18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * mm/kmemleak.c
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2008 ARM Limited
68c2ecf20Sopenharmony_ci * Written by Catalin Marinas <catalin.marinas@arm.com>
78c2ecf20Sopenharmony_ci *
88c2ecf20Sopenharmony_ci * For more information on the algorithm and kmemleak usage, please see
98c2ecf20Sopenharmony_ci * Documentation/dev-tools/kmemleak.rst.
108c2ecf20Sopenharmony_ci *
118c2ecf20Sopenharmony_ci * Notes on locking
128c2ecf20Sopenharmony_ci * ----------------
138c2ecf20Sopenharmony_ci *
148c2ecf20Sopenharmony_ci * The following locks and mutexes are used by kmemleak:
158c2ecf20Sopenharmony_ci *
168c2ecf20Sopenharmony_ci * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
178c2ecf20Sopenharmony_ci *   accesses to the object_tree_root. The object_list is the main list
188c2ecf20Sopenharmony_ci *   holding the metadata (struct kmemleak_object) for the allocated memory
198c2ecf20Sopenharmony_ci *   blocks. The object_tree_root is a red black tree used to look-up
208c2ecf20Sopenharmony_ci *   metadata based on a pointer to the corresponding memory block.  The
218c2ecf20Sopenharmony_ci *   kmemleak_object structures are added to the object_list and
228c2ecf20Sopenharmony_ci *   object_tree_root in the create_object() function called from the
238c2ecf20Sopenharmony_ci *   kmemleak_alloc() callback and removed in delete_object() called from the
248c2ecf20Sopenharmony_ci *   kmemleak_free() callback
258c2ecf20Sopenharmony_ci * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
268c2ecf20Sopenharmony_ci *   Accesses to the metadata (e.g. count) are protected by this lock. Note
278c2ecf20Sopenharmony_ci *   that some members of this structure may be protected by other means
288c2ecf20Sopenharmony_ci *   (atomic or kmemleak_lock). This lock is also held when scanning the
298c2ecf20Sopenharmony_ci *   corresponding memory block to avoid the kernel freeing it via the
308c2ecf20Sopenharmony_ci *   kmemleak_free() callback. This is less heavyweight than holding a global
318c2ecf20Sopenharmony_ci *   lock like kmemleak_lock during scanning.
328c2ecf20Sopenharmony_ci * - scan_mutex (mutex): ensures that only one thread may scan the memory for
338c2ecf20Sopenharmony_ci *   unreferenced objects at a time. The gray_list contains the objects which
348c2ecf20Sopenharmony_ci *   are already referenced or marked as false positives and need to be
358c2ecf20Sopenharmony_ci *   scanned. This list is only modified during a scanning episode when the
368c2ecf20Sopenharmony_ci *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
378c2ecf20Sopenharmony_ci *   Note that the kmemleak_object.use_count is incremented when an object is
388c2ecf20Sopenharmony_ci *   added to the gray_list and therefore cannot be freed. This mutex also
398c2ecf20Sopenharmony_ci *   prevents multiple users of the "kmemleak" debugfs file together with
408c2ecf20Sopenharmony_ci *   modifications to the memory scanning parameters including the scan_thread
418c2ecf20Sopenharmony_ci *   pointer
428c2ecf20Sopenharmony_ci *
438c2ecf20Sopenharmony_ci * Locks and mutexes are acquired/nested in the following order:
448c2ecf20Sopenharmony_ci *
458c2ecf20Sopenharmony_ci *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
468c2ecf20Sopenharmony_ci *
478c2ecf20Sopenharmony_ci * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
488c2ecf20Sopenharmony_ci * regions.
498c2ecf20Sopenharmony_ci *
508c2ecf20Sopenharmony_ci * The kmemleak_object structures have a use_count incremented or decremented
518c2ecf20Sopenharmony_ci * using the get_object()/put_object() functions. When the use_count becomes
528c2ecf20Sopenharmony_ci * 0, this count can no longer be incremented and put_object() schedules the
538c2ecf20Sopenharmony_ci * kmemleak_object freeing via an RCU callback. All calls to the get_object()
548c2ecf20Sopenharmony_ci * function must be protected by rcu_read_lock() to avoid accessing a freed
558c2ecf20Sopenharmony_ci * structure.
568c2ecf20Sopenharmony_ci */
578c2ecf20Sopenharmony_ci
588c2ecf20Sopenharmony_ci#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
598c2ecf20Sopenharmony_ci
608c2ecf20Sopenharmony_ci#include <linux/init.h>
618c2ecf20Sopenharmony_ci#include <linux/kernel.h>
628c2ecf20Sopenharmony_ci#include <linux/list.h>
638c2ecf20Sopenharmony_ci#include <linux/sched/signal.h>
648c2ecf20Sopenharmony_ci#include <linux/sched/task.h>
658c2ecf20Sopenharmony_ci#include <linux/sched/task_stack.h>
668c2ecf20Sopenharmony_ci#include <linux/jiffies.h>
678c2ecf20Sopenharmony_ci#include <linux/delay.h>
688c2ecf20Sopenharmony_ci#include <linux/export.h>
698c2ecf20Sopenharmony_ci#include <linux/kthread.h>
708c2ecf20Sopenharmony_ci#include <linux/rbtree.h>
718c2ecf20Sopenharmony_ci#include <linux/fs.h>
728c2ecf20Sopenharmony_ci#include <linux/debugfs.h>
738c2ecf20Sopenharmony_ci#include <linux/seq_file.h>
748c2ecf20Sopenharmony_ci#include <linux/cpumask.h>
758c2ecf20Sopenharmony_ci#include <linux/spinlock.h>
768c2ecf20Sopenharmony_ci#include <linux/module.h>
778c2ecf20Sopenharmony_ci#include <linux/mutex.h>
788c2ecf20Sopenharmony_ci#include <linux/rcupdate.h>
798c2ecf20Sopenharmony_ci#include <linux/stacktrace.h>
808c2ecf20Sopenharmony_ci#include <linux/cache.h>
818c2ecf20Sopenharmony_ci#include <linux/percpu.h>
828c2ecf20Sopenharmony_ci#include <linux/memblock.h>
838c2ecf20Sopenharmony_ci#include <linux/pfn.h>
848c2ecf20Sopenharmony_ci#include <linux/mmzone.h>
858c2ecf20Sopenharmony_ci#include <linux/slab.h>
868c2ecf20Sopenharmony_ci#include <linux/thread_info.h>
878c2ecf20Sopenharmony_ci#include <linux/err.h>
888c2ecf20Sopenharmony_ci#include <linux/uaccess.h>
898c2ecf20Sopenharmony_ci#include <linux/string.h>
908c2ecf20Sopenharmony_ci#include <linux/nodemask.h>
918c2ecf20Sopenharmony_ci#include <linux/mm.h>
928c2ecf20Sopenharmony_ci#include <linux/workqueue.h>
938c2ecf20Sopenharmony_ci#include <linux/crc32.h>
948c2ecf20Sopenharmony_ci
958c2ecf20Sopenharmony_ci#include <asm/sections.h>
968c2ecf20Sopenharmony_ci#include <asm/processor.h>
978c2ecf20Sopenharmony_ci#include <linux/atomic.h>
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_ci#include <linux/kasan.h>
1008c2ecf20Sopenharmony_ci#include <linux/kmemleak.h>
1018c2ecf20Sopenharmony_ci#include <linux/memory_hotplug.h>
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_ci/*
1048c2ecf20Sopenharmony_ci * Kmemleak configuration and common defines.
1058c2ecf20Sopenharmony_ci */
1068c2ecf20Sopenharmony_ci#define MAX_TRACE		16	/* stack trace length */
1078c2ecf20Sopenharmony_ci#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
1088c2ecf20Sopenharmony_ci#define SECS_FIRST_SCAN		60	/* delay before the first scan */
1098c2ecf20Sopenharmony_ci#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
1108c2ecf20Sopenharmony_ci#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci#define BYTES_PER_POINTER	sizeof(void *)
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_ci/* GFP bitmask for kmemleak internal allocations */
1158c2ecf20Sopenharmony_ci#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
1168c2ecf20Sopenharmony_ci				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
1178c2ecf20Sopenharmony_ci				 __GFP_NOWARN)
1188c2ecf20Sopenharmony_ci
1198c2ecf20Sopenharmony_ci/* scanning area inside a memory block */
1208c2ecf20Sopenharmony_cistruct kmemleak_scan_area {
1218c2ecf20Sopenharmony_ci	struct hlist_node node;
1228c2ecf20Sopenharmony_ci	unsigned long start;
1238c2ecf20Sopenharmony_ci	size_t size;
1248c2ecf20Sopenharmony_ci};
1258c2ecf20Sopenharmony_ci
1268c2ecf20Sopenharmony_ci#define KMEMLEAK_GREY	0
1278c2ecf20Sopenharmony_ci#define KMEMLEAK_BLACK	-1
1288c2ecf20Sopenharmony_ci
1298c2ecf20Sopenharmony_ci/*
1308c2ecf20Sopenharmony_ci * Structure holding the metadata for each allocated memory block.
1318c2ecf20Sopenharmony_ci * Modifications to such objects should be made while holding the
1328c2ecf20Sopenharmony_ci * object->lock. Insertions or deletions from object_list, gray_list or
1338c2ecf20Sopenharmony_ci * rb_node are already protected by the corresponding locks or mutex (see
1348c2ecf20Sopenharmony_ci * the notes on locking above). These objects are reference-counted
1358c2ecf20Sopenharmony_ci * (use_count) and freed using the RCU mechanism.
1368c2ecf20Sopenharmony_ci */
1378c2ecf20Sopenharmony_cistruct kmemleak_object {
1388c2ecf20Sopenharmony_ci	raw_spinlock_t lock;
1398c2ecf20Sopenharmony_ci	unsigned int flags;		/* object status flags */
1408c2ecf20Sopenharmony_ci	struct list_head object_list;
1418c2ecf20Sopenharmony_ci	struct list_head gray_list;
1428c2ecf20Sopenharmony_ci	struct rb_node rb_node;
1438c2ecf20Sopenharmony_ci	struct rcu_head rcu;		/* object_list lockless traversal */
1448c2ecf20Sopenharmony_ci	/* object usage count; object freed when use_count == 0 */
1458c2ecf20Sopenharmony_ci	atomic_t use_count;
1468c2ecf20Sopenharmony_ci	unsigned long pointer;
1478c2ecf20Sopenharmony_ci	size_t size;
1488c2ecf20Sopenharmony_ci	/* pass surplus references to this pointer */
1498c2ecf20Sopenharmony_ci	unsigned long excess_ref;
1508c2ecf20Sopenharmony_ci	/* minimum number of a pointers found before it is considered leak */
1518c2ecf20Sopenharmony_ci	int min_count;
1528c2ecf20Sopenharmony_ci	/* the total number of pointers found pointing to this object */
1538c2ecf20Sopenharmony_ci	int count;
1548c2ecf20Sopenharmony_ci	/* checksum for detecting modified objects */
1558c2ecf20Sopenharmony_ci	u32 checksum;
1568c2ecf20Sopenharmony_ci	/* memory ranges to be scanned inside an object (empty for all) */
1578c2ecf20Sopenharmony_ci	struct hlist_head area_list;
1588c2ecf20Sopenharmony_ci	unsigned long trace[MAX_TRACE];
1598c2ecf20Sopenharmony_ci	unsigned int trace_len;
1608c2ecf20Sopenharmony_ci	unsigned long jiffies;		/* creation timestamp */
1618c2ecf20Sopenharmony_ci	pid_t pid;			/* pid of the current task */
1628c2ecf20Sopenharmony_ci	char comm[TASK_COMM_LEN];	/* executable name */
1638c2ecf20Sopenharmony_ci};
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci/* flag representing the memory block allocation status */
1668c2ecf20Sopenharmony_ci#define OBJECT_ALLOCATED	(1 << 0)
1678c2ecf20Sopenharmony_ci/* flag set after the first reporting of an unreference object */
1688c2ecf20Sopenharmony_ci#define OBJECT_REPORTED		(1 << 1)
1698c2ecf20Sopenharmony_ci/* flag set to not scan the object */
1708c2ecf20Sopenharmony_ci#define OBJECT_NO_SCAN		(1 << 2)
1718c2ecf20Sopenharmony_ci/* flag set to fully scan the object when scan_area allocation failed */
1728c2ecf20Sopenharmony_ci#define OBJECT_FULL_SCAN	(1 << 3)
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci#define HEX_PREFIX		"    "
1758c2ecf20Sopenharmony_ci/* number of bytes to print per line; must be 16 or 32 */
1768c2ecf20Sopenharmony_ci#define HEX_ROW_SIZE		16
1778c2ecf20Sopenharmony_ci/* number of bytes to print at a time (1, 2, 4, 8) */
1788c2ecf20Sopenharmony_ci#define HEX_GROUP_SIZE		1
1798c2ecf20Sopenharmony_ci/* include ASCII after the hex output */
1808c2ecf20Sopenharmony_ci#define HEX_ASCII		1
1818c2ecf20Sopenharmony_ci/* max number of lines to be printed */
1828c2ecf20Sopenharmony_ci#define HEX_MAX_LINES		2
1838c2ecf20Sopenharmony_ci
1848c2ecf20Sopenharmony_ci/* the list of all allocated objects */
1858c2ecf20Sopenharmony_cistatic LIST_HEAD(object_list);
1868c2ecf20Sopenharmony_ci/* the list of gray-colored objects (see color_gray comment below) */
1878c2ecf20Sopenharmony_cistatic LIST_HEAD(gray_list);
1888c2ecf20Sopenharmony_ci/* memory pool allocation */
1898c2ecf20Sopenharmony_cistatic struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
1908c2ecf20Sopenharmony_cistatic int mem_pool_free_count = ARRAY_SIZE(mem_pool);
1918c2ecf20Sopenharmony_cistatic LIST_HEAD(mem_pool_free_list);
1928c2ecf20Sopenharmony_ci/* search tree for object boundaries */
1938c2ecf20Sopenharmony_cistatic struct rb_root object_tree_root = RB_ROOT;
1948c2ecf20Sopenharmony_ci/* protecting the access to object_list and object_tree_root */
1958c2ecf20Sopenharmony_cistatic DEFINE_RAW_SPINLOCK(kmemleak_lock);
1968c2ecf20Sopenharmony_ci
1978c2ecf20Sopenharmony_ci/* allocation caches for kmemleak internal data */
1988c2ecf20Sopenharmony_cistatic struct kmem_cache *object_cache;
1998c2ecf20Sopenharmony_cistatic struct kmem_cache *scan_area_cache;
2008c2ecf20Sopenharmony_ci
2018c2ecf20Sopenharmony_ci/* set if tracing memory operations is enabled */
2028c2ecf20Sopenharmony_cistatic int kmemleak_enabled = 1;
2038c2ecf20Sopenharmony_ci/* same as above but only for the kmemleak_free() callback */
2048c2ecf20Sopenharmony_cistatic int kmemleak_free_enabled = 1;
2058c2ecf20Sopenharmony_ci/* set in the late_initcall if there were no errors */
2068c2ecf20Sopenharmony_cistatic int kmemleak_initialized;
2078c2ecf20Sopenharmony_ci/* set if a kmemleak warning was issued */
2088c2ecf20Sopenharmony_cistatic int kmemleak_warning;
2098c2ecf20Sopenharmony_ci/* set if a fatal kmemleak error has occurred */
2108c2ecf20Sopenharmony_cistatic int kmemleak_error;
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_ci/* minimum and maximum address that may be valid pointers */
2138c2ecf20Sopenharmony_cistatic unsigned long min_addr = ULONG_MAX;
2148c2ecf20Sopenharmony_cistatic unsigned long max_addr;
2158c2ecf20Sopenharmony_ci
2168c2ecf20Sopenharmony_cistatic struct task_struct *scan_thread;
2178c2ecf20Sopenharmony_ci/* used to avoid reporting of recently allocated objects */
2188c2ecf20Sopenharmony_cistatic unsigned long jiffies_min_age;
2198c2ecf20Sopenharmony_cistatic unsigned long jiffies_last_scan;
2208c2ecf20Sopenharmony_ci/* delay between automatic memory scannings */
2218c2ecf20Sopenharmony_cistatic signed long jiffies_scan_wait;
2228c2ecf20Sopenharmony_ci/* enables or disables the task stacks scanning */
2238c2ecf20Sopenharmony_cistatic int kmemleak_stack_scan = 1;
2248c2ecf20Sopenharmony_ci/* protects the memory scanning, parameters and debug/kmemleak file access */
2258c2ecf20Sopenharmony_cistatic DEFINE_MUTEX(scan_mutex);
2268c2ecf20Sopenharmony_ci/* setting kmemleak=on, will set this var, skipping the disable */
2278c2ecf20Sopenharmony_cistatic int kmemleak_skip_disable;
2288c2ecf20Sopenharmony_ci/* If there are leaks that can be reported */
2298c2ecf20Sopenharmony_cistatic bool kmemleak_found_leaks;
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_cistatic bool kmemleak_verbose;
2328c2ecf20Sopenharmony_cimodule_param_named(verbose, kmemleak_verbose, bool, 0600);
2338c2ecf20Sopenharmony_ci
2348c2ecf20Sopenharmony_cistatic void kmemleak_disable(void);
2358c2ecf20Sopenharmony_ci
2368c2ecf20Sopenharmony_ci/*
2378c2ecf20Sopenharmony_ci * Print a warning and dump the stack trace.
2388c2ecf20Sopenharmony_ci */
2398c2ecf20Sopenharmony_ci#define kmemleak_warn(x...)	do {		\
2408c2ecf20Sopenharmony_ci	pr_warn(x);				\
2418c2ecf20Sopenharmony_ci	dump_stack();				\
2428c2ecf20Sopenharmony_ci	kmemleak_warning = 1;			\
2438c2ecf20Sopenharmony_ci} while (0)
2448c2ecf20Sopenharmony_ci
2458c2ecf20Sopenharmony_ci/*
2468c2ecf20Sopenharmony_ci * Macro invoked when a serious kmemleak condition occurred and cannot be
2478c2ecf20Sopenharmony_ci * recovered from. Kmemleak will be disabled and further allocation/freeing
2488c2ecf20Sopenharmony_ci * tracing no longer available.
2498c2ecf20Sopenharmony_ci */
2508c2ecf20Sopenharmony_ci#define kmemleak_stop(x...)	do {	\
2518c2ecf20Sopenharmony_ci	kmemleak_warn(x);		\
2528c2ecf20Sopenharmony_ci	kmemleak_disable();		\
2538c2ecf20Sopenharmony_ci} while (0)
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_ci#define warn_or_seq_printf(seq, fmt, ...)	do {	\
2568c2ecf20Sopenharmony_ci	if (seq)					\
2578c2ecf20Sopenharmony_ci		seq_printf(seq, fmt, ##__VA_ARGS__);	\
2588c2ecf20Sopenharmony_ci	else						\
2598c2ecf20Sopenharmony_ci		pr_warn(fmt, ##__VA_ARGS__);		\
2608c2ecf20Sopenharmony_ci} while (0)
2618c2ecf20Sopenharmony_ci
2628c2ecf20Sopenharmony_cistatic void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
2638c2ecf20Sopenharmony_ci				 int rowsize, int groupsize, const void *buf,
2648c2ecf20Sopenharmony_ci				 size_t len, bool ascii)
2658c2ecf20Sopenharmony_ci{
2668c2ecf20Sopenharmony_ci	if (seq)
2678c2ecf20Sopenharmony_ci		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
2688c2ecf20Sopenharmony_ci			     buf, len, ascii);
2698c2ecf20Sopenharmony_ci	else
2708c2ecf20Sopenharmony_ci		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
2718c2ecf20Sopenharmony_ci			       rowsize, groupsize, buf, len, ascii);
2728c2ecf20Sopenharmony_ci}
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci/*
2758c2ecf20Sopenharmony_ci * Printing of the objects hex dump to the seq file. The number of lines to be
2768c2ecf20Sopenharmony_ci * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
2778c2ecf20Sopenharmony_ci * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
2788c2ecf20Sopenharmony_ci * with the object->lock held.
2798c2ecf20Sopenharmony_ci */
2808c2ecf20Sopenharmony_cistatic void hex_dump_object(struct seq_file *seq,
2818c2ecf20Sopenharmony_ci			    struct kmemleak_object *object)
2828c2ecf20Sopenharmony_ci{
2838c2ecf20Sopenharmony_ci	const u8 *ptr = (const u8 *)object->pointer;
2848c2ecf20Sopenharmony_ci	size_t len;
2858c2ecf20Sopenharmony_ci
2868c2ecf20Sopenharmony_ci	/* limit the number of lines to HEX_MAX_LINES */
2878c2ecf20Sopenharmony_ci	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
2888c2ecf20Sopenharmony_ci
2898c2ecf20Sopenharmony_ci	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
2908c2ecf20Sopenharmony_ci	kasan_disable_current();
2918c2ecf20Sopenharmony_ci	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
2928c2ecf20Sopenharmony_ci			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
2938c2ecf20Sopenharmony_ci	kasan_enable_current();
2948c2ecf20Sopenharmony_ci}
2958c2ecf20Sopenharmony_ci
2968c2ecf20Sopenharmony_ci/*
2978c2ecf20Sopenharmony_ci * Object colors, encoded with count and min_count:
2988c2ecf20Sopenharmony_ci * - white - orphan object, not enough references to it (count < min_count)
2998c2ecf20Sopenharmony_ci * - gray  - not orphan, not marked as false positive (min_count == 0) or
3008c2ecf20Sopenharmony_ci *		sufficient references to it (count >= min_count)
3018c2ecf20Sopenharmony_ci * - black - ignore, it doesn't contain references (e.g. text section)
3028c2ecf20Sopenharmony_ci *		(min_count == -1). No function defined for this color.
3038c2ecf20Sopenharmony_ci * Newly created objects don't have any color assigned (object->count == -1)
3048c2ecf20Sopenharmony_ci * before the next memory scan when they become white.
3058c2ecf20Sopenharmony_ci */
3068c2ecf20Sopenharmony_cistatic bool color_white(const struct kmemleak_object *object)
3078c2ecf20Sopenharmony_ci{
3088c2ecf20Sopenharmony_ci	return object->count != KMEMLEAK_BLACK &&
3098c2ecf20Sopenharmony_ci		object->count < object->min_count;
3108c2ecf20Sopenharmony_ci}
3118c2ecf20Sopenharmony_ci
3128c2ecf20Sopenharmony_cistatic bool color_gray(const struct kmemleak_object *object)
3138c2ecf20Sopenharmony_ci{
3148c2ecf20Sopenharmony_ci	return object->min_count != KMEMLEAK_BLACK &&
3158c2ecf20Sopenharmony_ci		object->count >= object->min_count;
3168c2ecf20Sopenharmony_ci}
3178c2ecf20Sopenharmony_ci
3188c2ecf20Sopenharmony_ci/*
3198c2ecf20Sopenharmony_ci * Objects are considered unreferenced only if their color is white, they have
3208c2ecf20Sopenharmony_ci * not be deleted and have a minimum age to avoid false positives caused by
3218c2ecf20Sopenharmony_ci * pointers temporarily stored in CPU registers.
3228c2ecf20Sopenharmony_ci */
3238c2ecf20Sopenharmony_cistatic bool unreferenced_object(struct kmemleak_object *object)
3248c2ecf20Sopenharmony_ci{
3258c2ecf20Sopenharmony_ci	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
3268c2ecf20Sopenharmony_ci		time_before_eq(object->jiffies + jiffies_min_age,
3278c2ecf20Sopenharmony_ci			       jiffies_last_scan);
3288c2ecf20Sopenharmony_ci}
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_ci/*
3318c2ecf20Sopenharmony_ci * Printing of the unreferenced objects information to the seq file. The
3328c2ecf20Sopenharmony_ci * print_unreferenced function must be called with the object->lock held.
3338c2ecf20Sopenharmony_ci */
3348c2ecf20Sopenharmony_cistatic void print_unreferenced(struct seq_file *seq,
3358c2ecf20Sopenharmony_ci			       struct kmemleak_object *object)
3368c2ecf20Sopenharmony_ci{
3378c2ecf20Sopenharmony_ci	int i;
3388c2ecf20Sopenharmony_ci	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3398c2ecf20Sopenharmony_ci
3408c2ecf20Sopenharmony_ci	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
3418c2ecf20Sopenharmony_ci		   object->pointer, object->size);
3428c2ecf20Sopenharmony_ci	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
3438c2ecf20Sopenharmony_ci		   object->comm, object->pid, object->jiffies,
3448c2ecf20Sopenharmony_ci		   msecs_age / 1000, msecs_age % 1000);
3458c2ecf20Sopenharmony_ci	hex_dump_object(seq, object);
3468c2ecf20Sopenharmony_ci	warn_or_seq_printf(seq, "  backtrace:\n");
3478c2ecf20Sopenharmony_ci
3488c2ecf20Sopenharmony_ci	for (i = 0; i < object->trace_len; i++) {
3498c2ecf20Sopenharmony_ci		void *ptr = (void *)object->trace[i];
3508c2ecf20Sopenharmony_ci		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
3518c2ecf20Sopenharmony_ci	}
3528c2ecf20Sopenharmony_ci}
3538c2ecf20Sopenharmony_ci
3548c2ecf20Sopenharmony_ci/*
3558c2ecf20Sopenharmony_ci * Print the kmemleak_object information. This function is used mainly for
3568c2ecf20Sopenharmony_ci * debugging special cases when kmemleak operations. It must be called with
3578c2ecf20Sopenharmony_ci * the object->lock held.
3588c2ecf20Sopenharmony_ci */
3598c2ecf20Sopenharmony_cistatic void dump_object_info(struct kmemleak_object *object)
3608c2ecf20Sopenharmony_ci{
3618c2ecf20Sopenharmony_ci	pr_notice("Object 0x%08lx (size %zu):\n",
3628c2ecf20Sopenharmony_ci		  object->pointer, object->size);
3638c2ecf20Sopenharmony_ci	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
3648c2ecf20Sopenharmony_ci		  object->comm, object->pid, object->jiffies);
3658c2ecf20Sopenharmony_ci	pr_notice("  min_count = %d\n", object->min_count);
3668c2ecf20Sopenharmony_ci	pr_notice("  count = %d\n", object->count);
3678c2ecf20Sopenharmony_ci	pr_notice("  flags = 0x%x\n", object->flags);
3688c2ecf20Sopenharmony_ci	pr_notice("  checksum = %u\n", object->checksum);
3698c2ecf20Sopenharmony_ci	pr_notice("  backtrace:\n");
3708c2ecf20Sopenharmony_ci	stack_trace_print(object->trace, object->trace_len, 4);
3718c2ecf20Sopenharmony_ci}
3728c2ecf20Sopenharmony_ci
3738c2ecf20Sopenharmony_ci/*
3748c2ecf20Sopenharmony_ci * Look-up a memory block metadata (kmemleak_object) in the object search
3758c2ecf20Sopenharmony_ci * tree based on a pointer value. If alias is 0, only values pointing to the
3768c2ecf20Sopenharmony_ci * beginning of the memory block are allowed. The kmemleak_lock must be held
3778c2ecf20Sopenharmony_ci * when calling this function.
3788c2ecf20Sopenharmony_ci */
3798c2ecf20Sopenharmony_cistatic struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
3808c2ecf20Sopenharmony_ci{
3818c2ecf20Sopenharmony_ci	struct rb_node *rb = object_tree_root.rb_node;
3828c2ecf20Sopenharmony_ci
3838c2ecf20Sopenharmony_ci	while (rb) {
3848c2ecf20Sopenharmony_ci		struct kmemleak_object *object =
3858c2ecf20Sopenharmony_ci			rb_entry(rb, struct kmemleak_object, rb_node);
3868c2ecf20Sopenharmony_ci		if (ptr < object->pointer)
3878c2ecf20Sopenharmony_ci			rb = object->rb_node.rb_left;
3888c2ecf20Sopenharmony_ci		else if (object->pointer + object->size <= ptr)
3898c2ecf20Sopenharmony_ci			rb = object->rb_node.rb_right;
3908c2ecf20Sopenharmony_ci		else if (object->pointer == ptr || alias)
3918c2ecf20Sopenharmony_ci			return object;
3928c2ecf20Sopenharmony_ci		else {
3938c2ecf20Sopenharmony_ci			kmemleak_warn("Found object by alias at 0x%08lx\n",
3948c2ecf20Sopenharmony_ci				      ptr);
3958c2ecf20Sopenharmony_ci			dump_object_info(object);
3968c2ecf20Sopenharmony_ci			break;
3978c2ecf20Sopenharmony_ci		}
3988c2ecf20Sopenharmony_ci	}
3998c2ecf20Sopenharmony_ci	return NULL;
4008c2ecf20Sopenharmony_ci}
4018c2ecf20Sopenharmony_ci
4028c2ecf20Sopenharmony_ci/*
4038c2ecf20Sopenharmony_ci * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
4048c2ecf20Sopenharmony_ci * that once an object's use_count reached 0, the RCU freeing was already
4058c2ecf20Sopenharmony_ci * registered and the object should no longer be used. This function must be
4068c2ecf20Sopenharmony_ci * called under the protection of rcu_read_lock().
4078c2ecf20Sopenharmony_ci */
4088c2ecf20Sopenharmony_cistatic int get_object(struct kmemleak_object *object)
4098c2ecf20Sopenharmony_ci{
4108c2ecf20Sopenharmony_ci	return atomic_inc_not_zero(&object->use_count);
4118c2ecf20Sopenharmony_ci}
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_ci/*
4148c2ecf20Sopenharmony_ci * Memory pool allocation and freeing. kmemleak_lock must not be held.
4158c2ecf20Sopenharmony_ci */
4168c2ecf20Sopenharmony_cistatic struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
4178c2ecf20Sopenharmony_ci{
4188c2ecf20Sopenharmony_ci	unsigned long flags;
4198c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
4208c2ecf20Sopenharmony_ci
4218c2ecf20Sopenharmony_ci	/* try the slab allocator first */
4228c2ecf20Sopenharmony_ci	if (object_cache) {
4238c2ecf20Sopenharmony_ci		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
4248c2ecf20Sopenharmony_ci		if (object)
4258c2ecf20Sopenharmony_ci			return object;
4268c2ecf20Sopenharmony_ci	}
4278c2ecf20Sopenharmony_ci
4288c2ecf20Sopenharmony_ci	/* slab allocation failed, try the memory pool */
4298c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&kmemleak_lock, flags);
4308c2ecf20Sopenharmony_ci	object = list_first_entry_or_null(&mem_pool_free_list,
4318c2ecf20Sopenharmony_ci					  typeof(*object), object_list);
4328c2ecf20Sopenharmony_ci	if (object)
4338c2ecf20Sopenharmony_ci		list_del(&object->object_list);
4348c2ecf20Sopenharmony_ci	else if (mem_pool_free_count)
4358c2ecf20Sopenharmony_ci		object = &mem_pool[--mem_pool_free_count];
4368c2ecf20Sopenharmony_ci	else
4378c2ecf20Sopenharmony_ci		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
4388c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
4398c2ecf20Sopenharmony_ci
4408c2ecf20Sopenharmony_ci	return object;
4418c2ecf20Sopenharmony_ci}
4428c2ecf20Sopenharmony_ci
4438c2ecf20Sopenharmony_ci/*
4448c2ecf20Sopenharmony_ci * Return the object to either the slab allocator or the memory pool.
4458c2ecf20Sopenharmony_ci */
4468c2ecf20Sopenharmony_cistatic void mem_pool_free(struct kmemleak_object *object)
4478c2ecf20Sopenharmony_ci{
4488c2ecf20Sopenharmony_ci	unsigned long flags;
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
4518c2ecf20Sopenharmony_ci		kmem_cache_free(object_cache, object);
4528c2ecf20Sopenharmony_ci		return;
4538c2ecf20Sopenharmony_ci	}
4548c2ecf20Sopenharmony_ci
4558c2ecf20Sopenharmony_ci	/* add the object to the memory pool free list */
4568c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&kmemleak_lock, flags);
4578c2ecf20Sopenharmony_ci	list_add(&object->object_list, &mem_pool_free_list);
4588c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
4598c2ecf20Sopenharmony_ci}
4608c2ecf20Sopenharmony_ci
4618c2ecf20Sopenharmony_ci/*
4628c2ecf20Sopenharmony_ci * RCU callback to free a kmemleak_object.
4638c2ecf20Sopenharmony_ci */
4648c2ecf20Sopenharmony_cistatic void free_object_rcu(struct rcu_head *rcu)
4658c2ecf20Sopenharmony_ci{
4668c2ecf20Sopenharmony_ci	struct hlist_node *tmp;
4678c2ecf20Sopenharmony_ci	struct kmemleak_scan_area *area;
4688c2ecf20Sopenharmony_ci	struct kmemleak_object *object =
4698c2ecf20Sopenharmony_ci		container_of(rcu, struct kmemleak_object, rcu);
4708c2ecf20Sopenharmony_ci
4718c2ecf20Sopenharmony_ci	/*
4728c2ecf20Sopenharmony_ci	 * Once use_count is 0 (guaranteed by put_object), there is no other
4738c2ecf20Sopenharmony_ci	 * code accessing this object, hence no need for locking.
4748c2ecf20Sopenharmony_ci	 */
4758c2ecf20Sopenharmony_ci	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
4768c2ecf20Sopenharmony_ci		hlist_del(&area->node);
4778c2ecf20Sopenharmony_ci		kmem_cache_free(scan_area_cache, area);
4788c2ecf20Sopenharmony_ci	}
4798c2ecf20Sopenharmony_ci	mem_pool_free(object);
4808c2ecf20Sopenharmony_ci}
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_ci/*
4838c2ecf20Sopenharmony_ci * Decrement the object use_count. Once the count is 0, free the object using
4848c2ecf20Sopenharmony_ci * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
4858c2ecf20Sopenharmony_ci * delete_object() path, the delayed RCU freeing ensures that there is no
4868c2ecf20Sopenharmony_ci * recursive call to the kernel allocator. Lock-less RCU object_list traversal
4878c2ecf20Sopenharmony_ci * is also possible.
4888c2ecf20Sopenharmony_ci */
4898c2ecf20Sopenharmony_cistatic void put_object(struct kmemleak_object *object)
4908c2ecf20Sopenharmony_ci{
4918c2ecf20Sopenharmony_ci	if (!atomic_dec_and_test(&object->use_count))
4928c2ecf20Sopenharmony_ci		return;
4938c2ecf20Sopenharmony_ci
4948c2ecf20Sopenharmony_ci	/* should only get here after delete_object was called */
4958c2ecf20Sopenharmony_ci	WARN_ON(object->flags & OBJECT_ALLOCATED);
4968c2ecf20Sopenharmony_ci
4978c2ecf20Sopenharmony_ci	/*
4988c2ecf20Sopenharmony_ci	 * It may be too early for the RCU callbacks, however, there is no
4998c2ecf20Sopenharmony_ci	 * concurrent object_list traversal when !object_cache and all objects
5008c2ecf20Sopenharmony_ci	 * came from the memory pool. Free the object directly.
5018c2ecf20Sopenharmony_ci	 */
5028c2ecf20Sopenharmony_ci	if (object_cache)
5038c2ecf20Sopenharmony_ci		call_rcu(&object->rcu, free_object_rcu);
5048c2ecf20Sopenharmony_ci	else
5058c2ecf20Sopenharmony_ci		free_object_rcu(&object->rcu);
5068c2ecf20Sopenharmony_ci}
5078c2ecf20Sopenharmony_ci
5088c2ecf20Sopenharmony_ci/*
5098c2ecf20Sopenharmony_ci * Look up an object in the object search tree and increase its use_count.
5108c2ecf20Sopenharmony_ci */
5118c2ecf20Sopenharmony_cistatic struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
5128c2ecf20Sopenharmony_ci{
5138c2ecf20Sopenharmony_ci	unsigned long flags;
5148c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
5158c2ecf20Sopenharmony_ci
5168c2ecf20Sopenharmony_ci	rcu_read_lock();
5178c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&kmemleak_lock, flags);
5188c2ecf20Sopenharmony_ci	object = lookup_object(ptr, alias);
5198c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
5208c2ecf20Sopenharmony_ci
5218c2ecf20Sopenharmony_ci	/* check whether the object is still available */
5228c2ecf20Sopenharmony_ci	if (object && !get_object(object))
5238c2ecf20Sopenharmony_ci		object = NULL;
5248c2ecf20Sopenharmony_ci	rcu_read_unlock();
5258c2ecf20Sopenharmony_ci
5268c2ecf20Sopenharmony_ci	return object;
5278c2ecf20Sopenharmony_ci}
5288c2ecf20Sopenharmony_ci
5298c2ecf20Sopenharmony_ci/*
5308c2ecf20Sopenharmony_ci * Remove an object from the object_tree_root and object_list. Must be called
5318c2ecf20Sopenharmony_ci * with the kmemleak_lock held _if_ kmemleak is still enabled.
5328c2ecf20Sopenharmony_ci */
5338c2ecf20Sopenharmony_cistatic void __remove_object(struct kmemleak_object *object)
5348c2ecf20Sopenharmony_ci{
5358c2ecf20Sopenharmony_ci	rb_erase(&object->rb_node, &object_tree_root);
5368c2ecf20Sopenharmony_ci	list_del_rcu(&object->object_list);
5378c2ecf20Sopenharmony_ci}
5388c2ecf20Sopenharmony_ci
5398c2ecf20Sopenharmony_ci/*
5408c2ecf20Sopenharmony_ci * Look up an object in the object search tree and remove it from both
5418c2ecf20Sopenharmony_ci * object_tree_root and object_list. The returned object's use_count should be
5428c2ecf20Sopenharmony_ci * at least 1, as initially set by create_object().
5438c2ecf20Sopenharmony_ci */
5448c2ecf20Sopenharmony_cistatic struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
5458c2ecf20Sopenharmony_ci{
5468c2ecf20Sopenharmony_ci	unsigned long flags;
5478c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
5488c2ecf20Sopenharmony_ci
5498c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&kmemleak_lock, flags);
5508c2ecf20Sopenharmony_ci	object = lookup_object(ptr, alias);
5518c2ecf20Sopenharmony_ci	if (object)
5528c2ecf20Sopenharmony_ci		__remove_object(object);
5538c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
5548c2ecf20Sopenharmony_ci
5558c2ecf20Sopenharmony_ci	return object;
5568c2ecf20Sopenharmony_ci}
5578c2ecf20Sopenharmony_ci
5588c2ecf20Sopenharmony_ci/*
5598c2ecf20Sopenharmony_ci * Save stack trace to the given array of MAX_TRACE size.
5608c2ecf20Sopenharmony_ci */
5618c2ecf20Sopenharmony_cistatic int __save_stack_trace(unsigned long *trace)
5628c2ecf20Sopenharmony_ci{
5638c2ecf20Sopenharmony_ci	return stack_trace_save(trace, MAX_TRACE, 2);
5648c2ecf20Sopenharmony_ci}
5658c2ecf20Sopenharmony_ci
5668c2ecf20Sopenharmony_ci/*
5678c2ecf20Sopenharmony_ci * Create the metadata (struct kmemleak_object) corresponding to an allocated
5688c2ecf20Sopenharmony_ci * memory block and add it to the object_list and object_tree_root.
5698c2ecf20Sopenharmony_ci */
5708c2ecf20Sopenharmony_cistatic struct kmemleak_object *create_object(unsigned long ptr, size_t size,
5718c2ecf20Sopenharmony_ci					     int min_count, gfp_t gfp)
5728c2ecf20Sopenharmony_ci{
5738c2ecf20Sopenharmony_ci	unsigned long flags;
5748c2ecf20Sopenharmony_ci	struct kmemleak_object *object, *parent;
5758c2ecf20Sopenharmony_ci	struct rb_node **link, *rb_parent;
5768c2ecf20Sopenharmony_ci	unsigned long untagged_ptr;
5778c2ecf20Sopenharmony_ci
5788c2ecf20Sopenharmony_ci	object = mem_pool_alloc(gfp);
5798c2ecf20Sopenharmony_ci	if (!object) {
5808c2ecf20Sopenharmony_ci		pr_warn("Cannot allocate a kmemleak_object structure\n");
5818c2ecf20Sopenharmony_ci		kmemleak_disable();
5828c2ecf20Sopenharmony_ci		return NULL;
5838c2ecf20Sopenharmony_ci	}
5848c2ecf20Sopenharmony_ci
5858c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&object->object_list);
5868c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&object->gray_list);
5878c2ecf20Sopenharmony_ci	INIT_HLIST_HEAD(&object->area_list);
5888c2ecf20Sopenharmony_ci	raw_spin_lock_init(&object->lock);
5898c2ecf20Sopenharmony_ci	atomic_set(&object->use_count, 1);
5908c2ecf20Sopenharmony_ci	object->flags = OBJECT_ALLOCATED;
5918c2ecf20Sopenharmony_ci	object->pointer = ptr;
5928c2ecf20Sopenharmony_ci	object->size = size;
5938c2ecf20Sopenharmony_ci	object->excess_ref = 0;
5948c2ecf20Sopenharmony_ci	object->min_count = min_count;
5958c2ecf20Sopenharmony_ci	object->count = 0;			/* white color initially */
5968c2ecf20Sopenharmony_ci	object->jiffies = jiffies;
5978c2ecf20Sopenharmony_ci	object->checksum = 0;
5988c2ecf20Sopenharmony_ci
5998c2ecf20Sopenharmony_ci	/* task information */
6008c2ecf20Sopenharmony_ci	if (in_irq()) {
6018c2ecf20Sopenharmony_ci		object->pid = 0;
6028c2ecf20Sopenharmony_ci		strncpy(object->comm, "hardirq", sizeof(object->comm));
6038c2ecf20Sopenharmony_ci	} else if (in_serving_softirq()) {
6048c2ecf20Sopenharmony_ci		object->pid = 0;
6058c2ecf20Sopenharmony_ci		strncpy(object->comm, "softirq", sizeof(object->comm));
6068c2ecf20Sopenharmony_ci	} else {
6078c2ecf20Sopenharmony_ci		object->pid = current->pid;
6088c2ecf20Sopenharmony_ci		/*
6098c2ecf20Sopenharmony_ci		 * There is a small chance of a race with set_task_comm(),
6108c2ecf20Sopenharmony_ci		 * however using get_task_comm() here may cause locking
6118c2ecf20Sopenharmony_ci		 * dependency issues with current->alloc_lock. In the worst
6128c2ecf20Sopenharmony_ci		 * case, the command line is not correct.
6138c2ecf20Sopenharmony_ci		 */
6148c2ecf20Sopenharmony_ci		strncpy(object->comm, current->comm, sizeof(object->comm));
6158c2ecf20Sopenharmony_ci	}
6168c2ecf20Sopenharmony_ci
6178c2ecf20Sopenharmony_ci	/* kernel backtrace */
6188c2ecf20Sopenharmony_ci	object->trace_len = __save_stack_trace(object->trace);
6198c2ecf20Sopenharmony_ci
6208c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&kmemleak_lock, flags);
6218c2ecf20Sopenharmony_ci
6228c2ecf20Sopenharmony_ci	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
6238c2ecf20Sopenharmony_ci	min_addr = min(min_addr, untagged_ptr);
6248c2ecf20Sopenharmony_ci	max_addr = max(max_addr, untagged_ptr + size);
6258c2ecf20Sopenharmony_ci	link = &object_tree_root.rb_node;
6268c2ecf20Sopenharmony_ci	rb_parent = NULL;
6278c2ecf20Sopenharmony_ci	while (*link) {
6288c2ecf20Sopenharmony_ci		rb_parent = *link;
6298c2ecf20Sopenharmony_ci		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
6308c2ecf20Sopenharmony_ci		if (ptr + size <= parent->pointer)
6318c2ecf20Sopenharmony_ci			link = &parent->rb_node.rb_left;
6328c2ecf20Sopenharmony_ci		else if (parent->pointer + parent->size <= ptr)
6338c2ecf20Sopenharmony_ci			link = &parent->rb_node.rb_right;
6348c2ecf20Sopenharmony_ci		else {
6358c2ecf20Sopenharmony_ci			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
6368c2ecf20Sopenharmony_ci				      ptr);
6378c2ecf20Sopenharmony_ci			/*
6388c2ecf20Sopenharmony_ci			 * No need for parent->lock here since "parent" cannot
6398c2ecf20Sopenharmony_ci			 * be freed while the kmemleak_lock is held.
6408c2ecf20Sopenharmony_ci			 */
6418c2ecf20Sopenharmony_ci			dump_object_info(parent);
6428c2ecf20Sopenharmony_ci			kmem_cache_free(object_cache, object);
6438c2ecf20Sopenharmony_ci			object = NULL;
6448c2ecf20Sopenharmony_ci			goto out;
6458c2ecf20Sopenharmony_ci		}
6468c2ecf20Sopenharmony_ci	}
6478c2ecf20Sopenharmony_ci	rb_link_node(&object->rb_node, rb_parent, link);
6488c2ecf20Sopenharmony_ci	rb_insert_color(&object->rb_node, &object_tree_root);
6498c2ecf20Sopenharmony_ci
6508c2ecf20Sopenharmony_ci	list_add_tail_rcu(&object->object_list, &object_list);
6518c2ecf20Sopenharmony_ciout:
6528c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
6538c2ecf20Sopenharmony_ci	return object;
6548c2ecf20Sopenharmony_ci}
6558c2ecf20Sopenharmony_ci
6568c2ecf20Sopenharmony_ci/*
6578c2ecf20Sopenharmony_ci * Mark the object as not allocated and schedule RCU freeing via put_object().
6588c2ecf20Sopenharmony_ci */
6598c2ecf20Sopenharmony_cistatic void __delete_object(struct kmemleak_object *object)
6608c2ecf20Sopenharmony_ci{
6618c2ecf20Sopenharmony_ci	unsigned long flags;
6628c2ecf20Sopenharmony_ci
6638c2ecf20Sopenharmony_ci	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
6648c2ecf20Sopenharmony_ci	WARN_ON(atomic_read(&object->use_count) < 1);
6658c2ecf20Sopenharmony_ci
6668c2ecf20Sopenharmony_ci	/*
6678c2ecf20Sopenharmony_ci	 * Locking here also ensures that the corresponding memory block
6688c2ecf20Sopenharmony_ci	 * cannot be freed when it is being scanned.
6698c2ecf20Sopenharmony_ci	 */
6708c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
6718c2ecf20Sopenharmony_ci	object->flags &= ~OBJECT_ALLOCATED;
6728c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
6738c2ecf20Sopenharmony_ci	put_object(object);
6748c2ecf20Sopenharmony_ci}
6758c2ecf20Sopenharmony_ci
6768c2ecf20Sopenharmony_ci/*
6778c2ecf20Sopenharmony_ci * Look up the metadata (struct kmemleak_object) corresponding to ptr and
6788c2ecf20Sopenharmony_ci * delete it.
6798c2ecf20Sopenharmony_ci */
6808c2ecf20Sopenharmony_cistatic void delete_object_full(unsigned long ptr)
6818c2ecf20Sopenharmony_ci{
6828c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
6838c2ecf20Sopenharmony_ci
6848c2ecf20Sopenharmony_ci	object = find_and_remove_object(ptr, 0);
6858c2ecf20Sopenharmony_ci	if (!object) {
6868c2ecf20Sopenharmony_ci#ifdef DEBUG
6878c2ecf20Sopenharmony_ci		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
6888c2ecf20Sopenharmony_ci			      ptr);
6898c2ecf20Sopenharmony_ci#endif
6908c2ecf20Sopenharmony_ci		return;
6918c2ecf20Sopenharmony_ci	}
6928c2ecf20Sopenharmony_ci	__delete_object(object);
6938c2ecf20Sopenharmony_ci}
6948c2ecf20Sopenharmony_ci
6958c2ecf20Sopenharmony_ci/*
6968c2ecf20Sopenharmony_ci * Look up the metadata (struct kmemleak_object) corresponding to ptr and
6978c2ecf20Sopenharmony_ci * delete it. If the memory block is partially freed, the function may create
6988c2ecf20Sopenharmony_ci * additional metadata for the remaining parts of the block.
6998c2ecf20Sopenharmony_ci */
7008c2ecf20Sopenharmony_cistatic void delete_object_part(unsigned long ptr, size_t size)
7018c2ecf20Sopenharmony_ci{
7028c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
7038c2ecf20Sopenharmony_ci	unsigned long start, end;
7048c2ecf20Sopenharmony_ci
7058c2ecf20Sopenharmony_ci	object = find_and_remove_object(ptr, 1);
7068c2ecf20Sopenharmony_ci	if (!object) {
7078c2ecf20Sopenharmony_ci#ifdef DEBUG
7088c2ecf20Sopenharmony_ci		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
7098c2ecf20Sopenharmony_ci			      ptr, size);
7108c2ecf20Sopenharmony_ci#endif
7118c2ecf20Sopenharmony_ci		return;
7128c2ecf20Sopenharmony_ci	}
7138c2ecf20Sopenharmony_ci
7148c2ecf20Sopenharmony_ci	/*
7158c2ecf20Sopenharmony_ci	 * Create one or two objects that may result from the memory block
7168c2ecf20Sopenharmony_ci	 * split. Note that partial freeing is only done by free_bootmem() and
7178c2ecf20Sopenharmony_ci	 * this happens before kmemleak_init() is called.
7188c2ecf20Sopenharmony_ci	 */
7198c2ecf20Sopenharmony_ci	start = object->pointer;
7208c2ecf20Sopenharmony_ci	end = object->pointer + object->size;
7218c2ecf20Sopenharmony_ci	if (ptr > start)
7228c2ecf20Sopenharmony_ci		create_object(start, ptr - start, object->min_count,
7238c2ecf20Sopenharmony_ci			      GFP_KERNEL);
7248c2ecf20Sopenharmony_ci	if (ptr + size < end)
7258c2ecf20Sopenharmony_ci		create_object(ptr + size, end - ptr - size, object->min_count,
7268c2ecf20Sopenharmony_ci			      GFP_KERNEL);
7278c2ecf20Sopenharmony_ci
7288c2ecf20Sopenharmony_ci	__delete_object(object);
7298c2ecf20Sopenharmony_ci}
7308c2ecf20Sopenharmony_ci
7318c2ecf20Sopenharmony_cistatic void __paint_it(struct kmemleak_object *object, int color)
7328c2ecf20Sopenharmony_ci{
7338c2ecf20Sopenharmony_ci	object->min_count = color;
7348c2ecf20Sopenharmony_ci	if (color == KMEMLEAK_BLACK)
7358c2ecf20Sopenharmony_ci		object->flags |= OBJECT_NO_SCAN;
7368c2ecf20Sopenharmony_ci}
7378c2ecf20Sopenharmony_ci
7388c2ecf20Sopenharmony_cistatic void paint_it(struct kmemleak_object *object, int color)
7398c2ecf20Sopenharmony_ci{
7408c2ecf20Sopenharmony_ci	unsigned long flags;
7418c2ecf20Sopenharmony_ci
7428c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
7438c2ecf20Sopenharmony_ci	__paint_it(object, color);
7448c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
7458c2ecf20Sopenharmony_ci}
7468c2ecf20Sopenharmony_ci
7478c2ecf20Sopenharmony_cistatic void paint_ptr(unsigned long ptr, int color)
7488c2ecf20Sopenharmony_ci{
7498c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
7508c2ecf20Sopenharmony_ci
7518c2ecf20Sopenharmony_ci	object = find_and_get_object(ptr, 0);
7528c2ecf20Sopenharmony_ci	if (!object) {
7538c2ecf20Sopenharmony_ci		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
7548c2ecf20Sopenharmony_ci			      ptr,
7558c2ecf20Sopenharmony_ci			      (color == KMEMLEAK_GREY) ? "Grey" :
7568c2ecf20Sopenharmony_ci			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
7578c2ecf20Sopenharmony_ci		return;
7588c2ecf20Sopenharmony_ci	}
7598c2ecf20Sopenharmony_ci	paint_it(object, color);
7608c2ecf20Sopenharmony_ci	put_object(object);
7618c2ecf20Sopenharmony_ci}
7628c2ecf20Sopenharmony_ci
7638c2ecf20Sopenharmony_ci/*
7648c2ecf20Sopenharmony_ci * Mark an object permanently as gray-colored so that it can no longer be
7658c2ecf20Sopenharmony_ci * reported as a leak. This is used in general to mark a false positive.
7668c2ecf20Sopenharmony_ci */
7678c2ecf20Sopenharmony_cistatic void make_gray_object(unsigned long ptr)
7688c2ecf20Sopenharmony_ci{
7698c2ecf20Sopenharmony_ci	paint_ptr(ptr, KMEMLEAK_GREY);
7708c2ecf20Sopenharmony_ci}
7718c2ecf20Sopenharmony_ci
7728c2ecf20Sopenharmony_ci/*
7738c2ecf20Sopenharmony_ci * Mark the object as black-colored so that it is ignored from scans and
7748c2ecf20Sopenharmony_ci * reporting.
7758c2ecf20Sopenharmony_ci */
7768c2ecf20Sopenharmony_cistatic void make_black_object(unsigned long ptr)
7778c2ecf20Sopenharmony_ci{
7788c2ecf20Sopenharmony_ci	paint_ptr(ptr, KMEMLEAK_BLACK);
7798c2ecf20Sopenharmony_ci}
7808c2ecf20Sopenharmony_ci
7818c2ecf20Sopenharmony_ci/*
7828c2ecf20Sopenharmony_ci * Add a scanning area to the object. If at least one such area is added,
7838c2ecf20Sopenharmony_ci * kmemleak will only scan these ranges rather than the whole memory block.
7848c2ecf20Sopenharmony_ci */
7858c2ecf20Sopenharmony_cistatic void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
7868c2ecf20Sopenharmony_ci{
7878c2ecf20Sopenharmony_ci	unsigned long flags;
7888c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
7898c2ecf20Sopenharmony_ci	struct kmemleak_scan_area *area = NULL;
7908c2ecf20Sopenharmony_ci	unsigned long untagged_ptr;
7918c2ecf20Sopenharmony_ci	unsigned long untagged_objp;
7928c2ecf20Sopenharmony_ci
7938c2ecf20Sopenharmony_ci	object = find_and_get_object(ptr, 1);
7948c2ecf20Sopenharmony_ci	if (!object) {
7958c2ecf20Sopenharmony_ci		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
7968c2ecf20Sopenharmony_ci			      ptr);
7978c2ecf20Sopenharmony_ci		return;
7988c2ecf20Sopenharmony_ci	}
7998c2ecf20Sopenharmony_ci
8008c2ecf20Sopenharmony_ci	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
8018c2ecf20Sopenharmony_ci	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
8028c2ecf20Sopenharmony_ci
8038c2ecf20Sopenharmony_ci	if (scan_area_cache)
8048c2ecf20Sopenharmony_ci		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
8058c2ecf20Sopenharmony_ci
8068c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
8078c2ecf20Sopenharmony_ci	if (!area) {
8088c2ecf20Sopenharmony_ci		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
8098c2ecf20Sopenharmony_ci		/* mark the object for full scan to avoid false positives */
8108c2ecf20Sopenharmony_ci		object->flags |= OBJECT_FULL_SCAN;
8118c2ecf20Sopenharmony_ci		goto out_unlock;
8128c2ecf20Sopenharmony_ci	}
8138c2ecf20Sopenharmony_ci	if (size == SIZE_MAX) {
8148c2ecf20Sopenharmony_ci		size = untagged_objp + object->size - untagged_ptr;
8158c2ecf20Sopenharmony_ci	} else if (untagged_ptr + size > untagged_objp + object->size) {
8168c2ecf20Sopenharmony_ci		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
8178c2ecf20Sopenharmony_ci		dump_object_info(object);
8188c2ecf20Sopenharmony_ci		kmem_cache_free(scan_area_cache, area);
8198c2ecf20Sopenharmony_ci		goto out_unlock;
8208c2ecf20Sopenharmony_ci	}
8218c2ecf20Sopenharmony_ci
8228c2ecf20Sopenharmony_ci	INIT_HLIST_NODE(&area->node);
8238c2ecf20Sopenharmony_ci	area->start = ptr;
8248c2ecf20Sopenharmony_ci	area->size = size;
8258c2ecf20Sopenharmony_ci
8268c2ecf20Sopenharmony_ci	hlist_add_head(&area->node, &object->area_list);
8278c2ecf20Sopenharmony_ciout_unlock:
8288c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
8298c2ecf20Sopenharmony_ci	put_object(object);
8308c2ecf20Sopenharmony_ci}
8318c2ecf20Sopenharmony_ci
8328c2ecf20Sopenharmony_ci/*
8338c2ecf20Sopenharmony_ci * Any surplus references (object already gray) to 'ptr' are passed to
8348c2ecf20Sopenharmony_ci * 'excess_ref'. This is used in the vmalloc() case where a pointer to
8358c2ecf20Sopenharmony_ci * vm_struct may be used as an alternative reference to the vmalloc'ed object
8368c2ecf20Sopenharmony_ci * (see free_thread_stack()).
8378c2ecf20Sopenharmony_ci */
8388c2ecf20Sopenharmony_cistatic void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
8398c2ecf20Sopenharmony_ci{
8408c2ecf20Sopenharmony_ci	unsigned long flags;
8418c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
8428c2ecf20Sopenharmony_ci
8438c2ecf20Sopenharmony_ci	object = find_and_get_object(ptr, 0);
8448c2ecf20Sopenharmony_ci	if (!object) {
8458c2ecf20Sopenharmony_ci		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
8468c2ecf20Sopenharmony_ci			      ptr);
8478c2ecf20Sopenharmony_ci		return;
8488c2ecf20Sopenharmony_ci	}
8498c2ecf20Sopenharmony_ci
8508c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
8518c2ecf20Sopenharmony_ci	object->excess_ref = excess_ref;
8528c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
8538c2ecf20Sopenharmony_ci	put_object(object);
8548c2ecf20Sopenharmony_ci}
8558c2ecf20Sopenharmony_ci
8568c2ecf20Sopenharmony_ci/*
8578c2ecf20Sopenharmony_ci * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
8588c2ecf20Sopenharmony_ci * pointer. Such object will not be scanned by kmemleak but references to it
8598c2ecf20Sopenharmony_ci * are searched.
8608c2ecf20Sopenharmony_ci */
8618c2ecf20Sopenharmony_cistatic void object_no_scan(unsigned long ptr)
8628c2ecf20Sopenharmony_ci{
8638c2ecf20Sopenharmony_ci	unsigned long flags;
8648c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
8658c2ecf20Sopenharmony_ci
8668c2ecf20Sopenharmony_ci	object = find_and_get_object(ptr, 0);
8678c2ecf20Sopenharmony_ci	if (!object) {
8688c2ecf20Sopenharmony_ci		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
8698c2ecf20Sopenharmony_ci		return;
8708c2ecf20Sopenharmony_ci	}
8718c2ecf20Sopenharmony_ci
8728c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
8738c2ecf20Sopenharmony_ci	object->flags |= OBJECT_NO_SCAN;
8748c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
8758c2ecf20Sopenharmony_ci	put_object(object);
8768c2ecf20Sopenharmony_ci}
8778c2ecf20Sopenharmony_ci
8788c2ecf20Sopenharmony_ci/**
8798c2ecf20Sopenharmony_ci * kmemleak_alloc - register a newly allocated object
8808c2ecf20Sopenharmony_ci * @ptr:	pointer to beginning of the object
8818c2ecf20Sopenharmony_ci * @size:	size of the object
8828c2ecf20Sopenharmony_ci * @min_count:	minimum number of references to this object. If during memory
8838c2ecf20Sopenharmony_ci *		scanning a number of references less than @min_count is found,
8848c2ecf20Sopenharmony_ci *		the object is reported as a memory leak. If @min_count is 0,
8858c2ecf20Sopenharmony_ci *		the object is never reported as a leak. If @min_count is -1,
8868c2ecf20Sopenharmony_ci *		the object is ignored (not scanned and not reported as a leak)
8878c2ecf20Sopenharmony_ci * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
8888c2ecf20Sopenharmony_ci *
8898c2ecf20Sopenharmony_ci * This function is called from the kernel allocators when a new object
8908c2ecf20Sopenharmony_ci * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
8918c2ecf20Sopenharmony_ci */
8928c2ecf20Sopenharmony_civoid __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
8938c2ecf20Sopenharmony_ci			  gfp_t gfp)
8948c2ecf20Sopenharmony_ci{
8958c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
8968c2ecf20Sopenharmony_ci
8978c2ecf20Sopenharmony_ci	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
8988c2ecf20Sopenharmony_ci		create_object((unsigned long)ptr, size, min_count, gfp);
8998c2ecf20Sopenharmony_ci}
9008c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(kmemleak_alloc);
9018c2ecf20Sopenharmony_ci
9028c2ecf20Sopenharmony_ci/**
9038c2ecf20Sopenharmony_ci * kmemleak_alloc_percpu - register a newly allocated __percpu object
9048c2ecf20Sopenharmony_ci * @ptr:	__percpu pointer to beginning of the object
9058c2ecf20Sopenharmony_ci * @size:	size of the object
9068c2ecf20Sopenharmony_ci * @gfp:	flags used for kmemleak internal memory allocations
9078c2ecf20Sopenharmony_ci *
9088c2ecf20Sopenharmony_ci * This function is called from the kernel percpu allocator when a new object
9098c2ecf20Sopenharmony_ci * (memory block) is allocated (alloc_percpu).
9108c2ecf20Sopenharmony_ci */
9118c2ecf20Sopenharmony_civoid __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
9128c2ecf20Sopenharmony_ci				 gfp_t gfp)
9138c2ecf20Sopenharmony_ci{
9148c2ecf20Sopenharmony_ci	unsigned int cpu;
9158c2ecf20Sopenharmony_ci
9168c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
9178c2ecf20Sopenharmony_ci
9188c2ecf20Sopenharmony_ci	/*
9198c2ecf20Sopenharmony_ci	 * Percpu allocations are only scanned and not reported as leaks
9208c2ecf20Sopenharmony_ci	 * (min_count is set to 0).
9218c2ecf20Sopenharmony_ci	 */
9228c2ecf20Sopenharmony_ci	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
9238c2ecf20Sopenharmony_ci		for_each_possible_cpu(cpu)
9248c2ecf20Sopenharmony_ci			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
9258c2ecf20Sopenharmony_ci				      size, 0, gfp);
9268c2ecf20Sopenharmony_ci}
9278c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
9288c2ecf20Sopenharmony_ci
9298c2ecf20Sopenharmony_ci/**
9308c2ecf20Sopenharmony_ci * kmemleak_vmalloc - register a newly vmalloc'ed object
9318c2ecf20Sopenharmony_ci * @area:	pointer to vm_struct
9328c2ecf20Sopenharmony_ci * @size:	size of the object
9338c2ecf20Sopenharmony_ci * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
9348c2ecf20Sopenharmony_ci *
9358c2ecf20Sopenharmony_ci * This function is called from the vmalloc() kernel allocator when a new
9368c2ecf20Sopenharmony_ci * object (memory block) is allocated.
9378c2ecf20Sopenharmony_ci */
9388c2ecf20Sopenharmony_civoid __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
9398c2ecf20Sopenharmony_ci{
9408c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
9418c2ecf20Sopenharmony_ci
9428c2ecf20Sopenharmony_ci	/*
9438c2ecf20Sopenharmony_ci	 * A min_count = 2 is needed because vm_struct contains a reference to
9448c2ecf20Sopenharmony_ci	 * the virtual address of the vmalloc'ed block.
9458c2ecf20Sopenharmony_ci	 */
9468c2ecf20Sopenharmony_ci	if (kmemleak_enabled) {
9478c2ecf20Sopenharmony_ci		create_object((unsigned long)area->addr, size, 2, gfp);
9488c2ecf20Sopenharmony_ci		object_set_excess_ref((unsigned long)area,
9498c2ecf20Sopenharmony_ci				      (unsigned long)area->addr);
9508c2ecf20Sopenharmony_ci	}
9518c2ecf20Sopenharmony_ci}
9528c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(kmemleak_vmalloc);
9538c2ecf20Sopenharmony_ci
9548c2ecf20Sopenharmony_ci/**
9558c2ecf20Sopenharmony_ci * kmemleak_free - unregister a previously registered object
9568c2ecf20Sopenharmony_ci * @ptr:	pointer to beginning of the object
9578c2ecf20Sopenharmony_ci *
9588c2ecf20Sopenharmony_ci * This function is called from the kernel allocators when an object (memory
9598c2ecf20Sopenharmony_ci * block) is freed (kmem_cache_free, kfree, vfree etc.).
9608c2ecf20Sopenharmony_ci */
9618c2ecf20Sopenharmony_civoid __ref kmemleak_free(const void *ptr)
9628c2ecf20Sopenharmony_ci{
9638c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
9648c2ecf20Sopenharmony_ci
9658c2ecf20Sopenharmony_ci	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
9668c2ecf20Sopenharmony_ci		delete_object_full((unsigned long)ptr);
9678c2ecf20Sopenharmony_ci}
9688c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(kmemleak_free);
9698c2ecf20Sopenharmony_ci
9708c2ecf20Sopenharmony_ci/**
9718c2ecf20Sopenharmony_ci * kmemleak_free_part - partially unregister a previously registered object
9728c2ecf20Sopenharmony_ci * @ptr:	pointer to the beginning or inside the object. This also
9738c2ecf20Sopenharmony_ci *		represents the start of the range to be freed
9748c2ecf20Sopenharmony_ci * @size:	size to be unregistered
9758c2ecf20Sopenharmony_ci *
9768c2ecf20Sopenharmony_ci * This function is called when only a part of a memory block is freed
9778c2ecf20Sopenharmony_ci * (usually from the bootmem allocator).
9788c2ecf20Sopenharmony_ci */
9798c2ecf20Sopenharmony_civoid __ref kmemleak_free_part(const void *ptr, size_t size)
9808c2ecf20Sopenharmony_ci{
9818c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
9828c2ecf20Sopenharmony_ci
9838c2ecf20Sopenharmony_ci	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
9848c2ecf20Sopenharmony_ci		delete_object_part((unsigned long)ptr, size);
9858c2ecf20Sopenharmony_ci}
9868c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(kmemleak_free_part);
9878c2ecf20Sopenharmony_ci
9888c2ecf20Sopenharmony_ci/**
9898c2ecf20Sopenharmony_ci * kmemleak_free_percpu - unregister a previously registered __percpu object
9908c2ecf20Sopenharmony_ci * @ptr:	__percpu pointer to beginning of the object
9918c2ecf20Sopenharmony_ci *
9928c2ecf20Sopenharmony_ci * This function is called from the kernel percpu allocator when an object
9938c2ecf20Sopenharmony_ci * (memory block) is freed (free_percpu).
9948c2ecf20Sopenharmony_ci */
9958c2ecf20Sopenharmony_civoid __ref kmemleak_free_percpu(const void __percpu *ptr)
9968c2ecf20Sopenharmony_ci{
9978c2ecf20Sopenharmony_ci	unsigned int cpu;
9988c2ecf20Sopenharmony_ci
9998c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
10008c2ecf20Sopenharmony_ci
10018c2ecf20Sopenharmony_ci	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
10028c2ecf20Sopenharmony_ci		for_each_possible_cpu(cpu)
10038c2ecf20Sopenharmony_ci			delete_object_full((unsigned long)per_cpu_ptr(ptr,
10048c2ecf20Sopenharmony_ci								      cpu));
10058c2ecf20Sopenharmony_ci}
10068c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(kmemleak_free_percpu);
10078c2ecf20Sopenharmony_ci
10088c2ecf20Sopenharmony_ci/**
10098c2ecf20Sopenharmony_ci * kmemleak_update_trace - update object allocation stack trace
10108c2ecf20Sopenharmony_ci * @ptr:	pointer to beginning of the object
10118c2ecf20Sopenharmony_ci *
10128c2ecf20Sopenharmony_ci * Override the object allocation stack trace for cases where the actual
10138c2ecf20Sopenharmony_ci * allocation place is not always useful.
10148c2ecf20Sopenharmony_ci */
10158c2ecf20Sopenharmony_civoid __ref kmemleak_update_trace(const void *ptr)
10168c2ecf20Sopenharmony_ci{
10178c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
10188c2ecf20Sopenharmony_ci	unsigned long flags;
10198c2ecf20Sopenharmony_ci
10208c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
10218c2ecf20Sopenharmony_ci
10228c2ecf20Sopenharmony_ci	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
10238c2ecf20Sopenharmony_ci		return;
10248c2ecf20Sopenharmony_ci
10258c2ecf20Sopenharmony_ci	object = find_and_get_object((unsigned long)ptr, 1);
10268c2ecf20Sopenharmony_ci	if (!object) {
10278c2ecf20Sopenharmony_ci#ifdef DEBUG
10288c2ecf20Sopenharmony_ci		kmemleak_warn("Updating stack trace for unknown object at %p\n",
10298c2ecf20Sopenharmony_ci			      ptr);
10308c2ecf20Sopenharmony_ci#endif
10318c2ecf20Sopenharmony_ci		return;
10328c2ecf20Sopenharmony_ci	}
10338c2ecf20Sopenharmony_ci
10348c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
10358c2ecf20Sopenharmony_ci	object->trace_len = __save_stack_trace(object->trace);
10368c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
10378c2ecf20Sopenharmony_ci
10388c2ecf20Sopenharmony_ci	put_object(object);
10398c2ecf20Sopenharmony_ci}
10408c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_update_trace);
10418c2ecf20Sopenharmony_ci
10428c2ecf20Sopenharmony_ci/**
10438c2ecf20Sopenharmony_ci * kmemleak_not_leak - mark an allocated object as false positive
10448c2ecf20Sopenharmony_ci * @ptr:	pointer to beginning of the object
10458c2ecf20Sopenharmony_ci *
10468c2ecf20Sopenharmony_ci * Calling this function on an object will cause the memory block to no longer
10478c2ecf20Sopenharmony_ci * be reported as leak and always be scanned.
10488c2ecf20Sopenharmony_ci */
10498c2ecf20Sopenharmony_civoid __ref kmemleak_not_leak(const void *ptr)
10508c2ecf20Sopenharmony_ci{
10518c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
10528c2ecf20Sopenharmony_ci
10538c2ecf20Sopenharmony_ci	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
10548c2ecf20Sopenharmony_ci		make_gray_object((unsigned long)ptr);
10558c2ecf20Sopenharmony_ci}
10568c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_not_leak);
10578c2ecf20Sopenharmony_ci
10588c2ecf20Sopenharmony_ci/**
10598c2ecf20Sopenharmony_ci * kmemleak_ignore - ignore an allocated object
10608c2ecf20Sopenharmony_ci * @ptr:	pointer to beginning of the object
10618c2ecf20Sopenharmony_ci *
10628c2ecf20Sopenharmony_ci * Calling this function on an object will cause the memory block to be
10638c2ecf20Sopenharmony_ci * ignored (not scanned and not reported as a leak). This is usually done when
10648c2ecf20Sopenharmony_ci * it is known that the corresponding block is not a leak and does not contain
10658c2ecf20Sopenharmony_ci * any references to other allocated memory blocks.
10668c2ecf20Sopenharmony_ci */
10678c2ecf20Sopenharmony_civoid __ref kmemleak_ignore(const void *ptr)
10688c2ecf20Sopenharmony_ci{
10698c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
10708c2ecf20Sopenharmony_ci
10718c2ecf20Sopenharmony_ci	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
10728c2ecf20Sopenharmony_ci		make_black_object((unsigned long)ptr);
10738c2ecf20Sopenharmony_ci}
10748c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_ignore);
10758c2ecf20Sopenharmony_ci
10768c2ecf20Sopenharmony_ci/**
10778c2ecf20Sopenharmony_ci * kmemleak_scan_area - limit the range to be scanned in an allocated object
10788c2ecf20Sopenharmony_ci * @ptr:	pointer to beginning or inside the object. This also
10798c2ecf20Sopenharmony_ci *		represents the start of the scan area
10808c2ecf20Sopenharmony_ci * @size:	size of the scan area
10818c2ecf20Sopenharmony_ci * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
10828c2ecf20Sopenharmony_ci *
10838c2ecf20Sopenharmony_ci * This function is used when it is known that only certain parts of an object
10848c2ecf20Sopenharmony_ci * contain references to other objects. Kmemleak will only scan these areas
10858c2ecf20Sopenharmony_ci * reducing the number false negatives.
10868c2ecf20Sopenharmony_ci */
10878c2ecf20Sopenharmony_civoid __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
10888c2ecf20Sopenharmony_ci{
10898c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
10908c2ecf20Sopenharmony_ci
10918c2ecf20Sopenharmony_ci	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
10928c2ecf20Sopenharmony_ci		add_scan_area((unsigned long)ptr, size, gfp);
10938c2ecf20Sopenharmony_ci}
10948c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_scan_area);
10958c2ecf20Sopenharmony_ci
10968c2ecf20Sopenharmony_ci/**
10978c2ecf20Sopenharmony_ci * kmemleak_no_scan - do not scan an allocated object
10988c2ecf20Sopenharmony_ci * @ptr:	pointer to beginning of the object
10998c2ecf20Sopenharmony_ci *
11008c2ecf20Sopenharmony_ci * This function notifies kmemleak not to scan the given memory block. Useful
11018c2ecf20Sopenharmony_ci * in situations where it is known that the given object does not contain any
11028c2ecf20Sopenharmony_ci * references to other objects. Kmemleak will not scan such objects reducing
11038c2ecf20Sopenharmony_ci * the number of false negatives.
11048c2ecf20Sopenharmony_ci */
11058c2ecf20Sopenharmony_civoid __ref kmemleak_no_scan(const void *ptr)
11068c2ecf20Sopenharmony_ci{
11078c2ecf20Sopenharmony_ci	pr_debug("%s(0x%p)\n", __func__, ptr);
11088c2ecf20Sopenharmony_ci
11098c2ecf20Sopenharmony_ci	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
11108c2ecf20Sopenharmony_ci		object_no_scan((unsigned long)ptr);
11118c2ecf20Sopenharmony_ci}
11128c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_no_scan);
11138c2ecf20Sopenharmony_ci
11148c2ecf20Sopenharmony_ci/**
11158c2ecf20Sopenharmony_ci * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
11168c2ecf20Sopenharmony_ci *			 address argument
11178c2ecf20Sopenharmony_ci * @phys:	physical address of the object
11188c2ecf20Sopenharmony_ci * @size:	size of the object
11198c2ecf20Sopenharmony_ci * @min_count:	minimum number of references to this object.
11208c2ecf20Sopenharmony_ci *              See kmemleak_alloc()
11218c2ecf20Sopenharmony_ci * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
11228c2ecf20Sopenharmony_ci */
11238c2ecf20Sopenharmony_civoid __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
11248c2ecf20Sopenharmony_ci			       gfp_t gfp)
11258c2ecf20Sopenharmony_ci{
11268c2ecf20Sopenharmony_ci	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
11278c2ecf20Sopenharmony_ci		kmemleak_alloc(__va(phys), size, min_count, gfp);
11288c2ecf20Sopenharmony_ci}
11298c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_alloc_phys);
11308c2ecf20Sopenharmony_ci
11318c2ecf20Sopenharmony_ci/**
11328c2ecf20Sopenharmony_ci * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
11338c2ecf20Sopenharmony_ci *			     physical address argument
11348c2ecf20Sopenharmony_ci * @phys:	physical address if the beginning or inside an object. This
11358c2ecf20Sopenharmony_ci *		also represents the start of the range to be freed
11368c2ecf20Sopenharmony_ci * @size:	size to be unregistered
11378c2ecf20Sopenharmony_ci */
11388c2ecf20Sopenharmony_civoid __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
11398c2ecf20Sopenharmony_ci{
11408c2ecf20Sopenharmony_ci	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
11418c2ecf20Sopenharmony_ci		kmemleak_free_part(__va(phys), size);
11428c2ecf20Sopenharmony_ci}
11438c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_free_part_phys);
11448c2ecf20Sopenharmony_ci
11458c2ecf20Sopenharmony_ci/**
11468c2ecf20Sopenharmony_ci * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
11478c2ecf20Sopenharmony_ci *			    address argument
11488c2ecf20Sopenharmony_ci * @phys:	physical address of the object
11498c2ecf20Sopenharmony_ci */
11508c2ecf20Sopenharmony_civoid __ref kmemleak_not_leak_phys(phys_addr_t phys)
11518c2ecf20Sopenharmony_ci{
11528c2ecf20Sopenharmony_ci	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
11538c2ecf20Sopenharmony_ci		kmemleak_not_leak(__va(phys));
11548c2ecf20Sopenharmony_ci}
11558c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_not_leak_phys);
11568c2ecf20Sopenharmony_ci
11578c2ecf20Sopenharmony_ci/**
11588c2ecf20Sopenharmony_ci * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
11598c2ecf20Sopenharmony_ci *			  address argument
11608c2ecf20Sopenharmony_ci * @phys:	physical address of the object
11618c2ecf20Sopenharmony_ci */
11628c2ecf20Sopenharmony_civoid __ref kmemleak_ignore_phys(phys_addr_t phys)
11638c2ecf20Sopenharmony_ci{
11648c2ecf20Sopenharmony_ci	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
11658c2ecf20Sopenharmony_ci		kmemleak_ignore(__va(phys));
11668c2ecf20Sopenharmony_ci}
11678c2ecf20Sopenharmony_ciEXPORT_SYMBOL(kmemleak_ignore_phys);
11688c2ecf20Sopenharmony_ci
11698c2ecf20Sopenharmony_ci/*
11708c2ecf20Sopenharmony_ci * Update an object's checksum and return true if it was modified.
11718c2ecf20Sopenharmony_ci */
11728c2ecf20Sopenharmony_cistatic bool update_checksum(struct kmemleak_object *object)
11738c2ecf20Sopenharmony_ci{
11748c2ecf20Sopenharmony_ci	u32 old_csum = object->checksum;
11758c2ecf20Sopenharmony_ci
11768c2ecf20Sopenharmony_ci	kasan_disable_current();
11778c2ecf20Sopenharmony_ci	kcsan_disable_current();
11788c2ecf20Sopenharmony_ci	object->checksum = crc32(0, (void *)object->pointer, object->size);
11798c2ecf20Sopenharmony_ci	kasan_enable_current();
11808c2ecf20Sopenharmony_ci	kcsan_enable_current();
11818c2ecf20Sopenharmony_ci
11828c2ecf20Sopenharmony_ci	return object->checksum != old_csum;
11838c2ecf20Sopenharmony_ci}
11848c2ecf20Sopenharmony_ci
11858c2ecf20Sopenharmony_ci/*
11868c2ecf20Sopenharmony_ci * Update an object's references. object->lock must be held by the caller.
11878c2ecf20Sopenharmony_ci */
11888c2ecf20Sopenharmony_cistatic void update_refs(struct kmemleak_object *object)
11898c2ecf20Sopenharmony_ci{
11908c2ecf20Sopenharmony_ci	if (!color_white(object)) {
11918c2ecf20Sopenharmony_ci		/* non-orphan, ignored or new */
11928c2ecf20Sopenharmony_ci		return;
11938c2ecf20Sopenharmony_ci	}
11948c2ecf20Sopenharmony_ci
11958c2ecf20Sopenharmony_ci	/*
11968c2ecf20Sopenharmony_ci	 * Increase the object's reference count (number of pointers to the
11978c2ecf20Sopenharmony_ci	 * memory block). If this count reaches the required minimum, the
11988c2ecf20Sopenharmony_ci	 * object's color will become gray and it will be added to the
11998c2ecf20Sopenharmony_ci	 * gray_list.
12008c2ecf20Sopenharmony_ci	 */
12018c2ecf20Sopenharmony_ci	object->count++;
12028c2ecf20Sopenharmony_ci	if (color_gray(object)) {
12038c2ecf20Sopenharmony_ci		/* put_object() called when removing from gray_list */
12048c2ecf20Sopenharmony_ci		WARN_ON(!get_object(object));
12058c2ecf20Sopenharmony_ci		list_add_tail(&object->gray_list, &gray_list);
12068c2ecf20Sopenharmony_ci	}
12078c2ecf20Sopenharmony_ci}
12088c2ecf20Sopenharmony_ci
12098c2ecf20Sopenharmony_ci/*
12108c2ecf20Sopenharmony_ci * Memory scanning is a long process and it needs to be interruptable. This
12118c2ecf20Sopenharmony_ci * function checks whether such interrupt condition occurred.
12128c2ecf20Sopenharmony_ci */
12138c2ecf20Sopenharmony_cistatic int scan_should_stop(void)
12148c2ecf20Sopenharmony_ci{
12158c2ecf20Sopenharmony_ci	if (!kmemleak_enabled)
12168c2ecf20Sopenharmony_ci		return 1;
12178c2ecf20Sopenharmony_ci
12188c2ecf20Sopenharmony_ci	/*
12198c2ecf20Sopenharmony_ci	 * This function may be called from either process or kthread context,
12208c2ecf20Sopenharmony_ci	 * hence the need to check for both stop conditions.
12218c2ecf20Sopenharmony_ci	 */
12228c2ecf20Sopenharmony_ci	if (current->mm)
12238c2ecf20Sopenharmony_ci		return signal_pending(current);
12248c2ecf20Sopenharmony_ci	else
12258c2ecf20Sopenharmony_ci		return kthread_should_stop();
12268c2ecf20Sopenharmony_ci
12278c2ecf20Sopenharmony_ci	return 0;
12288c2ecf20Sopenharmony_ci}
12298c2ecf20Sopenharmony_ci
12308c2ecf20Sopenharmony_ci/*
12318c2ecf20Sopenharmony_ci * Scan a memory block (exclusive range) for valid pointers and add those
12328c2ecf20Sopenharmony_ci * found to the gray list.
12338c2ecf20Sopenharmony_ci */
12348c2ecf20Sopenharmony_cistatic void scan_block(void *_start, void *_end,
12358c2ecf20Sopenharmony_ci		       struct kmemleak_object *scanned)
12368c2ecf20Sopenharmony_ci{
12378c2ecf20Sopenharmony_ci	unsigned long *ptr;
12388c2ecf20Sopenharmony_ci	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
12398c2ecf20Sopenharmony_ci	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
12408c2ecf20Sopenharmony_ci	unsigned long flags;
12418c2ecf20Sopenharmony_ci	unsigned long untagged_ptr;
12428c2ecf20Sopenharmony_ci
12438c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&kmemleak_lock, flags);
12448c2ecf20Sopenharmony_ci	for (ptr = start; ptr < end; ptr++) {
12458c2ecf20Sopenharmony_ci		struct kmemleak_object *object;
12468c2ecf20Sopenharmony_ci		unsigned long pointer;
12478c2ecf20Sopenharmony_ci		unsigned long excess_ref;
12488c2ecf20Sopenharmony_ci
12498c2ecf20Sopenharmony_ci		if (scan_should_stop())
12508c2ecf20Sopenharmony_ci			break;
12518c2ecf20Sopenharmony_ci
12528c2ecf20Sopenharmony_ci		kasan_disable_current();
12538c2ecf20Sopenharmony_ci		pointer = *ptr;
12548c2ecf20Sopenharmony_ci		kasan_enable_current();
12558c2ecf20Sopenharmony_ci
12568c2ecf20Sopenharmony_ci		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
12578c2ecf20Sopenharmony_ci		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
12588c2ecf20Sopenharmony_ci			continue;
12598c2ecf20Sopenharmony_ci
12608c2ecf20Sopenharmony_ci		/*
12618c2ecf20Sopenharmony_ci		 * No need for get_object() here since we hold kmemleak_lock.
12628c2ecf20Sopenharmony_ci		 * object->use_count cannot be dropped to 0 while the object
12638c2ecf20Sopenharmony_ci		 * is still present in object_tree_root and object_list
12648c2ecf20Sopenharmony_ci		 * (with updates protected by kmemleak_lock).
12658c2ecf20Sopenharmony_ci		 */
12668c2ecf20Sopenharmony_ci		object = lookup_object(pointer, 1);
12678c2ecf20Sopenharmony_ci		if (!object)
12688c2ecf20Sopenharmony_ci			continue;
12698c2ecf20Sopenharmony_ci		if (object == scanned)
12708c2ecf20Sopenharmony_ci			/* self referenced, ignore */
12718c2ecf20Sopenharmony_ci			continue;
12728c2ecf20Sopenharmony_ci
12738c2ecf20Sopenharmony_ci		/*
12748c2ecf20Sopenharmony_ci		 * Avoid the lockdep recursive warning on object->lock being
12758c2ecf20Sopenharmony_ci		 * previously acquired in scan_object(). These locks are
12768c2ecf20Sopenharmony_ci		 * enclosed by scan_mutex.
12778c2ecf20Sopenharmony_ci		 */
12788c2ecf20Sopenharmony_ci		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
12798c2ecf20Sopenharmony_ci		/* only pass surplus references (object already gray) */
12808c2ecf20Sopenharmony_ci		if (color_gray(object)) {
12818c2ecf20Sopenharmony_ci			excess_ref = object->excess_ref;
12828c2ecf20Sopenharmony_ci			/* no need for update_refs() if object already gray */
12838c2ecf20Sopenharmony_ci		} else {
12848c2ecf20Sopenharmony_ci			excess_ref = 0;
12858c2ecf20Sopenharmony_ci			update_refs(object);
12868c2ecf20Sopenharmony_ci		}
12878c2ecf20Sopenharmony_ci		raw_spin_unlock(&object->lock);
12888c2ecf20Sopenharmony_ci
12898c2ecf20Sopenharmony_ci		if (excess_ref) {
12908c2ecf20Sopenharmony_ci			object = lookup_object(excess_ref, 0);
12918c2ecf20Sopenharmony_ci			if (!object)
12928c2ecf20Sopenharmony_ci				continue;
12938c2ecf20Sopenharmony_ci			if (object == scanned)
12948c2ecf20Sopenharmony_ci				/* circular reference, ignore */
12958c2ecf20Sopenharmony_ci				continue;
12968c2ecf20Sopenharmony_ci			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
12978c2ecf20Sopenharmony_ci			update_refs(object);
12988c2ecf20Sopenharmony_ci			raw_spin_unlock(&object->lock);
12998c2ecf20Sopenharmony_ci		}
13008c2ecf20Sopenharmony_ci	}
13018c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
13028c2ecf20Sopenharmony_ci}
13038c2ecf20Sopenharmony_ci
13048c2ecf20Sopenharmony_ci/*
13058c2ecf20Sopenharmony_ci * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
13068c2ecf20Sopenharmony_ci */
13078c2ecf20Sopenharmony_ci#ifdef CONFIG_SMP
13088c2ecf20Sopenharmony_cistatic void scan_large_block(void *start, void *end)
13098c2ecf20Sopenharmony_ci{
13108c2ecf20Sopenharmony_ci	void *next;
13118c2ecf20Sopenharmony_ci
13128c2ecf20Sopenharmony_ci	while (start < end) {
13138c2ecf20Sopenharmony_ci		next = min(start + MAX_SCAN_SIZE, end);
13148c2ecf20Sopenharmony_ci		scan_block(start, next, NULL);
13158c2ecf20Sopenharmony_ci		start = next;
13168c2ecf20Sopenharmony_ci		cond_resched();
13178c2ecf20Sopenharmony_ci	}
13188c2ecf20Sopenharmony_ci}
13198c2ecf20Sopenharmony_ci#endif
13208c2ecf20Sopenharmony_ci
13218c2ecf20Sopenharmony_ci/*
13228c2ecf20Sopenharmony_ci * Scan a memory block corresponding to a kmemleak_object. A condition is
13238c2ecf20Sopenharmony_ci * that object->use_count >= 1.
13248c2ecf20Sopenharmony_ci */
13258c2ecf20Sopenharmony_cistatic void scan_object(struct kmemleak_object *object)
13268c2ecf20Sopenharmony_ci{
13278c2ecf20Sopenharmony_ci	struct kmemleak_scan_area *area;
13288c2ecf20Sopenharmony_ci	unsigned long flags;
13298c2ecf20Sopenharmony_ci
13308c2ecf20Sopenharmony_ci	/*
13318c2ecf20Sopenharmony_ci	 * Once the object->lock is acquired, the corresponding memory block
13328c2ecf20Sopenharmony_ci	 * cannot be freed (the same lock is acquired in delete_object).
13338c2ecf20Sopenharmony_ci	 */
13348c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
13358c2ecf20Sopenharmony_ci	if (object->flags & OBJECT_NO_SCAN)
13368c2ecf20Sopenharmony_ci		goto out;
13378c2ecf20Sopenharmony_ci	if (!(object->flags & OBJECT_ALLOCATED))
13388c2ecf20Sopenharmony_ci		/* already freed object */
13398c2ecf20Sopenharmony_ci		goto out;
13408c2ecf20Sopenharmony_ci	if (hlist_empty(&object->area_list) ||
13418c2ecf20Sopenharmony_ci	    object->flags & OBJECT_FULL_SCAN) {
13428c2ecf20Sopenharmony_ci		void *start = (void *)object->pointer;
13438c2ecf20Sopenharmony_ci		void *end = (void *)(object->pointer + object->size);
13448c2ecf20Sopenharmony_ci		void *next;
13458c2ecf20Sopenharmony_ci
13468c2ecf20Sopenharmony_ci		do {
13478c2ecf20Sopenharmony_ci			next = min(start + MAX_SCAN_SIZE, end);
13488c2ecf20Sopenharmony_ci			scan_block(start, next, object);
13498c2ecf20Sopenharmony_ci
13508c2ecf20Sopenharmony_ci			start = next;
13518c2ecf20Sopenharmony_ci			if (start >= end)
13528c2ecf20Sopenharmony_ci				break;
13538c2ecf20Sopenharmony_ci
13548c2ecf20Sopenharmony_ci			raw_spin_unlock_irqrestore(&object->lock, flags);
13558c2ecf20Sopenharmony_ci			cond_resched();
13568c2ecf20Sopenharmony_ci			raw_spin_lock_irqsave(&object->lock, flags);
13578c2ecf20Sopenharmony_ci		} while (object->flags & OBJECT_ALLOCATED);
13588c2ecf20Sopenharmony_ci	} else
13598c2ecf20Sopenharmony_ci		hlist_for_each_entry(area, &object->area_list, node)
13608c2ecf20Sopenharmony_ci			scan_block((void *)area->start,
13618c2ecf20Sopenharmony_ci				   (void *)(area->start + area->size),
13628c2ecf20Sopenharmony_ci				   object);
13638c2ecf20Sopenharmony_ciout:
13648c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
13658c2ecf20Sopenharmony_ci}
13668c2ecf20Sopenharmony_ci
13678c2ecf20Sopenharmony_ci/*
13688c2ecf20Sopenharmony_ci * Scan the objects already referenced (gray objects). More objects will be
13698c2ecf20Sopenharmony_ci * referenced and, if there are no memory leaks, all the objects are scanned.
13708c2ecf20Sopenharmony_ci */
13718c2ecf20Sopenharmony_cistatic void scan_gray_list(void)
13728c2ecf20Sopenharmony_ci{
13738c2ecf20Sopenharmony_ci	struct kmemleak_object *object, *tmp;
13748c2ecf20Sopenharmony_ci
13758c2ecf20Sopenharmony_ci	/*
13768c2ecf20Sopenharmony_ci	 * The list traversal is safe for both tail additions and removals
13778c2ecf20Sopenharmony_ci	 * from inside the loop. The kmemleak objects cannot be freed from
13788c2ecf20Sopenharmony_ci	 * outside the loop because their use_count was incremented.
13798c2ecf20Sopenharmony_ci	 */
13808c2ecf20Sopenharmony_ci	object = list_entry(gray_list.next, typeof(*object), gray_list);
13818c2ecf20Sopenharmony_ci	while (&object->gray_list != &gray_list) {
13828c2ecf20Sopenharmony_ci		cond_resched();
13838c2ecf20Sopenharmony_ci
13848c2ecf20Sopenharmony_ci		/* may add new objects to the list */
13858c2ecf20Sopenharmony_ci		if (!scan_should_stop())
13868c2ecf20Sopenharmony_ci			scan_object(object);
13878c2ecf20Sopenharmony_ci
13888c2ecf20Sopenharmony_ci		tmp = list_entry(object->gray_list.next, typeof(*object),
13898c2ecf20Sopenharmony_ci				 gray_list);
13908c2ecf20Sopenharmony_ci
13918c2ecf20Sopenharmony_ci		/* remove the object from the list and release it */
13928c2ecf20Sopenharmony_ci		list_del(&object->gray_list);
13938c2ecf20Sopenharmony_ci		put_object(object);
13948c2ecf20Sopenharmony_ci
13958c2ecf20Sopenharmony_ci		object = tmp;
13968c2ecf20Sopenharmony_ci	}
13978c2ecf20Sopenharmony_ci	WARN_ON(!list_empty(&gray_list));
13988c2ecf20Sopenharmony_ci}
13998c2ecf20Sopenharmony_ci
14008c2ecf20Sopenharmony_ci/*
14018c2ecf20Sopenharmony_ci * Scan data sections and all the referenced memory blocks allocated via the
14028c2ecf20Sopenharmony_ci * kernel's standard allocators. This function must be called with the
14038c2ecf20Sopenharmony_ci * scan_mutex held.
14048c2ecf20Sopenharmony_ci */
14058c2ecf20Sopenharmony_cistatic void kmemleak_scan(void)
14068c2ecf20Sopenharmony_ci{
14078c2ecf20Sopenharmony_ci	unsigned long flags;
14088c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
14098c2ecf20Sopenharmony_ci	struct zone *zone;
14108c2ecf20Sopenharmony_ci	int __maybe_unused i;
14118c2ecf20Sopenharmony_ci	int new_leaks = 0;
14128c2ecf20Sopenharmony_ci
14138c2ecf20Sopenharmony_ci	jiffies_last_scan = jiffies;
14148c2ecf20Sopenharmony_ci
14158c2ecf20Sopenharmony_ci	/* prepare the kmemleak_object's */
14168c2ecf20Sopenharmony_ci	rcu_read_lock();
14178c2ecf20Sopenharmony_ci	list_for_each_entry_rcu(object, &object_list, object_list) {
14188c2ecf20Sopenharmony_ci		raw_spin_lock_irqsave(&object->lock, flags);
14198c2ecf20Sopenharmony_ci#ifdef DEBUG
14208c2ecf20Sopenharmony_ci		/*
14218c2ecf20Sopenharmony_ci		 * With a few exceptions there should be a maximum of
14228c2ecf20Sopenharmony_ci		 * 1 reference to any object at this point.
14238c2ecf20Sopenharmony_ci		 */
14248c2ecf20Sopenharmony_ci		if (atomic_read(&object->use_count) > 1) {
14258c2ecf20Sopenharmony_ci			pr_debug("object->use_count = %d\n",
14268c2ecf20Sopenharmony_ci				 atomic_read(&object->use_count));
14278c2ecf20Sopenharmony_ci			dump_object_info(object);
14288c2ecf20Sopenharmony_ci		}
14298c2ecf20Sopenharmony_ci#endif
14308c2ecf20Sopenharmony_ci		/* reset the reference count (whiten the object) */
14318c2ecf20Sopenharmony_ci		object->count = 0;
14328c2ecf20Sopenharmony_ci		if (color_gray(object) && get_object(object))
14338c2ecf20Sopenharmony_ci			list_add_tail(&object->gray_list, &gray_list);
14348c2ecf20Sopenharmony_ci
14358c2ecf20Sopenharmony_ci		raw_spin_unlock_irqrestore(&object->lock, flags);
14368c2ecf20Sopenharmony_ci	}
14378c2ecf20Sopenharmony_ci	rcu_read_unlock();
14388c2ecf20Sopenharmony_ci
14398c2ecf20Sopenharmony_ci#ifdef CONFIG_SMP
14408c2ecf20Sopenharmony_ci	/* per-cpu sections scanning */
14418c2ecf20Sopenharmony_ci	for_each_possible_cpu(i)
14428c2ecf20Sopenharmony_ci		scan_large_block(__per_cpu_start + per_cpu_offset(i),
14438c2ecf20Sopenharmony_ci				 __per_cpu_end + per_cpu_offset(i));
14448c2ecf20Sopenharmony_ci#endif
14458c2ecf20Sopenharmony_ci
14468c2ecf20Sopenharmony_ci	/*
14478c2ecf20Sopenharmony_ci	 * Struct page scanning for each node.
14488c2ecf20Sopenharmony_ci	 */
14498c2ecf20Sopenharmony_ci	get_online_mems();
14508c2ecf20Sopenharmony_ci	for_each_populated_zone(zone) {
14518c2ecf20Sopenharmony_ci		unsigned long start_pfn = zone->zone_start_pfn;
14528c2ecf20Sopenharmony_ci		unsigned long end_pfn = zone_end_pfn(zone);
14538c2ecf20Sopenharmony_ci		unsigned long pfn;
14548c2ecf20Sopenharmony_ci
14558c2ecf20Sopenharmony_ci		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
14568c2ecf20Sopenharmony_ci			struct page *page = pfn_to_online_page(pfn);
14578c2ecf20Sopenharmony_ci
14588c2ecf20Sopenharmony_ci			if (!page)
14598c2ecf20Sopenharmony_ci				continue;
14608c2ecf20Sopenharmony_ci
14618c2ecf20Sopenharmony_ci			/* only scan pages belonging to this zone */
14628c2ecf20Sopenharmony_ci			if (page_zone(page) != zone)
14638c2ecf20Sopenharmony_ci				continue;
14648c2ecf20Sopenharmony_ci			/* only scan if page is in use */
14658c2ecf20Sopenharmony_ci			if (page_count(page) == 0)
14668c2ecf20Sopenharmony_ci				continue;
14678c2ecf20Sopenharmony_ci			scan_block(page, page + 1, NULL);
14688c2ecf20Sopenharmony_ci			if (!(pfn & 63))
14698c2ecf20Sopenharmony_ci				cond_resched();
14708c2ecf20Sopenharmony_ci		}
14718c2ecf20Sopenharmony_ci	}
14728c2ecf20Sopenharmony_ci	put_online_mems();
14738c2ecf20Sopenharmony_ci
14748c2ecf20Sopenharmony_ci	/*
14758c2ecf20Sopenharmony_ci	 * Scanning the task stacks (may introduce false negatives).
14768c2ecf20Sopenharmony_ci	 */
14778c2ecf20Sopenharmony_ci	if (kmemleak_stack_scan) {
14788c2ecf20Sopenharmony_ci		struct task_struct *p, *g;
14798c2ecf20Sopenharmony_ci
14808c2ecf20Sopenharmony_ci		rcu_read_lock();
14818c2ecf20Sopenharmony_ci		for_each_process_thread(g, p) {
14828c2ecf20Sopenharmony_ci			void *stack = try_get_task_stack(p);
14838c2ecf20Sopenharmony_ci			if (stack) {
14848c2ecf20Sopenharmony_ci				scan_block(stack, stack + THREAD_SIZE, NULL);
14858c2ecf20Sopenharmony_ci				put_task_stack(p);
14868c2ecf20Sopenharmony_ci			}
14878c2ecf20Sopenharmony_ci		}
14888c2ecf20Sopenharmony_ci		rcu_read_unlock();
14898c2ecf20Sopenharmony_ci	}
14908c2ecf20Sopenharmony_ci
14918c2ecf20Sopenharmony_ci	/*
14928c2ecf20Sopenharmony_ci	 * Scan the objects already referenced from the sections scanned
14938c2ecf20Sopenharmony_ci	 * above.
14948c2ecf20Sopenharmony_ci	 */
14958c2ecf20Sopenharmony_ci	scan_gray_list();
14968c2ecf20Sopenharmony_ci
14978c2ecf20Sopenharmony_ci	/*
14988c2ecf20Sopenharmony_ci	 * Check for new or unreferenced objects modified since the previous
14998c2ecf20Sopenharmony_ci	 * scan and color them gray until the next scan.
15008c2ecf20Sopenharmony_ci	 */
15018c2ecf20Sopenharmony_ci	rcu_read_lock();
15028c2ecf20Sopenharmony_ci	list_for_each_entry_rcu(object, &object_list, object_list) {
15038c2ecf20Sopenharmony_ci		raw_spin_lock_irqsave(&object->lock, flags);
15048c2ecf20Sopenharmony_ci		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
15058c2ecf20Sopenharmony_ci		    && update_checksum(object) && get_object(object)) {
15068c2ecf20Sopenharmony_ci			/* color it gray temporarily */
15078c2ecf20Sopenharmony_ci			object->count = object->min_count;
15088c2ecf20Sopenharmony_ci			list_add_tail(&object->gray_list, &gray_list);
15098c2ecf20Sopenharmony_ci		}
15108c2ecf20Sopenharmony_ci		raw_spin_unlock_irqrestore(&object->lock, flags);
15118c2ecf20Sopenharmony_ci	}
15128c2ecf20Sopenharmony_ci	rcu_read_unlock();
15138c2ecf20Sopenharmony_ci
15148c2ecf20Sopenharmony_ci	/*
15158c2ecf20Sopenharmony_ci	 * Re-scan the gray list for modified unreferenced objects.
15168c2ecf20Sopenharmony_ci	 */
15178c2ecf20Sopenharmony_ci	scan_gray_list();
15188c2ecf20Sopenharmony_ci
15198c2ecf20Sopenharmony_ci	/*
15208c2ecf20Sopenharmony_ci	 * If scanning was stopped do not report any new unreferenced objects.
15218c2ecf20Sopenharmony_ci	 */
15228c2ecf20Sopenharmony_ci	if (scan_should_stop())
15238c2ecf20Sopenharmony_ci		return;
15248c2ecf20Sopenharmony_ci
15258c2ecf20Sopenharmony_ci	/*
15268c2ecf20Sopenharmony_ci	 * Scanning result reporting.
15278c2ecf20Sopenharmony_ci	 */
15288c2ecf20Sopenharmony_ci	rcu_read_lock();
15298c2ecf20Sopenharmony_ci	list_for_each_entry_rcu(object, &object_list, object_list) {
15308c2ecf20Sopenharmony_ci		raw_spin_lock_irqsave(&object->lock, flags);
15318c2ecf20Sopenharmony_ci		if (unreferenced_object(object) &&
15328c2ecf20Sopenharmony_ci		    !(object->flags & OBJECT_REPORTED)) {
15338c2ecf20Sopenharmony_ci			object->flags |= OBJECT_REPORTED;
15348c2ecf20Sopenharmony_ci
15358c2ecf20Sopenharmony_ci			if (kmemleak_verbose)
15368c2ecf20Sopenharmony_ci				print_unreferenced(NULL, object);
15378c2ecf20Sopenharmony_ci
15388c2ecf20Sopenharmony_ci			new_leaks++;
15398c2ecf20Sopenharmony_ci		}
15408c2ecf20Sopenharmony_ci		raw_spin_unlock_irqrestore(&object->lock, flags);
15418c2ecf20Sopenharmony_ci	}
15428c2ecf20Sopenharmony_ci	rcu_read_unlock();
15438c2ecf20Sopenharmony_ci
15448c2ecf20Sopenharmony_ci	if (new_leaks) {
15458c2ecf20Sopenharmony_ci		kmemleak_found_leaks = true;
15468c2ecf20Sopenharmony_ci
15478c2ecf20Sopenharmony_ci		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
15488c2ecf20Sopenharmony_ci			new_leaks);
15498c2ecf20Sopenharmony_ci	}
15508c2ecf20Sopenharmony_ci
15518c2ecf20Sopenharmony_ci}
15528c2ecf20Sopenharmony_ci
15538c2ecf20Sopenharmony_ci/*
15548c2ecf20Sopenharmony_ci * Thread function performing automatic memory scanning. Unreferenced objects
15558c2ecf20Sopenharmony_ci * at the end of a memory scan are reported but only the first time.
15568c2ecf20Sopenharmony_ci */
15578c2ecf20Sopenharmony_cistatic int kmemleak_scan_thread(void *arg)
15588c2ecf20Sopenharmony_ci{
15598c2ecf20Sopenharmony_ci	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
15608c2ecf20Sopenharmony_ci
15618c2ecf20Sopenharmony_ci	pr_info("Automatic memory scanning thread started\n");
15628c2ecf20Sopenharmony_ci	set_user_nice(current, 10);
15638c2ecf20Sopenharmony_ci
15648c2ecf20Sopenharmony_ci	/*
15658c2ecf20Sopenharmony_ci	 * Wait before the first scan to allow the system to fully initialize.
15668c2ecf20Sopenharmony_ci	 */
15678c2ecf20Sopenharmony_ci	if (first_run) {
15688c2ecf20Sopenharmony_ci		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
15698c2ecf20Sopenharmony_ci		first_run = 0;
15708c2ecf20Sopenharmony_ci		while (timeout && !kthread_should_stop())
15718c2ecf20Sopenharmony_ci			timeout = schedule_timeout_interruptible(timeout);
15728c2ecf20Sopenharmony_ci	}
15738c2ecf20Sopenharmony_ci
15748c2ecf20Sopenharmony_ci	while (!kthread_should_stop()) {
15758c2ecf20Sopenharmony_ci		signed long timeout = jiffies_scan_wait;
15768c2ecf20Sopenharmony_ci
15778c2ecf20Sopenharmony_ci		mutex_lock(&scan_mutex);
15788c2ecf20Sopenharmony_ci		kmemleak_scan();
15798c2ecf20Sopenharmony_ci		mutex_unlock(&scan_mutex);
15808c2ecf20Sopenharmony_ci
15818c2ecf20Sopenharmony_ci		/* wait before the next scan */
15828c2ecf20Sopenharmony_ci		while (timeout && !kthread_should_stop())
15838c2ecf20Sopenharmony_ci			timeout = schedule_timeout_interruptible(timeout);
15848c2ecf20Sopenharmony_ci	}
15858c2ecf20Sopenharmony_ci
15868c2ecf20Sopenharmony_ci	pr_info("Automatic memory scanning thread ended\n");
15878c2ecf20Sopenharmony_ci
15888c2ecf20Sopenharmony_ci	return 0;
15898c2ecf20Sopenharmony_ci}
15908c2ecf20Sopenharmony_ci
15918c2ecf20Sopenharmony_ci/*
15928c2ecf20Sopenharmony_ci * Start the automatic memory scanning thread. This function must be called
15938c2ecf20Sopenharmony_ci * with the scan_mutex held.
15948c2ecf20Sopenharmony_ci */
15958c2ecf20Sopenharmony_cistatic void start_scan_thread(void)
15968c2ecf20Sopenharmony_ci{
15978c2ecf20Sopenharmony_ci	if (scan_thread)
15988c2ecf20Sopenharmony_ci		return;
15998c2ecf20Sopenharmony_ci	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
16008c2ecf20Sopenharmony_ci	if (IS_ERR(scan_thread)) {
16018c2ecf20Sopenharmony_ci		pr_warn("Failed to create the scan thread\n");
16028c2ecf20Sopenharmony_ci		scan_thread = NULL;
16038c2ecf20Sopenharmony_ci	}
16048c2ecf20Sopenharmony_ci}
16058c2ecf20Sopenharmony_ci
16068c2ecf20Sopenharmony_ci/*
16078c2ecf20Sopenharmony_ci * Stop the automatic memory scanning thread.
16088c2ecf20Sopenharmony_ci */
16098c2ecf20Sopenharmony_cistatic void stop_scan_thread(void)
16108c2ecf20Sopenharmony_ci{
16118c2ecf20Sopenharmony_ci	if (scan_thread) {
16128c2ecf20Sopenharmony_ci		kthread_stop(scan_thread);
16138c2ecf20Sopenharmony_ci		scan_thread = NULL;
16148c2ecf20Sopenharmony_ci	}
16158c2ecf20Sopenharmony_ci}
16168c2ecf20Sopenharmony_ci
16178c2ecf20Sopenharmony_ci/*
16188c2ecf20Sopenharmony_ci * Iterate over the object_list and return the first valid object at or after
16198c2ecf20Sopenharmony_ci * the required position with its use_count incremented. The function triggers
16208c2ecf20Sopenharmony_ci * a memory scanning when the pos argument points to the first position.
16218c2ecf20Sopenharmony_ci */
16228c2ecf20Sopenharmony_cistatic void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
16238c2ecf20Sopenharmony_ci{
16248c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
16258c2ecf20Sopenharmony_ci	loff_t n = *pos;
16268c2ecf20Sopenharmony_ci	int err;
16278c2ecf20Sopenharmony_ci
16288c2ecf20Sopenharmony_ci	err = mutex_lock_interruptible(&scan_mutex);
16298c2ecf20Sopenharmony_ci	if (err < 0)
16308c2ecf20Sopenharmony_ci		return ERR_PTR(err);
16318c2ecf20Sopenharmony_ci
16328c2ecf20Sopenharmony_ci	rcu_read_lock();
16338c2ecf20Sopenharmony_ci	list_for_each_entry_rcu(object, &object_list, object_list) {
16348c2ecf20Sopenharmony_ci		if (n-- > 0)
16358c2ecf20Sopenharmony_ci			continue;
16368c2ecf20Sopenharmony_ci		if (get_object(object))
16378c2ecf20Sopenharmony_ci			goto out;
16388c2ecf20Sopenharmony_ci	}
16398c2ecf20Sopenharmony_ci	object = NULL;
16408c2ecf20Sopenharmony_ciout:
16418c2ecf20Sopenharmony_ci	return object;
16428c2ecf20Sopenharmony_ci}
16438c2ecf20Sopenharmony_ci
16448c2ecf20Sopenharmony_ci/*
16458c2ecf20Sopenharmony_ci * Return the next object in the object_list. The function decrements the
16468c2ecf20Sopenharmony_ci * use_count of the previous object and increases that of the next one.
16478c2ecf20Sopenharmony_ci */
16488c2ecf20Sopenharmony_cistatic void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
16498c2ecf20Sopenharmony_ci{
16508c2ecf20Sopenharmony_ci	struct kmemleak_object *prev_obj = v;
16518c2ecf20Sopenharmony_ci	struct kmemleak_object *next_obj = NULL;
16528c2ecf20Sopenharmony_ci	struct kmemleak_object *obj = prev_obj;
16538c2ecf20Sopenharmony_ci
16548c2ecf20Sopenharmony_ci	++(*pos);
16558c2ecf20Sopenharmony_ci
16568c2ecf20Sopenharmony_ci	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
16578c2ecf20Sopenharmony_ci		if (get_object(obj)) {
16588c2ecf20Sopenharmony_ci			next_obj = obj;
16598c2ecf20Sopenharmony_ci			break;
16608c2ecf20Sopenharmony_ci		}
16618c2ecf20Sopenharmony_ci	}
16628c2ecf20Sopenharmony_ci
16638c2ecf20Sopenharmony_ci	put_object(prev_obj);
16648c2ecf20Sopenharmony_ci	return next_obj;
16658c2ecf20Sopenharmony_ci}
16668c2ecf20Sopenharmony_ci
16678c2ecf20Sopenharmony_ci/*
16688c2ecf20Sopenharmony_ci * Decrement the use_count of the last object required, if any.
16698c2ecf20Sopenharmony_ci */
16708c2ecf20Sopenharmony_cistatic void kmemleak_seq_stop(struct seq_file *seq, void *v)
16718c2ecf20Sopenharmony_ci{
16728c2ecf20Sopenharmony_ci	if (!IS_ERR(v)) {
16738c2ecf20Sopenharmony_ci		/*
16748c2ecf20Sopenharmony_ci		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
16758c2ecf20Sopenharmony_ci		 * waiting was interrupted, so only release it if !IS_ERR.
16768c2ecf20Sopenharmony_ci		 */
16778c2ecf20Sopenharmony_ci		rcu_read_unlock();
16788c2ecf20Sopenharmony_ci		mutex_unlock(&scan_mutex);
16798c2ecf20Sopenharmony_ci		if (v)
16808c2ecf20Sopenharmony_ci			put_object(v);
16818c2ecf20Sopenharmony_ci	}
16828c2ecf20Sopenharmony_ci}
16838c2ecf20Sopenharmony_ci
16848c2ecf20Sopenharmony_ci/*
16858c2ecf20Sopenharmony_ci * Print the information for an unreferenced object to the seq file.
16868c2ecf20Sopenharmony_ci */
16878c2ecf20Sopenharmony_cistatic int kmemleak_seq_show(struct seq_file *seq, void *v)
16888c2ecf20Sopenharmony_ci{
16898c2ecf20Sopenharmony_ci	struct kmemleak_object *object = v;
16908c2ecf20Sopenharmony_ci	unsigned long flags;
16918c2ecf20Sopenharmony_ci
16928c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
16938c2ecf20Sopenharmony_ci	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
16948c2ecf20Sopenharmony_ci		print_unreferenced(seq, object);
16958c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
16968c2ecf20Sopenharmony_ci	return 0;
16978c2ecf20Sopenharmony_ci}
16988c2ecf20Sopenharmony_ci
16998c2ecf20Sopenharmony_cistatic const struct seq_operations kmemleak_seq_ops = {
17008c2ecf20Sopenharmony_ci	.start = kmemleak_seq_start,
17018c2ecf20Sopenharmony_ci	.next  = kmemleak_seq_next,
17028c2ecf20Sopenharmony_ci	.stop  = kmemleak_seq_stop,
17038c2ecf20Sopenharmony_ci	.show  = kmemleak_seq_show,
17048c2ecf20Sopenharmony_ci};
17058c2ecf20Sopenharmony_ci
17068c2ecf20Sopenharmony_cistatic int kmemleak_open(struct inode *inode, struct file *file)
17078c2ecf20Sopenharmony_ci{
17088c2ecf20Sopenharmony_ci	return seq_open(file, &kmemleak_seq_ops);
17098c2ecf20Sopenharmony_ci}
17108c2ecf20Sopenharmony_ci
17118c2ecf20Sopenharmony_cistatic int dump_str_object_info(const char *str)
17128c2ecf20Sopenharmony_ci{
17138c2ecf20Sopenharmony_ci	unsigned long flags;
17148c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
17158c2ecf20Sopenharmony_ci	unsigned long addr;
17168c2ecf20Sopenharmony_ci
17178c2ecf20Sopenharmony_ci	if (kstrtoul(str, 0, &addr))
17188c2ecf20Sopenharmony_ci		return -EINVAL;
17198c2ecf20Sopenharmony_ci	object = find_and_get_object(addr, 0);
17208c2ecf20Sopenharmony_ci	if (!object) {
17218c2ecf20Sopenharmony_ci		pr_info("Unknown object at 0x%08lx\n", addr);
17228c2ecf20Sopenharmony_ci		return -EINVAL;
17238c2ecf20Sopenharmony_ci	}
17248c2ecf20Sopenharmony_ci
17258c2ecf20Sopenharmony_ci	raw_spin_lock_irqsave(&object->lock, flags);
17268c2ecf20Sopenharmony_ci	dump_object_info(object);
17278c2ecf20Sopenharmony_ci	raw_spin_unlock_irqrestore(&object->lock, flags);
17288c2ecf20Sopenharmony_ci
17298c2ecf20Sopenharmony_ci	put_object(object);
17308c2ecf20Sopenharmony_ci	return 0;
17318c2ecf20Sopenharmony_ci}
17328c2ecf20Sopenharmony_ci
17338c2ecf20Sopenharmony_ci/*
17348c2ecf20Sopenharmony_ci * We use grey instead of black to ensure we can do future scans on the same
17358c2ecf20Sopenharmony_ci * objects. If we did not do future scans these black objects could
17368c2ecf20Sopenharmony_ci * potentially contain references to newly allocated objects in the future and
17378c2ecf20Sopenharmony_ci * we'd end up with false positives.
17388c2ecf20Sopenharmony_ci */
17398c2ecf20Sopenharmony_cistatic void kmemleak_clear(void)
17408c2ecf20Sopenharmony_ci{
17418c2ecf20Sopenharmony_ci	struct kmemleak_object *object;
17428c2ecf20Sopenharmony_ci	unsigned long flags;
17438c2ecf20Sopenharmony_ci
17448c2ecf20Sopenharmony_ci	rcu_read_lock();
17458c2ecf20Sopenharmony_ci	list_for_each_entry_rcu(object, &object_list, object_list) {
17468c2ecf20Sopenharmony_ci		raw_spin_lock_irqsave(&object->lock, flags);
17478c2ecf20Sopenharmony_ci		if ((object->flags & OBJECT_REPORTED) &&
17488c2ecf20Sopenharmony_ci		    unreferenced_object(object))
17498c2ecf20Sopenharmony_ci			__paint_it(object, KMEMLEAK_GREY);
17508c2ecf20Sopenharmony_ci		raw_spin_unlock_irqrestore(&object->lock, flags);
17518c2ecf20Sopenharmony_ci	}
17528c2ecf20Sopenharmony_ci	rcu_read_unlock();
17538c2ecf20Sopenharmony_ci
17548c2ecf20Sopenharmony_ci	kmemleak_found_leaks = false;
17558c2ecf20Sopenharmony_ci}
17568c2ecf20Sopenharmony_ci
17578c2ecf20Sopenharmony_cistatic void __kmemleak_do_cleanup(void);
17588c2ecf20Sopenharmony_ci
17598c2ecf20Sopenharmony_ci/*
17608c2ecf20Sopenharmony_ci * File write operation to configure kmemleak at run-time. The following
17618c2ecf20Sopenharmony_ci * commands can be written to the /sys/kernel/debug/kmemleak file:
17628c2ecf20Sopenharmony_ci *   off	- disable kmemleak (irreversible)
17638c2ecf20Sopenharmony_ci *   stack=on	- enable the task stacks scanning
17648c2ecf20Sopenharmony_ci *   stack=off	- disable the tasks stacks scanning
17658c2ecf20Sopenharmony_ci *   scan=on	- start the automatic memory scanning thread
17668c2ecf20Sopenharmony_ci *   scan=off	- stop the automatic memory scanning thread
17678c2ecf20Sopenharmony_ci *   scan=...	- set the automatic memory scanning period in seconds (0 to
17688c2ecf20Sopenharmony_ci *		  disable it)
17698c2ecf20Sopenharmony_ci *   scan	- trigger a memory scan
17708c2ecf20Sopenharmony_ci *   clear	- mark all current reported unreferenced kmemleak objects as
17718c2ecf20Sopenharmony_ci *		  grey to ignore printing them, or free all kmemleak objects
17728c2ecf20Sopenharmony_ci *		  if kmemleak has been disabled.
17738c2ecf20Sopenharmony_ci *   dump=...	- dump information about the object found at the given address
17748c2ecf20Sopenharmony_ci */
17758c2ecf20Sopenharmony_cistatic ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
17768c2ecf20Sopenharmony_ci			      size_t size, loff_t *ppos)
17778c2ecf20Sopenharmony_ci{
17788c2ecf20Sopenharmony_ci	char buf[64];
17798c2ecf20Sopenharmony_ci	int buf_size;
17808c2ecf20Sopenharmony_ci	int ret;
17818c2ecf20Sopenharmony_ci
17828c2ecf20Sopenharmony_ci	buf_size = min(size, (sizeof(buf) - 1));
17838c2ecf20Sopenharmony_ci	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
17848c2ecf20Sopenharmony_ci		return -EFAULT;
17858c2ecf20Sopenharmony_ci	buf[buf_size] = 0;
17868c2ecf20Sopenharmony_ci
17878c2ecf20Sopenharmony_ci	ret = mutex_lock_interruptible(&scan_mutex);
17888c2ecf20Sopenharmony_ci	if (ret < 0)
17898c2ecf20Sopenharmony_ci		return ret;
17908c2ecf20Sopenharmony_ci
17918c2ecf20Sopenharmony_ci	if (strncmp(buf, "clear", 5) == 0) {
17928c2ecf20Sopenharmony_ci		if (kmemleak_enabled)
17938c2ecf20Sopenharmony_ci			kmemleak_clear();
17948c2ecf20Sopenharmony_ci		else
17958c2ecf20Sopenharmony_ci			__kmemleak_do_cleanup();
17968c2ecf20Sopenharmony_ci		goto out;
17978c2ecf20Sopenharmony_ci	}
17988c2ecf20Sopenharmony_ci
17998c2ecf20Sopenharmony_ci	if (!kmemleak_enabled) {
18008c2ecf20Sopenharmony_ci		ret = -EPERM;
18018c2ecf20Sopenharmony_ci		goto out;
18028c2ecf20Sopenharmony_ci	}
18038c2ecf20Sopenharmony_ci
18048c2ecf20Sopenharmony_ci	if (strncmp(buf, "off", 3) == 0)
18058c2ecf20Sopenharmony_ci		kmemleak_disable();
18068c2ecf20Sopenharmony_ci	else if (strncmp(buf, "stack=on", 8) == 0)
18078c2ecf20Sopenharmony_ci		kmemleak_stack_scan = 1;
18088c2ecf20Sopenharmony_ci	else if (strncmp(buf, "stack=off", 9) == 0)
18098c2ecf20Sopenharmony_ci		kmemleak_stack_scan = 0;
18108c2ecf20Sopenharmony_ci	else if (strncmp(buf, "scan=on", 7) == 0)
18118c2ecf20Sopenharmony_ci		start_scan_thread();
18128c2ecf20Sopenharmony_ci	else if (strncmp(buf, "scan=off", 8) == 0)
18138c2ecf20Sopenharmony_ci		stop_scan_thread();
18148c2ecf20Sopenharmony_ci	else if (strncmp(buf, "scan=", 5) == 0) {
18158c2ecf20Sopenharmony_ci		unsigned long secs;
18168c2ecf20Sopenharmony_ci
18178c2ecf20Sopenharmony_ci		ret = kstrtoul(buf + 5, 0, &secs);
18188c2ecf20Sopenharmony_ci		if (ret < 0)
18198c2ecf20Sopenharmony_ci			goto out;
18208c2ecf20Sopenharmony_ci		stop_scan_thread();
18218c2ecf20Sopenharmony_ci		if (secs) {
18228c2ecf20Sopenharmony_ci			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
18238c2ecf20Sopenharmony_ci			start_scan_thread();
18248c2ecf20Sopenharmony_ci		}
18258c2ecf20Sopenharmony_ci	} else if (strncmp(buf, "scan", 4) == 0)
18268c2ecf20Sopenharmony_ci		kmemleak_scan();
18278c2ecf20Sopenharmony_ci	else if (strncmp(buf, "dump=", 5) == 0)
18288c2ecf20Sopenharmony_ci		ret = dump_str_object_info(buf + 5);
18298c2ecf20Sopenharmony_ci	else
18308c2ecf20Sopenharmony_ci		ret = -EINVAL;
18318c2ecf20Sopenharmony_ci
18328c2ecf20Sopenharmony_ciout:
18338c2ecf20Sopenharmony_ci	mutex_unlock(&scan_mutex);
18348c2ecf20Sopenharmony_ci	if (ret < 0)
18358c2ecf20Sopenharmony_ci		return ret;
18368c2ecf20Sopenharmony_ci
18378c2ecf20Sopenharmony_ci	/* ignore the rest of the buffer, only one command at a time */
18388c2ecf20Sopenharmony_ci	*ppos += size;
18398c2ecf20Sopenharmony_ci	return size;
18408c2ecf20Sopenharmony_ci}
18418c2ecf20Sopenharmony_ci
18428c2ecf20Sopenharmony_cistatic const struct file_operations kmemleak_fops = {
18438c2ecf20Sopenharmony_ci	.owner		= THIS_MODULE,
18448c2ecf20Sopenharmony_ci	.open		= kmemleak_open,
18458c2ecf20Sopenharmony_ci	.read		= seq_read,
18468c2ecf20Sopenharmony_ci	.write		= kmemleak_write,
18478c2ecf20Sopenharmony_ci	.llseek		= seq_lseek,
18488c2ecf20Sopenharmony_ci	.release	= seq_release,
18498c2ecf20Sopenharmony_ci};
18508c2ecf20Sopenharmony_ci
18518c2ecf20Sopenharmony_cistatic void __kmemleak_do_cleanup(void)
18528c2ecf20Sopenharmony_ci{
18538c2ecf20Sopenharmony_ci	struct kmemleak_object *object, *tmp;
18548c2ecf20Sopenharmony_ci
18558c2ecf20Sopenharmony_ci	/*
18568c2ecf20Sopenharmony_ci	 * Kmemleak has already been disabled, no need for RCU list traversal
18578c2ecf20Sopenharmony_ci	 * or kmemleak_lock held.
18588c2ecf20Sopenharmony_ci	 */
18598c2ecf20Sopenharmony_ci	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
18608c2ecf20Sopenharmony_ci		__remove_object(object);
18618c2ecf20Sopenharmony_ci		__delete_object(object);
18628c2ecf20Sopenharmony_ci	}
18638c2ecf20Sopenharmony_ci}
18648c2ecf20Sopenharmony_ci
18658c2ecf20Sopenharmony_ci/*
18668c2ecf20Sopenharmony_ci * Stop the memory scanning thread and free the kmemleak internal objects if
18678c2ecf20Sopenharmony_ci * no previous scan thread (otherwise, kmemleak may still have some useful
18688c2ecf20Sopenharmony_ci * information on memory leaks).
18698c2ecf20Sopenharmony_ci */
18708c2ecf20Sopenharmony_cistatic void kmemleak_do_cleanup(struct work_struct *work)
18718c2ecf20Sopenharmony_ci{
18728c2ecf20Sopenharmony_ci	stop_scan_thread();
18738c2ecf20Sopenharmony_ci
18748c2ecf20Sopenharmony_ci	mutex_lock(&scan_mutex);
18758c2ecf20Sopenharmony_ci	/*
18768c2ecf20Sopenharmony_ci	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
18778c2ecf20Sopenharmony_ci	 * longer track object freeing. Ordering of the scan thread stopping and
18788c2ecf20Sopenharmony_ci	 * the memory accesses below is guaranteed by the kthread_stop()
18798c2ecf20Sopenharmony_ci	 * function.
18808c2ecf20Sopenharmony_ci	 */
18818c2ecf20Sopenharmony_ci	kmemleak_free_enabled = 0;
18828c2ecf20Sopenharmony_ci	mutex_unlock(&scan_mutex);
18838c2ecf20Sopenharmony_ci
18848c2ecf20Sopenharmony_ci	if (!kmemleak_found_leaks)
18858c2ecf20Sopenharmony_ci		__kmemleak_do_cleanup();
18868c2ecf20Sopenharmony_ci	else
18878c2ecf20Sopenharmony_ci		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
18888c2ecf20Sopenharmony_ci}
18898c2ecf20Sopenharmony_ci
18908c2ecf20Sopenharmony_cistatic DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
18918c2ecf20Sopenharmony_ci
18928c2ecf20Sopenharmony_ci/*
18938c2ecf20Sopenharmony_ci * Disable kmemleak. No memory allocation/freeing will be traced once this
18948c2ecf20Sopenharmony_ci * function is called. Disabling kmemleak is an irreversible operation.
18958c2ecf20Sopenharmony_ci */
18968c2ecf20Sopenharmony_cistatic void kmemleak_disable(void)
18978c2ecf20Sopenharmony_ci{
18988c2ecf20Sopenharmony_ci	/* atomically check whether it was already invoked */
18998c2ecf20Sopenharmony_ci	if (cmpxchg(&kmemleak_error, 0, 1))
19008c2ecf20Sopenharmony_ci		return;
19018c2ecf20Sopenharmony_ci
19028c2ecf20Sopenharmony_ci	/* stop any memory operation tracing */
19038c2ecf20Sopenharmony_ci	kmemleak_enabled = 0;
19048c2ecf20Sopenharmony_ci
19058c2ecf20Sopenharmony_ci	/* check whether it is too early for a kernel thread */
19068c2ecf20Sopenharmony_ci	if (kmemleak_initialized)
19078c2ecf20Sopenharmony_ci		schedule_work(&cleanup_work);
19088c2ecf20Sopenharmony_ci	else
19098c2ecf20Sopenharmony_ci		kmemleak_free_enabled = 0;
19108c2ecf20Sopenharmony_ci
19118c2ecf20Sopenharmony_ci	pr_info("Kernel memory leak detector disabled\n");
19128c2ecf20Sopenharmony_ci}
19138c2ecf20Sopenharmony_ci
19148c2ecf20Sopenharmony_ci/*
19158c2ecf20Sopenharmony_ci * Allow boot-time kmemleak disabling (enabled by default).
19168c2ecf20Sopenharmony_ci */
19178c2ecf20Sopenharmony_cistatic int __init kmemleak_boot_config(char *str)
19188c2ecf20Sopenharmony_ci{
19198c2ecf20Sopenharmony_ci	if (!str)
19208c2ecf20Sopenharmony_ci		return -EINVAL;
19218c2ecf20Sopenharmony_ci	if (strcmp(str, "off") == 0)
19228c2ecf20Sopenharmony_ci		kmemleak_disable();
19238c2ecf20Sopenharmony_ci	else if (strcmp(str, "on") == 0)
19248c2ecf20Sopenharmony_ci		kmemleak_skip_disable = 1;
19258c2ecf20Sopenharmony_ci	else
19268c2ecf20Sopenharmony_ci		return -EINVAL;
19278c2ecf20Sopenharmony_ci	return 0;
19288c2ecf20Sopenharmony_ci}
19298c2ecf20Sopenharmony_ciearly_param("kmemleak", kmemleak_boot_config);
19308c2ecf20Sopenharmony_ci
19318c2ecf20Sopenharmony_ci/*
19328c2ecf20Sopenharmony_ci * Kmemleak initialization.
19338c2ecf20Sopenharmony_ci */
19348c2ecf20Sopenharmony_civoid __init kmemleak_init(void)
19358c2ecf20Sopenharmony_ci{
19368c2ecf20Sopenharmony_ci#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
19378c2ecf20Sopenharmony_ci	if (!kmemleak_skip_disable) {
19388c2ecf20Sopenharmony_ci		kmemleak_disable();
19398c2ecf20Sopenharmony_ci		return;
19408c2ecf20Sopenharmony_ci	}
19418c2ecf20Sopenharmony_ci#endif
19428c2ecf20Sopenharmony_ci
19438c2ecf20Sopenharmony_ci	if (kmemleak_error)
19448c2ecf20Sopenharmony_ci		return;
19458c2ecf20Sopenharmony_ci
19468c2ecf20Sopenharmony_ci	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
19478c2ecf20Sopenharmony_ci	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
19488c2ecf20Sopenharmony_ci
19498c2ecf20Sopenharmony_ci	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
19508c2ecf20Sopenharmony_ci	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
19518c2ecf20Sopenharmony_ci
19528c2ecf20Sopenharmony_ci	/* register the data/bss sections */
19538c2ecf20Sopenharmony_ci	create_object((unsigned long)_sdata, _edata - _sdata,
19548c2ecf20Sopenharmony_ci		      KMEMLEAK_GREY, GFP_ATOMIC);
19558c2ecf20Sopenharmony_ci	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
19568c2ecf20Sopenharmony_ci		      KMEMLEAK_GREY, GFP_ATOMIC);
19578c2ecf20Sopenharmony_ci	/* only register .data..ro_after_init if not within .data */
19588c2ecf20Sopenharmony_ci	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
19598c2ecf20Sopenharmony_ci		create_object((unsigned long)__start_ro_after_init,
19608c2ecf20Sopenharmony_ci			      __end_ro_after_init - __start_ro_after_init,
19618c2ecf20Sopenharmony_ci			      KMEMLEAK_GREY, GFP_ATOMIC);
19628c2ecf20Sopenharmony_ci}
19638c2ecf20Sopenharmony_ci
19648c2ecf20Sopenharmony_ci/*
19658c2ecf20Sopenharmony_ci * Late initialization function.
19668c2ecf20Sopenharmony_ci */
19678c2ecf20Sopenharmony_cistatic int __init kmemleak_late_init(void)
19688c2ecf20Sopenharmony_ci{
19698c2ecf20Sopenharmony_ci	kmemleak_initialized = 1;
19708c2ecf20Sopenharmony_ci
19718c2ecf20Sopenharmony_ci	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
19728c2ecf20Sopenharmony_ci
19738c2ecf20Sopenharmony_ci	if (kmemleak_error) {
19748c2ecf20Sopenharmony_ci		/*
19758c2ecf20Sopenharmony_ci		 * Some error occurred and kmemleak was disabled. There is a
19768c2ecf20Sopenharmony_ci		 * small chance that kmemleak_disable() was called immediately
19778c2ecf20Sopenharmony_ci		 * after setting kmemleak_initialized and we may end up with
19788c2ecf20Sopenharmony_ci		 * two clean-up threads but serialized by scan_mutex.
19798c2ecf20Sopenharmony_ci		 */
19808c2ecf20Sopenharmony_ci		schedule_work(&cleanup_work);
19818c2ecf20Sopenharmony_ci		return -ENOMEM;
19828c2ecf20Sopenharmony_ci	}
19838c2ecf20Sopenharmony_ci
19848c2ecf20Sopenharmony_ci	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
19858c2ecf20Sopenharmony_ci		mutex_lock(&scan_mutex);
19868c2ecf20Sopenharmony_ci		start_scan_thread();
19878c2ecf20Sopenharmony_ci		mutex_unlock(&scan_mutex);
19888c2ecf20Sopenharmony_ci	}
19898c2ecf20Sopenharmony_ci
19908c2ecf20Sopenharmony_ci	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
19918c2ecf20Sopenharmony_ci		mem_pool_free_count);
19928c2ecf20Sopenharmony_ci
19938c2ecf20Sopenharmony_ci	return 0;
19948c2ecf20Sopenharmony_ci}
19958c2ecf20Sopenharmony_cilate_initcall(kmemleak_late_init);
1996