1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11#include <linux/cpu.h> 12#include <linux/swap.h> 13#include <linux/migrate.h> 14#include <linux/compaction.h> 15#include <linux/mm_inline.h> 16#include <linux/sched/signal.h> 17#include <linux/backing-dev.h> 18#include <linux/sysctl.h> 19#include <linux/sysfs.h> 20#include <linux/page-isolation.h> 21#include <linux/kasan.h> 22#include <linux/kthread.h> 23#include <linux/freezer.h> 24#include <linux/page_owner.h> 25#include <linux/psi.h> 26#include "internal.h" 27 28#ifdef CONFIG_COMPACTION 29static inline void count_compact_event(enum vm_event_item item) 30{ 31 count_vm_event(item); 32} 33 34static inline void count_compact_events(enum vm_event_item item, long delta) 35{ 36 count_vm_events(item, delta); 37} 38#else 39#define count_compact_event(item) do { } while (0) 40#define count_compact_events(item, delta) do { } while (0) 41#endif 42 43#if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45#define CREATE_TRACE_POINTS 46#include <trace/events/compaction.h> 47 48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53/* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58/* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63#if defined CONFIG_TRANSPARENT_HUGEPAGE 64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65#elif defined CONFIG_HUGETLBFS 66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67#else 68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69#endif 70 71static unsigned long release_freepages(struct list_head *freelist) 72{ 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85} 86 87static void split_map_pages(struct list_head *list) 88{ 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110} 111 112#ifdef CONFIG_COMPACTION 113 114int PageMovable(struct page *page) 115{ 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127} 128EXPORT_SYMBOL(PageMovable); 129 130void __SetPageMovable(struct page *page, struct address_space *mapping) 131{ 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135} 136EXPORT_SYMBOL(__SetPageMovable); 137 138void __ClearPageMovable(struct page *page) 139{ 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageMovable(page), page); 142 /* 143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 144 * flag so that VM can catch up released page by driver after isolation. 145 * With it, VM migration doesn't try to put it back. 146 */ 147 page->mapping = (void *)((unsigned long)page->mapping & 148 PAGE_MAPPING_MOVABLE); 149} 150EXPORT_SYMBOL(__ClearPageMovable); 151 152/* Do not skip compaction more than 64 times */ 153#define COMPACT_MAX_DEFER_SHIFT 6 154 155/* 156 * Compaction is deferred when compaction fails to result in a page 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 159 */ 160void defer_compaction(struct zone *zone, int order) 161{ 162 zone->compact_considered = 0; 163 zone->compact_defer_shift++; 164 165 if (order < zone->compact_order_failed) 166 zone->compact_order_failed = order; 167 168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 170 171 trace_mm_compaction_defer_compaction(zone, order); 172} 173 174/* Returns true if compaction should be skipped this time */ 175bool compaction_deferred(struct zone *zone, int order) 176{ 177 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 178 179 if (order < zone->compact_order_failed) 180 return false; 181 182 /* Avoid possible overflow */ 183 if (++zone->compact_considered >= defer_limit) { 184 zone->compact_considered = defer_limit; 185 return false; 186 } 187 188 trace_mm_compaction_deferred(zone, order); 189 190 return true; 191} 192 193/* 194 * Update defer tracking counters after successful compaction of given order, 195 * which means an allocation either succeeded (alloc_success == true) or is 196 * expected to succeed. 197 */ 198void compaction_defer_reset(struct zone *zone, int order, 199 bool alloc_success) 200{ 201 if (alloc_success) { 202 zone->compact_considered = 0; 203 zone->compact_defer_shift = 0; 204 } 205 if (order >= zone->compact_order_failed) 206 zone->compact_order_failed = order + 1; 207 208 trace_mm_compaction_defer_reset(zone, order); 209} 210 211/* Returns true if restarting compaction after many failures */ 212bool compaction_restarting(struct zone *zone, int order) 213{ 214 if (order < zone->compact_order_failed) 215 return false; 216 217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 218 zone->compact_considered >= 1UL << zone->compact_defer_shift; 219} 220 221/* Returns true if the pageblock should be scanned for pages to isolate. */ 222static inline bool isolation_suitable(struct compact_control *cc, 223 struct page *page) 224{ 225 if (cc->ignore_skip_hint) 226 return true; 227 228 return !get_pageblock_skip(page); 229} 230 231static void reset_cached_positions(struct zone *zone) 232{ 233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 235 zone->compact_cached_free_pfn = 236 pageblock_start_pfn(zone_end_pfn(zone) - 1); 237} 238 239/* 240 * Compound pages of >= pageblock_order should consistenly be skipped until 241 * released. It is always pointless to compact pages of such order (if they are 242 * migratable), and the pageblocks they occupy cannot contain any free pages. 243 */ 244static bool pageblock_skip_persistent(struct page *page) 245{ 246 if (!PageCompound(page)) 247 return false; 248 249 page = compound_head(page); 250 251 if (compound_order(page) >= pageblock_order) 252 return true; 253 254 return false; 255} 256 257static bool 258__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 259 bool check_target) 260{ 261 struct page *page = pfn_to_online_page(pfn); 262 struct page *block_page; 263 struct page *end_page; 264 unsigned long block_pfn; 265 266 if (!page) 267 return false; 268 if (zone != page_zone(page)) 269 return false; 270 if (pageblock_skip_persistent(page)) 271 return false; 272 273 /* 274 * If skip is already cleared do no further checking once the 275 * restart points have been set. 276 */ 277 if (check_source && check_target && !get_pageblock_skip(page)) 278 return true; 279 280 /* 281 * If clearing skip for the target scanner, do not select a 282 * non-movable pageblock as the starting point. 283 */ 284 if (!check_source && check_target && 285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 286 return false; 287 288 /* Ensure the start of the pageblock or zone is online and valid */ 289 block_pfn = pageblock_start_pfn(pfn); 290 block_pfn = max(block_pfn, zone->zone_start_pfn); 291 block_page = pfn_to_online_page(block_pfn); 292 if (block_page) { 293 page = block_page; 294 pfn = block_pfn; 295 } 296 297 /* Ensure the end of the pageblock or zone is online and valid */ 298 block_pfn = pageblock_end_pfn(pfn) - 1; 299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 300 end_page = pfn_to_online_page(block_pfn); 301 if (!end_page) 302 return false; 303 304 /* 305 * Only clear the hint if a sample indicates there is either a 306 * free page or an LRU page in the block. One or other condition 307 * is necessary for the block to be a migration source/target. 308 */ 309 do { 310 if (pfn_valid_within(pfn)) { 311 if (check_source && PageLRU(page)) { 312 clear_pageblock_skip(page); 313 return true; 314 } 315 316 if (check_target && PageBuddy(page)) { 317 clear_pageblock_skip(page); 318 return true; 319 } 320 } 321 322 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 324 } while (page <= end_page); 325 326 return false; 327} 328 329/* 330 * This function is called to clear all cached information on pageblocks that 331 * should be skipped for page isolation when the migrate and free page scanner 332 * meet. 333 */ 334static void __reset_isolation_suitable(struct zone *zone) 335{ 336 unsigned long migrate_pfn = zone->zone_start_pfn; 337 unsigned long free_pfn = zone_end_pfn(zone) - 1; 338 unsigned long reset_migrate = free_pfn; 339 unsigned long reset_free = migrate_pfn; 340 bool source_set = false; 341 bool free_set = false; 342 343 if (!zone->compact_blockskip_flush) 344 return; 345 346 zone->compact_blockskip_flush = false; 347 348 /* 349 * Walk the zone and update pageblock skip information. Source looks 350 * for PageLRU while target looks for PageBuddy. When the scanner 351 * is found, both PageBuddy and PageLRU are checked as the pageblock 352 * is suitable as both source and target. 353 */ 354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 355 free_pfn -= pageblock_nr_pages) { 356 cond_resched(); 357 358 /* Update the migrate PFN */ 359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 360 migrate_pfn < reset_migrate) { 361 source_set = true; 362 reset_migrate = migrate_pfn; 363 zone->compact_init_migrate_pfn = reset_migrate; 364 zone->compact_cached_migrate_pfn[0] = reset_migrate; 365 zone->compact_cached_migrate_pfn[1] = reset_migrate; 366 } 367 368 /* Update the free PFN */ 369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 370 free_pfn > reset_free) { 371 free_set = true; 372 reset_free = free_pfn; 373 zone->compact_init_free_pfn = reset_free; 374 zone->compact_cached_free_pfn = reset_free; 375 } 376 } 377 378 /* Leave no distance if no suitable block was reset */ 379 if (reset_migrate >= reset_free) { 380 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 381 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 382 zone->compact_cached_free_pfn = free_pfn; 383 } 384} 385 386void reset_isolation_suitable(pg_data_t *pgdat) 387{ 388 int zoneid; 389 390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 391 struct zone *zone = &pgdat->node_zones[zoneid]; 392 if (!populated_zone(zone)) 393 continue; 394 395 /* Only flush if a full compaction finished recently */ 396 if (zone->compact_blockskip_flush) 397 __reset_isolation_suitable(zone); 398 } 399} 400 401/* 402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 403 * locks are not required for read/writers. Returns true if it was already set. 404 */ 405static bool test_and_set_skip(struct compact_control *cc, struct page *page, 406 unsigned long pfn) 407{ 408 bool skip; 409 410 /* Do no update if skip hint is being ignored */ 411 if (cc->ignore_skip_hint) 412 return false; 413 414 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 415 return false; 416 417 skip = get_pageblock_skip(page); 418 if (!skip && !cc->no_set_skip_hint) 419 set_pageblock_skip(page); 420 421 return skip; 422} 423 424static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 425{ 426 struct zone *zone = cc->zone; 427 428 pfn = pageblock_end_pfn(pfn); 429 430 /* Set for isolation rather than compaction */ 431 if (cc->no_set_skip_hint) 432 return; 433 434 if (pfn > zone->compact_cached_migrate_pfn[0]) 435 zone->compact_cached_migrate_pfn[0] = pfn; 436 if (cc->mode != MIGRATE_ASYNC && 437 pfn > zone->compact_cached_migrate_pfn[1]) 438 zone->compact_cached_migrate_pfn[1] = pfn; 439} 440 441/* 442 * If no pages were isolated then mark this pageblock to be skipped in the 443 * future. The information is later cleared by __reset_isolation_suitable(). 444 */ 445static void update_pageblock_skip(struct compact_control *cc, 446 struct page *page, unsigned long pfn) 447{ 448 struct zone *zone = cc->zone; 449 450 if (cc->no_set_skip_hint) 451 return; 452 453 if (!page) 454 return; 455 456 set_pageblock_skip(page); 457 458 /* Update where async and sync compaction should restart */ 459 if (pfn < zone->compact_cached_free_pfn) 460 zone->compact_cached_free_pfn = pfn; 461} 462#else 463static inline bool isolation_suitable(struct compact_control *cc, 464 struct page *page) 465{ 466 return true; 467} 468 469static inline bool pageblock_skip_persistent(struct page *page) 470{ 471 return false; 472} 473 474static inline void update_pageblock_skip(struct compact_control *cc, 475 struct page *page, unsigned long pfn) 476{ 477} 478 479static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 480{ 481} 482 483static bool test_and_set_skip(struct compact_control *cc, struct page *page, 484 unsigned long pfn) 485{ 486 return false; 487} 488#endif /* CONFIG_COMPACTION */ 489 490/* 491 * Compaction requires the taking of some coarse locks that are potentially 492 * very heavily contended. For async compaction, trylock and record if the 493 * lock is contended. The lock will still be acquired but compaction will 494 * abort when the current block is finished regardless of success rate. 495 * Sync compaction acquires the lock. 496 * 497 * Always returns true which makes it easier to track lock state in callers. 498 */ 499static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 500 struct compact_control *cc) 501 __acquires(lock) 502{ 503 /* Track if the lock is contended in async mode */ 504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 505 if (spin_trylock_irqsave(lock, *flags)) 506 return true; 507 508 cc->contended = true; 509 } 510 511 spin_lock_irqsave(lock, *flags); 512 return true; 513} 514 515/* 516 * Compaction requires the taking of some coarse locks that are potentially 517 * very heavily contended. The lock should be periodically unlocked to avoid 518 * having disabled IRQs for a long time, even when there is nobody waiting on 519 * the lock. It might also be that allowing the IRQs will result in 520 * need_resched() becoming true. If scheduling is needed, async compaction 521 * aborts. Sync compaction schedules. 522 * Either compaction type will also abort if a fatal signal is pending. 523 * In either case if the lock was locked, it is dropped and not regained. 524 * 525 * Returns true if compaction should abort due to fatal signal pending, or 526 * async compaction due to need_resched() 527 * Returns false when compaction can continue (sync compaction might have 528 * scheduled) 529 */ 530static bool compact_unlock_should_abort(spinlock_t *lock, 531 unsigned long flags, bool *locked, struct compact_control *cc) 532{ 533 if (*locked) { 534 spin_unlock_irqrestore(lock, flags); 535 *locked = false; 536 } 537 538 if (fatal_signal_pending(current)) { 539 cc->contended = true; 540 return true; 541 } 542 543 cond_resched(); 544 545 return false; 546} 547 548/* 549 * Isolate free pages onto a private freelist. If @strict is true, will abort 550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 551 * (even though it may still end up isolating some pages). 552 */ 553static unsigned long isolate_freepages_block(struct compact_control *cc, 554 unsigned long *start_pfn, 555 unsigned long end_pfn, 556 struct list_head *freelist, 557 unsigned int stride, 558 bool strict) 559{ 560 int nr_scanned = 0, total_isolated = 0; 561 struct page *cursor; 562 unsigned long flags = 0; 563 bool locked = false; 564 unsigned long blockpfn = *start_pfn; 565 unsigned int order; 566 567 /* Strict mode is for isolation, speed is secondary */ 568 if (strict) 569 stride = 1; 570 571 cursor = pfn_to_page(blockpfn); 572 573 /* Isolate free pages. */ 574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 575 int isolated; 576 struct page *page = cursor; 577 578 /* 579 * Periodically drop the lock (if held) regardless of its 580 * contention, to give chance to IRQs. Abort if fatal signal 581 * pending or async compaction detects need_resched() 582 */ 583 if (!(blockpfn % SWAP_CLUSTER_MAX) 584 && compact_unlock_should_abort(&cc->zone->lock, flags, 585 &locked, cc)) 586 break; 587 588 nr_scanned++; 589 if (!pfn_valid_within(blockpfn)) 590 goto isolate_fail; 591 592 /* 593 * For compound pages such as THP and hugetlbfs, we can save 594 * potentially a lot of iterations if we skip them at once. 595 * The check is racy, but we can consider only valid values 596 * and the only danger is skipping too much. 597 */ 598 if (PageCompound(page)) { 599 const unsigned int order = compound_order(page); 600 601 if (likely(order < MAX_ORDER)) { 602 blockpfn += (1UL << order) - 1; 603 cursor += (1UL << order) - 1; 604 } 605 goto isolate_fail; 606 } 607 608 if (!PageBuddy(page)) 609 goto isolate_fail; 610 611 /* 612 * If we already hold the lock, we can skip some rechecking. 613 * Note that if we hold the lock now, checked_pageblock was 614 * already set in some previous iteration (or strict is true), 615 * so it is correct to skip the suitable migration target 616 * recheck as well. 617 */ 618 if (!locked) { 619 locked = compact_lock_irqsave(&cc->zone->lock, 620 &flags, cc); 621 622 /* Recheck this is a buddy page under lock */ 623 if (!PageBuddy(page)) 624 goto isolate_fail; 625 } 626 627 /* Found a free page, will break it into order-0 pages */ 628 order = buddy_order(page); 629 isolated = __isolate_free_page(page, order); 630 if (!isolated) 631 break; 632 set_page_private(page, order); 633 634 total_isolated += isolated; 635 cc->nr_freepages += isolated; 636 list_add_tail(&page->lru, freelist); 637 638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 639 blockpfn += isolated; 640 break; 641 } 642 /* Advance to the end of split page */ 643 blockpfn += isolated - 1; 644 cursor += isolated - 1; 645 continue; 646 647isolate_fail: 648 if (strict) 649 break; 650 else 651 continue; 652 653 } 654 655 if (locked) 656 spin_unlock_irqrestore(&cc->zone->lock, flags); 657 658 /* 659 * There is a tiny chance that we have read bogus compound_order(), 660 * so be careful to not go outside of the pageblock. 661 */ 662 if (unlikely(blockpfn > end_pfn)) 663 blockpfn = end_pfn; 664 665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 666 nr_scanned, total_isolated); 667 668 /* Record how far we have got within the block */ 669 *start_pfn = blockpfn; 670 671 /* 672 * If strict isolation is requested by CMA then check that all the 673 * pages requested were isolated. If there were any failures, 0 is 674 * returned and CMA will fail. 675 */ 676 if (strict && blockpfn < end_pfn) 677 total_isolated = 0; 678 679 cc->total_free_scanned += nr_scanned; 680 if (total_isolated) 681 count_compact_events(COMPACTISOLATED, total_isolated); 682 return total_isolated; 683} 684 685/** 686 * isolate_freepages_range() - isolate free pages. 687 * @cc: Compaction control structure. 688 * @start_pfn: The first PFN to start isolating. 689 * @end_pfn: The one-past-last PFN. 690 * 691 * Non-free pages, invalid PFNs, or zone boundaries within the 692 * [start_pfn, end_pfn) range are considered errors, cause function to 693 * undo its actions and return zero. 694 * 695 * Otherwise, function returns one-past-the-last PFN of isolated page 696 * (which may be greater then end_pfn if end fell in a middle of 697 * a free page). 698 */ 699unsigned long 700isolate_freepages_range(struct compact_control *cc, 701 unsigned long start_pfn, unsigned long end_pfn) 702{ 703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 704 LIST_HEAD(freelist); 705 706 pfn = start_pfn; 707 block_start_pfn = pageblock_start_pfn(pfn); 708 if (block_start_pfn < cc->zone->zone_start_pfn) 709 block_start_pfn = cc->zone->zone_start_pfn; 710 block_end_pfn = pageblock_end_pfn(pfn); 711 712 for (; pfn < end_pfn; pfn += isolated, 713 block_start_pfn = block_end_pfn, 714 block_end_pfn += pageblock_nr_pages) { 715 /* Protect pfn from changing by isolate_freepages_block */ 716 unsigned long isolate_start_pfn = pfn; 717 718 block_end_pfn = min(block_end_pfn, end_pfn); 719 720 /* 721 * pfn could pass the block_end_pfn if isolated freepage 722 * is more than pageblock order. In this case, we adjust 723 * scanning range to right one. 724 */ 725 if (pfn >= block_end_pfn) { 726 block_start_pfn = pageblock_start_pfn(pfn); 727 block_end_pfn = pageblock_end_pfn(pfn); 728 block_end_pfn = min(block_end_pfn, end_pfn); 729 } 730 731 if (!pageblock_pfn_to_page(block_start_pfn, 732 block_end_pfn, cc->zone)) 733 break; 734 735 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 736 block_end_pfn, &freelist, 0, true); 737 738 /* 739 * In strict mode, isolate_freepages_block() returns 0 if 740 * there are any holes in the block (ie. invalid PFNs or 741 * non-free pages). 742 */ 743 if (!isolated) 744 break; 745 746 /* 747 * If we managed to isolate pages, it is always (1 << n) * 748 * pageblock_nr_pages for some non-negative n. (Max order 749 * page may span two pageblocks). 750 */ 751 } 752 753 /* __isolate_free_page() does not map the pages */ 754 split_map_pages(&freelist); 755 756 if (pfn < end_pfn) { 757 /* Loop terminated early, cleanup. */ 758 release_freepages(&freelist); 759 return 0; 760 } 761 762 /* We don't use freelists for anything. */ 763 return pfn; 764} 765 766/* Similar to reclaim, but different enough that they don't share logic */ 767static bool too_many_isolated(pg_data_t *pgdat) 768{ 769 unsigned long active, inactive, isolated; 770 771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 772 node_page_state(pgdat, NR_INACTIVE_ANON); 773 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 774 node_page_state(pgdat, NR_ACTIVE_ANON); 775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 776 node_page_state(pgdat, NR_ISOLATED_ANON); 777 778 return isolated > (inactive + active) / 2; 779} 780 781/** 782 * isolate_migratepages_block() - isolate all migrate-able pages within 783 * a single pageblock 784 * @cc: Compaction control structure. 785 * @low_pfn: The first PFN to isolate 786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 787 * @isolate_mode: Isolation mode to be used. 788 * 789 * Isolate all pages that can be migrated from the range specified by 790 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 791 * Returns zero if there is a fatal signal pending, otherwise PFN of the 792 * first page that was not scanned (which may be both less, equal to or more 793 * than end_pfn). 794 * 795 * The pages are isolated on cc->migratepages list (not required to be empty), 796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 797 * is neither read nor updated. 798 */ 799static unsigned long 800isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 801 unsigned long end_pfn, isolate_mode_t isolate_mode) 802{ 803 pg_data_t *pgdat = cc->zone->zone_pgdat; 804 unsigned long nr_scanned = 0, nr_isolated = 0; 805 struct lruvec *lruvec; 806 unsigned long flags = 0; 807 bool locked = false; 808 struct page *page = NULL, *valid_page = NULL; 809 unsigned long start_pfn = low_pfn; 810 bool skip_on_failure = false; 811 unsigned long next_skip_pfn = 0; 812 bool skip_updated = false; 813 814 /* 815 * Ensure that there are not too many pages isolated from the LRU 816 * list by either parallel reclaimers or compaction. If there are, 817 * delay for some time until fewer pages are isolated 818 */ 819 while (unlikely(too_many_isolated(pgdat))) { 820 /* stop isolation if there are still pages not migrated */ 821 if (cc->nr_migratepages) 822 return 0; 823 824 /* async migration should just abort */ 825 if (cc->mode == MIGRATE_ASYNC) 826 return 0; 827 828 congestion_wait(BLK_RW_ASYNC, HZ/10); 829 830 if (fatal_signal_pending(current)) 831 return 0; 832 } 833 834 cond_resched(); 835 836 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 837 skip_on_failure = true; 838 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 839 } 840 841 /* Time to isolate some pages for migration */ 842 for (; low_pfn < end_pfn; low_pfn++) { 843 844 if (skip_on_failure && low_pfn >= next_skip_pfn) { 845 /* 846 * We have isolated all migration candidates in the 847 * previous order-aligned block, and did not skip it due 848 * to failure. We should migrate the pages now and 849 * hopefully succeed compaction. 850 */ 851 if (nr_isolated) 852 break; 853 854 /* 855 * We failed to isolate in the previous order-aligned 856 * block. Set the new boundary to the end of the 857 * current block. Note we can't simply increase 858 * next_skip_pfn by 1 << order, as low_pfn might have 859 * been incremented by a higher number due to skipping 860 * a compound or a high-order buddy page in the 861 * previous loop iteration. 862 */ 863 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 864 } 865 866 /* 867 * Periodically drop the lock (if held) regardless of its 868 * contention, to give chance to IRQs. Abort completely if 869 * a fatal signal is pending. 870 */ 871 if (!(low_pfn % SWAP_CLUSTER_MAX) 872 && compact_unlock_should_abort(&pgdat->lru_lock, 873 flags, &locked, cc)) { 874 low_pfn = 0; 875 goto fatal_pending; 876 } 877 878 if (!pfn_valid_within(low_pfn)) 879 goto isolate_fail; 880 nr_scanned++; 881 882 page = pfn_to_page(low_pfn); 883 884 /* 885 * Check if the pageblock has already been marked skipped. 886 * Only the aligned PFN is checked as the caller isolates 887 * COMPACT_CLUSTER_MAX at a time so the second call must 888 * not falsely conclude that the block should be skipped. 889 */ 890 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 891 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 892 low_pfn = end_pfn; 893 goto isolate_abort; 894 } 895 valid_page = page; 896 } 897 898 /* 899 * Skip if free. We read page order here without zone lock 900 * which is generally unsafe, but the race window is small and 901 * the worst thing that can happen is that we skip some 902 * potential isolation targets. 903 */ 904 if (PageBuddy(page)) { 905 unsigned long freepage_order = buddy_order_unsafe(page); 906 907 /* 908 * Without lock, we cannot be sure that what we got is 909 * a valid page order. Consider only values in the 910 * valid order range to prevent low_pfn overflow. 911 */ 912 if (freepage_order > 0 && freepage_order < MAX_ORDER) 913 low_pfn += (1UL << freepage_order) - 1; 914 continue; 915 } 916 917 /* 918 * Regardless of being on LRU, compound pages such as THP and 919 * hugetlbfs are not to be compacted unless we are attempting 920 * an allocation much larger than the huge page size (eg CMA). 921 * We can potentially save a lot of iterations if we skip them 922 * at once. The check is racy, but we can consider only valid 923 * values and the only danger is skipping too much. 924 */ 925 if (PageCompound(page) && !cc->alloc_contig) { 926 const unsigned int order = compound_order(page); 927 928 if (likely(order < MAX_ORDER)) 929 low_pfn += (1UL << order) - 1; 930 goto isolate_fail; 931 } 932 933 /* 934 * Check may be lockless but that's ok as we recheck later. 935 * It's possible to migrate LRU and non-lru movable pages. 936 * Skip any other type of page 937 */ 938 if (!PageLRU(page)) { 939 /* 940 * __PageMovable can return false positive so we need 941 * to verify it under page_lock. 942 */ 943 if (unlikely(__PageMovable(page)) && 944 !PageIsolated(page)) { 945 if (locked) { 946 spin_unlock_irqrestore(&pgdat->lru_lock, 947 flags); 948 locked = false; 949 } 950 951 if (!isolate_movable_page(page, isolate_mode)) 952 goto isolate_success; 953 } 954 955 goto isolate_fail; 956 } 957 958 /* 959 * Migration will fail if an anonymous page is pinned in memory, 960 * so avoid taking lru_lock and isolating it unnecessarily in an 961 * admittedly racy check. 962 */ 963 if (!page_mapping(page) && 964 page_count(page) > page_mapcount(page)) 965 goto isolate_fail; 966 967 /* 968 * Only allow to migrate anonymous pages in GFP_NOFS context 969 * because those do not depend on fs locks. 970 */ 971 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 972 goto isolate_fail; 973 974 /* If we already hold the lock, we can skip some rechecking */ 975 if (!locked) { 976 locked = compact_lock_irqsave(&pgdat->lru_lock, 977 &flags, cc); 978 979 /* Try get exclusive access under lock */ 980 if (!skip_updated) { 981 skip_updated = true; 982 if (test_and_set_skip(cc, page, low_pfn)) 983 goto isolate_abort; 984 } 985 986 /* Recheck PageLRU and PageCompound under lock */ 987 if (!PageLRU(page)) 988 goto isolate_fail; 989 990 /* 991 * Page become compound since the non-locked check, 992 * and it's on LRU. It can only be a THP so the order 993 * is safe to read and it's 0 for tail pages. 994 */ 995 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 996 low_pfn += compound_nr(page) - 1; 997 goto isolate_fail; 998 } 999 } 1000 1001 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1002 1003 /* Try isolate the page */ 1004 if (__isolate_lru_page(page, isolate_mode) != 0) 1005 goto isolate_fail; 1006 1007 /* The whole page is taken off the LRU; skip the tail pages. */ 1008 if (PageCompound(page)) 1009 low_pfn += compound_nr(page) - 1; 1010 1011 /* Successfully isolated */ 1012 del_page_from_lru_list(page, lruvec, page_lru(page)); 1013 mod_node_page_state(page_pgdat(page), 1014 NR_ISOLATED_ANON + page_is_file_lru(page), 1015 thp_nr_pages(page)); 1016 1017isolate_success: 1018 list_add(&page->lru, &cc->migratepages); 1019 cc->nr_migratepages += compound_nr(page); 1020 nr_isolated += compound_nr(page); 1021 1022 /* 1023 * Avoid isolating too much unless this block is being 1024 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1025 * or a lock is contended. For contention, isolate quickly to 1026 * potentially remove one source of contention. 1027 */ 1028 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1029 !cc->rescan && !cc->contended) { 1030 ++low_pfn; 1031 break; 1032 } 1033 1034 continue; 1035isolate_fail: 1036 if (!skip_on_failure) 1037 continue; 1038 1039 /* 1040 * We have isolated some pages, but then failed. Release them 1041 * instead of migrating, as we cannot form the cc->order buddy 1042 * page anyway. 1043 */ 1044 if (nr_isolated) { 1045 if (locked) { 1046 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1047 locked = false; 1048 } 1049 putback_movable_pages(&cc->migratepages); 1050 cc->nr_migratepages = 0; 1051 nr_isolated = 0; 1052 } 1053 1054 if (low_pfn < next_skip_pfn) { 1055 low_pfn = next_skip_pfn - 1; 1056 /* 1057 * The check near the loop beginning would have updated 1058 * next_skip_pfn too, but this is a bit simpler. 1059 */ 1060 next_skip_pfn += 1UL << cc->order; 1061 } 1062 } 1063 1064 /* 1065 * The PageBuddy() check could have potentially brought us outside 1066 * the range to be scanned. 1067 */ 1068 if (unlikely(low_pfn > end_pfn)) 1069 low_pfn = end_pfn; 1070 1071isolate_abort: 1072 if (locked) 1073 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1074 1075 /* 1076 * Updated the cached scanner pfn once the pageblock has been scanned 1077 * Pages will either be migrated in which case there is no point 1078 * scanning in the near future or migration failed in which case the 1079 * failure reason may persist. The block is marked for skipping if 1080 * there were no pages isolated in the block or if the block is 1081 * rescanned twice in a row. 1082 */ 1083 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1084 if (valid_page && !skip_updated) 1085 set_pageblock_skip(valid_page); 1086 update_cached_migrate(cc, low_pfn); 1087 } 1088 1089 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1090 nr_scanned, nr_isolated); 1091 1092fatal_pending: 1093 cc->total_migrate_scanned += nr_scanned; 1094 if (nr_isolated) 1095 count_compact_events(COMPACTISOLATED, nr_isolated); 1096 1097 return low_pfn; 1098} 1099 1100/** 1101 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1102 * @cc: Compaction control structure. 1103 * @start_pfn: The first PFN to start isolating. 1104 * @end_pfn: The one-past-last PFN. 1105 * 1106 * Returns zero if isolation fails fatally due to e.g. pending signal. 1107 * Otherwise, function returns one-past-the-last PFN of isolated page 1108 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1109 */ 1110unsigned long 1111isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1112 unsigned long end_pfn) 1113{ 1114 unsigned long pfn, block_start_pfn, block_end_pfn; 1115 1116 /* Scan block by block. First and last block may be incomplete */ 1117 pfn = start_pfn; 1118 block_start_pfn = pageblock_start_pfn(pfn); 1119 if (block_start_pfn < cc->zone->zone_start_pfn) 1120 block_start_pfn = cc->zone->zone_start_pfn; 1121 block_end_pfn = pageblock_end_pfn(pfn); 1122 1123 for (; pfn < end_pfn; pfn = block_end_pfn, 1124 block_start_pfn = block_end_pfn, 1125 block_end_pfn += pageblock_nr_pages) { 1126 1127 block_end_pfn = min(block_end_pfn, end_pfn); 1128 1129 if (!pageblock_pfn_to_page(block_start_pfn, 1130 block_end_pfn, cc->zone)) 1131 continue; 1132 1133 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1134 ISOLATE_UNEVICTABLE); 1135 1136 if (!pfn) 1137 break; 1138 1139 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1140 break; 1141 } 1142 1143 return pfn; 1144} 1145 1146#endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1147#ifdef CONFIG_COMPACTION 1148 1149static bool suitable_migration_source(struct compact_control *cc, 1150 struct page *page) 1151{ 1152 int block_mt; 1153 1154 if (pageblock_skip_persistent(page)) 1155 return false; 1156 1157 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1158 return true; 1159 1160 block_mt = get_pageblock_migratetype(page); 1161 1162 if (cc->migratetype == MIGRATE_MOVABLE) 1163 return is_migrate_movable(block_mt); 1164 else 1165 return block_mt == cc->migratetype; 1166} 1167 1168/* Returns true if the page is within a block suitable for migration to */ 1169static bool suitable_migration_target(struct compact_control *cc, 1170 struct page *page) 1171{ 1172 /* If the page is a large free page, then disallow migration */ 1173 if (PageBuddy(page)) { 1174 /* 1175 * We are checking page_order without zone->lock taken. But 1176 * the only small danger is that we skip a potentially suitable 1177 * pageblock, so it's not worth to check order for valid range. 1178 */ 1179 if (buddy_order_unsafe(page) >= pageblock_order) 1180 return false; 1181 } 1182 1183 if (cc->ignore_block_suitable) 1184 return true; 1185 1186 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1187 if (is_migrate_movable(get_pageblock_migratetype(page))) 1188 return true; 1189 1190 /* Otherwise skip the block */ 1191 return false; 1192} 1193 1194static inline unsigned int 1195freelist_scan_limit(struct compact_control *cc) 1196{ 1197 unsigned short shift = BITS_PER_LONG - 1; 1198 1199 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1200} 1201 1202/* 1203 * Test whether the free scanner has reached the same or lower pageblock than 1204 * the migration scanner, and compaction should thus terminate. 1205 */ 1206static inline bool compact_scanners_met(struct compact_control *cc) 1207{ 1208 return (cc->free_pfn >> pageblock_order) 1209 <= (cc->migrate_pfn >> pageblock_order); 1210} 1211 1212/* 1213 * Used when scanning for a suitable migration target which scans freelists 1214 * in reverse. Reorders the list such as the unscanned pages are scanned 1215 * first on the next iteration of the free scanner 1216 */ 1217static void 1218move_freelist_head(struct list_head *freelist, struct page *freepage) 1219{ 1220 LIST_HEAD(sublist); 1221 1222 if (!list_is_last(freelist, &freepage->lru)) { 1223 list_cut_before(&sublist, freelist, &freepage->lru); 1224 if (!list_empty(&sublist)) 1225 list_splice_tail(&sublist, freelist); 1226 } 1227} 1228 1229/* 1230 * Similar to move_freelist_head except used by the migration scanner 1231 * when scanning forward. It's possible for these list operations to 1232 * move against each other if they search the free list exactly in 1233 * lockstep. 1234 */ 1235static void 1236move_freelist_tail(struct list_head *freelist, struct page *freepage) 1237{ 1238 LIST_HEAD(sublist); 1239 1240 if (!list_is_first(freelist, &freepage->lru)) { 1241 list_cut_position(&sublist, freelist, &freepage->lru); 1242 if (!list_empty(&sublist)) 1243 list_splice_tail(&sublist, freelist); 1244 } 1245} 1246 1247static void 1248fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1249{ 1250 unsigned long start_pfn, end_pfn; 1251 struct page *page; 1252 1253 /* Do not search around if there are enough pages already */ 1254 if (cc->nr_freepages >= cc->nr_migratepages) 1255 return; 1256 1257 /* Minimise scanning during async compaction */ 1258 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1259 return; 1260 1261 /* Pageblock boundaries */ 1262 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1263 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1264 1265 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1266 if (!page) 1267 return; 1268 1269 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1270 1271 /* Skip this pageblock in the future as it's full or nearly full */ 1272 if (cc->nr_freepages < cc->nr_migratepages) 1273 set_pageblock_skip(page); 1274 1275 return; 1276} 1277 1278/* Search orders in round-robin fashion */ 1279static int next_search_order(struct compact_control *cc, int order) 1280{ 1281 order--; 1282 if (order < 0) 1283 order = cc->order - 1; 1284 1285 /* Search wrapped around? */ 1286 if (order == cc->search_order) { 1287 cc->search_order--; 1288 if (cc->search_order < 0) 1289 cc->search_order = cc->order - 1; 1290 return -1; 1291 } 1292 1293 return order; 1294} 1295 1296static unsigned long 1297fast_isolate_freepages(struct compact_control *cc) 1298{ 1299 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1300 unsigned int nr_scanned = 0; 1301 unsigned long low_pfn, min_pfn, highest = 0; 1302 unsigned long nr_isolated = 0; 1303 unsigned long distance; 1304 struct page *page = NULL; 1305 bool scan_start = false; 1306 int order; 1307 1308 /* Full compaction passes in a negative order */ 1309 if (cc->order <= 0) 1310 return cc->free_pfn; 1311 1312 /* 1313 * If starting the scan, use a deeper search and use the highest 1314 * PFN found if a suitable one is not found. 1315 */ 1316 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1317 limit = pageblock_nr_pages >> 1; 1318 scan_start = true; 1319 } 1320 1321 /* 1322 * Preferred point is in the top quarter of the scan space but take 1323 * a pfn from the top half if the search is problematic. 1324 */ 1325 distance = (cc->free_pfn - cc->migrate_pfn); 1326 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1327 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1328 1329 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1330 low_pfn = min_pfn; 1331 1332 /* 1333 * Search starts from the last successful isolation order or the next 1334 * order to search after a previous failure 1335 */ 1336 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1337 1338 for (order = cc->search_order; 1339 !page && order >= 0; 1340 order = next_search_order(cc, order)) { 1341 struct free_area *area = &cc->zone->free_area[order]; 1342 struct list_head *freelist; 1343 struct page *freepage; 1344 unsigned long flags; 1345 unsigned int order_scanned = 0; 1346 unsigned long high_pfn = 0; 1347 1348 if (!area->nr_free) 1349 continue; 1350 1351 spin_lock_irqsave(&cc->zone->lock, flags); 1352 freelist = &area->free_list[MIGRATE_MOVABLE]; 1353 list_for_each_entry_reverse(freepage, freelist, lru) { 1354 unsigned long pfn; 1355 1356 order_scanned++; 1357 nr_scanned++; 1358 pfn = page_to_pfn(freepage); 1359 1360 if (pfn >= highest) 1361 highest = max(pageblock_start_pfn(pfn), 1362 cc->zone->zone_start_pfn); 1363 1364 if (pfn >= low_pfn) { 1365 cc->fast_search_fail = 0; 1366 cc->search_order = order; 1367 page = freepage; 1368 break; 1369 } 1370 1371 if (pfn >= min_pfn && pfn > high_pfn) { 1372 high_pfn = pfn; 1373 1374 /* Shorten the scan if a candidate is found */ 1375 limit >>= 1; 1376 } 1377 1378 if (order_scanned >= limit) 1379 break; 1380 } 1381 1382 /* Use a minimum pfn if a preferred one was not found */ 1383 if (!page && high_pfn) { 1384 page = pfn_to_page(high_pfn); 1385 1386 /* Update freepage for the list reorder below */ 1387 freepage = page; 1388 } 1389 1390 /* Reorder to so a future search skips recent pages */ 1391 move_freelist_head(freelist, freepage); 1392 1393 /* Isolate the page if available */ 1394 if (page) { 1395 if (__isolate_free_page(page, order)) { 1396 set_page_private(page, order); 1397 nr_isolated = 1 << order; 1398 cc->nr_freepages += nr_isolated; 1399 list_add_tail(&page->lru, &cc->freepages); 1400 count_compact_events(COMPACTISOLATED, nr_isolated); 1401 } else { 1402 /* If isolation fails, abort the search */ 1403 order = cc->search_order + 1; 1404 page = NULL; 1405 } 1406 } 1407 1408 spin_unlock_irqrestore(&cc->zone->lock, flags); 1409 1410 /* 1411 * Smaller scan on next order so the total scan ig related 1412 * to freelist_scan_limit. 1413 */ 1414 if (order_scanned >= limit) 1415 limit = min(1U, limit >> 1); 1416 } 1417 1418 if (!page) { 1419 cc->fast_search_fail++; 1420 if (scan_start) { 1421 /* 1422 * Use the highest PFN found above min. If one was 1423 * not found, be pessimistic for direct compaction 1424 * and use the min mark. 1425 */ 1426 if (highest) { 1427 page = pfn_to_page(highest); 1428 cc->free_pfn = highest; 1429 } else { 1430 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1431 page = pageblock_pfn_to_page(min_pfn, 1432 min(pageblock_end_pfn(min_pfn), 1433 zone_end_pfn(cc->zone)), 1434 cc->zone); 1435 cc->free_pfn = min_pfn; 1436 } 1437 } 1438 } 1439 } 1440 1441 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1442 highest -= pageblock_nr_pages; 1443 cc->zone->compact_cached_free_pfn = highest; 1444 } 1445 1446 cc->total_free_scanned += nr_scanned; 1447 if (!page) 1448 return cc->free_pfn; 1449 1450 low_pfn = page_to_pfn(page); 1451 fast_isolate_around(cc, low_pfn); 1452 return low_pfn; 1453} 1454 1455/* 1456 * Based on information in the current compact_control, find blocks 1457 * suitable for isolating free pages from and then isolate them. 1458 */ 1459static void isolate_freepages(struct compact_control *cc) 1460{ 1461 struct zone *zone = cc->zone; 1462 struct page *page; 1463 unsigned long block_start_pfn; /* start of current pageblock */ 1464 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1465 unsigned long block_end_pfn; /* end of current pageblock */ 1466 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1467 struct list_head *freelist = &cc->freepages; 1468 unsigned int stride; 1469 1470 /* Try a small search of the free lists for a candidate */ 1471 isolate_start_pfn = fast_isolate_freepages(cc); 1472 if (cc->nr_freepages) 1473 goto splitmap; 1474 1475 /* 1476 * Initialise the free scanner. The starting point is where we last 1477 * successfully isolated from, zone-cached value, or the end of the 1478 * zone when isolating for the first time. For looping we also need 1479 * this pfn aligned down to the pageblock boundary, because we do 1480 * block_start_pfn -= pageblock_nr_pages in the for loop. 1481 * For ending point, take care when isolating in last pageblock of a 1482 * zone which ends in the middle of a pageblock. 1483 * The low boundary is the end of the pageblock the migration scanner 1484 * is using. 1485 */ 1486 isolate_start_pfn = cc->free_pfn; 1487 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1488 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1489 zone_end_pfn(zone)); 1490 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1491 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1492 1493 /* 1494 * Isolate free pages until enough are available to migrate the 1495 * pages on cc->migratepages. We stop searching if the migrate 1496 * and free page scanners meet or enough free pages are isolated. 1497 */ 1498 for (; block_start_pfn >= low_pfn; 1499 block_end_pfn = block_start_pfn, 1500 block_start_pfn -= pageblock_nr_pages, 1501 isolate_start_pfn = block_start_pfn) { 1502 unsigned long nr_isolated; 1503 1504 /* 1505 * This can iterate a massively long zone without finding any 1506 * suitable migration targets, so periodically check resched. 1507 */ 1508 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1509 cond_resched(); 1510 1511 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1512 zone); 1513 if (!page) 1514 continue; 1515 1516 /* Check the block is suitable for migration */ 1517 if (!suitable_migration_target(cc, page)) 1518 continue; 1519 1520 /* If isolation recently failed, do not retry */ 1521 if (!isolation_suitable(cc, page)) 1522 continue; 1523 1524 /* Found a block suitable for isolating free pages from. */ 1525 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1526 block_end_pfn, freelist, stride, false); 1527 1528 /* Update the skip hint if the full pageblock was scanned */ 1529 if (isolate_start_pfn == block_end_pfn) 1530 update_pageblock_skip(cc, page, block_start_pfn); 1531 1532 /* Are enough freepages isolated? */ 1533 if (cc->nr_freepages >= cc->nr_migratepages) { 1534 if (isolate_start_pfn >= block_end_pfn) { 1535 /* 1536 * Restart at previous pageblock if more 1537 * freepages can be isolated next time. 1538 */ 1539 isolate_start_pfn = 1540 block_start_pfn - pageblock_nr_pages; 1541 } 1542 break; 1543 } else if (isolate_start_pfn < block_end_pfn) { 1544 /* 1545 * If isolation failed early, do not continue 1546 * needlessly. 1547 */ 1548 break; 1549 } 1550 1551 /* Adjust stride depending on isolation */ 1552 if (nr_isolated) { 1553 stride = 1; 1554 continue; 1555 } 1556 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1557 } 1558 1559 /* 1560 * Record where the free scanner will restart next time. Either we 1561 * broke from the loop and set isolate_start_pfn based on the last 1562 * call to isolate_freepages_block(), or we met the migration scanner 1563 * and the loop terminated due to isolate_start_pfn < low_pfn 1564 */ 1565 cc->free_pfn = isolate_start_pfn; 1566 1567splitmap: 1568 /* __isolate_free_page() does not map the pages */ 1569 split_map_pages(freelist); 1570} 1571 1572/* 1573 * This is a migrate-callback that "allocates" freepages by taking pages 1574 * from the isolated freelists in the block we are migrating to. 1575 */ 1576static struct page *compaction_alloc(struct page *migratepage, 1577 unsigned long data) 1578{ 1579 struct compact_control *cc = (struct compact_control *)data; 1580 struct page *freepage; 1581 1582 if (list_empty(&cc->freepages)) { 1583 isolate_freepages(cc); 1584 1585 if (list_empty(&cc->freepages)) 1586 return NULL; 1587 } 1588 1589 freepage = list_entry(cc->freepages.next, struct page, lru); 1590 list_del(&freepage->lru); 1591 cc->nr_freepages--; 1592 1593 return freepage; 1594} 1595 1596/* 1597 * This is a migrate-callback that "frees" freepages back to the isolated 1598 * freelist. All pages on the freelist are from the same zone, so there is no 1599 * special handling needed for NUMA. 1600 */ 1601static void compaction_free(struct page *page, unsigned long data) 1602{ 1603 struct compact_control *cc = (struct compact_control *)data; 1604 1605 list_add(&page->lru, &cc->freepages); 1606 cc->nr_freepages++; 1607} 1608 1609/* possible outcome of isolate_migratepages */ 1610typedef enum { 1611 ISOLATE_ABORT, /* Abort compaction now */ 1612 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1613 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1614} isolate_migrate_t; 1615 1616/* 1617 * Allow userspace to control policy on scanning the unevictable LRU for 1618 * compactable pages. 1619 */ 1620#ifdef CONFIG_PREEMPT_RT 1621int sysctl_compact_unevictable_allowed __read_mostly = 0; 1622#else 1623int sysctl_compact_unevictable_allowed __read_mostly = 1; 1624#endif 1625 1626static inline void 1627update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1628{ 1629 if (cc->fast_start_pfn == ULONG_MAX) 1630 return; 1631 1632 if (!cc->fast_start_pfn) 1633 cc->fast_start_pfn = pfn; 1634 1635 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1636} 1637 1638static inline unsigned long 1639reinit_migrate_pfn(struct compact_control *cc) 1640{ 1641 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1642 return cc->migrate_pfn; 1643 1644 cc->migrate_pfn = cc->fast_start_pfn; 1645 cc->fast_start_pfn = ULONG_MAX; 1646 1647 return cc->migrate_pfn; 1648} 1649 1650/* 1651 * Briefly search the free lists for a migration source that already has 1652 * some free pages to reduce the number of pages that need migration 1653 * before a pageblock is free. 1654 */ 1655static unsigned long fast_find_migrateblock(struct compact_control *cc) 1656{ 1657 unsigned int limit = freelist_scan_limit(cc); 1658 unsigned int nr_scanned = 0; 1659 unsigned long distance; 1660 unsigned long pfn = cc->migrate_pfn; 1661 unsigned long high_pfn; 1662 int order; 1663 bool found_block = false; 1664 1665 /* Skip hints are relied on to avoid repeats on the fast search */ 1666 if (cc->ignore_skip_hint) 1667 return pfn; 1668 1669 /* 1670 * If the migrate_pfn is not at the start of a zone or the start 1671 * of a pageblock then assume this is a continuation of a previous 1672 * scan restarted due to COMPACT_CLUSTER_MAX. 1673 */ 1674 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1675 return pfn; 1676 1677 /* 1678 * For smaller orders, just linearly scan as the number of pages 1679 * to migrate should be relatively small and does not necessarily 1680 * justify freeing up a large block for a small allocation. 1681 */ 1682 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1683 return pfn; 1684 1685 /* 1686 * Only allow kcompactd and direct requests for movable pages to 1687 * quickly clear out a MOVABLE pageblock for allocation. This 1688 * reduces the risk that a large movable pageblock is freed for 1689 * an unmovable/reclaimable small allocation. 1690 */ 1691 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1692 return pfn; 1693 1694 /* 1695 * When starting the migration scanner, pick any pageblock within the 1696 * first half of the search space. Otherwise try and pick a pageblock 1697 * within the first eighth to reduce the chances that a migration 1698 * target later becomes a source. 1699 */ 1700 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1701 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1702 distance >>= 2; 1703 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1704 1705 for (order = cc->order - 1; 1706 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1707 order--) { 1708 struct free_area *area = &cc->zone->free_area[order]; 1709 struct list_head *freelist; 1710 unsigned long flags; 1711 struct page *freepage; 1712 1713 if (!area->nr_free) 1714 continue; 1715 1716 spin_lock_irqsave(&cc->zone->lock, flags); 1717 freelist = &area->free_list[MIGRATE_MOVABLE]; 1718 list_for_each_entry(freepage, freelist, lru) { 1719 unsigned long free_pfn; 1720 1721 if (nr_scanned++ >= limit) { 1722 move_freelist_tail(freelist, freepage); 1723 break; 1724 } 1725 1726 free_pfn = page_to_pfn(freepage); 1727 if (free_pfn < high_pfn) { 1728 /* 1729 * Avoid if skipped recently. Ideally it would 1730 * move to the tail but even safe iteration of 1731 * the list assumes an entry is deleted, not 1732 * reordered. 1733 */ 1734 if (get_pageblock_skip(freepage)) 1735 continue; 1736 1737 /* Reorder to so a future search skips recent pages */ 1738 move_freelist_tail(freelist, freepage); 1739 1740 update_fast_start_pfn(cc, free_pfn); 1741 pfn = pageblock_start_pfn(free_pfn); 1742 if (pfn < cc->zone->zone_start_pfn) 1743 pfn = cc->zone->zone_start_pfn; 1744 cc->fast_search_fail = 0; 1745 found_block = true; 1746 set_pageblock_skip(freepage); 1747 break; 1748 } 1749 } 1750 spin_unlock_irqrestore(&cc->zone->lock, flags); 1751 } 1752 1753 cc->total_migrate_scanned += nr_scanned; 1754 1755 /* 1756 * If fast scanning failed then use a cached entry for a page block 1757 * that had free pages as the basis for starting a linear scan. 1758 */ 1759 if (!found_block) { 1760 cc->fast_search_fail++; 1761 pfn = reinit_migrate_pfn(cc); 1762 } 1763 return pfn; 1764} 1765 1766/* 1767 * Isolate all pages that can be migrated from the first suitable block, 1768 * starting at the block pointed to by the migrate scanner pfn within 1769 * compact_control. 1770 */ 1771static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1772{ 1773 unsigned long block_start_pfn; 1774 unsigned long block_end_pfn; 1775 unsigned long low_pfn; 1776 struct page *page; 1777 const isolate_mode_t isolate_mode = 1778 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1779 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1780 bool fast_find_block; 1781 1782 /* 1783 * Start at where we last stopped, or beginning of the zone as 1784 * initialized by compact_zone(). The first failure will use 1785 * the lowest PFN as the starting point for linear scanning. 1786 */ 1787 low_pfn = fast_find_migrateblock(cc); 1788 block_start_pfn = pageblock_start_pfn(low_pfn); 1789 if (block_start_pfn < cc->zone->zone_start_pfn) 1790 block_start_pfn = cc->zone->zone_start_pfn; 1791 1792 /* 1793 * fast_find_migrateblock marks a pageblock skipped so to avoid 1794 * the isolation_suitable check below, check whether the fast 1795 * search was successful. 1796 */ 1797 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1798 1799 /* Only scan within a pageblock boundary */ 1800 block_end_pfn = pageblock_end_pfn(low_pfn); 1801 1802 /* 1803 * Iterate over whole pageblocks until we find the first suitable. 1804 * Do not cross the free scanner. 1805 */ 1806 for (; block_end_pfn <= cc->free_pfn; 1807 fast_find_block = false, 1808 low_pfn = block_end_pfn, 1809 block_start_pfn = block_end_pfn, 1810 block_end_pfn += pageblock_nr_pages) { 1811 1812 /* 1813 * This can potentially iterate a massively long zone with 1814 * many pageblocks unsuitable, so periodically check if we 1815 * need to schedule. 1816 */ 1817 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1818 cond_resched(); 1819 1820 page = pageblock_pfn_to_page(block_start_pfn, 1821 block_end_pfn, cc->zone); 1822 if (!page) 1823 continue; 1824 1825 /* 1826 * If isolation recently failed, do not retry. Only check the 1827 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1828 * to be visited multiple times. Assume skip was checked 1829 * before making it "skip" so other compaction instances do 1830 * not scan the same block. 1831 */ 1832 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1833 !fast_find_block && !isolation_suitable(cc, page)) 1834 continue; 1835 1836 /* 1837 * For async compaction, also only scan in MOVABLE blocks 1838 * without huge pages. Async compaction is optimistic to see 1839 * if the minimum amount of work satisfies the allocation. 1840 * The cached PFN is updated as it's possible that all 1841 * remaining blocks between source and target are unsuitable 1842 * and the compaction scanners fail to meet. 1843 */ 1844 if (!suitable_migration_source(cc, page)) { 1845 update_cached_migrate(cc, block_end_pfn); 1846 continue; 1847 } 1848 1849 /* Perform the isolation */ 1850 low_pfn = isolate_migratepages_block(cc, low_pfn, 1851 block_end_pfn, isolate_mode); 1852 1853 if (!low_pfn) 1854 return ISOLATE_ABORT; 1855 1856 /* 1857 * Either we isolated something and proceed with migration. Or 1858 * we failed and compact_zone should decide if we should 1859 * continue or not. 1860 */ 1861 break; 1862 } 1863 1864 /* Record where migration scanner will be restarted. */ 1865 cc->migrate_pfn = low_pfn; 1866 1867 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1868} 1869 1870/* 1871 * order == -1 is expected when compacting via 1872 * /proc/sys/vm/compact_memory 1873 */ 1874static inline bool is_via_compact_memory(int order) 1875{ 1876 return order == -1; 1877} 1878 1879static bool kswapd_is_running(pg_data_t *pgdat) 1880{ 1881 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1882} 1883 1884/* 1885 * A zone's fragmentation score is the external fragmentation wrt to the 1886 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value 1887 * in the range [0, 100]. 1888 * 1889 * The scaling factor ensures that proactive compaction focuses on larger 1890 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1891 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1892 * and thus never exceeds the high threshold for proactive compaction. 1893 */ 1894static unsigned int fragmentation_score_zone(struct zone *zone) 1895{ 1896 unsigned long score; 1897 1898 score = zone->present_pages * 1899 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1900 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1901} 1902 1903/* 1904 * The per-node proactive (background) compaction process is started by its 1905 * corresponding kcompactd thread when the node's fragmentation score 1906 * exceeds the high threshold. The compaction process remains active till 1907 * the node's score falls below the low threshold, or one of the back-off 1908 * conditions is met. 1909 */ 1910static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1911{ 1912 unsigned int score = 0; 1913 int zoneid; 1914 1915 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1916 struct zone *zone; 1917 1918 zone = &pgdat->node_zones[zoneid]; 1919 score += fragmentation_score_zone(zone); 1920 } 1921 1922 return score; 1923} 1924 1925static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 1926{ 1927 unsigned int wmark_low; 1928 1929 /* 1930 * Cap the low watermak to avoid excessive compaction 1931 * activity in case a user sets the proactivess tunable 1932 * close to 100 (maximum). 1933 */ 1934 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 1935 return low ? wmark_low : min(wmark_low + 10, 100U); 1936} 1937 1938static bool should_proactive_compact_node(pg_data_t *pgdat) 1939{ 1940 int wmark_high; 1941 1942 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 1943 return false; 1944 1945 wmark_high = fragmentation_score_wmark(pgdat, false); 1946 return fragmentation_score_node(pgdat) > wmark_high; 1947} 1948 1949static enum compact_result __compact_finished(struct compact_control *cc) 1950{ 1951 unsigned int order; 1952 const int migratetype = cc->migratetype; 1953 int ret; 1954 1955 /* Compaction run completes if the migrate and free scanner meet */ 1956 if (compact_scanners_met(cc)) { 1957 /* Let the next compaction start anew. */ 1958 reset_cached_positions(cc->zone); 1959 1960 /* 1961 * Mark that the PG_migrate_skip information should be cleared 1962 * by kswapd when it goes to sleep. kcompactd does not set the 1963 * flag itself as the decision to be clear should be directly 1964 * based on an allocation request. 1965 */ 1966 if (cc->direct_compaction) 1967 cc->zone->compact_blockskip_flush = true; 1968 1969 if (cc->whole_zone) 1970 return COMPACT_COMPLETE; 1971 else 1972 return COMPACT_PARTIAL_SKIPPED; 1973 } 1974 1975 if (cc->proactive_compaction) { 1976 int score, wmark_low; 1977 pg_data_t *pgdat; 1978 1979 pgdat = cc->zone->zone_pgdat; 1980 if (kswapd_is_running(pgdat)) 1981 return COMPACT_PARTIAL_SKIPPED; 1982 1983 score = fragmentation_score_zone(cc->zone); 1984 wmark_low = fragmentation_score_wmark(pgdat, true); 1985 1986 if (score > wmark_low) 1987 ret = COMPACT_CONTINUE; 1988 else 1989 ret = COMPACT_SUCCESS; 1990 1991 goto out; 1992 } 1993 1994 if (is_via_compact_memory(cc->order)) 1995 return COMPACT_CONTINUE; 1996 1997 /* 1998 * Always finish scanning a pageblock to reduce the possibility of 1999 * fallbacks in the future. This is particularly important when 2000 * migration source is unmovable/reclaimable but it's not worth 2001 * special casing. 2002 */ 2003 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2004 return COMPACT_CONTINUE; 2005 2006 /* Direct compactor: Is a suitable page free? */ 2007 ret = COMPACT_NO_SUITABLE_PAGE; 2008 for (order = cc->order; order < MAX_ORDER; order++) { 2009 struct free_area *area = &cc->zone->free_area[order]; 2010 bool can_steal; 2011 2012 /* Job done if page is free of the right migratetype */ 2013 if (!free_area_empty(area, migratetype)) 2014 return COMPACT_SUCCESS; 2015 2016#ifdef CONFIG_CMA 2017 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2018 if (migratetype == get_cma_migratetype() && 2019 !free_area_empty(area, MIGRATE_CMA)) 2020 return COMPACT_SUCCESS; 2021#endif 2022 /* 2023 * Job done if allocation would steal freepages from 2024 * other migratetype buddy lists. 2025 */ 2026 if (find_suitable_fallback(area, order, migratetype, 2027 true, &can_steal) != -1) { 2028 2029 /* movable pages are OK in any pageblock */ 2030 if (migratetype == MIGRATE_MOVABLE) 2031 return COMPACT_SUCCESS; 2032 2033 /* 2034 * We are stealing for a non-movable allocation. Make 2035 * sure we finish compacting the current pageblock 2036 * first so it is as free as possible and we won't 2037 * have to steal another one soon. This only applies 2038 * to sync compaction, as async compaction operates 2039 * on pageblocks of the same migratetype. 2040 */ 2041 if (cc->mode == MIGRATE_ASYNC || 2042 IS_ALIGNED(cc->migrate_pfn, 2043 pageblock_nr_pages)) { 2044 return COMPACT_SUCCESS; 2045 } 2046 2047 ret = COMPACT_CONTINUE; 2048 break; 2049 } 2050 } 2051 2052out: 2053 if (cc->contended || fatal_signal_pending(current)) 2054 ret = COMPACT_CONTENDED; 2055 2056 return ret; 2057} 2058 2059static enum compact_result compact_finished(struct compact_control *cc) 2060{ 2061 int ret; 2062 2063 ret = __compact_finished(cc); 2064 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2065 if (ret == COMPACT_NO_SUITABLE_PAGE) 2066 ret = COMPACT_CONTINUE; 2067 2068 return ret; 2069} 2070 2071/* 2072 * compaction_suitable: Is this suitable to run compaction on this zone now? 2073 * Returns 2074 * COMPACT_SKIPPED - If there are too few free pages for compaction 2075 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2076 * COMPACT_CONTINUE - If compaction should run now 2077 */ 2078static enum compact_result __compaction_suitable(struct zone *zone, int order, 2079 unsigned int alloc_flags, 2080 int highest_zoneidx, 2081 unsigned long wmark_target) 2082{ 2083 unsigned long watermark; 2084 2085 if (is_via_compact_memory(order)) 2086 return COMPACT_CONTINUE; 2087 2088 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2089 /* 2090 * If watermarks for high-order allocation are already met, there 2091 * should be no need for compaction at all. 2092 */ 2093 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2094 alloc_flags)) 2095 return COMPACT_SUCCESS; 2096 2097 /* 2098 * Watermarks for order-0 must be met for compaction to be able to 2099 * isolate free pages for migration targets. This means that the 2100 * watermark and alloc_flags have to match, or be more pessimistic than 2101 * the check in __isolate_free_page(). We don't use the direct 2102 * compactor's alloc_flags, as they are not relevant for freepage 2103 * isolation. We however do use the direct compactor's highest_zoneidx 2104 * to skip over zones where lowmem reserves would prevent allocation 2105 * even if compaction succeeds. 2106 * For costly orders, we require low watermark instead of min for 2107 * compaction to proceed to increase its chances. 2108 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2109 * suitable migration targets 2110 */ 2111 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2112 low_wmark_pages(zone) : min_wmark_pages(zone); 2113 watermark += compact_gap(order); 2114 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2115 ALLOC_CMA, wmark_target)) 2116 return COMPACT_SKIPPED; 2117 2118 return COMPACT_CONTINUE; 2119} 2120 2121enum compact_result compaction_suitable(struct zone *zone, int order, 2122 unsigned int alloc_flags, 2123 int highest_zoneidx) 2124{ 2125 enum compact_result ret; 2126 int fragindex; 2127 2128 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2129 zone_page_state(zone, NR_FREE_PAGES)); 2130 /* 2131 * fragmentation index determines if allocation failures are due to 2132 * low memory or external fragmentation 2133 * 2134 * index of -1000 would imply allocations might succeed depending on 2135 * watermarks, but we already failed the high-order watermark check 2136 * index towards 0 implies failure is due to lack of memory 2137 * index towards 1000 implies failure is due to fragmentation 2138 * 2139 * Only compact if a failure would be due to fragmentation. Also 2140 * ignore fragindex for non-costly orders where the alternative to 2141 * a successful reclaim/compaction is OOM. Fragindex and the 2142 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2143 * excessive compaction for costly orders, but it should not be at the 2144 * expense of system stability. 2145 */ 2146 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2147 fragindex = fragmentation_index(zone, order); 2148 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2149 ret = COMPACT_NOT_SUITABLE_ZONE; 2150 } 2151 2152 trace_mm_compaction_suitable(zone, order, ret); 2153 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2154 ret = COMPACT_SKIPPED; 2155 2156 return ret; 2157} 2158 2159bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2160 int alloc_flags) 2161{ 2162 struct zone *zone; 2163 struct zoneref *z; 2164 2165 /* 2166 * Make sure at least one zone would pass __compaction_suitable if we continue 2167 * retrying the reclaim. 2168 */ 2169 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2170 ac->highest_zoneidx, ac->nodemask) { 2171 unsigned long available; 2172 enum compact_result compact_result; 2173 2174 /* 2175 * Do not consider all the reclaimable memory because we do not 2176 * want to trash just for a single high order allocation which 2177 * is even not guaranteed to appear even if __compaction_suitable 2178 * is happy about the watermark check. 2179 */ 2180 available = zone_reclaimable_pages(zone) / order; 2181 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2182 compact_result = __compaction_suitable(zone, order, alloc_flags, 2183 ac->highest_zoneidx, available); 2184 if (compact_result != COMPACT_SKIPPED) 2185 return true; 2186 } 2187 2188 return false; 2189} 2190 2191static enum compact_result 2192compact_zone(struct compact_control *cc, struct capture_control *capc) 2193{ 2194 enum compact_result ret; 2195 unsigned long start_pfn = cc->zone->zone_start_pfn; 2196 unsigned long end_pfn = zone_end_pfn(cc->zone); 2197 unsigned long last_migrated_pfn; 2198 const bool sync = cc->mode != MIGRATE_ASYNC; 2199 bool update_cached; 2200 2201 /* 2202 * These counters track activities during zone compaction. Initialize 2203 * them before compacting a new zone. 2204 */ 2205 cc->total_migrate_scanned = 0; 2206 cc->total_free_scanned = 0; 2207 cc->nr_migratepages = 0; 2208 cc->nr_freepages = 0; 2209 INIT_LIST_HEAD(&cc->freepages); 2210 INIT_LIST_HEAD(&cc->migratepages); 2211 2212 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2213 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2214 cc->highest_zoneidx); 2215 /* Compaction is likely to fail */ 2216 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2217 return ret; 2218 2219 /* huh, compaction_suitable is returning something unexpected */ 2220 VM_BUG_ON(ret != COMPACT_CONTINUE); 2221 2222 /* 2223 * Clear pageblock skip if there were failures recently and compaction 2224 * is about to be retried after being deferred. 2225 */ 2226 if (compaction_restarting(cc->zone, cc->order)) 2227 __reset_isolation_suitable(cc->zone); 2228 2229 /* 2230 * Setup to move all movable pages to the end of the zone. Used cached 2231 * information on where the scanners should start (unless we explicitly 2232 * want to compact the whole zone), but check that it is initialised 2233 * by ensuring the values are within zone boundaries. 2234 */ 2235 cc->fast_start_pfn = 0; 2236 if (cc->whole_zone) { 2237 cc->migrate_pfn = start_pfn; 2238 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2239 } else { 2240 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2241 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2242 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2243 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2244 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2245 } 2246 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2247 cc->migrate_pfn = start_pfn; 2248 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2249 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2250 } 2251 2252 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2253 cc->whole_zone = true; 2254 } 2255 2256 last_migrated_pfn = 0; 2257 2258 /* 2259 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2260 * the basis that some migrations will fail in ASYNC mode. However, 2261 * if the cached PFNs match and pageblocks are skipped due to having 2262 * no isolation candidates, then the sync state does not matter. 2263 * Until a pageblock with isolation candidates is found, keep the 2264 * cached PFNs in sync to avoid revisiting the same blocks. 2265 */ 2266 update_cached = !sync && 2267 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2268 2269 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2270 cc->free_pfn, end_pfn, sync); 2271 2272 migrate_prep_local(); 2273 2274 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2275 int err; 2276 unsigned long start_pfn = cc->migrate_pfn; 2277 2278 /* 2279 * Avoid multiple rescans which can happen if a page cannot be 2280 * isolated (dirty/writeback in async mode) or if the migrated 2281 * pages are being allocated before the pageblock is cleared. 2282 * The first rescan will capture the entire pageblock for 2283 * migration. If it fails, it'll be marked skip and scanning 2284 * will proceed as normal. 2285 */ 2286 cc->rescan = false; 2287 if (pageblock_start_pfn(last_migrated_pfn) == 2288 pageblock_start_pfn(start_pfn)) { 2289 cc->rescan = true; 2290 } 2291 2292 switch (isolate_migratepages(cc)) { 2293 case ISOLATE_ABORT: 2294 ret = COMPACT_CONTENDED; 2295 putback_movable_pages(&cc->migratepages); 2296 cc->nr_migratepages = 0; 2297 goto out; 2298 case ISOLATE_NONE: 2299 if (update_cached) { 2300 cc->zone->compact_cached_migrate_pfn[1] = 2301 cc->zone->compact_cached_migrate_pfn[0]; 2302 } 2303 2304 /* 2305 * We haven't isolated and migrated anything, but 2306 * there might still be unflushed migrations from 2307 * previous cc->order aligned block. 2308 */ 2309 goto check_drain; 2310 case ISOLATE_SUCCESS: 2311 update_cached = false; 2312 last_migrated_pfn = start_pfn; 2313 ; 2314 } 2315 2316 err = migrate_pages(&cc->migratepages, compaction_alloc, 2317 compaction_free, (unsigned long)cc, cc->mode, 2318 MR_COMPACTION); 2319 2320 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2321 &cc->migratepages); 2322 2323 /* All pages were either migrated or will be released */ 2324 cc->nr_migratepages = 0; 2325 if (err) { 2326 putback_movable_pages(&cc->migratepages); 2327 /* 2328 * migrate_pages() may return -ENOMEM when scanners meet 2329 * and we want compact_finished() to detect it 2330 */ 2331 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2332 ret = COMPACT_CONTENDED; 2333 goto out; 2334 } 2335 /* 2336 * We failed to migrate at least one page in the current 2337 * order-aligned block, so skip the rest of it. 2338 */ 2339 if (cc->direct_compaction && 2340 (cc->mode == MIGRATE_ASYNC)) { 2341 cc->migrate_pfn = block_end_pfn( 2342 cc->migrate_pfn - 1, cc->order); 2343 /* Draining pcplists is useless in this case */ 2344 last_migrated_pfn = 0; 2345 } 2346 } 2347 2348check_drain: 2349 /* 2350 * Has the migration scanner moved away from the previous 2351 * cc->order aligned block where we migrated from? If yes, 2352 * flush the pages that were freed, so that they can merge and 2353 * compact_finished() can detect immediately if allocation 2354 * would succeed. 2355 */ 2356 if (cc->order > 0 && last_migrated_pfn) { 2357 unsigned long current_block_start = 2358 block_start_pfn(cc->migrate_pfn, cc->order); 2359 2360 if (last_migrated_pfn < current_block_start) { 2361 lru_add_drain_cpu_zone(cc->zone); 2362 /* No more flushing until we migrate again */ 2363 last_migrated_pfn = 0; 2364 } 2365 } 2366 2367 /* Stop if a page has been captured */ 2368 if (capc && capc->page) { 2369 ret = COMPACT_SUCCESS; 2370 break; 2371 } 2372 } 2373 2374out: 2375 /* 2376 * Release free pages and update where the free scanner should restart, 2377 * so we don't leave any returned pages behind in the next attempt. 2378 */ 2379 if (cc->nr_freepages > 0) { 2380 unsigned long free_pfn = release_freepages(&cc->freepages); 2381 2382 cc->nr_freepages = 0; 2383 VM_BUG_ON(free_pfn == 0); 2384 /* The cached pfn is always the first in a pageblock */ 2385 free_pfn = pageblock_start_pfn(free_pfn); 2386 /* 2387 * Only go back, not forward. The cached pfn might have been 2388 * already reset to zone end in compact_finished() 2389 */ 2390 if (free_pfn > cc->zone->compact_cached_free_pfn) 2391 cc->zone->compact_cached_free_pfn = free_pfn; 2392 } 2393 2394 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2395 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2396 2397 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2398 cc->free_pfn, end_pfn, sync, ret); 2399 2400 return ret; 2401} 2402 2403static enum compact_result compact_zone_order(struct zone *zone, int order, 2404 gfp_t gfp_mask, enum compact_priority prio, 2405 unsigned int alloc_flags, int highest_zoneidx, 2406 struct page **capture) 2407{ 2408 enum compact_result ret; 2409 struct compact_control cc = { 2410 .order = order, 2411 .search_order = order, 2412 .gfp_mask = gfp_mask, 2413 .zone = zone, 2414 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2415 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2416 .alloc_flags = alloc_flags, 2417 .highest_zoneidx = highest_zoneidx, 2418 .direct_compaction = true, 2419 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2420 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2421 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2422 }; 2423 struct capture_control capc = { 2424 .cc = &cc, 2425 .page = NULL, 2426 }; 2427 2428 /* 2429 * Make sure the structs are really initialized before we expose the 2430 * capture control, in case we are interrupted and the interrupt handler 2431 * frees a page. 2432 */ 2433 barrier(); 2434 WRITE_ONCE(current->capture_control, &capc); 2435 2436 ret = compact_zone(&cc, &capc); 2437 2438 VM_BUG_ON(!list_empty(&cc.freepages)); 2439 VM_BUG_ON(!list_empty(&cc.migratepages)); 2440 2441 /* 2442 * Make sure we hide capture control first before we read the captured 2443 * page pointer, otherwise an interrupt could free and capture a page 2444 * and we would leak it. 2445 */ 2446 WRITE_ONCE(current->capture_control, NULL); 2447 *capture = READ_ONCE(capc.page); 2448 2449 return ret; 2450} 2451 2452int sysctl_extfrag_threshold = 500; 2453 2454/** 2455 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2456 * @gfp_mask: The GFP mask of the current allocation 2457 * @order: The order of the current allocation 2458 * @alloc_flags: The allocation flags of the current allocation 2459 * @ac: The context of current allocation 2460 * @prio: Determines how hard direct compaction should try to succeed 2461 * @capture: Pointer to free page created by compaction will be stored here 2462 * 2463 * This is the main entry point for direct page compaction. 2464 */ 2465enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2466 unsigned int alloc_flags, const struct alloc_context *ac, 2467 enum compact_priority prio, struct page **capture) 2468{ 2469 int may_perform_io = gfp_mask & __GFP_IO; 2470 struct zoneref *z; 2471 struct zone *zone; 2472 enum compact_result rc = COMPACT_SKIPPED; 2473 2474 /* 2475 * Check if the GFP flags allow compaction - GFP_NOIO is really 2476 * tricky context because the migration might require IO 2477 */ 2478 if (!may_perform_io) 2479 return COMPACT_SKIPPED; 2480 2481 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2482 2483 /* Compact each zone in the list */ 2484 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2485 ac->highest_zoneidx, ac->nodemask) { 2486 enum compact_result status; 2487 2488 if (prio > MIN_COMPACT_PRIORITY 2489 && compaction_deferred(zone, order)) { 2490 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2491 continue; 2492 } 2493 2494 status = compact_zone_order(zone, order, gfp_mask, prio, 2495 alloc_flags, ac->highest_zoneidx, capture); 2496 rc = max(status, rc); 2497 2498 /* The allocation should succeed, stop compacting */ 2499 if (status == COMPACT_SUCCESS) { 2500 /* 2501 * We think the allocation will succeed in this zone, 2502 * but it is not certain, hence the false. The caller 2503 * will repeat this with true if allocation indeed 2504 * succeeds in this zone. 2505 */ 2506 compaction_defer_reset(zone, order, false); 2507 2508 break; 2509 } 2510 2511 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2512 status == COMPACT_PARTIAL_SKIPPED)) 2513 /* 2514 * We think that allocation won't succeed in this zone 2515 * so we defer compaction there. If it ends up 2516 * succeeding after all, it will be reset. 2517 */ 2518 defer_compaction(zone, order); 2519 2520 /* 2521 * We might have stopped compacting due to need_resched() in 2522 * async compaction, or due to a fatal signal detected. In that 2523 * case do not try further zones 2524 */ 2525 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2526 || fatal_signal_pending(current)) 2527 break; 2528 } 2529 2530 return rc; 2531} 2532 2533/* 2534 * Compact all zones within a node till each zone's fragmentation score 2535 * reaches within proactive compaction thresholds (as determined by the 2536 * proactiveness tunable). 2537 * 2538 * It is possible that the function returns before reaching score targets 2539 * due to various back-off conditions, such as, contention on per-node or 2540 * per-zone locks. 2541 */ 2542static void proactive_compact_node(pg_data_t *pgdat) 2543{ 2544 int zoneid; 2545 struct zone *zone; 2546 struct compact_control cc = { 2547 .order = -1, 2548 .mode = MIGRATE_SYNC_LIGHT, 2549 .ignore_skip_hint = true, 2550 .whole_zone = true, 2551 .gfp_mask = GFP_KERNEL, 2552 .proactive_compaction = true, 2553 }; 2554 2555 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2556 zone = &pgdat->node_zones[zoneid]; 2557 if (!populated_zone(zone)) 2558 continue; 2559 2560 cc.zone = zone; 2561 2562 compact_zone(&cc, NULL); 2563 2564 VM_BUG_ON(!list_empty(&cc.freepages)); 2565 VM_BUG_ON(!list_empty(&cc.migratepages)); 2566 } 2567} 2568 2569/* Compact all zones within a node */ 2570static void compact_node(int nid) 2571{ 2572 pg_data_t *pgdat = NODE_DATA(nid); 2573 int zoneid; 2574 struct zone *zone; 2575 struct compact_control cc = { 2576 .order = -1, 2577 .mode = MIGRATE_SYNC, 2578 .ignore_skip_hint = true, 2579 .whole_zone = true, 2580 .gfp_mask = GFP_KERNEL, 2581 }; 2582 2583 2584 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2585 2586 zone = &pgdat->node_zones[zoneid]; 2587 if (!populated_zone(zone)) 2588 continue; 2589 2590 cc.zone = zone; 2591 2592 compact_zone(&cc, NULL); 2593 2594 VM_BUG_ON(!list_empty(&cc.freepages)); 2595 VM_BUG_ON(!list_empty(&cc.migratepages)); 2596 } 2597} 2598 2599/* Compact all nodes in the system */ 2600static void compact_nodes(void) 2601{ 2602 int nid; 2603 2604 /* Flush pending updates to the LRU lists */ 2605 lru_add_drain_all(); 2606 2607 for_each_online_node(nid) 2608 compact_node(nid); 2609} 2610 2611/* The written value is actually unused, all memory is compacted */ 2612int sysctl_compact_memory; 2613 2614/* 2615 * Tunable for proactive compaction. It determines how 2616 * aggressively the kernel should compact memory in the 2617 * background. It takes values in the range [0, 100]. 2618 */ 2619unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2620 2621/* 2622 * This is the entry point for compacting all nodes via 2623 * /proc/sys/vm/compact_memory 2624 */ 2625int sysctl_compaction_handler(struct ctl_table *table, int write, 2626 void *buffer, size_t *length, loff_t *ppos) 2627{ 2628 if (write) 2629 compact_nodes(); 2630 2631 return 0; 2632} 2633 2634#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2635static ssize_t sysfs_compact_node(struct device *dev, 2636 struct device_attribute *attr, 2637 const char *buf, size_t count) 2638{ 2639 int nid = dev->id; 2640 2641 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2642 /* Flush pending updates to the LRU lists */ 2643 lru_add_drain_all(); 2644 2645 compact_node(nid); 2646 } 2647 2648 return count; 2649} 2650static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2651 2652int compaction_register_node(struct node *node) 2653{ 2654 return device_create_file(&node->dev, &dev_attr_compact); 2655} 2656 2657void compaction_unregister_node(struct node *node) 2658{ 2659 return device_remove_file(&node->dev, &dev_attr_compact); 2660} 2661#endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2662 2663static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2664{ 2665 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2666} 2667 2668static bool kcompactd_node_suitable(pg_data_t *pgdat) 2669{ 2670 int zoneid; 2671 struct zone *zone; 2672 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2673 2674 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2675 zone = &pgdat->node_zones[zoneid]; 2676 2677 if (!populated_zone(zone)) 2678 continue; 2679 2680 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2681 highest_zoneidx) == COMPACT_CONTINUE) 2682 return true; 2683 } 2684 2685 return false; 2686} 2687 2688static void kcompactd_do_work(pg_data_t *pgdat) 2689{ 2690 /* 2691 * With no special task, compact all zones so that a page of requested 2692 * order is allocatable. 2693 */ 2694 int zoneid; 2695 struct zone *zone; 2696 struct compact_control cc = { 2697 .order = pgdat->kcompactd_max_order, 2698 .search_order = pgdat->kcompactd_max_order, 2699 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2700 .mode = MIGRATE_SYNC_LIGHT, 2701 .ignore_skip_hint = false, 2702 .gfp_mask = GFP_KERNEL, 2703 }; 2704 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2705 cc.highest_zoneidx); 2706 count_compact_event(KCOMPACTD_WAKE); 2707 2708 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2709 int status; 2710 2711 zone = &pgdat->node_zones[zoneid]; 2712 if (!populated_zone(zone)) 2713 continue; 2714 2715 if (compaction_deferred(zone, cc.order)) 2716 continue; 2717 2718 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2719 COMPACT_CONTINUE) 2720 continue; 2721 2722 if (kthread_should_stop()) 2723 return; 2724 2725 cc.zone = zone; 2726 status = compact_zone(&cc, NULL); 2727 2728 if (status == COMPACT_SUCCESS) { 2729 compaction_defer_reset(zone, cc.order, false); 2730 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2731 /* 2732 * Buddy pages may become stranded on pcps that could 2733 * otherwise coalesce on the zone's free area for 2734 * order >= cc.order. This is ratelimited by the 2735 * upcoming deferral. 2736 */ 2737 drain_all_pages(zone); 2738 2739 /* 2740 * We use sync migration mode here, so we defer like 2741 * sync direct compaction does. 2742 */ 2743 defer_compaction(zone, cc.order); 2744 } 2745 2746 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2747 cc.total_migrate_scanned); 2748 count_compact_events(KCOMPACTD_FREE_SCANNED, 2749 cc.total_free_scanned); 2750 2751 VM_BUG_ON(!list_empty(&cc.freepages)); 2752 VM_BUG_ON(!list_empty(&cc.migratepages)); 2753 } 2754 2755 /* 2756 * Regardless of success, we are done until woken up next. But remember 2757 * the requested order/highest_zoneidx in case it was higher/tighter 2758 * than our current ones 2759 */ 2760 if (pgdat->kcompactd_max_order <= cc.order) 2761 pgdat->kcompactd_max_order = 0; 2762 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2763 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2764} 2765 2766void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2767{ 2768 if (!order) 2769 return; 2770 2771 if (pgdat->kcompactd_max_order < order) 2772 pgdat->kcompactd_max_order = order; 2773 2774 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2775 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2776 2777 /* 2778 * Pairs with implicit barrier in wait_event_freezable() 2779 * such that wakeups are not missed. 2780 */ 2781 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2782 return; 2783 2784 if (!kcompactd_node_suitable(pgdat)) 2785 return; 2786 2787 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2788 highest_zoneidx); 2789 wake_up_interruptible(&pgdat->kcompactd_wait); 2790} 2791 2792/* 2793 * The background compaction daemon, started as a kernel thread 2794 * from the init process. 2795 */ 2796static int kcompactd(void *p) 2797{ 2798 pg_data_t *pgdat = (pg_data_t*)p; 2799 struct task_struct *tsk = current; 2800 unsigned int proactive_defer = 0; 2801 2802 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2803 2804 if (!cpumask_empty(cpumask)) 2805 set_cpus_allowed_ptr(tsk, cpumask); 2806 2807 set_freezable(); 2808 2809 pgdat->kcompactd_max_order = 0; 2810 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2811 2812 while (!kthread_should_stop()) { 2813 unsigned long pflags; 2814 2815 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2816 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2817 kcompactd_work_requested(pgdat), 2818 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2819 2820 psi_memstall_enter(&pflags); 2821 kcompactd_do_work(pgdat); 2822 psi_memstall_leave(&pflags); 2823 continue; 2824 } 2825 2826 /* kcompactd wait timeout */ 2827 if (should_proactive_compact_node(pgdat)) { 2828 unsigned int prev_score, score; 2829 2830 if (proactive_defer) { 2831 proactive_defer--; 2832 continue; 2833 } 2834 prev_score = fragmentation_score_node(pgdat); 2835 proactive_compact_node(pgdat); 2836 score = fragmentation_score_node(pgdat); 2837 /* 2838 * Defer proactive compaction if the fragmentation 2839 * score did not go down i.e. no progress made. 2840 */ 2841 proactive_defer = score < prev_score ? 2842 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2843 } 2844 } 2845 2846 return 0; 2847} 2848 2849/* 2850 * This kcompactd start function will be called by init and node-hot-add. 2851 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2852 */ 2853int kcompactd_run(int nid) 2854{ 2855 pg_data_t *pgdat = NODE_DATA(nid); 2856 int ret = 0; 2857 2858 if (pgdat->kcompactd) 2859 return 0; 2860 2861 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2862 if (IS_ERR(pgdat->kcompactd)) { 2863 pr_err("Failed to start kcompactd on node %d\n", nid); 2864 ret = PTR_ERR(pgdat->kcompactd); 2865 pgdat->kcompactd = NULL; 2866 } 2867 return ret; 2868} 2869 2870/* 2871 * Called by memory hotplug when all memory in a node is offlined. Caller must 2872 * hold mem_hotplug_begin/end(). 2873 */ 2874void kcompactd_stop(int nid) 2875{ 2876 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2877 2878 if (kcompactd) { 2879 kthread_stop(kcompactd); 2880 NODE_DATA(nid)->kcompactd = NULL; 2881 } 2882} 2883 2884/* 2885 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2886 * not required for correctness. So if the last cpu in a node goes 2887 * away, we get changed to run anywhere: as the first one comes back, 2888 * restore their cpu bindings. 2889 */ 2890static int kcompactd_cpu_online(unsigned int cpu) 2891{ 2892 int nid; 2893 2894 for_each_node_state(nid, N_MEMORY) { 2895 pg_data_t *pgdat = NODE_DATA(nid); 2896 const struct cpumask *mask; 2897 2898 mask = cpumask_of_node(pgdat->node_id); 2899 2900 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2901 /* One of our CPUs online: restore mask */ 2902 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2903 } 2904 return 0; 2905} 2906 2907static int __init kcompactd_init(void) 2908{ 2909 int nid; 2910 int ret; 2911 2912 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2913 "mm/compaction:online", 2914 kcompactd_cpu_online, NULL); 2915 if (ret < 0) { 2916 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2917 return ret; 2918 } 2919 2920 for_each_node_state(nid, N_MEMORY) 2921 kcompactd_run(nid); 2922 return 0; 2923} 2924subsys_initcall(kcompactd_init) 2925 2926#endif /* CONFIG_COMPACTION */ 2927