xref: /kernel/linux/linux-5.10/mm/compaction.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include <linux/psi.h>
26#include "internal.h"
27
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31	count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36	count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65#elif defined CONFIG_HUGETLBFS
66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69#endif
70
71static unsigned long release_freepages(struct list_head *freelist)
72{
73	struct page *page, *next;
74	unsigned long high_pfn = 0;
75
76	list_for_each_entry_safe(page, next, freelist, lru) {
77		unsigned long pfn = page_to_pfn(page);
78		list_del(&page->lru);
79		__free_page(page);
80		if (pfn > high_pfn)
81			high_pfn = pfn;
82	}
83
84	return high_pfn;
85}
86
87static void split_map_pages(struct list_head *list)
88{
89	unsigned int i, order, nr_pages;
90	struct page *page, *next;
91	LIST_HEAD(tmp_list);
92
93	list_for_each_entry_safe(page, next, list, lru) {
94		list_del(&page->lru);
95
96		order = page_private(page);
97		nr_pages = 1 << order;
98
99		post_alloc_hook(page, order, __GFP_MOVABLE);
100		if (order)
101			split_page(page, order);
102
103		for (i = 0; i < nr_pages; i++) {
104			list_add(&page->lru, &tmp_list);
105			page++;
106		}
107	}
108
109	list_splice(&tmp_list, list);
110}
111
112#ifdef CONFIG_COMPACTION
113
114int PageMovable(struct page *page)
115{
116	struct address_space *mapping;
117
118	VM_BUG_ON_PAGE(!PageLocked(page), page);
119	if (!__PageMovable(page))
120		return 0;
121
122	mapping = page_mapping(page);
123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124		return 1;
125
126	return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132	VM_BUG_ON_PAGE(!PageLocked(page), page);
133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
140	VM_BUG_ON_PAGE(!PageLocked(page), page);
141	VM_BUG_ON_PAGE(!PageMovable(page), page);
142	/*
143	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144	 * flag so that VM can catch up released page by driver after isolation.
145	 * With it, VM migration doesn't try to put it back.
146	 */
147	page->mapping = (void *)((unsigned long)page->mapping &
148				PAGE_MAPPING_MOVABLE);
149}
150EXPORT_SYMBOL(__ClearPageMovable);
151
152/* Do not skip compaction more than 64 times */
153#define COMPACT_MAX_DEFER_SHIFT 6
154
155/*
156 * Compaction is deferred when compaction fails to result in a page
157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159 */
160void defer_compaction(struct zone *zone, int order)
161{
162	zone->compact_considered = 0;
163	zone->compact_defer_shift++;
164
165	if (order < zone->compact_order_failed)
166		zone->compact_order_failed = order;
167
168	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171	trace_mm_compaction_defer_compaction(zone, order);
172}
173
174/* Returns true if compaction should be skipped this time */
175bool compaction_deferred(struct zone *zone, int order)
176{
177	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179	if (order < zone->compact_order_failed)
180		return false;
181
182	/* Avoid possible overflow */
183	if (++zone->compact_considered >= defer_limit) {
184		zone->compact_considered = defer_limit;
185		return false;
186	}
187
188	trace_mm_compaction_deferred(zone, order);
189
190	return true;
191}
192
193/*
194 * Update defer tracking counters after successful compaction of given order,
195 * which means an allocation either succeeded (alloc_success == true) or is
196 * expected to succeed.
197 */
198void compaction_defer_reset(struct zone *zone, int order,
199		bool alloc_success)
200{
201	if (alloc_success) {
202		zone->compact_considered = 0;
203		zone->compact_defer_shift = 0;
204	}
205	if (order >= zone->compact_order_failed)
206		zone->compact_order_failed = order + 1;
207
208	trace_mm_compaction_defer_reset(zone, order);
209}
210
211/* Returns true if restarting compaction after many failures */
212bool compaction_restarting(struct zone *zone, int order)
213{
214	if (order < zone->compact_order_failed)
215		return false;
216
217	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218		zone->compact_considered >= 1UL << zone->compact_defer_shift;
219}
220
221/* Returns true if the pageblock should be scanned for pages to isolate. */
222static inline bool isolation_suitable(struct compact_control *cc,
223					struct page *page)
224{
225	if (cc->ignore_skip_hint)
226		return true;
227
228	return !get_pageblock_skip(page);
229}
230
231static void reset_cached_positions(struct zone *zone)
232{
233	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235	zone->compact_cached_free_pfn =
236				pageblock_start_pfn(zone_end_pfn(zone) - 1);
237}
238
239/*
240 * Compound pages of >= pageblock_order should consistenly be skipped until
241 * released. It is always pointless to compact pages of such order (if they are
242 * migratable), and the pageblocks they occupy cannot contain any free pages.
243 */
244static bool pageblock_skip_persistent(struct page *page)
245{
246	if (!PageCompound(page))
247		return false;
248
249	page = compound_head(page);
250
251	if (compound_order(page) >= pageblock_order)
252		return true;
253
254	return false;
255}
256
257static bool
258__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259							bool check_target)
260{
261	struct page *page = pfn_to_online_page(pfn);
262	struct page *block_page;
263	struct page *end_page;
264	unsigned long block_pfn;
265
266	if (!page)
267		return false;
268	if (zone != page_zone(page))
269		return false;
270	if (pageblock_skip_persistent(page))
271		return false;
272
273	/*
274	 * If skip is already cleared do no further checking once the
275	 * restart points have been set.
276	 */
277	if (check_source && check_target && !get_pageblock_skip(page))
278		return true;
279
280	/*
281	 * If clearing skip for the target scanner, do not select a
282	 * non-movable pageblock as the starting point.
283	 */
284	if (!check_source && check_target &&
285	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286		return false;
287
288	/* Ensure the start of the pageblock or zone is online and valid */
289	block_pfn = pageblock_start_pfn(pfn);
290	block_pfn = max(block_pfn, zone->zone_start_pfn);
291	block_page = pfn_to_online_page(block_pfn);
292	if (block_page) {
293		page = block_page;
294		pfn = block_pfn;
295	}
296
297	/* Ensure the end of the pageblock or zone is online and valid */
298	block_pfn = pageblock_end_pfn(pfn) - 1;
299	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300	end_page = pfn_to_online_page(block_pfn);
301	if (!end_page)
302		return false;
303
304	/*
305	 * Only clear the hint if a sample indicates there is either a
306	 * free page or an LRU page in the block. One or other condition
307	 * is necessary for the block to be a migration source/target.
308	 */
309	do {
310		if (pfn_valid_within(pfn)) {
311			if (check_source && PageLRU(page)) {
312				clear_pageblock_skip(page);
313				return true;
314			}
315
316			if (check_target && PageBuddy(page)) {
317				clear_pageblock_skip(page);
318				return true;
319			}
320		}
321
322		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324	} while (page <= end_page);
325
326	return false;
327}
328
329/*
330 * This function is called to clear all cached information on pageblocks that
331 * should be skipped for page isolation when the migrate and free page scanner
332 * meet.
333 */
334static void __reset_isolation_suitable(struct zone *zone)
335{
336	unsigned long migrate_pfn = zone->zone_start_pfn;
337	unsigned long free_pfn = zone_end_pfn(zone) - 1;
338	unsigned long reset_migrate = free_pfn;
339	unsigned long reset_free = migrate_pfn;
340	bool source_set = false;
341	bool free_set = false;
342
343	if (!zone->compact_blockskip_flush)
344		return;
345
346	zone->compact_blockskip_flush = false;
347
348	/*
349	 * Walk the zone and update pageblock skip information. Source looks
350	 * for PageLRU while target looks for PageBuddy. When the scanner
351	 * is found, both PageBuddy and PageLRU are checked as the pageblock
352	 * is suitable as both source and target.
353	 */
354	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355					free_pfn -= pageblock_nr_pages) {
356		cond_resched();
357
358		/* Update the migrate PFN */
359		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360		    migrate_pfn < reset_migrate) {
361			source_set = true;
362			reset_migrate = migrate_pfn;
363			zone->compact_init_migrate_pfn = reset_migrate;
364			zone->compact_cached_migrate_pfn[0] = reset_migrate;
365			zone->compact_cached_migrate_pfn[1] = reset_migrate;
366		}
367
368		/* Update the free PFN */
369		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370		    free_pfn > reset_free) {
371			free_set = true;
372			reset_free = free_pfn;
373			zone->compact_init_free_pfn = reset_free;
374			zone->compact_cached_free_pfn = reset_free;
375		}
376	}
377
378	/* Leave no distance if no suitable block was reset */
379	if (reset_migrate >= reset_free) {
380		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382		zone->compact_cached_free_pfn = free_pfn;
383	}
384}
385
386void reset_isolation_suitable(pg_data_t *pgdat)
387{
388	int zoneid;
389
390	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391		struct zone *zone = &pgdat->node_zones[zoneid];
392		if (!populated_zone(zone))
393			continue;
394
395		/* Only flush if a full compaction finished recently */
396		if (zone->compact_blockskip_flush)
397			__reset_isolation_suitable(zone);
398	}
399}
400
401/*
402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403 * locks are not required for read/writers. Returns true if it was already set.
404 */
405static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406							unsigned long pfn)
407{
408	bool skip;
409
410	/* Do no update if skip hint is being ignored */
411	if (cc->ignore_skip_hint)
412		return false;
413
414	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415		return false;
416
417	skip = get_pageblock_skip(page);
418	if (!skip && !cc->no_set_skip_hint)
419		set_pageblock_skip(page);
420
421	return skip;
422}
423
424static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425{
426	struct zone *zone = cc->zone;
427
428	pfn = pageblock_end_pfn(pfn);
429
430	/* Set for isolation rather than compaction */
431	if (cc->no_set_skip_hint)
432		return;
433
434	if (pfn > zone->compact_cached_migrate_pfn[0])
435		zone->compact_cached_migrate_pfn[0] = pfn;
436	if (cc->mode != MIGRATE_ASYNC &&
437	    pfn > zone->compact_cached_migrate_pfn[1])
438		zone->compact_cached_migrate_pfn[1] = pfn;
439}
440
441/*
442 * If no pages were isolated then mark this pageblock to be skipped in the
443 * future. The information is later cleared by __reset_isolation_suitable().
444 */
445static void update_pageblock_skip(struct compact_control *cc,
446			struct page *page, unsigned long pfn)
447{
448	struct zone *zone = cc->zone;
449
450	if (cc->no_set_skip_hint)
451		return;
452
453	if (!page)
454		return;
455
456	set_pageblock_skip(page);
457
458	/* Update where async and sync compaction should restart */
459	if (pfn < zone->compact_cached_free_pfn)
460		zone->compact_cached_free_pfn = pfn;
461}
462#else
463static inline bool isolation_suitable(struct compact_control *cc,
464					struct page *page)
465{
466	return true;
467}
468
469static inline bool pageblock_skip_persistent(struct page *page)
470{
471	return false;
472}
473
474static inline void update_pageblock_skip(struct compact_control *cc,
475			struct page *page, unsigned long pfn)
476{
477}
478
479static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480{
481}
482
483static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484							unsigned long pfn)
485{
486	return false;
487}
488#endif /* CONFIG_COMPACTION */
489
490/*
491 * Compaction requires the taking of some coarse locks that are potentially
492 * very heavily contended. For async compaction, trylock and record if the
493 * lock is contended. The lock will still be acquired but compaction will
494 * abort when the current block is finished regardless of success rate.
495 * Sync compaction acquires the lock.
496 *
497 * Always returns true which makes it easier to track lock state in callers.
498 */
499static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500						struct compact_control *cc)
501	__acquires(lock)
502{
503	/* Track if the lock is contended in async mode */
504	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505		if (spin_trylock_irqsave(lock, *flags))
506			return true;
507
508		cc->contended = true;
509	}
510
511	spin_lock_irqsave(lock, *flags);
512	return true;
513}
514
515/*
516 * Compaction requires the taking of some coarse locks that are potentially
517 * very heavily contended. The lock should be periodically unlocked to avoid
518 * having disabled IRQs for a long time, even when there is nobody waiting on
519 * the lock. It might also be that allowing the IRQs will result in
520 * need_resched() becoming true. If scheduling is needed, async compaction
521 * aborts. Sync compaction schedules.
522 * Either compaction type will also abort if a fatal signal is pending.
523 * In either case if the lock was locked, it is dropped and not regained.
524 *
525 * Returns true if compaction should abort due to fatal signal pending, or
526 *		async compaction due to need_resched()
527 * Returns false when compaction can continue (sync compaction might have
528 *		scheduled)
529 */
530static bool compact_unlock_should_abort(spinlock_t *lock,
531		unsigned long flags, bool *locked, struct compact_control *cc)
532{
533	if (*locked) {
534		spin_unlock_irqrestore(lock, flags);
535		*locked = false;
536	}
537
538	if (fatal_signal_pending(current)) {
539		cc->contended = true;
540		return true;
541	}
542
543	cond_resched();
544
545	return false;
546}
547
548/*
549 * Isolate free pages onto a private freelist. If @strict is true, will abort
550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551 * (even though it may still end up isolating some pages).
552 */
553static unsigned long isolate_freepages_block(struct compact_control *cc,
554				unsigned long *start_pfn,
555				unsigned long end_pfn,
556				struct list_head *freelist,
557				unsigned int stride,
558				bool strict)
559{
560	int nr_scanned = 0, total_isolated = 0;
561	struct page *cursor;
562	unsigned long flags = 0;
563	bool locked = false;
564	unsigned long blockpfn = *start_pfn;
565	unsigned int order;
566
567	/* Strict mode is for isolation, speed is secondary */
568	if (strict)
569		stride = 1;
570
571	cursor = pfn_to_page(blockpfn);
572
573	/* Isolate free pages. */
574	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575		int isolated;
576		struct page *page = cursor;
577
578		/*
579		 * Periodically drop the lock (if held) regardless of its
580		 * contention, to give chance to IRQs. Abort if fatal signal
581		 * pending or async compaction detects need_resched()
582		 */
583		if (!(blockpfn % SWAP_CLUSTER_MAX)
584		    && compact_unlock_should_abort(&cc->zone->lock, flags,
585								&locked, cc))
586			break;
587
588		nr_scanned++;
589		if (!pfn_valid_within(blockpfn))
590			goto isolate_fail;
591
592		/*
593		 * For compound pages such as THP and hugetlbfs, we can save
594		 * potentially a lot of iterations if we skip them at once.
595		 * The check is racy, but we can consider only valid values
596		 * and the only danger is skipping too much.
597		 */
598		if (PageCompound(page)) {
599			const unsigned int order = compound_order(page);
600
601			if (likely(order < MAX_ORDER)) {
602				blockpfn += (1UL << order) - 1;
603				cursor += (1UL << order) - 1;
604			}
605			goto isolate_fail;
606		}
607
608		if (!PageBuddy(page))
609			goto isolate_fail;
610
611		/*
612		 * If we already hold the lock, we can skip some rechecking.
613		 * Note that if we hold the lock now, checked_pageblock was
614		 * already set in some previous iteration (or strict is true),
615		 * so it is correct to skip the suitable migration target
616		 * recheck as well.
617		 */
618		if (!locked) {
619			locked = compact_lock_irqsave(&cc->zone->lock,
620								&flags, cc);
621
622			/* Recheck this is a buddy page under lock */
623			if (!PageBuddy(page))
624				goto isolate_fail;
625		}
626
627		/* Found a free page, will break it into order-0 pages */
628		order = buddy_order(page);
629		isolated = __isolate_free_page(page, order);
630		if (!isolated)
631			break;
632		set_page_private(page, order);
633
634		total_isolated += isolated;
635		cc->nr_freepages += isolated;
636		list_add_tail(&page->lru, freelist);
637
638		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639			blockpfn += isolated;
640			break;
641		}
642		/* Advance to the end of split page */
643		blockpfn += isolated - 1;
644		cursor += isolated - 1;
645		continue;
646
647isolate_fail:
648		if (strict)
649			break;
650		else
651			continue;
652
653	}
654
655	if (locked)
656		spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658	/*
659	 * There is a tiny chance that we have read bogus compound_order(),
660	 * so be careful to not go outside of the pageblock.
661	 */
662	if (unlikely(blockpfn > end_pfn))
663		blockpfn = end_pfn;
664
665	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666					nr_scanned, total_isolated);
667
668	/* Record how far we have got within the block */
669	*start_pfn = blockpfn;
670
671	/*
672	 * If strict isolation is requested by CMA then check that all the
673	 * pages requested were isolated. If there were any failures, 0 is
674	 * returned and CMA will fail.
675	 */
676	if (strict && blockpfn < end_pfn)
677		total_isolated = 0;
678
679	cc->total_free_scanned += nr_scanned;
680	if (total_isolated)
681		count_compact_events(COMPACTISOLATED, total_isolated);
682	return total_isolated;
683}
684
685/**
686 * isolate_freepages_range() - isolate free pages.
687 * @cc:        Compaction control structure.
688 * @start_pfn: The first PFN to start isolating.
689 * @end_pfn:   The one-past-last PFN.
690 *
691 * Non-free pages, invalid PFNs, or zone boundaries within the
692 * [start_pfn, end_pfn) range are considered errors, cause function to
693 * undo its actions and return zero.
694 *
695 * Otherwise, function returns one-past-the-last PFN of isolated page
696 * (which may be greater then end_pfn if end fell in a middle of
697 * a free page).
698 */
699unsigned long
700isolate_freepages_range(struct compact_control *cc,
701			unsigned long start_pfn, unsigned long end_pfn)
702{
703	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704	LIST_HEAD(freelist);
705
706	pfn = start_pfn;
707	block_start_pfn = pageblock_start_pfn(pfn);
708	if (block_start_pfn < cc->zone->zone_start_pfn)
709		block_start_pfn = cc->zone->zone_start_pfn;
710	block_end_pfn = pageblock_end_pfn(pfn);
711
712	for (; pfn < end_pfn; pfn += isolated,
713				block_start_pfn = block_end_pfn,
714				block_end_pfn += pageblock_nr_pages) {
715		/* Protect pfn from changing by isolate_freepages_block */
716		unsigned long isolate_start_pfn = pfn;
717
718		block_end_pfn = min(block_end_pfn, end_pfn);
719
720		/*
721		 * pfn could pass the block_end_pfn if isolated freepage
722		 * is more than pageblock order. In this case, we adjust
723		 * scanning range to right one.
724		 */
725		if (pfn >= block_end_pfn) {
726			block_start_pfn = pageblock_start_pfn(pfn);
727			block_end_pfn = pageblock_end_pfn(pfn);
728			block_end_pfn = min(block_end_pfn, end_pfn);
729		}
730
731		if (!pageblock_pfn_to_page(block_start_pfn,
732					block_end_pfn, cc->zone))
733			break;
734
735		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736					block_end_pfn, &freelist, 0, true);
737
738		/*
739		 * In strict mode, isolate_freepages_block() returns 0 if
740		 * there are any holes in the block (ie. invalid PFNs or
741		 * non-free pages).
742		 */
743		if (!isolated)
744			break;
745
746		/*
747		 * If we managed to isolate pages, it is always (1 << n) *
748		 * pageblock_nr_pages for some non-negative n.  (Max order
749		 * page may span two pageblocks).
750		 */
751	}
752
753	/* __isolate_free_page() does not map the pages */
754	split_map_pages(&freelist);
755
756	if (pfn < end_pfn) {
757		/* Loop terminated early, cleanup. */
758		release_freepages(&freelist);
759		return 0;
760	}
761
762	/* We don't use freelists for anything. */
763	return pfn;
764}
765
766/* Similar to reclaim, but different enough that they don't share logic */
767static bool too_many_isolated(pg_data_t *pgdat)
768{
769	unsigned long active, inactive, isolated;
770
771	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772			node_page_state(pgdat, NR_INACTIVE_ANON);
773	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774			node_page_state(pgdat, NR_ACTIVE_ANON);
775	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776			node_page_state(pgdat, NR_ISOLATED_ANON);
777
778	return isolated > (inactive + active) / 2;
779}
780
781/**
782 * isolate_migratepages_block() - isolate all migrate-able pages within
783 *				  a single pageblock
784 * @cc:		Compaction control structure.
785 * @low_pfn:	The first PFN to isolate
786 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
787 * @isolate_mode: Isolation mode to be used.
788 *
789 * Isolate all pages that can be migrated from the range specified by
790 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791 * Returns zero if there is a fatal signal pending, otherwise PFN of the
792 * first page that was not scanned (which may be both less, equal to or more
793 * than end_pfn).
794 *
795 * The pages are isolated on cc->migratepages list (not required to be empty),
796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797 * is neither read nor updated.
798 */
799static unsigned long
800isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801			unsigned long end_pfn, isolate_mode_t isolate_mode)
802{
803	pg_data_t *pgdat = cc->zone->zone_pgdat;
804	unsigned long nr_scanned = 0, nr_isolated = 0;
805	struct lruvec *lruvec;
806	unsigned long flags = 0;
807	bool locked = false;
808	struct page *page = NULL, *valid_page = NULL;
809	unsigned long start_pfn = low_pfn;
810	bool skip_on_failure = false;
811	unsigned long next_skip_pfn = 0;
812	bool skip_updated = false;
813
814	/*
815	 * Ensure that there are not too many pages isolated from the LRU
816	 * list by either parallel reclaimers or compaction. If there are,
817	 * delay for some time until fewer pages are isolated
818	 */
819	while (unlikely(too_many_isolated(pgdat))) {
820		/* stop isolation if there are still pages not migrated */
821		if (cc->nr_migratepages)
822			return 0;
823
824		/* async migration should just abort */
825		if (cc->mode == MIGRATE_ASYNC)
826			return 0;
827
828		congestion_wait(BLK_RW_ASYNC, HZ/10);
829
830		if (fatal_signal_pending(current))
831			return 0;
832	}
833
834	cond_resched();
835
836	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837		skip_on_failure = true;
838		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839	}
840
841	/* Time to isolate some pages for migration */
842	for (; low_pfn < end_pfn; low_pfn++) {
843
844		if (skip_on_failure && low_pfn >= next_skip_pfn) {
845			/*
846			 * We have isolated all migration candidates in the
847			 * previous order-aligned block, and did not skip it due
848			 * to failure. We should migrate the pages now and
849			 * hopefully succeed compaction.
850			 */
851			if (nr_isolated)
852				break;
853
854			/*
855			 * We failed to isolate in the previous order-aligned
856			 * block. Set the new boundary to the end of the
857			 * current block. Note we can't simply increase
858			 * next_skip_pfn by 1 << order, as low_pfn might have
859			 * been incremented by a higher number due to skipping
860			 * a compound or a high-order buddy page in the
861			 * previous loop iteration.
862			 */
863			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864		}
865
866		/*
867		 * Periodically drop the lock (if held) regardless of its
868		 * contention, to give chance to IRQs. Abort completely if
869		 * a fatal signal is pending.
870		 */
871		if (!(low_pfn % SWAP_CLUSTER_MAX)
872		    && compact_unlock_should_abort(&pgdat->lru_lock,
873					    flags, &locked, cc)) {
874			low_pfn = 0;
875			goto fatal_pending;
876		}
877
878		if (!pfn_valid_within(low_pfn))
879			goto isolate_fail;
880		nr_scanned++;
881
882		page = pfn_to_page(low_pfn);
883
884		/*
885		 * Check if the pageblock has already been marked skipped.
886		 * Only the aligned PFN is checked as the caller isolates
887		 * COMPACT_CLUSTER_MAX at a time so the second call must
888		 * not falsely conclude that the block should be skipped.
889		 */
890		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
891			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
892				low_pfn = end_pfn;
893				goto isolate_abort;
894			}
895			valid_page = page;
896		}
897
898		/*
899		 * Skip if free. We read page order here without zone lock
900		 * which is generally unsafe, but the race window is small and
901		 * the worst thing that can happen is that we skip some
902		 * potential isolation targets.
903		 */
904		if (PageBuddy(page)) {
905			unsigned long freepage_order = buddy_order_unsafe(page);
906
907			/*
908			 * Without lock, we cannot be sure that what we got is
909			 * a valid page order. Consider only values in the
910			 * valid order range to prevent low_pfn overflow.
911			 */
912			if (freepage_order > 0 && freepage_order < MAX_ORDER)
913				low_pfn += (1UL << freepage_order) - 1;
914			continue;
915		}
916
917		/*
918		 * Regardless of being on LRU, compound pages such as THP and
919		 * hugetlbfs are not to be compacted unless we are attempting
920		 * an allocation much larger than the huge page size (eg CMA).
921		 * We can potentially save a lot of iterations if we skip them
922		 * at once. The check is racy, but we can consider only valid
923		 * values and the only danger is skipping too much.
924		 */
925		if (PageCompound(page) && !cc->alloc_contig) {
926			const unsigned int order = compound_order(page);
927
928			if (likely(order < MAX_ORDER))
929				low_pfn += (1UL << order) - 1;
930			goto isolate_fail;
931		}
932
933		/*
934		 * Check may be lockless but that's ok as we recheck later.
935		 * It's possible to migrate LRU and non-lru movable pages.
936		 * Skip any other type of page
937		 */
938		if (!PageLRU(page)) {
939			/*
940			 * __PageMovable can return false positive so we need
941			 * to verify it under page_lock.
942			 */
943			if (unlikely(__PageMovable(page)) &&
944					!PageIsolated(page)) {
945				if (locked) {
946					spin_unlock_irqrestore(&pgdat->lru_lock,
947									flags);
948					locked = false;
949				}
950
951				if (!isolate_movable_page(page, isolate_mode))
952					goto isolate_success;
953			}
954
955			goto isolate_fail;
956		}
957
958		/*
959		 * Migration will fail if an anonymous page is pinned in memory,
960		 * so avoid taking lru_lock and isolating it unnecessarily in an
961		 * admittedly racy check.
962		 */
963		if (!page_mapping(page) &&
964		    page_count(page) > page_mapcount(page))
965			goto isolate_fail;
966
967		/*
968		 * Only allow to migrate anonymous pages in GFP_NOFS context
969		 * because those do not depend on fs locks.
970		 */
971		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
972			goto isolate_fail;
973
974		/* If we already hold the lock, we can skip some rechecking */
975		if (!locked) {
976			locked = compact_lock_irqsave(&pgdat->lru_lock,
977								&flags, cc);
978
979			/* Try get exclusive access under lock */
980			if (!skip_updated) {
981				skip_updated = true;
982				if (test_and_set_skip(cc, page, low_pfn))
983					goto isolate_abort;
984			}
985
986			/* Recheck PageLRU and PageCompound under lock */
987			if (!PageLRU(page))
988				goto isolate_fail;
989
990			/*
991			 * Page become compound since the non-locked check,
992			 * and it's on LRU. It can only be a THP so the order
993			 * is safe to read and it's 0 for tail pages.
994			 */
995			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
996				low_pfn += compound_nr(page) - 1;
997				goto isolate_fail;
998			}
999		}
1000
1001		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1002
1003		/* Try isolate the page */
1004		if (__isolate_lru_page(page, isolate_mode) != 0)
1005			goto isolate_fail;
1006
1007		/* The whole page is taken off the LRU; skip the tail pages. */
1008		if (PageCompound(page))
1009			low_pfn += compound_nr(page) - 1;
1010
1011		/* Successfully isolated */
1012		del_page_from_lru_list(page, lruvec, page_lru(page));
1013		mod_node_page_state(page_pgdat(page),
1014				NR_ISOLATED_ANON + page_is_file_lru(page),
1015				thp_nr_pages(page));
1016
1017isolate_success:
1018		list_add(&page->lru, &cc->migratepages);
1019		cc->nr_migratepages += compound_nr(page);
1020		nr_isolated += compound_nr(page);
1021
1022		/*
1023		 * Avoid isolating too much unless this block is being
1024		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1025		 * or a lock is contended. For contention, isolate quickly to
1026		 * potentially remove one source of contention.
1027		 */
1028		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1029		    !cc->rescan && !cc->contended) {
1030			++low_pfn;
1031			break;
1032		}
1033
1034		continue;
1035isolate_fail:
1036		if (!skip_on_failure)
1037			continue;
1038
1039		/*
1040		 * We have isolated some pages, but then failed. Release them
1041		 * instead of migrating, as we cannot form the cc->order buddy
1042		 * page anyway.
1043		 */
1044		if (nr_isolated) {
1045			if (locked) {
1046				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1047				locked = false;
1048			}
1049			putback_movable_pages(&cc->migratepages);
1050			cc->nr_migratepages = 0;
1051			nr_isolated = 0;
1052		}
1053
1054		if (low_pfn < next_skip_pfn) {
1055			low_pfn = next_skip_pfn - 1;
1056			/*
1057			 * The check near the loop beginning would have updated
1058			 * next_skip_pfn too, but this is a bit simpler.
1059			 */
1060			next_skip_pfn += 1UL << cc->order;
1061		}
1062	}
1063
1064	/*
1065	 * The PageBuddy() check could have potentially brought us outside
1066	 * the range to be scanned.
1067	 */
1068	if (unlikely(low_pfn > end_pfn))
1069		low_pfn = end_pfn;
1070
1071isolate_abort:
1072	if (locked)
1073		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1074
1075	/*
1076	 * Updated the cached scanner pfn once the pageblock has been scanned
1077	 * Pages will either be migrated in which case there is no point
1078	 * scanning in the near future or migration failed in which case the
1079	 * failure reason may persist. The block is marked for skipping if
1080	 * there were no pages isolated in the block or if the block is
1081	 * rescanned twice in a row.
1082	 */
1083	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1084		if (valid_page && !skip_updated)
1085			set_pageblock_skip(valid_page);
1086		update_cached_migrate(cc, low_pfn);
1087	}
1088
1089	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1090						nr_scanned, nr_isolated);
1091
1092fatal_pending:
1093	cc->total_migrate_scanned += nr_scanned;
1094	if (nr_isolated)
1095		count_compact_events(COMPACTISOLATED, nr_isolated);
1096
1097	return low_pfn;
1098}
1099
1100/**
1101 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1102 * @cc:        Compaction control structure.
1103 * @start_pfn: The first PFN to start isolating.
1104 * @end_pfn:   The one-past-last PFN.
1105 *
1106 * Returns zero if isolation fails fatally due to e.g. pending signal.
1107 * Otherwise, function returns one-past-the-last PFN of isolated page
1108 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1109 */
1110unsigned long
1111isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1112							unsigned long end_pfn)
1113{
1114	unsigned long pfn, block_start_pfn, block_end_pfn;
1115
1116	/* Scan block by block. First and last block may be incomplete */
1117	pfn = start_pfn;
1118	block_start_pfn = pageblock_start_pfn(pfn);
1119	if (block_start_pfn < cc->zone->zone_start_pfn)
1120		block_start_pfn = cc->zone->zone_start_pfn;
1121	block_end_pfn = pageblock_end_pfn(pfn);
1122
1123	for (; pfn < end_pfn; pfn = block_end_pfn,
1124				block_start_pfn = block_end_pfn,
1125				block_end_pfn += pageblock_nr_pages) {
1126
1127		block_end_pfn = min(block_end_pfn, end_pfn);
1128
1129		if (!pageblock_pfn_to_page(block_start_pfn,
1130					block_end_pfn, cc->zone))
1131			continue;
1132
1133		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1134							ISOLATE_UNEVICTABLE);
1135
1136		if (!pfn)
1137			break;
1138
1139		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1140			break;
1141	}
1142
1143	return pfn;
1144}
1145
1146#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1147#ifdef CONFIG_COMPACTION
1148
1149static bool suitable_migration_source(struct compact_control *cc,
1150							struct page *page)
1151{
1152	int block_mt;
1153
1154	if (pageblock_skip_persistent(page))
1155		return false;
1156
1157	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1158		return true;
1159
1160	block_mt = get_pageblock_migratetype(page);
1161
1162	if (cc->migratetype == MIGRATE_MOVABLE)
1163		return is_migrate_movable(block_mt);
1164	else
1165		return block_mt == cc->migratetype;
1166}
1167
1168/* Returns true if the page is within a block suitable for migration to */
1169static bool suitable_migration_target(struct compact_control *cc,
1170							struct page *page)
1171{
1172	/* If the page is a large free page, then disallow migration */
1173	if (PageBuddy(page)) {
1174		/*
1175		 * We are checking page_order without zone->lock taken. But
1176		 * the only small danger is that we skip a potentially suitable
1177		 * pageblock, so it's not worth to check order for valid range.
1178		 */
1179		if (buddy_order_unsafe(page) >= pageblock_order)
1180			return false;
1181	}
1182
1183	if (cc->ignore_block_suitable)
1184		return true;
1185
1186	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1187	if (is_migrate_movable(get_pageblock_migratetype(page)))
1188		return true;
1189
1190	/* Otherwise skip the block */
1191	return false;
1192}
1193
1194static inline unsigned int
1195freelist_scan_limit(struct compact_control *cc)
1196{
1197	unsigned short shift = BITS_PER_LONG - 1;
1198
1199	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1200}
1201
1202/*
1203 * Test whether the free scanner has reached the same or lower pageblock than
1204 * the migration scanner, and compaction should thus terminate.
1205 */
1206static inline bool compact_scanners_met(struct compact_control *cc)
1207{
1208	return (cc->free_pfn >> pageblock_order)
1209		<= (cc->migrate_pfn >> pageblock_order);
1210}
1211
1212/*
1213 * Used when scanning for a suitable migration target which scans freelists
1214 * in reverse. Reorders the list such as the unscanned pages are scanned
1215 * first on the next iteration of the free scanner
1216 */
1217static void
1218move_freelist_head(struct list_head *freelist, struct page *freepage)
1219{
1220	LIST_HEAD(sublist);
1221
1222	if (!list_is_last(freelist, &freepage->lru)) {
1223		list_cut_before(&sublist, freelist, &freepage->lru);
1224		if (!list_empty(&sublist))
1225			list_splice_tail(&sublist, freelist);
1226	}
1227}
1228
1229/*
1230 * Similar to move_freelist_head except used by the migration scanner
1231 * when scanning forward. It's possible for these list operations to
1232 * move against each other if they search the free list exactly in
1233 * lockstep.
1234 */
1235static void
1236move_freelist_tail(struct list_head *freelist, struct page *freepage)
1237{
1238	LIST_HEAD(sublist);
1239
1240	if (!list_is_first(freelist, &freepage->lru)) {
1241		list_cut_position(&sublist, freelist, &freepage->lru);
1242		if (!list_empty(&sublist))
1243			list_splice_tail(&sublist, freelist);
1244	}
1245}
1246
1247static void
1248fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1249{
1250	unsigned long start_pfn, end_pfn;
1251	struct page *page;
1252
1253	/* Do not search around if there are enough pages already */
1254	if (cc->nr_freepages >= cc->nr_migratepages)
1255		return;
1256
1257	/* Minimise scanning during async compaction */
1258	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1259		return;
1260
1261	/* Pageblock boundaries */
1262	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1263	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1264
1265	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1266	if (!page)
1267		return;
1268
1269	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1270
1271	/* Skip this pageblock in the future as it's full or nearly full */
1272	if (cc->nr_freepages < cc->nr_migratepages)
1273		set_pageblock_skip(page);
1274
1275	return;
1276}
1277
1278/* Search orders in round-robin fashion */
1279static int next_search_order(struct compact_control *cc, int order)
1280{
1281	order--;
1282	if (order < 0)
1283		order = cc->order - 1;
1284
1285	/* Search wrapped around? */
1286	if (order == cc->search_order) {
1287		cc->search_order--;
1288		if (cc->search_order < 0)
1289			cc->search_order = cc->order - 1;
1290		return -1;
1291	}
1292
1293	return order;
1294}
1295
1296static unsigned long
1297fast_isolate_freepages(struct compact_control *cc)
1298{
1299	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1300	unsigned int nr_scanned = 0;
1301	unsigned long low_pfn, min_pfn, highest = 0;
1302	unsigned long nr_isolated = 0;
1303	unsigned long distance;
1304	struct page *page = NULL;
1305	bool scan_start = false;
1306	int order;
1307
1308	/* Full compaction passes in a negative order */
1309	if (cc->order <= 0)
1310		return cc->free_pfn;
1311
1312	/*
1313	 * If starting the scan, use a deeper search and use the highest
1314	 * PFN found if a suitable one is not found.
1315	 */
1316	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1317		limit = pageblock_nr_pages >> 1;
1318		scan_start = true;
1319	}
1320
1321	/*
1322	 * Preferred point is in the top quarter of the scan space but take
1323	 * a pfn from the top half if the search is problematic.
1324	 */
1325	distance = (cc->free_pfn - cc->migrate_pfn);
1326	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1327	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1328
1329	if (WARN_ON_ONCE(min_pfn > low_pfn))
1330		low_pfn = min_pfn;
1331
1332	/*
1333	 * Search starts from the last successful isolation order or the next
1334	 * order to search after a previous failure
1335	 */
1336	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1337
1338	for (order = cc->search_order;
1339	     !page && order >= 0;
1340	     order = next_search_order(cc, order)) {
1341		struct free_area *area = &cc->zone->free_area[order];
1342		struct list_head *freelist;
1343		struct page *freepage;
1344		unsigned long flags;
1345		unsigned int order_scanned = 0;
1346		unsigned long high_pfn = 0;
1347
1348		if (!area->nr_free)
1349			continue;
1350
1351		spin_lock_irqsave(&cc->zone->lock, flags);
1352		freelist = &area->free_list[MIGRATE_MOVABLE];
1353		list_for_each_entry_reverse(freepage, freelist, lru) {
1354			unsigned long pfn;
1355
1356			order_scanned++;
1357			nr_scanned++;
1358			pfn = page_to_pfn(freepage);
1359
1360			if (pfn >= highest)
1361				highest = max(pageblock_start_pfn(pfn),
1362					      cc->zone->zone_start_pfn);
1363
1364			if (pfn >= low_pfn) {
1365				cc->fast_search_fail = 0;
1366				cc->search_order = order;
1367				page = freepage;
1368				break;
1369			}
1370
1371			if (pfn >= min_pfn && pfn > high_pfn) {
1372				high_pfn = pfn;
1373
1374				/* Shorten the scan if a candidate is found */
1375				limit >>= 1;
1376			}
1377
1378			if (order_scanned >= limit)
1379				break;
1380		}
1381
1382		/* Use a minimum pfn if a preferred one was not found */
1383		if (!page && high_pfn) {
1384			page = pfn_to_page(high_pfn);
1385
1386			/* Update freepage for the list reorder below */
1387			freepage = page;
1388		}
1389
1390		/* Reorder to so a future search skips recent pages */
1391		move_freelist_head(freelist, freepage);
1392
1393		/* Isolate the page if available */
1394		if (page) {
1395			if (__isolate_free_page(page, order)) {
1396				set_page_private(page, order);
1397				nr_isolated = 1 << order;
1398				cc->nr_freepages += nr_isolated;
1399				list_add_tail(&page->lru, &cc->freepages);
1400				count_compact_events(COMPACTISOLATED, nr_isolated);
1401			} else {
1402				/* If isolation fails, abort the search */
1403				order = cc->search_order + 1;
1404				page = NULL;
1405			}
1406		}
1407
1408		spin_unlock_irqrestore(&cc->zone->lock, flags);
1409
1410		/*
1411		 * Smaller scan on next order so the total scan ig related
1412		 * to freelist_scan_limit.
1413		 */
1414		if (order_scanned >= limit)
1415			limit = min(1U, limit >> 1);
1416	}
1417
1418	if (!page) {
1419		cc->fast_search_fail++;
1420		if (scan_start) {
1421			/*
1422			 * Use the highest PFN found above min. If one was
1423			 * not found, be pessimistic for direct compaction
1424			 * and use the min mark.
1425			 */
1426			if (highest) {
1427				page = pfn_to_page(highest);
1428				cc->free_pfn = highest;
1429			} else {
1430				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1431					page = pageblock_pfn_to_page(min_pfn,
1432						min(pageblock_end_pfn(min_pfn),
1433						    zone_end_pfn(cc->zone)),
1434						cc->zone);
1435					cc->free_pfn = min_pfn;
1436				}
1437			}
1438		}
1439	}
1440
1441	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1442		highest -= pageblock_nr_pages;
1443		cc->zone->compact_cached_free_pfn = highest;
1444	}
1445
1446	cc->total_free_scanned += nr_scanned;
1447	if (!page)
1448		return cc->free_pfn;
1449
1450	low_pfn = page_to_pfn(page);
1451	fast_isolate_around(cc, low_pfn);
1452	return low_pfn;
1453}
1454
1455/*
1456 * Based on information in the current compact_control, find blocks
1457 * suitable for isolating free pages from and then isolate them.
1458 */
1459static void isolate_freepages(struct compact_control *cc)
1460{
1461	struct zone *zone = cc->zone;
1462	struct page *page;
1463	unsigned long block_start_pfn;	/* start of current pageblock */
1464	unsigned long isolate_start_pfn; /* exact pfn we start at */
1465	unsigned long block_end_pfn;	/* end of current pageblock */
1466	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1467	struct list_head *freelist = &cc->freepages;
1468	unsigned int stride;
1469
1470	/* Try a small search of the free lists for a candidate */
1471	isolate_start_pfn = fast_isolate_freepages(cc);
1472	if (cc->nr_freepages)
1473		goto splitmap;
1474
1475	/*
1476	 * Initialise the free scanner. The starting point is where we last
1477	 * successfully isolated from, zone-cached value, or the end of the
1478	 * zone when isolating for the first time. For looping we also need
1479	 * this pfn aligned down to the pageblock boundary, because we do
1480	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1481	 * For ending point, take care when isolating in last pageblock of a
1482	 * zone which ends in the middle of a pageblock.
1483	 * The low boundary is the end of the pageblock the migration scanner
1484	 * is using.
1485	 */
1486	isolate_start_pfn = cc->free_pfn;
1487	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1488	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1489						zone_end_pfn(zone));
1490	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1491	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1492
1493	/*
1494	 * Isolate free pages until enough are available to migrate the
1495	 * pages on cc->migratepages. We stop searching if the migrate
1496	 * and free page scanners meet or enough free pages are isolated.
1497	 */
1498	for (; block_start_pfn >= low_pfn;
1499				block_end_pfn = block_start_pfn,
1500				block_start_pfn -= pageblock_nr_pages,
1501				isolate_start_pfn = block_start_pfn) {
1502		unsigned long nr_isolated;
1503
1504		/*
1505		 * This can iterate a massively long zone without finding any
1506		 * suitable migration targets, so periodically check resched.
1507		 */
1508		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1509			cond_resched();
1510
1511		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1512									zone);
1513		if (!page)
1514			continue;
1515
1516		/* Check the block is suitable for migration */
1517		if (!suitable_migration_target(cc, page))
1518			continue;
1519
1520		/* If isolation recently failed, do not retry */
1521		if (!isolation_suitable(cc, page))
1522			continue;
1523
1524		/* Found a block suitable for isolating free pages from. */
1525		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1526					block_end_pfn, freelist, stride, false);
1527
1528		/* Update the skip hint if the full pageblock was scanned */
1529		if (isolate_start_pfn == block_end_pfn)
1530			update_pageblock_skip(cc, page, block_start_pfn);
1531
1532		/* Are enough freepages isolated? */
1533		if (cc->nr_freepages >= cc->nr_migratepages) {
1534			if (isolate_start_pfn >= block_end_pfn) {
1535				/*
1536				 * Restart at previous pageblock if more
1537				 * freepages can be isolated next time.
1538				 */
1539				isolate_start_pfn =
1540					block_start_pfn - pageblock_nr_pages;
1541			}
1542			break;
1543		} else if (isolate_start_pfn < block_end_pfn) {
1544			/*
1545			 * If isolation failed early, do not continue
1546			 * needlessly.
1547			 */
1548			break;
1549		}
1550
1551		/* Adjust stride depending on isolation */
1552		if (nr_isolated) {
1553			stride = 1;
1554			continue;
1555		}
1556		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1557	}
1558
1559	/*
1560	 * Record where the free scanner will restart next time. Either we
1561	 * broke from the loop and set isolate_start_pfn based on the last
1562	 * call to isolate_freepages_block(), or we met the migration scanner
1563	 * and the loop terminated due to isolate_start_pfn < low_pfn
1564	 */
1565	cc->free_pfn = isolate_start_pfn;
1566
1567splitmap:
1568	/* __isolate_free_page() does not map the pages */
1569	split_map_pages(freelist);
1570}
1571
1572/*
1573 * This is a migrate-callback that "allocates" freepages by taking pages
1574 * from the isolated freelists in the block we are migrating to.
1575 */
1576static struct page *compaction_alloc(struct page *migratepage,
1577					unsigned long data)
1578{
1579	struct compact_control *cc = (struct compact_control *)data;
1580	struct page *freepage;
1581
1582	if (list_empty(&cc->freepages)) {
1583		isolate_freepages(cc);
1584
1585		if (list_empty(&cc->freepages))
1586			return NULL;
1587	}
1588
1589	freepage = list_entry(cc->freepages.next, struct page, lru);
1590	list_del(&freepage->lru);
1591	cc->nr_freepages--;
1592
1593	return freepage;
1594}
1595
1596/*
1597 * This is a migrate-callback that "frees" freepages back to the isolated
1598 * freelist.  All pages on the freelist are from the same zone, so there is no
1599 * special handling needed for NUMA.
1600 */
1601static void compaction_free(struct page *page, unsigned long data)
1602{
1603	struct compact_control *cc = (struct compact_control *)data;
1604
1605	list_add(&page->lru, &cc->freepages);
1606	cc->nr_freepages++;
1607}
1608
1609/* possible outcome of isolate_migratepages */
1610typedef enum {
1611	ISOLATE_ABORT,		/* Abort compaction now */
1612	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1613	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1614} isolate_migrate_t;
1615
1616/*
1617 * Allow userspace to control policy on scanning the unevictable LRU for
1618 * compactable pages.
1619 */
1620#ifdef CONFIG_PREEMPT_RT
1621int sysctl_compact_unevictable_allowed __read_mostly = 0;
1622#else
1623int sysctl_compact_unevictable_allowed __read_mostly = 1;
1624#endif
1625
1626static inline void
1627update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1628{
1629	if (cc->fast_start_pfn == ULONG_MAX)
1630		return;
1631
1632	if (!cc->fast_start_pfn)
1633		cc->fast_start_pfn = pfn;
1634
1635	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1636}
1637
1638static inline unsigned long
1639reinit_migrate_pfn(struct compact_control *cc)
1640{
1641	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1642		return cc->migrate_pfn;
1643
1644	cc->migrate_pfn = cc->fast_start_pfn;
1645	cc->fast_start_pfn = ULONG_MAX;
1646
1647	return cc->migrate_pfn;
1648}
1649
1650/*
1651 * Briefly search the free lists for a migration source that already has
1652 * some free pages to reduce the number of pages that need migration
1653 * before a pageblock is free.
1654 */
1655static unsigned long fast_find_migrateblock(struct compact_control *cc)
1656{
1657	unsigned int limit = freelist_scan_limit(cc);
1658	unsigned int nr_scanned = 0;
1659	unsigned long distance;
1660	unsigned long pfn = cc->migrate_pfn;
1661	unsigned long high_pfn;
1662	int order;
1663	bool found_block = false;
1664
1665	/* Skip hints are relied on to avoid repeats on the fast search */
1666	if (cc->ignore_skip_hint)
1667		return pfn;
1668
1669	/*
1670	 * If the migrate_pfn is not at the start of a zone or the start
1671	 * of a pageblock then assume this is a continuation of a previous
1672	 * scan restarted due to COMPACT_CLUSTER_MAX.
1673	 */
1674	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1675		return pfn;
1676
1677	/*
1678	 * For smaller orders, just linearly scan as the number of pages
1679	 * to migrate should be relatively small and does not necessarily
1680	 * justify freeing up a large block for a small allocation.
1681	 */
1682	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1683		return pfn;
1684
1685	/*
1686	 * Only allow kcompactd and direct requests for movable pages to
1687	 * quickly clear out a MOVABLE pageblock for allocation. This
1688	 * reduces the risk that a large movable pageblock is freed for
1689	 * an unmovable/reclaimable small allocation.
1690	 */
1691	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1692		return pfn;
1693
1694	/*
1695	 * When starting the migration scanner, pick any pageblock within the
1696	 * first half of the search space. Otherwise try and pick a pageblock
1697	 * within the first eighth to reduce the chances that a migration
1698	 * target later becomes a source.
1699	 */
1700	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1701	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1702		distance >>= 2;
1703	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1704
1705	for (order = cc->order - 1;
1706	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1707	     order--) {
1708		struct free_area *area = &cc->zone->free_area[order];
1709		struct list_head *freelist;
1710		unsigned long flags;
1711		struct page *freepage;
1712
1713		if (!area->nr_free)
1714			continue;
1715
1716		spin_lock_irqsave(&cc->zone->lock, flags);
1717		freelist = &area->free_list[MIGRATE_MOVABLE];
1718		list_for_each_entry(freepage, freelist, lru) {
1719			unsigned long free_pfn;
1720
1721			if (nr_scanned++ >= limit) {
1722				move_freelist_tail(freelist, freepage);
1723				break;
1724			}
1725
1726			free_pfn = page_to_pfn(freepage);
1727			if (free_pfn < high_pfn) {
1728				/*
1729				 * Avoid if skipped recently. Ideally it would
1730				 * move to the tail but even safe iteration of
1731				 * the list assumes an entry is deleted, not
1732				 * reordered.
1733				 */
1734				if (get_pageblock_skip(freepage))
1735					continue;
1736
1737				/* Reorder to so a future search skips recent pages */
1738				move_freelist_tail(freelist, freepage);
1739
1740				update_fast_start_pfn(cc, free_pfn);
1741				pfn = pageblock_start_pfn(free_pfn);
1742				if (pfn < cc->zone->zone_start_pfn)
1743					pfn = cc->zone->zone_start_pfn;
1744				cc->fast_search_fail = 0;
1745				found_block = true;
1746				set_pageblock_skip(freepage);
1747				break;
1748			}
1749		}
1750		spin_unlock_irqrestore(&cc->zone->lock, flags);
1751	}
1752
1753	cc->total_migrate_scanned += nr_scanned;
1754
1755	/*
1756	 * If fast scanning failed then use a cached entry for a page block
1757	 * that had free pages as the basis for starting a linear scan.
1758	 */
1759	if (!found_block) {
1760		cc->fast_search_fail++;
1761		pfn = reinit_migrate_pfn(cc);
1762	}
1763	return pfn;
1764}
1765
1766/*
1767 * Isolate all pages that can be migrated from the first suitable block,
1768 * starting at the block pointed to by the migrate scanner pfn within
1769 * compact_control.
1770 */
1771static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1772{
1773	unsigned long block_start_pfn;
1774	unsigned long block_end_pfn;
1775	unsigned long low_pfn;
1776	struct page *page;
1777	const isolate_mode_t isolate_mode =
1778		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1779		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1780	bool fast_find_block;
1781
1782	/*
1783	 * Start at where we last stopped, or beginning of the zone as
1784	 * initialized by compact_zone(). The first failure will use
1785	 * the lowest PFN as the starting point for linear scanning.
1786	 */
1787	low_pfn = fast_find_migrateblock(cc);
1788	block_start_pfn = pageblock_start_pfn(low_pfn);
1789	if (block_start_pfn < cc->zone->zone_start_pfn)
1790		block_start_pfn = cc->zone->zone_start_pfn;
1791
1792	/*
1793	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1794	 * the isolation_suitable check below, check whether the fast
1795	 * search was successful.
1796	 */
1797	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1798
1799	/* Only scan within a pageblock boundary */
1800	block_end_pfn = pageblock_end_pfn(low_pfn);
1801
1802	/*
1803	 * Iterate over whole pageblocks until we find the first suitable.
1804	 * Do not cross the free scanner.
1805	 */
1806	for (; block_end_pfn <= cc->free_pfn;
1807			fast_find_block = false,
1808			low_pfn = block_end_pfn,
1809			block_start_pfn = block_end_pfn,
1810			block_end_pfn += pageblock_nr_pages) {
1811
1812		/*
1813		 * This can potentially iterate a massively long zone with
1814		 * many pageblocks unsuitable, so periodically check if we
1815		 * need to schedule.
1816		 */
1817		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1818			cond_resched();
1819
1820		page = pageblock_pfn_to_page(block_start_pfn,
1821						block_end_pfn, cc->zone);
1822		if (!page)
1823			continue;
1824
1825		/*
1826		 * If isolation recently failed, do not retry. Only check the
1827		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1828		 * to be visited multiple times. Assume skip was checked
1829		 * before making it "skip" so other compaction instances do
1830		 * not scan the same block.
1831		 */
1832		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1833		    !fast_find_block && !isolation_suitable(cc, page))
1834			continue;
1835
1836		/*
1837		 * For async compaction, also only scan in MOVABLE blocks
1838		 * without huge pages. Async compaction is optimistic to see
1839		 * if the minimum amount of work satisfies the allocation.
1840		 * The cached PFN is updated as it's possible that all
1841		 * remaining blocks between source and target are unsuitable
1842		 * and the compaction scanners fail to meet.
1843		 */
1844		if (!suitable_migration_source(cc, page)) {
1845			update_cached_migrate(cc, block_end_pfn);
1846			continue;
1847		}
1848
1849		/* Perform the isolation */
1850		low_pfn = isolate_migratepages_block(cc, low_pfn,
1851						block_end_pfn, isolate_mode);
1852
1853		if (!low_pfn)
1854			return ISOLATE_ABORT;
1855
1856		/*
1857		 * Either we isolated something and proceed with migration. Or
1858		 * we failed and compact_zone should decide if we should
1859		 * continue or not.
1860		 */
1861		break;
1862	}
1863
1864	/* Record where migration scanner will be restarted. */
1865	cc->migrate_pfn = low_pfn;
1866
1867	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1868}
1869
1870/*
1871 * order == -1 is expected when compacting via
1872 * /proc/sys/vm/compact_memory
1873 */
1874static inline bool is_via_compact_memory(int order)
1875{
1876	return order == -1;
1877}
1878
1879static bool kswapd_is_running(pg_data_t *pgdat)
1880{
1881	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1882}
1883
1884/*
1885 * A zone's fragmentation score is the external fragmentation wrt to the
1886 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1887 * in the range [0, 100].
1888 *
1889 * The scaling factor ensures that proactive compaction focuses on larger
1890 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1891 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1892 * and thus never exceeds the high threshold for proactive compaction.
1893 */
1894static unsigned int fragmentation_score_zone(struct zone *zone)
1895{
1896	unsigned long score;
1897
1898	score = zone->present_pages *
1899			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1900	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1901}
1902
1903/*
1904 * The per-node proactive (background) compaction process is started by its
1905 * corresponding kcompactd thread when the node's fragmentation score
1906 * exceeds the high threshold. The compaction process remains active till
1907 * the node's score falls below the low threshold, or one of the back-off
1908 * conditions is met.
1909 */
1910static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1911{
1912	unsigned int score = 0;
1913	int zoneid;
1914
1915	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1916		struct zone *zone;
1917
1918		zone = &pgdat->node_zones[zoneid];
1919		score += fragmentation_score_zone(zone);
1920	}
1921
1922	return score;
1923}
1924
1925static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1926{
1927	unsigned int wmark_low;
1928
1929	/*
1930	 * Cap the low watermak to avoid excessive compaction
1931	 * activity in case a user sets the proactivess tunable
1932	 * close to 100 (maximum).
1933	 */
1934	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1935	return low ? wmark_low : min(wmark_low + 10, 100U);
1936}
1937
1938static bool should_proactive_compact_node(pg_data_t *pgdat)
1939{
1940	int wmark_high;
1941
1942	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1943		return false;
1944
1945	wmark_high = fragmentation_score_wmark(pgdat, false);
1946	return fragmentation_score_node(pgdat) > wmark_high;
1947}
1948
1949static enum compact_result __compact_finished(struct compact_control *cc)
1950{
1951	unsigned int order;
1952	const int migratetype = cc->migratetype;
1953	int ret;
1954
1955	/* Compaction run completes if the migrate and free scanner meet */
1956	if (compact_scanners_met(cc)) {
1957		/* Let the next compaction start anew. */
1958		reset_cached_positions(cc->zone);
1959
1960		/*
1961		 * Mark that the PG_migrate_skip information should be cleared
1962		 * by kswapd when it goes to sleep. kcompactd does not set the
1963		 * flag itself as the decision to be clear should be directly
1964		 * based on an allocation request.
1965		 */
1966		if (cc->direct_compaction)
1967			cc->zone->compact_blockskip_flush = true;
1968
1969		if (cc->whole_zone)
1970			return COMPACT_COMPLETE;
1971		else
1972			return COMPACT_PARTIAL_SKIPPED;
1973	}
1974
1975	if (cc->proactive_compaction) {
1976		int score, wmark_low;
1977		pg_data_t *pgdat;
1978
1979		pgdat = cc->zone->zone_pgdat;
1980		if (kswapd_is_running(pgdat))
1981			return COMPACT_PARTIAL_SKIPPED;
1982
1983		score = fragmentation_score_zone(cc->zone);
1984		wmark_low = fragmentation_score_wmark(pgdat, true);
1985
1986		if (score > wmark_low)
1987			ret = COMPACT_CONTINUE;
1988		else
1989			ret = COMPACT_SUCCESS;
1990
1991		goto out;
1992	}
1993
1994	if (is_via_compact_memory(cc->order))
1995		return COMPACT_CONTINUE;
1996
1997	/*
1998	 * Always finish scanning a pageblock to reduce the possibility of
1999	 * fallbacks in the future. This is particularly important when
2000	 * migration source is unmovable/reclaimable but it's not worth
2001	 * special casing.
2002	 */
2003	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2004		return COMPACT_CONTINUE;
2005
2006	/* Direct compactor: Is a suitable page free? */
2007	ret = COMPACT_NO_SUITABLE_PAGE;
2008	for (order = cc->order; order < MAX_ORDER; order++) {
2009		struct free_area *area = &cc->zone->free_area[order];
2010		bool can_steal;
2011
2012		/* Job done if page is free of the right migratetype */
2013		if (!free_area_empty(area, migratetype))
2014			return COMPACT_SUCCESS;
2015
2016#ifdef CONFIG_CMA
2017		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2018		if (migratetype == get_cma_migratetype() &&
2019			!free_area_empty(area, MIGRATE_CMA))
2020			return COMPACT_SUCCESS;
2021#endif
2022		/*
2023		 * Job done if allocation would steal freepages from
2024		 * other migratetype buddy lists.
2025		 */
2026		if (find_suitable_fallback(area, order, migratetype,
2027						true, &can_steal) != -1) {
2028
2029			/* movable pages are OK in any pageblock */
2030			if (migratetype == MIGRATE_MOVABLE)
2031				return COMPACT_SUCCESS;
2032
2033			/*
2034			 * We are stealing for a non-movable allocation. Make
2035			 * sure we finish compacting the current pageblock
2036			 * first so it is as free as possible and we won't
2037			 * have to steal another one soon. This only applies
2038			 * to sync compaction, as async compaction operates
2039			 * on pageblocks of the same migratetype.
2040			 */
2041			if (cc->mode == MIGRATE_ASYNC ||
2042					IS_ALIGNED(cc->migrate_pfn,
2043							pageblock_nr_pages)) {
2044				return COMPACT_SUCCESS;
2045			}
2046
2047			ret = COMPACT_CONTINUE;
2048			break;
2049		}
2050	}
2051
2052out:
2053	if (cc->contended || fatal_signal_pending(current))
2054		ret = COMPACT_CONTENDED;
2055
2056	return ret;
2057}
2058
2059static enum compact_result compact_finished(struct compact_control *cc)
2060{
2061	int ret;
2062
2063	ret = __compact_finished(cc);
2064	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2065	if (ret == COMPACT_NO_SUITABLE_PAGE)
2066		ret = COMPACT_CONTINUE;
2067
2068	return ret;
2069}
2070
2071/*
2072 * compaction_suitable: Is this suitable to run compaction on this zone now?
2073 * Returns
2074 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2075 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2076 *   COMPACT_CONTINUE - If compaction should run now
2077 */
2078static enum compact_result __compaction_suitable(struct zone *zone, int order,
2079					unsigned int alloc_flags,
2080					int highest_zoneidx,
2081					unsigned long wmark_target)
2082{
2083	unsigned long watermark;
2084
2085	if (is_via_compact_memory(order))
2086		return COMPACT_CONTINUE;
2087
2088	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2089	/*
2090	 * If watermarks for high-order allocation are already met, there
2091	 * should be no need for compaction at all.
2092	 */
2093	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2094								alloc_flags))
2095		return COMPACT_SUCCESS;
2096
2097	/*
2098	 * Watermarks for order-0 must be met for compaction to be able to
2099	 * isolate free pages for migration targets. This means that the
2100	 * watermark and alloc_flags have to match, or be more pessimistic than
2101	 * the check in __isolate_free_page(). We don't use the direct
2102	 * compactor's alloc_flags, as they are not relevant for freepage
2103	 * isolation. We however do use the direct compactor's highest_zoneidx
2104	 * to skip over zones where lowmem reserves would prevent allocation
2105	 * even if compaction succeeds.
2106	 * For costly orders, we require low watermark instead of min for
2107	 * compaction to proceed to increase its chances.
2108	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2109	 * suitable migration targets
2110	 */
2111	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2112				low_wmark_pages(zone) : min_wmark_pages(zone);
2113	watermark += compact_gap(order);
2114	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2115						ALLOC_CMA, wmark_target))
2116		return COMPACT_SKIPPED;
2117
2118	return COMPACT_CONTINUE;
2119}
2120
2121enum compact_result compaction_suitable(struct zone *zone, int order,
2122					unsigned int alloc_flags,
2123					int highest_zoneidx)
2124{
2125	enum compact_result ret;
2126	int fragindex;
2127
2128	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2129				    zone_page_state(zone, NR_FREE_PAGES));
2130	/*
2131	 * fragmentation index determines if allocation failures are due to
2132	 * low memory or external fragmentation
2133	 *
2134	 * index of -1000 would imply allocations might succeed depending on
2135	 * watermarks, but we already failed the high-order watermark check
2136	 * index towards 0 implies failure is due to lack of memory
2137	 * index towards 1000 implies failure is due to fragmentation
2138	 *
2139	 * Only compact if a failure would be due to fragmentation. Also
2140	 * ignore fragindex for non-costly orders where the alternative to
2141	 * a successful reclaim/compaction is OOM. Fragindex and the
2142	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2143	 * excessive compaction for costly orders, but it should not be at the
2144	 * expense of system stability.
2145	 */
2146	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2147		fragindex = fragmentation_index(zone, order);
2148		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2149			ret = COMPACT_NOT_SUITABLE_ZONE;
2150	}
2151
2152	trace_mm_compaction_suitable(zone, order, ret);
2153	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2154		ret = COMPACT_SKIPPED;
2155
2156	return ret;
2157}
2158
2159bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2160		int alloc_flags)
2161{
2162	struct zone *zone;
2163	struct zoneref *z;
2164
2165	/*
2166	 * Make sure at least one zone would pass __compaction_suitable if we continue
2167	 * retrying the reclaim.
2168	 */
2169	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2170				ac->highest_zoneidx, ac->nodemask) {
2171		unsigned long available;
2172		enum compact_result compact_result;
2173
2174		/*
2175		 * Do not consider all the reclaimable memory because we do not
2176		 * want to trash just for a single high order allocation which
2177		 * is even not guaranteed to appear even if __compaction_suitable
2178		 * is happy about the watermark check.
2179		 */
2180		available = zone_reclaimable_pages(zone) / order;
2181		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2182		compact_result = __compaction_suitable(zone, order, alloc_flags,
2183				ac->highest_zoneidx, available);
2184		if (compact_result != COMPACT_SKIPPED)
2185			return true;
2186	}
2187
2188	return false;
2189}
2190
2191static enum compact_result
2192compact_zone(struct compact_control *cc, struct capture_control *capc)
2193{
2194	enum compact_result ret;
2195	unsigned long start_pfn = cc->zone->zone_start_pfn;
2196	unsigned long end_pfn = zone_end_pfn(cc->zone);
2197	unsigned long last_migrated_pfn;
2198	const bool sync = cc->mode != MIGRATE_ASYNC;
2199	bool update_cached;
2200
2201	/*
2202	 * These counters track activities during zone compaction.  Initialize
2203	 * them before compacting a new zone.
2204	 */
2205	cc->total_migrate_scanned = 0;
2206	cc->total_free_scanned = 0;
2207	cc->nr_migratepages = 0;
2208	cc->nr_freepages = 0;
2209	INIT_LIST_HEAD(&cc->freepages);
2210	INIT_LIST_HEAD(&cc->migratepages);
2211
2212	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2213	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2214							cc->highest_zoneidx);
2215	/* Compaction is likely to fail */
2216	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2217		return ret;
2218
2219	/* huh, compaction_suitable is returning something unexpected */
2220	VM_BUG_ON(ret != COMPACT_CONTINUE);
2221
2222	/*
2223	 * Clear pageblock skip if there were failures recently and compaction
2224	 * is about to be retried after being deferred.
2225	 */
2226	if (compaction_restarting(cc->zone, cc->order))
2227		__reset_isolation_suitable(cc->zone);
2228
2229	/*
2230	 * Setup to move all movable pages to the end of the zone. Used cached
2231	 * information on where the scanners should start (unless we explicitly
2232	 * want to compact the whole zone), but check that it is initialised
2233	 * by ensuring the values are within zone boundaries.
2234	 */
2235	cc->fast_start_pfn = 0;
2236	if (cc->whole_zone) {
2237		cc->migrate_pfn = start_pfn;
2238		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2239	} else {
2240		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2241		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2242		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2243			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2244			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2245		}
2246		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2247			cc->migrate_pfn = start_pfn;
2248			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2249			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2250		}
2251
2252		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2253			cc->whole_zone = true;
2254	}
2255
2256	last_migrated_pfn = 0;
2257
2258	/*
2259	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2260	 * the basis that some migrations will fail in ASYNC mode. However,
2261	 * if the cached PFNs match and pageblocks are skipped due to having
2262	 * no isolation candidates, then the sync state does not matter.
2263	 * Until a pageblock with isolation candidates is found, keep the
2264	 * cached PFNs in sync to avoid revisiting the same blocks.
2265	 */
2266	update_cached = !sync &&
2267		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2268
2269	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2270				cc->free_pfn, end_pfn, sync);
2271
2272	migrate_prep_local();
2273
2274	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2275		int err;
2276		unsigned long start_pfn = cc->migrate_pfn;
2277
2278		/*
2279		 * Avoid multiple rescans which can happen if a page cannot be
2280		 * isolated (dirty/writeback in async mode) or if the migrated
2281		 * pages are being allocated before the pageblock is cleared.
2282		 * The first rescan will capture the entire pageblock for
2283		 * migration. If it fails, it'll be marked skip and scanning
2284		 * will proceed as normal.
2285		 */
2286		cc->rescan = false;
2287		if (pageblock_start_pfn(last_migrated_pfn) ==
2288		    pageblock_start_pfn(start_pfn)) {
2289			cc->rescan = true;
2290		}
2291
2292		switch (isolate_migratepages(cc)) {
2293		case ISOLATE_ABORT:
2294			ret = COMPACT_CONTENDED;
2295			putback_movable_pages(&cc->migratepages);
2296			cc->nr_migratepages = 0;
2297			goto out;
2298		case ISOLATE_NONE:
2299			if (update_cached) {
2300				cc->zone->compact_cached_migrate_pfn[1] =
2301					cc->zone->compact_cached_migrate_pfn[0];
2302			}
2303
2304			/*
2305			 * We haven't isolated and migrated anything, but
2306			 * there might still be unflushed migrations from
2307			 * previous cc->order aligned block.
2308			 */
2309			goto check_drain;
2310		case ISOLATE_SUCCESS:
2311			update_cached = false;
2312			last_migrated_pfn = start_pfn;
2313			;
2314		}
2315
2316		err = migrate_pages(&cc->migratepages, compaction_alloc,
2317				compaction_free, (unsigned long)cc, cc->mode,
2318				MR_COMPACTION);
2319
2320		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2321							&cc->migratepages);
2322
2323		/* All pages were either migrated or will be released */
2324		cc->nr_migratepages = 0;
2325		if (err) {
2326			putback_movable_pages(&cc->migratepages);
2327			/*
2328			 * migrate_pages() may return -ENOMEM when scanners meet
2329			 * and we want compact_finished() to detect it
2330			 */
2331			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2332				ret = COMPACT_CONTENDED;
2333				goto out;
2334			}
2335			/*
2336			 * We failed to migrate at least one page in the current
2337			 * order-aligned block, so skip the rest of it.
2338			 */
2339			if (cc->direct_compaction &&
2340						(cc->mode == MIGRATE_ASYNC)) {
2341				cc->migrate_pfn = block_end_pfn(
2342						cc->migrate_pfn - 1, cc->order);
2343				/* Draining pcplists is useless in this case */
2344				last_migrated_pfn = 0;
2345			}
2346		}
2347
2348check_drain:
2349		/*
2350		 * Has the migration scanner moved away from the previous
2351		 * cc->order aligned block where we migrated from? If yes,
2352		 * flush the pages that were freed, so that they can merge and
2353		 * compact_finished() can detect immediately if allocation
2354		 * would succeed.
2355		 */
2356		if (cc->order > 0 && last_migrated_pfn) {
2357			unsigned long current_block_start =
2358				block_start_pfn(cc->migrate_pfn, cc->order);
2359
2360			if (last_migrated_pfn < current_block_start) {
2361				lru_add_drain_cpu_zone(cc->zone);
2362				/* No more flushing until we migrate again */
2363				last_migrated_pfn = 0;
2364			}
2365		}
2366
2367		/* Stop if a page has been captured */
2368		if (capc && capc->page) {
2369			ret = COMPACT_SUCCESS;
2370			break;
2371		}
2372	}
2373
2374out:
2375	/*
2376	 * Release free pages and update where the free scanner should restart,
2377	 * so we don't leave any returned pages behind in the next attempt.
2378	 */
2379	if (cc->nr_freepages > 0) {
2380		unsigned long free_pfn = release_freepages(&cc->freepages);
2381
2382		cc->nr_freepages = 0;
2383		VM_BUG_ON(free_pfn == 0);
2384		/* The cached pfn is always the first in a pageblock */
2385		free_pfn = pageblock_start_pfn(free_pfn);
2386		/*
2387		 * Only go back, not forward. The cached pfn might have been
2388		 * already reset to zone end in compact_finished()
2389		 */
2390		if (free_pfn > cc->zone->compact_cached_free_pfn)
2391			cc->zone->compact_cached_free_pfn = free_pfn;
2392	}
2393
2394	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2395	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2396
2397	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2398				cc->free_pfn, end_pfn, sync, ret);
2399
2400	return ret;
2401}
2402
2403static enum compact_result compact_zone_order(struct zone *zone, int order,
2404		gfp_t gfp_mask, enum compact_priority prio,
2405		unsigned int alloc_flags, int highest_zoneidx,
2406		struct page **capture)
2407{
2408	enum compact_result ret;
2409	struct compact_control cc = {
2410		.order = order,
2411		.search_order = order,
2412		.gfp_mask = gfp_mask,
2413		.zone = zone,
2414		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2415					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2416		.alloc_flags = alloc_flags,
2417		.highest_zoneidx = highest_zoneidx,
2418		.direct_compaction = true,
2419		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2420		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2421		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2422	};
2423	struct capture_control capc = {
2424		.cc = &cc,
2425		.page = NULL,
2426	};
2427
2428	/*
2429	 * Make sure the structs are really initialized before we expose the
2430	 * capture control, in case we are interrupted and the interrupt handler
2431	 * frees a page.
2432	 */
2433	barrier();
2434	WRITE_ONCE(current->capture_control, &capc);
2435
2436	ret = compact_zone(&cc, &capc);
2437
2438	VM_BUG_ON(!list_empty(&cc.freepages));
2439	VM_BUG_ON(!list_empty(&cc.migratepages));
2440
2441	/*
2442	 * Make sure we hide capture control first before we read the captured
2443	 * page pointer, otherwise an interrupt could free and capture a page
2444	 * and we would leak it.
2445	 */
2446	WRITE_ONCE(current->capture_control, NULL);
2447	*capture = READ_ONCE(capc.page);
2448
2449	return ret;
2450}
2451
2452int sysctl_extfrag_threshold = 500;
2453
2454/**
2455 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2456 * @gfp_mask: The GFP mask of the current allocation
2457 * @order: The order of the current allocation
2458 * @alloc_flags: The allocation flags of the current allocation
2459 * @ac: The context of current allocation
2460 * @prio: Determines how hard direct compaction should try to succeed
2461 * @capture: Pointer to free page created by compaction will be stored here
2462 *
2463 * This is the main entry point for direct page compaction.
2464 */
2465enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2466		unsigned int alloc_flags, const struct alloc_context *ac,
2467		enum compact_priority prio, struct page **capture)
2468{
2469	int may_perform_io = gfp_mask & __GFP_IO;
2470	struct zoneref *z;
2471	struct zone *zone;
2472	enum compact_result rc = COMPACT_SKIPPED;
2473
2474	/*
2475	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2476	 * tricky context because the migration might require IO
2477	 */
2478	if (!may_perform_io)
2479		return COMPACT_SKIPPED;
2480
2481	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2482
2483	/* Compact each zone in the list */
2484	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2485					ac->highest_zoneidx, ac->nodemask) {
2486		enum compact_result status;
2487
2488		if (prio > MIN_COMPACT_PRIORITY
2489					&& compaction_deferred(zone, order)) {
2490			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2491			continue;
2492		}
2493
2494		status = compact_zone_order(zone, order, gfp_mask, prio,
2495				alloc_flags, ac->highest_zoneidx, capture);
2496		rc = max(status, rc);
2497
2498		/* The allocation should succeed, stop compacting */
2499		if (status == COMPACT_SUCCESS) {
2500			/*
2501			 * We think the allocation will succeed in this zone,
2502			 * but it is not certain, hence the false. The caller
2503			 * will repeat this with true if allocation indeed
2504			 * succeeds in this zone.
2505			 */
2506			compaction_defer_reset(zone, order, false);
2507
2508			break;
2509		}
2510
2511		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2512					status == COMPACT_PARTIAL_SKIPPED))
2513			/*
2514			 * We think that allocation won't succeed in this zone
2515			 * so we defer compaction there. If it ends up
2516			 * succeeding after all, it will be reset.
2517			 */
2518			defer_compaction(zone, order);
2519
2520		/*
2521		 * We might have stopped compacting due to need_resched() in
2522		 * async compaction, or due to a fatal signal detected. In that
2523		 * case do not try further zones
2524		 */
2525		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2526					|| fatal_signal_pending(current))
2527			break;
2528	}
2529
2530	return rc;
2531}
2532
2533/*
2534 * Compact all zones within a node till each zone's fragmentation score
2535 * reaches within proactive compaction thresholds (as determined by the
2536 * proactiveness tunable).
2537 *
2538 * It is possible that the function returns before reaching score targets
2539 * due to various back-off conditions, such as, contention on per-node or
2540 * per-zone locks.
2541 */
2542static void proactive_compact_node(pg_data_t *pgdat)
2543{
2544	int zoneid;
2545	struct zone *zone;
2546	struct compact_control cc = {
2547		.order = -1,
2548		.mode = MIGRATE_SYNC_LIGHT,
2549		.ignore_skip_hint = true,
2550		.whole_zone = true,
2551		.gfp_mask = GFP_KERNEL,
2552		.proactive_compaction = true,
2553	};
2554
2555	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2556		zone = &pgdat->node_zones[zoneid];
2557		if (!populated_zone(zone))
2558			continue;
2559
2560		cc.zone = zone;
2561
2562		compact_zone(&cc, NULL);
2563
2564		VM_BUG_ON(!list_empty(&cc.freepages));
2565		VM_BUG_ON(!list_empty(&cc.migratepages));
2566	}
2567}
2568
2569/* Compact all zones within a node */
2570static void compact_node(int nid)
2571{
2572	pg_data_t *pgdat = NODE_DATA(nid);
2573	int zoneid;
2574	struct zone *zone;
2575	struct compact_control cc = {
2576		.order = -1,
2577		.mode = MIGRATE_SYNC,
2578		.ignore_skip_hint = true,
2579		.whole_zone = true,
2580		.gfp_mask = GFP_KERNEL,
2581	};
2582
2583
2584	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2585
2586		zone = &pgdat->node_zones[zoneid];
2587		if (!populated_zone(zone))
2588			continue;
2589
2590		cc.zone = zone;
2591
2592		compact_zone(&cc, NULL);
2593
2594		VM_BUG_ON(!list_empty(&cc.freepages));
2595		VM_BUG_ON(!list_empty(&cc.migratepages));
2596	}
2597}
2598
2599/* Compact all nodes in the system */
2600static void compact_nodes(void)
2601{
2602	int nid;
2603
2604	/* Flush pending updates to the LRU lists */
2605	lru_add_drain_all();
2606
2607	for_each_online_node(nid)
2608		compact_node(nid);
2609}
2610
2611/* The written value is actually unused, all memory is compacted */
2612int sysctl_compact_memory;
2613
2614/*
2615 * Tunable for proactive compaction. It determines how
2616 * aggressively the kernel should compact memory in the
2617 * background. It takes values in the range [0, 100].
2618 */
2619unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2620
2621/*
2622 * This is the entry point for compacting all nodes via
2623 * /proc/sys/vm/compact_memory
2624 */
2625int sysctl_compaction_handler(struct ctl_table *table, int write,
2626			void *buffer, size_t *length, loff_t *ppos)
2627{
2628	if (write)
2629		compact_nodes();
2630
2631	return 0;
2632}
2633
2634#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2635static ssize_t sysfs_compact_node(struct device *dev,
2636			struct device_attribute *attr,
2637			const char *buf, size_t count)
2638{
2639	int nid = dev->id;
2640
2641	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2642		/* Flush pending updates to the LRU lists */
2643		lru_add_drain_all();
2644
2645		compact_node(nid);
2646	}
2647
2648	return count;
2649}
2650static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2651
2652int compaction_register_node(struct node *node)
2653{
2654	return device_create_file(&node->dev, &dev_attr_compact);
2655}
2656
2657void compaction_unregister_node(struct node *node)
2658{
2659	return device_remove_file(&node->dev, &dev_attr_compact);
2660}
2661#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2662
2663static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2664{
2665	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2666}
2667
2668static bool kcompactd_node_suitable(pg_data_t *pgdat)
2669{
2670	int zoneid;
2671	struct zone *zone;
2672	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2673
2674	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2675		zone = &pgdat->node_zones[zoneid];
2676
2677		if (!populated_zone(zone))
2678			continue;
2679
2680		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2681					highest_zoneidx) == COMPACT_CONTINUE)
2682			return true;
2683	}
2684
2685	return false;
2686}
2687
2688static void kcompactd_do_work(pg_data_t *pgdat)
2689{
2690	/*
2691	 * With no special task, compact all zones so that a page of requested
2692	 * order is allocatable.
2693	 */
2694	int zoneid;
2695	struct zone *zone;
2696	struct compact_control cc = {
2697		.order = pgdat->kcompactd_max_order,
2698		.search_order = pgdat->kcompactd_max_order,
2699		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2700		.mode = MIGRATE_SYNC_LIGHT,
2701		.ignore_skip_hint = false,
2702		.gfp_mask = GFP_KERNEL,
2703	};
2704	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2705							cc.highest_zoneidx);
2706	count_compact_event(KCOMPACTD_WAKE);
2707
2708	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2709		int status;
2710
2711		zone = &pgdat->node_zones[zoneid];
2712		if (!populated_zone(zone))
2713			continue;
2714
2715		if (compaction_deferred(zone, cc.order))
2716			continue;
2717
2718		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2719							COMPACT_CONTINUE)
2720			continue;
2721
2722		if (kthread_should_stop())
2723			return;
2724
2725		cc.zone = zone;
2726		status = compact_zone(&cc, NULL);
2727
2728		if (status == COMPACT_SUCCESS) {
2729			compaction_defer_reset(zone, cc.order, false);
2730		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2731			/*
2732			 * Buddy pages may become stranded on pcps that could
2733			 * otherwise coalesce on the zone's free area for
2734			 * order >= cc.order.  This is ratelimited by the
2735			 * upcoming deferral.
2736			 */
2737			drain_all_pages(zone);
2738
2739			/*
2740			 * We use sync migration mode here, so we defer like
2741			 * sync direct compaction does.
2742			 */
2743			defer_compaction(zone, cc.order);
2744		}
2745
2746		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2747				     cc.total_migrate_scanned);
2748		count_compact_events(KCOMPACTD_FREE_SCANNED,
2749				     cc.total_free_scanned);
2750
2751		VM_BUG_ON(!list_empty(&cc.freepages));
2752		VM_BUG_ON(!list_empty(&cc.migratepages));
2753	}
2754
2755	/*
2756	 * Regardless of success, we are done until woken up next. But remember
2757	 * the requested order/highest_zoneidx in case it was higher/tighter
2758	 * than our current ones
2759	 */
2760	if (pgdat->kcompactd_max_order <= cc.order)
2761		pgdat->kcompactd_max_order = 0;
2762	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2763		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2764}
2765
2766void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2767{
2768	if (!order)
2769		return;
2770
2771	if (pgdat->kcompactd_max_order < order)
2772		pgdat->kcompactd_max_order = order;
2773
2774	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2775		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2776
2777	/*
2778	 * Pairs with implicit barrier in wait_event_freezable()
2779	 * such that wakeups are not missed.
2780	 */
2781	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2782		return;
2783
2784	if (!kcompactd_node_suitable(pgdat))
2785		return;
2786
2787	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2788							highest_zoneidx);
2789	wake_up_interruptible(&pgdat->kcompactd_wait);
2790}
2791
2792/*
2793 * The background compaction daemon, started as a kernel thread
2794 * from the init process.
2795 */
2796static int kcompactd(void *p)
2797{
2798	pg_data_t *pgdat = (pg_data_t*)p;
2799	struct task_struct *tsk = current;
2800	unsigned int proactive_defer = 0;
2801
2802	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2803
2804	if (!cpumask_empty(cpumask))
2805		set_cpus_allowed_ptr(tsk, cpumask);
2806
2807	set_freezable();
2808
2809	pgdat->kcompactd_max_order = 0;
2810	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2811
2812	while (!kthread_should_stop()) {
2813		unsigned long pflags;
2814
2815		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2816		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2817			kcompactd_work_requested(pgdat),
2818			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2819
2820			psi_memstall_enter(&pflags);
2821			kcompactd_do_work(pgdat);
2822			psi_memstall_leave(&pflags);
2823			continue;
2824		}
2825
2826		/* kcompactd wait timeout */
2827		if (should_proactive_compact_node(pgdat)) {
2828			unsigned int prev_score, score;
2829
2830			if (proactive_defer) {
2831				proactive_defer--;
2832				continue;
2833			}
2834			prev_score = fragmentation_score_node(pgdat);
2835			proactive_compact_node(pgdat);
2836			score = fragmentation_score_node(pgdat);
2837			/*
2838			 * Defer proactive compaction if the fragmentation
2839			 * score did not go down i.e. no progress made.
2840			 */
2841			proactive_defer = score < prev_score ?
2842					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2843		}
2844	}
2845
2846	return 0;
2847}
2848
2849/*
2850 * This kcompactd start function will be called by init and node-hot-add.
2851 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2852 */
2853int kcompactd_run(int nid)
2854{
2855	pg_data_t *pgdat = NODE_DATA(nid);
2856	int ret = 0;
2857
2858	if (pgdat->kcompactd)
2859		return 0;
2860
2861	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2862	if (IS_ERR(pgdat->kcompactd)) {
2863		pr_err("Failed to start kcompactd on node %d\n", nid);
2864		ret = PTR_ERR(pgdat->kcompactd);
2865		pgdat->kcompactd = NULL;
2866	}
2867	return ret;
2868}
2869
2870/*
2871 * Called by memory hotplug when all memory in a node is offlined. Caller must
2872 * hold mem_hotplug_begin/end().
2873 */
2874void kcompactd_stop(int nid)
2875{
2876	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2877
2878	if (kcompactd) {
2879		kthread_stop(kcompactd);
2880		NODE_DATA(nid)->kcompactd = NULL;
2881	}
2882}
2883
2884/*
2885 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2886 * not required for correctness. So if the last cpu in a node goes
2887 * away, we get changed to run anywhere: as the first one comes back,
2888 * restore their cpu bindings.
2889 */
2890static int kcompactd_cpu_online(unsigned int cpu)
2891{
2892	int nid;
2893
2894	for_each_node_state(nid, N_MEMORY) {
2895		pg_data_t *pgdat = NODE_DATA(nid);
2896		const struct cpumask *mask;
2897
2898		mask = cpumask_of_node(pgdat->node_id);
2899
2900		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2901			/* One of our CPUs online: restore mask */
2902			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2903	}
2904	return 0;
2905}
2906
2907static int __init kcompactd_init(void)
2908{
2909	int nid;
2910	int ret;
2911
2912	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2913					"mm/compaction:online",
2914					kcompactd_cpu_online, NULL);
2915	if (ret < 0) {
2916		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2917		return ret;
2918	}
2919
2920	for_each_node_state(nid, N_MEMORY)
2921		kcompactd_run(nid);
2922	return 0;
2923}
2924subsys_initcall(kcompactd_init)
2925
2926#endif /* CONFIG_COMPACTION */
2927