1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6#include <linux/list.h> 7#include <linux/init.h> 8#include <linux/mm.h> 9#include <linux/seq_file.h> 10#include <linux/sysctl.h> 11#include <linux/highmem.h> 12#include <linux/mmu_notifier.h> 13#include <linux/nodemask.h> 14#include <linux/pagemap.h> 15#include <linux/mempolicy.h> 16#include <linux/compiler.h> 17#include <linux/cpuset.h> 18#include <linux/mutex.h> 19#include <linux/memblock.h> 20#include <linux/sysfs.h> 21#include <linux/slab.h> 22#include <linux/sched/mm.h> 23#include <linux/mmdebug.h> 24#include <linux/sched/signal.h> 25#include <linux/rmap.h> 26#include <linux/string_helpers.h> 27#include <linux/swap.h> 28#include <linux/swapops.h> 29#include <linux/jhash.h> 30#include <linux/numa.h> 31#include <linux/llist.h> 32#include <linux/cma.h> 33 34#include <asm/page.h> 35#include <asm/pgalloc.h> 36#include <asm/tlb.h> 37 38#include <linux/io.h> 39#include <linux/hugetlb.h> 40#include <linux/hugetlb_cgroup.h> 41#include <linux/node.h> 42#include <linux/userfaultfd_k.h> 43#include <linux/page_owner.h> 44#include "internal.h" 45 46int hugetlb_max_hstate __read_mostly; 47unsigned int default_hstate_idx; 48struct hstate hstates[HUGE_MAX_HSTATE]; 49 50#ifdef CONFIG_CMA 51static struct cma *hugetlb_cma[MAX_NUMNODES]; 52#endif 53static unsigned long hugetlb_cma_size __initdata; 54 55/* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61__initdata LIST_HEAD(huge_boot_pages); 62 63/* for command line parsing */ 64static struct hstate * __initdata parsed_hstate; 65static unsigned long __initdata default_hstate_max_huge_pages; 66static bool __initdata parsed_valid_hugepagesz = true; 67static bool __initdata parsed_default_hugepagesz; 68 69/* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73DEFINE_SPINLOCK(hugetlb_lock); 74 75/* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79static int num_fault_mutexes; 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82static inline bool PageHugeFreed(struct page *head) 83{ 84 return page_private(head + 4) == -1UL; 85} 86 87static inline void SetPageHugeFreed(struct page *head) 88{ 89 set_page_private(head + 4, -1UL); 90} 91 92static inline void ClearPageHugeFreed(struct page *head) 93{ 94 set_page_private(head + 4, 0); 95} 96 97/* Forward declaration */ 98static int hugetlb_acct_memory(struct hstate *h, long delta); 99 100static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 101{ 102 bool free = (spool->count == 0) && (spool->used_hpages == 0); 103 104 spin_unlock(&spool->lock); 105 106 /* If no pages are used, and no other handles to the subpool 107 * remain, give up any reservations based on minimum size and 108 * free the subpool */ 109 if (free) { 110 if (spool->min_hpages != -1) 111 hugetlb_acct_memory(spool->hstate, 112 -spool->min_hpages); 113 kfree(spool); 114 } 115} 116 117struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 118 long min_hpages) 119{ 120 struct hugepage_subpool *spool; 121 122 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 123 if (!spool) 124 return NULL; 125 126 spin_lock_init(&spool->lock); 127 spool->count = 1; 128 spool->max_hpages = max_hpages; 129 spool->hstate = h; 130 spool->min_hpages = min_hpages; 131 132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 133 kfree(spool); 134 return NULL; 135 } 136 spool->rsv_hpages = min_hpages; 137 138 return spool; 139} 140 141void hugepage_put_subpool(struct hugepage_subpool *spool) 142{ 143 spin_lock(&spool->lock); 144 BUG_ON(!spool->count); 145 spool->count--; 146 unlock_or_release_subpool(spool); 147} 148 149/* 150 * Subpool accounting for allocating and reserving pages. 151 * Return -ENOMEM if there are not enough resources to satisfy the 152 * request. Otherwise, return the number of pages by which the 153 * global pools must be adjusted (upward). The returned value may 154 * only be different than the passed value (delta) in the case where 155 * a subpool minimum size must be maintained. 156 */ 157static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 158 long delta) 159{ 160 long ret = delta; 161 162 if (!spool) 163 return ret; 164 165 spin_lock(&spool->lock); 166 167 if (spool->max_hpages != -1) { /* maximum size accounting */ 168 if ((spool->used_hpages + delta) <= spool->max_hpages) 169 spool->used_hpages += delta; 170 else { 171 ret = -ENOMEM; 172 goto unlock_ret; 173 } 174 } 175 176 /* minimum size accounting */ 177 if (spool->min_hpages != -1 && spool->rsv_hpages) { 178 if (delta > spool->rsv_hpages) { 179 /* 180 * Asking for more reserves than those already taken on 181 * behalf of subpool. Return difference. 182 */ 183 ret = delta - spool->rsv_hpages; 184 spool->rsv_hpages = 0; 185 } else { 186 ret = 0; /* reserves already accounted for */ 187 spool->rsv_hpages -= delta; 188 } 189 } 190 191unlock_ret: 192 spin_unlock(&spool->lock); 193 return ret; 194} 195 196/* 197 * Subpool accounting for freeing and unreserving pages. 198 * Return the number of global page reservations that must be dropped. 199 * The return value may only be different than the passed value (delta) 200 * in the case where a subpool minimum size must be maintained. 201 */ 202static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 203 long delta) 204{ 205 long ret = delta; 206 207 if (!spool) 208 return delta; 209 210 spin_lock(&spool->lock); 211 212 if (spool->max_hpages != -1) /* maximum size accounting */ 213 spool->used_hpages -= delta; 214 215 /* minimum size accounting */ 216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 217 if (spool->rsv_hpages + delta <= spool->min_hpages) 218 ret = 0; 219 else 220 ret = spool->rsv_hpages + delta - spool->min_hpages; 221 222 spool->rsv_hpages += delta; 223 if (spool->rsv_hpages > spool->min_hpages) 224 spool->rsv_hpages = spool->min_hpages; 225 } 226 227 /* 228 * If hugetlbfs_put_super couldn't free spool due to an outstanding 229 * quota reference, free it now. 230 */ 231 unlock_or_release_subpool(spool); 232 233 return ret; 234} 235 236static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 237{ 238 return HUGETLBFS_SB(inode->i_sb)->spool; 239} 240 241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 242{ 243 return subpool_inode(file_inode(vma->vm_file)); 244} 245 246/* Helper that removes a struct file_region from the resv_map cache and returns 247 * it for use. 248 */ 249static struct file_region * 250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 251{ 252 struct file_region *nrg = NULL; 253 254 VM_BUG_ON(resv->region_cache_count <= 0); 255 256 resv->region_cache_count--; 257 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 258 list_del(&nrg->link); 259 260 nrg->from = from; 261 nrg->to = to; 262 263 return nrg; 264} 265 266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 267 struct file_region *rg) 268{ 269#ifdef CONFIG_CGROUP_HUGETLB 270 nrg->reservation_counter = rg->reservation_counter; 271 nrg->css = rg->css; 272 if (rg->css) 273 css_get(rg->css); 274#endif 275} 276 277/* Helper that records hugetlb_cgroup uncharge info. */ 278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 279 struct hstate *h, 280 struct resv_map *resv, 281 struct file_region *nrg) 282{ 283#ifdef CONFIG_CGROUP_HUGETLB 284 if (h_cg) { 285 nrg->reservation_counter = 286 &h_cg->rsvd_hugepage[hstate_index(h)]; 287 nrg->css = &h_cg->css; 288 /* 289 * The caller will hold exactly one h_cg->css reference for the 290 * whole contiguous reservation region. But this area might be 291 * scattered when there are already some file_regions reside in 292 * it. As a result, many file_regions may share only one css 293 * reference. In order to ensure that one file_region must hold 294 * exactly one h_cg->css reference, we should do css_get for 295 * each file_region and leave the reference held by caller 296 * untouched. 297 */ 298 css_get(&h_cg->css); 299 if (!resv->pages_per_hpage) 300 resv->pages_per_hpage = pages_per_huge_page(h); 301 /* pages_per_hpage should be the same for all entries in 302 * a resv_map. 303 */ 304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 305 } else { 306 nrg->reservation_counter = NULL; 307 nrg->css = NULL; 308 } 309#endif 310} 311 312static void put_uncharge_info(struct file_region *rg) 313{ 314#ifdef CONFIG_CGROUP_HUGETLB 315 if (rg->css) 316 css_put(rg->css); 317#endif 318} 319 320static bool has_same_uncharge_info(struct file_region *rg, 321 struct file_region *org) 322{ 323#ifdef CONFIG_CGROUP_HUGETLB 324 return rg && org && 325 rg->reservation_counter == org->reservation_counter && 326 rg->css == org->css; 327 328#else 329 return true; 330#endif 331} 332 333static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 334{ 335 struct file_region *nrg = NULL, *prg = NULL; 336 337 prg = list_prev_entry(rg, link); 338 if (&prg->link != &resv->regions && prg->to == rg->from && 339 has_same_uncharge_info(prg, rg)) { 340 prg->to = rg->to; 341 342 list_del(&rg->link); 343 put_uncharge_info(rg); 344 kfree(rg); 345 346 rg = prg; 347 } 348 349 nrg = list_next_entry(rg, link); 350 if (&nrg->link != &resv->regions && nrg->from == rg->to && 351 has_same_uncharge_info(nrg, rg)) { 352 nrg->from = rg->from; 353 354 list_del(&rg->link); 355 put_uncharge_info(rg); 356 kfree(rg); 357 } 358} 359 360/* 361 * Must be called with resv->lock held. 362 * 363 * Calling this with regions_needed != NULL will count the number of pages 364 * to be added but will not modify the linked list. And regions_needed will 365 * indicate the number of file_regions needed in the cache to carry out to add 366 * the regions for this range. 367 */ 368static long add_reservation_in_range(struct resv_map *resv, long f, long t, 369 struct hugetlb_cgroup *h_cg, 370 struct hstate *h, long *regions_needed) 371{ 372 long add = 0; 373 struct list_head *head = &resv->regions; 374 long last_accounted_offset = f; 375 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 376 377 if (regions_needed) 378 *regions_needed = 0; 379 380 /* In this loop, we essentially handle an entry for the range 381 * [last_accounted_offset, rg->from), at every iteration, with some 382 * bounds checking. 383 */ 384 list_for_each_entry_safe(rg, trg, head, link) { 385 /* Skip irrelevant regions that start before our range. */ 386 if (rg->from < f) { 387 /* If this region ends after the last accounted offset, 388 * then we need to update last_accounted_offset. 389 */ 390 if (rg->to > last_accounted_offset) 391 last_accounted_offset = rg->to; 392 continue; 393 } 394 395 /* When we find a region that starts beyond our range, we've 396 * finished. 397 */ 398 if (rg->from > t) 399 break; 400 401 /* Add an entry for last_accounted_offset -> rg->from, and 402 * update last_accounted_offset. 403 */ 404 if (rg->from > last_accounted_offset) { 405 add += rg->from - last_accounted_offset; 406 if (!regions_needed) { 407 nrg = get_file_region_entry_from_cache( 408 resv, last_accounted_offset, rg->from); 409 record_hugetlb_cgroup_uncharge_info(h_cg, h, 410 resv, nrg); 411 list_add(&nrg->link, rg->link.prev); 412 coalesce_file_region(resv, nrg); 413 } else 414 *regions_needed += 1; 415 } 416 417 last_accounted_offset = rg->to; 418 } 419 420 /* Handle the case where our range extends beyond 421 * last_accounted_offset. 422 */ 423 if (last_accounted_offset < t) { 424 add += t - last_accounted_offset; 425 if (!regions_needed) { 426 nrg = get_file_region_entry_from_cache( 427 resv, last_accounted_offset, t); 428 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 429 list_add(&nrg->link, rg->link.prev); 430 coalesce_file_region(resv, nrg); 431 } else 432 *regions_needed += 1; 433 } 434 435 VM_BUG_ON(add < 0); 436 return add; 437} 438 439/* Must be called with resv->lock acquired. Will drop lock to allocate entries. 440 */ 441static int allocate_file_region_entries(struct resv_map *resv, 442 int regions_needed) 443 __must_hold(&resv->lock) 444{ 445 struct list_head allocated_regions; 446 int to_allocate = 0, i = 0; 447 struct file_region *trg = NULL, *rg = NULL; 448 449 VM_BUG_ON(regions_needed < 0); 450 451 INIT_LIST_HEAD(&allocated_regions); 452 453 /* 454 * Check for sufficient descriptors in the cache to accommodate 455 * the number of in progress add operations plus regions_needed. 456 * 457 * This is a while loop because when we drop the lock, some other call 458 * to region_add or region_del may have consumed some region_entries, 459 * so we keep looping here until we finally have enough entries for 460 * (adds_in_progress + regions_needed). 461 */ 462 while (resv->region_cache_count < 463 (resv->adds_in_progress + regions_needed)) { 464 to_allocate = resv->adds_in_progress + regions_needed - 465 resv->region_cache_count; 466 467 /* At this point, we should have enough entries in the cache 468 * for all the existings adds_in_progress. We should only be 469 * needing to allocate for regions_needed. 470 */ 471 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 472 473 spin_unlock(&resv->lock); 474 for (i = 0; i < to_allocate; i++) { 475 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 476 if (!trg) 477 goto out_of_memory; 478 list_add(&trg->link, &allocated_regions); 479 } 480 481 spin_lock(&resv->lock); 482 483 list_splice(&allocated_regions, &resv->region_cache); 484 resv->region_cache_count += to_allocate; 485 } 486 487 return 0; 488 489out_of_memory: 490 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 491 list_del(&rg->link); 492 kfree(rg); 493 } 494 return -ENOMEM; 495} 496 497/* 498 * Add the huge page range represented by [f, t) to the reserve 499 * map. Regions will be taken from the cache to fill in this range. 500 * Sufficient regions should exist in the cache due to the previous 501 * call to region_chg with the same range, but in some cases the cache will not 502 * have sufficient entries due to races with other code doing region_add or 503 * region_del. The extra needed entries will be allocated. 504 * 505 * regions_needed is the out value provided by a previous call to region_chg. 506 * 507 * Return the number of new huge pages added to the map. This number is greater 508 * than or equal to zero. If file_region entries needed to be allocated for 509 * this operation and we were not able to allocate, it returns -ENOMEM. 510 * region_add of regions of length 1 never allocate file_regions and cannot 511 * fail; region_chg will always allocate at least 1 entry and a region_add for 512 * 1 page will only require at most 1 entry. 513 */ 514static long region_add(struct resv_map *resv, long f, long t, 515 long in_regions_needed, struct hstate *h, 516 struct hugetlb_cgroup *h_cg) 517{ 518 long add = 0, actual_regions_needed = 0; 519 520 spin_lock(&resv->lock); 521retry: 522 523 /* Count how many regions are actually needed to execute this add. */ 524 add_reservation_in_range(resv, f, t, NULL, NULL, 525 &actual_regions_needed); 526 527 /* 528 * Check for sufficient descriptors in the cache to accommodate 529 * this add operation. Note that actual_regions_needed may be greater 530 * than in_regions_needed, as the resv_map may have been modified since 531 * the region_chg call. In this case, we need to make sure that we 532 * allocate extra entries, such that we have enough for all the 533 * existing adds_in_progress, plus the excess needed for this 534 * operation. 535 */ 536 if (actual_regions_needed > in_regions_needed && 537 resv->region_cache_count < 538 resv->adds_in_progress + 539 (actual_regions_needed - in_regions_needed)) { 540 /* region_add operation of range 1 should never need to 541 * allocate file_region entries. 542 */ 543 VM_BUG_ON(t - f <= 1); 544 545 if (allocate_file_region_entries( 546 resv, actual_regions_needed - in_regions_needed)) { 547 return -ENOMEM; 548 } 549 550 goto retry; 551 } 552 553 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 554 555 resv->adds_in_progress -= in_regions_needed; 556 557 spin_unlock(&resv->lock); 558 VM_BUG_ON(add < 0); 559 return add; 560} 561 562/* 563 * Examine the existing reserve map and determine how many 564 * huge pages in the specified range [f, t) are NOT currently 565 * represented. This routine is called before a subsequent 566 * call to region_add that will actually modify the reserve 567 * map to add the specified range [f, t). region_chg does 568 * not change the number of huge pages represented by the 569 * map. A number of new file_region structures is added to the cache as a 570 * placeholder, for the subsequent region_add call to use. At least 1 571 * file_region structure is added. 572 * 573 * out_regions_needed is the number of regions added to the 574 * resv->adds_in_progress. This value needs to be provided to a follow up call 575 * to region_add or region_abort for proper accounting. 576 * 577 * Returns the number of huge pages that need to be added to the existing 578 * reservation map for the range [f, t). This number is greater or equal to 579 * zero. -ENOMEM is returned if a new file_region structure or cache entry 580 * is needed and can not be allocated. 581 */ 582static long region_chg(struct resv_map *resv, long f, long t, 583 long *out_regions_needed) 584{ 585 long chg = 0; 586 587 spin_lock(&resv->lock); 588 589 /* Count how many hugepages in this range are NOT represented. */ 590 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 591 out_regions_needed); 592 593 if (*out_regions_needed == 0) 594 *out_regions_needed = 1; 595 596 if (allocate_file_region_entries(resv, *out_regions_needed)) 597 return -ENOMEM; 598 599 resv->adds_in_progress += *out_regions_needed; 600 601 spin_unlock(&resv->lock); 602 return chg; 603} 604 605/* 606 * Abort the in progress add operation. The adds_in_progress field 607 * of the resv_map keeps track of the operations in progress between 608 * calls to region_chg and region_add. Operations are sometimes 609 * aborted after the call to region_chg. In such cases, region_abort 610 * is called to decrement the adds_in_progress counter. regions_needed 611 * is the value returned by the region_chg call, it is used to decrement 612 * the adds_in_progress counter. 613 * 614 * NOTE: The range arguments [f, t) are not needed or used in this 615 * routine. They are kept to make reading the calling code easier as 616 * arguments will match the associated region_chg call. 617 */ 618static void region_abort(struct resv_map *resv, long f, long t, 619 long regions_needed) 620{ 621 spin_lock(&resv->lock); 622 VM_BUG_ON(!resv->region_cache_count); 623 resv->adds_in_progress -= regions_needed; 624 spin_unlock(&resv->lock); 625} 626 627/* 628 * Delete the specified range [f, t) from the reserve map. If the 629 * t parameter is LONG_MAX, this indicates that ALL regions after f 630 * should be deleted. Locate the regions which intersect [f, t) 631 * and either trim, delete or split the existing regions. 632 * 633 * Returns the number of huge pages deleted from the reserve map. 634 * In the normal case, the return value is zero or more. In the 635 * case where a region must be split, a new region descriptor must 636 * be allocated. If the allocation fails, -ENOMEM will be returned. 637 * NOTE: If the parameter t == LONG_MAX, then we will never split 638 * a region and possibly return -ENOMEM. Callers specifying 639 * t == LONG_MAX do not need to check for -ENOMEM error. 640 */ 641static long region_del(struct resv_map *resv, long f, long t) 642{ 643 struct list_head *head = &resv->regions; 644 struct file_region *rg, *trg; 645 struct file_region *nrg = NULL; 646 long del = 0; 647 648retry: 649 spin_lock(&resv->lock); 650 list_for_each_entry_safe(rg, trg, head, link) { 651 /* 652 * Skip regions before the range to be deleted. file_region 653 * ranges are normally of the form [from, to). However, there 654 * may be a "placeholder" entry in the map which is of the form 655 * (from, to) with from == to. Check for placeholder entries 656 * at the beginning of the range to be deleted. 657 */ 658 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 659 continue; 660 661 if (rg->from >= t) 662 break; 663 664 if (f > rg->from && t < rg->to) { /* Must split region */ 665 /* 666 * Check for an entry in the cache before dropping 667 * lock and attempting allocation. 668 */ 669 if (!nrg && 670 resv->region_cache_count > resv->adds_in_progress) { 671 nrg = list_first_entry(&resv->region_cache, 672 struct file_region, 673 link); 674 list_del(&nrg->link); 675 resv->region_cache_count--; 676 } 677 678 if (!nrg) { 679 spin_unlock(&resv->lock); 680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 681 if (!nrg) 682 return -ENOMEM; 683 goto retry; 684 } 685 686 del += t - f; 687 hugetlb_cgroup_uncharge_file_region( 688 resv, rg, t - f, false); 689 690 /* New entry for end of split region */ 691 nrg->from = t; 692 nrg->to = rg->to; 693 694 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 695 696 INIT_LIST_HEAD(&nrg->link); 697 698 /* Original entry is trimmed */ 699 rg->to = f; 700 701 list_add(&nrg->link, &rg->link); 702 nrg = NULL; 703 break; 704 } 705 706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 707 del += rg->to - rg->from; 708 hugetlb_cgroup_uncharge_file_region(resv, rg, 709 rg->to - rg->from, true); 710 list_del(&rg->link); 711 kfree(rg); 712 continue; 713 } 714 715 if (f <= rg->from) { /* Trim beginning of region */ 716 hugetlb_cgroup_uncharge_file_region(resv, rg, 717 t - rg->from, false); 718 719 del += t - rg->from; 720 rg->from = t; 721 } else { /* Trim end of region */ 722 hugetlb_cgroup_uncharge_file_region(resv, rg, 723 rg->to - f, false); 724 725 del += rg->to - f; 726 rg->to = f; 727 } 728 } 729 730 spin_unlock(&resv->lock); 731 kfree(nrg); 732 return del; 733} 734 735/* 736 * A rare out of memory error was encountered which prevented removal of 737 * the reserve map region for a page. The huge page itself was free'ed 738 * and removed from the page cache. This routine will adjust the subpool 739 * usage count, and the global reserve count if needed. By incrementing 740 * these counts, the reserve map entry which could not be deleted will 741 * appear as a "reserved" entry instead of simply dangling with incorrect 742 * counts. 743 */ 744void hugetlb_fix_reserve_counts(struct inode *inode) 745{ 746 struct hugepage_subpool *spool = subpool_inode(inode); 747 long rsv_adjust; 748 bool reserved = false; 749 750 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 751 if (rsv_adjust > 0) { 752 struct hstate *h = hstate_inode(inode); 753 754 if (!hugetlb_acct_memory(h, 1)) 755 reserved = true; 756 } else if (!rsv_adjust) { 757 reserved = true; 758 } 759 760 if (!reserved) 761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 762} 763 764/* 765 * Count and return the number of huge pages in the reserve map 766 * that intersect with the range [f, t). 767 */ 768static long region_count(struct resv_map *resv, long f, long t) 769{ 770 struct list_head *head = &resv->regions; 771 struct file_region *rg; 772 long chg = 0; 773 774 spin_lock(&resv->lock); 775 /* Locate each segment we overlap with, and count that overlap. */ 776 list_for_each_entry(rg, head, link) { 777 long seg_from; 778 long seg_to; 779 780 if (rg->to <= f) 781 continue; 782 if (rg->from >= t) 783 break; 784 785 seg_from = max(rg->from, f); 786 seg_to = min(rg->to, t); 787 788 chg += seg_to - seg_from; 789 } 790 spin_unlock(&resv->lock); 791 792 return chg; 793} 794 795/* 796 * Convert the address within this vma to the page offset within 797 * the mapping, in pagecache page units; huge pages here. 798 */ 799static pgoff_t vma_hugecache_offset(struct hstate *h, 800 struct vm_area_struct *vma, unsigned long address) 801{ 802 return ((address - vma->vm_start) >> huge_page_shift(h)) + 803 (vma->vm_pgoff >> huge_page_order(h)); 804} 805 806pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 807 unsigned long address) 808{ 809 return vma_hugecache_offset(hstate_vma(vma), vma, address); 810} 811EXPORT_SYMBOL_GPL(linear_hugepage_index); 812 813/* 814 * Return the size of the pages allocated when backing a VMA. In the majority 815 * cases this will be same size as used by the page table entries. 816 */ 817unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 818{ 819 if (vma->vm_ops && vma->vm_ops->pagesize) 820 return vma->vm_ops->pagesize(vma); 821 return PAGE_SIZE; 822} 823EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 824 825/* 826 * Return the page size being used by the MMU to back a VMA. In the majority 827 * of cases, the page size used by the kernel matches the MMU size. On 828 * architectures where it differs, an architecture-specific 'strong' 829 * version of this symbol is required. 830 */ 831__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 832{ 833 return vma_kernel_pagesize(vma); 834} 835 836/* 837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 838 * bits of the reservation map pointer, which are always clear due to 839 * alignment. 840 */ 841#define HPAGE_RESV_OWNER (1UL << 0) 842#define HPAGE_RESV_UNMAPPED (1UL << 1) 843#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 844 845/* 846 * These helpers are used to track how many pages are reserved for 847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 848 * is guaranteed to have their future faults succeed. 849 * 850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 851 * the reserve counters are updated with the hugetlb_lock held. It is safe 852 * to reset the VMA at fork() time as it is not in use yet and there is no 853 * chance of the global counters getting corrupted as a result of the values. 854 * 855 * The private mapping reservation is represented in a subtly different 856 * manner to a shared mapping. A shared mapping has a region map associated 857 * with the underlying file, this region map represents the backing file 858 * pages which have ever had a reservation assigned which this persists even 859 * after the page is instantiated. A private mapping has a region map 860 * associated with the original mmap which is attached to all VMAs which 861 * reference it, this region map represents those offsets which have consumed 862 * reservation ie. where pages have been instantiated. 863 */ 864static unsigned long get_vma_private_data(struct vm_area_struct *vma) 865{ 866 return (unsigned long)vma->vm_private_data; 867} 868 869static void set_vma_private_data(struct vm_area_struct *vma, 870 unsigned long value) 871{ 872 vma->vm_private_data = (void *)value; 873} 874 875static void 876resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 877 struct hugetlb_cgroup *h_cg, 878 struct hstate *h) 879{ 880#ifdef CONFIG_CGROUP_HUGETLB 881 if (!h_cg || !h) { 882 resv_map->reservation_counter = NULL; 883 resv_map->pages_per_hpage = 0; 884 resv_map->css = NULL; 885 } else { 886 resv_map->reservation_counter = 887 &h_cg->rsvd_hugepage[hstate_index(h)]; 888 resv_map->pages_per_hpage = pages_per_huge_page(h); 889 resv_map->css = &h_cg->css; 890 } 891#endif 892} 893 894struct resv_map *resv_map_alloc(void) 895{ 896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 898 899 if (!resv_map || !rg) { 900 kfree(resv_map); 901 kfree(rg); 902 return NULL; 903 } 904 905 kref_init(&resv_map->refs); 906 spin_lock_init(&resv_map->lock); 907 INIT_LIST_HEAD(&resv_map->regions); 908 909 resv_map->adds_in_progress = 0; 910 /* 911 * Initialize these to 0. On shared mappings, 0's here indicate these 912 * fields don't do cgroup accounting. On private mappings, these will be 913 * re-initialized to the proper values, to indicate that hugetlb cgroup 914 * reservations are to be un-charged from here. 915 */ 916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 917 918 INIT_LIST_HEAD(&resv_map->region_cache); 919 list_add(&rg->link, &resv_map->region_cache); 920 resv_map->region_cache_count = 1; 921 922 return resv_map; 923} 924 925void resv_map_release(struct kref *ref) 926{ 927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 928 struct list_head *head = &resv_map->region_cache; 929 struct file_region *rg, *trg; 930 931 /* Clear out any active regions before we release the map. */ 932 region_del(resv_map, 0, LONG_MAX); 933 934 /* ... and any entries left in the cache */ 935 list_for_each_entry_safe(rg, trg, head, link) { 936 list_del(&rg->link); 937 kfree(rg); 938 } 939 940 VM_BUG_ON(resv_map->adds_in_progress); 941 942 kfree(resv_map); 943} 944 945static inline struct resv_map *inode_resv_map(struct inode *inode) 946{ 947 /* 948 * At inode evict time, i_mapping may not point to the original 949 * address space within the inode. This original address space 950 * contains the pointer to the resv_map. So, always use the 951 * address space embedded within the inode. 952 * The VERY common case is inode->mapping == &inode->i_data but, 953 * this may not be true for device special inodes. 954 */ 955 return (struct resv_map *)(&inode->i_data)->private_data; 956} 957 958static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 959{ 960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 961 if (vma->vm_flags & VM_MAYSHARE) { 962 struct address_space *mapping = vma->vm_file->f_mapping; 963 struct inode *inode = mapping->host; 964 965 return inode_resv_map(inode); 966 967 } else { 968 return (struct resv_map *)(get_vma_private_data(vma) & 969 ~HPAGE_RESV_MASK); 970 } 971} 972 973static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 974{ 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 977 978 set_vma_private_data(vma, (get_vma_private_data(vma) & 979 HPAGE_RESV_MASK) | (unsigned long)map); 980} 981 982static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 983{ 984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 986 987 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 988} 989 990static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 991{ 992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 993 994 return (get_vma_private_data(vma) & flag) != 0; 995} 996 997/* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 998void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 999{ 1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1001 if (!(vma->vm_flags & VM_MAYSHARE)) 1002 vma->vm_private_data = (void *)0; 1003} 1004 1005/* Returns true if the VMA has associated reserve pages */ 1006static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1007{ 1008 if (vma->vm_flags & VM_NORESERVE) { 1009 /* 1010 * This address is already reserved by other process(chg == 0), 1011 * so, we should decrement reserved count. Without decrementing, 1012 * reserve count remains after releasing inode, because this 1013 * allocated page will go into page cache and is regarded as 1014 * coming from reserved pool in releasing step. Currently, we 1015 * don't have any other solution to deal with this situation 1016 * properly, so add work-around here. 1017 */ 1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1019 return true; 1020 else 1021 return false; 1022 } 1023 1024 /* Shared mappings always use reserves */ 1025 if (vma->vm_flags & VM_MAYSHARE) { 1026 /* 1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1028 * be a region map for all pages. The only situation where 1029 * there is no region map is if a hole was punched via 1030 * fallocate. In this case, there really are no reserves to 1031 * use. This situation is indicated if chg != 0. 1032 */ 1033 if (chg) 1034 return false; 1035 else 1036 return true; 1037 } 1038 1039 /* 1040 * Only the process that called mmap() has reserves for 1041 * private mappings. 1042 */ 1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1044 /* 1045 * Like the shared case above, a hole punch or truncate 1046 * could have been performed on the private mapping. 1047 * Examine the value of chg to determine if reserves 1048 * actually exist or were previously consumed. 1049 * Very Subtle - The value of chg comes from a previous 1050 * call to vma_needs_reserves(). The reserve map for 1051 * private mappings has different (opposite) semantics 1052 * than that of shared mappings. vma_needs_reserves() 1053 * has already taken this difference in semantics into 1054 * account. Therefore, the meaning of chg is the same 1055 * as in the shared case above. Code could easily be 1056 * combined, but keeping it separate draws attention to 1057 * subtle differences. 1058 */ 1059 if (chg) 1060 return false; 1061 else 1062 return true; 1063 } 1064 1065 return false; 1066} 1067 1068static void enqueue_huge_page(struct hstate *h, struct page *page) 1069{ 1070 int nid = page_to_nid(page); 1071 list_move(&page->lru, &h->hugepage_freelists[nid]); 1072 h->free_huge_pages++; 1073 h->free_huge_pages_node[nid]++; 1074 SetPageHugeFreed(page); 1075} 1076 1077static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1078{ 1079 struct page *page; 1080 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1081 1082 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1083 if (nocma && is_migrate_cma_page(page)) 1084 continue; 1085 1086 if (PageHWPoison(page)) 1087 continue; 1088 1089 list_move(&page->lru, &h->hugepage_activelist); 1090 set_page_refcounted(page); 1091 ClearPageHugeFreed(page); 1092 h->free_huge_pages--; 1093 h->free_huge_pages_node[nid]--; 1094 return page; 1095 } 1096 1097 return NULL; 1098} 1099 1100static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1101 nodemask_t *nmask) 1102{ 1103 unsigned int cpuset_mems_cookie; 1104 struct zonelist *zonelist; 1105 struct zone *zone; 1106 struct zoneref *z; 1107 int node = NUMA_NO_NODE; 1108 1109 zonelist = node_zonelist(nid, gfp_mask); 1110 1111retry_cpuset: 1112 cpuset_mems_cookie = read_mems_allowed_begin(); 1113 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1114 struct page *page; 1115 1116 if (!cpuset_zone_allowed(zone, gfp_mask)) 1117 continue; 1118 /* 1119 * no need to ask again on the same node. Pool is node rather than 1120 * zone aware 1121 */ 1122 if (zone_to_nid(zone) == node) 1123 continue; 1124 node = zone_to_nid(zone); 1125 1126 page = dequeue_huge_page_node_exact(h, node); 1127 if (page) 1128 return page; 1129 } 1130 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1131 goto retry_cpuset; 1132 1133 return NULL; 1134} 1135 1136static struct page *dequeue_huge_page_vma(struct hstate *h, 1137 struct vm_area_struct *vma, 1138 unsigned long address, int avoid_reserve, 1139 long chg) 1140{ 1141 struct page *page; 1142 struct mempolicy *mpol; 1143 gfp_t gfp_mask; 1144 nodemask_t *nodemask; 1145 int nid; 1146 1147 /* 1148 * A child process with MAP_PRIVATE mappings created by their parent 1149 * have no page reserves. This check ensures that reservations are 1150 * not "stolen". The child may still get SIGKILLed 1151 */ 1152 if (!vma_has_reserves(vma, chg) && 1153 h->free_huge_pages - h->resv_huge_pages == 0) 1154 goto err; 1155 1156 /* If reserves cannot be used, ensure enough pages are in the pool */ 1157 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1158 goto err; 1159 1160 gfp_mask = htlb_alloc_mask(h); 1161 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1162 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1163 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1164 SetPagePrivate(page); 1165 h->resv_huge_pages--; 1166 } 1167 1168 mpol_cond_put(mpol); 1169 return page; 1170 1171err: 1172 return NULL; 1173} 1174 1175/* 1176 * common helper functions for hstate_next_node_to_{alloc|free}. 1177 * We may have allocated or freed a huge page based on a different 1178 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1179 * be outside of *nodes_allowed. Ensure that we use an allowed 1180 * node for alloc or free. 1181 */ 1182static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1183{ 1184 nid = next_node_in(nid, *nodes_allowed); 1185 VM_BUG_ON(nid >= MAX_NUMNODES); 1186 1187 return nid; 1188} 1189 1190static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1191{ 1192 if (!node_isset(nid, *nodes_allowed)) 1193 nid = next_node_allowed(nid, nodes_allowed); 1194 return nid; 1195} 1196 1197/* 1198 * returns the previously saved node ["this node"] from which to 1199 * allocate a persistent huge page for the pool and advance the 1200 * next node from which to allocate, handling wrap at end of node 1201 * mask. 1202 */ 1203static int hstate_next_node_to_alloc(struct hstate *h, 1204 nodemask_t *nodes_allowed) 1205{ 1206 int nid; 1207 1208 VM_BUG_ON(!nodes_allowed); 1209 1210 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1211 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1212 1213 return nid; 1214} 1215 1216/* 1217 * helper for free_pool_huge_page() - return the previously saved 1218 * node ["this node"] from which to free a huge page. Advance the 1219 * next node id whether or not we find a free huge page to free so 1220 * that the next attempt to free addresses the next node. 1221 */ 1222static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1223{ 1224 int nid; 1225 1226 VM_BUG_ON(!nodes_allowed); 1227 1228 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1229 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1230 1231 return nid; 1232} 1233 1234#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1235 for (nr_nodes = nodes_weight(*mask); \ 1236 nr_nodes > 0 && \ 1237 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1238 nr_nodes--) 1239 1240#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1241 for (nr_nodes = nodes_weight(*mask); \ 1242 nr_nodes > 0 && \ 1243 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1244 nr_nodes--) 1245 1246#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1247static void destroy_compound_gigantic_page(struct page *page, 1248 unsigned int order) 1249{ 1250 int i; 1251 int nr_pages = 1 << order; 1252 struct page *p = page + 1; 1253 1254 atomic_set(compound_mapcount_ptr(page), 0); 1255 atomic_set(compound_pincount_ptr(page), 0); 1256 1257 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1258 clear_compound_head(p); 1259 set_page_refcounted(p); 1260 } 1261 1262 set_compound_order(page, 0); 1263 page[1].compound_nr = 0; 1264 __ClearPageHead(page); 1265} 1266 1267static void free_gigantic_page(struct page *page, unsigned int order) 1268{ 1269 /* 1270 * If the page isn't allocated using the cma allocator, 1271 * cma_release() returns false. 1272 */ 1273#ifdef CONFIG_CMA 1274 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1275 return; 1276#endif 1277 1278 free_contig_range(page_to_pfn(page), 1 << order); 1279} 1280 1281#ifdef CONFIG_CONTIG_ALLOC 1282static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1283 int nid, nodemask_t *nodemask) 1284{ 1285 unsigned long nr_pages = 1UL << huge_page_order(h); 1286 if (nid == NUMA_NO_NODE) 1287 nid = numa_mem_id(); 1288 1289#ifdef CONFIG_CMA 1290 { 1291 struct page *page; 1292 int node; 1293 1294 if (hugetlb_cma[nid]) { 1295 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1296 huge_page_order(h), true); 1297 if (page) 1298 return page; 1299 } 1300 1301 if (!(gfp_mask & __GFP_THISNODE)) { 1302 for_each_node_mask(node, *nodemask) { 1303 if (node == nid || !hugetlb_cma[node]) 1304 continue; 1305 1306 page = cma_alloc(hugetlb_cma[node], nr_pages, 1307 huge_page_order(h), true); 1308 if (page) 1309 return page; 1310 } 1311 } 1312 } 1313#endif 1314 1315 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1316} 1317 1318#else /* !CONFIG_CONTIG_ALLOC */ 1319static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1320 int nid, nodemask_t *nodemask) 1321{ 1322 return NULL; 1323} 1324#endif /* CONFIG_CONTIG_ALLOC */ 1325 1326#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1327static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1328 int nid, nodemask_t *nodemask) 1329{ 1330 return NULL; 1331} 1332static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1333static inline void destroy_compound_gigantic_page(struct page *page, 1334 unsigned int order) { } 1335#endif 1336 1337static void update_and_free_page(struct hstate *h, struct page *page) 1338{ 1339 int i; 1340 struct page *subpage = page; 1341 1342 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1343 return; 1344 1345 h->nr_huge_pages--; 1346 h->nr_huge_pages_node[page_to_nid(page)]--; 1347 for (i = 0; i < pages_per_huge_page(h); 1348 i++, subpage = mem_map_next(subpage, page, i)) { 1349 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1350 1 << PG_referenced | 1 << PG_dirty | 1351 1 << PG_active | 1 << PG_private | 1352 1 << PG_writeback); 1353 } 1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1355 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1356 /* 1357 * Very subtle 1358 * 1359 * For non-gigantic pages set the destructor to the normal compound 1360 * page dtor. This is needed in case someone takes an additional 1361 * temporary ref to the page, and freeing is delayed until they drop 1362 * their reference. 1363 * 1364 * For gigantic pages set the destructor to the null dtor. This 1365 * destructor will never be called. Before freeing the gigantic 1366 * page destroy_compound_gigantic_page will turn the compound page 1367 * into a simple group of pages. After this the destructor does not 1368 * apply. 1369 * 1370 * This handles the case where more than one ref is held when and 1371 * after update_and_free_page is called. 1372 */ 1373 set_page_refcounted(page); 1374 if (hstate_is_gigantic(h)) { 1375 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1376 /* 1377 * Temporarily drop the hugetlb_lock, because 1378 * we might block in free_gigantic_page(). 1379 */ 1380 spin_unlock(&hugetlb_lock); 1381 destroy_compound_gigantic_page(page, huge_page_order(h)); 1382 free_gigantic_page(page, huge_page_order(h)); 1383 spin_lock(&hugetlb_lock); 1384 } else { 1385 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1386 __free_pages(page, huge_page_order(h)); 1387 } 1388} 1389 1390struct hstate *size_to_hstate(unsigned long size) 1391{ 1392 struct hstate *h; 1393 1394 for_each_hstate(h) { 1395 if (huge_page_size(h) == size) 1396 return h; 1397 } 1398 return NULL; 1399} 1400 1401/* 1402 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1403 * to hstate->hugepage_activelist.) 1404 * 1405 * This function can be called for tail pages, but never returns true for them. 1406 */ 1407bool page_huge_active(struct page *page) 1408{ 1409 return PageHeadHuge(page) && PagePrivate(&page[1]); 1410} 1411 1412/* never called for tail page */ 1413void set_page_huge_active(struct page *page) 1414{ 1415 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1416 SetPagePrivate(&page[1]); 1417} 1418 1419static void clear_page_huge_active(struct page *page) 1420{ 1421 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1422 ClearPagePrivate(&page[1]); 1423} 1424 1425/* 1426 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1427 * code 1428 */ 1429static inline bool PageHugeTemporary(struct page *page) 1430{ 1431 if (!PageHuge(page)) 1432 return false; 1433 1434 return (unsigned long)page[2].mapping == -1U; 1435} 1436 1437static inline void SetPageHugeTemporary(struct page *page) 1438{ 1439 page[2].mapping = (void *)-1U; 1440} 1441 1442static inline void ClearPageHugeTemporary(struct page *page) 1443{ 1444 page[2].mapping = NULL; 1445} 1446 1447static void __free_huge_page(struct page *page) 1448{ 1449 /* 1450 * Can't pass hstate in here because it is called from the 1451 * compound page destructor. 1452 */ 1453 struct hstate *h = page_hstate(page); 1454 int nid = page_to_nid(page); 1455 struct hugepage_subpool *spool = 1456 (struct hugepage_subpool *)page_private(page); 1457 bool restore_reserve; 1458 1459 VM_BUG_ON_PAGE(page_count(page), page); 1460 VM_BUG_ON_PAGE(page_mapcount(page), page); 1461 1462 set_page_private(page, 0); 1463 page->mapping = NULL; 1464 restore_reserve = PagePrivate(page); 1465 ClearPagePrivate(page); 1466 1467 /* 1468 * If PagePrivate() was set on page, page allocation consumed a 1469 * reservation. If the page was associated with a subpool, there 1470 * would have been a page reserved in the subpool before allocation 1471 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1472 * reservtion, do not call hugepage_subpool_put_pages() as this will 1473 * remove the reserved page from the subpool. 1474 */ 1475 if (!restore_reserve) { 1476 /* 1477 * A return code of zero implies that the subpool will be 1478 * under its minimum size if the reservation is not restored 1479 * after page is free. Therefore, force restore_reserve 1480 * operation. 1481 */ 1482 if (hugepage_subpool_put_pages(spool, 1) == 0) 1483 restore_reserve = true; 1484 } 1485 1486 spin_lock(&hugetlb_lock); 1487 clear_page_huge_active(page); 1488 hugetlb_cgroup_uncharge_page(hstate_index(h), 1489 pages_per_huge_page(h), page); 1490 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1491 pages_per_huge_page(h), page); 1492 if (restore_reserve) 1493 h->resv_huge_pages++; 1494 1495 if (PageHugeTemporary(page)) { 1496 list_del(&page->lru); 1497 ClearPageHugeTemporary(page); 1498 update_and_free_page(h, page); 1499 } else if (h->surplus_huge_pages_node[nid]) { 1500 /* remove the page from active list */ 1501 list_del(&page->lru); 1502 update_and_free_page(h, page); 1503 h->surplus_huge_pages--; 1504 h->surplus_huge_pages_node[nid]--; 1505 } else { 1506 arch_clear_hugepage_flags(page); 1507 enqueue_huge_page(h, page); 1508 } 1509 spin_unlock(&hugetlb_lock); 1510} 1511 1512/* 1513 * As free_huge_page() can be called from a non-task context, we have 1514 * to defer the actual freeing in a workqueue to prevent potential 1515 * hugetlb_lock deadlock. 1516 * 1517 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1518 * be freed and frees them one-by-one. As the page->mapping pointer is 1519 * going to be cleared in __free_huge_page() anyway, it is reused as the 1520 * llist_node structure of a lockless linked list of huge pages to be freed. 1521 */ 1522static LLIST_HEAD(hpage_freelist); 1523 1524static void free_hpage_workfn(struct work_struct *work) 1525{ 1526 struct llist_node *node; 1527 struct page *page; 1528 1529 node = llist_del_all(&hpage_freelist); 1530 1531 while (node) { 1532 page = container_of((struct address_space **)node, 1533 struct page, mapping); 1534 node = node->next; 1535 __free_huge_page(page); 1536 } 1537} 1538static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1539 1540void free_huge_page(struct page *page) 1541{ 1542 /* 1543 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1544 */ 1545 if (!in_task()) { 1546 /* 1547 * Only call schedule_work() if hpage_freelist is previously 1548 * empty. Otherwise, schedule_work() had been called but the 1549 * workfn hasn't retrieved the list yet. 1550 */ 1551 if (llist_add((struct llist_node *)&page->mapping, 1552 &hpage_freelist)) 1553 schedule_work(&free_hpage_work); 1554 return; 1555 } 1556 1557 __free_huge_page(page); 1558} 1559 1560static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1561{ 1562 INIT_LIST_HEAD(&page->lru); 1563 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1564 set_hugetlb_cgroup(page, NULL); 1565 set_hugetlb_cgroup_rsvd(page, NULL); 1566 spin_lock(&hugetlb_lock); 1567 h->nr_huge_pages++; 1568 h->nr_huge_pages_node[nid]++; 1569 ClearPageHugeFreed(page); 1570 spin_unlock(&hugetlb_lock); 1571} 1572 1573static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1574{ 1575 int i; 1576 int nr_pages = 1 << order; 1577 struct page *p = page + 1; 1578 1579 /* we rely on prep_new_huge_page to set the destructor */ 1580 set_compound_order(page, order); 1581 __ClearPageReserved(page); 1582 __SetPageHead(page); 1583 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1584 /* 1585 * For gigantic hugepages allocated through bootmem at 1586 * boot, it's safer to be consistent with the not-gigantic 1587 * hugepages and clear the PG_reserved bit from all tail pages 1588 * too. Otherwise drivers using get_user_pages() to access tail 1589 * pages may get the reference counting wrong if they see 1590 * PG_reserved set on a tail page (despite the head page not 1591 * having PG_reserved set). Enforcing this consistency between 1592 * head and tail pages allows drivers to optimize away a check 1593 * on the head page when they need know if put_page() is needed 1594 * after get_user_pages(). 1595 */ 1596 __ClearPageReserved(p); 1597 set_page_count(p, 0); 1598 set_compound_head(p, page); 1599 } 1600 atomic_set(compound_mapcount_ptr(page), -1); 1601 atomic_set(compound_pincount_ptr(page), 0); 1602} 1603 1604/* 1605 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1606 * transparent huge pages. See the PageTransHuge() documentation for more 1607 * details. 1608 */ 1609int PageHuge(struct page *page) 1610{ 1611 if (!PageCompound(page)) 1612 return 0; 1613 1614 page = compound_head(page); 1615 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1616} 1617EXPORT_SYMBOL_GPL(PageHuge); 1618 1619/* 1620 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1621 * normal or transparent huge pages. 1622 */ 1623int PageHeadHuge(struct page *page_head) 1624{ 1625 if (!PageHead(page_head)) 1626 return 0; 1627 1628 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1629} 1630 1631/* 1632 * Find and lock address space (mapping) in write mode. 1633 * 1634 * Upon entry, the page is locked which means that page_mapping() is 1635 * stable. Due to locking order, we can only trylock_write. If we can 1636 * not get the lock, simply return NULL to caller. 1637 */ 1638struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1639{ 1640 struct address_space *mapping = page_mapping(hpage); 1641 1642 if (!mapping) 1643 return mapping; 1644 1645 if (i_mmap_trylock_write(mapping)) 1646 return mapping; 1647 1648 return NULL; 1649} 1650 1651pgoff_t hugetlb_basepage_index(struct page *page) 1652{ 1653 struct page *page_head = compound_head(page); 1654 pgoff_t index = page_index(page_head); 1655 unsigned long compound_idx; 1656 1657 if (compound_order(page_head) >= MAX_ORDER) 1658 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1659 else 1660 compound_idx = page - page_head; 1661 1662 return (index << compound_order(page_head)) + compound_idx; 1663} 1664 1665static struct page *alloc_buddy_huge_page(struct hstate *h, 1666 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1667 nodemask_t *node_alloc_noretry) 1668{ 1669 int order = huge_page_order(h); 1670 struct page *page; 1671 bool alloc_try_hard = true; 1672 1673 /* 1674 * By default we always try hard to allocate the page with 1675 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1676 * a loop (to adjust global huge page counts) and previous allocation 1677 * failed, do not continue to try hard on the same node. Use the 1678 * node_alloc_noretry bitmap to manage this state information. 1679 */ 1680 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1681 alloc_try_hard = false; 1682 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1683 if (alloc_try_hard) 1684 gfp_mask |= __GFP_RETRY_MAYFAIL; 1685 if (nid == NUMA_NO_NODE) 1686 nid = numa_mem_id(); 1687 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1688 if (page) 1689 __count_vm_event(HTLB_BUDDY_PGALLOC); 1690 else 1691 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1692 1693 /* 1694 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1695 * indicates an overall state change. Clear bit so that we resume 1696 * normal 'try hard' allocations. 1697 */ 1698 if (node_alloc_noretry && page && !alloc_try_hard) 1699 node_clear(nid, *node_alloc_noretry); 1700 1701 /* 1702 * If we tried hard to get a page but failed, set bit so that 1703 * subsequent attempts will not try as hard until there is an 1704 * overall state change. 1705 */ 1706 if (node_alloc_noretry && !page && alloc_try_hard) 1707 node_set(nid, *node_alloc_noretry); 1708 1709 return page; 1710} 1711 1712/* 1713 * Common helper to allocate a fresh hugetlb page. All specific allocators 1714 * should use this function to get new hugetlb pages 1715 */ 1716static struct page *alloc_fresh_huge_page(struct hstate *h, 1717 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1718 nodemask_t *node_alloc_noretry) 1719{ 1720 struct page *page; 1721 1722 if (hstate_is_gigantic(h)) 1723 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1724 else 1725 page = alloc_buddy_huge_page(h, gfp_mask, 1726 nid, nmask, node_alloc_noretry); 1727 if (!page) 1728 return NULL; 1729 1730 if (hstate_is_gigantic(h)) 1731 prep_compound_gigantic_page(page, huge_page_order(h)); 1732 prep_new_huge_page(h, page, page_to_nid(page)); 1733 1734 return page; 1735} 1736 1737/* 1738 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1739 * manner. 1740 */ 1741static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1742 nodemask_t *node_alloc_noretry) 1743{ 1744 struct page *page; 1745 int nr_nodes, node; 1746 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1747 1748 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1749 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1750 node_alloc_noretry); 1751 if (page) 1752 break; 1753 } 1754 1755 if (!page) 1756 return 0; 1757 1758 put_page(page); /* free it into the hugepage allocator */ 1759 1760 return 1; 1761} 1762 1763/* 1764 * Free huge page from pool from next node to free. 1765 * Attempt to keep persistent huge pages more or less 1766 * balanced over allowed nodes. 1767 * Called with hugetlb_lock locked. 1768 */ 1769static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1770 bool acct_surplus) 1771{ 1772 int nr_nodes, node; 1773 int ret = 0; 1774 1775 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1776 /* 1777 * If we're returning unused surplus pages, only examine 1778 * nodes with surplus pages. 1779 */ 1780 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1781 !list_empty(&h->hugepage_freelists[node])) { 1782 struct page *page = 1783 list_entry(h->hugepage_freelists[node].next, 1784 struct page, lru); 1785 list_del(&page->lru); 1786 h->free_huge_pages--; 1787 h->free_huge_pages_node[node]--; 1788 if (acct_surplus) { 1789 h->surplus_huge_pages--; 1790 h->surplus_huge_pages_node[node]--; 1791 } 1792 update_and_free_page(h, page); 1793 ret = 1; 1794 break; 1795 } 1796 } 1797 1798 return ret; 1799} 1800 1801/* 1802 * Dissolve a given free hugepage into free buddy pages. This function does 1803 * nothing for in-use hugepages and non-hugepages. 1804 * This function returns values like below: 1805 * 1806 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1807 * (allocated or reserved.) 1808 * 0: successfully dissolved free hugepages or the page is not a 1809 * hugepage (considered as already dissolved) 1810 */ 1811int dissolve_free_huge_page(struct page *page) 1812{ 1813 int rc = -EBUSY; 1814 1815retry: 1816 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1817 if (!PageHuge(page)) 1818 return 0; 1819 1820 spin_lock(&hugetlb_lock); 1821 if (!PageHuge(page)) { 1822 rc = 0; 1823 goto out; 1824 } 1825 1826 if (!page_count(page)) { 1827 struct page *head = compound_head(page); 1828 struct hstate *h = page_hstate(head); 1829 int nid = page_to_nid(head); 1830 if (h->free_huge_pages - h->resv_huge_pages == 0) 1831 goto out; 1832 1833 /* 1834 * We should make sure that the page is already on the free list 1835 * when it is dissolved. 1836 */ 1837 if (unlikely(!PageHugeFreed(head))) { 1838 spin_unlock(&hugetlb_lock); 1839 cond_resched(); 1840 1841 /* 1842 * Theoretically, we should return -EBUSY when we 1843 * encounter this race. In fact, we have a chance 1844 * to successfully dissolve the page if we do a 1845 * retry. Because the race window is quite small. 1846 * If we seize this opportunity, it is an optimization 1847 * for increasing the success rate of dissolving page. 1848 */ 1849 goto retry; 1850 } 1851 1852 /* 1853 * Move PageHWPoison flag from head page to the raw error page, 1854 * which makes any subpages rather than the error page reusable. 1855 */ 1856 if (PageHWPoison(head) && page != head) { 1857 SetPageHWPoison(page); 1858 ClearPageHWPoison(head); 1859 } 1860 list_del(&head->lru); 1861 h->free_huge_pages--; 1862 h->free_huge_pages_node[nid]--; 1863 h->max_huge_pages--; 1864 update_and_free_page(h, head); 1865 rc = 0; 1866 } 1867out: 1868 spin_unlock(&hugetlb_lock); 1869 return rc; 1870} 1871 1872/* 1873 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1874 * make specified memory blocks removable from the system. 1875 * Note that this will dissolve a free gigantic hugepage completely, if any 1876 * part of it lies within the given range. 1877 * Also note that if dissolve_free_huge_page() returns with an error, all 1878 * free hugepages that were dissolved before that error are lost. 1879 */ 1880int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1881{ 1882 unsigned long pfn; 1883 struct page *page; 1884 int rc = 0; 1885 1886 if (!hugepages_supported()) 1887 return rc; 1888 1889 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1890 page = pfn_to_page(pfn); 1891 rc = dissolve_free_huge_page(page); 1892 if (rc) 1893 break; 1894 } 1895 1896 return rc; 1897} 1898 1899/* 1900 * Allocates a fresh surplus page from the page allocator. 1901 */ 1902static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1903 int nid, nodemask_t *nmask) 1904{ 1905 struct page *page = NULL; 1906 1907 if (hstate_is_gigantic(h)) 1908 return NULL; 1909 1910 spin_lock(&hugetlb_lock); 1911 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1912 goto out_unlock; 1913 spin_unlock(&hugetlb_lock); 1914 1915 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1916 if (!page) 1917 return NULL; 1918 1919 spin_lock(&hugetlb_lock); 1920 /* 1921 * We could have raced with the pool size change. 1922 * Double check that and simply deallocate the new page 1923 * if we would end up overcommiting the surpluses. Abuse 1924 * temporary page to workaround the nasty free_huge_page 1925 * codeflow 1926 */ 1927 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1928 SetPageHugeTemporary(page); 1929 spin_unlock(&hugetlb_lock); 1930 put_page(page); 1931 return NULL; 1932 } else { 1933 h->surplus_huge_pages++; 1934 h->surplus_huge_pages_node[page_to_nid(page)]++; 1935 } 1936 1937out_unlock: 1938 spin_unlock(&hugetlb_lock); 1939 1940 return page; 1941} 1942 1943static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1944 int nid, nodemask_t *nmask) 1945{ 1946 struct page *page; 1947 1948 if (hstate_is_gigantic(h)) 1949 return NULL; 1950 1951 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1952 if (!page) 1953 return NULL; 1954 1955 /* 1956 * We do not account these pages as surplus because they are only 1957 * temporary and will be released properly on the last reference 1958 */ 1959 SetPageHugeTemporary(page); 1960 1961 return page; 1962} 1963 1964/* 1965 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1966 */ 1967static 1968struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1969 struct vm_area_struct *vma, unsigned long addr) 1970{ 1971 struct page *page; 1972 struct mempolicy *mpol; 1973 gfp_t gfp_mask = htlb_alloc_mask(h); 1974 int nid; 1975 nodemask_t *nodemask; 1976 1977 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1978 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1979 mpol_cond_put(mpol); 1980 1981 return page; 1982} 1983 1984/* page migration callback function */ 1985struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1986 nodemask_t *nmask, gfp_t gfp_mask) 1987{ 1988 spin_lock(&hugetlb_lock); 1989 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1990 struct page *page; 1991 1992 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1993 if (page) { 1994 spin_unlock(&hugetlb_lock); 1995 return page; 1996 } 1997 } 1998 spin_unlock(&hugetlb_lock); 1999 2000 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2001} 2002 2003/* mempolicy aware migration callback */ 2004struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2005 unsigned long address) 2006{ 2007 struct mempolicy *mpol; 2008 nodemask_t *nodemask; 2009 struct page *page; 2010 gfp_t gfp_mask; 2011 int node; 2012 2013 gfp_mask = htlb_alloc_mask(h); 2014 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2015 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2016 mpol_cond_put(mpol); 2017 2018 return page; 2019} 2020 2021/* 2022 * Increase the hugetlb pool such that it can accommodate a reservation 2023 * of size 'delta'. 2024 */ 2025static int gather_surplus_pages(struct hstate *h, long delta) 2026 __must_hold(&hugetlb_lock) 2027{ 2028 struct list_head surplus_list; 2029 struct page *page, *tmp; 2030 int ret; 2031 long i; 2032 long needed, allocated; 2033 bool alloc_ok = true; 2034 2035 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2036 if (needed <= 0) { 2037 h->resv_huge_pages += delta; 2038 return 0; 2039 } 2040 2041 allocated = 0; 2042 INIT_LIST_HEAD(&surplus_list); 2043 2044 ret = -ENOMEM; 2045retry: 2046 spin_unlock(&hugetlb_lock); 2047 for (i = 0; i < needed; i++) { 2048 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2049 NUMA_NO_NODE, NULL); 2050 if (!page) { 2051 alloc_ok = false; 2052 break; 2053 } 2054 list_add(&page->lru, &surplus_list); 2055 cond_resched(); 2056 } 2057 allocated += i; 2058 2059 /* 2060 * After retaking hugetlb_lock, we need to recalculate 'needed' 2061 * because either resv_huge_pages or free_huge_pages may have changed. 2062 */ 2063 spin_lock(&hugetlb_lock); 2064 needed = (h->resv_huge_pages + delta) - 2065 (h->free_huge_pages + allocated); 2066 if (needed > 0) { 2067 if (alloc_ok) 2068 goto retry; 2069 /* 2070 * We were not able to allocate enough pages to 2071 * satisfy the entire reservation so we free what 2072 * we've allocated so far. 2073 */ 2074 goto free; 2075 } 2076 /* 2077 * The surplus_list now contains _at_least_ the number of extra pages 2078 * needed to accommodate the reservation. Add the appropriate number 2079 * of pages to the hugetlb pool and free the extras back to the buddy 2080 * allocator. Commit the entire reservation here to prevent another 2081 * process from stealing the pages as they are added to the pool but 2082 * before they are reserved. 2083 */ 2084 needed += allocated; 2085 h->resv_huge_pages += delta; 2086 ret = 0; 2087 2088 /* Free the needed pages to the hugetlb pool */ 2089 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2090 if ((--needed) < 0) 2091 break; 2092 /* 2093 * This page is now managed by the hugetlb allocator and has 2094 * no users -- drop the buddy allocator's reference. 2095 */ 2096 put_page_testzero(page); 2097 VM_BUG_ON_PAGE(page_count(page), page); 2098 enqueue_huge_page(h, page); 2099 } 2100free: 2101 spin_unlock(&hugetlb_lock); 2102 2103 /* Free unnecessary surplus pages to the buddy allocator */ 2104 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2105 put_page(page); 2106 spin_lock(&hugetlb_lock); 2107 2108 return ret; 2109} 2110 2111/* 2112 * This routine has two main purposes: 2113 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2114 * in unused_resv_pages. This corresponds to the prior adjustments made 2115 * to the associated reservation map. 2116 * 2) Free any unused surplus pages that may have been allocated to satisfy 2117 * the reservation. As many as unused_resv_pages may be freed. 2118 * 2119 * Called with hugetlb_lock held. However, the lock could be dropped (and 2120 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2121 * we must make sure nobody else can claim pages we are in the process of 2122 * freeing. Do this by ensuring resv_huge_page always is greater than the 2123 * number of huge pages we plan to free when dropping the lock. 2124 */ 2125static void return_unused_surplus_pages(struct hstate *h, 2126 unsigned long unused_resv_pages) 2127{ 2128 unsigned long nr_pages; 2129 2130 /* Cannot return gigantic pages currently */ 2131 if (hstate_is_gigantic(h)) 2132 goto out; 2133 2134 /* 2135 * Part (or even all) of the reservation could have been backed 2136 * by pre-allocated pages. Only free surplus pages. 2137 */ 2138 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2139 2140 /* 2141 * We want to release as many surplus pages as possible, spread 2142 * evenly across all nodes with memory. Iterate across these nodes 2143 * until we can no longer free unreserved surplus pages. This occurs 2144 * when the nodes with surplus pages have no free pages. 2145 * free_pool_huge_page() will balance the freed pages across the 2146 * on-line nodes with memory and will handle the hstate accounting. 2147 * 2148 * Note that we decrement resv_huge_pages as we free the pages. If 2149 * we drop the lock, resv_huge_pages will still be sufficiently large 2150 * to cover subsequent pages we may free. 2151 */ 2152 while (nr_pages--) { 2153 h->resv_huge_pages--; 2154 unused_resv_pages--; 2155 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2156 goto out; 2157 cond_resched_lock(&hugetlb_lock); 2158 } 2159 2160out: 2161 /* Fully uncommit the reservation */ 2162 h->resv_huge_pages -= unused_resv_pages; 2163} 2164 2165 2166/* 2167 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2168 * are used by the huge page allocation routines to manage reservations. 2169 * 2170 * vma_needs_reservation is called to determine if the huge page at addr 2171 * within the vma has an associated reservation. If a reservation is 2172 * needed, the value 1 is returned. The caller is then responsible for 2173 * managing the global reservation and subpool usage counts. After 2174 * the huge page has been allocated, vma_commit_reservation is called 2175 * to add the page to the reservation map. If the page allocation fails, 2176 * the reservation must be ended instead of committed. vma_end_reservation 2177 * is called in such cases. 2178 * 2179 * In the normal case, vma_commit_reservation returns the same value 2180 * as the preceding vma_needs_reservation call. The only time this 2181 * is not the case is if a reserve map was changed between calls. It 2182 * is the responsibility of the caller to notice the difference and 2183 * take appropriate action. 2184 * 2185 * vma_add_reservation is used in error paths where a reservation must 2186 * be restored when a newly allocated huge page must be freed. It is 2187 * to be called after calling vma_needs_reservation to determine if a 2188 * reservation exists. 2189 */ 2190enum vma_resv_mode { 2191 VMA_NEEDS_RESV, 2192 VMA_COMMIT_RESV, 2193 VMA_END_RESV, 2194 VMA_ADD_RESV, 2195}; 2196static long __vma_reservation_common(struct hstate *h, 2197 struct vm_area_struct *vma, unsigned long addr, 2198 enum vma_resv_mode mode) 2199{ 2200 struct resv_map *resv; 2201 pgoff_t idx; 2202 long ret; 2203 long dummy_out_regions_needed; 2204 2205 resv = vma_resv_map(vma); 2206 if (!resv) 2207 return 1; 2208 2209 idx = vma_hugecache_offset(h, vma, addr); 2210 switch (mode) { 2211 case VMA_NEEDS_RESV: 2212 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2213 /* We assume that vma_reservation_* routines always operate on 2214 * 1 page, and that adding to resv map a 1 page entry can only 2215 * ever require 1 region. 2216 */ 2217 VM_BUG_ON(dummy_out_regions_needed != 1); 2218 break; 2219 case VMA_COMMIT_RESV: 2220 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2221 /* region_add calls of range 1 should never fail. */ 2222 VM_BUG_ON(ret < 0); 2223 break; 2224 case VMA_END_RESV: 2225 region_abort(resv, idx, idx + 1, 1); 2226 ret = 0; 2227 break; 2228 case VMA_ADD_RESV: 2229 if (vma->vm_flags & VM_MAYSHARE) { 2230 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2231 /* region_add calls of range 1 should never fail. */ 2232 VM_BUG_ON(ret < 0); 2233 } else { 2234 region_abort(resv, idx, idx + 1, 1); 2235 ret = region_del(resv, idx, idx + 1); 2236 } 2237 break; 2238 default: 2239 BUG(); 2240 } 2241 2242 if (vma->vm_flags & VM_MAYSHARE) 2243 return ret; 2244 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2245 /* 2246 * In most cases, reserves always exist for private mappings. 2247 * However, a file associated with mapping could have been 2248 * hole punched or truncated after reserves were consumed. 2249 * As subsequent fault on such a range will not use reserves. 2250 * Subtle - The reserve map for private mappings has the 2251 * opposite meaning than that of shared mappings. If NO 2252 * entry is in the reserve map, it means a reservation exists. 2253 * If an entry exists in the reserve map, it means the 2254 * reservation has already been consumed. As a result, the 2255 * return value of this routine is the opposite of the 2256 * value returned from reserve map manipulation routines above. 2257 */ 2258 if (ret) 2259 return 0; 2260 else 2261 return 1; 2262 } 2263 else 2264 return ret < 0 ? ret : 0; 2265} 2266 2267static long vma_needs_reservation(struct hstate *h, 2268 struct vm_area_struct *vma, unsigned long addr) 2269{ 2270 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2271} 2272 2273static long vma_commit_reservation(struct hstate *h, 2274 struct vm_area_struct *vma, unsigned long addr) 2275{ 2276 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2277} 2278 2279static void vma_end_reservation(struct hstate *h, 2280 struct vm_area_struct *vma, unsigned long addr) 2281{ 2282 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2283} 2284 2285static long vma_add_reservation(struct hstate *h, 2286 struct vm_area_struct *vma, unsigned long addr) 2287{ 2288 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2289} 2290 2291/* 2292 * This routine is called to restore a reservation on error paths. In the 2293 * specific error paths, a huge page was allocated (via alloc_huge_page) 2294 * and is about to be freed. If a reservation for the page existed, 2295 * alloc_huge_page would have consumed the reservation and set PagePrivate 2296 * in the newly allocated page. When the page is freed via free_huge_page, 2297 * the global reservation count will be incremented if PagePrivate is set. 2298 * However, free_huge_page can not adjust the reserve map. Adjust the 2299 * reserve map here to be consistent with global reserve count adjustments 2300 * to be made by free_huge_page. 2301 */ 2302static void restore_reserve_on_error(struct hstate *h, 2303 struct vm_area_struct *vma, unsigned long address, 2304 struct page *page) 2305{ 2306 if (unlikely(PagePrivate(page))) { 2307 long rc = vma_needs_reservation(h, vma, address); 2308 2309 if (unlikely(rc < 0)) { 2310 /* 2311 * Rare out of memory condition in reserve map 2312 * manipulation. Clear PagePrivate so that 2313 * global reserve count will not be incremented 2314 * by free_huge_page. This will make it appear 2315 * as though the reservation for this page was 2316 * consumed. This may prevent the task from 2317 * faulting in the page at a later time. This 2318 * is better than inconsistent global huge page 2319 * accounting of reserve counts. 2320 */ 2321 ClearPagePrivate(page); 2322 } else if (rc) { 2323 rc = vma_add_reservation(h, vma, address); 2324 if (unlikely(rc < 0)) 2325 /* 2326 * See above comment about rare out of 2327 * memory condition. 2328 */ 2329 ClearPagePrivate(page); 2330 } else 2331 vma_end_reservation(h, vma, address); 2332 } 2333} 2334 2335struct page *alloc_huge_page(struct vm_area_struct *vma, 2336 unsigned long addr, int avoid_reserve) 2337{ 2338 struct hugepage_subpool *spool = subpool_vma(vma); 2339 struct hstate *h = hstate_vma(vma); 2340 struct page *page; 2341 long map_chg, map_commit; 2342 long gbl_chg; 2343 int ret, idx; 2344 struct hugetlb_cgroup *h_cg; 2345 bool deferred_reserve; 2346 2347 idx = hstate_index(h); 2348 /* 2349 * Examine the region/reserve map to determine if the process 2350 * has a reservation for the page to be allocated. A return 2351 * code of zero indicates a reservation exists (no change). 2352 */ 2353 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2354 if (map_chg < 0) 2355 return ERR_PTR(-ENOMEM); 2356 2357 /* 2358 * Processes that did not create the mapping will have no 2359 * reserves as indicated by the region/reserve map. Check 2360 * that the allocation will not exceed the subpool limit. 2361 * Allocations for MAP_NORESERVE mappings also need to be 2362 * checked against any subpool limit. 2363 */ 2364 if (map_chg || avoid_reserve) { 2365 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2366 if (gbl_chg < 0) { 2367 vma_end_reservation(h, vma, addr); 2368 return ERR_PTR(-ENOSPC); 2369 } 2370 2371 /* 2372 * Even though there was no reservation in the region/reserve 2373 * map, there could be reservations associated with the 2374 * subpool that can be used. This would be indicated if the 2375 * return value of hugepage_subpool_get_pages() is zero. 2376 * However, if avoid_reserve is specified we still avoid even 2377 * the subpool reservations. 2378 */ 2379 if (avoid_reserve) 2380 gbl_chg = 1; 2381 } 2382 2383 /* If this allocation is not consuming a reservation, charge it now. 2384 */ 2385 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2386 if (deferred_reserve) { 2387 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2388 idx, pages_per_huge_page(h), &h_cg); 2389 if (ret) 2390 goto out_subpool_put; 2391 } 2392 2393 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2394 if (ret) 2395 goto out_uncharge_cgroup_reservation; 2396 2397 spin_lock(&hugetlb_lock); 2398 /* 2399 * glb_chg is passed to indicate whether or not a page must be taken 2400 * from the global free pool (global change). gbl_chg == 0 indicates 2401 * a reservation exists for the allocation. 2402 */ 2403 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2404 if (!page) { 2405 spin_unlock(&hugetlb_lock); 2406 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2407 if (!page) 2408 goto out_uncharge_cgroup; 2409 spin_lock(&hugetlb_lock); 2410 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2411 SetPagePrivate(page); 2412 h->resv_huge_pages--; 2413 } 2414 list_add(&page->lru, &h->hugepage_activelist); 2415 /* Fall through */ 2416 } 2417 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2418 /* If allocation is not consuming a reservation, also store the 2419 * hugetlb_cgroup pointer on the page. 2420 */ 2421 if (deferred_reserve) { 2422 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2423 h_cg, page); 2424 } 2425 2426 spin_unlock(&hugetlb_lock); 2427 2428 set_page_private(page, (unsigned long)spool); 2429 2430 map_commit = vma_commit_reservation(h, vma, addr); 2431 if (unlikely(map_chg > map_commit)) { 2432 /* 2433 * The page was added to the reservation map between 2434 * vma_needs_reservation and vma_commit_reservation. 2435 * This indicates a race with hugetlb_reserve_pages. 2436 * Adjust for the subpool count incremented above AND 2437 * in hugetlb_reserve_pages for the same page. Also, 2438 * the reservation count added in hugetlb_reserve_pages 2439 * no longer applies. 2440 */ 2441 long rsv_adjust; 2442 2443 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2444 hugetlb_acct_memory(h, -rsv_adjust); 2445 if (deferred_reserve) 2446 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2447 pages_per_huge_page(h), page); 2448 } 2449 return page; 2450 2451out_uncharge_cgroup: 2452 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2453out_uncharge_cgroup_reservation: 2454 if (deferred_reserve) 2455 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2456 h_cg); 2457out_subpool_put: 2458 if (map_chg || avoid_reserve) 2459 hugepage_subpool_put_pages(spool, 1); 2460 vma_end_reservation(h, vma, addr); 2461 return ERR_PTR(-ENOSPC); 2462} 2463 2464int alloc_bootmem_huge_page(struct hstate *h) 2465 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2466int __alloc_bootmem_huge_page(struct hstate *h) 2467{ 2468 struct huge_bootmem_page *m; 2469 int nr_nodes, node; 2470 2471 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2472 void *addr; 2473 2474 addr = memblock_alloc_try_nid_raw( 2475 huge_page_size(h), huge_page_size(h), 2476 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2477 if (addr) { 2478 /* 2479 * Use the beginning of the huge page to store the 2480 * huge_bootmem_page struct (until gather_bootmem 2481 * puts them into the mem_map). 2482 */ 2483 m = addr; 2484 goto found; 2485 } 2486 } 2487 return 0; 2488 2489found: 2490 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2491 /* Put them into a private list first because mem_map is not up yet */ 2492 INIT_LIST_HEAD(&m->list); 2493 list_add(&m->list, &huge_boot_pages); 2494 m->hstate = h; 2495 return 1; 2496} 2497 2498/* 2499 * Put bootmem huge pages into the standard lists after mem_map is up. 2500 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 2501 */ 2502static void __init gather_bootmem_prealloc(void) 2503{ 2504 struct huge_bootmem_page *m; 2505 2506 list_for_each_entry(m, &huge_boot_pages, list) { 2507 struct page *page = virt_to_page(m); 2508 struct hstate *h = m->hstate; 2509 2510 VM_BUG_ON(!hstate_is_gigantic(h)); 2511 WARN_ON(page_count(page) != 1); 2512 prep_compound_gigantic_page(page, huge_page_order(h)); 2513 WARN_ON(PageReserved(page)); 2514 prep_new_huge_page(h, page, page_to_nid(page)); 2515 put_page(page); /* free it into the hugepage allocator */ 2516 2517 /* 2518 * We need to restore the 'stolen' pages to totalram_pages 2519 * in order to fix confusing memory reports from free(1) and 2520 * other side-effects, like CommitLimit going negative. 2521 */ 2522 adjust_managed_page_count(page, pages_per_huge_page(h)); 2523 cond_resched(); 2524 } 2525} 2526 2527static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2528{ 2529 unsigned long i; 2530 nodemask_t *node_alloc_noretry; 2531 2532 if (!hstate_is_gigantic(h)) { 2533 /* 2534 * Bit mask controlling how hard we retry per-node allocations. 2535 * Ignore errors as lower level routines can deal with 2536 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2537 * time, we are likely in bigger trouble. 2538 */ 2539 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2540 GFP_KERNEL); 2541 } else { 2542 /* allocations done at boot time */ 2543 node_alloc_noretry = NULL; 2544 } 2545 2546 /* bit mask controlling how hard we retry per-node allocations */ 2547 if (node_alloc_noretry) 2548 nodes_clear(*node_alloc_noretry); 2549 2550 for (i = 0; i < h->max_huge_pages; ++i) { 2551 if (hstate_is_gigantic(h)) { 2552 if (hugetlb_cma_size) { 2553 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2554 goto free; 2555 } 2556 if (!alloc_bootmem_huge_page(h)) 2557 break; 2558 } else if (!alloc_pool_huge_page(h, 2559 &node_states[N_MEMORY], 2560 node_alloc_noretry)) 2561 break; 2562 cond_resched(); 2563 } 2564 if (i < h->max_huge_pages) { 2565 char buf[32]; 2566 2567 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2568 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2569 h->max_huge_pages, buf, i); 2570 h->max_huge_pages = i; 2571 } 2572free: 2573 kfree(node_alloc_noretry); 2574} 2575 2576static void __init hugetlb_init_hstates(void) 2577{ 2578 struct hstate *h; 2579 2580 for_each_hstate(h) { 2581 if (minimum_order > huge_page_order(h)) 2582 minimum_order = huge_page_order(h); 2583 2584 /* oversize hugepages were init'ed in early boot */ 2585 if (!hstate_is_gigantic(h)) 2586 hugetlb_hstate_alloc_pages(h); 2587 } 2588 VM_BUG_ON(minimum_order == UINT_MAX); 2589} 2590 2591static void __init report_hugepages(void) 2592{ 2593 struct hstate *h; 2594 2595 for_each_hstate(h) { 2596 char buf[32]; 2597 2598 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2599 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2600 buf, h->free_huge_pages); 2601 } 2602} 2603 2604#ifdef CONFIG_HIGHMEM 2605static void try_to_free_low(struct hstate *h, unsigned long count, 2606 nodemask_t *nodes_allowed) 2607{ 2608 int i; 2609 2610 if (hstate_is_gigantic(h)) 2611 return; 2612 2613 for_each_node_mask(i, *nodes_allowed) { 2614 struct page *page, *next; 2615 struct list_head *freel = &h->hugepage_freelists[i]; 2616 list_for_each_entry_safe(page, next, freel, lru) { 2617 if (count >= h->nr_huge_pages) 2618 return; 2619 if (PageHighMem(page)) 2620 continue; 2621 list_del(&page->lru); 2622 update_and_free_page(h, page); 2623 h->free_huge_pages--; 2624 h->free_huge_pages_node[page_to_nid(page)]--; 2625 } 2626 } 2627} 2628#else 2629static inline void try_to_free_low(struct hstate *h, unsigned long count, 2630 nodemask_t *nodes_allowed) 2631{ 2632} 2633#endif 2634 2635/* 2636 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2637 * balanced by operating on them in a round-robin fashion. 2638 * Returns 1 if an adjustment was made. 2639 */ 2640static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2641 int delta) 2642{ 2643 int nr_nodes, node; 2644 2645 VM_BUG_ON(delta != -1 && delta != 1); 2646 2647 if (delta < 0) { 2648 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2649 if (h->surplus_huge_pages_node[node]) 2650 goto found; 2651 } 2652 } else { 2653 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2654 if (h->surplus_huge_pages_node[node] < 2655 h->nr_huge_pages_node[node]) 2656 goto found; 2657 } 2658 } 2659 return 0; 2660 2661found: 2662 h->surplus_huge_pages += delta; 2663 h->surplus_huge_pages_node[node] += delta; 2664 return 1; 2665} 2666 2667#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2668static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2669 nodemask_t *nodes_allowed) 2670{ 2671 unsigned long min_count, ret; 2672 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2673 2674 /* 2675 * Bit mask controlling how hard we retry per-node allocations. 2676 * If we can not allocate the bit mask, do not attempt to allocate 2677 * the requested huge pages. 2678 */ 2679 if (node_alloc_noretry) 2680 nodes_clear(*node_alloc_noretry); 2681 else 2682 return -ENOMEM; 2683 2684 spin_lock(&hugetlb_lock); 2685 2686 /* 2687 * Check for a node specific request. 2688 * Changing node specific huge page count may require a corresponding 2689 * change to the global count. In any case, the passed node mask 2690 * (nodes_allowed) will restrict alloc/free to the specified node. 2691 */ 2692 if (nid != NUMA_NO_NODE) { 2693 unsigned long old_count = count; 2694 2695 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2696 /* 2697 * User may have specified a large count value which caused the 2698 * above calculation to overflow. In this case, they wanted 2699 * to allocate as many huge pages as possible. Set count to 2700 * largest possible value to align with their intention. 2701 */ 2702 if (count < old_count) 2703 count = ULONG_MAX; 2704 } 2705 2706 /* 2707 * Gigantic pages runtime allocation depend on the capability for large 2708 * page range allocation. 2709 * If the system does not provide this feature, return an error when 2710 * the user tries to allocate gigantic pages but let the user free the 2711 * boottime allocated gigantic pages. 2712 */ 2713 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2714 if (count > persistent_huge_pages(h)) { 2715 spin_unlock(&hugetlb_lock); 2716 NODEMASK_FREE(node_alloc_noretry); 2717 return -EINVAL; 2718 } 2719 /* Fall through to decrease pool */ 2720 } 2721 2722 /* 2723 * Increase the pool size 2724 * First take pages out of surplus state. Then make up the 2725 * remaining difference by allocating fresh huge pages. 2726 * 2727 * We might race with alloc_surplus_huge_page() here and be unable 2728 * to convert a surplus huge page to a normal huge page. That is 2729 * not critical, though, it just means the overall size of the 2730 * pool might be one hugepage larger than it needs to be, but 2731 * within all the constraints specified by the sysctls. 2732 */ 2733 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2734 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2735 break; 2736 } 2737 2738 while (count > persistent_huge_pages(h)) { 2739 /* 2740 * If this allocation races such that we no longer need the 2741 * page, free_huge_page will handle it by freeing the page 2742 * and reducing the surplus. 2743 */ 2744 spin_unlock(&hugetlb_lock); 2745 2746 /* yield cpu to avoid soft lockup */ 2747 cond_resched(); 2748 2749 ret = alloc_pool_huge_page(h, nodes_allowed, 2750 node_alloc_noretry); 2751 spin_lock(&hugetlb_lock); 2752 if (!ret) 2753 goto out; 2754 2755 /* Bail for signals. Probably ctrl-c from user */ 2756 if (signal_pending(current)) 2757 goto out; 2758 } 2759 2760 /* 2761 * Decrease the pool size 2762 * First return free pages to the buddy allocator (being careful 2763 * to keep enough around to satisfy reservations). Then place 2764 * pages into surplus state as needed so the pool will shrink 2765 * to the desired size as pages become free. 2766 * 2767 * By placing pages into the surplus state independent of the 2768 * overcommit value, we are allowing the surplus pool size to 2769 * exceed overcommit. There are few sane options here. Since 2770 * alloc_surplus_huge_page() is checking the global counter, 2771 * though, we'll note that we're not allowed to exceed surplus 2772 * and won't grow the pool anywhere else. Not until one of the 2773 * sysctls are changed, or the surplus pages go out of use. 2774 */ 2775 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2776 min_count = max(count, min_count); 2777 try_to_free_low(h, min_count, nodes_allowed); 2778 while (min_count < persistent_huge_pages(h)) { 2779 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2780 break; 2781 cond_resched_lock(&hugetlb_lock); 2782 } 2783 while (count < persistent_huge_pages(h)) { 2784 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2785 break; 2786 } 2787out: 2788 h->max_huge_pages = persistent_huge_pages(h); 2789 spin_unlock(&hugetlb_lock); 2790 2791 NODEMASK_FREE(node_alloc_noretry); 2792 2793 return 0; 2794} 2795 2796#define HSTATE_ATTR_RO(_name) \ 2797 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2798 2799#define HSTATE_ATTR(_name) \ 2800 static struct kobj_attribute _name##_attr = \ 2801 __ATTR(_name, 0644, _name##_show, _name##_store) 2802 2803static struct kobject *hugepages_kobj; 2804static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2805 2806static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2807 2808static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2809{ 2810 int i; 2811 2812 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2813 if (hstate_kobjs[i] == kobj) { 2814 if (nidp) 2815 *nidp = NUMA_NO_NODE; 2816 return &hstates[i]; 2817 } 2818 2819 return kobj_to_node_hstate(kobj, nidp); 2820} 2821 2822static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2823 struct kobj_attribute *attr, char *buf) 2824{ 2825 struct hstate *h; 2826 unsigned long nr_huge_pages; 2827 int nid; 2828 2829 h = kobj_to_hstate(kobj, &nid); 2830 if (nid == NUMA_NO_NODE) 2831 nr_huge_pages = h->nr_huge_pages; 2832 else 2833 nr_huge_pages = h->nr_huge_pages_node[nid]; 2834 2835 return sprintf(buf, "%lu\n", nr_huge_pages); 2836} 2837 2838static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2839 struct hstate *h, int nid, 2840 unsigned long count, size_t len) 2841{ 2842 int err; 2843 nodemask_t nodes_allowed, *n_mask; 2844 2845 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2846 return -EINVAL; 2847 2848 if (nid == NUMA_NO_NODE) { 2849 /* 2850 * global hstate attribute 2851 */ 2852 if (!(obey_mempolicy && 2853 init_nodemask_of_mempolicy(&nodes_allowed))) 2854 n_mask = &node_states[N_MEMORY]; 2855 else 2856 n_mask = &nodes_allowed; 2857 } else { 2858 /* 2859 * Node specific request. count adjustment happens in 2860 * set_max_huge_pages() after acquiring hugetlb_lock. 2861 */ 2862 init_nodemask_of_node(&nodes_allowed, nid); 2863 n_mask = &nodes_allowed; 2864 } 2865 2866 err = set_max_huge_pages(h, count, nid, n_mask); 2867 2868 return err ? err : len; 2869} 2870 2871static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2872 struct kobject *kobj, const char *buf, 2873 size_t len) 2874{ 2875 struct hstate *h; 2876 unsigned long count; 2877 int nid; 2878 int err; 2879 2880 err = kstrtoul(buf, 10, &count); 2881 if (err) 2882 return err; 2883 2884 h = kobj_to_hstate(kobj, &nid); 2885 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2886} 2887 2888static ssize_t nr_hugepages_show(struct kobject *kobj, 2889 struct kobj_attribute *attr, char *buf) 2890{ 2891 return nr_hugepages_show_common(kobj, attr, buf); 2892} 2893 2894static ssize_t nr_hugepages_store(struct kobject *kobj, 2895 struct kobj_attribute *attr, const char *buf, size_t len) 2896{ 2897 return nr_hugepages_store_common(false, kobj, buf, len); 2898} 2899HSTATE_ATTR(nr_hugepages); 2900 2901#ifdef CONFIG_NUMA 2902 2903/* 2904 * hstate attribute for optionally mempolicy-based constraint on persistent 2905 * huge page alloc/free. 2906 */ 2907static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2908 struct kobj_attribute *attr, char *buf) 2909{ 2910 return nr_hugepages_show_common(kobj, attr, buf); 2911} 2912 2913static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2914 struct kobj_attribute *attr, const char *buf, size_t len) 2915{ 2916 return nr_hugepages_store_common(true, kobj, buf, len); 2917} 2918HSTATE_ATTR(nr_hugepages_mempolicy); 2919#endif 2920 2921 2922static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2923 struct kobj_attribute *attr, char *buf) 2924{ 2925 struct hstate *h = kobj_to_hstate(kobj, NULL); 2926 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2927} 2928 2929static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2930 struct kobj_attribute *attr, const char *buf, size_t count) 2931{ 2932 int err; 2933 unsigned long input; 2934 struct hstate *h = kobj_to_hstate(kobj, NULL); 2935 2936 if (hstate_is_gigantic(h)) 2937 return -EINVAL; 2938 2939 err = kstrtoul(buf, 10, &input); 2940 if (err) 2941 return err; 2942 2943 spin_lock(&hugetlb_lock); 2944 h->nr_overcommit_huge_pages = input; 2945 spin_unlock(&hugetlb_lock); 2946 2947 return count; 2948} 2949HSTATE_ATTR(nr_overcommit_hugepages); 2950 2951static ssize_t free_hugepages_show(struct kobject *kobj, 2952 struct kobj_attribute *attr, char *buf) 2953{ 2954 struct hstate *h; 2955 unsigned long free_huge_pages; 2956 int nid; 2957 2958 h = kobj_to_hstate(kobj, &nid); 2959 if (nid == NUMA_NO_NODE) 2960 free_huge_pages = h->free_huge_pages; 2961 else 2962 free_huge_pages = h->free_huge_pages_node[nid]; 2963 2964 return sprintf(buf, "%lu\n", free_huge_pages); 2965} 2966HSTATE_ATTR_RO(free_hugepages); 2967 2968static ssize_t resv_hugepages_show(struct kobject *kobj, 2969 struct kobj_attribute *attr, char *buf) 2970{ 2971 struct hstate *h = kobj_to_hstate(kobj, NULL); 2972 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2973} 2974HSTATE_ATTR_RO(resv_hugepages); 2975 2976static ssize_t surplus_hugepages_show(struct kobject *kobj, 2977 struct kobj_attribute *attr, char *buf) 2978{ 2979 struct hstate *h; 2980 unsigned long surplus_huge_pages; 2981 int nid; 2982 2983 h = kobj_to_hstate(kobj, &nid); 2984 if (nid == NUMA_NO_NODE) 2985 surplus_huge_pages = h->surplus_huge_pages; 2986 else 2987 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2988 2989 return sprintf(buf, "%lu\n", surplus_huge_pages); 2990} 2991HSTATE_ATTR_RO(surplus_hugepages); 2992 2993static struct attribute *hstate_attrs[] = { 2994 &nr_hugepages_attr.attr, 2995 &nr_overcommit_hugepages_attr.attr, 2996 &free_hugepages_attr.attr, 2997 &resv_hugepages_attr.attr, 2998 &surplus_hugepages_attr.attr, 2999#ifdef CONFIG_NUMA 3000 &nr_hugepages_mempolicy_attr.attr, 3001#endif 3002 NULL, 3003}; 3004 3005static const struct attribute_group hstate_attr_group = { 3006 .attrs = hstate_attrs, 3007}; 3008 3009static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3010 struct kobject **hstate_kobjs, 3011 const struct attribute_group *hstate_attr_group) 3012{ 3013 int retval; 3014 int hi = hstate_index(h); 3015 3016 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3017 if (!hstate_kobjs[hi]) 3018 return -ENOMEM; 3019 3020 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3021 if (retval) { 3022 kobject_put(hstate_kobjs[hi]); 3023 hstate_kobjs[hi] = NULL; 3024 } 3025 3026 return retval; 3027} 3028 3029static void __init hugetlb_sysfs_init(void) 3030{ 3031 struct hstate *h; 3032 int err; 3033 3034 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3035 if (!hugepages_kobj) 3036 return; 3037 3038 for_each_hstate(h) { 3039 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3040 hstate_kobjs, &hstate_attr_group); 3041 if (err) 3042 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3043 } 3044} 3045 3046#ifdef CONFIG_NUMA 3047 3048/* 3049 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3050 * with node devices in node_devices[] using a parallel array. The array 3051 * index of a node device or _hstate == node id. 3052 * This is here to avoid any static dependency of the node device driver, in 3053 * the base kernel, on the hugetlb module. 3054 */ 3055struct node_hstate { 3056 struct kobject *hugepages_kobj; 3057 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3058}; 3059static struct node_hstate node_hstates[MAX_NUMNODES]; 3060 3061/* 3062 * A subset of global hstate attributes for node devices 3063 */ 3064static struct attribute *per_node_hstate_attrs[] = { 3065 &nr_hugepages_attr.attr, 3066 &free_hugepages_attr.attr, 3067 &surplus_hugepages_attr.attr, 3068 NULL, 3069}; 3070 3071static const struct attribute_group per_node_hstate_attr_group = { 3072 .attrs = per_node_hstate_attrs, 3073}; 3074 3075/* 3076 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3077 * Returns node id via non-NULL nidp. 3078 */ 3079static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3080{ 3081 int nid; 3082 3083 for (nid = 0; nid < nr_node_ids; nid++) { 3084 struct node_hstate *nhs = &node_hstates[nid]; 3085 int i; 3086 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3087 if (nhs->hstate_kobjs[i] == kobj) { 3088 if (nidp) 3089 *nidp = nid; 3090 return &hstates[i]; 3091 } 3092 } 3093 3094 BUG(); 3095 return NULL; 3096} 3097 3098/* 3099 * Unregister hstate attributes from a single node device. 3100 * No-op if no hstate attributes attached. 3101 */ 3102static void hugetlb_unregister_node(struct node *node) 3103{ 3104 struct hstate *h; 3105 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3106 3107 if (!nhs->hugepages_kobj) 3108 return; /* no hstate attributes */ 3109 3110 for_each_hstate(h) { 3111 int idx = hstate_index(h); 3112 if (nhs->hstate_kobjs[idx]) { 3113 kobject_put(nhs->hstate_kobjs[idx]); 3114 nhs->hstate_kobjs[idx] = NULL; 3115 } 3116 } 3117 3118 kobject_put(nhs->hugepages_kobj); 3119 nhs->hugepages_kobj = NULL; 3120} 3121 3122 3123/* 3124 * Register hstate attributes for a single node device. 3125 * No-op if attributes already registered. 3126 */ 3127static void hugetlb_register_node(struct node *node) 3128{ 3129 struct hstate *h; 3130 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3131 int err; 3132 3133 if (nhs->hugepages_kobj) 3134 return; /* already allocated */ 3135 3136 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3137 &node->dev.kobj); 3138 if (!nhs->hugepages_kobj) 3139 return; 3140 3141 for_each_hstate(h) { 3142 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3143 nhs->hstate_kobjs, 3144 &per_node_hstate_attr_group); 3145 if (err) { 3146 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3147 h->name, node->dev.id); 3148 hugetlb_unregister_node(node); 3149 break; 3150 } 3151 } 3152} 3153 3154/* 3155 * hugetlb init time: register hstate attributes for all registered node 3156 * devices of nodes that have memory. All on-line nodes should have 3157 * registered their associated device by this time. 3158 */ 3159static void __init hugetlb_register_all_nodes(void) 3160{ 3161 int nid; 3162 3163 for_each_node_state(nid, N_MEMORY) { 3164 struct node *node = node_devices[nid]; 3165 if (node->dev.id == nid) 3166 hugetlb_register_node(node); 3167 } 3168 3169 /* 3170 * Let the node device driver know we're here so it can 3171 * [un]register hstate attributes on node hotplug. 3172 */ 3173 register_hugetlbfs_with_node(hugetlb_register_node, 3174 hugetlb_unregister_node); 3175} 3176#else /* !CONFIG_NUMA */ 3177 3178static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3179{ 3180 BUG(); 3181 if (nidp) 3182 *nidp = -1; 3183 return NULL; 3184} 3185 3186static void hugetlb_register_all_nodes(void) { } 3187 3188#endif 3189 3190static int __init hugetlb_init(void) 3191{ 3192 int i; 3193 3194 if (!hugepages_supported()) { 3195 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3196 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3197 return 0; 3198 } 3199 3200 /* 3201 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3202 * architectures depend on setup being done here. 3203 */ 3204 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3205 if (!parsed_default_hugepagesz) { 3206 /* 3207 * If we did not parse a default huge page size, set 3208 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3209 * number of huge pages for this default size was implicitly 3210 * specified, set that here as well. 3211 * Note that the implicit setting will overwrite an explicit 3212 * setting. A warning will be printed in this case. 3213 */ 3214 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3215 if (default_hstate_max_huge_pages) { 3216 if (default_hstate.max_huge_pages) { 3217 char buf[32]; 3218 3219 string_get_size(huge_page_size(&default_hstate), 3220 1, STRING_UNITS_2, buf, 32); 3221 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3222 default_hstate.max_huge_pages, buf); 3223 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3224 default_hstate_max_huge_pages); 3225 } 3226 default_hstate.max_huge_pages = 3227 default_hstate_max_huge_pages; 3228 } 3229 } 3230 3231 hugetlb_cma_check(); 3232 hugetlb_init_hstates(); 3233 gather_bootmem_prealloc(); 3234 report_hugepages(); 3235 3236 hugetlb_sysfs_init(); 3237 hugetlb_register_all_nodes(); 3238 hugetlb_cgroup_file_init(); 3239 3240#ifdef CONFIG_SMP 3241 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3242#else 3243 num_fault_mutexes = 1; 3244#endif 3245 hugetlb_fault_mutex_table = 3246 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3247 GFP_KERNEL); 3248 BUG_ON(!hugetlb_fault_mutex_table); 3249 3250 for (i = 0; i < num_fault_mutexes; i++) 3251 mutex_init(&hugetlb_fault_mutex_table[i]); 3252 return 0; 3253} 3254subsys_initcall(hugetlb_init); 3255 3256/* Overwritten by architectures with more huge page sizes */ 3257bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3258{ 3259 return size == HPAGE_SIZE; 3260} 3261 3262void __init hugetlb_add_hstate(unsigned int order) 3263{ 3264 struct hstate *h; 3265 unsigned long i; 3266 3267 if (size_to_hstate(PAGE_SIZE << order)) { 3268 return; 3269 } 3270 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3271 BUG_ON(order == 0); 3272 h = &hstates[hugetlb_max_hstate++]; 3273 h->order = order; 3274 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3275 h->nr_huge_pages = 0; 3276 h->free_huge_pages = 0; 3277 for (i = 0; i < MAX_NUMNODES; ++i) 3278 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3279 INIT_LIST_HEAD(&h->hugepage_activelist); 3280 h->next_nid_to_alloc = first_memory_node; 3281 h->next_nid_to_free = first_memory_node; 3282 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3283 huge_page_size(h)/1024); 3284 3285 parsed_hstate = h; 3286} 3287 3288/* 3289 * hugepages command line processing 3290 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3291 * specification. If not, ignore the hugepages value. hugepages can also 3292 * be the first huge page command line option in which case it implicitly 3293 * specifies the number of huge pages for the default size. 3294 */ 3295static int __init hugepages_setup(char *s) 3296{ 3297 unsigned long *mhp; 3298 static unsigned long *last_mhp; 3299 3300 if (!parsed_valid_hugepagesz) { 3301 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3302 parsed_valid_hugepagesz = true; 3303 return 0; 3304 } 3305 3306 /* 3307 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3308 * yet, so this hugepages= parameter goes to the "default hstate". 3309 * Otherwise, it goes with the previously parsed hugepagesz or 3310 * default_hugepagesz. 3311 */ 3312 else if (!hugetlb_max_hstate) 3313 mhp = &default_hstate_max_huge_pages; 3314 else 3315 mhp = &parsed_hstate->max_huge_pages; 3316 3317 if (mhp == last_mhp) { 3318 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3319 return 0; 3320 } 3321 3322 if (sscanf(s, "%lu", mhp) <= 0) 3323 *mhp = 0; 3324 3325 /* 3326 * Global state is always initialized later in hugetlb_init. 3327 * But we need to allocate >= MAX_ORDER hstates here early to still 3328 * use the bootmem allocator. 3329 */ 3330 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3331 hugetlb_hstate_alloc_pages(parsed_hstate); 3332 3333 last_mhp = mhp; 3334 3335 return 1; 3336} 3337__setup("hugepages=", hugepages_setup); 3338 3339/* 3340 * hugepagesz command line processing 3341 * A specific huge page size can only be specified once with hugepagesz. 3342 * hugepagesz is followed by hugepages on the command line. The global 3343 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3344 * hugepagesz argument was valid. 3345 */ 3346static int __init hugepagesz_setup(char *s) 3347{ 3348 unsigned long size; 3349 struct hstate *h; 3350 3351 parsed_valid_hugepagesz = false; 3352 size = (unsigned long)memparse(s, NULL); 3353 3354 if (!arch_hugetlb_valid_size(size)) { 3355 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3356 return 0; 3357 } 3358 3359 h = size_to_hstate(size); 3360 if (h) { 3361 /* 3362 * hstate for this size already exists. This is normally 3363 * an error, but is allowed if the existing hstate is the 3364 * default hstate. More specifically, it is only allowed if 3365 * the number of huge pages for the default hstate was not 3366 * previously specified. 3367 */ 3368 if (!parsed_default_hugepagesz || h != &default_hstate || 3369 default_hstate.max_huge_pages) { 3370 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3371 return 0; 3372 } 3373 3374 /* 3375 * No need to call hugetlb_add_hstate() as hstate already 3376 * exists. But, do set parsed_hstate so that a following 3377 * hugepages= parameter will be applied to this hstate. 3378 */ 3379 parsed_hstate = h; 3380 parsed_valid_hugepagesz = true; 3381 return 1; 3382 } 3383 3384 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3385 parsed_valid_hugepagesz = true; 3386 return 1; 3387} 3388__setup("hugepagesz=", hugepagesz_setup); 3389 3390/* 3391 * default_hugepagesz command line input 3392 * Only one instance of default_hugepagesz allowed on command line. 3393 */ 3394static int __init default_hugepagesz_setup(char *s) 3395{ 3396 unsigned long size; 3397 3398 parsed_valid_hugepagesz = false; 3399 if (parsed_default_hugepagesz) { 3400 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3401 return 0; 3402 } 3403 3404 size = (unsigned long)memparse(s, NULL); 3405 3406 if (!arch_hugetlb_valid_size(size)) { 3407 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3408 return 0; 3409 } 3410 3411 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3412 parsed_valid_hugepagesz = true; 3413 parsed_default_hugepagesz = true; 3414 default_hstate_idx = hstate_index(size_to_hstate(size)); 3415 3416 /* 3417 * The number of default huge pages (for this size) could have been 3418 * specified as the first hugetlb parameter: hugepages=X. If so, 3419 * then default_hstate_max_huge_pages is set. If the default huge 3420 * page size is gigantic (>= MAX_ORDER), then the pages must be 3421 * allocated here from bootmem allocator. 3422 */ 3423 if (default_hstate_max_huge_pages) { 3424 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3425 if (hstate_is_gigantic(&default_hstate)) 3426 hugetlb_hstate_alloc_pages(&default_hstate); 3427 default_hstate_max_huge_pages = 0; 3428 } 3429 3430 return 1; 3431} 3432__setup("default_hugepagesz=", default_hugepagesz_setup); 3433 3434static unsigned int allowed_mems_nr(struct hstate *h) 3435{ 3436 int node; 3437 unsigned int nr = 0; 3438 nodemask_t *mpol_allowed; 3439 unsigned int *array = h->free_huge_pages_node; 3440 gfp_t gfp_mask = htlb_alloc_mask(h); 3441 3442 mpol_allowed = policy_nodemask_current(gfp_mask); 3443 3444 for_each_node_mask(node, cpuset_current_mems_allowed) { 3445 if (!mpol_allowed || 3446 (mpol_allowed && node_isset(node, *mpol_allowed))) 3447 nr += array[node]; 3448 } 3449 3450 return nr; 3451} 3452 3453#ifdef CONFIG_SYSCTL 3454static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3455 void *buffer, size_t *length, 3456 loff_t *ppos, unsigned long *out) 3457{ 3458 struct ctl_table dup_table; 3459 3460 /* 3461 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3462 * can duplicate the @table and alter the duplicate of it. 3463 */ 3464 dup_table = *table; 3465 dup_table.data = out; 3466 3467 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3468} 3469 3470static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3471 struct ctl_table *table, int write, 3472 void *buffer, size_t *length, loff_t *ppos) 3473{ 3474 struct hstate *h = &default_hstate; 3475 unsigned long tmp = h->max_huge_pages; 3476 int ret; 3477 3478 if (!hugepages_supported()) 3479 return -EOPNOTSUPP; 3480 3481 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3482 &tmp); 3483 if (ret) 3484 goto out; 3485 3486 if (write) 3487 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3488 NUMA_NO_NODE, tmp, *length); 3489out: 3490 return ret; 3491} 3492 3493int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3494 void *buffer, size_t *length, loff_t *ppos) 3495{ 3496 3497 return hugetlb_sysctl_handler_common(false, table, write, 3498 buffer, length, ppos); 3499} 3500 3501#ifdef CONFIG_NUMA 3502int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3503 void *buffer, size_t *length, loff_t *ppos) 3504{ 3505 return hugetlb_sysctl_handler_common(true, table, write, 3506 buffer, length, ppos); 3507} 3508#endif /* CONFIG_NUMA */ 3509 3510int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3511 void *buffer, size_t *length, loff_t *ppos) 3512{ 3513 struct hstate *h = &default_hstate; 3514 unsigned long tmp; 3515 int ret; 3516 3517 if (!hugepages_supported()) 3518 return -EOPNOTSUPP; 3519 3520 tmp = h->nr_overcommit_huge_pages; 3521 3522 if (write && hstate_is_gigantic(h)) 3523 return -EINVAL; 3524 3525 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3526 &tmp); 3527 if (ret) 3528 goto out; 3529 3530 if (write) { 3531 spin_lock(&hugetlb_lock); 3532 h->nr_overcommit_huge_pages = tmp; 3533 spin_unlock(&hugetlb_lock); 3534 } 3535out: 3536 return ret; 3537} 3538 3539#endif /* CONFIG_SYSCTL */ 3540 3541void hugetlb_report_meminfo(struct seq_file *m) 3542{ 3543 struct hstate *h; 3544 unsigned long total = 0; 3545 3546 if (!hugepages_supported()) 3547 return; 3548 3549 for_each_hstate(h) { 3550 unsigned long count = h->nr_huge_pages; 3551 3552 total += (PAGE_SIZE << huge_page_order(h)) * count; 3553 3554 if (h == &default_hstate) 3555 seq_printf(m, 3556 "HugePages_Total: %5lu\n" 3557 "HugePages_Free: %5lu\n" 3558 "HugePages_Rsvd: %5lu\n" 3559 "HugePages_Surp: %5lu\n" 3560 "Hugepagesize: %8lu kB\n", 3561 count, 3562 h->free_huge_pages, 3563 h->resv_huge_pages, 3564 h->surplus_huge_pages, 3565 (PAGE_SIZE << huge_page_order(h)) / 1024); 3566 } 3567 3568 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3569} 3570 3571int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3572{ 3573 struct hstate *h = &default_hstate; 3574 3575 if (!hugepages_supported()) 3576 return 0; 3577 3578 return sysfs_emit_at(buf, len, 3579 "Node %d HugePages_Total: %5u\n" 3580 "Node %d HugePages_Free: %5u\n" 3581 "Node %d HugePages_Surp: %5u\n", 3582 nid, h->nr_huge_pages_node[nid], 3583 nid, h->free_huge_pages_node[nid], 3584 nid, h->surplus_huge_pages_node[nid]); 3585} 3586 3587void hugetlb_show_meminfo(void) 3588{ 3589 struct hstate *h; 3590 int nid; 3591 3592 if (!hugepages_supported()) 3593 return; 3594 3595 for_each_node_state(nid, N_MEMORY) 3596 for_each_hstate(h) 3597 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3598 nid, 3599 h->nr_huge_pages_node[nid], 3600 h->free_huge_pages_node[nid], 3601 h->surplus_huge_pages_node[nid], 3602 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3603} 3604 3605void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3606{ 3607 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3608 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3609} 3610 3611/* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3612unsigned long hugetlb_total_pages(void) 3613{ 3614 struct hstate *h; 3615 unsigned long nr_total_pages = 0; 3616 3617 for_each_hstate(h) 3618 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3619 return nr_total_pages; 3620} 3621 3622static int hugetlb_acct_memory(struct hstate *h, long delta) 3623{ 3624 int ret = -ENOMEM; 3625 3626 spin_lock(&hugetlb_lock); 3627 /* 3628 * When cpuset is configured, it breaks the strict hugetlb page 3629 * reservation as the accounting is done on a global variable. Such 3630 * reservation is completely rubbish in the presence of cpuset because 3631 * the reservation is not checked against page availability for the 3632 * current cpuset. Application can still potentially OOM'ed by kernel 3633 * with lack of free htlb page in cpuset that the task is in. 3634 * Attempt to enforce strict accounting with cpuset is almost 3635 * impossible (or too ugly) because cpuset is too fluid that 3636 * task or memory node can be dynamically moved between cpusets. 3637 * 3638 * The change of semantics for shared hugetlb mapping with cpuset is 3639 * undesirable. However, in order to preserve some of the semantics, 3640 * we fall back to check against current free page availability as 3641 * a best attempt and hopefully to minimize the impact of changing 3642 * semantics that cpuset has. 3643 * 3644 * Apart from cpuset, we also have memory policy mechanism that 3645 * also determines from which node the kernel will allocate memory 3646 * in a NUMA system. So similar to cpuset, we also should consider 3647 * the memory policy of the current task. Similar to the description 3648 * above. 3649 */ 3650 if (delta > 0) { 3651 if (gather_surplus_pages(h, delta) < 0) 3652 goto out; 3653 3654 if (delta > allowed_mems_nr(h)) { 3655 return_unused_surplus_pages(h, delta); 3656 goto out; 3657 } 3658 } 3659 3660 ret = 0; 3661 if (delta < 0) 3662 return_unused_surplus_pages(h, (unsigned long) -delta); 3663 3664out: 3665 spin_unlock(&hugetlb_lock); 3666 return ret; 3667} 3668 3669static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3670{ 3671 struct resv_map *resv = vma_resv_map(vma); 3672 3673 /* 3674 * This new VMA should share its siblings reservation map if present. 3675 * The VMA will only ever have a valid reservation map pointer where 3676 * it is being copied for another still existing VMA. As that VMA 3677 * has a reference to the reservation map it cannot disappear until 3678 * after this open call completes. It is therefore safe to take a 3679 * new reference here without additional locking. 3680 */ 3681 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 3682 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 3683 kref_get(&resv->refs); 3684 } 3685} 3686 3687static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3688{ 3689 struct hstate *h = hstate_vma(vma); 3690 struct resv_map *resv = vma_resv_map(vma); 3691 struct hugepage_subpool *spool = subpool_vma(vma); 3692 unsigned long reserve, start, end; 3693 long gbl_reserve; 3694 3695 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3696 return; 3697 3698 start = vma_hugecache_offset(h, vma, vma->vm_start); 3699 end = vma_hugecache_offset(h, vma, vma->vm_end); 3700 3701 reserve = (end - start) - region_count(resv, start, end); 3702 hugetlb_cgroup_uncharge_counter(resv, start, end); 3703 if (reserve) { 3704 /* 3705 * Decrement reserve counts. The global reserve count may be 3706 * adjusted if the subpool has a minimum size. 3707 */ 3708 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3709 hugetlb_acct_memory(h, -gbl_reserve); 3710 } 3711 3712 kref_put(&resv->refs, resv_map_release); 3713} 3714 3715static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3716{ 3717 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3718 return -EINVAL; 3719 return 0; 3720} 3721 3722static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3723{ 3724 struct hstate *hstate = hstate_vma(vma); 3725 3726 return 1UL << huge_page_shift(hstate); 3727} 3728 3729/* 3730 * We cannot handle pagefaults against hugetlb pages at all. They cause 3731 * handle_mm_fault() to try to instantiate regular-sized pages in the 3732 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3733 * this far. 3734 */ 3735static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3736{ 3737 BUG(); 3738 return 0; 3739} 3740 3741/* 3742 * When a new function is introduced to vm_operations_struct and added 3743 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3744 * This is because under System V memory model, mappings created via 3745 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3746 * their original vm_ops are overwritten with shm_vm_ops. 3747 */ 3748const struct vm_operations_struct hugetlb_vm_ops = { 3749 .fault = hugetlb_vm_op_fault, 3750 .open = hugetlb_vm_op_open, 3751 .close = hugetlb_vm_op_close, 3752 .split = hugetlb_vm_op_split, 3753 .pagesize = hugetlb_vm_op_pagesize, 3754}; 3755 3756static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3757 int writable) 3758{ 3759 pte_t entry; 3760 3761 if (writable) { 3762 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3763 vma->vm_page_prot))); 3764 } else { 3765 entry = huge_pte_wrprotect(mk_huge_pte(page, 3766 vma->vm_page_prot)); 3767 } 3768 entry = pte_mkyoung(entry); 3769 entry = pte_mkhuge(entry); 3770 entry = arch_make_huge_pte(entry, vma, page, writable); 3771 3772 return entry; 3773} 3774 3775static void set_huge_ptep_writable(struct vm_area_struct *vma, 3776 unsigned long address, pte_t *ptep) 3777{ 3778 pte_t entry; 3779 3780 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3781 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3782 update_mmu_cache(vma, address, ptep); 3783} 3784 3785bool is_hugetlb_entry_migration(pte_t pte) 3786{ 3787 swp_entry_t swp; 3788 3789 if (huge_pte_none(pte) || pte_present(pte)) 3790 return false; 3791 swp = pte_to_swp_entry(pte); 3792 if (is_migration_entry(swp)) 3793 return true; 3794 else 3795 return false; 3796} 3797 3798static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3799{ 3800 swp_entry_t swp; 3801 3802 if (huge_pte_none(pte) || pte_present(pte)) 3803 return false; 3804 swp = pte_to_swp_entry(pte); 3805 if (is_hwpoison_entry(swp)) 3806 return true; 3807 else 3808 return false; 3809} 3810 3811int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3812 struct vm_area_struct *vma) 3813{ 3814 pte_t *src_pte, *dst_pte, entry, dst_entry; 3815 struct page *ptepage; 3816 unsigned long addr; 3817 int cow; 3818 struct hstate *h = hstate_vma(vma); 3819 unsigned long sz = huge_page_size(h); 3820 struct address_space *mapping = vma->vm_file->f_mapping; 3821 struct mmu_notifier_range range; 3822 int ret = 0; 3823 3824 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3825 3826 if (cow) { 3827 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3828 vma->vm_start, 3829 vma->vm_end); 3830 mmu_notifier_invalidate_range_start(&range); 3831 } else { 3832 /* 3833 * For shared mappings i_mmap_rwsem must be held to call 3834 * huge_pte_alloc, otherwise the returned ptep could go 3835 * away if part of a shared pmd and another thread calls 3836 * huge_pmd_unshare. 3837 */ 3838 i_mmap_lock_read(mapping); 3839 } 3840 3841 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3842 spinlock_t *src_ptl, *dst_ptl; 3843 src_pte = huge_pte_offset(src, addr, sz); 3844 if (!src_pte) 3845 continue; 3846 dst_pte = huge_pte_alloc(dst, addr, sz); 3847 if (!dst_pte) { 3848 ret = -ENOMEM; 3849 break; 3850 } 3851 3852 /* 3853 * If the pagetables are shared don't copy or take references. 3854 * dst_pte == src_pte is the common case of src/dest sharing. 3855 * 3856 * However, src could have 'unshared' and dst shares with 3857 * another vma. If dst_pte !none, this implies sharing. 3858 * Check here before taking page table lock, and once again 3859 * after taking the lock below. 3860 */ 3861 dst_entry = huge_ptep_get(dst_pte); 3862 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3863 continue; 3864 3865 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3866 src_ptl = huge_pte_lockptr(h, src, src_pte); 3867 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3868 entry = huge_ptep_get(src_pte); 3869 dst_entry = huge_ptep_get(dst_pte); 3870 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3871 /* 3872 * Skip if src entry none. Also, skip in the 3873 * unlikely case dst entry !none as this implies 3874 * sharing with another vma. 3875 */ 3876 ; 3877 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3878 is_hugetlb_entry_hwpoisoned(entry))) { 3879 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3880 3881 if (is_write_migration_entry(swp_entry) && cow) { 3882 /* 3883 * COW mappings require pages in both 3884 * parent and child to be set to read. 3885 */ 3886 make_migration_entry_read(&swp_entry); 3887 entry = swp_entry_to_pte(swp_entry); 3888 set_huge_swap_pte_at(src, addr, src_pte, 3889 entry, sz); 3890 } 3891 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3892 } else { 3893 if (cow) { 3894 /* 3895 * No need to notify as we are downgrading page 3896 * table protection not changing it to point 3897 * to a new page. 3898 * 3899 * See Documentation/vm/mmu_notifier.rst 3900 */ 3901 huge_ptep_set_wrprotect(src, addr, src_pte); 3902 } 3903 entry = huge_ptep_get(src_pte); 3904 ptepage = pte_page(entry); 3905 get_page(ptepage); 3906 page_dup_rmap(ptepage, true); 3907 set_huge_pte_at(dst, addr, dst_pte, entry); 3908 hugetlb_count_add(pages_per_huge_page(h), dst); 3909 } 3910 spin_unlock(src_ptl); 3911 spin_unlock(dst_ptl); 3912 } 3913 3914 if (cow) 3915 mmu_notifier_invalidate_range_end(&range); 3916 else 3917 i_mmap_unlock_read(mapping); 3918 3919 return ret; 3920} 3921 3922void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3923 unsigned long start, unsigned long end, 3924 struct page *ref_page) 3925{ 3926 struct mm_struct *mm = vma->vm_mm; 3927 unsigned long address; 3928 pte_t *ptep; 3929 pte_t pte; 3930 spinlock_t *ptl; 3931 struct page *page; 3932 struct hstate *h = hstate_vma(vma); 3933 unsigned long sz = huge_page_size(h); 3934 struct mmu_notifier_range range; 3935 bool force_flush = false; 3936 3937 WARN_ON(!is_vm_hugetlb_page(vma)); 3938 BUG_ON(start & ~huge_page_mask(h)); 3939 BUG_ON(end & ~huge_page_mask(h)); 3940 3941 /* 3942 * This is a hugetlb vma, all the pte entries should point 3943 * to huge page. 3944 */ 3945 tlb_change_page_size(tlb, sz); 3946 tlb_start_vma(tlb, vma); 3947 3948 /* 3949 * If sharing possible, alert mmu notifiers of worst case. 3950 */ 3951 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3952 end); 3953 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3954 mmu_notifier_invalidate_range_start(&range); 3955 address = start; 3956 for (; address < end; address += sz) { 3957 ptep = huge_pte_offset(mm, address, sz); 3958 if (!ptep) 3959 continue; 3960 3961 ptl = huge_pte_lock(h, mm, ptep); 3962 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3963 spin_unlock(ptl); 3964 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 3965 force_flush = true; 3966 continue; 3967 } 3968 3969 pte = huge_ptep_get(ptep); 3970 if (huge_pte_none(pte)) { 3971 spin_unlock(ptl); 3972 continue; 3973 } 3974 3975 /* 3976 * Migrating hugepage or HWPoisoned hugepage is already 3977 * unmapped and its refcount is dropped, so just clear pte here. 3978 */ 3979 if (unlikely(!pte_present(pte))) { 3980 huge_pte_clear(mm, address, ptep, sz); 3981 spin_unlock(ptl); 3982 continue; 3983 } 3984 3985 page = pte_page(pte); 3986 /* 3987 * If a reference page is supplied, it is because a specific 3988 * page is being unmapped, not a range. Ensure the page we 3989 * are about to unmap is the actual page of interest. 3990 */ 3991 if (ref_page) { 3992 if (page != ref_page) { 3993 spin_unlock(ptl); 3994 continue; 3995 } 3996 /* 3997 * Mark the VMA as having unmapped its page so that 3998 * future faults in this VMA will fail rather than 3999 * looking like data was lost 4000 */ 4001 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4002 } 4003 4004 pte = huge_ptep_get_and_clear(mm, address, ptep); 4005 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4006 if (huge_pte_dirty(pte)) 4007 set_page_dirty(page); 4008 4009 hugetlb_count_sub(pages_per_huge_page(h), mm); 4010 page_remove_rmap(page, true); 4011 4012 spin_unlock(ptl); 4013 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4014 /* 4015 * Bail out after unmapping reference page if supplied 4016 */ 4017 if (ref_page) 4018 break; 4019 } 4020 mmu_notifier_invalidate_range_end(&range); 4021 tlb_end_vma(tlb, vma); 4022 4023 /* 4024 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 4025 * could defer the flush until now, since by holding i_mmap_rwsem we 4026 * guaranteed that the last refernece would not be dropped. But we must 4027 * do the flushing before we return, as otherwise i_mmap_rwsem will be 4028 * dropped and the last reference to the shared PMDs page might be 4029 * dropped as well. 4030 * 4031 * In theory we could defer the freeing of the PMD pages as well, but 4032 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 4033 * detect sharing, so we cannot defer the release of the page either. 4034 * Instead, do flush now. 4035 */ 4036 if (force_flush) 4037 tlb_flush_mmu_tlbonly(tlb); 4038} 4039 4040void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4041 struct vm_area_struct *vma, unsigned long start, 4042 unsigned long end, struct page *ref_page) 4043{ 4044 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4045 4046 /* 4047 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4048 * test will fail on a vma being torn down, and not grab a page table 4049 * on its way out. We're lucky that the flag has such an appropriate 4050 * name, and can in fact be safely cleared here. We could clear it 4051 * before the __unmap_hugepage_range above, but all that's necessary 4052 * is to clear it before releasing the i_mmap_rwsem. This works 4053 * because in the context this is called, the VMA is about to be 4054 * destroyed and the i_mmap_rwsem is held. 4055 */ 4056 vma->vm_flags &= ~VM_MAYSHARE; 4057} 4058 4059void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4060 unsigned long end, struct page *ref_page) 4061{ 4062 struct mm_struct *mm; 4063 struct mmu_gather tlb; 4064 unsigned long tlb_start = start; 4065 unsigned long tlb_end = end; 4066 4067 /* 4068 * If shared PMDs were possibly used within this vma range, adjust 4069 * start/end for worst case tlb flushing. 4070 * Note that we can not be sure if PMDs are shared until we try to 4071 * unmap pages. However, we want to make sure TLB flushing covers 4072 * the largest possible range. 4073 */ 4074 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 4075 4076 mm = vma->vm_mm; 4077 4078 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 4079 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4080 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 4081} 4082 4083/* 4084 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4085 * mappping it owns the reserve page for. The intention is to unmap the page 4086 * from other VMAs and let the children be SIGKILLed if they are faulting the 4087 * same region. 4088 */ 4089static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4090 struct page *page, unsigned long address) 4091{ 4092 struct hstate *h = hstate_vma(vma); 4093 struct vm_area_struct *iter_vma; 4094 struct address_space *mapping; 4095 pgoff_t pgoff; 4096 4097 /* 4098 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4099 * from page cache lookup which is in HPAGE_SIZE units. 4100 */ 4101 address = address & huge_page_mask(h); 4102 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4103 vma->vm_pgoff; 4104 mapping = vma->vm_file->f_mapping; 4105 4106 /* 4107 * Take the mapping lock for the duration of the table walk. As 4108 * this mapping should be shared between all the VMAs, 4109 * __unmap_hugepage_range() is called as the lock is already held 4110 */ 4111 i_mmap_lock_write(mapping); 4112 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4113 /* Do not unmap the current VMA */ 4114 if (iter_vma == vma) 4115 continue; 4116 4117 /* 4118 * Shared VMAs have their own reserves and do not affect 4119 * MAP_PRIVATE accounting but it is possible that a shared 4120 * VMA is using the same page so check and skip such VMAs. 4121 */ 4122 if (iter_vma->vm_flags & VM_MAYSHARE) 4123 continue; 4124 4125 /* 4126 * Unmap the page from other VMAs without their own reserves. 4127 * They get marked to be SIGKILLed if they fault in these 4128 * areas. This is because a future no-page fault on this VMA 4129 * could insert a zeroed page instead of the data existing 4130 * from the time of fork. This would look like data corruption 4131 */ 4132 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4133 unmap_hugepage_range(iter_vma, address, 4134 address + huge_page_size(h), page); 4135 } 4136 i_mmap_unlock_write(mapping); 4137} 4138 4139/* 4140 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4141 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4142 * cannot race with other handlers or page migration. 4143 * Keep the pte_same checks anyway to make transition from the mutex easier. 4144 */ 4145static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4146 unsigned long address, pte_t *ptep, 4147 struct page *pagecache_page, spinlock_t *ptl) 4148{ 4149 pte_t pte; 4150 struct hstate *h = hstate_vma(vma); 4151 struct page *old_page, *new_page; 4152 int outside_reserve = 0; 4153 vm_fault_t ret = 0; 4154 unsigned long haddr = address & huge_page_mask(h); 4155 struct mmu_notifier_range range; 4156 4157 pte = huge_ptep_get(ptep); 4158 old_page = pte_page(pte); 4159 4160retry_avoidcopy: 4161 /* If no-one else is actually using this page, avoid the copy 4162 * and just make the page writable */ 4163 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4164 page_move_anon_rmap(old_page, vma); 4165 set_huge_ptep_writable(vma, haddr, ptep); 4166 return 0; 4167 } 4168 4169 /* 4170 * If the process that created a MAP_PRIVATE mapping is about to 4171 * perform a COW due to a shared page count, attempt to satisfy 4172 * the allocation without using the existing reserves. The pagecache 4173 * page is used to determine if the reserve at this address was 4174 * consumed or not. If reserves were used, a partial faulted mapping 4175 * at the time of fork() could consume its reserves on COW instead 4176 * of the full address range. 4177 */ 4178 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4179 old_page != pagecache_page) 4180 outside_reserve = 1; 4181 4182 get_page(old_page); 4183 4184 /* 4185 * Drop page table lock as buddy allocator may be called. It will 4186 * be acquired again before returning to the caller, as expected. 4187 */ 4188 spin_unlock(ptl); 4189 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4190 4191 if (IS_ERR(new_page)) { 4192 /* 4193 * If a process owning a MAP_PRIVATE mapping fails to COW, 4194 * it is due to references held by a child and an insufficient 4195 * huge page pool. To guarantee the original mappers 4196 * reliability, unmap the page from child processes. The child 4197 * may get SIGKILLed if it later faults. 4198 */ 4199 if (outside_reserve) { 4200 struct address_space *mapping = vma->vm_file->f_mapping; 4201 pgoff_t idx; 4202 u32 hash; 4203 4204 put_page(old_page); 4205 BUG_ON(huge_pte_none(pte)); 4206 /* 4207 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4208 * unmapping. unmapping needs to hold i_mmap_rwsem 4209 * in write mode. Dropping i_mmap_rwsem in read mode 4210 * here is OK as COW mappings do not interact with 4211 * PMD sharing. 4212 * 4213 * Reacquire both after unmap operation. 4214 */ 4215 idx = vma_hugecache_offset(h, vma, haddr); 4216 hash = hugetlb_fault_mutex_hash(mapping, idx); 4217 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4218 i_mmap_unlock_read(mapping); 4219 4220 unmap_ref_private(mm, vma, old_page, haddr); 4221 4222 i_mmap_lock_read(mapping); 4223 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4224 spin_lock(ptl); 4225 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4226 if (likely(ptep && 4227 pte_same(huge_ptep_get(ptep), pte))) 4228 goto retry_avoidcopy; 4229 /* 4230 * race occurs while re-acquiring page table 4231 * lock, and our job is done. 4232 */ 4233 return 0; 4234 } 4235 4236 ret = vmf_error(PTR_ERR(new_page)); 4237 goto out_release_old; 4238 } 4239 4240 /* 4241 * When the original hugepage is shared one, it does not have 4242 * anon_vma prepared. 4243 */ 4244 if (unlikely(anon_vma_prepare(vma))) { 4245 ret = VM_FAULT_OOM; 4246 goto out_release_all; 4247 } 4248 4249 copy_user_huge_page(new_page, old_page, address, vma, 4250 pages_per_huge_page(h)); 4251 __SetPageUptodate(new_page); 4252 4253 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4254 haddr + huge_page_size(h)); 4255 mmu_notifier_invalidate_range_start(&range); 4256 4257 /* 4258 * Retake the page table lock to check for racing updates 4259 * before the page tables are altered 4260 */ 4261 spin_lock(ptl); 4262 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4263 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4264 ClearPagePrivate(new_page); 4265 4266 /* Break COW */ 4267 huge_ptep_clear_flush(vma, haddr, ptep); 4268 mmu_notifier_invalidate_range(mm, range.start, range.end); 4269 set_huge_pte_at(mm, haddr, ptep, 4270 make_huge_pte(vma, new_page, 1)); 4271 page_remove_rmap(old_page, true); 4272 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4273 set_page_huge_active(new_page); 4274 /* Make the old page be freed below */ 4275 new_page = old_page; 4276 } 4277 spin_unlock(ptl); 4278 mmu_notifier_invalidate_range_end(&range); 4279out_release_all: 4280 restore_reserve_on_error(h, vma, haddr, new_page); 4281 put_page(new_page); 4282out_release_old: 4283 put_page(old_page); 4284 4285 spin_lock(ptl); /* Caller expects lock to be held */ 4286 return ret; 4287} 4288 4289/* Return the pagecache page at a given address within a VMA */ 4290static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4291 struct vm_area_struct *vma, unsigned long address) 4292{ 4293 struct address_space *mapping; 4294 pgoff_t idx; 4295 4296 mapping = vma->vm_file->f_mapping; 4297 idx = vma_hugecache_offset(h, vma, address); 4298 4299 return find_lock_page(mapping, idx); 4300} 4301 4302/* 4303 * Return whether there is a pagecache page to back given address within VMA. 4304 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4305 */ 4306static bool hugetlbfs_pagecache_present(struct hstate *h, 4307 struct vm_area_struct *vma, unsigned long address) 4308{ 4309 struct address_space *mapping; 4310 pgoff_t idx; 4311 struct page *page; 4312 4313 mapping = vma->vm_file->f_mapping; 4314 idx = vma_hugecache_offset(h, vma, address); 4315 4316 page = find_get_page(mapping, idx); 4317 if (page) 4318 put_page(page); 4319 return page != NULL; 4320} 4321 4322int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4323 pgoff_t idx) 4324{ 4325 struct inode *inode = mapping->host; 4326 struct hstate *h = hstate_inode(inode); 4327 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4328 4329 if (err) 4330 return err; 4331 ClearPagePrivate(page); 4332 4333 /* 4334 * set page dirty so that it will not be removed from cache/file 4335 * by non-hugetlbfs specific code paths. 4336 */ 4337 set_page_dirty(page); 4338 4339 spin_lock(&inode->i_lock); 4340 inode->i_blocks += blocks_per_huge_page(h); 4341 spin_unlock(&inode->i_lock); 4342 return 0; 4343} 4344 4345static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4346 struct vm_area_struct *vma, 4347 struct address_space *mapping, pgoff_t idx, 4348 unsigned long address, pte_t *ptep, unsigned int flags) 4349{ 4350 struct hstate *h = hstate_vma(vma); 4351 vm_fault_t ret = VM_FAULT_SIGBUS; 4352 int anon_rmap = 0; 4353 unsigned long size; 4354 struct page *page; 4355 pte_t new_pte; 4356 spinlock_t *ptl; 4357 unsigned long haddr = address & huge_page_mask(h); 4358 bool new_page = false; 4359 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 4360 4361 /* 4362 * Currently, we are forced to kill the process in the event the 4363 * original mapper has unmapped pages from the child due to a failed 4364 * COW. Warn that such a situation has occurred as it may not be obvious 4365 */ 4366 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4367 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4368 current->pid); 4369 goto out; 4370 } 4371 4372 /* 4373 * We can not race with truncation due to holding i_mmap_rwsem. 4374 * i_size is modified when holding i_mmap_rwsem, so check here 4375 * once for faults beyond end of file. 4376 */ 4377 size = i_size_read(mapping->host) >> huge_page_shift(h); 4378 if (idx >= size) 4379 goto out; 4380 4381retry: 4382 page = find_lock_page(mapping, idx); 4383 if (!page) { 4384 /* 4385 * Check for page in userfault range 4386 */ 4387 if (userfaultfd_missing(vma)) { 4388 struct vm_fault vmf = { 4389 .vma = vma, 4390 .address = haddr, 4391 .flags = flags, 4392 /* 4393 * Hard to debug if it ends up being 4394 * used by a callee that assumes 4395 * something about the other 4396 * uninitialized fields... same as in 4397 * memory.c 4398 */ 4399 }; 4400 4401 /* 4402 * vma_lock and hugetlb_fault_mutex must be dropped 4403 * before handling userfault. Also mmap_lock will 4404 * be dropped during handling userfault, any vma 4405 * operation should be careful from here. 4406 */ 4407 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4408 i_mmap_unlock_read(mapping); 4409 return handle_userfault(&vmf, VM_UFFD_MISSING); 4410 } 4411 4412 page = alloc_huge_page(vma, haddr, 0); 4413 if (IS_ERR(page)) { 4414 /* 4415 * Returning error will result in faulting task being 4416 * sent SIGBUS. The hugetlb fault mutex prevents two 4417 * tasks from racing to fault in the same page which 4418 * could result in false unable to allocate errors. 4419 * Page migration does not take the fault mutex, but 4420 * does a clear then write of pte's under page table 4421 * lock. Page fault code could race with migration, 4422 * notice the clear pte and try to allocate a page 4423 * here. Before returning error, get ptl and make 4424 * sure there really is no pte entry. 4425 */ 4426 ptl = huge_pte_lock(h, mm, ptep); 4427 if (!huge_pte_none(huge_ptep_get(ptep))) { 4428 ret = 0; 4429 spin_unlock(ptl); 4430 goto out; 4431 } 4432 spin_unlock(ptl); 4433 ret = vmf_error(PTR_ERR(page)); 4434 goto out; 4435 } 4436 clear_huge_page(page, address, pages_per_huge_page(h)); 4437 __SetPageUptodate(page); 4438 new_page = true; 4439 4440 if (vma->vm_flags & VM_MAYSHARE) { 4441 int err = huge_add_to_page_cache(page, mapping, idx); 4442 if (err) { 4443 put_page(page); 4444 if (err == -EEXIST) 4445 goto retry; 4446 goto out; 4447 } 4448 } else { 4449 lock_page(page); 4450 if (unlikely(anon_vma_prepare(vma))) { 4451 ret = VM_FAULT_OOM; 4452 goto backout_unlocked; 4453 } 4454 anon_rmap = 1; 4455 } 4456 } else { 4457 /* 4458 * If memory error occurs between mmap() and fault, some process 4459 * don't have hwpoisoned swap entry for errored virtual address. 4460 * So we need to block hugepage fault by PG_hwpoison bit check. 4461 */ 4462 if (unlikely(PageHWPoison(page))) { 4463 ret = VM_FAULT_HWPOISON_LARGE | 4464 VM_FAULT_SET_HINDEX(hstate_index(h)); 4465 goto backout_unlocked; 4466 } 4467 } 4468 4469 /* 4470 * If we are going to COW a private mapping later, we examine the 4471 * pending reservations for this page now. This will ensure that 4472 * any allocations necessary to record that reservation occur outside 4473 * the spinlock. 4474 */ 4475 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4476 if (vma_needs_reservation(h, vma, haddr) < 0) { 4477 ret = VM_FAULT_OOM; 4478 goto backout_unlocked; 4479 } 4480 /* Just decrements count, does not deallocate */ 4481 vma_end_reservation(h, vma, haddr); 4482 } 4483 4484 ptl = huge_pte_lock(h, mm, ptep); 4485 ret = 0; 4486 if (!huge_pte_none(huge_ptep_get(ptep))) 4487 goto backout; 4488 4489 if (anon_rmap) { 4490 ClearPagePrivate(page); 4491 hugepage_add_new_anon_rmap(page, vma, haddr); 4492 } else 4493 page_dup_rmap(page, true); 4494 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4495 && (vma->vm_flags & VM_SHARED))); 4496 set_huge_pte_at(mm, haddr, ptep, new_pte); 4497 4498 hugetlb_count_add(pages_per_huge_page(h), mm); 4499 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4500 /* Optimization, do the COW without a second fault */ 4501 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4502 } 4503 4504 spin_unlock(ptl); 4505 4506 /* 4507 * Only make newly allocated pages active. Existing pages found 4508 * in the pagecache could be !page_huge_active() if they have been 4509 * isolated for migration. 4510 */ 4511 if (new_page) 4512 set_page_huge_active(page); 4513 4514 unlock_page(page); 4515out: 4516 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4517 i_mmap_unlock_read(mapping); 4518 return ret; 4519 4520backout: 4521 spin_unlock(ptl); 4522backout_unlocked: 4523 unlock_page(page); 4524 restore_reserve_on_error(h, vma, haddr, page); 4525 put_page(page); 4526 goto out; 4527} 4528 4529#ifdef CONFIG_SMP 4530u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4531{ 4532 unsigned long key[2]; 4533 u32 hash; 4534 4535 key[0] = (unsigned long) mapping; 4536 key[1] = idx; 4537 4538 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4539 4540 return hash & (num_fault_mutexes - 1); 4541} 4542#else 4543/* 4544 * For uniprocesor systems we always use a single mutex, so just 4545 * return 0 and avoid the hashing overhead. 4546 */ 4547u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4548{ 4549 return 0; 4550} 4551#endif 4552 4553vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4554 unsigned long address, unsigned int flags) 4555{ 4556 pte_t *ptep, entry; 4557 spinlock_t *ptl; 4558 vm_fault_t ret; 4559 u32 hash; 4560 pgoff_t idx; 4561 struct page *page = NULL; 4562 struct page *pagecache_page = NULL; 4563 struct hstate *h = hstate_vma(vma); 4564 struct address_space *mapping; 4565 int need_wait_lock = 0; 4566 unsigned long haddr = address & huge_page_mask(h); 4567 4568 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4569 if (ptep) { 4570 /* 4571 * Since we hold no locks, ptep could be stale. That is 4572 * OK as we are only making decisions based on content and 4573 * not actually modifying content here. 4574 */ 4575 entry = huge_ptep_get(ptep); 4576 if (unlikely(is_hugetlb_entry_migration(entry))) { 4577 migration_entry_wait_huge(vma, mm, ptep); 4578 return 0; 4579 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4580 return VM_FAULT_HWPOISON_LARGE | 4581 VM_FAULT_SET_HINDEX(hstate_index(h)); 4582 } 4583 4584 /* 4585 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4586 * until finished with ptep. This serves two purposes: 4587 * 1) It prevents huge_pmd_unshare from being called elsewhere 4588 * and making the ptep no longer valid. 4589 * 2) It synchronizes us with i_size modifications during truncation. 4590 * 4591 * ptep could have already be assigned via huge_pte_offset. That 4592 * is OK, as huge_pte_alloc will return the same value unless 4593 * something has changed. 4594 */ 4595 mapping = vma->vm_file->f_mapping; 4596 i_mmap_lock_read(mapping); 4597 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4598 if (!ptep) { 4599 i_mmap_unlock_read(mapping); 4600 return VM_FAULT_OOM; 4601 } 4602 4603 /* 4604 * Serialize hugepage allocation and instantiation, so that we don't 4605 * get spurious allocation failures if two CPUs race to instantiate 4606 * the same page in the page cache. 4607 */ 4608 idx = vma_hugecache_offset(h, vma, haddr); 4609 hash = hugetlb_fault_mutex_hash(mapping, idx); 4610 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4611 4612 entry = huge_ptep_get(ptep); 4613 if (huge_pte_none(entry)) 4614 /* 4615 * hugetlb_no_page will drop vma lock and hugetlb fault 4616 * mutex internally, which make us return immediately. 4617 */ 4618 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4619 4620 ret = 0; 4621 4622 /* 4623 * entry could be a migration/hwpoison entry at this point, so this 4624 * check prevents the kernel from going below assuming that we have 4625 * an active hugepage in pagecache. This goto expects the 2nd page 4626 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4627 * properly handle it. 4628 */ 4629 if (!pte_present(entry)) 4630 goto out_mutex; 4631 4632 /* 4633 * If we are going to COW the mapping later, we examine the pending 4634 * reservations for this page now. This will ensure that any 4635 * allocations necessary to record that reservation occur outside the 4636 * spinlock. For private mappings, we also lookup the pagecache 4637 * page now as it is used to determine if a reservation has been 4638 * consumed. 4639 */ 4640 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4641 if (vma_needs_reservation(h, vma, haddr) < 0) { 4642 ret = VM_FAULT_OOM; 4643 goto out_mutex; 4644 } 4645 /* Just decrements count, does not deallocate */ 4646 vma_end_reservation(h, vma, haddr); 4647 4648 if (!(vma->vm_flags & VM_MAYSHARE)) 4649 pagecache_page = hugetlbfs_pagecache_page(h, 4650 vma, haddr); 4651 } 4652 4653 ptl = huge_pte_lock(h, mm, ptep); 4654 4655 /* Check for a racing update before calling hugetlb_cow */ 4656 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4657 goto out_ptl; 4658 4659 /* 4660 * hugetlb_cow() requires page locks of pte_page(entry) and 4661 * pagecache_page, so here we need take the former one 4662 * when page != pagecache_page or !pagecache_page. 4663 */ 4664 page = pte_page(entry); 4665 if (page != pagecache_page) 4666 if (!trylock_page(page)) { 4667 need_wait_lock = 1; 4668 goto out_ptl; 4669 } 4670 4671 get_page(page); 4672 4673 if (flags & FAULT_FLAG_WRITE) { 4674 if (!huge_pte_write(entry)) { 4675 ret = hugetlb_cow(mm, vma, address, ptep, 4676 pagecache_page, ptl); 4677 goto out_put_page; 4678 } 4679 entry = huge_pte_mkdirty(entry); 4680 } 4681 entry = pte_mkyoung(entry); 4682 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4683 flags & FAULT_FLAG_WRITE)) 4684 update_mmu_cache(vma, haddr, ptep); 4685out_put_page: 4686 if (page != pagecache_page) 4687 unlock_page(page); 4688 put_page(page); 4689out_ptl: 4690 spin_unlock(ptl); 4691 4692 if (pagecache_page) { 4693 unlock_page(pagecache_page); 4694 put_page(pagecache_page); 4695 } 4696out_mutex: 4697 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4698 i_mmap_unlock_read(mapping); 4699 /* 4700 * Generally it's safe to hold refcount during waiting page lock. But 4701 * here we just wait to defer the next page fault to avoid busy loop and 4702 * the page is not used after unlocked before returning from the current 4703 * page fault. So we are safe from accessing freed page, even if we wait 4704 * here without taking refcount. 4705 */ 4706 if (need_wait_lock) 4707 wait_on_page_locked(page); 4708 return ret; 4709} 4710 4711/* 4712 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4713 * modifications for huge pages. 4714 */ 4715int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4716 pte_t *dst_pte, 4717 struct vm_area_struct *dst_vma, 4718 unsigned long dst_addr, 4719 unsigned long src_addr, 4720 struct page **pagep) 4721{ 4722 struct address_space *mapping; 4723 pgoff_t idx; 4724 unsigned long size; 4725 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4726 struct hstate *h = hstate_vma(dst_vma); 4727 pte_t _dst_pte; 4728 spinlock_t *ptl; 4729 int ret; 4730 struct page *page; 4731 4732 if (!*pagep) { 4733 /* If a page already exists, then it's UFFDIO_COPY for 4734 * a non-missing case. Return -EEXIST. 4735 */ 4736 if (vm_shared && 4737 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 4738 ret = -EEXIST; 4739 goto out; 4740 } 4741 4742 page = alloc_huge_page(dst_vma, dst_addr, 0); 4743 if (IS_ERR(page)) { 4744 ret = -ENOMEM; 4745 goto out; 4746 } 4747 4748 ret = copy_huge_page_from_user(page, 4749 (const void __user *) src_addr, 4750 pages_per_huge_page(h), false); 4751 4752 /* fallback to copy_from_user outside mmap_lock */ 4753 if (unlikely(ret)) { 4754 ret = -ENOENT; 4755 *pagep = page; 4756 /* don't free the page */ 4757 goto out; 4758 } 4759 } else { 4760 page = *pagep; 4761 *pagep = NULL; 4762 } 4763 4764 /* 4765 * The memory barrier inside __SetPageUptodate makes sure that 4766 * preceding stores to the page contents become visible before 4767 * the set_pte_at() write. 4768 */ 4769 __SetPageUptodate(page); 4770 4771 mapping = dst_vma->vm_file->f_mapping; 4772 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4773 4774 /* 4775 * If shared, add to page cache 4776 */ 4777 if (vm_shared) { 4778 size = i_size_read(mapping->host) >> huge_page_shift(h); 4779 ret = -EFAULT; 4780 if (idx >= size) 4781 goto out_release_nounlock; 4782 4783 /* 4784 * Serialization between remove_inode_hugepages() and 4785 * huge_add_to_page_cache() below happens through the 4786 * hugetlb_fault_mutex_table that here must be hold by 4787 * the caller. 4788 */ 4789 ret = huge_add_to_page_cache(page, mapping, idx); 4790 if (ret) 4791 goto out_release_nounlock; 4792 } 4793 4794 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4795 spin_lock(ptl); 4796 4797 /* 4798 * Recheck the i_size after holding PT lock to make sure not 4799 * to leave any page mapped (as page_mapped()) beyond the end 4800 * of the i_size (remove_inode_hugepages() is strict about 4801 * enforcing that). If we bail out here, we'll also leave a 4802 * page in the radix tree in the vm_shared case beyond the end 4803 * of the i_size, but remove_inode_hugepages() will take care 4804 * of it as soon as we drop the hugetlb_fault_mutex_table. 4805 */ 4806 size = i_size_read(mapping->host) >> huge_page_shift(h); 4807 ret = -EFAULT; 4808 if (idx >= size) 4809 goto out_release_unlock; 4810 4811 ret = -EEXIST; 4812 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4813 goto out_release_unlock; 4814 4815 if (vm_shared) { 4816 page_dup_rmap(page, true); 4817 } else { 4818 ClearPagePrivate(page); 4819 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4820 } 4821 4822 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4823 if (dst_vma->vm_flags & VM_WRITE) 4824 _dst_pte = huge_pte_mkdirty(_dst_pte); 4825 _dst_pte = pte_mkyoung(_dst_pte); 4826 4827 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4828 4829 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4830 dst_vma->vm_flags & VM_WRITE); 4831 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4832 4833 /* No need to invalidate - it was non-present before */ 4834 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4835 4836 spin_unlock(ptl); 4837 set_page_huge_active(page); 4838 if (vm_shared) 4839 unlock_page(page); 4840 ret = 0; 4841out: 4842 return ret; 4843out_release_unlock: 4844 spin_unlock(ptl); 4845 if (vm_shared) 4846 unlock_page(page); 4847out_release_nounlock: 4848 put_page(page); 4849 goto out; 4850} 4851 4852long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4853 struct page **pages, struct vm_area_struct **vmas, 4854 unsigned long *position, unsigned long *nr_pages, 4855 long i, unsigned int flags, int *locked) 4856{ 4857 unsigned long pfn_offset; 4858 unsigned long vaddr = *position; 4859 unsigned long remainder = *nr_pages; 4860 struct hstate *h = hstate_vma(vma); 4861 int err = -EFAULT; 4862 4863 while (vaddr < vma->vm_end && remainder) { 4864 pte_t *pte; 4865 spinlock_t *ptl = NULL; 4866 int absent; 4867 struct page *page; 4868 4869 /* 4870 * If we have a pending SIGKILL, don't keep faulting pages and 4871 * potentially allocating memory. 4872 */ 4873 if (fatal_signal_pending(current)) { 4874 remainder = 0; 4875 break; 4876 } 4877 4878 /* 4879 * Some archs (sparc64, sh*) have multiple pte_ts to 4880 * each hugepage. We have to make sure we get the 4881 * first, for the page indexing below to work. 4882 * 4883 * Note that page table lock is not held when pte is null. 4884 */ 4885 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4886 huge_page_size(h)); 4887 if (pte) 4888 ptl = huge_pte_lock(h, mm, pte); 4889 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4890 4891 /* 4892 * When coredumping, it suits get_dump_page if we just return 4893 * an error where there's an empty slot with no huge pagecache 4894 * to back it. This way, we avoid allocating a hugepage, and 4895 * the sparse dumpfile avoids allocating disk blocks, but its 4896 * huge holes still show up with zeroes where they need to be. 4897 */ 4898 if (absent && (flags & FOLL_DUMP) && 4899 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4900 if (pte) 4901 spin_unlock(ptl); 4902 remainder = 0; 4903 break; 4904 } 4905 4906 /* 4907 * We need call hugetlb_fault for both hugepages under migration 4908 * (in which case hugetlb_fault waits for the migration,) and 4909 * hwpoisoned hugepages (in which case we need to prevent the 4910 * caller from accessing to them.) In order to do this, we use 4911 * here is_swap_pte instead of is_hugetlb_entry_migration and 4912 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4913 * both cases, and because we can't follow correct pages 4914 * directly from any kind of swap entries. 4915 */ 4916 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4917 ((flags & FOLL_WRITE) && 4918 !huge_pte_write(huge_ptep_get(pte)))) { 4919 vm_fault_t ret; 4920 unsigned int fault_flags = 0; 4921 4922 if (pte) 4923 spin_unlock(ptl); 4924 if (flags & FOLL_WRITE) 4925 fault_flags |= FAULT_FLAG_WRITE; 4926 if (locked) 4927 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4928 FAULT_FLAG_KILLABLE; 4929 if (flags & FOLL_NOWAIT) 4930 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4931 FAULT_FLAG_RETRY_NOWAIT; 4932 if (flags & FOLL_TRIED) { 4933 /* 4934 * Note: FAULT_FLAG_ALLOW_RETRY and 4935 * FAULT_FLAG_TRIED can co-exist 4936 */ 4937 fault_flags |= FAULT_FLAG_TRIED; 4938 } 4939 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4940 if (ret & VM_FAULT_ERROR) { 4941 err = vm_fault_to_errno(ret, flags); 4942 remainder = 0; 4943 break; 4944 } 4945 if (ret & VM_FAULT_RETRY) { 4946 if (locked && 4947 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4948 *locked = 0; 4949 *nr_pages = 0; 4950 /* 4951 * VM_FAULT_RETRY must not return an 4952 * error, it will return zero 4953 * instead. 4954 * 4955 * No need to update "position" as the 4956 * caller will not check it after 4957 * *nr_pages is set to 0. 4958 */ 4959 return i; 4960 } 4961 continue; 4962 } 4963 4964 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4965 page = pte_page(huge_ptep_get(pte)); 4966 4967 /* 4968 * If subpage information not requested, update counters 4969 * and skip the same_page loop below. 4970 */ 4971 if (!pages && !vmas && !pfn_offset && 4972 (vaddr + huge_page_size(h) < vma->vm_end) && 4973 (remainder >= pages_per_huge_page(h))) { 4974 vaddr += huge_page_size(h); 4975 remainder -= pages_per_huge_page(h); 4976 i += pages_per_huge_page(h); 4977 spin_unlock(ptl); 4978 continue; 4979 } 4980 4981same_page: 4982 if (pages) { 4983 pages[i] = mem_map_offset(page, pfn_offset); 4984 /* 4985 * try_grab_page() should always succeed here, because: 4986 * a) we hold the ptl lock, and b) we've just checked 4987 * that the huge page is present in the page tables. If 4988 * the huge page is present, then the tail pages must 4989 * also be present. The ptl prevents the head page and 4990 * tail pages from being rearranged in any way. So this 4991 * page must be available at this point, unless the page 4992 * refcount overflowed: 4993 */ 4994 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4995 spin_unlock(ptl); 4996 remainder = 0; 4997 err = -ENOMEM; 4998 break; 4999 } 5000 } 5001 5002 if (vmas) 5003 vmas[i] = vma; 5004 5005 vaddr += PAGE_SIZE; 5006 ++pfn_offset; 5007 --remainder; 5008 ++i; 5009 if (vaddr < vma->vm_end && remainder && 5010 pfn_offset < pages_per_huge_page(h)) { 5011 /* 5012 * We use pfn_offset to avoid touching the pageframes 5013 * of this compound page. 5014 */ 5015 goto same_page; 5016 } 5017 spin_unlock(ptl); 5018 } 5019 *nr_pages = remainder; 5020 /* 5021 * setting position is actually required only if remainder is 5022 * not zero but it's faster not to add a "if (remainder)" 5023 * branch. 5024 */ 5025 *position = vaddr; 5026 5027 return i ? i : err; 5028} 5029 5030#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 5031/* 5032 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 5033 * implement this. 5034 */ 5035#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 5036#endif 5037 5038unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 5039 unsigned long address, unsigned long end, pgprot_t newprot) 5040{ 5041 struct mm_struct *mm = vma->vm_mm; 5042 unsigned long start = address; 5043 pte_t *ptep; 5044 pte_t pte; 5045 struct hstate *h = hstate_vma(vma); 5046 unsigned long pages = 0; 5047 bool shared_pmd = false; 5048 struct mmu_notifier_range range; 5049 5050 /* 5051 * In the case of shared PMDs, the area to flush could be beyond 5052 * start/end. Set range.start/range.end to cover the maximum possible 5053 * range if PMD sharing is possible. 5054 */ 5055 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5056 0, vma, mm, start, end); 5057 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5058 5059 BUG_ON(address >= end); 5060 flush_cache_range(vma, range.start, range.end); 5061 5062 mmu_notifier_invalidate_range_start(&range); 5063 i_mmap_lock_write(vma->vm_file->f_mapping); 5064 for (; address < end; address += huge_page_size(h)) { 5065 spinlock_t *ptl; 5066 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5067 if (!ptep) 5068 continue; 5069 ptl = huge_pte_lock(h, mm, ptep); 5070 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5071 pages++; 5072 spin_unlock(ptl); 5073 shared_pmd = true; 5074 continue; 5075 } 5076 pte = huge_ptep_get(ptep); 5077 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5078 spin_unlock(ptl); 5079 continue; 5080 } 5081 if (unlikely(is_hugetlb_entry_migration(pte))) { 5082 swp_entry_t entry = pte_to_swp_entry(pte); 5083 5084 if (is_write_migration_entry(entry)) { 5085 pte_t newpte; 5086 5087 make_migration_entry_read(&entry); 5088 newpte = swp_entry_to_pte(entry); 5089 set_huge_swap_pte_at(mm, address, ptep, 5090 newpte, huge_page_size(h)); 5091 pages++; 5092 } 5093 spin_unlock(ptl); 5094 continue; 5095 } 5096 if (!huge_pte_none(pte)) { 5097 pte_t old_pte; 5098 5099 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5100 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5101 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5102 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5103 pages++; 5104 } 5105 spin_unlock(ptl); 5106 } 5107 /* 5108 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5109 * may have cleared our pud entry and done put_page on the page table: 5110 * once we release i_mmap_rwsem, another task can do the final put_page 5111 * and that page table be reused and filled with junk. If we actually 5112 * did unshare a page of pmds, flush the range corresponding to the pud. 5113 */ 5114 if (shared_pmd) 5115 flush_hugetlb_tlb_range(vma, range.start, range.end); 5116 else 5117 flush_hugetlb_tlb_range(vma, start, end); 5118 /* 5119 * No need to call mmu_notifier_invalidate_range() we are downgrading 5120 * page table protection not changing it to point to a new page. 5121 * 5122 * See Documentation/vm/mmu_notifier.rst 5123 */ 5124 i_mmap_unlock_write(vma->vm_file->f_mapping); 5125 mmu_notifier_invalidate_range_end(&range); 5126 5127 return pages << h->order; 5128} 5129 5130int hugetlb_reserve_pages(struct inode *inode, 5131 long from, long to, 5132 struct vm_area_struct *vma, 5133 vm_flags_t vm_flags) 5134{ 5135 long ret, chg, add = -1; 5136 struct hstate *h = hstate_inode(inode); 5137 struct hugepage_subpool *spool = subpool_inode(inode); 5138 struct resv_map *resv_map; 5139 struct hugetlb_cgroup *h_cg = NULL; 5140 long gbl_reserve, regions_needed = 0; 5141 5142 /* This should never happen */ 5143 if (from > to) { 5144 VM_WARN(1, "%s called with a negative range\n", __func__); 5145 return -EINVAL; 5146 } 5147 5148 /* 5149 * Only apply hugepage reservation if asked. At fault time, an 5150 * attempt will be made for VM_NORESERVE to allocate a page 5151 * without using reserves 5152 */ 5153 if (vm_flags & VM_NORESERVE) 5154 return 0; 5155 5156 /* 5157 * Shared mappings base their reservation on the number of pages that 5158 * are already allocated on behalf of the file. Private mappings need 5159 * to reserve the full area even if read-only as mprotect() may be 5160 * called to make the mapping read-write. Assume !vma is a shm mapping 5161 */ 5162 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5163 /* 5164 * resv_map can not be NULL as hugetlb_reserve_pages is only 5165 * called for inodes for which resv_maps were created (see 5166 * hugetlbfs_get_inode). 5167 */ 5168 resv_map = inode_resv_map(inode); 5169 5170 chg = region_chg(resv_map, from, to, ®ions_needed); 5171 5172 } else { 5173 /* Private mapping. */ 5174 resv_map = resv_map_alloc(); 5175 if (!resv_map) 5176 return -ENOMEM; 5177 5178 chg = to - from; 5179 5180 set_vma_resv_map(vma, resv_map); 5181 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5182 } 5183 5184 if (chg < 0) { 5185 ret = chg; 5186 goto out_err; 5187 } 5188 5189 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5190 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5191 5192 if (ret < 0) { 5193 ret = -ENOMEM; 5194 goto out_err; 5195 } 5196 5197 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5198 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5199 * of the resv_map. 5200 */ 5201 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5202 } 5203 5204 /* 5205 * There must be enough pages in the subpool for the mapping. If 5206 * the subpool has a minimum size, there may be some global 5207 * reservations already in place (gbl_reserve). 5208 */ 5209 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5210 if (gbl_reserve < 0) { 5211 ret = -ENOSPC; 5212 goto out_uncharge_cgroup; 5213 } 5214 5215 /* 5216 * Check enough hugepages are available for the reservation. 5217 * Hand the pages back to the subpool if there are not 5218 */ 5219 ret = hugetlb_acct_memory(h, gbl_reserve); 5220 if (ret < 0) { 5221 goto out_put_pages; 5222 } 5223 5224 /* 5225 * Account for the reservations made. Shared mappings record regions 5226 * that have reservations as they are shared by multiple VMAs. 5227 * When the last VMA disappears, the region map says how much 5228 * the reservation was and the page cache tells how much of 5229 * the reservation was consumed. Private mappings are per-VMA and 5230 * only the consumed reservations are tracked. When the VMA 5231 * disappears, the original reservation is the VMA size and the 5232 * consumed reservations are stored in the map. Hence, nothing 5233 * else has to be done for private mappings here 5234 */ 5235 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5236 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5237 5238 if (unlikely(add < 0)) { 5239 hugetlb_acct_memory(h, -gbl_reserve); 5240 ret = add; 5241 goto out_put_pages; 5242 } else if (unlikely(chg > add)) { 5243 /* 5244 * pages in this range were added to the reserve 5245 * map between region_chg and region_add. This 5246 * indicates a race with alloc_huge_page. Adjust 5247 * the subpool and reserve counts modified above 5248 * based on the difference. 5249 */ 5250 long rsv_adjust; 5251 5252 /* 5253 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 5254 * reference to h_cg->css. See comment below for detail. 5255 */ 5256 hugetlb_cgroup_uncharge_cgroup_rsvd( 5257 hstate_index(h), 5258 (chg - add) * pages_per_huge_page(h), h_cg); 5259 5260 rsv_adjust = hugepage_subpool_put_pages(spool, 5261 chg - add); 5262 hugetlb_acct_memory(h, -rsv_adjust); 5263 } else if (h_cg) { 5264 /* 5265 * The file_regions will hold their own reference to 5266 * h_cg->css. So we should release the reference held 5267 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 5268 * done. 5269 */ 5270 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 5271 } 5272 } 5273 return 0; 5274out_put_pages: 5275 /* put back original number of pages, chg */ 5276 (void)hugepage_subpool_put_pages(spool, chg); 5277out_uncharge_cgroup: 5278 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5279 chg * pages_per_huge_page(h), h_cg); 5280out_err: 5281 if (!vma || vma->vm_flags & VM_MAYSHARE) 5282 /* Only call region_abort if the region_chg succeeded but the 5283 * region_add failed or didn't run. 5284 */ 5285 if (chg >= 0 && add < 0) 5286 region_abort(resv_map, from, to, regions_needed); 5287 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5288 kref_put(&resv_map->refs, resv_map_release); 5289 return ret; 5290} 5291 5292long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5293 long freed) 5294{ 5295 struct hstate *h = hstate_inode(inode); 5296 struct resv_map *resv_map = inode_resv_map(inode); 5297 long chg = 0; 5298 struct hugepage_subpool *spool = subpool_inode(inode); 5299 long gbl_reserve; 5300 5301 /* 5302 * Since this routine can be called in the evict inode path for all 5303 * hugetlbfs inodes, resv_map could be NULL. 5304 */ 5305 if (resv_map) { 5306 chg = region_del(resv_map, start, end); 5307 /* 5308 * region_del() can fail in the rare case where a region 5309 * must be split and another region descriptor can not be 5310 * allocated. If end == LONG_MAX, it will not fail. 5311 */ 5312 if (chg < 0) 5313 return chg; 5314 } 5315 5316 spin_lock(&inode->i_lock); 5317 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5318 spin_unlock(&inode->i_lock); 5319 5320 /* 5321 * If the subpool has a minimum size, the number of global 5322 * reservations to be released may be adjusted. 5323 */ 5324 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5325 hugetlb_acct_memory(h, -gbl_reserve); 5326 5327 return 0; 5328} 5329 5330#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5331static unsigned long page_table_shareable(struct vm_area_struct *svma, 5332 struct vm_area_struct *vma, 5333 unsigned long addr, pgoff_t idx) 5334{ 5335 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5336 svma->vm_start; 5337 unsigned long sbase = saddr & PUD_MASK; 5338 unsigned long s_end = sbase + PUD_SIZE; 5339 5340 /* Allow segments to share if only one is marked locked */ 5341 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5342 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5343 5344 /* 5345 * match the virtual addresses, permission and the alignment of the 5346 * page table page. 5347 */ 5348 if (pmd_index(addr) != pmd_index(saddr) || 5349 vm_flags != svm_flags || 5350 sbase < svma->vm_start || svma->vm_end < s_end) 5351 return 0; 5352 5353 return saddr; 5354} 5355 5356static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5357{ 5358 unsigned long base = addr & PUD_MASK; 5359 unsigned long end = base + PUD_SIZE; 5360 5361 /* 5362 * check on proper vm_flags and page table alignment 5363 */ 5364 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5365 return true; 5366 return false; 5367} 5368 5369/* 5370 * Determine if start,end range within vma could be mapped by shared pmd. 5371 * If yes, adjust start and end to cover range associated with possible 5372 * shared pmd mappings. 5373 */ 5374void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5375 unsigned long *start, unsigned long *end) 5376{ 5377 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 5378 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 5379 5380 /* 5381 * vma need span at least one aligned PUD size and the start,end range 5382 * must at least partialy within it. 5383 */ 5384 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 5385 (*end <= v_start) || (*start >= v_end)) 5386 return; 5387 5388 /* Extend the range to be PUD aligned for a worst case scenario */ 5389 if (*start > v_start) 5390 *start = ALIGN_DOWN(*start, PUD_SIZE); 5391 5392 if (*end < v_end) 5393 *end = ALIGN(*end, PUD_SIZE); 5394} 5395 5396/* 5397 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5398 * and returns the corresponding pte. While this is not necessary for the 5399 * !shared pmd case because we can allocate the pmd later as well, it makes the 5400 * code much cleaner. 5401 * 5402 * This routine must be called with i_mmap_rwsem held in at least read mode if 5403 * sharing is possible. For hugetlbfs, this prevents removal of any page 5404 * table entries associated with the address space. This is important as we 5405 * are setting up sharing based on existing page table entries (mappings). 5406 * 5407 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5408 * huge_pte_alloc know that sharing is not possible and do not take 5409 * i_mmap_rwsem as a performance optimization. This is handled by the 5410 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5411 * only required for subsequent processing. 5412 */ 5413pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5414{ 5415 struct vm_area_struct *vma = find_vma(mm, addr); 5416 struct address_space *mapping = vma->vm_file->f_mapping; 5417 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5418 vma->vm_pgoff; 5419 struct vm_area_struct *svma; 5420 unsigned long saddr; 5421 pte_t *spte = NULL; 5422 pte_t *pte; 5423 spinlock_t *ptl; 5424 5425 if (!vma_shareable(vma, addr)) 5426 return (pte_t *)pmd_alloc(mm, pud, addr); 5427 5428 i_mmap_assert_locked(mapping); 5429 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5430 if (svma == vma) 5431 continue; 5432 5433 saddr = page_table_shareable(svma, vma, addr, idx); 5434 if (saddr) { 5435 spte = huge_pte_offset(svma->vm_mm, saddr, 5436 vma_mmu_pagesize(svma)); 5437 if (spte) { 5438 get_page(virt_to_page(spte)); 5439 break; 5440 } 5441 } 5442 } 5443 5444 if (!spte) 5445 goto out; 5446 5447 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5448 if (pud_none(*pud)) { 5449 pud_populate(mm, pud, 5450 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5451 mm_inc_nr_pmds(mm); 5452 } else { 5453 put_page(virt_to_page(spte)); 5454 } 5455 spin_unlock(ptl); 5456out: 5457 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5458 return pte; 5459} 5460 5461/* 5462 * unmap huge page backed by shared pte. 5463 * 5464 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5465 * indicated by page_count > 1, unmap is achieved by clearing pud and 5466 * decrementing the ref count. If count == 1, the pte page is not shared. 5467 * 5468 * Called with page table lock held and i_mmap_rwsem held in write mode. 5469 * 5470 * returns: 1 successfully unmapped a shared pte page 5471 * 0 the underlying pte page is not shared, or it is the last user 5472 */ 5473int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5474 unsigned long *addr, pte_t *ptep) 5475{ 5476 pgd_t *pgd = pgd_offset(mm, *addr); 5477 p4d_t *p4d = p4d_offset(pgd, *addr); 5478 pud_t *pud = pud_offset(p4d, *addr); 5479 5480 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5481 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5482 if (page_count(virt_to_page(ptep)) == 1) 5483 return 0; 5484 5485 pud_clear(pud); 5486 put_page(virt_to_page(ptep)); 5487 mm_dec_nr_pmds(mm); 5488 /* 5489 * This update of passed address optimizes loops sequentially 5490 * processing addresses in increments of huge page size (PMD_SIZE 5491 * in this case). By clearing the pud, a PUD_SIZE area is unmapped. 5492 * Update address to the 'last page' in the cleared area so that 5493 * calling loop can move to first page past this area. 5494 */ 5495 *addr |= PUD_SIZE - PMD_SIZE; 5496 return 1; 5497} 5498#define want_pmd_share() (1) 5499#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5500pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5501{ 5502 return NULL; 5503} 5504 5505int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5506 unsigned long *addr, pte_t *ptep) 5507{ 5508 return 0; 5509} 5510 5511void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5512 unsigned long *start, unsigned long *end) 5513{ 5514} 5515#define want_pmd_share() (0) 5516#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5517 5518#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5519pte_t *huge_pte_alloc(struct mm_struct *mm, 5520 unsigned long addr, unsigned long sz) 5521{ 5522 pgd_t *pgd; 5523 p4d_t *p4d; 5524 pud_t *pud; 5525 pte_t *pte = NULL; 5526 5527 pgd = pgd_offset(mm, addr); 5528 p4d = p4d_alloc(mm, pgd, addr); 5529 if (!p4d) 5530 return NULL; 5531 pud = pud_alloc(mm, p4d, addr); 5532 if (pud) { 5533 if (sz == PUD_SIZE) { 5534 pte = (pte_t *)pud; 5535 } else { 5536 BUG_ON(sz != PMD_SIZE); 5537 if (want_pmd_share() && pud_none(*pud)) 5538 pte = huge_pmd_share(mm, addr, pud); 5539 else 5540 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5541 } 5542 } 5543 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5544 5545 return pte; 5546} 5547 5548/* 5549 * huge_pte_offset() - Walk the page table to resolve the hugepage 5550 * entry at address @addr 5551 * 5552 * Return: Pointer to page table entry (PUD or PMD) for 5553 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5554 * size @sz doesn't match the hugepage size at this level of the page 5555 * table. 5556 */ 5557pte_t *huge_pte_offset(struct mm_struct *mm, 5558 unsigned long addr, unsigned long sz) 5559{ 5560 pgd_t *pgd; 5561 p4d_t *p4d; 5562 pud_t *pud; 5563 pmd_t *pmd; 5564 5565 pgd = pgd_offset(mm, addr); 5566 if (!pgd_present(*pgd)) 5567 return NULL; 5568 p4d = p4d_offset(pgd, addr); 5569 if (!p4d_present(*p4d)) 5570 return NULL; 5571 5572 pud = pud_offset(p4d, addr); 5573 if (sz == PUD_SIZE) 5574 /* must be pud huge, non-present or none */ 5575 return (pte_t *)pud; 5576 if (!pud_present(*pud)) 5577 return NULL; 5578 /* must have a valid entry and size to go further */ 5579 5580 pmd = pmd_offset(pud, addr); 5581 /* must be pmd huge, non-present or none */ 5582 return (pte_t *)pmd; 5583} 5584 5585#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5586 5587/* 5588 * These functions are overwritable if your architecture needs its own 5589 * behavior. 5590 */ 5591struct page * __weak 5592follow_huge_addr(struct mm_struct *mm, unsigned long address, 5593 int write) 5594{ 5595 return ERR_PTR(-EINVAL); 5596} 5597 5598struct page * __weak 5599follow_huge_pd(struct vm_area_struct *vma, 5600 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5601{ 5602 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5603 return NULL; 5604} 5605 5606struct page * __weak 5607follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags) 5608{ 5609 struct hstate *h = hstate_vma(vma); 5610 struct mm_struct *mm = vma->vm_mm; 5611 struct page *page = NULL; 5612 spinlock_t *ptl; 5613 pte_t *ptep, pte; 5614 5615 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5616 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5617 (FOLL_PIN | FOLL_GET))) 5618 return NULL; 5619 5620retry: 5621 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5622 if (!ptep) 5623 return NULL; 5624 5625 ptl = huge_pte_lock(h, mm, ptep); 5626 pte = huge_ptep_get(ptep); 5627 if (pte_present(pte)) { 5628 page = pte_page(pte) + 5629 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 5630 /* 5631 * try_grab_page() should always succeed here, because: a) we 5632 * hold the pmd (ptl) lock, and b) we've just checked that the 5633 * huge pmd (head) page is present in the page tables. The ptl 5634 * prevents the head page and tail pages from being rearranged 5635 * in any way. So this page must be available at this point, 5636 * unless the page refcount overflowed: 5637 */ 5638 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5639 page = NULL; 5640 goto out; 5641 } 5642 } else { 5643 if (is_hugetlb_entry_migration(pte)) { 5644 spin_unlock(ptl); 5645 __migration_entry_wait(mm, ptep, ptl); 5646 goto retry; 5647 } 5648 /* 5649 * hwpoisoned entry is treated as no_page_table in 5650 * follow_page_mask(). 5651 */ 5652 } 5653out: 5654 spin_unlock(ptl); 5655 return page; 5656} 5657 5658struct page * __weak 5659follow_huge_pud(struct mm_struct *mm, unsigned long address, 5660 pud_t *pud, int flags) 5661{ 5662 if (flags & (FOLL_GET | FOLL_PIN)) 5663 return NULL; 5664 5665 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5666} 5667 5668struct page * __weak 5669follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5670{ 5671 if (flags & (FOLL_GET | FOLL_PIN)) 5672 return NULL; 5673 5674 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5675} 5676 5677int isolate_hugetlb(struct page *page, struct list_head *list) 5678{ 5679 int ret = 0; 5680 5681 spin_lock(&hugetlb_lock); 5682 if (!PageHeadHuge(page) || !page_huge_active(page) || 5683 !get_page_unless_zero(page)) { 5684 ret = -EBUSY; 5685 goto unlock; 5686 } 5687 clear_page_huge_active(page); 5688 list_move_tail(&page->lru, list); 5689unlock: 5690 spin_unlock(&hugetlb_lock); 5691 return ret; 5692} 5693 5694void putback_active_hugepage(struct page *page) 5695{ 5696 VM_BUG_ON_PAGE(!PageHead(page), page); 5697 spin_lock(&hugetlb_lock); 5698 set_page_huge_active(page); 5699 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5700 spin_unlock(&hugetlb_lock); 5701 put_page(page); 5702} 5703 5704void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5705{ 5706 struct hstate *h = page_hstate(oldpage); 5707 5708 hugetlb_cgroup_migrate(oldpage, newpage); 5709 set_page_owner_migrate_reason(newpage, reason); 5710 5711 /* 5712 * transfer temporary state of the new huge page. This is 5713 * reverse to other transitions because the newpage is going to 5714 * be final while the old one will be freed so it takes over 5715 * the temporary status. 5716 * 5717 * Also note that we have to transfer the per-node surplus state 5718 * here as well otherwise the global surplus count will not match 5719 * the per-node's. 5720 */ 5721 if (PageHugeTemporary(newpage)) { 5722 int old_nid = page_to_nid(oldpage); 5723 int new_nid = page_to_nid(newpage); 5724 5725 SetPageHugeTemporary(oldpage); 5726 ClearPageHugeTemporary(newpage); 5727 5728 spin_lock(&hugetlb_lock); 5729 if (h->surplus_huge_pages_node[old_nid]) { 5730 h->surplus_huge_pages_node[old_nid]--; 5731 h->surplus_huge_pages_node[new_nid]++; 5732 } 5733 spin_unlock(&hugetlb_lock); 5734 } 5735} 5736 5737#ifdef CONFIG_CMA 5738static bool cma_reserve_called __initdata; 5739 5740static int __init cmdline_parse_hugetlb_cma(char *p) 5741{ 5742 hugetlb_cma_size = memparse(p, &p); 5743 return 0; 5744} 5745 5746early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5747 5748void __init hugetlb_cma_reserve(int order) 5749{ 5750 unsigned long size, reserved, per_node; 5751 int nid; 5752 5753 cma_reserve_called = true; 5754 5755 if (!hugetlb_cma_size) 5756 return; 5757 5758 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5759 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5760 (PAGE_SIZE << order) / SZ_1M); 5761 return; 5762 } 5763 5764 /* 5765 * If 3 GB area is requested on a machine with 4 numa nodes, 5766 * let's allocate 1 GB on first three nodes and ignore the last one. 5767 */ 5768 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5769 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5770 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5771 5772 reserved = 0; 5773 for_each_node_state(nid, N_ONLINE) { 5774 int res; 5775 char name[CMA_MAX_NAME]; 5776 5777 size = min(per_node, hugetlb_cma_size - reserved); 5778 size = round_up(size, PAGE_SIZE << order); 5779 5780 snprintf(name, sizeof(name), "hugetlb%d", nid); 5781 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5782 0, false, name, 5783 &hugetlb_cma[nid], nid); 5784 if (res) { 5785 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5786 res, nid); 5787 continue; 5788 } 5789 5790 reserved += size; 5791 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5792 size / SZ_1M, nid); 5793 5794 if (reserved >= hugetlb_cma_size) 5795 break; 5796 } 5797} 5798 5799void __init hugetlb_cma_check(void) 5800{ 5801 if (!hugetlb_cma_size || cma_reserve_called) 5802 return; 5803 5804 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5805} 5806 5807#endif /* CONFIG_CMA */ 5808