "max", &max);
6481	if (err)
6482		return err;
6483
6484	xchg(&memcg->memory.max, max);
6485
6486	for (;;) {
6487		unsigned long nr_pages = page_counter_read(&memcg->memory);
6488
6489		if (nr_pages <= max)
6490			break;
6491
6492		if (signal_pending(current))
6493			break;
6494
6495		if (!drained) {
6496			drain_all_stock(memcg);
6497			drained = true;
6498			continue;
6499		}
6500
6501		if (nr_reclaims) {
6502			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6503							  GFP_KERNEL, true))
6504				nr_reclaims--;
6505			continue;
6506		}
6507
6508		memcg_memory_event(memcg, MEMCG_OOM);
6509		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6510			break;
6511	}
6512
6513	memcg_wb_domain_size_changed(memcg);
6514	return nbytes;
6515}
6516
6517static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6518{
6519	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6520	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6521	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6522	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6523	seq_printf(m, "oom_kill %lu\n",
6524		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6525}
6526
6527static int memory_events_show(struct seq_file *m, void *v)
6528{
6529	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6530
6531	__memory_events_show(m, memcg->memory_events);
6532	return 0;
6533}
6534
6535static int memory_events_local_show(struct seq_file *m, void *v)
6536{
6537	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6538
6539	__memory_events_show(m, memcg->memory_events_local);
6540	return 0;
6541}
6542
6543static int memory_stat_show(struct seq_file *m, void *v)
6544{
6545	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6546	char *buf;
6547
6548	buf = memory_stat_format(memcg);
6549	if (!buf)
6550		return -ENOMEM;
6551	seq_puts(m, buf);
6552	kfree(buf);
6553	return 0;
6554}
6555
6556#ifdef CONFIG_NUMA
6557static int memory_numa_stat_show(struct seq_file *m, void *v)
6558{
6559	int i;
6560	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6561
6562	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6563		int nid;
6564
6565		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6566			continue;
6567
6568		seq_printf(m, "%s", memory_stats[i].name);
6569		for_each_node_state(nid, N_MEMORY) {
6570			u64 size;
6571			struct lruvec *lruvec;
6572
6573			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6574			size = lruvec_page_state(lruvec, memory_stats[i].idx);
6575			size *= memory_stats[i].ratio;
6576			seq_printf(m, " N%d=%llu", nid, size);
6577		}
6578		seq_putc(m, '\n');
6579	}
6580
6581	return 0;
6582}
6583#endif
6584
6585static int memory_oom_group_show(struct seq_file *m, void *v)
6586{
6587	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6588
6589	seq_printf(m, "%d\n", memcg->oom_group);
6590
6591	return 0;
6592}
6593
6594static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6595				      char *buf, size_t nbytes, loff_t off)
6596{
6597	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6598	int ret, oom_group;
6599
6600	buf = strstrip(buf);
6601	if (!buf)
6602		return -EINVAL;
6603
6604	ret = kstrtoint(buf, 0, &oom_group);
6605	if (ret)
6606		return ret;
6607
6608	if (oom_group != 0 && oom_group != 1)
6609		return -EINVAL;
6610
6611	memcg->oom_group = oom_group;
6612
6613	return nbytes;
6614}
6615
6616static struct cftype memory_files[] = {
6617	{
6618		.name = "current",
6619		.flags = CFTYPE_NOT_ON_ROOT,
6620		.read_u64 = memory_current_read,
6621	},
6622	{
6623		.name = "min",
6624		.flags = CFTYPE_NOT_ON_ROOT,
6625		.seq_show = memory_min_show,
6626		.write = memory_min_write,
6627	},
6628	{
6629		.name = "low",
6630		.flags = CFTYPE_NOT_ON_ROOT,
6631		.seq_show = memory_low_show,
6632		.write = memory_low_write,
6633	},
6634	{
6635		.name = "high",
6636		.flags = CFTYPE_NOT_ON_ROOT,
6637		.seq_show = memory_high_show,
6638		.write = memory_high_write,
6639	},
6640	{
6641		.name = "max",
6642		.flags = CFTYPE_NOT_ON_ROOT,
6643		.seq_show = memory_max_show,
6644		.write = memory_max_write,
6645	},
6646	{
6647		.name = "events",
6648		.flags = CFTYPE_NOT_ON_ROOT,
6649		.file_offset = offsetof(struct mem_cgroup, events_file),
6650		.seq_show = memory_events_show,
6651	},
6652	{
6653		.name = "events.local",
6654		.flags = CFTYPE_NOT_ON_ROOT,
6655		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6656		.seq_show = memory_events_local_show,
6657	},
6658	{
6659		.name = "stat",
6660		.seq_show = memory_stat_show,
6661	},
6662#ifdef CONFIG_NUMA
6663	{
6664		.name = "numa_stat",
6665		.seq_show = memory_numa_stat_show,
6666	},
6667#endif
6668	{
6669		.name = "oom.group",
6670		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6671		.seq_show = memory_oom_group_show,
6672		.write = memory_oom_group_write,
6673	},
6674	{ }	/* terminate */
6675};
6676
6677struct cgroup_subsys memory_cgrp_subsys = {
6678	.css_alloc = mem_cgroup_css_alloc,
6679	.css_online = mem_cgroup_css_online,
6680	.css_offline = mem_cgroup_css_offline,
6681	.css_released = mem_cgroup_css_released,
6682	.css_free = mem_cgroup_css_free,
6683	.css_reset = mem_cgroup_css_reset,
6684	.can_attach = mem_cgroup_can_attach,
6685	.cancel_attach = mem_cgroup_cancel_attach,
6686	.post_attach = mem_cgroup_move_task,
6687	.bind = mem_cgroup_bind,
6688	.dfl_cftypes = memory_files,
6689	.legacy_cftypes = mem_cgroup_legacy_files,
6690	.early_init = 0,
6691};
6692
6693/*
6694 * This function calculates an individual cgroup's effective
6695 * protection which is derived from its own memory.min/low, its
6696 * parent's and siblings' settings, as well as the actual memory
6697 * distribution in the tree.
6698 *
6699 * The following rules apply to the effective protection values:
6700 *
6701 * 1. At the first level of reclaim, effective protection is equal to
6702 *    the declared protection in memory.min and memory.low.
6703 *
6704 * 2. To enable safe delegation of the protection configuration, at
6705 *    subsequent levels the effective protection is capped to the
6706 *    parent's effective protection.
6707 *
6708 * 3. To make complex and dynamic subtrees easier to configure, the
6709 *    user is allowed to overcommit the declared protection at a given
6710 *    level. If that is the case, the parent's effective protection is
6711 *    distributed to the children in proportion to how much protection
6712 *    they have declared and how much of it they are utilizing.
6713 *
6714 *    This makes distribution proportional, but also work-conserving:
6715 *    if one cgroup claims much more protection than it uses memory,
6716 *    the unused remainder is available to its siblings.
6717 *
6718 * 4. Conversely, when the declared protection is undercommitted at a
6719 *    given level, the distribution of the larger parental protection
6720 *    budget is NOT proportional. A cgroup's protection from a sibling
6721 *    is capped to its own memory.min/low setting.
6722 *
6723 * 5. However, to allow protecting recursive subtrees from each other
6724 *    without having to declare each individual cgroup's fixed share
6725 *    of the ancestor's claim to protection, any unutilized -
6726 *    "floating" - protection from up the tree is distributed in
6727 *    proportion to each cgroup's *usage*. This makes the protection
6728 *    neutral wrt sibling cgroups and lets them compete freely over
6729 *    the shared parental protection budget, but it protects the
6730 *    subtree as a whole from neighboring subtrees.
6731 *
6732 * Note that 4. and 5. are not in conflict: 4. is about protecting
6733 * against immediate siblings whereas 5. is about protecting against
6734 * neighboring subtrees.
6735 */
6736static unsigned long effective_protection(unsigned long usage,
6737					  unsigned long parent_usage,
6738					  unsigned long setting,
6739					  unsigned long parent_effective,
6740					  unsigned long siblings_protected)
6741{
6742	unsigned long protected;
6743	unsigned long ep;
6744
6745	protected = min(usage, setting);
6746	/*
6747	 * If all cgroups at this level combined claim and use more
6748	 * protection then what the parent affords them, distribute
6749	 * shares in proportion to utilization.
6750	 *
6751	 * We are using actual utilization rather than the statically
6752	 * claimed protection in order to be work-conserving: claimed
6753	 * but unused protection is available to siblings that would
6754	 * otherwise get a smaller chunk than what they claimed.
6755	 */
6756	if (siblings_protected > parent_effective)
6757		return protected * parent_effective / siblings_protected;
6758
6759	/*
6760	 * Ok, utilized protection of all children is within what the
6761	 * parent affords them, so we know whatever this child claims
6762	 * and utilizes is effectively protected.
6763	 *
6764	 * If there is unprotected usage beyond this value, reclaim
6765	 * will apply pressure in proportion to that amount.
6766	 *
6767	 * If there is unutilized protection, the cgroup will be fully
6768	 * shielded from reclaim, but we do return a smaller value for
6769	 * protection than what the group could enjoy in theory. This
6770	 * is okay. With the overcommit distribution above, effective
6771	 * protection is always dependent on how memory is actually
6772	 * consumed among the siblings anyway.
6773	 */
6774	ep = protected;
6775
6776	/*
6777	 * If the children aren't claiming (all of) the protection
6778	 * afforded to them by the parent, distribute the remainder in
6779	 * proportion to the (unprotected) memory of each cgroup. That
6780	 * way, cgroups that aren't explicitly prioritized wrt each
6781	 * other compete freely over the allowance, but they are
6782	 * collectively protected from neighboring trees.
6783	 *
6784	 * We're using unprotected memory for the weight so that if
6785	 * some cgroups DO claim explicit protection, we don't protect
6786	 * the same bytes twice.
6787	 *
6788	 * Check both usage and parent_usage against the respective
6789	 * protected values. One should imply the other, but they
6790	 * aren't read atomically - make sure the division is sane.
6791	 */
6792	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6793		return ep;
6794	if (parent_effective > siblings_protected &&
6795	    parent_usage > siblings_protected &&
6796	    usage > protected) {
6797		unsigned long unclaimed;
6798
6799		unclaimed = parent_effective - siblings_protected;
6800		unclaimed *= usage - protected;
6801		unclaimed /= parent_usage - siblings_protected;
6802
6803		ep += unclaimed;
6804	}
6805
6806	return ep;
6807}
6808
6809/**
6810 * mem_cgroup_protected - check if memory consumption is in the normal range
6811 * @root: the top ancestor of the sub-tree being checked
6812 * @memcg: the memory cgroup to check
6813 *
6814 * WARNING: This function is not stateless! It can only be used as part
6815 *          of a top-down tree iteration, not for isolated queries.
6816 */
6817void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6818				     struct mem_cgroup *memcg)
6819{
6820	unsigned long usage, parent_usage;
6821	struct mem_cgroup *parent;
6822
6823	if (mem_cgroup_disabled())
6824		return;
6825
6826	if (!root)
6827		root = root_mem_cgroup;
6828
6829	/*
6830	 * Effective values of the reclaim targets are ignored so they
6831	 * can be stale. Have a look at mem_cgroup_protection for more
6832	 * details.
6833	 * TODO: calculation should be more robust so that we do not need
6834	 * that special casing.
6835	 */
6836	if (memcg == root)
6837		return;
6838
6839	usage = page_counter_read(&memcg->memory);
6840	if (!usage)
6841		return;
6842
6843	parent = parent_mem_cgroup(memcg);
6844	/* No parent means a non-hierarchical mode on v1 memcg */
6845	if (!parent)
6846		return;
6847
6848	if (parent == root) {
6849		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6850		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6851		return;
6852	}
6853
6854	parent_usage = page_counter_read(&parent->memory);
6855
6856	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6857			READ_ONCE(memcg->memory.min),
6858			READ_ONCE(parent->memory.emin),
6859			atomic_long_read(&parent->memory.children_min_usage)));
6860
6861	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6862			READ_ONCE(memcg->memory.low),
6863			READ_ONCE(parent->memory.elow),
6864			atomic_long_read(&parent->memory.children_low_usage)));
6865}
6866
6867/**
6868 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6869 * @page: page to charge
6870 * @mm: mm context of the victim
6871 * @gfp_mask: reclaim mode
6872 *
6873 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6874 * pages according to @gfp_mask if necessary.
6875 *
6876 * Returns 0 on success. Otherwise, an error code is returned.
6877 */
6878int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6879{
6880	unsigned int nr_pages = thp_nr_pages(page);
6881	struct mem_cgroup *memcg = NULL;
6882	int ret = 0;
6883
6884	if (mem_cgroup_disabled())
6885		goto out;
6886
6887	if (PageSwapCache(page)) {
6888		swp_entry_t ent = { .val = page_private(page), };
6889		unsigned short id;
6890
6891		/*
6892		 * Every swap fault against a single page tries to charge the
6893		 * page, bail as early as possible.  shmem_unuse() encounters
6894		 * already charged pages, too.  page->mem_cgroup is protected
6895		 * by the page lock, which serializes swap cache removal, which
6896		 * in turn serializes uncharging.
6897		 */
6898		VM_BUG_ON_PAGE(!PageLocked(page), page);
6899		if (compound_head(page)->mem_cgroup)
6900			goto out;
6901
6902		id = lookup_swap_cgroup_id(ent);
6903		rcu_read_lock();
6904		memcg = mem_cgroup_from_id(id);
6905		if (memcg && !css_tryget_online(&memcg->css))
6906			memcg = NULL;
6907		rcu_read_unlock();
6908	}
6909
6910	if (!memcg)
6911		memcg = get_mem_cgroup_from_mm(mm);
6912
6913	ret = try_charge(memcg, gfp_mask, nr_pages);
6914	if (ret)
6915		goto out_put;
6916
6917	css_get(&memcg->css);
6918	commit_charge(page, memcg);
6919
6920	local_irq_disable();
6921	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6922	memcg_check_events(memcg, page);
6923	local_irq_enable();
6924
6925	/*
6926	 * Cgroup1's unified memory+swap counter has been charged with the
6927	 * new swapcache page, finish the transfer by uncharging the swap
6928	 * slot. The swap slot would also get uncharged when it dies, but
6929	 * it can stick around indefinitely and we'd count the page twice
6930	 * the entire time.
6931	 *
6932	 * Cgroup2 has separate resource counters for memory and swap,
6933	 * so this is a non-issue here. Memory and swap charge lifetimes
6934	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6935	 * page to memory here, and uncharge swap when the slot is freed.
6936	 */
6937	if (do_memsw_account() && PageSwapCache(page)) {
6938		swp_entry_t entry = { .val = page_private(page) };
6939		/*
6940		 * The swap entry might not get freed for a long time,
6941		 * let's not wait for it.  The page already received a
6942		 * memory+swap charge, drop the swap entry duplicate.
6943		 */
6944		mem_cgroup_uncharge_swap(entry, nr_pages);
6945	}
6946
6947out_put:
6948	css_put(&memcg->css);
6949out:
6950	return ret;
6951}
6952
6953struct uncharge_gather {
6954	struct mem_cgroup *memcg;
6955	unsigned long nr_pages;
6956	unsigned long pgpgout;
6957	unsigned long nr_kmem;
6958	struct page *dummy_page;
6959};
6960
6961static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6962{
6963	memset(ug, 0, sizeof(*ug));
6964}
6965
6966static void uncharge_batch(const struct uncharge_gather *ug)
6967{
6968	unsigned long flags;
6969
6970	if (!mem_cgroup_is_root(ug->memcg)) {
6971		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6972		if (do_memsw_account())
6973			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6974		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6975			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6976		memcg_oom_recover(ug->memcg);
6977	}
6978
6979	local_irq_save(flags);
6980	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6981	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6982	memcg_check_events(ug->memcg, ug->dummy_page);
6983	local_irq_restore(flags);
6984
6985	/* drop reference from uncharge_page */
6986	css_put(&ug->memcg->css);
6987}
6988
6989static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6990{
6991	unsigned long nr_pages;
6992
6993	VM_BUG_ON_PAGE(PageLRU(page), page);
6994
6995	if (!page->mem_cgroup)
6996		return;
6997
6998	/*
6999	 * Nobody should be changing or seriously looking at
7000	 * page->mem_cgroup at this point, we have fully
7001	 * exclusive access to the page.
7002	 */
7003
7004	if (ug->memcg != page->mem_cgroup) {
7005		if (ug->memcg) {
7006			uncharge_batch(ug);
7007			uncharge_gather_clear(ug);
7008		}
7009		ug->memcg = page->mem_cgroup;
7010
7011		/* pairs with css_put in uncharge_batch */
7012		css_get(&ug->memcg->css);
7013	}
7014
7015	nr_pages = compound_nr(page);
7016	ug->nr_pages += nr_pages;
7017
7018	if (!PageKmemcg(page)) {
7019		ug->pgpgout++;
7020	} else {
7021		ug->nr_kmem += nr_pages;
7022		__ClearPageKmemcg(page);
7023	}
7024
7025	ug->dummy_page = page;
7026	page->mem_cgroup = NULL;
7027	css_put(&ug->memcg->css);
7028}
7029
7030static void uncharge_list(struct list_head *page_list)
7031{
7032	struct uncharge_gather ug;
7033	struct list_head *next;
7034
7035	uncharge_gather_clear(&ug);
7036
7037	/*
7038	 * Note that the list can be a single page->lru; hence the
7039	 * do-while loop instead of a simple list_for_each_entry().
7040	 */
7041	next = page_list->next;
7042	do {
7043		struct page *page;
7044
7045		page = list_entry(next, struct page, lru);
7046		next = page->lru.next;
7047
7048		uncharge_page(page, &ug);
7049	} while (next != page_list);
7050
7051	if (ug.memcg)
7052		uncharge_batch(&ug);
7053}
7054
7055/**
7056 * mem_cgroup_uncharge - uncharge a page
7057 * @page: page to uncharge
7058 *
7059 * Uncharge a page previously charged with mem_cgroup_charge().
7060 */
7061void mem_cgroup_uncharge(struct page *page)
7062{
7063	struct uncharge_gather ug;
7064
7065	if (mem_cgroup_disabled())
7066		return;
7067
7068	/* Don't touch page->lru of any random page, pre-check: */
7069	if (!page->mem_cgroup)
7070		return;
7071
7072	uncharge_gather_clear(&ug);
7073	uncharge_page(page, &ug);
7074	uncharge_batch(&ug);
7075}
7076
7077/**
7078 * mem_cgroup_uncharge_list - uncharge a list of page
7079 * @page_list: list of pages to uncharge
7080 *
7081 * Uncharge a list of pages previously charged with
7082 * mem_cgroup_charge().
7083 */
7084void mem_cgroup_uncharge_list(struct list_head *page_list)
7085{
7086	if (mem_cgroup_disabled())
7087		return;
7088
7089	if (!list_empty(page_list))
7090		uncharge_list(page_list);
7091}
7092
7093/**
7094 * mem_cgroup_migrate - charge a page's replacement
7095 * @oldpage: currently circulating page
7096 * @newpage: replacement page
7097 *
7098 * Charge @newpage as a replacement page for @oldpage. @oldpage will
7099 * be uncharged upon free.
7100 *
7101 * Both pages must be locked, @newpage->mapping must be set up.
7102 */
7103void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7104{
7105	struct mem_cgroup *memcg;
7106	unsigned int nr_pages;
7107	unsigned long flags;
7108
7109	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7110	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7111	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7112	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7113		       newpage);
7114
7115	if (mem_cgroup_disabled())
7116		return;
7117
7118	/* Page cache replacement: new page already charged? */
7119	if (newpage->mem_cgroup)
7120		return;
7121
7122	/* Swapcache readahead pages can get replaced before being charged */
7123	memcg = oldpage->mem_cgroup;
7124	if (!memcg)
7125		return;
7126
7127	/* Force-charge the new page. The old one will be freed soon */
7128	nr_pages = thp_nr_pages(newpage);
7129
7130	page_counter_charge(&memcg->memory, nr_pages);
7131	if (do_memsw_account())
7132		page_counter_charge(&memcg->memsw, nr_pages);
7133
7134	css_get(&memcg->css);
7135	commit_charge(newpage, memcg);
7136
7137	local_irq_save(flags);
7138	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7139	memcg_check_events(memcg, newpage);
7140	local_irq_restore(flags);
7141}
7142
7143DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7144EXPORT_SYMBOL(memcg_sockets_enabled_key);
7145
7146void mem_cgroup_sk_alloc(struct sock *sk)
7147{
7148	struct mem_cgroup *memcg;
7149
7150	if (!mem_cgroup_sockets_enabled)
7151		return;
7152
7153	/* Do not associate the sock with unrelated interrupted task's memcg. */
7154	if (in_interrupt())
7155		return;
7156
7157	rcu_read_lock();
7158	memcg = mem_cgroup_from_task(current);
7159	if (memcg == root_mem_cgroup)
7160		goto out;
7161	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7162		goto out;
7163	if (css_tryget(&memcg->css))
7164		sk->sk_memcg = memcg;
7165out:
7166	rcu_read_unlock();
7167}
7168
7169void mem_cgroup_sk_free(struct sock *sk)
7170{
7171	if (sk->sk_memcg)
7172		css_put(&sk->sk_memcg->css);
7173}
7174
7175/**
7176 * mem_cgroup_charge_skmem - charge socket memory
7177 * @memcg: memcg to charge
7178 * @nr_pages: number of pages to charge
7179 *
7180 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7181 * @memcg's configured limit, %false if the charge had to be forced.
7182 */
7183bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7184{
7185	gfp_t gfp_mask = GFP_KERNEL;
7186
7187	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7188		struct page_counter *fail;
7189
7190		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7191			memcg->tcpmem_pressure = 0;
7192			return true;
7193		}
7194		page_counter_charge(&memcg->tcpmem, nr_pages);
7195		memcg->tcpmem_pressure = 1;
7196		return false;
7197	}
7198
7199	/* Don't block in the packet receive path */
7200	if (in_softirq())
7201		gfp_mask = GFP_NOWAIT;
7202
7203	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7204
7205	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7206		return true;
7207
7208	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7209	return false;
7210}
7211
7212/**
7213 * mem_cgroup_uncharge_skmem - uncharge socket memory
7214 * @memcg: memcg to uncharge
7215 * @nr_pages: number of pages to uncharge
7216 */
7217void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7218{
7219	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7220		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7221		return;
7222	}
7223
7224	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7225
7226	refill_stock(memcg, nr_pages);
7227}
7228
7229static int __init cgroup_memory(char *s)
7230{
7231	char *token;
7232
7233	while ((token = strsep(&s, ",")) != NULL) {
7234		if (!*token)
7235			continue;
7236		if (!strcmp(token, "nosocket"))
7237			cgroup_memory_nosocket = true;
7238		if (!strcmp(token, "nokmem"))
7239			cgroup_memory_nokmem = true;
7240		else if (!strcmp(token, "kmem"))
7241			cgroup_memory_nokmem = false;
7242	}
7243	return 1;
7244}
7245__setup("cgroup.memory=", cgroup_memory);
7246
7247/*
7248 * subsys_initcall() for memory controller.
7249 *
7250 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7251 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7252 * basically everything that doesn't depend on a specific mem_cgroup structure
7253 * should be initialized from here.
7254 */
7255static int __init mem_cgroup_init(void)
7256{
7257	int cpu, node;
7258
7259	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7260				  memcg_hotplug_cpu_dead);
7261
7262	for_each_possible_cpu(cpu)
7263		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7264			  drain_local_stock);
7265
7266	for_each_node(node) {
7267		struct mem_cgroup_tree_per_node *rtpn;
7268
7269		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7270				    node_online(node) ? node : NUMA_NO_NODE);
7271
7272		rtpn->rb_root = RB_ROOT;
7273		rtpn->rb_rightmost = NULL;
7274		spin_lock_init(&rtpn->lock);
7275		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7276	}
7277
7278	return 0;
7279}
7280subsys_initcall(mem_cgroup_init);
7281
7282#ifdef CONFIG_MEMCG_SWAP
7283static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7284{
7285	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7286		/*
7287		 * The root cgroup cannot be destroyed, so it's refcount must
7288		 * always be >= 1.
7289		 */
7290		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7291			VM_BUG_ON(1);
7292			break;
7293		}
7294		memcg = parent_mem_cgroup(memcg);
7295		if (!memcg)
7296			memcg = root_mem_cgroup;
7297	}
7298	return memcg;
7299}
7300
7301/**
7302 * mem_cgroup_swapout - transfer a memsw charge to swap
7303 * @page: page whose memsw charge to transfer
7304 * @entry: swap entry to move the charge to
7305 *
7306 * Transfer the memsw charge of @page to @entry.
7307 */
7308void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7309{
7310	struct mem_cgroup *memcg, *swap_memcg;
7311	unsigned int nr_entries;
7312	unsigned short oldid;
7313
7314	VM_BUG_ON_PAGE(PageLRU(page), page);
7315	VM_BUG_ON_PAGE(page_count(page), page);
7316
7317	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7318		return;
7319
7320	memcg = page->mem_cgroup;
7321
7322	/* Readahead page, never charged */
7323	if (!memcg)
7324		return;
7325
7326	/*
7327	 * In case the memcg owning these pages has been offlined and doesn't
7328	 * have an ID allocated to it anymore, charge the closest online
7329	 * ancestor for the swap instead and transfer the memory+swap charge.
7330	 */
7331	swap_memcg = mem_cgroup_id_get_online(memcg);
7332	nr_entries = thp_nr_pages(page);
7333	/* Get references for the tail pages, too */
7334	if (nr_entries > 1)
7335		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7336	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7337				   nr_entries);
7338	VM_BUG_ON_PAGE(oldid, page);
7339	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7340
7341	page->mem_cgroup = NULL;
7342
7343	if (!mem_cgroup_is_root(memcg))
7344		page_counter_uncharge(&memcg->memory, nr_entries);
7345
7346	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7347		if (!mem_cgroup_is_root(swap_memcg))
7348			page_counter_charge(&swap_memcg->memsw, nr_entries);
7349		page_counter_uncharge(&memcg->memsw, nr_entries);
7350	}
7351
7352	/*
7353	 * Interrupts should be disabled here because the caller holds the
7354	 * i_pages lock which is taken with interrupts-off. It is
7355	 * important here to have the interrupts disabled because it is the
7356	 * only synchronisation we have for updating the per-CPU variables.
7357	 */
7358	VM_BUG_ON(!irqs_disabled());
7359	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7360	memcg_check_events(memcg, page);
7361
7362	css_put(&memcg->css);
7363}
7364
7365/**
7366 * mem_cgroup_try_charge_swap - try charging swap space for a page
7367 * @page: page being added to swap
7368 * @entry: swap entry to charge
7369 *
7370 * Try to charge @page's memcg for the swap space at @entry.
7371 *
7372 * Returns 0 on success, -ENOMEM on failure.
7373 */
7374int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7375{
7376	unsigned int nr_pages = thp_nr_pages(page);
7377	struct page_counter *counter;
7378	struct mem_cgroup *memcg;
7379	unsigned short oldid;
7380
7381	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7382		return 0;
7383
7384	memcg = page->mem_cgroup;
7385
7386	/* Readahead page, never charged */
7387	if (!memcg)
7388		return 0;
7389
7390	if (!entry.val) {
7391		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7392		return 0;
7393	}
7394
7395	memcg = mem_cgroup_id_get_online(memcg);
7396
7397	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7398	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7399		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7400		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7401		mem_cgroup_id_put(memcg);
7402		return -ENOMEM;
7403	}
7404
7405	/* Get references for the tail pages, too */
7406	if (nr_pages > 1)
7407		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7408	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7409	VM_BUG_ON_PAGE(oldid, page);
7410	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7411
7412	return 0;
7413}
7414
7415/**
7416 * mem_cgroup_uncharge_swap - uncharge swap space
7417 * @entry: swap entry to uncharge
7418 * @nr_pages: the amount of swap space to uncharge
7419 */
7420void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7421{
7422	struct mem_cgroup *memcg;
7423	unsigned short id;
7424
7425	id = swap_cgroup_record(entry, 0, nr_pages);
7426	rcu_read_lock();
7427	memcg = mem_cgroup_from_id(id);
7428	if (memcg) {
7429		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7430			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7431				page_counter_uncharge(&memcg->swap, nr_pages);
7432			else
7433				page_counter_uncharge(&memcg->memsw, nr_pages);
7434		}
7435		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7436		mem_cgroup_id_put_many(memcg, nr_pages);
7437	}
7438	rcu_read_unlock();
7439}
7440
7441long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7442{
7443	long nr_swap_pages = get_nr_swap_pages();
7444
7445	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7446		return nr_swap_pages;
7447	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7448		nr_swap_pages = min_t(long, nr_swap_pages,
7449				      READ_ONCE(memcg->swap.max) -
7450				      page_counter_read(&memcg->swap));
7451	return nr_swap_pages;
7452}
7453
7454bool mem_cgroup_swap_full(struct page *page)
7455{
7456	struct mem_cgroup *memcg;
7457
7458	VM_BUG_ON_PAGE(!PageLocked(page), page);
7459
7460	if (vm_swap_full())
7461		return true;
7462	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7463		return false;
7464
7465	memcg = page->mem_cgroup;
7466	if (!memcg)
7467		return false;
7468
7469	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7470		unsigned long usage = page_counter_read(&memcg->swap);
7471
7472		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7473		    usage * 2 >= READ_ONCE(memcg->swap.max))
7474			return true;
7475	}
7476
7477	return false;
7478}
7479
7480static int __init setup_swap_account(char *s)
7481{
7482	if (!strcmp(s, "1"))
7483		cgroup_memory_noswap = 0;
7484	else if (!strcmp(s, "0"))
7485		cgroup_memory_noswap = 1;
7486	return 1;
7487}
7488__setup("swapaccount=", setup_swap_account);
7489
7490static u64 swap_current_read(struct cgroup_subsys_state *css,
7491			     struct cftype *cft)
7492{
7493	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7494
7495	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7496}
7497
7498static int swap_high_show(struct seq_file *m, void *v)
7499{
7500	return seq_puts_memcg_tunable(m,
7501		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7502}
7503
7504static ssize_t swap_high_write(struct kernfs_open_file *of,
7505			       char *buf, size_t nbytes, loff_t off)
7506{
7507	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7508	unsigned long high;
7509	int err;
7510
7511	buf = strstrip(buf);
7512	err = page_counter_memparse(buf, "max", &high);
7513	if (err)
7514		return err;
7515
7516	page_counter_set_high(&memcg->swap, high);
7517
7518	return nbytes;
7519}
7520
7521static int swap_max_show(struct seq_file *m, void *v)
7522{
7523	return seq_puts_memcg_tunable(m,
7524		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7525}
7526
7527static ssize_t swap_max_write(struct kernfs_open_file *of,
7528			      char *buf, size_t nbytes, loff_t off)
7529{
7530	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7531	unsigned long max;
7532	int err;
7533
7534	buf = strstrip(buf);
7535	err = page_counter_memparse(buf, "max", &max);
7536	if (err)
7537		return err;
7538
7539	xchg(&memcg->swap.max, max);
7540
7541	return nbytes;
7542}
7543
7544static int swap_events_show(struct seq_file *m, void *v)
7545{
7546	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7547
7548	seq_printf(m, "high %lu\n",
7549		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7550	seq_printf(m, "max %lu\n",
7551		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7552	seq_printf(m, "fail %lu\n",
7553		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7554
7555	return 0;
7556}
7557
7558static struct cftype swap_files[] = {
7559	{
7560		.name = "swap.current",
7561		.flags = CFTYPE_NOT_ON_ROOT,
7562		.read_u64 = swap_current_read,
7563	},
7564	{
7565		.name = "swap.high",
7566		.flags = CFTYPE_NOT_ON_ROOT,
7567		.seq_show = swap_high_show,
7568		.write = swap_high_write,
7569	},
7570	{
7571		.name = "swap.max",
7572		.flags = CFTYPE_NOT_ON_ROOT,
7573		.seq_show = swap_max_show,
7574		.write = swap_max_write,
7575	},
7576	{
7577		.name = "swap.events",
7578		.flags = CFTYPE_NOT_ON_ROOT,
7579		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7580		.seq_show = swap_events_show,
7581	},
7582	{ }	/* terminate */
7583};
7584
7585static struct cftype memsw_files[] = {
7586	{
7587		.name = "memsw.usage_in_bytes",
7588		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7589		.read_u64 = mem_cgroup_read_u64,
7590	},
7591	{
7592		.name = "memsw.max_usage_in_bytes",
7593		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7594		.write = mem_cgroup_reset,
7595		.read_u64 = mem_cgroup_read_u64,
7596	},
7597	{
7598		.name = "memsw.limit_in_bytes",
7599		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7600		.write = mem_cgroup_write,
7601		.read_u64 = mem_cgroup_read_u64,
7602	},
7603	{
7604		.name = "memsw.failcnt",
7605		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7606		.write = mem_cgroup_reset,
7607		.read_u64 = mem_cgroup_read_u64,
7608	},
7609	{ },	/* terminate */
7610};
7611
7612/*
7613 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7614 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7615 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7616 * boot parameter. This may result in premature OOPS inside
7617 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7618 */
7619static int __init mem_cgroup_swap_init(void)
7620{
7621	/* No memory control -> no swap control */
7622	if (mem_cgroup_disabled())
7623		cgroup_memory_noswap = true;
7624
7625	if (cgroup_memory_noswap)
7626		return 0;
7627
7628	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7629	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7630
7631	return 0;
7632}
7633core_initcall(mem_cgroup_swap_init);
7634
7635#endif /* CONFIG_MEMCG_SWAP */
7636