xref: /kernel/linux/linux-5.10/mm/memblock.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp.	June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS			128
26#define INIT_PHYSMEM_REGIONS			4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30#endif
31
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 *   kernel; this may differ from the actual physical memory installed
44 *   in the system, for instance when the memory is restricted with
45 *   ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 *   boot regardless of the possible restrictions and memory hot(un)plug;
49 *   the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 *   address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 *   of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95#ifndef CONFIG_NEED_MULTIPLE_NODES
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109#endif
110
111struct memblock memblock __initdata_memblock = {
112	.memory.regions		= memblock_memory_init_regions,
113	.memory.cnt		= 1,	/* empty dummy entry */
114	.memory.max		= INIT_MEMBLOCK_REGIONS,
115	.memory.name		= "memory",
116
117	.reserved.regions	= memblock_reserved_init_regions,
118	.reserved.cnt		= 1,	/* empty dummy entry */
119	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120	.reserved.name		= "reserved",
121
122	.bottom_up		= false,
123	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124};
125
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128	.regions		= memblock_physmem_init_regions,
129	.cnt			= 1,	/* empty dummy entry */
130	.max			= INIT_PHYSMEM_REGIONS,
131	.name			= "physmem",
132};
133#endif
134
135/*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 *  For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143#define for_each_memblock_type(i, memblock_type, rgn)			\
144	for (i = 0, rgn = &memblock_type->regions[0];			\
145	     i < memblock_type->cnt;					\
146	     i++, rgn = &memblock_type->regions[i])
147
148#define memblock_dbg(fmt, ...)						\
149	do {								\
150		if (memblock_debug)					\
151			pr_info(fmt, ##__VA_ARGS__);			\
152	} while (0)
153
154static int memblock_debug __initdata_memblock;
155static bool system_has_some_mirror __initdata_memblock = false;
156static int memblock_can_resize __initdata_memblock;
157static int memblock_memory_in_slab __initdata_memblock = 0;
158static int memblock_reserved_in_slab __initdata_memblock = 0;
159
160static enum memblock_flags __init_memblock choose_memblock_flags(void)
161{
162	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163}
164
165/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167{
168	return *size = min(*size, PHYS_ADDR_MAX - base);
169}
170
171/*
172 * Address comparison utilities
173 */
174static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175				       phys_addr_t base2, phys_addr_t size2)
176{
177	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178}
179
180bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181					phys_addr_t base, phys_addr_t size)
182{
183	unsigned long i;
184
185	memblock_cap_size(base, &size);
186
187	for (i = 0; i < type->cnt; i++)
188		if (memblock_addrs_overlap(base, size, type->regions[i].base,
189					   type->regions[i].size))
190			break;
191	return i < type->cnt;
192}
193
194/**
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 *       %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
206 * Return:
207 * Found address on success, 0 on failure.
208 */
209static phys_addr_t __init_memblock
210__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211				phys_addr_t size, phys_addr_t align, int nid,
212				enum memblock_flags flags)
213{
214	phys_addr_t this_start, this_end, cand;
215	u64 i;
216
217	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218		this_start = clamp(this_start, start, end);
219		this_end = clamp(this_end, start, end);
220
221		cand = round_up(this_start, align);
222		if (cand < this_end && this_end - cand >= size)
223			return cand;
224	}
225
226	return 0;
227}
228
229/**
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 *       %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
238 *
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 *
241 * Return:
242 * Found address on success, 0 on failure.
243 */
244static phys_addr_t __init_memblock
245__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246			       phys_addr_t size, phys_addr_t align, int nid,
247			       enum memblock_flags flags)
248{
249	phys_addr_t this_start, this_end, cand;
250	u64 i;
251
252	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253					NULL) {
254		this_start = clamp(this_start, start, end);
255		this_end = clamp(this_end, start, end);
256
257		if (this_end < size)
258			continue;
259
260		cand = round_down(this_end - size, align);
261		if (cand >= this_start)
262			return cand;
263	}
264
265	return 0;
266}
267
268/**
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 *       %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
280 * Return:
281 * Found address on success, 0 on failure.
282 */
283static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284					phys_addr_t align, phys_addr_t start,
285					phys_addr_t end, int nid,
286					enum memblock_flags flags)
287{
288	/* pump up @end */
289	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290	    end == MEMBLOCK_ALLOC_KASAN)
291		end = memblock.current_limit;
292
293	/* avoid allocating the first page */
294	start = max_t(phys_addr_t, start, PAGE_SIZE);
295	end = max(start, end);
296
297	if (memblock_bottom_up())
298		return __memblock_find_range_bottom_up(start, end, size, align,
299						       nid, flags);
300	else
301		return __memblock_find_range_top_down(start, end, size, align,
302						      nid, flags);
303}
304
305/**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 *       %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
315 * Return:
316 * Found address on success, 0 on failure.
317 */
318phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319					phys_addr_t end, phys_addr_t size,
320					phys_addr_t align)
321{
322	phys_addr_t ret;
323	enum memblock_flags flags = choose_memblock_flags();
324
325again:
326	ret = memblock_find_in_range_node(size, align, start, end,
327					    NUMA_NO_NODE, flags);
328
329	if (!ret && (flags & MEMBLOCK_MIRROR)) {
330		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331			&size);
332		flags &= ~MEMBLOCK_MIRROR;
333		goto again;
334	}
335
336	return ret;
337}
338
339static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340{
341	type->total_size -= type->regions[r].size;
342	memmove(&type->regions[r], &type->regions[r + 1],
343		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
344	type->cnt--;
345
346	/* Special case for empty arrays */
347	if (type->cnt == 0) {
348		WARN_ON(type->total_size != 0);
349		type->cnt = 1;
350		type->regions[0].base = 0;
351		type->regions[0].size = 0;
352		type->regions[0].flags = 0;
353		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354	}
355}
356
357#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358/**
359 * memblock_discard - discard memory and reserved arrays if they were allocated
360 */
361void __init memblock_discard(void)
362{
363	phys_addr_t addr, size;
364
365	if (memblock.reserved.regions != memblock_reserved_init_regions) {
366		addr = __pa(memblock.reserved.regions);
367		size = PAGE_ALIGN(sizeof(struct memblock_region) *
368				  memblock.reserved.max);
369		if (memblock_reserved_in_slab)
370			kfree(memblock.reserved.regions);
371		else
372			__memblock_free_late(addr, size);
373	}
374
375	if (memblock.memory.regions != memblock_memory_init_regions) {
376		addr = __pa(memblock.memory.regions);
377		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378				  memblock.memory.max);
379		if (memblock_memory_in_slab)
380			kfree(memblock.memory.regions);
381		else
382			__memblock_free_late(addr, size);
383	}
384
385	memblock_memory = NULL;
386}
387#endif
388
389/**
390 * memblock_double_array - double the size of the memblock regions array
391 * @type: memblock type of the regions array being doubled
392 * @new_area_start: starting address of memory range to avoid overlap with
393 * @new_area_size: size of memory range to avoid overlap with
394 *
395 * Double the size of the @type regions array. If memblock is being used to
396 * allocate memory for a new reserved regions array and there is a previously
397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398 * waiting to be reserved, ensure the memory used by the new array does
399 * not overlap.
400 *
401 * Return:
402 * 0 on success, -1 on failure.
403 */
404static int __init_memblock memblock_double_array(struct memblock_type *type,
405						phys_addr_t new_area_start,
406						phys_addr_t new_area_size)
407{
408	struct memblock_region *new_array, *old_array;
409	phys_addr_t old_alloc_size, new_alloc_size;
410	phys_addr_t old_size, new_size, addr, new_end;
411	int use_slab = slab_is_available();
412	int *in_slab;
413
414	/* We don't allow resizing until we know about the reserved regions
415	 * of memory that aren't suitable for allocation
416	 */
417	if (!memblock_can_resize)
418		return -1;
419
420	/* Calculate new doubled size */
421	old_size = type->max * sizeof(struct memblock_region);
422	new_size = old_size << 1;
423	/*
424	 * We need to allocated new one align to PAGE_SIZE,
425	 *   so we can free them completely later.
426	 */
427	old_alloc_size = PAGE_ALIGN(old_size);
428	new_alloc_size = PAGE_ALIGN(new_size);
429
430	/* Retrieve the slab flag */
431	if (type == &memblock.memory)
432		in_slab = &memblock_memory_in_slab;
433	else
434		in_slab = &memblock_reserved_in_slab;
435
436	/* Try to find some space for it */
437	if (use_slab) {
438		new_array = kmalloc(new_size, GFP_KERNEL);
439		addr = new_array ? __pa(new_array) : 0;
440	} else {
441		/* only exclude range when trying to double reserved.regions */
442		if (type != &memblock.reserved)
443			new_area_start = new_area_size = 0;
444
445		addr = memblock_find_in_range(new_area_start + new_area_size,
446						memblock.current_limit,
447						new_alloc_size, PAGE_SIZE);
448		if (!addr && new_area_size)
449			addr = memblock_find_in_range(0,
450				min(new_area_start, memblock.current_limit),
451				new_alloc_size, PAGE_SIZE);
452
453		new_array = addr ? __va(addr) : NULL;
454	}
455	if (!addr) {
456		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457		       type->name, type->max, type->max * 2);
458		return -1;
459	}
460
461	new_end = addr + new_size - 1;
462	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463			type->name, type->max * 2, &addr, &new_end);
464
465	/*
466	 * Found space, we now need to move the array over before we add the
467	 * reserved region since it may be our reserved array itself that is
468	 * full.
469	 */
470	memcpy(new_array, type->regions, old_size);
471	memset(new_array + type->max, 0, old_size);
472	old_array = type->regions;
473	type->regions = new_array;
474	type->max <<= 1;
475
476	/* Free old array. We needn't free it if the array is the static one */
477	if (*in_slab)
478		kfree(old_array);
479	else if (old_array != memblock_memory_init_regions &&
480		 old_array != memblock_reserved_init_regions)
481		memblock_free(__pa(old_array), old_alloc_size);
482
483	/*
484	 * Reserve the new array if that comes from the memblock.  Otherwise, we
485	 * needn't do it
486	 */
487	if (!use_slab)
488		BUG_ON(memblock_reserve(addr, new_alloc_size));
489
490	/* Update slab flag */
491	*in_slab = use_slab;
492
493	return 0;
494}
495
496/**
497 * memblock_merge_regions - merge neighboring compatible regions
498 * @type: memblock type to scan
499 *
500 * Scan @type and merge neighboring compatible regions.
501 */
502static void __init_memblock memblock_merge_regions(struct memblock_type *type)
503{
504	int i = 0;
505
506	/* cnt never goes below 1 */
507	while (i < type->cnt - 1) {
508		struct memblock_region *this = &type->regions[i];
509		struct memblock_region *next = &type->regions[i + 1];
510
511		if (this->base + this->size != next->base ||
512		    memblock_get_region_node(this) !=
513		    memblock_get_region_node(next) ||
514		    this->flags != next->flags) {
515			BUG_ON(this->base + this->size > next->base);
516			i++;
517			continue;
518		}
519
520		this->size += next->size;
521		/* move forward from next + 1, index of which is i + 2 */
522		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
523		type->cnt--;
524	}
525}
526
527/**
528 * memblock_insert_region - insert new memblock region
529 * @type:	memblock type to insert into
530 * @idx:	index for the insertion point
531 * @base:	base address of the new region
532 * @size:	size of the new region
533 * @nid:	node id of the new region
534 * @flags:	flags of the new region
535 *
536 * Insert new memblock region [@base, @base + @size) into @type at @idx.
537 * @type must already have extra room to accommodate the new region.
538 */
539static void __init_memblock memblock_insert_region(struct memblock_type *type,
540						   int idx, phys_addr_t base,
541						   phys_addr_t size,
542						   int nid,
543						   enum memblock_flags flags)
544{
545	struct memblock_region *rgn = &type->regions[idx];
546
547	BUG_ON(type->cnt >= type->max);
548	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549	rgn->base = base;
550	rgn->size = size;
551	rgn->flags = flags;
552	memblock_set_region_node(rgn, nid);
553	type->cnt++;
554	type->total_size += size;
555}
556
557/**
558 * memblock_add_range - add new memblock region
559 * @type: memblock type to add new region into
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: nid of the new region
563 * @flags: flags of the new region
564 *
565 * Add new memblock region [@base, @base + @size) into @type.  The new region
566 * is allowed to overlap with existing ones - overlaps don't affect already
567 * existing regions.  @type is guaranteed to be minimal (all neighbouring
568 * compatible regions are merged) after the addition.
569 *
570 * Return:
571 * 0 on success, -errno on failure.
572 */
573static int __init_memblock memblock_add_range(struct memblock_type *type,
574				phys_addr_t base, phys_addr_t size,
575				int nid, enum memblock_flags flags)
576{
577	bool insert = false;
578	phys_addr_t obase = base;
579	phys_addr_t end = base + memblock_cap_size(base, &size);
580	int idx, nr_new;
581	struct memblock_region *rgn;
582
583	if (!size)
584		return 0;
585
586	/* special case for empty array */
587	if (type->regions[0].size == 0) {
588		WARN_ON(type->cnt != 1 || type->total_size);
589		type->regions[0].base = base;
590		type->regions[0].size = size;
591		type->regions[0].flags = flags;
592		memblock_set_region_node(&type->regions[0], nid);
593		type->total_size = size;
594		return 0;
595	}
596repeat:
597	/*
598	 * The following is executed twice.  Once with %false @insert and
599	 * then with %true.  The first counts the number of regions needed
600	 * to accommodate the new area.  The second actually inserts them.
601	 */
602	base = obase;
603	nr_new = 0;
604
605	for_each_memblock_type(idx, type, rgn) {
606		phys_addr_t rbase = rgn->base;
607		phys_addr_t rend = rbase + rgn->size;
608
609		if (rbase >= end)
610			break;
611		if (rend <= base)
612			continue;
613		/*
614		 * @rgn overlaps.  If it separates the lower part of new
615		 * area, insert that portion.
616		 */
617		if (rbase > base) {
618#ifdef CONFIG_NEED_MULTIPLE_NODES
619			WARN_ON(nid != memblock_get_region_node(rgn));
620#endif
621			WARN_ON(flags != rgn->flags);
622			nr_new++;
623			if (insert)
624				memblock_insert_region(type, idx++, base,
625						       rbase - base, nid,
626						       flags);
627		}
628		/* area below @rend is dealt with, forget about it */
629		base = min(rend, end);
630	}
631
632	/* insert the remaining portion */
633	if (base < end) {
634		nr_new++;
635		if (insert)
636			memblock_insert_region(type, idx, base, end - base,
637					       nid, flags);
638	}
639
640	if (!nr_new)
641		return 0;
642
643	/*
644	 * If this was the first round, resize array and repeat for actual
645	 * insertions; otherwise, merge and return.
646	 */
647	if (!insert) {
648		while (type->cnt + nr_new > type->max)
649			if (memblock_double_array(type, obase, size) < 0)
650				return -ENOMEM;
651		insert = true;
652		goto repeat;
653	} else {
654		memblock_merge_regions(type);
655		return 0;
656	}
657}
658
659/**
660 * memblock_add_node - add new memblock region within a NUMA node
661 * @base: base address of the new region
662 * @size: size of the new region
663 * @nid: nid of the new region
664 *
665 * Add new memblock region [@base, @base + @size) to the "memory"
666 * type. See memblock_add_range() description for mode details
667 *
668 * Return:
669 * 0 on success, -errno on failure.
670 */
671int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
672				       int nid)
673{
674	return memblock_add_range(&memblock.memory, base, size, nid, 0);
675}
676
677/**
678 * memblock_add - add new memblock region
679 * @base: base address of the new region
680 * @size: size of the new region
681 *
682 * Add new memblock region [@base, @base + @size) to the "memory"
683 * type. See memblock_add_range() description for mode details
684 *
685 * Return:
686 * 0 on success, -errno on failure.
687 */
688int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
689{
690	phys_addr_t end = base + size - 1;
691
692	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
693		     &base, &end, (void *)_RET_IP_);
694
695	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
696}
697
698/**
699 * memblock_isolate_range - isolate given range into disjoint memblocks
700 * @type: memblock type to isolate range for
701 * @base: base of range to isolate
702 * @size: size of range to isolate
703 * @start_rgn: out parameter for the start of isolated region
704 * @end_rgn: out parameter for the end of isolated region
705 *
706 * Walk @type and ensure that regions don't cross the boundaries defined by
707 * [@base, @base + @size).  Crossing regions are split at the boundaries,
708 * which may create at most two more regions.  The index of the first
709 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
710 *
711 * Return:
712 * 0 on success, -errno on failure.
713 */
714static int __init_memblock memblock_isolate_range(struct memblock_type *type,
715					phys_addr_t base, phys_addr_t size,
716					int *start_rgn, int *end_rgn)
717{
718	phys_addr_t end = base + memblock_cap_size(base, &size);
719	int idx;
720	struct memblock_region *rgn;
721
722	*start_rgn = *end_rgn = 0;
723
724	if (!size)
725		return 0;
726
727	/* we'll create at most two more regions */
728	while (type->cnt + 2 > type->max)
729		if (memblock_double_array(type, base, size) < 0)
730			return -ENOMEM;
731
732	for_each_memblock_type(idx, type, rgn) {
733		phys_addr_t rbase = rgn->base;
734		phys_addr_t rend = rbase + rgn->size;
735
736		if (rbase >= end)
737			break;
738		if (rend <= base)
739			continue;
740
741		if (rbase < base) {
742			/*
743			 * @rgn intersects from below.  Split and continue
744			 * to process the next region - the new top half.
745			 */
746			rgn->base = base;
747			rgn->size -= base - rbase;
748			type->total_size -= base - rbase;
749			memblock_insert_region(type, idx, rbase, base - rbase,
750					       memblock_get_region_node(rgn),
751					       rgn->flags);
752		} else if (rend > end) {
753			/*
754			 * @rgn intersects from above.  Split and redo the
755			 * current region - the new bottom half.
756			 */
757			rgn->base = end;
758			rgn->size -= end - rbase;
759			type->total_size -= end - rbase;
760			memblock_insert_region(type, idx--, rbase, end - rbase,
761					       memblock_get_region_node(rgn),
762					       rgn->flags);
763		} else {
764			/* @rgn is fully contained, record it */
765			if (!*end_rgn)
766				*start_rgn = idx;
767			*end_rgn = idx + 1;
768		}
769	}
770
771	return 0;
772}
773
774static int __init_memblock memblock_remove_range(struct memblock_type *type,
775					  phys_addr_t base, phys_addr_t size)
776{
777	int start_rgn, end_rgn;
778	int i, ret;
779
780	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
781	if (ret)
782		return ret;
783
784	for (i = end_rgn - 1; i >= start_rgn; i--)
785		memblock_remove_region(type, i);
786	return 0;
787}
788
789int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
790{
791	phys_addr_t end = base + size - 1;
792
793	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
794		     &base, &end, (void *)_RET_IP_);
795
796	return memblock_remove_range(&memblock.memory, base, size);
797}
798
799/**
800 * memblock_free - free boot memory block
801 * @base: phys starting address of the  boot memory block
802 * @size: size of the boot memory block in bytes
803 *
804 * Free boot memory block previously allocated by memblock_alloc_xx() API.
805 * The freeing memory will not be released to the buddy allocator.
806 */
807int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
808{
809	phys_addr_t end = base + size - 1;
810
811	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
812		     &base, &end, (void *)_RET_IP_);
813
814	kmemleak_free_part_phys(base, size);
815	return memblock_remove_range(&memblock.reserved, base, size);
816}
817
818int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
819{
820	phys_addr_t end = base + size - 1;
821
822	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
823		     &base, &end, (void *)_RET_IP_);
824
825	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
826}
827
828#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
829int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
830{
831	phys_addr_t end = base + size - 1;
832
833	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
834		     &base, &end, (void *)_RET_IP_);
835
836	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
837}
838#endif
839
840/**
841 * memblock_setclr_flag - set or clear flag for a memory region
842 * @base: base address of the region
843 * @size: size of the region
844 * @set: set or clear the flag
845 * @flag: the flag to udpate
846 *
847 * This function isolates region [@base, @base + @size), and sets/clears flag
848 *
849 * Return: 0 on success, -errno on failure.
850 */
851static int __init_memblock memblock_setclr_flag(phys_addr_t base,
852				phys_addr_t size, int set, int flag)
853{
854	struct memblock_type *type = &memblock.memory;
855	int i, ret, start_rgn, end_rgn;
856
857	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
858	if (ret)
859		return ret;
860
861	for (i = start_rgn; i < end_rgn; i++) {
862		struct memblock_region *r = &type->regions[i];
863
864		if (set)
865			r->flags |= flag;
866		else
867			r->flags &= ~flag;
868	}
869
870	memblock_merge_regions(type);
871	return 0;
872}
873
874/**
875 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
876 * @base: the base phys addr of the region
877 * @size: the size of the region
878 *
879 * Return: 0 on success, -errno on failure.
880 */
881int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
882{
883	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
884}
885
886/**
887 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
888 * @base: the base phys addr of the region
889 * @size: the size of the region
890 *
891 * Return: 0 on success, -errno on failure.
892 */
893int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
894{
895	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
896}
897
898/**
899 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
900 * @base: the base phys addr of the region
901 * @size: the size of the region
902 *
903 * Return: 0 on success, -errno on failure.
904 */
905int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
906{
907	system_has_some_mirror = true;
908
909	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
910}
911
912/**
913 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
914 * @base: the base phys addr of the region
915 * @size: the size of the region
916 *
917 * Return: 0 on success, -errno on failure.
918 */
919int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
920{
921	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
922}
923
924/**
925 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
926 * @base: the base phys addr of the region
927 * @size: the size of the region
928 *
929 * Return: 0 on success, -errno on failure.
930 */
931int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
932{
933	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
934}
935
936static bool should_skip_region(struct memblock_type *type,
937			       struct memblock_region *m,
938			       int nid, int flags)
939{
940	int m_nid = memblock_get_region_node(m);
941
942	/* we never skip regions when iterating memblock.reserved or physmem */
943	if (type != memblock_memory)
944		return false;
945
946	/* only memory regions are associated with nodes, check it */
947	if (nid != NUMA_NO_NODE && nid != m_nid)
948		return true;
949
950	/* skip hotpluggable memory regions if needed */
951	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
952	    !(flags & MEMBLOCK_HOTPLUG))
953		return true;
954
955	/* if we want mirror memory skip non-mirror memory regions */
956	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
957		return true;
958
959	/* skip nomap memory unless we were asked for it explicitly */
960	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
961		return true;
962
963	return false;
964}
965
966/**
967 * __next_mem_range - next function for for_each_free_mem_range() etc.
968 * @idx: pointer to u64 loop variable
969 * @nid: node selector, %NUMA_NO_NODE for all nodes
970 * @flags: pick from blocks based on memory attributes
971 * @type_a: pointer to memblock_type from where the range is taken
972 * @type_b: pointer to memblock_type which excludes memory from being taken
973 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975 * @out_nid: ptr to int for nid of the range, can be %NULL
976 *
977 * Find the first area from *@idx which matches @nid, fill the out
978 * parameters, and update *@idx for the next iteration.  The lower 32bit of
979 * *@idx contains index into type_a and the upper 32bit indexes the
980 * areas before each region in type_b.	For example, if type_b regions
981 * look like the following,
982 *
983 *	0:[0-16), 1:[32-48), 2:[128-130)
984 *
985 * The upper 32bit indexes the following regions.
986 *
987 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
988 *
989 * As both region arrays are sorted, the function advances the two indices
990 * in lockstep and returns each intersection.
991 */
992void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
993		      struct memblock_type *type_a,
994		      struct memblock_type *type_b, phys_addr_t *out_start,
995		      phys_addr_t *out_end, int *out_nid)
996{
997	int idx_a = *idx & 0xffffffff;
998	int idx_b = *idx >> 32;
999
1000	if (WARN_ONCE(nid == MAX_NUMNODES,
1001	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1002		nid = NUMA_NO_NODE;
1003
1004	for (; idx_a < type_a->cnt; idx_a++) {
1005		struct memblock_region *m = &type_a->regions[idx_a];
1006
1007		phys_addr_t m_start = m->base;
1008		phys_addr_t m_end = m->base + m->size;
1009		int	    m_nid = memblock_get_region_node(m);
1010
1011		if (should_skip_region(type_a, m, nid, flags))
1012			continue;
1013
1014		if (!type_b) {
1015			if (out_start)
1016				*out_start = m_start;
1017			if (out_end)
1018				*out_end = m_end;
1019			if (out_nid)
1020				*out_nid = m_nid;
1021			idx_a++;
1022			*idx = (u32)idx_a | (u64)idx_b << 32;
1023			return;
1024		}
1025
1026		/* scan areas before each reservation */
1027		for (; idx_b < type_b->cnt + 1; idx_b++) {
1028			struct memblock_region *r;
1029			phys_addr_t r_start;
1030			phys_addr_t r_end;
1031
1032			r = &type_b->regions[idx_b];
1033			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1034			r_end = idx_b < type_b->cnt ?
1035				r->base : PHYS_ADDR_MAX;
1036
1037			/*
1038			 * if idx_b advanced past idx_a,
1039			 * break out to advance idx_a
1040			 */
1041			if (r_start >= m_end)
1042				break;
1043			/* if the two regions intersect, we're done */
1044			if (m_start < r_end) {
1045				if (out_start)
1046					*out_start =
1047						max(m_start, r_start);
1048				if (out_end)
1049					*out_end = min(m_end, r_end);
1050				if (out_nid)
1051					*out_nid = m_nid;
1052				/*
1053				 * The region which ends first is
1054				 * advanced for the next iteration.
1055				 */
1056				if (m_end <= r_end)
1057					idx_a++;
1058				else
1059					idx_b++;
1060				*idx = (u32)idx_a | (u64)idx_b << 32;
1061				return;
1062			}
1063		}
1064	}
1065
1066	/* signal end of iteration */
1067	*idx = ULLONG_MAX;
1068}
1069
1070/**
1071 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1072 *
1073 * @idx: pointer to u64 loop variable
1074 * @nid: node selector, %NUMA_NO_NODE for all nodes
1075 * @flags: pick from blocks based on memory attributes
1076 * @type_a: pointer to memblock_type from where the range is taken
1077 * @type_b: pointer to memblock_type which excludes memory from being taken
1078 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1079 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1080 * @out_nid: ptr to int for nid of the range, can be %NULL
1081 *
1082 * Finds the next range from type_a which is not marked as unsuitable
1083 * in type_b.
1084 *
1085 * Reverse of __next_mem_range().
1086 */
1087void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1088					  enum memblock_flags flags,
1089					  struct memblock_type *type_a,
1090					  struct memblock_type *type_b,
1091					  phys_addr_t *out_start,
1092					  phys_addr_t *out_end, int *out_nid)
1093{
1094	int idx_a = *idx & 0xffffffff;
1095	int idx_b = *idx >> 32;
1096
1097	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1098		nid = NUMA_NO_NODE;
1099
1100	if (*idx == (u64)ULLONG_MAX) {
1101		idx_a = type_a->cnt - 1;
1102		if (type_b != NULL)
1103			idx_b = type_b->cnt;
1104		else
1105			idx_b = 0;
1106	}
1107
1108	for (; idx_a >= 0; idx_a--) {
1109		struct memblock_region *m = &type_a->regions[idx_a];
1110
1111		phys_addr_t m_start = m->base;
1112		phys_addr_t m_end = m->base + m->size;
1113		int m_nid = memblock_get_region_node(m);
1114
1115		if (should_skip_region(type_a, m, nid, flags))
1116			continue;
1117
1118		if (!type_b) {
1119			if (out_start)
1120				*out_start = m_start;
1121			if (out_end)
1122				*out_end = m_end;
1123			if (out_nid)
1124				*out_nid = m_nid;
1125			idx_a--;
1126			*idx = (u32)idx_a | (u64)idx_b << 32;
1127			return;
1128		}
1129
1130		/* scan areas before each reservation */
1131		for (; idx_b >= 0; idx_b--) {
1132			struct memblock_region *r;
1133			phys_addr_t r_start;
1134			phys_addr_t r_end;
1135
1136			r = &type_b->regions[idx_b];
1137			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1138			r_end = idx_b < type_b->cnt ?
1139				r->base : PHYS_ADDR_MAX;
1140			/*
1141			 * if idx_b advanced past idx_a,
1142			 * break out to advance idx_a
1143			 */
1144
1145			if (r_end <= m_start)
1146				break;
1147			/* if the two regions intersect, we're done */
1148			if (m_end > r_start) {
1149				if (out_start)
1150					*out_start = max(m_start, r_start);
1151				if (out_end)
1152					*out_end = min(m_end, r_end);
1153				if (out_nid)
1154					*out_nid = m_nid;
1155				if (m_start >= r_start)
1156					idx_a--;
1157				else
1158					idx_b--;
1159				*idx = (u32)idx_a | (u64)idx_b << 32;
1160				return;
1161			}
1162		}
1163	}
1164	/* signal end of iteration */
1165	*idx = ULLONG_MAX;
1166}
1167
1168/*
1169 * Common iterator interface used to define for_each_mem_pfn_range().
1170 */
1171void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1172				unsigned long *out_start_pfn,
1173				unsigned long *out_end_pfn, int *out_nid)
1174{
1175	struct memblock_type *type = &memblock.memory;
1176	struct memblock_region *r;
1177	int r_nid;
1178
1179	while (++*idx < type->cnt) {
1180		r = &type->regions[*idx];
1181		r_nid = memblock_get_region_node(r);
1182
1183		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1184			continue;
1185		if (nid == MAX_NUMNODES || nid == r_nid)
1186			break;
1187	}
1188	if (*idx >= type->cnt) {
1189		*idx = -1;
1190		return;
1191	}
1192
1193	if (out_start_pfn)
1194		*out_start_pfn = PFN_UP(r->base);
1195	if (out_end_pfn)
1196		*out_end_pfn = PFN_DOWN(r->base + r->size);
1197	if (out_nid)
1198		*out_nid = r_nid;
1199}
1200
1201/**
1202 * memblock_set_node - set node ID on memblock regions
1203 * @base: base of area to set node ID for
1204 * @size: size of area to set node ID for
1205 * @type: memblock type to set node ID for
1206 * @nid: node ID to set
1207 *
1208 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1209 * Regions which cross the area boundaries are split as necessary.
1210 *
1211 * Return:
1212 * 0 on success, -errno on failure.
1213 */
1214int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1215				      struct memblock_type *type, int nid)
1216{
1217#ifdef CONFIG_NEED_MULTIPLE_NODES
1218	int start_rgn, end_rgn;
1219	int i, ret;
1220
1221	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1222	if (ret)
1223		return ret;
1224
1225	for (i = start_rgn; i < end_rgn; i++)
1226		memblock_set_region_node(&type->regions[i], nid);
1227
1228	memblock_merge_regions(type);
1229#endif
1230	return 0;
1231}
1232
1233#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1234/**
1235 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1236 *
1237 * @idx: pointer to u64 loop variable
1238 * @zone: zone in which all of the memory blocks reside
1239 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1240 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1241 *
1242 * This function is meant to be a zone/pfn specific wrapper for the
1243 * for_each_mem_range type iterators. Specifically they are used in the
1244 * deferred memory init routines and as such we were duplicating much of
1245 * this logic throughout the code. So instead of having it in multiple
1246 * locations it seemed like it would make more sense to centralize this to
1247 * one new iterator that does everything they need.
1248 */
1249void __init_memblock
1250__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1251			     unsigned long *out_spfn, unsigned long *out_epfn)
1252{
1253	int zone_nid = zone_to_nid(zone);
1254	phys_addr_t spa, epa;
1255	int nid;
1256
1257	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1258			 &memblock.memory, &memblock.reserved,
1259			 &spa, &epa, &nid);
1260
1261	while (*idx != U64_MAX) {
1262		unsigned long epfn = PFN_DOWN(epa);
1263		unsigned long spfn = PFN_UP(spa);
1264
1265		/*
1266		 * Verify the end is at least past the start of the zone and
1267		 * that we have at least one PFN to initialize.
1268		 */
1269		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1270			/* if we went too far just stop searching */
1271			if (zone_end_pfn(zone) <= spfn) {
1272				*idx = U64_MAX;
1273				break;
1274			}
1275
1276			if (out_spfn)
1277				*out_spfn = max(zone->zone_start_pfn, spfn);
1278			if (out_epfn)
1279				*out_epfn = min(zone_end_pfn(zone), epfn);
1280
1281			return;
1282		}
1283
1284		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1285				 &memblock.memory, &memblock.reserved,
1286				 &spa, &epa, &nid);
1287	}
1288
1289	/* signal end of iteration */
1290	if (out_spfn)
1291		*out_spfn = ULONG_MAX;
1292	if (out_epfn)
1293		*out_epfn = 0;
1294}
1295
1296#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1297
1298/**
1299 * memblock_alloc_range_nid - allocate boot memory block
1300 * @size: size of memory block to be allocated in bytes
1301 * @align: alignment of the region and block's size
1302 * @start: the lower bound of the memory region to allocate (phys address)
1303 * @end: the upper bound of the memory region to allocate (phys address)
1304 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1305 * @exact_nid: control the allocation fall back to other nodes
1306 *
1307 * The allocation is performed from memory region limited by
1308 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1309 *
1310 * If the specified node can not hold the requested memory and @exact_nid
1311 * is false, the allocation falls back to any node in the system.
1312 *
1313 * For systems with memory mirroring, the allocation is attempted first
1314 * from the regions with mirroring enabled and then retried from any
1315 * memory region.
1316 *
1317 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1318 * allocated boot memory block, so that it is never reported as leaks.
1319 *
1320 * Return:
1321 * Physical address of allocated memory block on success, %0 on failure.
1322 */
1323phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1324					phys_addr_t align, phys_addr_t start,
1325					phys_addr_t end, int nid,
1326					bool exact_nid)
1327{
1328	enum memblock_flags flags = choose_memblock_flags();
1329	phys_addr_t found;
1330
1331	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1332		nid = NUMA_NO_NODE;
1333
1334	if (!align) {
1335		/* Can't use WARNs this early in boot on powerpc */
1336		dump_stack();
1337		align = SMP_CACHE_BYTES;
1338	}
1339
1340again:
1341	found = memblock_find_in_range_node(size, align, start, end, nid,
1342					    flags);
1343	if (found && !memblock_reserve(found, size))
1344		goto done;
1345
1346	if (nid != NUMA_NO_NODE && !exact_nid) {
1347		found = memblock_find_in_range_node(size, align, start,
1348						    end, NUMA_NO_NODE,
1349						    flags);
1350		if (found && !memblock_reserve(found, size))
1351			goto done;
1352	}
1353
1354	if (flags & MEMBLOCK_MIRROR) {
1355		flags &= ~MEMBLOCK_MIRROR;
1356		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1357			&size);
1358		goto again;
1359	}
1360
1361	return 0;
1362
1363done:
1364	/* Skip kmemleak for kasan_init() due to high volume. */
1365	if (end != MEMBLOCK_ALLOC_KASAN)
1366		/*
1367		 * The min_count is set to 0 so that memblock allocated
1368		 * blocks are never reported as leaks. This is because many
1369		 * of these blocks are only referred via the physical
1370		 * address which is not looked up by kmemleak.
1371		 */
1372		kmemleak_alloc_phys(found, size, 0, 0);
1373
1374	return found;
1375}
1376
1377/**
1378 * memblock_phys_alloc_range - allocate a memory block inside specified range
1379 * @size: size of memory block to be allocated in bytes
1380 * @align: alignment of the region and block's size
1381 * @start: the lower bound of the memory region to allocate (physical address)
1382 * @end: the upper bound of the memory region to allocate (physical address)
1383 *
1384 * Allocate @size bytes in the between @start and @end.
1385 *
1386 * Return: physical address of the allocated memory block on success,
1387 * %0 on failure.
1388 */
1389phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1390					     phys_addr_t align,
1391					     phys_addr_t start,
1392					     phys_addr_t end)
1393{
1394	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1395					false);
1396}
1397
1398/**
1399 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1400 * @size: size of memory block to be allocated in bytes
1401 * @align: alignment of the region and block's size
1402 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1403 *
1404 * Allocates memory block from the specified NUMA node. If the node
1405 * has no available memory, attempts to allocated from any node in the
1406 * system.
1407 *
1408 * Return: physical address of the allocated memory block on success,
1409 * %0 on failure.
1410 */
1411phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1412{
1413	return memblock_alloc_range_nid(size, align, 0,
1414					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1415}
1416
1417/**
1418 * memblock_alloc_internal - allocate boot memory block
1419 * @size: size of memory block to be allocated in bytes
1420 * @align: alignment of the region and block's size
1421 * @min_addr: the lower bound of the memory region to allocate (phys address)
1422 * @max_addr: the upper bound of the memory region to allocate (phys address)
1423 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1424 * @exact_nid: control the allocation fall back to other nodes
1425 *
1426 * Allocates memory block using memblock_alloc_range_nid() and
1427 * converts the returned physical address to virtual.
1428 *
1429 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1430 * will fall back to memory below @min_addr. Other constraints, such
1431 * as node and mirrored memory will be handled again in
1432 * memblock_alloc_range_nid().
1433 *
1434 * Return:
1435 * Virtual address of allocated memory block on success, NULL on failure.
1436 */
1437static void * __init memblock_alloc_internal(
1438				phys_addr_t size, phys_addr_t align,
1439				phys_addr_t min_addr, phys_addr_t max_addr,
1440				int nid, bool exact_nid)
1441{
1442	phys_addr_t alloc;
1443
1444	/*
1445	 * Detect any accidental use of these APIs after slab is ready, as at
1446	 * this moment memblock may be deinitialized already and its
1447	 * internal data may be destroyed (after execution of memblock_free_all)
1448	 */
1449	if (WARN_ON_ONCE(slab_is_available()))
1450		return kzalloc_node(size, GFP_NOWAIT, nid);
1451
1452	if (max_addr > memblock.current_limit)
1453		max_addr = memblock.current_limit;
1454
1455	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1456					exact_nid);
1457
1458	/* retry allocation without lower limit */
1459	if (!alloc && min_addr)
1460		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1461						exact_nid);
1462
1463	if (!alloc)
1464		return NULL;
1465
1466	return phys_to_virt(alloc);
1467}
1468
1469/**
1470 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1471 * without zeroing memory
1472 * @size: size of memory block to be allocated in bytes
1473 * @align: alignment of the region and block's size
1474 * @min_addr: the lower bound of the memory region from where the allocation
1475 *	  is preferred (phys address)
1476 * @max_addr: the upper bound of the memory region from where the allocation
1477 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1478 *	      allocate only from memory limited by memblock.current_limit value
1479 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1480 *
1481 * Public function, provides additional debug information (including caller
1482 * info), if enabled. Does not zero allocated memory.
1483 *
1484 * Return:
1485 * Virtual address of allocated memory block on success, NULL on failure.
1486 */
1487void * __init memblock_alloc_exact_nid_raw(
1488			phys_addr_t size, phys_addr_t align,
1489			phys_addr_t min_addr, phys_addr_t max_addr,
1490			int nid)
1491{
1492	void *ptr;
1493
1494	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1495		     __func__, (u64)size, (u64)align, nid, &min_addr,
1496		     &max_addr, (void *)_RET_IP_);
1497
1498	ptr = memblock_alloc_internal(size, align,
1499					   min_addr, max_addr, nid, true);
1500	if (ptr && size > 0)
1501		page_init_poison(ptr, size);
1502
1503	return ptr;
1504}
1505
1506/**
1507 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1508 * memory and without panicking
1509 * @size: size of memory block to be allocated in bytes
1510 * @align: alignment of the region and block's size
1511 * @min_addr: the lower bound of the memory region from where the allocation
1512 *	  is preferred (phys address)
1513 * @max_addr: the upper bound of the memory region from where the allocation
1514 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515 *	      allocate only from memory limited by memblock.current_limit value
1516 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517 *
1518 * Public function, provides additional debug information (including caller
1519 * info), if enabled. Does not zero allocated memory, does not panic if request
1520 * cannot be satisfied.
1521 *
1522 * Return:
1523 * Virtual address of allocated memory block on success, NULL on failure.
1524 */
1525void * __init memblock_alloc_try_nid_raw(
1526			phys_addr_t size, phys_addr_t align,
1527			phys_addr_t min_addr, phys_addr_t max_addr,
1528			int nid)
1529{
1530	void *ptr;
1531
1532	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1533		     __func__, (u64)size, (u64)align, nid, &min_addr,
1534		     &max_addr, (void *)_RET_IP_);
1535
1536	ptr = memblock_alloc_internal(size, align,
1537					   min_addr, max_addr, nid, false);
1538	if (ptr && size > 0)
1539		page_init_poison(ptr, size);
1540
1541	return ptr;
1542}
1543
1544/**
1545 * memblock_alloc_try_nid - allocate boot memory block
1546 * @size: size of memory block to be allocated in bytes
1547 * @align: alignment of the region and block's size
1548 * @min_addr: the lower bound of the memory region from where the allocation
1549 *	  is preferred (phys address)
1550 * @max_addr: the upper bound of the memory region from where the allocation
1551 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1552 *	      allocate only from memory limited by memblock.current_limit value
1553 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1554 *
1555 * Public function, provides additional debug information (including caller
1556 * info), if enabled. This function zeroes the allocated memory.
1557 *
1558 * Return:
1559 * Virtual address of allocated memory block on success, NULL on failure.
1560 */
1561void * __init memblock_alloc_try_nid(
1562			phys_addr_t size, phys_addr_t align,
1563			phys_addr_t min_addr, phys_addr_t max_addr,
1564			int nid)
1565{
1566	void *ptr;
1567
1568	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1569		     __func__, (u64)size, (u64)align, nid, &min_addr,
1570		     &max_addr, (void *)_RET_IP_);
1571	ptr = memblock_alloc_internal(size, align,
1572					   min_addr, max_addr, nid, false);
1573	if (ptr)
1574		memset(ptr, 0, size);
1575
1576	return ptr;
1577}
1578
1579/**
1580 * __memblock_free_late - free pages directly to buddy allocator
1581 * @base: phys starting address of the  boot memory block
1582 * @size: size of the boot memory block in bytes
1583 *
1584 * This is only useful when the memblock allocator has already been torn
1585 * down, but we are still initializing the system.  Pages are released directly
1586 * to the buddy allocator.
1587 */
1588void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1589{
1590	phys_addr_t cursor, end;
1591
1592	end = base + size - 1;
1593	memblock_dbg("%s: [%pa-%pa] %pS\n",
1594		     __func__, &base, &end, (void *)_RET_IP_);
1595	kmemleak_free_part_phys(base, size);
1596	cursor = PFN_UP(base);
1597	end = PFN_DOWN(base + size);
1598
1599	for (; cursor < end; cursor++) {
1600		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1601		totalram_pages_inc();
1602	}
1603}
1604
1605/*
1606 * Remaining API functions
1607 */
1608
1609phys_addr_t __init_memblock memblock_phys_mem_size(void)
1610{
1611	return memblock.memory.total_size;
1612}
1613
1614phys_addr_t __init_memblock memblock_reserved_size(void)
1615{
1616	return memblock.reserved.total_size;
1617}
1618
1619/* lowest address */
1620phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1621{
1622	return memblock.memory.regions[0].base;
1623}
1624
1625phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1626{
1627	int idx = memblock.memory.cnt - 1;
1628
1629	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1630}
1631
1632static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1633{
1634	phys_addr_t max_addr = PHYS_ADDR_MAX;
1635	struct memblock_region *r;
1636
1637	/*
1638	 * translate the memory @limit size into the max address within one of
1639	 * the memory memblock regions, if the @limit exceeds the total size
1640	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1641	 */
1642	for_each_mem_region(r) {
1643		if (limit <= r->size) {
1644			max_addr = r->base + limit;
1645			break;
1646		}
1647		limit -= r->size;
1648	}
1649
1650	return max_addr;
1651}
1652
1653void __init memblock_enforce_memory_limit(phys_addr_t limit)
1654{
1655	phys_addr_t max_addr;
1656
1657	if (!limit)
1658		return;
1659
1660	max_addr = __find_max_addr(limit);
1661
1662	/* @limit exceeds the total size of the memory, do nothing */
1663	if (max_addr == PHYS_ADDR_MAX)
1664		return;
1665
1666	/* truncate both memory and reserved regions */
1667	memblock_remove_range(&memblock.memory, max_addr,
1668			      PHYS_ADDR_MAX);
1669	memblock_remove_range(&memblock.reserved, max_addr,
1670			      PHYS_ADDR_MAX);
1671}
1672
1673void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1674{
1675	int start_rgn, end_rgn;
1676	int i, ret;
1677
1678	if (!size)
1679		return;
1680
1681	ret = memblock_isolate_range(&memblock.memory, base, size,
1682						&start_rgn, &end_rgn);
1683	if (ret)
1684		return;
1685
1686	/* remove all the MAP regions */
1687	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1688		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1689			memblock_remove_region(&memblock.memory, i);
1690
1691	for (i = start_rgn - 1; i >= 0; i--)
1692		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1693			memblock_remove_region(&memblock.memory, i);
1694
1695	/* truncate the reserved regions */
1696	memblock_remove_range(&memblock.reserved, 0, base);
1697	memblock_remove_range(&memblock.reserved,
1698			base + size, PHYS_ADDR_MAX);
1699}
1700
1701void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1702{
1703	phys_addr_t max_addr;
1704
1705	if (!limit)
1706		return;
1707
1708	max_addr = __find_max_addr(limit);
1709
1710	/* @limit exceeds the total size of the memory, do nothing */
1711	if (max_addr == PHYS_ADDR_MAX)
1712		return;
1713
1714	memblock_cap_memory_range(0, max_addr);
1715}
1716
1717static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1718{
1719	unsigned int left = 0, right = type->cnt;
1720
1721	do {
1722		unsigned int mid = (right + left) / 2;
1723
1724		if (addr < type->regions[mid].base)
1725			right = mid;
1726		else if (addr >= (type->regions[mid].base +
1727				  type->regions[mid].size))
1728			left = mid + 1;
1729		else
1730			return mid;
1731	} while (left < right);
1732	return -1;
1733}
1734
1735bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1736{
1737	return memblock_search(&memblock.reserved, addr) != -1;
1738}
1739
1740bool __init_memblock memblock_is_memory(phys_addr_t addr)
1741{
1742	return memblock_search(&memblock.memory, addr) != -1;
1743}
1744
1745bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1746{
1747	int i = memblock_search(&memblock.memory, addr);
1748
1749	if (i == -1)
1750		return false;
1751	return !memblock_is_nomap(&memblock.memory.regions[i]);
1752}
1753
1754int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1755			 unsigned long *start_pfn, unsigned long *end_pfn)
1756{
1757	struct memblock_type *type = &memblock.memory;
1758	int mid = memblock_search(type, PFN_PHYS(pfn));
1759
1760	if (mid == -1)
1761		return -1;
1762
1763	*start_pfn = PFN_DOWN(type->regions[mid].base);
1764	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1765
1766	return memblock_get_region_node(&type->regions[mid]);
1767}
1768
1769/**
1770 * memblock_is_region_memory - check if a region is a subset of memory
1771 * @base: base of region to check
1772 * @size: size of region to check
1773 *
1774 * Check if the region [@base, @base + @size) is a subset of a memory block.
1775 *
1776 * Return:
1777 * 0 if false, non-zero if true
1778 */
1779bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1780{
1781	int idx = memblock_search(&memblock.memory, base);
1782	phys_addr_t end = base + memblock_cap_size(base, &size);
1783
1784	if (idx == -1)
1785		return false;
1786	return (memblock.memory.regions[idx].base +
1787		 memblock.memory.regions[idx].size) >= end;
1788}
1789
1790/**
1791 * memblock_is_region_reserved - check if a region intersects reserved memory
1792 * @base: base of region to check
1793 * @size: size of region to check
1794 *
1795 * Check if the region [@base, @base + @size) intersects a reserved
1796 * memory block.
1797 *
1798 * Return:
1799 * True if they intersect, false if not.
1800 */
1801bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1802{
1803	return memblock_overlaps_region(&memblock.reserved, base, size);
1804}
1805
1806void __init_memblock memblock_trim_memory(phys_addr_t align)
1807{
1808	phys_addr_t start, end, orig_start, orig_end;
1809	struct memblock_region *r;
1810
1811	for_each_mem_region(r) {
1812		orig_start = r->base;
1813		orig_end = r->base + r->size;
1814		start = round_up(orig_start, align);
1815		end = round_down(orig_end, align);
1816
1817		if (start == orig_start && end == orig_end)
1818			continue;
1819
1820		if (start < end) {
1821			r->base = start;
1822			r->size = end - start;
1823		} else {
1824			memblock_remove_region(&memblock.memory,
1825					       r - memblock.memory.regions);
1826			r--;
1827		}
1828	}
1829}
1830
1831void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1832{
1833	memblock.current_limit = limit;
1834}
1835
1836phys_addr_t __init_memblock memblock_get_current_limit(void)
1837{
1838	return memblock.current_limit;
1839}
1840
1841static void __init_memblock memblock_dump(struct memblock_type *type)
1842{
1843	phys_addr_t base, end, size;
1844	enum memblock_flags flags;
1845	int idx;
1846	struct memblock_region *rgn;
1847
1848	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1849
1850	for_each_memblock_type(idx, type, rgn) {
1851		char nid_buf[32] = "";
1852
1853		base = rgn->base;
1854		size = rgn->size;
1855		end = base + size - 1;
1856		flags = rgn->flags;
1857#ifdef CONFIG_NEED_MULTIPLE_NODES
1858		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1859			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1860				 memblock_get_region_node(rgn));
1861#endif
1862		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1863			type->name, idx, &base, &end, &size, nid_buf, flags);
1864	}
1865}
1866
1867static void __init_memblock __memblock_dump_all(void)
1868{
1869	pr_info("MEMBLOCK configuration:\n");
1870	pr_info(" memory size = %pa reserved size = %pa\n",
1871		&memblock.memory.total_size,
1872		&memblock.reserved.total_size);
1873
1874	memblock_dump(&memblock.memory);
1875	memblock_dump(&memblock.reserved);
1876#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1877	memblock_dump(&physmem);
1878#endif
1879}
1880
1881void __init_memblock memblock_dump_all(void)
1882{
1883	if (memblock_debug)
1884		__memblock_dump_all();
1885}
1886
1887void __init memblock_allow_resize(void)
1888{
1889	memblock_can_resize = 1;
1890}
1891
1892static int __init early_memblock(char *p)
1893{
1894	if (p && strstr(p, "debug"))
1895		memblock_debug = 1;
1896	return 0;
1897}
1898early_param("memblock", early_memblock);
1899
1900static void __init __free_pages_memory(unsigned long start, unsigned long end)
1901{
1902	int order;
1903
1904	while (start < end) {
1905		order = min(MAX_ORDER - 1UL, __ffs(start));
1906
1907		while (start + (1UL << order) > end)
1908			order--;
1909
1910		memblock_free_pages(pfn_to_page(start), start, order);
1911
1912		start += (1UL << order);
1913	}
1914}
1915
1916static unsigned long __init __free_memory_core(phys_addr_t start,
1917				 phys_addr_t end)
1918{
1919	unsigned long start_pfn = PFN_UP(start);
1920	unsigned long end_pfn = min_t(unsigned long,
1921				      PFN_DOWN(end), max_low_pfn);
1922
1923	if (start_pfn >= end_pfn)
1924		return 0;
1925
1926	__free_pages_memory(start_pfn, end_pfn);
1927
1928	return end_pfn - start_pfn;
1929}
1930
1931static unsigned long __init free_low_memory_core_early(void)
1932{
1933	unsigned long count = 0;
1934	phys_addr_t start, end;
1935	u64 i;
1936
1937	memblock_clear_hotplug(0, -1);
1938
1939	for_each_reserved_mem_range(i, &start, &end)
1940		reserve_bootmem_region(start, end);
1941
1942	/*
1943	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1944	 *  because in some case like Node0 doesn't have RAM installed
1945	 *  low ram will be on Node1
1946	 */
1947	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1948				NULL)
1949		count += __free_memory_core(start, end);
1950
1951	return count;
1952}
1953
1954static int reset_managed_pages_done __initdata;
1955
1956void reset_node_managed_pages(pg_data_t *pgdat)
1957{
1958	struct zone *z;
1959
1960	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1961		atomic_long_set(&z->managed_pages, 0);
1962}
1963
1964void __init reset_all_zones_managed_pages(void)
1965{
1966	struct pglist_data *pgdat;
1967
1968	if (reset_managed_pages_done)
1969		return;
1970
1971	for_each_online_pgdat(pgdat)
1972		reset_node_managed_pages(pgdat);
1973
1974	reset_managed_pages_done = 1;
1975}
1976
1977/**
1978 * memblock_free_all - release free pages to the buddy allocator
1979 *
1980 * Return: the number of pages actually released.
1981 */
1982unsigned long __init memblock_free_all(void)
1983{
1984	unsigned long pages;
1985
1986	reset_all_zones_managed_pages();
1987
1988	pages = free_low_memory_core_early();
1989	totalram_pages_add(pages);
1990
1991	return pages;
1992}
1993
1994#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1995
1996static int memblock_debug_show(struct seq_file *m, void *private)
1997{
1998	struct memblock_type *type = m->private;
1999	struct memblock_region *reg;
2000	int i;
2001	phys_addr_t end;
2002
2003	for (i = 0; i < type->cnt; i++) {
2004		reg = &type->regions[i];
2005		end = reg->base + reg->size - 1;
2006
2007		seq_printf(m, "%4d: ", i);
2008		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2009	}
2010	return 0;
2011}
2012DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2013
2014static int __init memblock_init_debugfs(void)
2015{
2016	struct dentry *root = debugfs_create_dir("memblock", NULL);
2017
2018	debugfs_create_file("memory", 0444, root,
2019			    &memblock.memory, &memblock_debug_fops);
2020	debugfs_create_file("reserved", 0444, root,
2021			    &memblock.reserved, &memblock_debug_fops);
2022#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2023	debugfs_create_file("physmem", 0444, root, &physmem,
2024			    &memblock_debug_fops);
2025#endif
2026
2027	return 0;
2028}
2029__initcall(memblock_init_debugfs);
2030
2031#endif /* CONFIG_DEBUG_FS */
2032