xref: /kernel/linux/linux-5.10/mm/hugetlb.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33
34#include <asm/page.h>
35#include <asm/pgalloc.h>
36#include <asm/tlb.h>
37
38#include <linux/io.h>
39#include <linux/hugetlb.h>
40#include <linux/hugetlb_cgroup.h>
41#include <linux/node.h>
42#include <linux/userfaultfd_k.h>
43#include <linux/page_owner.h>
44#include "internal.h"
45
46int hugetlb_max_hstate __read_mostly;
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
49
50#ifdef CONFIG_CMA
51static struct cma *hugetlb_cma[MAX_NUMNODES];
52#endif
53static unsigned long hugetlb_cma_size __initdata;
54
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61__initdata LIST_HEAD(huge_boot_pages);
62
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
66static bool __initdata parsed_valid_hugepagesz = true;
67static bool __initdata parsed_default_hugepagesz;
68
69/*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73DEFINE_SPINLOCK(hugetlb_lock);
74
75/*
76 * Serializes faults on the same logical page.  This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82static inline bool PageHugeFreed(struct page *head)
83{
84	return page_private(head + 4) == -1UL;
85}
86
87static inline void SetPageHugeFreed(struct page *head)
88{
89	set_page_private(head + 4, -1UL);
90}
91
92static inline void ClearPageHugeFreed(struct page *head)
93{
94	set_page_private(head + 4, 0);
95}
96
97/* Forward declaration */
98static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101{
102	bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104	spin_unlock(&spool->lock);
105
106	/* If no pages are used, and no other handles to the subpool
107	 * remain, give up any reservations based on minimum size and
108	 * free the subpool */
109	if (free) {
110		if (spool->min_hpages != -1)
111			hugetlb_acct_memory(spool->hstate,
112						-spool->min_hpages);
113		kfree(spool);
114	}
115}
116
117struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118						long min_hpages)
119{
120	struct hugepage_subpool *spool;
121
122	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123	if (!spool)
124		return NULL;
125
126	spin_lock_init(&spool->lock);
127	spool->count = 1;
128	spool->max_hpages = max_hpages;
129	spool->hstate = h;
130	spool->min_hpages = min_hpages;
131
132	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133		kfree(spool);
134		return NULL;
135	}
136	spool->rsv_hpages = min_hpages;
137
138	return spool;
139}
140
141void hugepage_put_subpool(struct hugepage_subpool *spool)
142{
143	spin_lock(&spool->lock);
144	BUG_ON(!spool->count);
145	spool->count--;
146	unlock_or_release_subpool(spool);
147}
148
149/*
150 * Subpool accounting for allocating and reserving pages.
151 * Return -ENOMEM if there are not enough resources to satisfy the
152 * request.  Otherwise, return the number of pages by which the
153 * global pools must be adjusted (upward).  The returned value may
154 * only be different than the passed value (delta) in the case where
155 * a subpool minimum size must be maintained.
156 */
157static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158				      long delta)
159{
160	long ret = delta;
161
162	if (!spool)
163		return ret;
164
165	spin_lock(&spool->lock);
166
167	if (spool->max_hpages != -1) {		/* maximum size accounting */
168		if ((spool->used_hpages + delta) <= spool->max_hpages)
169			spool->used_hpages += delta;
170		else {
171			ret = -ENOMEM;
172			goto unlock_ret;
173		}
174	}
175
176	/* minimum size accounting */
177	if (spool->min_hpages != -1 && spool->rsv_hpages) {
178		if (delta > spool->rsv_hpages) {
179			/*
180			 * Asking for more reserves than those already taken on
181			 * behalf of subpool.  Return difference.
182			 */
183			ret = delta - spool->rsv_hpages;
184			spool->rsv_hpages = 0;
185		} else {
186			ret = 0;	/* reserves already accounted for */
187			spool->rsv_hpages -= delta;
188		}
189	}
190
191unlock_ret:
192	spin_unlock(&spool->lock);
193	return ret;
194}
195
196/*
197 * Subpool accounting for freeing and unreserving pages.
198 * Return the number of global page reservations that must be dropped.
199 * The return value may only be different than the passed value (delta)
200 * in the case where a subpool minimum size must be maintained.
201 */
202static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203				       long delta)
204{
205	long ret = delta;
206
207	if (!spool)
208		return delta;
209
210	spin_lock(&spool->lock);
211
212	if (spool->max_hpages != -1)		/* maximum size accounting */
213		spool->used_hpages -= delta;
214
215	 /* minimum size accounting */
216	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217		if (spool->rsv_hpages + delta <= spool->min_hpages)
218			ret = 0;
219		else
220			ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222		spool->rsv_hpages += delta;
223		if (spool->rsv_hpages > spool->min_hpages)
224			spool->rsv_hpages = spool->min_hpages;
225	}
226
227	/*
228	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229	 * quota reference, free it now.
230	 */
231	unlock_or_release_subpool(spool);
232
233	return ret;
234}
235
236static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237{
238	return HUGETLBFS_SB(inode->i_sb)->spool;
239}
240
241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242{
243	return subpool_inode(file_inode(vma->vm_file));
244}
245
246/* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249static struct file_region *
250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251{
252	struct file_region *nrg = NULL;
253
254	VM_BUG_ON(resv->region_cache_count <= 0);
255
256	resv->region_cache_count--;
257	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258	list_del(&nrg->link);
259
260	nrg->from = from;
261	nrg->to = to;
262
263	return nrg;
264}
265
266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267					      struct file_region *rg)
268{
269#ifdef CONFIG_CGROUP_HUGETLB
270	nrg->reservation_counter = rg->reservation_counter;
271	nrg->css = rg->css;
272	if (rg->css)
273		css_get(rg->css);
274#endif
275}
276
277/* Helper that records hugetlb_cgroup uncharge info. */
278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279						struct hstate *h,
280						struct resv_map *resv,
281						struct file_region *nrg)
282{
283#ifdef CONFIG_CGROUP_HUGETLB
284	if (h_cg) {
285		nrg->reservation_counter =
286			&h_cg->rsvd_hugepage[hstate_index(h)];
287		nrg->css = &h_cg->css;
288		/*
289		 * The caller will hold exactly one h_cg->css reference for the
290		 * whole contiguous reservation region. But this area might be
291		 * scattered when there are already some file_regions reside in
292		 * it. As a result, many file_regions may share only one css
293		 * reference. In order to ensure that one file_region must hold
294		 * exactly one h_cg->css reference, we should do css_get for
295		 * each file_region and leave the reference held by caller
296		 * untouched.
297		 */
298		css_get(&h_cg->css);
299		if (!resv->pages_per_hpage)
300			resv->pages_per_hpage = pages_per_huge_page(h);
301		/* pages_per_hpage should be the same for all entries in
302		 * a resv_map.
303		 */
304		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305	} else {
306		nrg->reservation_counter = NULL;
307		nrg->css = NULL;
308	}
309#endif
310}
311
312static void put_uncharge_info(struct file_region *rg)
313{
314#ifdef CONFIG_CGROUP_HUGETLB
315	if (rg->css)
316		css_put(rg->css);
317#endif
318}
319
320static bool has_same_uncharge_info(struct file_region *rg,
321				   struct file_region *org)
322{
323#ifdef CONFIG_CGROUP_HUGETLB
324	return rg && org &&
325	       rg->reservation_counter == org->reservation_counter &&
326	       rg->css == org->css;
327
328#else
329	return true;
330#endif
331}
332
333static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334{
335	struct file_region *nrg = NULL, *prg = NULL;
336
337	prg = list_prev_entry(rg, link);
338	if (&prg->link != &resv->regions && prg->to == rg->from &&
339	    has_same_uncharge_info(prg, rg)) {
340		prg->to = rg->to;
341
342		list_del(&rg->link);
343		put_uncharge_info(rg);
344		kfree(rg);
345
346		rg = prg;
347	}
348
349	nrg = list_next_entry(rg, link);
350	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351	    has_same_uncharge_info(nrg, rg)) {
352		nrg->from = rg->from;
353
354		list_del(&rg->link);
355		put_uncharge_info(rg);
356		kfree(rg);
357	}
358}
359
360/*
361 * Must be called with resv->lock held.
362 *
363 * Calling this with regions_needed != NULL will count the number of pages
364 * to be added but will not modify the linked list. And regions_needed will
365 * indicate the number of file_regions needed in the cache to carry out to add
366 * the regions for this range.
367 */
368static long add_reservation_in_range(struct resv_map *resv, long f, long t,
369				     struct hugetlb_cgroup *h_cg,
370				     struct hstate *h, long *regions_needed)
371{
372	long add = 0;
373	struct list_head *head = &resv->regions;
374	long last_accounted_offset = f;
375	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376
377	if (regions_needed)
378		*regions_needed = 0;
379
380	/* In this loop, we essentially handle an entry for the range
381	 * [last_accounted_offset, rg->from), at every iteration, with some
382	 * bounds checking.
383	 */
384	list_for_each_entry_safe(rg, trg, head, link) {
385		/* Skip irrelevant regions that start before our range. */
386		if (rg->from < f) {
387			/* If this region ends after the last accounted offset,
388			 * then we need to update last_accounted_offset.
389			 */
390			if (rg->to > last_accounted_offset)
391				last_accounted_offset = rg->to;
392			continue;
393		}
394
395		/* When we find a region that starts beyond our range, we've
396		 * finished.
397		 */
398		if (rg->from > t)
399			break;
400
401		/* Add an entry for last_accounted_offset -> rg->from, and
402		 * update last_accounted_offset.
403		 */
404		if (rg->from > last_accounted_offset) {
405			add += rg->from - last_accounted_offset;
406			if (!regions_needed) {
407				nrg = get_file_region_entry_from_cache(
408					resv, last_accounted_offset, rg->from);
409				record_hugetlb_cgroup_uncharge_info(h_cg, h,
410								    resv, nrg);
411				list_add(&nrg->link, rg->link.prev);
412				coalesce_file_region(resv, nrg);
413			} else
414				*regions_needed += 1;
415		}
416
417		last_accounted_offset = rg->to;
418	}
419
420	/* Handle the case where our range extends beyond
421	 * last_accounted_offset.
422	 */
423	if (last_accounted_offset < t) {
424		add += t - last_accounted_offset;
425		if (!regions_needed) {
426			nrg = get_file_region_entry_from_cache(
427				resv, last_accounted_offset, t);
428			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
429			list_add(&nrg->link, rg->link.prev);
430			coalesce_file_region(resv, nrg);
431		} else
432			*regions_needed += 1;
433	}
434
435	VM_BUG_ON(add < 0);
436	return add;
437}
438
439/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440 */
441static int allocate_file_region_entries(struct resv_map *resv,
442					int regions_needed)
443	__must_hold(&resv->lock)
444{
445	struct list_head allocated_regions;
446	int to_allocate = 0, i = 0;
447	struct file_region *trg = NULL, *rg = NULL;
448
449	VM_BUG_ON(regions_needed < 0);
450
451	INIT_LIST_HEAD(&allocated_regions);
452
453	/*
454	 * Check for sufficient descriptors in the cache to accommodate
455	 * the number of in progress add operations plus regions_needed.
456	 *
457	 * This is a while loop because when we drop the lock, some other call
458	 * to region_add or region_del may have consumed some region_entries,
459	 * so we keep looping here until we finally have enough entries for
460	 * (adds_in_progress + regions_needed).
461	 */
462	while (resv->region_cache_count <
463	       (resv->adds_in_progress + regions_needed)) {
464		to_allocate = resv->adds_in_progress + regions_needed -
465			      resv->region_cache_count;
466
467		/* At this point, we should have enough entries in the cache
468		 * for all the existings adds_in_progress. We should only be
469		 * needing to allocate for regions_needed.
470		 */
471		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472
473		spin_unlock(&resv->lock);
474		for (i = 0; i < to_allocate; i++) {
475			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476			if (!trg)
477				goto out_of_memory;
478			list_add(&trg->link, &allocated_regions);
479		}
480
481		spin_lock(&resv->lock);
482
483		list_splice(&allocated_regions, &resv->region_cache);
484		resv->region_cache_count += to_allocate;
485	}
486
487	return 0;
488
489out_of_memory:
490	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491		list_del(&rg->link);
492		kfree(rg);
493	}
494	return -ENOMEM;
495}
496
497/*
498 * Add the huge page range represented by [f, t) to the reserve
499 * map.  Regions will be taken from the cache to fill in this range.
500 * Sufficient regions should exist in the cache due to the previous
501 * call to region_chg with the same range, but in some cases the cache will not
502 * have sufficient entries due to races with other code doing region_add or
503 * region_del.  The extra needed entries will be allocated.
504 *
505 * regions_needed is the out value provided by a previous call to region_chg.
506 *
507 * Return the number of new huge pages added to the map.  This number is greater
508 * than or equal to zero.  If file_region entries needed to be allocated for
509 * this operation and we were not able to allocate, it returns -ENOMEM.
510 * region_add of regions of length 1 never allocate file_regions and cannot
511 * fail; region_chg will always allocate at least 1 entry and a region_add for
512 * 1 page will only require at most 1 entry.
513 */
514static long region_add(struct resv_map *resv, long f, long t,
515		       long in_regions_needed, struct hstate *h,
516		       struct hugetlb_cgroup *h_cg)
517{
518	long add = 0, actual_regions_needed = 0;
519
520	spin_lock(&resv->lock);
521retry:
522
523	/* Count how many regions are actually needed to execute this add. */
524	add_reservation_in_range(resv, f, t, NULL, NULL,
525				 &actual_regions_needed);
526
527	/*
528	 * Check for sufficient descriptors in the cache to accommodate
529	 * this add operation. Note that actual_regions_needed may be greater
530	 * than in_regions_needed, as the resv_map may have been modified since
531	 * the region_chg call. In this case, we need to make sure that we
532	 * allocate extra entries, such that we have enough for all the
533	 * existing adds_in_progress, plus the excess needed for this
534	 * operation.
535	 */
536	if (actual_regions_needed > in_regions_needed &&
537	    resv->region_cache_count <
538		    resv->adds_in_progress +
539			    (actual_regions_needed - in_regions_needed)) {
540		/* region_add operation of range 1 should never need to
541		 * allocate file_region entries.
542		 */
543		VM_BUG_ON(t - f <= 1);
544
545		if (allocate_file_region_entries(
546			    resv, actual_regions_needed - in_regions_needed)) {
547			return -ENOMEM;
548		}
549
550		goto retry;
551	}
552
553	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
554
555	resv->adds_in_progress -= in_regions_needed;
556
557	spin_unlock(&resv->lock);
558	VM_BUG_ON(add < 0);
559	return add;
560}
561
562/*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented.  This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t).  region_chg does
568 * not change the number of huge pages represented by the
569 * map.  A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress.  This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t).  This number is greater or equal to
579 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
581 */
582static long region_chg(struct resv_map *resv, long f, long t,
583		       long *out_regions_needed)
584{
585	long chg = 0;
586
587	spin_lock(&resv->lock);
588
589	/* Count how many hugepages in this range are NOT represented. */
590	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591				       out_regions_needed);
592
593	if (*out_regions_needed == 0)
594		*out_regions_needed = 1;
595
596	if (allocate_file_region_entries(resv, *out_regions_needed))
597		return -ENOMEM;
598
599	resv->adds_in_progress += *out_regions_needed;
600
601	spin_unlock(&resv->lock);
602	return chg;
603}
604
605/*
606 * Abort the in progress add operation.  The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add.  Operations are sometimes
609 * aborted after the call to region_chg.  In such cases, region_abort
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine.  They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
618static void region_abort(struct resv_map *resv, long f, long t,
619			 long regions_needed)
620{
621	spin_lock(&resv->lock);
622	VM_BUG_ON(!resv->region_cache_count);
623	resv->adds_in_progress -= regions_needed;
624	spin_unlock(&resv->lock);
625}
626
627/*
628 * Delete the specified range [f, t) from the reserve map.  If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted.  Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more.  In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated.  If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM.  Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
640 */
641static long region_del(struct resv_map *resv, long f, long t)
642{
643	struct list_head *head = &resv->regions;
644	struct file_region *rg, *trg;
645	struct file_region *nrg = NULL;
646	long del = 0;
647
648retry:
649	spin_lock(&resv->lock);
650	list_for_each_entry_safe(rg, trg, head, link) {
651		/*
652		 * Skip regions before the range to be deleted.  file_region
653		 * ranges are normally of the form [from, to).  However, there
654		 * may be a "placeholder" entry in the map which is of the form
655		 * (from, to) with from == to.  Check for placeholder entries
656		 * at the beginning of the range to be deleted.
657		 */
658		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659			continue;
660
661		if (rg->from >= t)
662			break;
663
664		if (f > rg->from && t < rg->to) { /* Must split region */
665			/*
666			 * Check for an entry in the cache before dropping
667			 * lock and attempting allocation.
668			 */
669			if (!nrg &&
670			    resv->region_cache_count > resv->adds_in_progress) {
671				nrg = list_first_entry(&resv->region_cache,
672							struct file_region,
673							link);
674				list_del(&nrg->link);
675				resv->region_cache_count--;
676			}
677
678			if (!nrg) {
679				spin_unlock(&resv->lock);
680				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681				if (!nrg)
682					return -ENOMEM;
683				goto retry;
684			}
685
686			del += t - f;
687			hugetlb_cgroup_uncharge_file_region(
688				resv, rg, t - f, false);
689
690			/* New entry for end of split region */
691			nrg->from = t;
692			nrg->to = rg->to;
693
694			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696			INIT_LIST_HEAD(&nrg->link);
697
698			/* Original entry is trimmed */
699			rg->to = f;
700
701			list_add(&nrg->link, &rg->link);
702			nrg = NULL;
703			break;
704		}
705
706		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707			del += rg->to - rg->from;
708			hugetlb_cgroup_uncharge_file_region(resv, rg,
709							    rg->to - rg->from, true);
710			list_del(&rg->link);
711			kfree(rg);
712			continue;
713		}
714
715		if (f <= rg->from) {	/* Trim beginning of region */
716			hugetlb_cgroup_uncharge_file_region(resv, rg,
717							    t - rg->from, false);
718
719			del += t - rg->from;
720			rg->from = t;
721		} else {		/* Trim end of region */
722			hugetlb_cgroup_uncharge_file_region(resv, rg,
723							    rg->to - f, false);
724
725			del += rg->to - f;
726			rg->to = f;
727		}
728	}
729
730	spin_unlock(&resv->lock);
731	kfree(nrg);
732	return del;
733}
734
735/*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page.  The huge page itself was free'ed
738 * and removed from the page cache.  This routine will adjust the subpool
739 * usage count, and the global reserve count if needed.  By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
744void hugetlb_fix_reserve_counts(struct inode *inode)
745{
746	struct hugepage_subpool *spool = subpool_inode(inode);
747	long rsv_adjust;
748	bool reserved = false;
749
750	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751	if (rsv_adjust > 0) {
752		struct hstate *h = hstate_inode(inode);
753
754		if (!hugetlb_acct_memory(h, 1))
755			reserved = true;
756	} else if (!rsv_adjust) {
757		reserved = true;
758	}
759
760	if (!reserved)
761		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762}
763
764/*
765 * Count and return the number of huge pages in the reserve map
766 * that intersect with the range [f, t).
767 */
768static long region_count(struct resv_map *resv, long f, long t)
769{
770	struct list_head *head = &resv->regions;
771	struct file_region *rg;
772	long chg = 0;
773
774	spin_lock(&resv->lock);
775	/* Locate each segment we overlap with, and count that overlap. */
776	list_for_each_entry(rg, head, link) {
777		long seg_from;
778		long seg_to;
779
780		if (rg->to <= f)
781			continue;
782		if (rg->from >= t)
783			break;
784
785		seg_from = max(rg->from, f);
786		seg_to = min(rg->to, t);
787
788		chg += seg_to - seg_from;
789	}
790	spin_unlock(&resv->lock);
791
792	return chg;
793}
794
795/*
796 * Convert the address within this vma to the page offset within
797 * the mapping, in pagecache page units; huge pages here.
798 */
799static pgoff_t vma_hugecache_offset(struct hstate *h,
800			struct vm_area_struct *vma, unsigned long address)
801{
802	return ((address - vma->vm_start) >> huge_page_shift(h)) +
803			(vma->vm_pgoff >> huge_page_order(h));
804}
805
806pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807				     unsigned long address)
808{
809	return vma_hugecache_offset(hstate_vma(vma), vma, address);
810}
811EXPORT_SYMBOL_GPL(linear_hugepage_index);
812
813/*
814 * Return the size of the pages allocated when backing a VMA. In the majority
815 * cases this will be same size as used by the page table entries.
816 */
817unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818{
819	if (vma->vm_ops && vma->vm_ops->pagesize)
820		return vma->vm_ops->pagesize(vma);
821	return PAGE_SIZE;
822}
823EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824
825/*
826 * Return the page size being used by the MMU to back a VMA. In the majority
827 * of cases, the page size used by the kernel matches the MMU size. On
828 * architectures where it differs, an architecture-specific 'strong'
829 * version of this symbol is required.
830 */
831__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832{
833	return vma_kernel_pagesize(vma);
834}
835
836/*
837 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
838 * bits of the reservation map pointer, which are always clear due to
839 * alignment.
840 */
841#define HPAGE_RESV_OWNER    (1UL << 0)
842#define HPAGE_RESV_UNMAPPED (1UL << 1)
843#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844
845/*
846 * These helpers are used to track how many pages are reserved for
847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848 * is guaranteed to have their future faults succeed.
849 *
850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851 * the reserve counters are updated with the hugetlb_lock held. It is safe
852 * to reset the VMA at fork() time as it is not in use yet and there is no
853 * chance of the global counters getting corrupted as a result of the values.
854 *
855 * The private mapping reservation is represented in a subtly different
856 * manner to a shared mapping.  A shared mapping has a region map associated
857 * with the underlying file, this region map represents the backing file
858 * pages which have ever had a reservation assigned which this persists even
859 * after the page is instantiated.  A private mapping has a region map
860 * associated with the original mmap which is attached to all VMAs which
861 * reference it, this region map represents those offsets which have consumed
862 * reservation ie. where pages have been instantiated.
863 */
864static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865{
866	return (unsigned long)vma->vm_private_data;
867}
868
869static void set_vma_private_data(struct vm_area_struct *vma,
870							unsigned long value)
871{
872	vma->vm_private_data = (void *)value;
873}
874
875static void
876resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877					  struct hugetlb_cgroup *h_cg,
878					  struct hstate *h)
879{
880#ifdef CONFIG_CGROUP_HUGETLB
881	if (!h_cg || !h) {
882		resv_map->reservation_counter = NULL;
883		resv_map->pages_per_hpage = 0;
884		resv_map->css = NULL;
885	} else {
886		resv_map->reservation_counter =
887			&h_cg->rsvd_hugepage[hstate_index(h)];
888		resv_map->pages_per_hpage = pages_per_huge_page(h);
889		resv_map->css = &h_cg->css;
890	}
891#endif
892}
893
894struct resv_map *resv_map_alloc(void)
895{
896	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899	if (!resv_map || !rg) {
900		kfree(resv_map);
901		kfree(rg);
902		return NULL;
903	}
904
905	kref_init(&resv_map->refs);
906	spin_lock_init(&resv_map->lock);
907	INIT_LIST_HEAD(&resv_map->regions);
908
909	resv_map->adds_in_progress = 0;
910	/*
911	 * Initialize these to 0. On shared mappings, 0's here indicate these
912	 * fields don't do cgroup accounting. On private mappings, these will be
913	 * re-initialized to the proper values, to indicate that hugetlb cgroup
914	 * reservations are to be un-charged from here.
915	 */
916	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917
918	INIT_LIST_HEAD(&resv_map->region_cache);
919	list_add(&rg->link, &resv_map->region_cache);
920	resv_map->region_cache_count = 1;
921
922	return resv_map;
923}
924
925void resv_map_release(struct kref *ref)
926{
927	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928	struct list_head *head = &resv_map->region_cache;
929	struct file_region *rg, *trg;
930
931	/* Clear out any active regions before we release the map. */
932	region_del(resv_map, 0, LONG_MAX);
933
934	/* ... and any entries left in the cache */
935	list_for_each_entry_safe(rg, trg, head, link) {
936		list_del(&rg->link);
937		kfree(rg);
938	}
939
940	VM_BUG_ON(resv_map->adds_in_progress);
941
942	kfree(resv_map);
943}
944
945static inline struct resv_map *inode_resv_map(struct inode *inode)
946{
947	/*
948	 * At inode evict time, i_mapping may not point to the original
949	 * address space within the inode.  This original address space
950	 * contains the pointer to the resv_map.  So, always use the
951	 * address space embedded within the inode.
952	 * The VERY common case is inode->mapping == &inode->i_data but,
953	 * this may not be true for device special inodes.
954	 */
955	return (struct resv_map *)(&inode->i_data)->private_data;
956}
957
958static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959{
960	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961	if (vma->vm_flags & VM_MAYSHARE) {
962		struct address_space *mapping = vma->vm_file->f_mapping;
963		struct inode *inode = mapping->host;
964
965		return inode_resv_map(inode);
966
967	} else {
968		return (struct resv_map *)(get_vma_private_data(vma) &
969							~HPAGE_RESV_MASK);
970	}
971}
972
973static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974{
975	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977
978	set_vma_private_data(vma, (get_vma_private_data(vma) &
979				HPAGE_RESV_MASK) | (unsigned long)map);
980}
981
982static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983{
984	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986
987	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988}
989
990static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991{
992	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993
994	return (get_vma_private_data(vma) & flag) != 0;
995}
996
997/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999{
1000	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001	if (!(vma->vm_flags & VM_MAYSHARE))
1002		vma->vm_private_data = (void *)0;
1003}
1004
1005/* Returns true if the VMA has associated reserve pages */
1006static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007{
1008	if (vma->vm_flags & VM_NORESERVE) {
1009		/*
1010		 * This address is already reserved by other process(chg == 0),
1011		 * so, we should decrement reserved count. Without decrementing,
1012		 * reserve count remains after releasing inode, because this
1013		 * allocated page will go into page cache and is regarded as
1014		 * coming from reserved pool in releasing step.  Currently, we
1015		 * don't have any other solution to deal with this situation
1016		 * properly, so add work-around here.
1017		 */
1018		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019			return true;
1020		else
1021			return false;
1022	}
1023
1024	/* Shared mappings always use reserves */
1025	if (vma->vm_flags & VM_MAYSHARE) {
1026		/*
1027		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1028		 * be a region map for all pages.  The only situation where
1029		 * there is no region map is if a hole was punched via
1030		 * fallocate.  In this case, there really are no reserves to
1031		 * use.  This situation is indicated if chg != 0.
1032		 */
1033		if (chg)
1034			return false;
1035		else
1036			return true;
1037	}
1038
1039	/*
1040	 * Only the process that called mmap() has reserves for
1041	 * private mappings.
1042	 */
1043	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044		/*
1045		 * Like the shared case above, a hole punch or truncate
1046		 * could have been performed on the private mapping.
1047		 * Examine the value of chg to determine if reserves
1048		 * actually exist or were previously consumed.
1049		 * Very Subtle - The value of chg comes from a previous
1050		 * call to vma_needs_reserves().  The reserve map for
1051		 * private mappings has different (opposite) semantics
1052		 * than that of shared mappings.  vma_needs_reserves()
1053		 * has already taken this difference in semantics into
1054		 * account.  Therefore, the meaning of chg is the same
1055		 * as in the shared case above.  Code could easily be
1056		 * combined, but keeping it separate draws attention to
1057		 * subtle differences.
1058		 */
1059		if (chg)
1060			return false;
1061		else
1062			return true;
1063	}
1064
1065	return false;
1066}
1067
1068static void enqueue_huge_page(struct hstate *h, struct page *page)
1069{
1070	int nid = page_to_nid(page);
1071	list_move(&page->lru, &h->hugepage_freelists[nid]);
1072	h->free_huge_pages++;
1073	h->free_huge_pages_node[nid]++;
1074	SetPageHugeFreed(page);
1075}
1076
1077static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1078{
1079	struct page *page;
1080	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1081
1082	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1083		if (nocma && is_migrate_cma_page(page))
1084			continue;
1085
1086		if (PageHWPoison(page))
1087			continue;
1088
1089		list_move(&page->lru, &h->hugepage_activelist);
1090		set_page_refcounted(page);
1091		ClearPageHugeFreed(page);
1092		h->free_huge_pages--;
1093		h->free_huge_pages_node[nid]--;
1094		return page;
1095	}
1096
1097	return NULL;
1098}
1099
1100static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1101		nodemask_t *nmask)
1102{
1103	unsigned int cpuset_mems_cookie;
1104	struct zonelist *zonelist;
1105	struct zone *zone;
1106	struct zoneref *z;
1107	int node = NUMA_NO_NODE;
1108
1109	zonelist = node_zonelist(nid, gfp_mask);
1110
1111retry_cpuset:
1112	cpuset_mems_cookie = read_mems_allowed_begin();
1113	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1114		struct page *page;
1115
1116		if (!cpuset_zone_allowed(zone, gfp_mask))
1117			continue;
1118		/*
1119		 * no need to ask again on the same node. Pool is node rather than
1120		 * zone aware
1121		 */
1122		if (zone_to_nid(zone) == node)
1123			continue;
1124		node = zone_to_nid(zone);
1125
1126		page = dequeue_huge_page_node_exact(h, node);
1127		if (page)
1128			return page;
1129	}
1130	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1131		goto retry_cpuset;
1132
1133	return NULL;
1134}
1135
1136static struct page *dequeue_huge_page_vma(struct hstate *h,
1137				struct vm_area_struct *vma,
1138				unsigned long address, int avoid_reserve,
1139				long chg)
1140{
1141	struct page *page;
1142	struct mempolicy *mpol;
1143	gfp_t gfp_mask;
1144	nodemask_t *nodemask;
1145	int nid;
1146
1147	/*
1148	 * A child process with MAP_PRIVATE mappings created by their parent
1149	 * have no page reserves. This check ensures that reservations are
1150	 * not "stolen". The child may still get SIGKILLed
1151	 */
1152	if (!vma_has_reserves(vma, chg) &&
1153			h->free_huge_pages - h->resv_huge_pages == 0)
1154		goto err;
1155
1156	/* If reserves cannot be used, ensure enough pages are in the pool */
1157	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1158		goto err;
1159
1160	gfp_mask = htlb_alloc_mask(h);
1161	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1162	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1163	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1164		SetPagePrivate(page);
1165		h->resv_huge_pages--;
1166	}
1167
1168	mpol_cond_put(mpol);
1169	return page;
1170
1171err:
1172	return NULL;
1173}
1174
1175/*
1176 * common helper functions for hstate_next_node_to_{alloc|free}.
1177 * We may have allocated or freed a huge page based on a different
1178 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1179 * be outside of *nodes_allowed.  Ensure that we use an allowed
1180 * node for alloc or free.
1181 */
1182static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1183{
1184	nid = next_node_in(nid, *nodes_allowed);
1185	VM_BUG_ON(nid >= MAX_NUMNODES);
1186
1187	return nid;
1188}
1189
1190static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1191{
1192	if (!node_isset(nid, *nodes_allowed))
1193		nid = next_node_allowed(nid, nodes_allowed);
1194	return nid;
1195}
1196
1197/*
1198 * returns the previously saved node ["this node"] from which to
1199 * allocate a persistent huge page for the pool and advance the
1200 * next node from which to allocate, handling wrap at end of node
1201 * mask.
1202 */
1203static int hstate_next_node_to_alloc(struct hstate *h,
1204					nodemask_t *nodes_allowed)
1205{
1206	int nid;
1207
1208	VM_BUG_ON(!nodes_allowed);
1209
1210	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1211	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1212
1213	return nid;
1214}
1215
1216/*
1217 * helper for free_pool_huge_page() - return the previously saved
1218 * node ["this node"] from which to free a huge page.  Advance the
1219 * next node id whether or not we find a free huge page to free so
1220 * that the next attempt to free addresses the next node.
1221 */
1222static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1223{
1224	int nid;
1225
1226	VM_BUG_ON(!nodes_allowed);
1227
1228	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1229	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1230
1231	return nid;
1232}
1233
1234#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1235	for (nr_nodes = nodes_weight(*mask);				\
1236		nr_nodes > 0 &&						\
1237		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1238		nr_nodes--)
1239
1240#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1241	for (nr_nodes = nodes_weight(*mask);				\
1242		nr_nodes > 0 &&						\
1243		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1244		nr_nodes--)
1245
1246#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1247static void destroy_compound_gigantic_page(struct page *page,
1248					unsigned int order)
1249{
1250	int i;
1251	int nr_pages = 1 << order;
1252	struct page *p = page + 1;
1253
1254	atomic_set(compound_mapcount_ptr(page), 0);
1255	atomic_set(compound_pincount_ptr(page), 0);
1256
1257	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1258		clear_compound_head(p);
1259		set_page_refcounted(p);
1260	}
1261
1262	set_compound_order(page, 0);
1263	page[1].compound_nr = 0;
1264	__ClearPageHead(page);
1265}
1266
1267static void free_gigantic_page(struct page *page, unsigned int order)
1268{
1269	/*
1270	 * If the page isn't allocated using the cma allocator,
1271	 * cma_release() returns false.
1272	 */
1273#ifdef CONFIG_CMA
1274	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1275		return;
1276#endif
1277
1278	free_contig_range(page_to_pfn(page), 1 << order);
1279}
1280
1281#ifdef CONFIG_CONTIG_ALLOC
1282static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1283		int nid, nodemask_t *nodemask)
1284{
1285	unsigned long nr_pages = 1UL << huge_page_order(h);
1286	if (nid == NUMA_NO_NODE)
1287		nid = numa_mem_id();
1288
1289#ifdef CONFIG_CMA
1290	{
1291		struct page *page;
1292		int node;
1293
1294		if (hugetlb_cma[nid]) {
1295			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1296					huge_page_order(h), true);
1297			if (page)
1298				return page;
1299		}
1300
1301		if (!(gfp_mask & __GFP_THISNODE)) {
1302			for_each_node_mask(node, *nodemask) {
1303				if (node == nid || !hugetlb_cma[node])
1304					continue;
1305
1306				page = cma_alloc(hugetlb_cma[node], nr_pages,
1307						huge_page_order(h), true);
1308				if (page)
1309					return page;
1310			}
1311		}
1312	}
1313#endif
1314
1315	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1316}
1317
1318#else /* !CONFIG_CONTIG_ALLOC */
1319static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1320					int nid, nodemask_t *nodemask)
1321{
1322	return NULL;
1323}
1324#endif /* CONFIG_CONTIG_ALLOC */
1325
1326#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1327static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1328					int nid, nodemask_t *nodemask)
1329{
1330	return NULL;
1331}
1332static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1333static inline void destroy_compound_gigantic_page(struct page *page,
1334						unsigned int order) { }
1335#endif
1336
1337static void update_and_free_page(struct hstate *h, struct page *page)
1338{
1339	int i;
1340	struct page *subpage = page;
1341
1342	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1343		return;
1344
1345	h->nr_huge_pages--;
1346	h->nr_huge_pages_node[page_to_nid(page)]--;
1347	for (i = 0; i < pages_per_huge_page(h);
1348	     i++, subpage = mem_map_next(subpage, page, i)) {
1349		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1350				1 << PG_referenced | 1 << PG_dirty |
1351				1 << PG_active | 1 << PG_private |
1352				1 << PG_writeback);
1353	}
1354	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356	/*
1357	 * Very subtle
1358	 *
1359	 * For non-gigantic pages set the destructor to the normal compound
1360	 * page dtor.  This is needed in case someone takes an additional
1361	 * temporary ref to the page, and freeing is delayed until they drop
1362	 * their reference.
1363	 *
1364	 * For gigantic pages set the destructor to the null dtor.  This
1365	 * destructor will never be called.  Before freeing the gigantic
1366	 * page destroy_compound_gigantic_page will turn the compound page
1367	 * into a simple group of pages.  After this the destructor does not
1368	 * apply.
1369	 *
1370	 * This handles the case where more than one ref is held when and
1371	 * after update_and_free_page is called.
1372	 */
1373	set_page_refcounted(page);
1374	if (hstate_is_gigantic(h)) {
1375		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1376		/*
1377		 * Temporarily drop the hugetlb_lock, because
1378		 * we might block in free_gigantic_page().
1379		 */
1380		spin_unlock(&hugetlb_lock);
1381		destroy_compound_gigantic_page(page, huge_page_order(h));
1382		free_gigantic_page(page, huge_page_order(h));
1383		spin_lock(&hugetlb_lock);
1384	} else {
1385		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1386		__free_pages(page, huge_page_order(h));
1387	}
1388}
1389
1390struct hstate *size_to_hstate(unsigned long size)
1391{
1392	struct hstate *h;
1393
1394	for_each_hstate(h) {
1395		if (huge_page_size(h) == size)
1396			return h;
1397	}
1398	return NULL;
1399}
1400
1401/*
1402 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1403 * to hstate->hugepage_activelist.)
1404 *
1405 * This function can be called for tail pages, but never returns true for them.
1406 */
1407bool page_huge_active(struct page *page)
1408{
1409	return PageHeadHuge(page) && PagePrivate(&page[1]);
1410}
1411
1412/* never called for tail page */
1413void set_page_huge_active(struct page *page)
1414{
1415	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1416	SetPagePrivate(&page[1]);
1417}
1418
1419static void clear_page_huge_active(struct page *page)
1420{
1421	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1422	ClearPagePrivate(&page[1]);
1423}
1424
1425/*
1426 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1427 * code
1428 */
1429static inline bool PageHugeTemporary(struct page *page)
1430{
1431	if (!PageHuge(page))
1432		return false;
1433
1434	return (unsigned long)page[2].mapping == -1U;
1435}
1436
1437static inline void SetPageHugeTemporary(struct page *page)
1438{
1439	page[2].mapping = (void *)-1U;
1440}
1441
1442static inline void ClearPageHugeTemporary(struct page *page)
1443{
1444	page[2].mapping = NULL;
1445}
1446
1447static void __free_huge_page(struct page *page)
1448{
1449	/*
1450	 * Can't pass hstate in here because it is called from the
1451	 * compound page destructor.
1452	 */
1453	struct hstate *h = page_hstate(page);
1454	int nid = page_to_nid(page);
1455	struct hugepage_subpool *spool =
1456		(struct hugepage_subpool *)page_private(page);
1457	bool restore_reserve;
1458
1459	VM_BUG_ON_PAGE(page_count(page), page);
1460	VM_BUG_ON_PAGE(page_mapcount(page), page);
1461
1462	set_page_private(page, 0);
1463	page->mapping = NULL;
1464	restore_reserve = PagePrivate(page);
1465	ClearPagePrivate(page);
1466
1467	/*
1468	 * If PagePrivate() was set on page, page allocation consumed a
1469	 * reservation.  If the page was associated with a subpool, there
1470	 * would have been a page reserved in the subpool before allocation
1471	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1472	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1473	 * remove the reserved page from the subpool.
1474	 */
1475	if (!restore_reserve) {
1476		/*
1477		 * A return code of zero implies that the subpool will be
1478		 * under its minimum size if the reservation is not restored
1479		 * after page is free.  Therefore, force restore_reserve
1480		 * operation.
1481		 */
1482		if (hugepage_subpool_put_pages(spool, 1) == 0)
1483			restore_reserve = true;
1484	}
1485
1486	spin_lock(&hugetlb_lock);
1487	clear_page_huge_active(page);
1488	hugetlb_cgroup_uncharge_page(hstate_index(h),
1489				     pages_per_huge_page(h), page);
1490	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1491					  pages_per_huge_page(h), page);
1492	if (restore_reserve)
1493		h->resv_huge_pages++;
1494
1495	if (PageHugeTemporary(page)) {
1496		list_del(&page->lru);
1497		ClearPageHugeTemporary(page);
1498		update_and_free_page(h, page);
1499	} else if (h->surplus_huge_pages_node[nid]) {
1500		/* remove the page from active list */
1501		list_del(&page->lru);
1502		update_and_free_page(h, page);
1503		h->surplus_huge_pages--;
1504		h->surplus_huge_pages_node[nid]--;
1505	} else {
1506		arch_clear_hugepage_flags(page);
1507		enqueue_huge_page(h, page);
1508	}
1509	spin_unlock(&hugetlb_lock);
1510}
1511
1512/*
1513 * As free_huge_page() can be called from a non-task context, we have
1514 * to defer the actual freeing in a workqueue to prevent potential
1515 * hugetlb_lock deadlock.
1516 *
1517 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1518 * be freed and frees them one-by-one. As the page->mapping pointer is
1519 * going to be cleared in __free_huge_page() anyway, it is reused as the
1520 * llist_node structure of a lockless linked list of huge pages to be freed.
1521 */
1522static LLIST_HEAD(hpage_freelist);
1523
1524static void free_hpage_workfn(struct work_struct *work)
1525{
1526	struct llist_node *node;
1527	struct page *page;
1528
1529	node = llist_del_all(&hpage_freelist);
1530
1531	while (node) {
1532		page = container_of((struct address_space **)node,
1533				     struct page, mapping);
1534		node = node->next;
1535		__free_huge_page(page);
1536	}
1537}
1538static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1539
1540void free_huge_page(struct page *page)
1541{
1542	/*
1543	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1544	 */
1545	if (!in_task()) {
1546		/*
1547		 * Only call schedule_work() if hpage_freelist is previously
1548		 * empty. Otherwise, schedule_work() had been called but the
1549		 * workfn hasn't retrieved the list yet.
1550		 */
1551		if (llist_add((struct llist_node *)&page->mapping,
1552			      &hpage_freelist))
1553			schedule_work(&free_hpage_work);
1554		return;
1555	}
1556
1557	__free_huge_page(page);
1558}
1559
1560static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1561{
1562	INIT_LIST_HEAD(&page->lru);
1563	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1564	set_hugetlb_cgroup(page, NULL);
1565	set_hugetlb_cgroup_rsvd(page, NULL);
1566	spin_lock(&hugetlb_lock);
1567	h->nr_huge_pages++;
1568	h->nr_huge_pages_node[nid]++;
1569	ClearPageHugeFreed(page);
1570	spin_unlock(&hugetlb_lock);
1571}
1572
1573static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1574{
1575	int i;
1576	int nr_pages = 1 << order;
1577	struct page *p = page + 1;
1578
1579	/* we rely on prep_new_huge_page to set the destructor */
1580	set_compound_order(page, order);
1581	__ClearPageReserved(page);
1582	__SetPageHead(page);
1583	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1584		/*
1585		 * For gigantic hugepages allocated through bootmem at
1586		 * boot, it's safer to be consistent with the not-gigantic
1587		 * hugepages and clear the PG_reserved bit from all tail pages
1588		 * too.  Otherwise drivers using get_user_pages() to access tail
1589		 * pages may get the reference counting wrong if they see
1590		 * PG_reserved set on a tail page (despite the head page not
1591		 * having PG_reserved set).  Enforcing this consistency between
1592		 * head and tail pages allows drivers to optimize away a check
1593		 * on the head page when they need know if put_page() is needed
1594		 * after get_user_pages().
1595		 */
1596		__ClearPageReserved(p);
1597		set_page_count(p, 0);
1598		set_compound_head(p, page);
1599	}
1600	atomic_set(compound_mapcount_ptr(page), -1);
1601	atomic_set(compound_pincount_ptr(page), 0);
1602}
1603
1604/*
1605 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1606 * transparent huge pages.  See the PageTransHuge() documentation for more
1607 * details.
1608 */
1609int PageHuge(struct page *page)
1610{
1611	if (!PageCompound(page))
1612		return 0;
1613
1614	page = compound_head(page);
1615	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1616}
1617EXPORT_SYMBOL_GPL(PageHuge);
1618
1619/*
1620 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1621 * normal or transparent huge pages.
1622 */
1623int PageHeadHuge(struct page *page_head)
1624{
1625	if (!PageHead(page_head))
1626		return 0;
1627
1628	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1629}
1630
1631/*
1632 * Find and lock address space (mapping) in write mode.
1633 *
1634 * Upon entry, the page is locked which means that page_mapping() is
1635 * stable.  Due to locking order, we can only trylock_write.  If we can
1636 * not get the lock, simply return NULL to caller.
1637 */
1638struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1639{
1640	struct address_space *mapping = page_mapping(hpage);
1641
1642	if (!mapping)
1643		return mapping;
1644
1645	if (i_mmap_trylock_write(mapping))
1646		return mapping;
1647
1648	return NULL;
1649}
1650
1651pgoff_t hugetlb_basepage_index(struct page *page)
1652{
1653	struct page *page_head = compound_head(page);
1654	pgoff_t index = page_index(page_head);
1655	unsigned long compound_idx;
1656
1657	if (compound_order(page_head) >= MAX_ORDER)
1658		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1659	else
1660		compound_idx = page - page_head;
1661
1662	return (index << compound_order(page_head)) + compound_idx;
1663}
1664
1665static struct page *alloc_buddy_huge_page(struct hstate *h,
1666		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1667		nodemask_t *node_alloc_noretry)
1668{
1669	int order = huge_page_order(h);
1670	struct page *page;
1671	bool alloc_try_hard = true;
1672
1673	/*
1674	 * By default we always try hard to allocate the page with
1675	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1676	 * a loop (to adjust global huge page counts) and previous allocation
1677	 * failed, do not continue to try hard on the same node.  Use the
1678	 * node_alloc_noretry bitmap to manage this state information.
1679	 */
1680	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1681		alloc_try_hard = false;
1682	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1683	if (alloc_try_hard)
1684		gfp_mask |= __GFP_RETRY_MAYFAIL;
1685	if (nid == NUMA_NO_NODE)
1686		nid = numa_mem_id();
1687	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1688	if (page)
1689		__count_vm_event(HTLB_BUDDY_PGALLOC);
1690	else
1691		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1692
1693	/*
1694	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1695	 * indicates an overall state change.  Clear bit so that we resume
1696	 * normal 'try hard' allocations.
1697	 */
1698	if (node_alloc_noretry && page && !alloc_try_hard)
1699		node_clear(nid, *node_alloc_noretry);
1700
1701	/*
1702	 * If we tried hard to get a page but failed, set bit so that
1703	 * subsequent attempts will not try as hard until there is an
1704	 * overall state change.
1705	 */
1706	if (node_alloc_noretry && !page && alloc_try_hard)
1707		node_set(nid, *node_alloc_noretry);
1708
1709	return page;
1710}
1711
1712/*
1713 * Common helper to allocate a fresh hugetlb page. All specific allocators
1714 * should use this function to get new hugetlb pages
1715 */
1716static struct page *alloc_fresh_huge_page(struct hstate *h,
1717		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1718		nodemask_t *node_alloc_noretry)
1719{
1720	struct page *page;
1721
1722	if (hstate_is_gigantic(h))
1723		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1724	else
1725		page = alloc_buddy_huge_page(h, gfp_mask,
1726				nid, nmask, node_alloc_noretry);
1727	if (!page)
1728		return NULL;
1729
1730	if (hstate_is_gigantic(h))
1731		prep_compound_gigantic_page(page, huge_page_order(h));
1732	prep_new_huge_page(h, page, page_to_nid(page));
1733
1734	return page;
1735}
1736
1737/*
1738 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1739 * manner.
1740 */
1741static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1742				nodemask_t *node_alloc_noretry)
1743{
1744	struct page *page;
1745	int nr_nodes, node;
1746	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1747
1748	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1749		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1750						node_alloc_noretry);
1751		if (page)
1752			break;
1753	}
1754
1755	if (!page)
1756		return 0;
1757
1758	put_page(page); /* free it into the hugepage allocator */
1759
1760	return 1;
1761}
1762
1763/*
1764 * Free huge page from pool from next node to free.
1765 * Attempt to keep persistent huge pages more or less
1766 * balanced over allowed nodes.
1767 * Called with hugetlb_lock locked.
1768 */
1769static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1770							 bool acct_surplus)
1771{
1772	int nr_nodes, node;
1773	int ret = 0;
1774
1775	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1776		/*
1777		 * If we're returning unused surplus pages, only examine
1778		 * nodes with surplus pages.
1779		 */
1780		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1781		    !list_empty(&h->hugepage_freelists[node])) {
1782			struct page *page =
1783				list_entry(h->hugepage_freelists[node].next,
1784					  struct page, lru);
1785			list_del(&page->lru);
1786			h->free_huge_pages--;
1787			h->free_huge_pages_node[node]--;
1788			if (acct_surplus) {
1789				h->surplus_huge_pages--;
1790				h->surplus_huge_pages_node[node]--;
1791			}
1792			update_and_free_page(h, page);
1793			ret = 1;
1794			break;
1795		}
1796	}
1797
1798	return ret;
1799}
1800
1801/*
1802 * Dissolve a given free hugepage into free buddy pages. This function does
1803 * nothing for in-use hugepages and non-hugepages.
1804 * This function returns values like below:
1805 *
1806 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1807 *          (allocated or reserved.)
1808 *       0: successfully dissolved free hugepages or the page is not a
1809 *          hugepage (considered as already dissolved)
1810 */
1811int dissolve_free_huge_page(struct page *page)
1812{
1813	int rc = -EBUSY;
1814
1815retry:
1816	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1817	if (!PageHuge(page))
1818		return 0;
1819
1820	spin_lock(&hugetlb_lock);
1821	if (!PageHuge(page)) {
1822		rc = 0;
1823		goto out;
1824	}
1825
1826	if (!page_count(page)) {
1827		struct page *head = compound_head(page);
1828		struct hstate *h = page_hstate(head);
1829		int nid = page_to_nid(head);
1830		if (h->free_huge_pages - h->resv_huge_pages == 0)
1831			goto out;
1832
1833		/*
1834		 * We should make sure that the page is already on the free list
1835		 * when it is dissolved.
1836		 */
1837		if (unlikely(!PageHugeFreed(head))) {
1838			spin_unlock(&hugetlb_lock);
1839			cond_resched();
1840
1841			/*
1842			 * Theoretically, we should return -EBUSY when we
1843			 * encounter this race. In fact, we have a chance
1844			 * to successfully dissolve the page if we do a
1845			 * retry. Because the race window is quite small.
1846			 * If we seize this opportunity, it is an optimization
1847			 * for increasing the success rate of dissolving page.
1848			 */
1849			goto retry;
1850		}
1851
1852		/*
1853		 * Move PageHWPoison flag from head page to the raw error page,
1854		 * which makes any subpages rather than the error page reusable.
1855		 */
1856		if (PageHWPoison(head) && page != head) {
1857			SetPageHWPoison(page);
1858			ClearPageHWPoison(head);
1859		}
1860		list_del(&head->lru);
1861		h->free_huge_pages--;
1862		h->free_huge_pages_node[nid]--;
1863		h->max_huge_pages--;
1864		update_and_free_page(h, head);
1865		rc = 0;
1866	}
1867out:
1868	spin_unlock(&hugetlb_lock);
1869	return rc;
1870}
1871
1872/*
1873 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1874 * make specified memory blocks removable from the system.
1875 * Note that this will dissolve a free gigantic hugepage completely, if any
1876 * part of it lies within the given range.
1877 * Also note that if dissolve_free_huge_page() returns with an error, all
1878 * free hugepages that were dissolved before that error are lost.
1879 */
1880int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1881{
1882	unsigned long pfn;
1883	struct page *page;
1884	int rc = 0;
1885
1886	if (!hugepages_supported())
1887		return rc;
1888
1889	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1890		page = pfn_to_page(pfn);
1891		rc = dissolve_free_huge_page(page);
1892		if (rc)
1893			break;
1894	}
1895
1896	return rc;
1897}
1898
1899/*
1900 * Allocates a fresh surplus page from the page allocator.
1901 */
1902static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1903		int nid, nodemask_t *nmask)
1904{
1905	struct page *page = NULL;
1906
1907	if (hstate_is_gigantic(h))
1908		return NULL;
1909
1910	spin_lock(&hugetlb_lock);
1911	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1912		goto out_unlock;
1913	spin_unlock(&hugetlb_lock);
1914
1915	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1916	if (!page)
1917		return NULL;
1918
1919	spin_lock(&hugetlb_lock);
1920	/*
1921	 * We could have raced with the pool size change.
1922	 * Double check that and simply deallocate the new page
1923	 * if we would end up overcommiting the surpluses. Abuse
1924	 * temporary page to workaround the nasty free_huge_page
1925	 * codeflow
1926	 */
1927	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1928		SetPageHugeTemporary(page);
1929		spin_unlock(&hugetlb_lock);
1930		put_page(page);
1931		return NULL;
1932	} else {
1933		h->surplus_huge_pages++;
1934		h->surplus_huge_pages_node[page_to_nid(page)]++;
1935	}
1936
1937out_unlock:
1938	spin_unlock(&hugetlb_lock);
1939
1940	return page;
1941}
1942
1943static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1944				     int nid, nodemask_t *nmask)
1945{
1946	struct page *page;
1947
1948	if (hstate_is_gigantic(h))
1949		return NULL;
1950
1951	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1952	if (!page)
1953		return NULL;
1954
1955	/*
1956	 * We do not account these pages as surplus because they are only
1957	 * temporary and will be released properly on the last reference
1958	 */
1959	SetPageHugeTemporary(page);
1960
1961	return page;
1962}
1963
1964/*
1965 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1966 */
1967static
1968struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1969		struct vm_area_struct *vma, unsigned long addr)
1970{
1971	struct page *page;
1972	struct mempolicy *mpol;
1973	gfp_t gfp_mask = htlb_alloc_mask(h);
1974	int nid;
1975	nodemask_t *nodemask;
1976
1977	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1978	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1979	mpol_cond_put(mpol);
1980
1981	return page;
1982}
1983
1984/* page migration callback function */
1985struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1986		nodemask_t *nmask, gfp_t gfp_mask)
1987{
1988	spin_lock(&hugetlb_lock);
1989	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1990		struct page *page;
1991
1992		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1993		if (page) {
1994			spin_unlock(&hugetlb_lock);
1995			return page;
1996		}
1997	}
1998	spin_unlock(&hugetlb_lock);
1999
2000	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2001}
2002
2003/* mempolicy aware migration callback */
2004struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2005		unsigned long address)
2006{
2007	struct mempolicy *mpol;
2008	nodemask_t *nodemask;
2009	struct page *page;
2010	gfp_t gfp_mask;
2011	int node;
2012
2013	gfp_mask = htlb_alloc_mask(h);
2014	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2015	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2016	mpol_cond_put(mpol);
2017
2018	return page;
2019}
2020
2021/*
2022 * Increase the hugetlb pool such that it can accommodate a reservation
2023 * of size 'delta'.
2024 */
2025static int gather_surplus_pages(struct hstate *h, long delta)
2026	__must_hold(&hugetlb_lock)
2027{
2028	struct list_head surplus_list;
2029	struct page *page, *tmp;
2030	int ret;
2031	long i;
2032	long needed, allocated;
2033	bool alloc_ok = true;
2034
2035	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2036	if (needed <= 0) {
2037		h->resv_huge_pages += delta;
2038		return 0;
2039	}
2040
2041	allocated = 0;
2042	INIT_LIST_HEAD(&surplus_list);
2043
2044	ret = -ENOMEM;
2045retry:
2046	spin_unlock(&hugetlb_lock);
2047	for (i = 0; i < needed; i++) {
2048		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2049				NUMA_NO_NODE, NULL);
2050		if (!page) {
2051			alloc_ok = false;
2052			break;
2053		}
2054		list_add(&page->lru, &surplus_list);
2055		cond_resched();
2056	}
2057	allocated += i;
2058
2059	/*
2060	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2061	 * because either resv_huge_pages or free_huge_pages may have changed.
2062	 */
2063	spin_lock(&hugetlb_lock);
2064	needed = (h->resv_huge_pages + delta) -
2065			(h->free_huge_pages + allocated);
2066	if (needed > 0) {
2067		if (alloc_ok)
2068			goto retry;
2069		/*
2070		 * We were not able to allocate enough pages to
2071		 * satisfy the entire reservation so we free what
2072		 * we've allocated so far.
2073		 */
2074		goto free;
2075	}
2076	/*
2077	 * The surplus_list now contains _at_least_ the number of extra pages
2078	 * needed to accommodate the reservation.  Add the appropriate number
2079	 * of pages to the hugetlb pool and free the extras back to the buddy
2080	 * allocator.  Commit the entire reservation here to prevent another
2081	 * process from stealing the pages as they are added to the pool but
2082	 * before they are reserved.
2083	 */
2084	needed += allocated;
2085	h->resv_huge_pages += delta;
2086	ret = 0;
2087
2088	/* Free the needed pages to the hugetlb pool */
2089	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2090		if ((--needed) < 0)
2091			break;
2092		/*
2093		 * This page is now managed by the hugetlb allocator and has
2094		 * no users -- drop the buddy allocator's reference.
2095		 */
2096		put_page_testzero(page);
2097		VM_BUG_ON_PAGE(page_count(page), page);
2098		enqueue_huge_page(h, page);
2099	}
2100free:
2101	spin_unlock(&hugetlb_lock);
2102
2103	/* Free unnecessary surplus pages to the buddy allocator */
2104	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2105		put_page(page);
2106	spin_lock(&hugetlb_lock);
2107
2108	return ret;
2109}
2110
2111/*
2112 * This routine has two main purposes:
2113 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2114 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2115 *    to the associated reservation map.
2116 * 2) Free any unused surplus pages that may have been allocated to satisfy
2117 *    the reservation.  As many as unused_resv_pages may be freed.
2118 *
2119 * Called with hugetlb_lock held.  However, the lock could be dropped (and
2120 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2121 * we must make sure nobody else can claim pages we are in the process of
2122 * freeing.  Do this by ensuring resv_huge_page always is greater than the
2123 * number of huge pages we plan to free when dropping the lock.
2124 */
2125static void return_unused_surplus_pages(struct hstate *h,
2126					unsigned long unused_resv_pages)
2127{
2128	unsigned long nr_pages;
2129
2130	/* Cannot return gigantic pages currently */
2131	if (hstate_is_gigantic(h))
2132		goto out;
2133
2134	/*
2135	 * Part (or even all) of the reservation could have been backed
2136	 * by pre-allocated pages. Only free surplus pages.
2137	 */
2138	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2139
2140	/*
2141	 * We want to release as many surplus pages as possible, spread
2142	 * evenly across all nodes with memory. Iterate across these nodes
2143	 * until we can no longer free unreserved surplus pages. This occurs
2144	 * when the nodes with surplus pages have no free pages.
2145	 * free_pool_huge_page() will balance the freed pages across the
2146	 * on-line nodes with memory and will handle the hstate accounting.
2147	 *
2148	 * Note that we decrement resv_huge_pages as we free the pages.  If
2149	 * we drop the lock, resv_huge_pages will still be sufficiently large
2150	 * to cover subsequent pages we may free.
2151	 */
2152	while (nr_pages--) {
2153		h->resv_huge_pages--;
2154		unused_resv_pages--;
2155		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2156			goto out;
2157		cond_resched_lock(&hugetlb_lock);
2158	}
2159
2160out:
2161	/* Fully uncommit the reservation */
2162	h->resv_huge_pages -= unused_resv_pages;
2163}
2164
2165
2166/*
2167 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2168 * are used by the huge page allocation routines to manage reservations.
2169 *
2170 * vma_needs_reservation is called to determine if the huge page at addr
2171 * within the vma has an associated reservation.  If a reservation is
2172 * needed, the value 1 is returned.  The caller is then responsible for
2173 * managing the global reservation and subpool usage counts.  After
2174 * the huge page has been allocated, vma_commit_reservation is called
2175 * to add the page to the reservation map.  If the page allocation fails,
2176 * the reservation must be ended instead of committed.  vma_end_reservation
2177 * is called in such cases.
2178 *
2179 * In the normal case, vma_commit_reservation returns the same value
2180 * as the preceding vma_needs_reservation call.  The only time this
2181 * is not the case is if a reserve map was changed between calls.  It
2182 * is the responsibility of the caller to notice the difference and
2183 * take appropriate action.
2184 *
2185 * vma_add_reservation is used in error paths where a reservation must
2186 * be restored when a newly allocated huge page must be freed.  It is
2187 * to be called after calling vma_needs_reservation to determine if a
2188 * reservation exists.
2189 */
2190enum vma_resv_mode {
2191	VMA_NEEDS_RESV,
2192	VMA_COMMIT_RESV,
2193	VMA_END_RESV,
2194	VMA_ADD_RESV,
2195};
2196static long __vma_reservation_common(struct hstate *h,
2197				struct vm_area_struct *vma, unsigned long addr,
2198				enum vma_resv_mode mode)
2199{
2200	struct resv_map *resv;
2201	pgoff_t idx;
2202	long ret;
2203	long dummy_out_regions_needed;
2204
2205	resv = vma_resv_map(vma);
2206	if (!resv)
2207		return 1;
2208
2209	idx = vma_hugecache_offset(h, vma, addr);
2210	switch (mode) {
2211	case VMA_NEEDS_RESV:
2212		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2213		/* We assume that vma_reservation_* routines always operate on
2214		 * 1 page, and that adding to resv map a 1 page entry can only
2215		 * ever require 1 region.
2216		 */
2217		VM_BUG_ON(dummy_out_regions_needed != 1);
2218		break;
2219	case VMA_COMMIT_RESV:
2220		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2221		/* region_add calls of range 1 should never fail. */
2222		VM_BUG_ON(ret < 0);
2223		break;
2224	case VMA_END_RESV:
2225		region_abort(resv, idx, idx + 1, 1);
2226		ret = 0;
2227		break;
2228	case VMA_ADD_RESV:
2229		if (vma->vm_flags & VM_MAYSHARE) {
2230			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2231			/* region_add calls of range 1 should never fail. */
2232			VM_BUG_ON(ret < 0);
2233		} else {
2234			region_abort(resv, idx, idx + 1, 1);
2235			ret = region_del(resv, idx, idx + 1);
2236		}
2237		break;
2238	default:
2239		BUG();
2240	}
2241
2242	if (vma->vm_flags & VM_MAYSHARE)
2243		return ret;
2244	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2245		/*
2246		 * In most cases, reserves always exist for private mappings.
2247		 * However, a file associated with mapping could have been
2248		 * hole punched or truncated after reserves were consumed.
2249		 * As subsequent fault on such a range will not use reserves.
2250		 * Subtle - The reserve map for private mappings has the
2251		 * opposite meaning than that of shared mappings.  If NO
2252		 * entry is in the reserve map, it means a reservation exists.
2253		 * If an entry exists in the reserve map, it means the
2254		 * reservation has already been consumed.  As a result, the
2255		 * return value of this routine is the opposite of the
2256		 * value returned from reserve map manipulation routines above.
2257		 */
2258		if (ret)
2259			return 0;
2260		else
2261			return 1;
2262	}
2263	else
2264		return ret < 0 ? ret : 0;
2265}
2266
2267static long vma_needs_reservation(struct hstate *h,
2268			struct vm_area_struct *vma, unsigned long addr)
2269{
2270	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2271}
2272
2273static long vma_commit_reservation(struct hstate *h,
2274			struct vm_area_struct *vma, unsigned long addr)
2275{
2276	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2277}
2278
2279static void vma_end_reservation(struct hstate *h,
2280			struct vm_area_struct *vma, unsigned long addr)
2281{
2282	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2283}
2284
2285static long vma_add_reservation(struct hstate *h,
2286			struct vm_area_struct *vma, unsigned long addr)
2287{
2288	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2289}
2290
2291/*
2292 * This routine is called to restore a reservation on error paths.  In the
2293 * specific error paths, a huge page was allocated (via alloc_huge_page)
2294 * and is about to be freed.  If a reservation for the page existed,
2295 * alloc_huge_page would have consumed the reservation and set PagePrivate
2296 * in the newly allocated page.  When the page is freed via free_huge_page,
2297 * the global reservation count will be incremented if PagePrivate is set.
2298 * However, free_huge_page can not adjust the reserve map.  Adjust the
2299 * reserve map here to be consistent with global reserve count adjustments
2300 * to be made by free_huge_page.
2301 */
2302static void restore_reserve_on_error(struct hstate *h,
2303			struct vm_area_struct *vma, unsigned long address,
2304			struct page *page)
2305{
2306	if (unlikely(PagePrivate(page))) {
2307		long rc = vma_needs_reservation(h, vma, address);
2308
2309		if (unlikely(rc < 0)) {
2310			/*
2311			 * Rare out of memory condition in reserve map
2312			 * manipulation.  Clear PagePrivate so that
2313			 * global reserve count will not be incremented
2314			 * by free_huge_page.  This will make it appear
2315			 * as though the reservation for this page was
2316			 * consumed.  This may prevent the task from
2317			 * faulting in the page at a later time.  This
2318			 * is better than inconsistent global huge page
2319			 * accounting of reserve counts.
2320			 */
2321			ClearPagePrivate(page);
2322		} else if (rc) {
2323			rc = vma_add_reservation(h, vma, address);
2324			if (unlikely(rc < 0))
2325				/*
2326				 * See above comment about rare out of
2327				 * memory condition.
2328				 */
2329				ClearPagePrivate(page);
2330		} else
2331			vma_end_reservation(h, vma, address);
2332	}
2333}
2334
2335struct page *alloc_huge_page(struct vm_area_struct *vma,
2336				    unsigned long addr, int avoid_reserve)
2337{
2338	struct hugepage_subpool *spool = subpool_vma(vma);
2339	struct hstate *h = hstate_vma(vma);
2340	struct page *page;
2341	long map_chg, map_commit;
2342	long gbl_chg;
2343	int ret, idx;
2344	struct hugetlb_cgroup *h_cg;
2345	bool deferred_reserve;
2346
2347	idx = hstate_index(h);
2348	/*
2349	 * Examine the region/reserve map to determine if the process
2350	 * has a reservation for the page to be allocated.  A return
2351	 * code of zero indicates a reservation exists (no change).
2352	 */
2353	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2354	if (map_chg < 0)
2355		return ERR_PTR(-ENOMEM);
2356
2357	/*
2358	 * Processes that did not create the mapping will have no
2359	 * reserves as indicated by the region/reserve map. Check
2360	 * that the allocation will not exceed the subpool limit.
2361	 * Allocations for MAP_NORESERVE mappings also need to be
2362	 * checked against any subpool limit.
2363	 */
2364	if (map_chg || avoid_reserve) {
2365		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2366		if (gbl_chg < 0) {
2367			vma_end_reservation(h, vma, addr);
2368			return ERR_PTR(-ENOSPC);
2369		}
2370
2371		/*
2372		 * Even though there was no reservation in the region/reserve
2373		 * map, there could be reservations associated with the
2374		 * subpool that can be used.  This would be indicated if the
2375		 * return value of hugepage_subpool_get_pages() is zero.
2376		 * However, if avoid_reserve is specified we still avoid even
2377		 * the subpool reservations.
2378		 */
2379		if (avoid_reserve)
2380			gbl_chg = 1;
2381	}
2382
2383	/* If this allocation is not consuming a reservation, charge it now.
2384	 */
2385	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2386	if (deferred_reserve) {
2387		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2388			idx, pages_per_huge_page(h), &h_cg);
2389		if (ret)
2390			goto out_subpool_put;
2391	}
2392
2393	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2394	if (ret)
2395		goto out_uncharge_cgroup_reservation;
2396
2397	spin_lock(&hugetlb_lock);
2398	/*
2399	 * glb_chg is passed to indicate whether or not a page must be taken
2400	 * from the global free pool (global change).  gbl_chg == 0 indicates
2401	 * a reservation exists for the allocation.
2402	 */
2403	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2404	if (!page) {
2405		spin_unlock(&hugetlb_lock);
2406		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2407		if (!page)
2408			goto out_uncharge_cgroup;
2409		spin_lock(&hugetlb_lock);
2410		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2411			SetPagePrivate(page);
2412			h->resv_huge_pages--;
2413		}
2414		list_add(&page->lru, &h->hugepage_activelist);
2415		/* Fall through */
2416	}
2417	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2418	/* If allocation is not consuming a reservation, also store the
2419	 * hugetlb_cgroup pointer on the page.
2420	 */
2421	if (deferred_reserve) {
2422		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2423						  h_cg, page);
2424	}
2425
2426	spin_unlock(&hugetlb_lock);
2427
2428	set_page_private(page, (unsigned long)spool);
2429
2430	map_commit = vma_commit_reservation(h, vma, addr);
2431	if (unlikely(map_chg > map_commit)) {
2432		/*
2433		 * The page was added to the reservation map between
2434		 * vma_needs_reservation and vma_commit_reservation.
2435		 * This indicates a race with hugetlb_reserve_pages.
2436		 * Adjust for the subpool count incremented above AND
2437		 * in hugetlb_reserve_pages for the same page.  Also,
2438		 * the reservation count added in hugetlb_reserve_pages
2439		 * no longer applies.
2440		 */
2441		long rsv_adjust;
2442
2443		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2444		hugetlb_acct_memory(h, -rsv_adjust);
2445		if (deferred_reserve)
2446			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2447					pages_per_huge_page(h), page);
2448	}
2449	return page;
2450
2451out_uncharge_cgroup:
2452	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2453out_uncharge_cgroup_reservation:
2454	if (deferred_reserve)
2455		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2456						    h_cg);
2457out_subpool_put:
2458	if (map_chg || avoid_reserve)
2459		hugepage_subpool_put_pages(spool, 1);
2460	vma_end_reservation(h, vma, addr);
2461	return ERR_PTR(-ENOSPC);
2462}
2463
2464int alloc_bootmem_huge_page(struct hstate *h)
2465	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2466int __alloc_bootmem_huge_page(struct hstate *h)
2467{
2468	struct huge_bootmem_page *m;
2469	int nr_nodes, node;
2470
2471	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2472		void *addr;
2473
2474		addr = memblock_alloc_try_nid_raw(
2475				huge_page_size(h), huge_page_size(h),
2476				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2477		if (addr) {
2478			/*
2479			 * Use the beginning of the huge page to store the
2480			 * huge_bootmem_page struct (until gather_bootmem
2481			 * puts them into the mem_map).
2482			 */
2483			m = addr;
2484			goto found;
2485		}
2486	}
2487	return 0;
2488
2489found:
2490	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2491	/* Put them into a private list first because mem_map is not up yet */
2492	INIT_LIST_HEAD(&m->list);
2493	list_add(&m->list, &huge_boot_pages);
2494	m->hstate = h;
2495	return 1;
2496}
2497
2498/*
2499 * Put bootmem huge pages into the standard lists after mem_map is up.
2500 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2501 */
2502static void __init gather_bootmem_prealloc(void)
2503{
2504	struct huge_bootmem_page *m;
2505
2506	list_for_each_entry(m, &huge_boot_pages, list) {
2507		struct page *page = virt_to_page(m);
2508		struct hstate *h = m->hstate;
2509
2510		VM_BUG_ON(!hstate_is_gigantic(h));
2511		WARN_ON(page_count(page) != 1);
2512		prep_compound_gigantic_page(page, huge_page_order(h));
2513		WARN_ON(PageReserved(page));
2514		prep_new_huge_page(h, page, page_to_nid(page));
2515		put_page(page); /* free it into the hugepage allocator */
2516
2517		/*
2518		 * We need to restore the 'stolen' pages to totalram_pages
2519		 * in order to fix confusing memory reports from free(1) and
2520		 * other side-effects, like CommitLimit going negative.
2521		 */
2522		adjust_managed_page_count(page, pages_per_huge_page(h));
2523		cond_resched();
2524	}
2525}
2526
2527static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2528{
2529	unsigned long i;
2530	nodemask_t *node_alloc_noretry;
2531
2532	if (!hstate_is_gigantic(h)) {
2533		/*
2534		 * Bit mask controlling how hard we retry per-node allocations.
2535		 * Ignore errors as lower level routines can deal with
2536		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2537		 * time, we are likely in bigger trouble.
2538		 */
2539		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2540						GFP_KERNEL);
2541	} else {
2542		/* allocations done at boot time */
2543		node_alloc_noretry = NULL;
2544	}
2545
2546	/* bit mask controlling how hard we retry per-node allocations */
2547	if (node_alloc_noretry)
2548		nodes_clear(*node_alloc_noretry);
2549
2550	for (i = 0; i < h->max_huge_pages; ++i) {
2551		if (hstate_is_gigantic(h)) {
2552			if (hugetlb_cma_size) {
2553				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2554				goto free;
2555			}
2556			if (!alloc_bootmem_huge_page(h))
2557				break;
2558		} else if (!alloc_pool_huge_page(h,
2559					 &node_states[N_MEMORY],
2560					 node_alloc_noretry))
2561			break;
2562		cond_resched();
2563	}
2564	if (i < h->max_huge_pages) {
2565		char buf[32];
2566
2567		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2568		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2569			h->max_huge_pages, buf, i);
2570		h->max_huge_pages = i;
2571	}
2572free:
2573	kfree(node_alloc_noretry);
2574}
2575
2576static void __init hugetlb_init_hstates(void)
2577{
2578	struct hstate *h;
2579
2580	for_each_hstate(h) {
2581		if (minimum_order > huge_page_order(h))
2582			minimum_order = huge_page_order(h);
2583
2584		/* oversize hugepages were init'ed in early boot */
2585		if (!hstate_is_gigantic(h))
2586			hugetlb_hstate_alloc_pages(h);
2587	}
2588	VM_BUG_ON(minimum_order == UINT_MAX);
2589}
2590
2591static void __init report_hugepages(void)
2592{
2593	struct hstate *h;
2594
2595	for_each_hstate(h) {
2596		char buf[32];
2597
2598		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2599		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2600			buf, h->free_huge_pages);
2601	}
2602}
2603
2604#ifdef CONFIG_HIGHMEM
2605static void try_to_free_low(struct hstate *h, unsigned long count,
2606						nodemask_t *nodes_allowed)
2607{
2608	int i;
2609
2610	if (hstate_is_gigantic(h))
2611		return;
2612
2613	for_each_node_mask(i, *nodes_allowed) {
2614		struct page *page, *next;
2615		struct list_head *freel = &h->hugepage_freelists[i];
2616		list_for_each_entry_safe(page, next, freel, lru) {
2617			if (count >= h->nr_huge_pages)
2618				return;
2619			if (PageHighMem(page))
2620				continue;
2621			list_del(&page->lru);
2622			update_and_free_page(h, page);
2623			h->free_huge_pages--;
2624			h->free_huge_pages_node[page_to_nid(page)]--;
2625		}
2626	}
2627}
2628#else
2629static inline void try_to_free_low(struct hstate *h, unsigned long count,
2630						nodemask_t *nodes_allowed)
2631{
2632}
2633#endif
2634
2635/*
2636 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2637 * balanced by operating on them in a round-robin fashion.
2638 * Returns 1 if an adjustment was made.
2639 */
2640static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2641				int delta)
2642{
2643	int nr_nodes, node;
2644
2645	VM_BUG_ON(delta != -1 && delta != 1);
2646
2647	if (delta < 0) {
2648		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2649			if (h->surplus_huge_pages_node[node])
2650				goto found;
2651		}
2652	} else {
2653		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2654			if (h->surplus_huge_pages_node[node] <
2655					h->nr_huge_pages_node[node])
2656				goto found;
2657		}
2658	}
2659	return 0;
2660
2661found:
2662	h->surplus_huge_pages += delta;
2663	h->surplus_huge_pages_node[node] += delta;
2664	return 1;
2665}
2666
2667#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2668static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2669			      nodemask_t *nodes_allowed)
2670{
2671	unsigned long min_count, ret;
2672	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2673
2674	/*
2675	 * Bit mask controlling how hard we retry per-node allocations.
2676	 * If we can not allocate the bit mask, do not attempt to allocate
2677	 * the requested huge pages.
2678	 */
2679	if (node_alloc_noretry)
2680		nodes_clear(*node_alloc_noretry);
2681	else
2682		return -ENOMEM;
2683
2684	spin_lock(&hugetlb_lock);
2685
2686	/*
2687	 * Check for a node specific request.
2688	 * Changing node specific huge page count may require a corresponding
2689	 * change to the global count.  In any case, the passed node mask
2690	 * (nodes_allowed) will restrict alloc/free to the specified node.
2691	 */
2692	if (nid != NUMA_NO_NODE) {
2693		unsigned long old_count = count;
2694
2695		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2696		/*
2697		 * User may have specified a large count value which caused the
2698		 * above calculation to overflow.  In this case, they wanted
2699		 * to allocate as many huge pages as possible.  Set count to
2700		 * largest possible value to align with their intention.
2701		 */
2702		if (count < old_count)
2703			count = ULONG_MAX;
2704	}
2705
2706	/*
2707	 * Gigantic pages runtime allocation depend on the capability for large
2708	 * page range allocation.
2709	 * If the system does not provide this feature, return an error when
2710	 * the user tries to allocate gigantic pages but let the user free the
2711	 * boottime allocated gigantic pages.
2712	 */
2713	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2714		if (count > persistent_huge_pages(h)) {
2715			spin_unlock(&hugetlb_lock);
2716			NODEMASK_FREE(node_alloc_noretry);
2717			return -EINVAL;
2718		}
2719		/* Fall through to decrease pool */
2720	}
2721
2722	/*
2723	 * Increase the pool size
2724	 * First take pages out of surplus state.  Then make up the
2725	 * remaining difference by allocating fresh huge pages.
2726	 *
2727	 * We might race with alloc_surplus_huge_page() here and be unable
2728	 * to convert a surplus huge page to a normal huge page. That is
2729	 * not critical, though, it just means the overall size of the
2730	 * pool might be one hugepage larger than it needs to be, but
2731	 * within all the constraints specified by the sysctls.
2732	 */
2733	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2734		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2735			break;
2736	}
2737
2738	while (count > persistent_huge_pages(h)) {
2739		/*
2740		 * If this allocation races such that we no longer need the
2741		 * page, free_huge_page will handle it by freeing the page
2742		 * and reducing the surplus.
2743		 */
2744		spin_unlock(&hugetlb_lock);
2745
2746		/* yield cpu to avoid soft lockup */
2747		cond_resched();
2748
2749		ret = alloc_pool_huge_page(h, nodes_allowed,
2750						node_alloc_noretry);
2751		spin_lock(&hugetlb_lock);
2752		if (!ret)
2753			goto out;
2754
2755		/* Bail for signals. Probably ctrl-c from user */
2756		if (signal_pending(current))
2757			goto out;
2758	}
2759
2760	/*
2761	 * Decrease the pool size
2762	 * First return free pages to the buddy allocator (being careful
2763	 * to keep enough around to satisfy reservations).  Then place
2764	 * pages into surplus state as needed so the pool will shrink
2765	 * to the desired size as pages become free.
2766	 *
2767	 * By placing pages into the surplus state independent of the
2768	 * overcommit value, we are allowing the surplus pool size to
2769	 * exceed overcommit. There are few sane options here. Since
2770	 * alloc_surplus_huge_page() is checking the global counter,
2771	 * though, we'll note that we're not allowed to exceed surplus
2772	 * and won't grow the pool anywhere else. Not until one of the
2773	 * sysctls are changed, or the surplus pages go out of use.
2774	 */
2775	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2776	min_count = max(count, min_count);
2777	try_to_free_low(h, min_count, nodes_allowed);
2778	while (min_count < persistent_huge_pages(h)) {
2779		if (!free_pool_huge_page(h, nodes_allowed, 0))
2780			break;
2781		cond_resched_lock(&hugetlb_lock);
2782	}
2783	while (count < persistent_huge_pages(h)) {
2784		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2785			break;
2786	}
2787out:
2788	h->max_huge_pages = persistent_huge_pages(h);
2789	spin_unlock(&hugetlb_lock);
2790
2791	NODEMASK_FREE(node_alloc_noretry);
2792
2793	return 0;
2794}
2795
2796#define HSTATE_ATTR_RO(_name) \
2797	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2798
2799#define HSTATE_ATTR(_name) \
2800	static struct kobj_attribute _name##_attr = \
2801		__ATTR(_name, 0644, _name##_show, _name##_store)
2802
2803static struct kobject *hugepages_kobj;
2804static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2805
2806static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2807
2808static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2809{
2810	int i;
2811
2812	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2813		if (hstate_kobjs[i] == kobj) {
2814			if (nidp)
2815				*nidp = NUMA_NO_NODE;
2816			return &hstates[i];
2817		}
2818
2819	return kobj_to_node_hstate(kobj, nidp);
2820}
2821
2822static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2823					struct kobj_attribute *attr, char *buf)
2824{
2825	struct hstate *h;
2826	unsigned long nr_huge_pages;
2827	int nid;
2828
2829	h = kobj_to_hstate(kobj, &nid);
2830	if (nid == NUMA_NO_NODE)
2831		nr_huge_pages = h->nr_huge_pages;
2832	else
2833		nr_huge_pages = h->nr_huge_pages_node[nid];
2834
2835	return sprintf(buf, "%lu\n", nr_huge_pages);
2836}
2837
2838static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2839					   struct hstate *h, int nid,
2840					   unsigned long count, size_t len)
2841{
2842	int err;
2843	nodemask_t nodes_allowed, *n_mask;
2844
2845	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2846		return -EINVAL;
2847
2848	if (nid == NUMA_NO_NODE) {
2849		/*
2850		 * global hstate attribute
2851		 */
2852		if (!(obey_mempolicy &&
2853				init_nodemask_of_mempolicy(&nodes_allowed)))
2854			n_mask = &node_states[N_MEMORY];
2855		else
2856			n_mask = &nodes_allowed;
2857	} else {
2858		/*
2859		 * Node specific request.  count adjustment happens in
2860		 * set_max_huge_pages() after acquiring hugetlb_lock.
2861		 */
2862		init_nodemask_of_node(&nodes_allowed, nid);
2863		n_mask = &nodes_allowed;
2864	}
2865
2866	err = set_max_huge_pages(h, count, nid, n_mask);
2867
2868	return err ? err : len;
2869}
2870
2871static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2872					 struct kobject *kobj, const char *buf,
2873					 size_t len)
2874{
2875	struct hstate *h;
2876	unsigned long count;
2877	int nid;
2878	int err;
2879
2880	err = kstrtoul(buf, 10, &count);
2881	if (err)
2882		return err;
2883
2884	h = kobj_to_hstate(kobj, &nid);
2885	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2886}
2887
2888static ssize_t nr_hugepages_show(struct kobject *kobj,
2889				       struct kobj_attribute *attr, char *buf)
2890{
2891	return nr_hugepages_show_common(kobj, attr, buf);
2892}
2893
2894static ssize_t nr_hugepages_store(struct kobject *kobj,
2895	       struct kobj_attribute *attr, const char *buf, size_t len)
2896{
2897	return nr_hugepages_store_common(false, kobj, buf, len);
2898}
2899HSTATE_ATTR(nr_hugepages);
2900
2901#ifdef CONFIG_NUMA
2902
2903/*
2904 * hstate attribute for optionally mempolicy-based constraint on persistent
2905 * huge page alloc/free.
2906 */
2907static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2908				       struct kobj_attribute *attr, char *buf)
2909{
2910	return nr_hugepages_show_common(kobj, attr, buf);
2911}
2912
2913static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2914	       struct kobj_attribute *attr, const char *buf, size_t len)
2915{
2916	return nr_hugepages_store_common(true, kobj, buf, len);
2917}
2918HSTATE_ATTR(nr_hugepages_mempolicy);
2919#endif
2920
2921
2922static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2923					struct kobj_attribute *attr, char *buf)
2924{
2925	struct hstate *h = kobj_to_hstate(kobj, NULL);
2926	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2927}
2928
2929static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2930		struct kobj_attribute *attr, const char *buf, size_t count)
2931{
2932	int err;
2933	unsigned long input;
2934	struct hstate *h = kobj_to_hstate(kobj, NULL);
2935
2936	if (hstate_is_gigantic(h))
2937		return -EINVAL;
2938
2939	err = kstrtoul(buf, 10, &input);
2940	if (err)
2941		return err;
2942
2943	spin_lock(&hugetlb_lock);
2944	h->nr_overcommit_huge_pages = input;
2945	spin_unlock(&hugetlb_lock);
2946
2947	return count;
2948}
2949HSTATE_ATTR(nr_overcommit_hugepages);
2950
2951static ssize_t free_hugepages_show(struct kobject *kobj,
2952					struct kobj_attribute *attr, char *buf)
2953{
2954	struct hstate *h;
2955	unsigned long free_huge_pages;
2956	int nid;
2957
2958	h = kobj_to_hstate(kobj, &nid);
2959	if (nid == NUMA_NO_NODE)
2960		free_huge_pages = h->free_huge_pages;
2961	else
2962		free_huge_pages = h->free_huge_pages_node[nid];
2963
2964	return sprintf(buf, "%lu\n", free_huge_pages);
2965}
2966HSTATE_ATTR_RO(free_hugepages);
2967
2968static ssize_t resv_hugepages_show(struct kobject *kobj,
2969					struct kobj_attribute *attr, char *buf)
2970{
2971	struct hstate *h = kobj_to_hstate(kobj, NULL);
2972	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2973}
2974HSTATE_ATTR_RO(resv_hugepages);
2975
2976static ssize_t surplus_hugepages_show(struct kobject *kobj,
2977					struct kobj_attribute *attr, char *buf)
2978{
2979	struct hstate *h;
2980	unsigned long surplus_huge_pages;
2981	int nid;
2982
2983	h = kobj_to_hstate(kobj, &nid);
2984	if (nid == NUMA_NO_NODE)
2985		surplus_huge_pages = h->surplus_huge_pages;
2986	else
2987		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2988
2989	return sprintf(buf, "%lu\n", surplus_huge_pages);
2990}
2991HSTATE_ATTR_RO(surplus_hugepages);
2992
2993static struct attribute *hstate_attrs[] = {
2994	&nr_hugepages_attr.attr,
2995	&nr_overcommit_hugepages_attr.attr,
2996	&free_hugepages_attr.attr,
2997	&resv_hugepages_attr.attr,
2998	&surplus_hugepages_attr.attr,
2999#ifdef CONFIG_NUMA
3000	&nr_hugepages_mempolicy_attr.attr,
3001#endif
3002	NULL,
3003};
3004
3005static const struct attribute_group hstate_attr_group = {
3006	.attrs = hstate_attrs,
3007};
3008
3009static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3010				    struct kobject **hstate_kobjs,
3011				    const struct attribute_group *hstate_attr_group)
3012{
3013	int retval;
3014	int hi = hstate_index(h);
3015
3016	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3017	if (!hstate_kobjs[hi])
3018		return -ENOMEM;
3019
3020	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3021	if (retval) {
3022		kobject_put(hstate_kobjs[hi]);
3023		hstate_kobjs[hi] = NULL;
3024	}
3025
3026	return retval;
3027}
3028
3029static void __init hugetlb_sysfs_init(void)
3030{
3031	struct hstate *h;
3032	int err;
3033
3034	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3035	if (!hugepages_kobj)
3036		return;
3037
3038	for_each_hstate(h) {
3039		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3040					 hstate_kobjs, &hstate_attr_group);
3041		if (err)
3042			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3043	}
3044}
3045
3046#ifdef CONFIG_NUMA
3047
3048/*
3049 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3050 * with node devices in node_devices[] using a parallel array.  The array
3051 * index of a node device or _hstate == node id.
3052 * This is here to avoid any static dependency of the node device driver, in
3053 * the base kernel, on the hugetlb module.
3054 */
3055struct node_hstate {
3056	struct kobject		*hugepages_kobj;
3057	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3058};
3059static struct node_hstate node_hstates[MAX_NUMNODES];
3060
3061/*
3062 * A subset of global hstate attributes for node devices
3063 */
3064static struct attribute *per_node_hstate_attrs[] = {
3065	&nr_hugepages_attr.attr,
3066	&free_hugepages_attr.attr,
3067	&surplus_hugepages_attr.attr,
3068	NULL,
3069};
3070
3071static const struct attribute_group per_node_hstate_attr_group = {
3072	.attrs = per_node_hstate_attrs,
3073};
3074
3075/*
3076 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3077 * Returns node id via non-NULL nidp.
3078 */
3079static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3080{
3081	int nid;
3082
3083	for (nid = 0; nid < nr_node_ids; nid++) {
3084		struct node_hstate *nhs = &node_hstates[nid];
3085		int i;
3086		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3087			if (nhs->hstate_kobjs[i] == kobj) {
3088				if (nidp)
3089					*nidp = nid;
3090				return &hstates[i];
3091			}
3092	}
3093
3094	BUG();
3095	return NULL;
3096}
3097
3098/*
3099 * Unregister hstate attributes from a single node device.
3100 * No-op if no hstate attributes attached.
3101 */
3102static void hugetlb_unregister_node(struct node *node)
3103{
3104	struct hstate *h;
3105	struct node_hstate *nhs = &node_hstates[node->dev.id];
3106
3107	if (!nhs->hugepages_kobj)
3108		return;		/* no hstate attributes */
3109
3110	for_each_hstate(h) {
3111		int idx = hstate_index(h);
3112		if (nhs->hstate_kobjs[idx]) {
3113			kobject_put(nhs->hstate_kobjs[idx]);
3114			nhs->hstate_kobjs[idx] = NULL;
3115		}
3116	}
3117
3118	kobject_put(nhs->hugepages_kobj);
3119	nhs->hugepages_kobj = NULL;
3120}
3121
3122
3123/*
3124 * Register hstate attributes for a single node device.
3125 * No-op if attributes already registered.
3126 */
3127static void hugetlb_register_node(struct node *node)
3128{
3129	struct hstate *h;
3130	struct node_hstate *nhs = &node_hstates[node->dev.id];
3131	int err;
3132
3133	if (nhs->hugepages_kobj)
3134		return;		/* already allocated */
3135
3136	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3137							&node->dev.kobj);
3138	if (!nhs->hugepages_kobj)
3139		return;
3140
3141	for_each_hstate(h) {
3142		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3143						nhs->hstate_kobjs,
3144						&per_node_hstate_attr_group);
3145		if (err) {
3146			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3147				h->name, node->dev.id);
3148			hugetlb_unregister_node(node);
3149			break;
3150		}
3151	}
3152}
3153
3154/*
3155 * hugetlb init time:  register hstate attributes for all registered node
3156 * devices of nodes that have memory.  All on-line nodes should have
3157 * registered their associated device by this time.
3158 */
3159static void __init hugetlb_register_all_nodes(void)
3160{
3161	int nid;
3162
3163	for_each_node_state(nid, N_MEMORY) {
3164		struct node *node = node_devices[nid];
3165		if (node->dev.id == nid)
3166			hugetlb_register_node(node);
3167	}
3168
3169	/*
3170	 * Let the node device driver know we're here so it can
3171	 * [un]register hstate attributes on node hotplug.
3172	 */
3173	register_hugetlbfs_with_node(hugetlb_register_node,
3174				     hugetlb_unregister_node);
3175}
3176#else	/* !CONFIG_NUMA */
3177
3178static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3179{
3180	BUG();
3181	if (nidp)
3182		*nidp = -1;
3183	return NULL;
3184}
3185
3186static void hugetlb_register_all_nodes(void) { }
3187
3188#endif
3189
3190static int __init hugetlb_init(void)
3191{
3192	int i;
3193
3194	if (!hugepages_supported()) {
3195		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3196			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3197		return 0;
3198	}
3199
3200	/*
3201	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3202	 * architectures depend on setup being done here.
3203	 */
3204	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3205	if (!parsed_default_hugepagesz) {
3206		/*
3207		 * If we did not parse a default huge page size, set
3208		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3209		 * number of huge pages for this default size was implicitly
3210		 * specified, set that here as well.
3211		 * Note that the implicit setting will overwrite an explicit
3212		 * setting.  A warning will be printed in this case.
3213		 */
3214		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3215		if (default_hstate_max_huge_pages) {
3216			if (default_hstate.max_huge_pages) {
3217				char buf[32];
3218
3219				string_get_size(huge_page_size(&default_hstate),
3220					1, STRING_UNITS_2, buf, 32);
3221				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3222					default_hstate.max_huge_pages, buf);
3223				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3224					default_hstate_max_huge_pages);
3225			}
3226			default_hstate.max_huge_pages =
3227				default_hstate_max_huge_pages;
3228		}
3229	}
3230
3231	hugetlb_cma_check();
3232	hugetlb_init_hstates();
3233	gather_bootmem_prealloc();
3234	report_hugepages();
3235
3236	hugetlb_sysfs_init();
3237	hugetlb_register_all_nodes();
3238	hugetlb_cgroup_file_init();
3239
3240#ifdef CONFIG_SMP
3241	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3242#else
3243	num_fault_mutexes = 1;
3244#endif
3245	hugetlb_fault_mutex_table =
3246		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3247			      GFP_KERNEL);
3248	BUG_ON(!hugetlb_fault_mutex_table);
3249
3250	for (i = 0; i < num_fault_mutexes; i++)
3251		mutex_init(&hugetlb_fault_mutex_table[i]);
3252	return 0;
3253}
3254subsys_initcall(hugetlb_init);
3255
3256/* Overwritten by architectures with more huge page sizes */
3257bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3258{
3259	return size == HPAGE_SIZE;
3260}
3261
3262void __init hugetlb_add_hstate(unsigned int order)
3263{
3264	struct hstate *h;
3265	unsigned long i;
3266
3267	if (size_to_hstate(PAGE_SIZE << order)) {
3268		return;
3269	}
3270	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3271	BUG_ON(order == 0);
3272	h = &hstates[hugetlb_max_hstate++];
3273	h->order = order;
3274	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3275	h->nr_huge_pages = 0;
3276	h->free_huge_pages = 0;
3277	for (i = 0; i < MAX_NUMNODES; ++i)
3278		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3279	INIT_LIST_HEAD(&h->hugepage_activelist);
3280	h->next_nid_to_alloc = first_memory_node;
3281	h->next_nid_to_free = first_memory_node;
3282	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3283					huge_page_size(h)/1024);
3284
3285	parsed_hstate = h;
3286}
3287
3288/*
3289 * hugepages command line processing
3290 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3291 * specification.  If not, ignore the hugepages value.  hugepages can also
3292 * be the first huge page command line  option in which case it implicitly
3293 * specifies the number of huge pages for the default size.
3294 */
3295static int __init hugepages_setup(char *s)
3296{
3297	unsigned long *mhp;
3298	static unsigned long *last_mhp;
3299
3300	if (!parsed_valid_hugepagesz) {
3301		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3302		parsed_valid_hugepagesz = true;
3303		return 0;
3304	}
3305
3306	/*
3307	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3308	 * yet, so this hugepages= parameter goes to the "default hstate".
3309	 * Otherwise, it goes with the previously parsed hugepagesz or
3310	 * default_hugepagesz.
3311	 */
3312	else if (!hugetlb_max_hstate)
3313		mhp = &default_hstate_max_huge_pages;
3314	else
3315		mhp = &parsed_hstate->max_huge_pages;
3316
3317	if (mhp == last_mhp) {
3318		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3319		return 0;
3320	}
3321
3322	if (sscanf(s, "%lu", mhp) <= 0)
3323		*mhp = 0;
3324
3325	/*
3326	 * Global state is always initialized later in hugetlb_init.
3327	 * But we need to allocate >= MAX_ORDER hstates here early to still
3328	 * use the bootmem allocator.
3329	 */
3330	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3331		hugetlb_hstate_alloc_pages(parsed_hstate);
3332
3333	last_mhp = mhp;
3334
3335	return 1;
3336}
3337__setup("hugepages=", hugepages_setup);
3338
3339/*
3340 * hugepagesz command line processing
3341 * A specific huge page size can only be specified once with hugepagesz.
3342 * hugepagesz is followed by hugepages on the command line.  The global
3343 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3344 * hugepagesz argument was valid.
3345 */
3346static int __init hugepagesz_setup(char *s)
3347{
3348	unsigned long size;
3349	struct hstate *h;
3350
3351	parsed_valid_hugepagesz = false;
3352	size = (unsigned long)memparse(s, NULL);
3353
3354	if (!arch_hugetlb_valid_size(size)) {
3355		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3356		return 0;
3357	}
3358
3359	h = size_to_hstate(size);
3360	if (h) {
3361		/*
3362		 * hstate for this size already exists.  This is normally
3363		 * an error, but is allowed if the existing hstate is the
3364		 * default hstate.  More specifically, it is only allowed if
3365		 * the number of huge pages for the default hstate was not
3366		 * previously specified.
3367		 */
3368		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3369		    default_hstate.max_huge_pages) {
3370			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3371			return 0;
3372		}
3373
3374		/*
3375		 * No need to call hugetlb_add_hstate() as hstate already
3376		 * exists.  But, do set parsed_hstate so that a following
3377		 * hugepages= parameter will be applied to this hstate.
3378		 */
3379		parsed_hstate = h;
3380		parsed_valid_hugepagesz = true;
3381		return 1;
3382	}
3383
3384	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3385	parsed_valid_hugepagesz = true;
3386	return 1;
3387}
3388__setup("hugepagesz=", hugepagesz_setup);
3389
3390/*
3391 * default_hugepagesz command line input
3392 * Only one instance of default_hugepagesz allowed on command line.
3393 */
3394static int __init default_hugepagesz_setup(char *s)
3395{
3396	unsigned long size;
3397
3398	parsed_valid_hugepagesz = false;
3399	if (parsed_default_hugepagesz) {
3400		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3401		return 0;
3402	}
3403
3404	size = (unsigned long)memparse(s, NULL);
3405
3406	if (!arch_hugetlb_valid_size(size)) {
3407		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3408		return 0;
3409	}
3410
3411	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3412	parsed_valid_hugepagesz = true;
3413	parsed_default_hugepagesz = true;
3414	default_hstate_idx = hstate_index(size_to_hstate(size));
3415
3416	/*
3417	 * The number of default huge pages (for this size) could have been
3418	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3419	 * then default_hstate_max_huge_pages is set.  If the default huge
3420	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3421	 * allocated here from bootmem allocator.
3422	 */
3423	if (default_hstate_max_huge_pages) {
3424		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3425		if (hstate_is_gigantic(&default_hstate))
3426			hugetlb_hstate_alloc_pages(&default_hstate);
3427		default_hstate_max_huge_pages = 0;
3428	}
3429
3430	return 1;
3431}
3432__setup("default_hugepagesz=", default_hugepagesz_setup);
3433
3434static unsigned int allowed_mems_nr(struct hstate *h)
3435{
3436	int node;
3437	unsigned int nr = 0;
3438	nodemask_t *mpol_allowed;
3439	unsigned int *array = h->free_huge_pages_node;
3440	gfp_t gfp_mask = htlb_alloc_mask(h);
3441
3442	mpol_allowed = policy_nodemask_current(gfp_mask);
3443
3444	for_each_node_mask(node, cpuset_current_mems_allowed) {
3445		if (!mpol_allowed ||
3446		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3447			nr += array[node];
3448	}
3449
3450	return nr;
3451}
3452
3453#ifdef CONFIG_SYSCTL
3454static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3455					  void *buffer, size_t *length,
3456					  loff_t *ppos, unsigned long *out)
3457{
3458	struct ctl_table dup_table;
3459
3460	/*
3461	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3462	 * can duplicate the @table and alter the duplicate of it.
3463	 */
3464	dup_table = *table;
3465	dup_table.data = out;
3466
3467	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3468}
3469
3470static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3471			 struct ctl_table *table, int write,
3472			 void *buffer, size_t *length, loff_t *ppos)
3473{
3474	struct hstate *h = &default_hstate;
3475	unsigned long tmp = h->max_huge_pages;
3476	int ret;
3477
3478	if (!hugepages_supported())
3479		return -EOPNOTSUPP;
3480
3481	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3482					     &tmp);
3483	if (ret)
3484		goto out;
3485
3486	if (write)
3487		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3488						  NUMA_NO_NODE, tmp, *length);
3489out:
3490	return ret;
3491}
3492
3493int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3494			  void *buffer, size_t *length, loff_t *ppos)
3495{
3496
3497	return hugetlb_sysctl_handler_common(false, table, write,
3498							buffer, length, ppos);
3499}
3500
3501#ifdef CONFIG_NUMA
3502int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3503			  void *buffer, size_t *length, loff_t *ppos)
3504{
3505	return hugetlb_sysctl_handler_common(true, table, write,
3506							buffer, length, ppos);
3507}
3508#endif /* CONFIG_NUMA */
3509
3510int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3511		void *buffer, size_t *length, loff_t *ppos)
3512{
3513	struct hstate *h = &default_hstate;
3514	unsigned long tmp;
3515	int ret;
3516
3517	if (!hugepages_supported())
3518		return -EOPNOTSUPP;
3519
3520	tmp = h->nr_overcommit_huge_pages;
3521
3522	if (write && hstate_is_gigantic(h))
3523		return -EINVAL;
3524
3525	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3526					     &tmp);
3527	if (ret)
3528		goto out;
3529
3530	if (write) {
3531		spin_lock(&hugetlb_lock);
3532		h->nr_overcommit_huge_pages = tmp;
3533		spin_unlock(&hugetlb_lock);
3534	}
3535out:
3536	return ret;
3537}
3538
3539#endif /* CONFIG_SYSCTL */
3540
3541void hugetlb_report_meminfo(struct seq_file *m)
3542{
3543	struct hstate *h;
3544	unsigned long total = 0;
3545
3546	if (!hugepages_supported())
3547		return;
3548
3549	for_each_hstate(h) {
3550		unsigned long count = h->nr_huge_pages;
3551
3552		total += (PAGE_SIZE << huge_page_order(h)) * count;
3553
3554		if (h == &default_hstate)
3555			seq_printf(m,
3556				   "HugePages_Total:   %5lu\n"
3557				   "HugePages_Free:    %5lu\n"
3558				   "HugePages_Rsvd:    %5lu\n"
3559				   "HugePages_Surp:    %5lu\n"
3560				   "Hugepagesize:   %8lu kB\n",
3561				   count,
3562				   h->free_huge_pages,
3563				   h->resv_huge_pages,
3564				   h->surplus_huge_pages,
3565				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3566	}
3567
3568	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3569}
3570
3571int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3572{
3573	struct hstate *h = &default_hstate;
3574
3575	if (!hugepages_supported())
3576		return 0;
3577
3578	return sysfs_emit_at(buf, len,
3579			     "Node %d HugePages_Total: %5u\n"
3580			     "Node %d HugePages_Free:  %5u\n"
3581			     "Node %d HugePages_Surp:  %5u\n",
3582			     nid, h->nr_huge_pages_node[nid],
3583			     nid, h->free_huge_pages_node[nid],
3584			     nid, h->surplus_huge_pages_node[nid]);
3585}
3586
3587void hugetlb_show_meminfo(void)
3588{
3589	struct hstate *h;
3590	int nid;
3591
3592	if (!hugepages_supported())
3593		return;
3594
3595	for_each_node_state(nid, N_MEMORY)
3596		for_each_hstate(h)
3597			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3598				nid,
3599				h->nr_huge_pages_node[nid],
3600				h->free_huge_pages_node[nid],
3601				h->surplus_huge_pages_node[nid],
3602				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3603}
3604
3605void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3606{
3607	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3608		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3609}
3610
3611/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3612unsigned long hugetlb_total_pages(void)
3613{
3614	struct hstate *h;
3615	unsigned long nr_total_pages = 0;
3616
3617	for_each_hstate(h)
3618		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3619	return nr_total_pages;
3620}
3621
3622static int hugetlb_acct_memory(struct hstate *h, long delta)
3623{
3624	int ret = -ENOMEM;
3625
3626	spin_lock(&hugetlb_lock);
3627	/*
3628	 * When cpuset is configured, it breaks the strict hugetlb page
3629	 * reservation as the accounting is done on a global variable. Such
3630	 * reservation is completely rubbish in the presence of cpuset because
3631	 * the reservation is not checked against page availability for the
3632	 * current cpuset. Application can still potentially OOM'ed by kernel
3633	 * with lack of free htlb page in cpuset that the task is in.
3634	 * Attempt to enforce strict accounting with cpuset is almost
3635	 * impossible (or too ugly) because cpuset is too fluid that
3636	 * task or memory node can be dynamically moved between cpusets.
3637	 *
3638	 * The change of semantics for shared hugetlb mapping with cpuset is
3639	 * undesirable. However, in order to preserve some of the semantics,
3640	 * we fall back to check against current free page availability as
3641	 * a best attempt and hopefully to minimize the impact of changing
3642	 * semantics that cpuset has.
3643	 *
3644	 * Apart from cpuset, we also have memory policy mechanism that
3645	 * also determines from which node the kernel will allocate memory
3646	 * in a NUMA system. So similar to cpuset, we also should consider
3647	 * the memory policy of the current task. Similar to the description
3648	 * above.
3649	 */
3650	if (delta > 0) {
3651		if (gather_surplus_pages(h, delta) < 0)
3652			goto out;
3653
3654		if (delta > allowed_mems_nr(h)) {
3655			return_unused_surplus_pages(h, delta);
3656			goto out;
3657		}
3658	}
3659
3660	ret = 0;
3661	if (delta < 0)
3662		return_unused_surplus_pages(h, (unsigned long) -delta);
3663
3664out:
3665	spin_unlock(&hugetlb_lock);
3666	return ret;
3667}
3668
3669static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3670{
3671	struct resv_map *resv = vma_resv_map(vma);
3672
3673	/*
3674	 * This new VMA should share its siblings reservation map if present.
3675	 * The VMA will only ever have a valid reservation map pointer where
3676	 * it is being copied for another still existing VMA.  As that VMA
3677	 * has a reference to the reservation map it cannot disappear until
3678	 * after this open call completes.  It is therefore safe to take a
3679	 * new reference here without additional locking.
3680	 */
3681	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
3682		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3683		kref_get(&resv->refs);
3684	}
3685}
3686
3687static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3688{
3689	struct hstate *h = hstate_vma(vma);
3690	struct resv_map *resv = vma_resv_map(vma);
3691	struct hugepage_subpool *spool = subpool_vma(vma);
3692	unsigned long reserve, start, end;
3693	long gbl_reserve;
3694
3695	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3696		return;
3697
3698	start = vma_hugecache_offset(h, vma, vma->vm_start);
3699	end = vma_hugecache_offset(h, vma, vma->vm_end);
3700
3701	reserve = (end - start) - region_count(resv, start, end);
3702	hugetlb_cgroup_uncharge_counter(resv, start, end);
3703	if (reserve) {
3704		/*
3705		 * Decrement reserve counts.  The global reserve count may be
3706		 * adjusted if the subpool has a minimum size.
3707		 */
3708		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3709		hugetlb_acct_memory(h, -gbl_reserve);
3710	}
3711
3712	kref_put(&resv->refs, resv_map_release);
3713}
3714
3715static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3716{
3717	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3718		return -EINVAL;
3719	return 0;
3720}
3721
3722static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3723{
3724	struct hstate *hstate = hstate_vma(vma);
3725
3726	return 1UL << huge_page_shift(hstate);
3727}
3728
3729/*
3730 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3731 * handle_mm_fault() to try to instantiate regular-sized pages in the
3732 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3733 * this far.
3734 */
3735static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3736{
3737	BUG();
3738	return 0;
3739}
3740
3741/*
3742 * When a new function is introduced to vm_operations_struct and added
3743 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3744 * This is because under System V memory model, mappings created via
3745 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3746 * their original vm_ops are overwritten with shm_vm_ops.
3747 */
3748const struct vm_operations_struct hugetlb_vm_ops = {
3749	.fault = hugetlb_vm_op_fault,
3750	.open = hugetlb_vm_op_open,
3751	.close = hugetlb_vm_op_close,
3752	.split = hugetlb_vm_op_split,
3753	.pagesize = hugetlb_vm_op_pagesize,
3754};
3755
3756static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3757				int writable)
3758{
3759	pte_t entry;
3760
3761	if (writable) {
3762		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3763					 vma->vm_page_prot)));
3764	} else {
3765		entry = huge_pte_wrprotect(mk_huge_pte(page,
3766					   vma->vm_page_prot));
3767	}
3768	entry = pte_mkyoung(entry);
3769	entry = pte_mkhuge(entry);
3770	entry = arch_make_huge_pte(entry, vma, page, writable);
3771
3772	return entry;
3773}
3774
3775static void set_huge_ptep_writable(struct vm_area_struct *vma,
3776				   unsigned long address, pte_t *ptep)
3777{
3778	pte_t entry;
3779
3780	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3781	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3782		update_mmu_cache(vma, address, ptep);
3783}
3784
3785bool is_hugetlb_entry_migration(pte_t pte)
3786{
3787	swp_entry_t swp;
3788
3789	if (huge_pte_none(pte) || pte_present(pte))
3790		return false;
3791	swp = pte_to_swp_entry(pte);
3792	if (is_migration_entry(swp))
3793		return true;
3794	else
3795		return false;
3796}
3797
3798static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3799{
3800	swp_entry_t swp;
3801
3802	if (huge_pte_none(pte) || pte_present(pte))
3803		return false;
3804	swp = pte_to_swp_entry(pte);
3805	if (is_hwpoison_entry(swp))
3806		return true;
3807	else
3808		return false;
3809}
3810
3811int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3812			    struct vm_area_struct *vma)
3813{
3814	pte_t *src_pte, *dst_pte, entry, dst_entry;
3815	struct page *ptepage;
3816	unsigned long addr;
3817	int cow;
3818	struct hstate *h = hstate_vma(vma);
3819	unsigned long sz = huge_page_size(h);
3820	struct address_space *mapping = vma->vm_file->f_mapping;
3821	struct mmu_notifier_range range;
3822	int ret = 0;
3823
3824	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3825
3826	if (cow) {
3827		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3828					vma->vm_start,
3829					vma->vm_end);
3830		mmu_notifier_invalidate_range_start(&range);
3831	} else {
3832		/*
3833		 * For shared mappings i_mmap_rwsem must be held to call
3834		 * huge_pte_alloc, otherwise the returned ptep could go
3835		 * away if part of a shared pmd and another thread calls
3836		 * huge_pmd_unshare.
3837		 */
3838		i_mmap_lock_read(mapping);
3839	}
3840
3841	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3842		spinlock_t *src_ptl, *dst_ptl;
3843		src_pte = huge_pte_offset(src, addr, sz);
3844		if (!src_pte)
3845			continue;
3846		dst_pte = huge_pte_alloc(dst, addr, sz);
3847		if (!dst_pte) {
3848			ret = -ENOMEM;
3849			break;
3850		}
3851
3852		/*
3853		 * If the pagetables are shared don't copy or take references.
3854		 * dst_pte == src_pte is the common case of src/dest sharing.
3855		 *
3856		 * However, src could have 'unshared' and dst shares with
3857		 * another vma.  If dst_pte !none, this implies sharing.
3858		 * Check here before taking page table lock, and once again
3859		 * after taking the lock below.
3860		 */
3861		dst_entry = huge_ptep_get(dst_pte);
3862		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3863			continue;
3864
3865		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3866		src_ptl = huge_pte_lockptr(h, src, src_pte);
3867		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3868		entry = huge_ptep_get(src_pte);
3869		dst_entry = huge_ptep_get(dst_pte);
3870		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3871			/*
3872			 * Skip if src entry none.  Also, skip in the
3873			 * unlikely case dst entry !none as this implies
3874			 * sharing with another vma.
3875			 */
3876			;
3877		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3878				    is_hugetlb_entry_hwpoisoned(entry))) {
3879			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3880
3881			if (is_write_migration_entry(swp_entry) && cow) {
3882				/*
3883				 * COW mappings require pages in both
3884				 * parent and child to be set to read.
3885				 */
3886				make_migration_entry_read(&swp_entry);
3887				entry = swp_entry_to_pte(swp_entry);
3888				set_huge_swap_pte_at(src, addr, src_pte,
3889						     entry, sz);
3890			}
3891			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3892		} else {
3893			if (cow) {
3894				/*
3895				 * No need to notify as we are downgrading page
3896				 * table protection not changing it to point
3897				 * to a new page.
3898				 *
3899				 * See Documentation/vm/mmu_notifier.rst
3900				 */
3901				huge_ptep_set_wrprotect(src, addr, src_pte);
3902			}
3903			entry = huge_ptep_get(src_pte);
3904			ptepage = pte_page(entry);
3905			get_page(ptepage);
3906			page_dup_rmap(ptepage, true);
3907			set_huge_pte_at(dst, addr, dst_pte, entry);
3908			hugetlb_count_add(pages_per_huge_page(h), dst);
3909		}
3910		spin_unlock(src_ptl);
3911		spin_unlock(dst_ptl);
3912	}
3913
3914	if (cow)
3915		mmu_notifier_invalidate_range_end(&range);
3916	else
3917		i_mmap_unlock_read(mapping);
3918
3919	return ret;
3920}
3921
3922void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3923			    unsigned long start, unsigned long end,
3924			    struct page *ref_page)
3925{
3926	struct mm_struct *mm = vma->vm_mm;
3927	unsigned long address;
3928	pte_t *ptep;
3929	pte_t pte;
3930	spinlock_t *ptl;
3931	struct page *page;
3932	struct hstate *h = hstate_vma(vma);
3933	unsigned long sz = huge_page_size(h);
3934	struct mmu_notifier_range range;
3935	bool force_flush = false;
3936
3937	WARN_ON(!is_vm_hugetlb_page(vma));
3938	BUG_ON(start & ~huge_page_mask(h));
3939	BUG_ON(end & ~huge_page_mask(h));
3940
3941	/*
3942	 * This is a hugetlb vma, all the pte entries should point
3943	 * to huge page.
3944	 */
3945	tlb_change_page_size(tlb, sz);
3946	tlb_start_vma(tlb, vma);
3947
3948	/*
3949	 * If sharing possible, alert mmu notifiers of worst case.
3950	 */
3951	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3952				end);
3953	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3954	mmu_notifier_invalidate_range_start(&range);
3955	address = start;
3956	for (; address < end; address += sz) {
3957		ptep = huge_pte_offset(mm, address, sz);
3958		if (!ptep)
3959			continue;
3960
3961		ptl = huge_pte_lock(h, mm, ptep);
3962		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3963			spin_unlock(ptl);
3964			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3965			force_flush = true;
3966			continue;
3967		}
3968
3969		pte = huge_ptep_get(ptep);
3970		if (huge_pte_none(pte)) {
3971			spin_unlock(ptl);
3972			continue;
3973		}
3974
3975		/*
3976		 * Migrating hugepage or HWPoisoned hugepage is already
3977		 * unmapped and its refcount is dropped, so just clear pte here.
3978		 */
3979		if (unlikely(!pte_present(pte))) {
3980			huge_pte_clear(mm, address, ptep, sz);
3981			spin_unlock(ptl);
3982			continue;
3983		}
3984
3985		page = pte_page(pte);
3986		/*
3987		 * If a reference page is supplied, it is because a specific
3988		 * page is being unmapped, not a range. Ensure the page we
3989		 * are about to unmap is the actual page of interest.
3990		 */
3991		if (ref_page) {
3992			if (page != ref_page) {
3993				spin_unlock(ptl);
3994				continue;
3995			}
3996			/*
3997			 * Mark the VMA as having unmapped its page so that
3998			 * future faults in this VMA will fail rather than
3999			 * looking like data was lost
4000			 */
4001			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4002		}
4003
4004		pte = huge_ptep_get_and_clear(mm, address, ptep);
4005		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4006		if (huge_pte_dirty(pte))
4007			set_page_dirty(page);
4008
4009		hugetlb_count_sub(pages_per_huge_page(h), mm);
4010		page_remove_rmap(page, true);
4011
4012		spin_unlock(ptl);
4013		tlb_remove_page_size(tlb, page, huge_page_size(h));
4014		/*
4015		 * Bail out after unmapping reference page if supplied
4016		 */
4017		if (ref_page)
4018			break;
4019	}
4020	mmu_notifier_invalidate_range_end(&range);
4021	tlb_end_vma(tlb, vma);
4022
4023	/*
4024	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4025	 * could defer the flush until now, since by holding i_mmap_rwsem we
4026	 * guaranteed that the last refernece would not be dropped. But we must
4027	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4028	 * dropped and the last reference to the shared PMDs page might be
4029	 * dropped as well.
4030	 *
4031	 * In theory we could defer the freeing of the PMD pages as well, but
4032	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4033	 * detect sharing, so we cannot defer the release of the page either.
4034	 * Instead, do flush now.
4035	 */
4036	if (force_flush)
4037		tlb_flush_mmu_tlbonly(tlb);
4038}
4039
4040void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4041			  struct vm_area_struct *vma, unsigned long start,
4042			  unsigned long end, struct page *ref_page)
4043{
4044	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4045
4046	/*
4047	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4048	 * test will fail on a vma being torn down, and not grab a page table
4049	 * on its way out.  We're lucky that the flag has such an appropriate
4050	 * name, and can in fact be safely cleared here. We could clear it
4051	 * before the __unmap_hugepage_range above, but all that's necessary
4052	 * is to clear it before releasing the i_mmap_rwsem. This works
4053	 * because in the context this is called, the VMA is about to be
4054	 * destroyed and the i_mmap_rwsem is held.
4055	 */
4056	vma->vm_flags &= ~VM_MAYSHARE;
4057}
4058
4059void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4060			  unsigned long end, struct page *ref_page)
4061{
4062	struct mm_struct *mm;
4063	struct mmu_gather tlb;
4064	unsigned long tlb_start = start;
4065	unsigned long tlb_end = end;
4066
4067	/*
4068	 * If shared PMDs were possibly used within this vma range, adjust
4069	 * start/end for worst case tlb flushing.
4070	 * Note that we can not be sure if PMDs are shared until we try to
4071	 * unmap pages.  However, we want to make sure TLB flushing covers
4072	 * the largest possible range.
4073	 */
4074	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4075
4076	mm = vma->vm_mm;
4077
4078	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4079	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4080	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4081}
4082
4083/*
4084 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4085 * mappping it owns the reserve page for. The intention is to unmap the page
4086 * from other VMAs and let the children be SIGKILLed if they are faulting the
4087 * same region.
4088 */
4089static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4090			      struct page *page, unsigned long address)
4091{
4092	struct hstate *h = hstate_vma(vma);
4093	struct vm_area_struct *iter_vma;
4094	struct address_space *mapping;
4095	pgoff_t pgoff;
4096
4097	/*
4098	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4099	 * from page cache lookup which is in HPAGE_SIZE units.
4100	 */
4101	address = address & huge_page_mask(h);
4102	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4103			vma->vm_pgoff;
4104	mapping = vma->vm_file->f_mapping;
4105
4106	/*
4107	 * Take the mapping lock for the duration of the table walk. As
4108	 * this mapping should be shared between all the VMAs,
4109	 * __unmap_hugepage_range() is called as the lock is already held
4110	 */
4111	i_mmap_lock_write(mapping);
4112	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4113		/* Do not unmap the current VMA */
4114		if (iter_vma == vma)
4115			continue;
4116
4117		/*
4118		 * Shared VMAs have their own reserves and do not affect
4119		 * MAP_PRIVATE accounting but it is possible that a shared
4120		 * VMA is using the same page so check and skip such VMAs.
4121		 */
4122		if (iter_vma->vm_flags & VM_MAYSHARE)
4123			continue;
4124
4125		/*
4126		 * Unmap the page from other VMAs without their own reserves.
4127		 * They get marked to be SIGKILLed if they fault in these
4128		 * areas. This is because a future no-page fault on this VMA
4129		 * could insert a zeroed page instead of the data existing
4130		 * from the time of fork. This would look like data corruption
4131		 */
4132		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4133			unmap_hugepage_range(iter_vma, address,
4134					     address + huge_page_size(h), page);
4135	}
4136	i_mmap_unlock_write(mapping);
4137}
4138
4139/*
4140 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4141 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4142 * cannot race with other handlers or page migration.
4143 * Keep the pte_same checks anyway to make transition from the mutex easier.
4144 */
4145static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4146		       unsigned long address, pte_t *ptep,
4147		       struct page *pagecache_page, spinlock_t *ptl)
4148{
4149	pte_t pte;
4150	struct hstate *h = hstate_vma(vma);
4151	struct page *old_page, *new_page;
4152	int outside_reserve = 0;
4153	vm_fault_t ret = 0;
4154	unsigned long haddr = address & huge_page_mask(h);
4155	struct mmu_notifier_range range;
4156
4157	pte = huge_ptep_get(ptep);
4158	old_page = pte_page(pte);
4159
4160retry_avoidcopy:
4161	/* If no-one else is actually using this page, avoid the copy
4162	 * and just make the page writable */
4163	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4164		page_move_anon_rmap(old_page, vma);
4165		set_huge_ptep_writable(vma, haddr, ptep);
4166		return 0;
4167	}
4168
4169	/*
4170	 * If the process that created a MAP_PRIVATE mapping is about to
4171	 * perform a COW due to a shared page count, attempt to satisfy
4172	 * the allocation without using the existing reserves. The pagecache
4173	 * page is used to determine if the reserve at this address was
4174	 * consumed or not. If reserves were used, a partial faulted mapping
4175	 * at the time of fork() could consume its reserves on COW instead
4176	 * of the full address range.
4177	 */
4178	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4179			old_page != pagecache_page)
4180		outside_reserve = 1;
4181
4182	get_page(old_page);
4183
4184	/*
4185	 * Drop page table lock as buddy allocator may be called. It will
4186	 * be acquired again before returning to the caller, as expected.
4187	 */
4188	spin_unlock(ptl);
4189	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4190
4191	if (IS_ERR(new_page)) {
4192		/*
4193		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4194		 * it is due to references held by a child and an insufficient
4195		 * huge page pool. To guarantee the original mappers
4196		 * reliability, unmap the page from child processes. The child
4197		 * may get SIGKILLed if it later faults.
4198		 */
4199		if (outside_reserve) {
4200			struct address_space *mapping = vma->vm_file->f_mapping;
4201			pgoff_t idx;
4202			u32 hash;
4203
4204			put_page(old_page);
4205			BUG_ON(huge_pte_none(pte));
4206			/*
4207			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4208			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4209			 * in write mode.  Dropping i_mmap_rwsem in read mode
4210			 * here is OK as COW mappings do not interact with
4211			 * PMD sharing.
4212			 *
4213			 * Reacquire both after unmap operation.
4214			 */
4215			idx = vma_hugecache_offset(h, vma, haddr);
4216			hash = hugetlb_fault_mutex_hash(mapping, idx);
4217			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4218			i_mmap_unlock_read(mapping);
4219
4220			unmap_ref_private(mm, vma, old_page, haddr);
4221
4222			i_mmap_lock_read(mapping);
4223			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4224			spin_lock(ptl);
4225			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4226			if (likely(ptep &&
4227				   pte_same(huge_ptep_get(ptep), pte)))
4228				goto retry_avoidcopy;
4229			/*
4230			 * race occurs while re-acquiring page table
4231			 * lock, and our job is done.
4232			 */
4233			return 0;
4234		}
4235
4236		ret = vmf_error(PTR_ERR(new_page));
4237		goto out_release_old;
4238	}
4239
4240	/*
4241	 * When the original hugepage is shared one, it does not have
4242	 * anon_vma prepared.
4243	 */
4244	if (unlikely(anon_vma_prepare(vma))) {
4245		ret = VM_FAULT_OOM;
4246		goto out_release_all;
4247	}
4248
4249	copy_user_huge_page(new_page, old_page, address, vma,
4250			    pages_per_huge_page(h));
4251	__SetPageUptodate(new_page);
4252
4253	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4254				haddr + huge_page_size(h));
4255	mmu_notifier_invalidate_range_start(&range);
4256
4257	/*
4258	 * Retake the page table lock to check for racing updates
4259	 * before the page tables are altered
4260	 */
4261	spin_lock(ptl);
4262	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4263	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4264		ClearPagePrivate(new_page);
4265
4266		/* Break COW */
4267		huge_ptep_clear_flush(vma, haddr, ptep);
4268		mmu_notifier_invalidate_range(mm, range.start, range.end);
4269		set_huge_pte_at(mm, haddr, ptep,
4270				make_huge_pte(vma, new_page, 1));
4271		page_remove_rmap(old_page, true);
4272		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4273		set_page_huge_active(new_page);
4274		/* Make the old page be freed below */
4275		new_page = old_page;
4276	}
4277	spin_unlock(ptl);
4278	mmu_notifier_invalidate_range_end(&range);
4279out_release_all:
4280	restore_reserve_on_error(h, vma, haddr, new_page);
4281	put_page(new_page);
4282out_release_old:
4283	put_page(old_page);
4284
4285	spin_lock(ptl); /* Caller expects lock to be held */
4286	return ret;
4287}
4288
4289/* Return the pagecache page at a given address within a VMA */
4290static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4291			struct vm_area_struct *vma, unsigned long address)
4292{
4293	struct address_space *mapping;
4294	pgoff_t idx;
4295
4296	mapping = vma->vm_file->f_mapping;
4297	idx = vma_hugecache_offset(h, vma, address);
4298
4299	return find_lock_page(mapping, idx);
4300}
4301
4302/*
4303 * Return whether there is a pagecache page to back given address within VMA.
4304 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4305 */
4306static bool hugetlbfs_pagecache_present(struct hstate *h,
4307			struct vm_area_struct *vma, unsigned long address)
4308{
4309	struct address_space *mapping;
4310	pgoff_t idx;
4311	struct page *page;
4312
4313	mapping = vma->vm_file->f_mapping;
4314	idx = vma_hugecache_offset(h, vma, address);
4315
4316	page = find_get_page(mapping, idx);
4317	if (page)
4318		put_page(page);
4319	return page != NULL;
4320}
4321
4322int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4323			   pgoff_t idx)
4324{
4325	struct inode *inode = mapping->host;
4326	struct hstate *h = hstate_inode(inode);
4327	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4328
4329	if (err)
4330		return err;
4331	ClearPagePrivate(page);
4332
4333	/*
4334	 * set page dirty so that it will not be removed from cache/file
4335	 * by non-hugetlbfs specific code paths.
4336	 */
4337	set_page_dirty(page);
4338
4339	spin_lock(&inode->i_lock);
4340	inode->i_blocks += blocks_per_huge_page(h);
4341	spin_unlock(&inode->i_lock);
4342	return 0;
4343}
4344
4345static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4346			struct vm_area_struct *vma,
4347			struct address_space *mapping, pgoff_t idx,
4348			unsigned long address, pte_t *ptep, unsigned int flags)
4349{
4350	struct hstate *h = hstate_vma(vma);
4351	vm_fault_t ret = VM_FAULT_SIGBUS;
4352	int anon_rmap = 0;
4353	unsigned long size;
4354	struct page *page;
4355	pte_t new_pte;
4356	spinlock_t *ptl;
4357	unsigned long haddr = address & huge_page_mask(h);
4358	bool new_page = false;
4359	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4360
4361	/*
4362	 * Currently, we are forced to kill the process in the event the
4363	 * original mapper has unmapped pages from the child due to a failed
4364	 * COW. Warn that such a situation has occurred as it may not be obvious
4365	 */
4366	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4367		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4368			   current->pid);
4369		goto out;
4370	}
4371
4372	/*
4373	 * We can not race with truncation due to holding i_mmap_rwsem.
4374	 * i_size is modified when holding i_mmap_rwsem, so check here
4375	 * once for faults beyond end of file.
4376	 */
4377	size = i_size_read(mapping->host) >> huge_page_shift(h);
4378	if (idx >= size)
4379		goto out;
4380
4381retry:
4382	page = find_lock_page(mapping, idx);
4383	if (!page) {
4384		/*
4385		 * Check for page in userfault range
4386		 */
4387		if (userfaultfd_missing(vma)) {
4388			struct vm_fault vmf = {
4389				.vma = vma,
4390				.address = haddr,
4391				.flags = flags,
4392				/*
4393				 * Hard to debug if it ends up being
4394				 * used by a callee that assumes
4395				 * something about the other
4396				 * uninitialized fields... same as in
4397				 * memory.c
4398				 */
4399			};
4400
4401			/*
4402			 * vma_lock and hugetlb_fault_mutex must be dropped
4403			 * before handling userfault. Also mmap_lock will
4404			 * be dropped during handling userfault, any vma
4405			 * operation should be careful from here.
4406			 */
4407			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4408			i_mmap_unlock_read(mapping);
4409			return handle_userfault(&vmf, VM_UFFD_MISSING);
4410		}
4411
4412		page = alloc_huge_page(vma, haddr, 0);
4413		if (IS_ERR(page)) {
4414			/*
4415			 * Returning error will result in faulting task being
4416			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4417			 * tasks from racing to fault in the same page which
4418			 * could result in false unable to allocate errors.
4419			 * Page migration does not take the fault mutex, but
4420			 * does a clear then write of pte's under page table
4421			 * lock.  Page fault code could race with migration,
4422			 * notice the clear pte and try to allocate a page
4423			 * here.  Before returning error, get ptl and make
4424			 * sure there really is no pte entry.
4425			 */
4426			ptl = huge_pte_lock(h, mm, ptep);
4427			if (!huge_pte_none(huge_ptep_get(ptep))) {
4428				ret = 0;
4429				spin_unlock(ptl);
4430				goto out;
4431			}
4432			spin_unlock(ptl);
4433			ret = vmf_error(PTR_ERR(page));
4434			goto out;
4435		}
4436		clear_huge_page(page, address, pages_per_huge_page(h));
4437		__SetPageUptodate(page);
4438		new_page = true;
4439
4440		if (vma->vm_flags & VM_MAYSHARE) {
4441			int err = huge_add_to_page_cache(page, mapping, idx);
4442			if (err) {
4443				put_page(page);
4444				if (err == -EEXIST)
4445					goto retry;
4446				goto out;
4447			}
4448		} else {
4449			lock_page(page);
4450			if (unlikely(anon_vma_prepare(vma))) {
4451				ret = VM_FAULT_OOM;
4452				goto backout_unlocked;
4453			}
4454			anon_rmap = 1;
4455		}
4456	} else {
4457		/*
4458		 * If memory error occurs between mmap() and fault, some process
4459		 * don't have hwpoisoned swap entry for errored virtual address.
4460		 * So we need to block hugepage fault by PG_hwpoison bit check.
4461		 */
4462		if (unlikely(PageHWPoison(page))) {
4463			ret = VM_FAULT_HWPOISON_LARGE |
4464				VM_FAULT_SET_HINDEX(hstate_index(h));
4465			goto backout_unlocked;
4466		}
4467	}
4468
4469	/*
4470	 * If we are going to COW a private mapping later, we examine the
4471	 * pending reservations for this page now. This will ensure that
4472	 * any allocations necessary to record that reservation occur outside
4473	 * the spinlock.
4474	 */
4475	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4476		if (vma_needs_reservation(h, vma, haddr) < 0) {
4477			ret = VM_FAULT_OOM;
4478			goto backout_unlocked;
4479		}
4480		/* Just decrements count, does not deallocate */
4481		vma_end_reservation(h, vma, haddr);
4482	}
4483
4484	ptl = huge_pte_lock(h, mm, ptep);
4485	ret = 0;
4486	if (!huge_pte_none(huge_ptep_get(ptep)))
4487		goto backout;
4488
4489	if (anon_rmap) {
4490		ClearPagePrivate(page);
4491		hugepage_add_new_anon_rmap(page, vma, haddr);
4492	} else
4493		page_dup_rmap(page, true);
4494	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4495				&& (vma->vm_flags & VM_SHARED)));
4496	set_huge_pte_at(mm, haddr, ptep, new_pte);
4497
4498	hugetlb_count_add(pages_per_huge_page(h), mm);
4499	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4500		/* Optimization, do the COW without a second fault */
4501		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4502	}
4503
4504	spin_unlock(ptl);
4505
4506	/*
4507	 * Only make newly allocated pages active.  Existing pages found
4508	 * in the pagecache could be !page_huge_active() if they have been
4509	 * isolated for migration.
4510	 */
4511	if (new_page)
4512		set_page_huge_active(page);
4513
4514	unlock_page(page);
4515out:
4516	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4517	i_mmap_unlock_read(mapping);
4518	return ret;
4519
4520backout:
4521	spin_unlock(ptl);
4522backout_unlocked:
4523	unlock_page(page);
4524	restore_reserve_on_error(h, vma, haddr, page);
4525	put_page(page);
4526	goto out;
4527}
4528
4529#ifdef CONFIG_SMP
4530u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4531{
4532	unsigned long key[2];
4533	u32 hash;
4534
4535	key[0] = (unsigned long) mapping;
4536	key[1] = idx;
4537
4538	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4539
4540	return hash & (num_fault_mutexes - 1);
4541}
4542#else
4543/*
4544 * For uniprocesor systems we always use a single mutex, so just
4545 * return 0 and avoid the hashing overhead.
4546 */
4547u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4548{
4549	return 0;
4550}
4551#endif
4552
4553vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4554			unsigned long address, unsigned int flags)
4555{
4556	pte_t *ptep, entry;
4557	spinlock_t *ptl;
4558	vm_fault_t ret;
4559	u32 hash;
4560	pgoff_t idx;
4561	struct page *page = NULL;
4562	struct page *pagecache_page = NULL;
4563	struct hstate *h = hstate_vma(vma);
4564	struct address_space *mapping;
4565	int need_wait_lock = 0;
4566	unsigned long haddr = address & huge_page_mask(h);
4567
4568	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4569	if (ptep) {
4570		/*
4571		 * Since we hold no locks, ptep could be stale.  That is
4572		 * OK as we are only making decisions based on content and
4573		 * not actually modifying content here.
4574		 */
4575		entry = huge_ptep_get(ptep);
4576		if (unlikely(is_hugetlb_entry_migration(entry))) {
4577			migration_entry_wait_huge(vma, mm, ptep);
4578			return 0;
4579		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4580			return VM_FAULT_HWPOISON_LARGE |
4581				VM_FAULT_SET_HINDEX(hstate_index(h));
4582	}
4583
4584	/*
4585	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4586	 * until finished with ptep.  This serves two purposes:
4587	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4588	 *    and making the ptep no longer valid.
4589	 * 2) It synchronizes us with i_size modifications during truncation.
4590	 *
4591	 * ptep could have already be assigned via huge_pte_offset.  That
4592	 * is OK, as huge_pte_alloc will return the same value unless
4593	 * something has changed.
4594	 */
4595	mapping = vma->vm_file->f_mapping;
4596	i_mmap_lock_read(mapping);
4597	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4598	if (!ptep) {
4599		i_mmap_unlock_read(mapping);
4600		return VM_FAULT_OOM;
4601	}
4602
4603	/*
4604	 * Serialize hugepage allocation and instantiation, so that we don't
4605	 * get spurious allocation failures if two CPUs race to instantiate
4606	 * the same page in the page cache.
4607	 */
4608	idx = vma_hugecache_offset(h, vma, haddr);
4609	hash = hugetlb_fault_mutex_hash(mapping, idx);
4610	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4611
4612	entry = huge_ptep_get(ptep);
4613	if (huge_pte_none(entry))
4614		/*
4615		 * hugetlb_no_page will drop vma lock and hugetlb fault
4616		 * mutex internally, which make us return immediately.
4617		 */
4618		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4619
4620	ret = 0;
4621
4622	/*
4623	 * entry could be a migration/hwpoison entry at this point, so this
4624	 * check prevents the kernel from going below assuming that we have
4625	 * an active hugepage in pagecache. This goto expects the 2nd page
4626	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4627	 * properly handle it.
4628	 */
4629	if (!pte_present(entry))
4630		goto out_mutex;
4631
4632	/*
4633	 * If we are going to COW the mapping later, we examine the pending
4634	 * reservations for this page now. This will ensure that any
4635	 * allocations necessary to record that reservation occur outside the
4636	 * spinlock. For private mappings, we also lookup the pagecache
4637	 * page now as it is used to determine if a reservation has been
4638	 * consumed.
4639	 */
4640	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4641		if (vma_needs_reservation(h, vma, haddr) < 0) {
4642			ret = VM_FAULT_OOM;
4643			goto out_mutex;
4644		}
4645		/* Just decrements count, does not deallocate */
4646		vma_end_reservation(h, vma, haddr);
4647
4648		if (!(vma->vm_flags & VM_MAYSHARE))
4649			pagecache_page = hugetlbfs_pagecache_page(h,
4650								vma, haddr);
4651	}
4652
4653	ptl = huge_pte_lock(h, mm, ptep);
4654
4655	/* Check for a racing update before calling hugetlb_cow */
4656	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4657		goto out_ptl;
4658
4659	/*
4660	 * hugetlb_cow() requires page locks of pte_page(entry) and
4661	 * pagecache_page, so here we need take the former one
4662	 * when page != pagecache_page or !pagecache_page.
4663	 */
4664	page = pte_page(entry);
4665	if (page != pagecache_page)
4666		if (!trylock_page(page)) {
4667			need_wait_lock = 1;
4668			goto out_ptl;
4669		}
4670
4671	get_page(page);
4672
4673	if (flags & FAULT_FLAG_WRITE) {
4674		if (!huge_pte_write(entry)) {
4675			ret = hugetlb_cow(mm, vma, address, ptep,
4676					  pagecache_page, ptl);
4677			goto out_put_page;
4678		}
4679		entry = huge_pte_mkdirty(entry);
4680	}
4681	entry = pte_mkyoung(entry);
4682	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4683						flags & FAULT_FLAG_WRITE))
4684		update_mmu_cache(vma, haddr, ptep);
4685out_put_page:
4686	if (page != pagecache_page)
4687		unlock_page(page);
4688	put_page(page);
4689out_ptl:
4690	spin_unlock(ptl);
4691
4692	if (pagecache_page) {
4693		unlock_page(pagecache_page);
4694		put_page(pagecache_page);
4695	}
4696out_mutex:
4697	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4698	i_mmap_unlock_read(mapping);
4699	/*
4700	 * Generally it's safe to hold refcount during waiting page lock. But
4701	 * here we just wait to defer the next page fault to avoid busy loop and
4702	 * the page is not used after unlocked before returning from the current
4703	 * page fault. So we are safe from accessing freed page, even if we wait
4704	 * here without taking refcount.
4705	 */
4706	if (need_wait_lock)
4707		wait_on_page_locked(page);
4708	return ret;
4709}
4710
4711/*
4712 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4713 * modifications for huge pages.
4714 */
4715int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4716			    pte_t *dst_pte,
4717			    struct vm_area_struct *dst_vma,
4718			    unsigned long dst_addr,
4719			    unsigned long src_addr,
4720			    struct page **pagep)
4721{
4722	struct address_space *mapping;
4723	pgoff_t idx;
4724	unsigned long size;
4725	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4726	struct hstate *h = hstate_vma(dst_vma);
4727	pte_t _dst_pte;
4728	spinlock_t *ptl;
4729	int ret;
4730	struct page *page;
4731
4732	if (!*pagep) {
4733		/* If a page already exists, then it's UFFDIO_COPY for
4734		 * a non-missing case. Return -EEXIST.
4735		 */
4736		if (vm_shared &&
4737		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4738			ret = -EEXIST;
4739			goto out;
4740		}
4741
4742		page = alloc_huge_page(dst_vma, dst_addr, 0);
4743		if (IS_ERR(page)) {
4744			ret = -ENOMEM;
4745			goto out;
4746		}
4747
4748		ret = copy_huge_page_from_user(page,
4749						(const void __user *) src_addr,
4750						pages_per_huge_page(h), false);
4751
4752		/* fallback to copy_from_user outside mmap_lock */
4753		if (unlikely(ret)) {
4754			ret = -ENOENT;
4755			*pagep = page;
4756			/* don't free the page */
4757			goto out;
4758		}
4759	} else {
4760		page = *pagep;
4761		*pagep = NULL;
4762	}
4763
4764	/*
4765	 * The memory barrier inside __SetPageUptodate makes sure that
4766	 * preceding stores to the page contents become visible before
4767	 * the set_pte_at() write.
4768	 */
4769	__SetPageUptodate(page);
4770
4771	mapping = dst_vma->vm_file->f_mapping;
4772	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4773
4774	/*
4775	 * If shared, add to page cache
4776	 */
4777	if (vm_shared) {
4778		size = i_size_read(mapping->host) >> huge_page_shift(h);
4779		ret = -EFAULT;
4780		if (idx >= size)
4781			goto out_release_nounlock;
4782
4783		/*
4784		 * Serialization between remove_inode_hugepages() and
4785		 * huge_add_to_page_cache() below happens through the
4786		 * hugetlb_fault_mutex_table that here must be hold by
4787		 * the caller.
4788		 */
4789		ret = huge_add_to_page_cache(page, mapping, idx);
4790		if (ret)
4791			goto out_release_nounlock;
4792	}
4793
4794	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4795	spin_lock(ptl);
4796
4797	/*
4798	 * Recheck the i_size after holding PT lock to make sure not
4799	 * to leave any page mapped (as page_mapped()) beyond the end
4800	 * of the i_size (remove_inode_hugepages() is strict about
4801	 * enforcing that). If we bail out here, we'll also leave a
4802	 * page in the radix tree in the vm_shared case beyond the end
4803	 * of the i_size, but remove_inode_hugepages() will take care
4804	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4805	 */
4806	size = i_size_read(mapping->host) >> huge_page_shift(h);
4807	ret = -EFAULT;
4808	if (idx >= size)
4809		goto out_release_unlock;
4810
4811	ret = -EEXIST;
4812	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4813		goto out_release_unlock;
4814
4815	if (vm_shared) {
4816		page_dup_rmap(page, true);
4817	} else {
4818		ClearPagePrivate(page);
4819		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4820	}
4821
4822	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4823	if (dst_vma->vm_flags & VM_WRITE)
4824		_dst_pte = huge_pte_mkdirty(_dst_pte);
4825	_dst_pte = pte_mkyoung(_dst_pte);
4826
4827	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4828
4829	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4830					dst_vma->vm_flags & VM_WRITE);
4831	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4832
4833	/* No need to invalidate - it was non-present before */
4834	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4835
4836	spin_unlock(ptl);
4837	set_page_huge_active(page);
4838	if (vm_shared)
4839		unlock_page(page);
4840	ret = 0;
4841out:
4842	return ret;
4843out_release_unlock:
4844	spin_unlock(ptl);
4845	if (vm_shared)
4846		unlock_page(page);
4847out_release_nounlock:
4848	put_page(page);
4849	goto out;
4850}
4851
4852long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4853			 struct page **pages, struct vm_area_struct **vmas,
4854			 unsigned long *position, unsigned long *nr_pages,
4855			 long i, unsigned int flags, int *locked)
4856{
4857	unsigned long pfn_offset;
4858	unsigned long vaddr = *position;
4859	unsigned long remainder = *nr_pages;
4860	struct hstate *h = hstate_vma(vma);
4861	int err = -EFAULT;
4862
4863	while (vaddr < vma->vm_end && remainder) {
4864		pte_t *pte;
4865		spinlock_t *ptl = NULL;
4866		int absent;
4867		struct page *page;
4868
4869		/*
4870		 * If we have a pending SIGKILL, don't keep faulting pages and
4871		 * potentially allocating memory.
4872		 */
4873		if (fatal_signal_pending(current)) {
4874			remainder = 0;
4875			break;
4876		}
4877
4878		/*
4879		 * Some archs (sparc64, sh*) have multiple pte_ts to
4880		 * each hugepage.  We have to make sure we get the
4881		 * first, for the page indexing below to work.
4882		 *
4883		 * Note that page table lock is not held when pte is null.
4884		 */
4885		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4886				      huge_page_size(h));
4887		if (pte)
4888			ptl = huge_pte_lock(h, mm, pte);
4889		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4890
4891		/*
4892		 * When coredumping, it suits get_dump_page if we just return
4893		 * an error where there's an empty slot with no huge pagecache
4894		 * to back it.  This way, we avoid allocating a hugepage, and
4895		 * the sparse dumpfile avoids allocating disk blocks, but its
4896		 * huge holes still show up with zeroes where they need to be.
4897		 */
4898		if (absent && (flags & FOLL_DUMP) &&
4899		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4900			if (pte)
4901				spin_unlock(ptl);
4902			remainder = 0;
4903			break;
4904		}
4905
4906		/*
4907		 * We need call hugetlb_fault for both hugepages under migration
4908		 * (in which case hugetlb_fault waits for the migration,) and
4909		 * hwpoisoned hugepages (in which case we need to prevent the
4910		 * caller from accessing to them.) In order to do this, we use
4911		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4912		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4913		 * both cases, and because we can't follow correct pages
4914		 * directly from any kind of swap entries.
4915		 */
4916		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4917		    ((flags & FOLL_WRITE) &&
4918		      !huge_pte_write(huge_ptep_get(pte)))) {
4919			vm_fault_t ret;
4920			unsigned int fault_flags = 0;
4921
4922			if (pte)
4923				spin_unlock(ptl);
4924			if (flags & FOLL_WRITE)
4925				fault_flags |= FAULT_FLAG_WRITE;
4926			if (locked)
4927				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4928					FAULT_FLAG_KILLABLE;
4929			if (flags & FOLL_NOWAIT)
4930				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4931					FAULT_FLAG_RETRY_NOWAIT;
4932			if (flags & FOLL_TRIED) {
4933				/*
4934				 * Note: FAULT_FLAG_ALLOW_RETRY and
4935				 * FAULT_FLAG_TRIED can co-exist
4936				 */
4937				fault_flags |= FAULT_FLAG_TRIED;
4938			}
4939			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4940			if (ret & VM_FAULT_ERROR) {
4941				err = vm_fault_to_errno(ret, flags);
4942				remainder = 0;
4943				break;
4944			}
4945			if (ret & VM_FAULT_RETRY) {
4946				if (locked &&
4947				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4948					*locked = 0;
4949				*nr_pages = 0;
4950				/*
4951				 * VM_FAULT_RETRY must not return an
4952				 * error, it will return zero
4953				 * instead.
4954				 *
4955				 * No need to update "position" as the
4956				 * caller will not check it after
4957				 * *nr_pages is set to 0.
4958				 */
4959				return i;
4960			}
4961			continue;
4962		}
4963
4964		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4965		page = pte_page(huge_ptep_get(pte));
4966
4967		/*
4968		 * If subpage information not requested, update counters
4969		 * and skip the same_page loop below.
4970		 */
4971		if (!pages && !vmas && !pfn_offset &&
4972		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4973		    (remainder >= pages_per_huge_page(h))) {
4974			vaddr += huge_page_size(h);
4975			remainder -= pages_per_huge_page(h);
4976			i += pages_per_huge_page(h);
4977			spin_unlock(ptl);
4978			continue;
4979		}
4980
4981same_page:
4982		if (pages) {
4983			pages[i] = mem_map_offset(page, pfn_offset);
4984			/*
4985			 * try_grab_page() should always succeed here, because:
4986			 * a) we hold the ptl lock, and b) we've just checked
4987			 * that the huge page is present in the page tables. If
4988			 * the huge page is present, then the tail pages must
4989			 * also be present. The ptl prevents the head page and
4990			 * tail pages from being rearranged in any way. So this
4991			 * page must be available at this point, unless the page
4992			 * refcount overflowed:
4993			 */
4994			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4995				spin_unlock(ptl);
4996				remainder = 0;
4997				err = -ENOMEM;
4998				break;
4999			}
5000		}
5001
5002		if (vmas)
5003			vmas[i] = vma;
5004
5005		vaddr += PAGE_SIZE;
5006		++pfn_offset;
5007		--remainder;
5008		++i;
5009		if (vaddr < vma->vm_end && remainder &&
5010				pfn_offset < pages_per_huge_page(h)) {
5011			/*
5012			 * We use pfn_offset to avoid touching the pageframes
5013			 * of this compound page.
5014			 */
5015			goto same_page;
5016		}
5017		spin_unlock(ptl);
5018	}
5019	*nr_pages = remainder;
5020	/*
5021	 * setting position is actually required only if remainder is
5022	 * not zero but it's faster not to add a "if (remainder)"
5023	 * branch.
5024	 */
5025	*position = vaddr;
5026
5027	return i ? i : err;
5028}
5029
5030#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5031/*
5032 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5033 * implement this.
5034 */
5035#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
5036#endif
5037
5038unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5039		unsigned long address, unsigned long end, pgprot_t newprot)
5040{
5041	struct mm_struct *mm = vma->vm_mm;
5042	unsigned long start = address;
5043	pte_t *ptep;
5044	pte_t pte;
5045	struct hstate *h = hstate_vma(vma);
5046	unsigned long pages = 0;
5047	bool shared_pmd = false;
5048	struct mmu_notifier_range range;
5049
5050	/*
5051	 * In the case of shared PMDs, the area to flush could be beyond
5052	 * start/end.  Set range.start/range.end to cover the maximum possible
5053	 * range if PMD sharing is possible.
5054	 */
5055	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5056				0, vma, mm, start, end);
5057	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5058
5059	BUG_ON(address >= end);
5060	flush_cache_range(vma, range.start, range.end);
5061
5062	mmu_notifier_invalidate_range_start(&range);
5063	i_mmap_lock_write(vma->vm_file->f_mapping);
5064	for (; address < end; address += huge_page_size(h)) {
5065		spinlock_t *ptl;
5066		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5067		if (!ptep)
5068			continue;
5069		ptl = huge_pte_lock(h, mm, ptep);
5070		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5071			pages++;
5072			spin_unlock(ptl);
5073			shared_pmd = true;
5074			continue;
5075		}
5076		pte = huge_ptep_get(ptep);
5077		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5078			spin_unlock(ptl);
5079			continue;
5080		}
5081		if (unlikely(is_hugetlb_entry_migration(pte))) {
5082			swp_entry_t entry = pte_to_swp_entry(pte);
5083
5084			if (is_write_migration_entry(entry)) {
5085				pte_t newpte;
5086
5087				make_migration_entry_read(&entry);
5088				newpte = swp_entry_to_pte(entry);
5089				set_huge_swap_pte_at(mm, address, ptep,
5090						     newpte, huge_page_size(h));
5091				pages++;
5092			}
5093			spin_unlock(ptl);
5094			continue;
5095		}
5096		if (!huge_pte_none(pte)) {
5097			pte_t old_pte;
5098
5099			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5100			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5101			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5102			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5103			pages++;
5104		}
5105		spin_unlock(ptl);
5106	}
5107	/*
5108	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5109	 * may have cleared our pud entry and done put_page on the page table:
5110	 * once we release i_mmap_rwsem, another task can do the final put_page
5111	 * and that page table be reused and filled with junk.  If we actually
5112	 * did unshare a page of pmds, flush the range corresponding to the pud.
5113	 */
5114	if (shared_pmd)
5115		flush_hugetlb_tlb_range(vma, range.start, range.end);
5116	else
5117		flush_hugetlb_tlb_range(vma, start, end);
5118	/*
5119	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5120	 * page table protection not changing it to point to a new page.
5121	 *
5122	 * See Documentation/vm/mmu_notifier.rst
5123	 */
5124	i_mmap_unlock_write(vma->vm_file->f_mapping);
5125	mmu_notifier_invalidate_range_end(&range);
5126
5127	return pages << h->order;
5128}
5129
5130int hugetlb_reserve_pages(struct inode *inode,
5131					long from, long to,
5132					struct vm_area_struct *vma,
5133					vm_flags_t vm_flags)
5134{
5135	long ret, chg, add = -1;
5136	struct hstate *h = hstate_inode(inode);
5137	struct hugepage_subpool *spool = subpool_inode(inode);
5138	struct resv_map *resv_map;
5139	struct hugetlb_cgroup *h_cg = NULL;
5140	long gbl_reserve, regions_needed = 0;
5141
5142	/* This should never happen */
5143	if (from > to) {
5144		VM_WARN(1, "%s called with a negative range\n", __func__);
5145		return -EINVAL;
5146	}
5147
5148	/*
5149	 * Only apply hugepage reservation if asked. At fault time, an
5150	 * attempt will be made for VM_NORESERVE to allocate a page
5151	 * without using reserves
5152	 */
5153	if (vm_flags & VM_NORESERVE)
5154		return 0;
5155
5156	/*
5157	 * Shared mappings base their reservation on the number of pages that
5158	 * are already allocated on behalf of the file. Private mappings need
5159	 * to reserve the full area even if read-only as mprotect() may be
5160	 * called to make the mapping read-write. Assume !vma is a shm mapping
5161	 */
5162	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5163		/*
5164		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5165		 * called for inodes for which resv_maps were created (see
5166		 * hugetlbfs_get_inode).
5167		 */
5168		resv_map = inode_resv_map(inode);
5169
5170		chg = region_chg(resv_map, from, to, &regions_needed);
5171
5172	} else {
5173		/* Private mapping. */
5174		resv_map = resv_map_alloc();
5175		if (!resv_map)
5176			return -ENOMEM;
5177
5178		chg = to - from;
5179
5180		set_vma_resv_map(vma, resv_map);
5181		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5182	}
5183
5184	if (chg < 0) {
5185		ret = chg;
5186		goto out_err;
5187	}
5188
5189	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5190		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5191
5192	if (ret < 0) {
5193		ret = -ENOMEM;
5194		goto out_err;
5195	}
5196
5197	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5198		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5199		 * of the resv_map.
5200		 */
5201		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5202	}
5203
5204	/*
5205	 * There must be enough pages in the subpool for the mapping. If
5206	 * the subpool has a minimum size, there may be some global
5207	 * reservations already in place (gbl_reserve).
5208	 */
5209	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5210	if (gbl_reserve < 0) {
5211		ret = -ENOSPC;
5212		goto out_uncharge_cgroup;
5213	}
5214
5215	/*
5216	 * Check enough hugepages are available for the reservation.
5217	 * Hand the pages back to the subpool if there are not
5218	 */
5219	ret = hugetlb_acct_memory(h, gbl_reserve);
5220	if (ret < 0) {
5221		goto out_put_pages;
5222	}
5223
5224	/*
5225	 * Account for the reservations made. Shared mappings record regions
5226	 * that have reservations as they are shared by multiple VMAs.
5227	 * When the last VMA disappears, the region map says how much
5228	 * the reservation was and the page cache tells how much of
5229	 * the reservation was consumed. Private mappings are per-VMA and
5230	 * only the consumed reservations are tracked. When the VMA
5231	 * disappears, the original reservation is the VMA size and the
5232	 * consumed reservations are stored in the map. Hence, nothing
5233	 * else has to be done for private mappings here
5234	 */
5235	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5236		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5237
5238		if (unlikely(add < 0)) {
5239			hugetlb_acct_memory(h, -gbl_reserve);
5240			ret = add;
5241			goto out_put_pages;
5242		} else if (unlikely(chg > add)) {
5243			/*
5244			 * pages in this range were added to the reserve
5245			 * map between region_chg and region_add.  This
5246			 * indicates a race with alloc_huge_page.  Adjust
5247			 * the subpool and reserve counts modified above
5248			 * based on the difference.
5249			 */
5250			long rsv_adjust;
5251
5252			/*
5253			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5254			 * reference to h_cg->css. See comment below for detail.
5255			 */
5256			hugetlb_cgroup_uncharge_cgroup_rsvd(
5257				hstate_index(h),
5258				(chg - add) * pages_per_huge_page(h), h_cg);
5259
5260			rsv_adjust = hugepage_subpool_put_pages(spool,
5261								chg - add);
5262			hugetlb_acct_memory(h, -rsv_adjust);
5263		} else if (h_cg) {
5264			/*
5265			 * The file_regions will hold their own reference to
5266			 * h_cg->css. So we should release the reference held
5267			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5268			 * done.
5269			 */
5270			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5271		}
5272	}
5273	return 0;
5274out_put_pages:
5275	/* put back original number of pages, chg */
5276	(void)hugepage_subpool_put_pages(spool, chg);
5277out_uncharge_cgroup:
5278	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5279					    chg * pages_per_huge_page(h), h_cg);
5280out_err:
5281	if (!vma || vma->vm_flags & VM_MAYSHARE)
5282		/* Only call region_abort if the region_chg succeeded but the
5283		 * region_add failed or didn't run.
5284		 */
5285		if (chg >= 0 && add < 0)
5286			region_abort(resv_map, from, to, regions_needed);
5287	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5288		kref_put(&resv_map->refs, resv_map_release);
5289	return ret;
5290}
5291
5292long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5293								long freed)
5294{
5295	struct hstate *h = hstate_inode(inode);
5296	struct resv_map *resv_map = inode_resv_map(inode);
5297	long chg = 0;
5298	struct hugepage_subpool *spool = subpool_inode(inode);
5299	long gbl_reserve;
5300
5301	/*
5302	 * Since this routine can be called in the evict inode path for all
5303	 * hugetlbfs inodes, resv_map could be NULL.
5304	 */
5305	if (resv_map) {
5306		chg = region_del(resv_map, start, end);
5307		/*
5308		 * region_del() can fail in the rare case where a region
5309		 * must be split and another region descriptor can not be
5310		 * allocated.  If end == LONG_MAX, it will not fail.
5311		 */
5312		if (chg < 0)
5313			return chg;
5314	}
5315
5316	spin_lock(&inode->i_lock);
5317	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5318	spin_unlock(&inode->i_lock);
5319
5320	/*
5321	 * If the subpool has a minimum size, the number of global
5322	 * reservations to be released may be adjusted.
5323	 */
5324	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5325	hugetlb_acct_memory(h, -gbl_reserve);
5326
5327	return 0;
5328}
5329
5330#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5331static unsigned long page_table_shareable(struct vm_area_struct *svma,
5332				struct vm_area_struct *vma,
5333				unsigned long addr, pgoff_t idx)
5334{
5335	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5336				svma->vm_start;
5337	unsigned long sbase = saddr & PUD_MASK;
5338	unsigned long s_end = sbase + PUD_SIZE;
5339
5340	/* Allow segments to share if only one is marked locked */
5341	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5342	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5343
5344	/*
5345	 * match the virtual addresses, permission and the alignment of the
5346	 * page table page.
5347	 */
5348	if (pmd_index(addr) != pmd_index(saddr) ||
5349	    vm_flags != svm_flags ||
5350	    sbase < svma->vm_start || svma->vm_end < s_end)
5351		return 0;
5352
5353	return saddr;
5354}
5355
5356static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5357{
5358	unsigned long base = addr & PUD_MASK;
5359	unsigned long end = base + PUD_SIZE;
5360
5361	/*
5362	 * check on proper vm_flags and page table alignment
5363	 */
5364	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5365		return true;
5366	return false;
5367}
5368
5369/*
5370 * Determine if start,end range within vma could be mapped by shared pmd.
5371 * If yes, adjust start and end to cover range associated with possible
5372 * shared pmd mappings.
5373 */
5374void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5375				unsigned long *start, unsigned long *end)
5376{
5377	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5378		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5379
5380	/*
5381	 * vma need span at least one aligned PUD size and the start,end range
5382	 * must at least partialy within it.
5383	 */
5384	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5385		(*end <= v_start) || (*start >= v_end))
5386		return;
5387
5388	/* Extend the range to be PUD aligned for a worst case scenario */
5389	if (*start > v_start)
5390		*start = ALIGN_DOWN(*start, PUD_SIZE);
5391
5392	if (*end < v_end)
5393		*end = ALIGN(*end, PUD_SIZE);
5394}
5395
5396/*
5397 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5398 * and returns the corresponding pte. While this is not necessary for the
5399 * !shared pmd case because we can allocate the pmd later as well, it makes the
5400 * code much cleaner.
5401 *
5402 * This routine must be called with i_mmap_rwsem held in at least read mode if
5403 * sharing is possible.  For hugetlbfs, this prevents removal of any page
5404 * table entries associated with the address space.  This is important as we
5405 * are setting up sharing based on existing page table entries (mappings).
5406 *
5407 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5408 * huge_pte_alloc know that sharing is not possible and do not take
5409 * i_mmap_rwsem as a performance optimization.  This is handled by the
5410 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5411 * only required for subsequent processing.
5412 */
5413pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5414{
5415	struct vm_area_struct *vma = find_vma(mm, addr);
5416	struct address_space *mapping = vma->vm_file->f_mapping;
5417	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5418			vma->vm_pgoff;
5419	struct vm_area_struct *svma;
5420	unsigned long saddr;
5421	pte_t *spte = NULL;
5422	pte_t *pte;
5423	spinlock_t *ptl;
5424
5425	if (!vma_shareable(vma, addr))
5426		return (pte_t *)pmd_alloc(mm, pud, addr);
5427
5428	i_mmap_assert_locked(mapping);
5429	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5430		if (svma == vma)
5431			continue;
5432
5433		saddr = page_table_shareable(svma, vma, addr, idx);
5434		if (saddr) {
5435			spte = huge_pte_offset(svma->vm_mm, saddr,
5436					       vma_mmu_pagesize(svma));
5437			if (spte) {
5438				get_page(virt_to_page(spte));
5439				break;
5440			}
5441		}
5442	}
5443
5444	if (!spte)
5445		goto out;
5446
5447	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5448	if (pud_none(*pud)) {
5449		pud_populate(mm, pud,
5450				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5451		mm_inc_nr_pmds(mm);
5452	} else {
5453		put_page(virt_to_page(spte));
5454	}
5455	spin_unlock(ptl);
5456out:
5457	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5458	return pte;
5459}
5460
5461/*
5462 * unmap huge page backed by shared pte.
5463 *
5464 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5465 * indicated by page_count > 1, unmap is achieved by clearing pud and
5466 * decrementing the ref count. If count == 1, the pte page is not shared.
5467 *
5468 * Called with page table lock held and i_mmap_rwsem held in write mode.
5469 *
5470 * returns: 1 successfully unmapped a shared pte page
5471 *	    0 the underlying pte page is not shared, or it is the last user
5472 */
5473int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5474					unsigned long *addr, pte_t *ptep)
5475{
5476	pgd_t *pgd = pgd_offset(mm, *addr);
5477	p4d_t *p4d = p4d_offset(pgd, *addr);
5478	pud_t *pud = pud_offset(p4d, *addr);
5479
5480	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5481	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5482	if (page_count(virt_to_page(ptep)) == 1)
5483		return 0;
5484
5485	pud_clear(pud);
5486	put_page(virt_to_page(ptep));
5487	mm_dec_nr_pmds(mm);
5488	/*
5489	 * This update of passed address optimizes loops sequentially
5490	 * processing addresses in increments of huge page size (PMD_SIZE
5491	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
5492	 * Update address to the 'last page' in the cleared area so that
5493	 * calling loop can move to first page past this area.
5494	 */
5495	*addr |= PUD_SIZE - PMD_SIZE;
5496	return 1;
5497}
5498#define want_pmd_share()	(1)
5499#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5500pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5501{
5502	return NULL;
5503}
5504
5505int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5506				unsigned long *addr, pte_t *ptep)
5507{
5508	return 0;
5509}
5510
5511void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5512				unsigned long *start, unsigned long *end)
5513{
5514}
5515#define want_pmd_share()	(0)
5516#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5517
5518#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5519pte_t *huge_pte_alloc(struct mm_struct *mm,
5520			unsigned long addr, unsigned long sz)
5521{
5522	pgd_t *pgd;
5523	p4d_t *p4d;
5524	pud_t *pud;
5525	pte_t *pte = NULL;
5526
5527	pgd = pgd_offset(mm, addr);
5528	p4d = p4d_alloc(mm, pgd, addr);
5529	if (!p4d)
5530		return NULL;
5531	pud = pud_alloc(mm, p4d, addr);
5532	if (pud) {
5533		if (sz == PUD_SIZE) {
5534			pte = (pte_t *)pud;
5535		} else {
5536			BUG_ON(sz != PMD_SIZE);
5537			if (want_pmd_share() && pud_none(*pud))
5538				pte = huge_pmd_share(mm, addr, pud);
5539			else
5540				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5541		}
5542	}
5543	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5544
5545	return pte;
5546}
5547
5548/*
5549 * huge_pte_offset() - Walk the page table to resolve the hugepage
5550 * entry at address @addr
5551 *
5552 * Return: Pointer to page table entry (PUD or PMD) for
5553 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5554 * size @sz doesn't match the hugepage size at this level of the page
5555 * table.
5556 */
5557pte_t *huge_pte_offset(struct mm_struct *mm,
5558		       unsigned long addr, unsigned long sz)
5559{
5560	pgd_t *pgd;
5561	p4d_t *p4d;
5562	pud_t *pud;
5563	pmd_t *pmd;
5564
5565	pgd = pgd_offset(mm, addr);
5566	if (!pgd_present(*pgd))
5567		return NULL;
5568	p4d = p4d_offset(pgd, addr);
5569	if (!p4d_present(*p4d))
5570		return NULL;
5571
5572	pud = pud_offset(p4d, addr);
5573	if (sz == PUD_SIZE)
5574		/* must be pud huge, non-present or none */
5575		return (pte_t *)pud;
5576	if (!pud_present(*pud))
5577		return NULL;
5578	/* must have a valid entry and size to go further */
5579
5580	pmd = pmd_offset(pud, addr);
5581	/* must be pmd huge, non-present or none */
5582	return (pte_t *)pmd;
5583}
5584
5585#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5586
5587/*
5588 * These functions are overwritable if your architecture needs its own
5589 * behavior.
5590 */
5591struct page * __weak
5592follow_huge_addr(struct mm_struct *mm, unsigned long address,
5593			      int write)
5594{
5595	return ERR_PTR(-EINVAL);
5596}
5597
5598struct page * __weak
5599follow_huge_pd(struct vm_area_struct *vma,
5600	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5601{
5602	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5603	return NULL;
5604}
5605
5606struct page * __weak
5607follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5608{
5609	struct hstate *h = hstate_vma(vma);
5610	struct mm_struct *mm = vma->vm_mm;
5611	struct page *page = NULL;
5612	spinlock_t *ptl;
5613	pte_t *ptep, pte;
5614
5615	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5616	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5617			 (FOLL_PIN | FOLL_GET)))
5618		return NULL;
5619
5620retry:
5621	ptep = huge_pte_offset(mm, address, huge_page_size(h));
5622	if (!ptep)
5623		return NULL;
5624
5625	ptl = huge_pte_lock(h, mm, ptep);
5626	pte = huge_ptep_get(ptep);
5627	if (pte_present(pte)) {
5628		page = pte_page(pte) +
5629			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5630		/*
5631		 * try_grab_page() should always succeed here, because: a) we
5632		 * hold the pmd (ptl) lock, and b) we've just checked that the
5633		 * huge pmd (head) page is present in the page tables. The ptl
5634		 * prevents the head page and tail pages from being rearranged
5635		 * in any way. So this page must be available at this point,
5636		 * unless the page refcount overflowed:
5637		 */
5638		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5639			page = NULL;
5640			goto out;
5641		}
5642	} else {
5643		if (is_hugetlb_entry_migration(pte)) {
5644			spin_unlock(ptl);
5645			__migration_entry_wait(mm, ptep, ptl);
5646			goto retry;
5647		}
5648		/*
5649		 * hwpoisoned entry is treated as no_page_table in
5650		 * follow_page_mask().
5651		 */
5652	}
5653out:
5654	spin_unlock(ptl);
5655	return page;
5656}
5657
5658struct page * __weak
5659follow_huge_pud(struct mm_struct *mm, unsigned long address,
5660		pud_t *pud, int flags)
5661{
5662	if (flags & (FOLL_GET | FOLL_PIN))
5663		return NULL;
5664
5665	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5666}
5667
5668struct page * __weak
5669follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5670{
5671	if (flags & (FOLL_GET | FOLL_PIN))
5672		return NULL;
5673
5674	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5675}
5676
5677int isolate_hugetlb(struct page *page, struct list_head *list)
5678{
5679	int ret = 0;
5680
5681	spin_lock(&hugetlb_lock);
5682	if (!PageHeadHuge(page) || !page_huge_active(page) ||
5683	    !get_page_unless_zero(page)) {
5684		ret = -EBUSY;
5685		goto unlock;
5686	}
5687	clear_page_huge_active(page);
5688	list_move_tail(&page->lru, list);
5689unlock:
5690	spin_unlock(&hugetlb_lock);
5691	return ret;
5692}
5693
5694void putback_active_hugepage(struct page *page)
5695{
5696	VM_BUG_ON_PAGE(!PageHead(page), page);
5697	spin_lock(&hugetlb_lock);
5698	set_page_huge_active(page);
5699	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5700	spin_unlock(&hugetlb_lock);
5701	put_page(page);
5702}
5703
5704void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5705{
5706	struct hstate *h = page_hstate(oldpage);
5707
5708	hugetlb_cgroup_migrate(oldpage, newpage);
5709	set_page_owner_migrate_reason(newpage, reason);
5710
5711	/*
5712	 * transfer temporary state of the new huge page. This is
5713	 * reverse to other transitions because the newpage is going to
5714	 * be final while the old one will be freed so it takes over
5715	 * the temporary status.
5716	 *
5717	 * Also note that we have to transfer the per-node surplus state
5718	 * here as well otherwise the global surplus count will not match
5719	 * the per-node's.
5720	 */
5721	if (PageHugeTemporary(newpage)) {
5722		int old_nid = page_to_nid(oldpage);
5723		int new_nid = page_to_nid(newpage);
5724
5725		SetPageHugeTemporary(oldpage);
5726		ClearPageHugeTemporary(newpage);
5727
5728		spin_lock(&hugetlb_lock);
5729		if (h->surplus_huge_pages_node[old_nid]) {
5730			h->surplus_huge_pages_node[old_nid]--;
5731			h->surplus_huge_pages_node[new_nid]++;
5732		}
5733		spin_unlock(&hugetlb_lock);
5734	}
5735}
5736
5737#ifdef CONFIG_CMA
5738static bool cma_reserve_called __initdata;
5739
5740static int __init cmdline_parse_hugetlb_cma(char *p)
5741{
5742	hugetlb_cma_size = memparse(p, &p);
5743	return 0;
5744}
5745
5746early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5747
5748void __init hugetlb_cma_reserve(int order)
5749{
5750	unsigned long size, reserved, per_node;
5751	int nid;
5752
5753	cma_reserve_called = true;
5754
5755	if (!hugetlb_cma_size)
5756		return;
5757
5758	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5759		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5760			(PAGE_SIZE << order) / SZ_1M);
5761		return;
5762	}
5763
5764	/*
5765	 * If 3 GB area is requested on a machine with 4 numa nodes,
5766	 * let's allocate 1 GB on first three nodes and ignore the last one.
5767	 */
5768	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5769	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5770		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5771
5772	reserved = 0;
5773	for_each_node_state(nid, N_ONLINE) {
5774		int res;
5775		char name[CMA_MAX_NAME];
5776
5777		size = min(per_node, hugetlb_cma_size - reserved);
5778		size = round_up(size, PAGE_SIZE << order);
5779
5780		snprintf(name, sizeof(name), "hugetlb%d", nid);
5781		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5782						 0, false, name,
5783						 &hugetlb_cma[nid], nid);
5784		if (res) {
5785			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5786				res, nid);
5787			continue;
5788		}
5789
5790		reserved += size;
5791		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5792			size / SZ_1M, nid);
5793
5794		if (reserved >= hugetlb_cma_size)
5795			break;
5796	}
5797}
5798
5799void __init hugetlb_cma_check(void)
5800{
5801	if (!hugetlb_cma_size || cma_reserve_called)
5802		return;
5803
5804	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5805}
5806
5807#endif /* CONFIG_CMA */
5808