xref: /kernel/linux/linux-5.10/lib/xz/xz_dec_lzma2.c (revision 8c2ecf20)
1/*
2 * LZMA2 decoder
3 *
4 * Authors: Lasse Collin <lasse.collin@tukaani.org>
5 *          Igor Pavlov <https://7-zip.org/>
6 *
7 * This file has been put into the public domain.
8 * You can do whatever you want with this file.
9 */
10
11#include "xz_private.h"
12#include "xz_lzma2.h"
13
14/*
15 * Range decoder initialization eats the first five bytes of each LZMA chunk.
16 */
17#define RC_INIT_BYTES 5
18
19/*
20 * Minimum number of usable input buffer to safely decode one LZMA symbol.
21 * The worst case is that we decode 22 bits using probabilities and 26
22 * direct bits. This may decode at maximum of 20 bytes of input. However,
23 * lzma_main() does an extra normalization before returning, thus we
24 * need to put 21 here.
25 */
26#define LZMA_IN_REQUIRED 21
27
28/*
29 * Dictionary (history buffer)
30 *
31 * These are always true:
32 *    start <= pos <= full <= end
33 *    pos <= limit <= end
34 *
35 * In multi-call mode, also these are true:
36 *    end == size
37 *    size <= size_max
38 *    allocated <= size
39 *
40 * Most of these variables are size_t to support single-call mode,
41 * in which the dictionary variables address the actual output
42 * buffer directly.
43 */
44struct dictionary {
45	/* Beginning of the history buffer */
46	uint8_t *buf;
47
48	/* Old position in buf (before decoding more data) */
49	size_t start;
50
51	/* Position in buf */
52	size_t pos;
53
54	/*
55	 * How full dictionary is. This is used to detect corrupt input that
56	 * would read beyond the beginning of the uncompressed stream.
57	 */
58	size_t full;
59
60	/* Write limit; we don't write to buf[limit] or later bytes. */
61	size_t limit;
62
63	/*
64	 * End of the dictionary buffer. In multi-call mode, this is
65	 * the same as the dictionary size. In single-call mode, this
66	 * indicates the size of the output buffer.
67	 */
68	size_t end;
69
70	/*
71	 * Size of the dictionary as specified in Block Header. This is used
72	 * together with "full" to detect corrupt input that would make us
73	 * read beyond the beginning of the uncompressed stream.
74	 */
75	uint32_t size;
76
77	/*
78	 * Maximum allowed dictionary size in multi-call mode.
79	 * This is ignored in single-call mode.
80	 */
81	uint32_t size_max;
82
83	/*
84	 * Amount of memory currently allocated for the dictionary.
85	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
86	 * size_max is always the same as the allocated size.)
87	 */
88	uint32_t allocated;
89
90	/* Operation mode */
91	enum xz_mode mode;
92};
93
94/* Range decoder */
95struct rc_dec {
96	uint32_t range;
97	uint32_t code;
98
99	/*
100	 * Number of initializing bytes remaining to be read
101	 * by rc_read_init().
102	 */
103	uint32_t init_bytes_left;
104
105	/*
106	 * Buffer from which we read our input. It can be either
107	 * temp.buf or the caller-provided input buffer.
108	 */
109	const uint8_t *in;
110	size_t in_pos;
111	size_t in_limit;
112};
113
114/* Probabilities for a length decoder. */
115struct lzma_len_dec {
116	/* Probability of match length being at least 10 */
117	uint16_t choice;
118
119	/* Probability of match length being at least 18 */
120	uint16_t choice2;
121
122	/* Probabilities for match lengths 2-9 */
123	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
124
125	/* Probabilities for match lengths 10-17 */
126	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
127
128	/* Probabilities for match lengths 18-273 */
129	uint16_t high[LEN_HIGH_SYMBOLS];
130};
131
132struct lzma_dec {
133	/* Distances of latest four matches */
134	uint32_t rep0;
135	uint32_t rep1;
136	uint32_t rep2;
137	uint32_t rep3;
138
139	/* Types of the most recently seen LZMA symbols */
140	enum lzma_state state;
141
142	/*
143	 * Length of a match. This is updated so that dict_repeat can
144	 * be called again to finish repeating the whole match.
145	 */
146	uint32_t len;
147
148	/*
149	 * LZMA properties or related bit masks (number of literal
150	 * context bits, a mask dervied from the number of literal
151	 * position bits, and a mask dervied from the number
152	 * position bits)
153	 */
154	uint32_t lc;
155	uint32_t literal_pos_mask; /* (1 << lp) - 1 */
156	uint32_t pos_mask;         /* (1 << pb) - 1 */
157
158	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
159	uint16_t is_match[STATES][POS_STATES_MAX];
160
161	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
162	uint16_t is_rep[STATES];
163
164	/*
165	 * If 0, distance of a repeated match is rep0.
166	 * Otherwise check is_rep1.
167	 */
168	uint16_t is_rep0[STATES];
169
170	/*
171	 * If 0, distance of a repeated match is rep1.
172	 * Otherwise check is_rep2.
173	 */
174	uint16_t is_rep1[STATES];
175
176	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
177	uint16_t is_rep2[STATES];
178
179	/*
180	 * If 1, the repeated match has length of one byte. Otherwise
181	 * the length is decoded from rep_len_decoder.
182	 */
183	uint16_t is_rep0_long[STATES][POS_STATES_MAX];
184
185	/*
186	 * Probability tree for the highest two bits of the match
187	 * distance. There is a separate probability tree for match
188	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
189	 */
190	uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
191
192	/*
193	 * Probility trees for additional bits for match distance
194	 * when the distance is in the range [4, 127].
195	 */
196	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
197
198	/*
199	 * Probability tree for the lowest four bits of a match
200	 * distance that is equal to or greater than 128.
201	 */
202	uint16_t dist_align[ALIGN_SIZE];
203
204	/* Length of a normal match */
205	struct lzma_len_dec match_len_dec;
206
207	/* Length of a repeated match */
208	struct lzma_len_dec rep_len_dec;
209
210	/* Probabilities of literals */
211	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
212};
213
214struct lzma2_dec {
215	/* Position in xz_dec_lzma2_run(). */
216	enum lzma2_seq {
217		SEQ_CONTROL,
218		SEQ_UNCOMPRESSED_1,
219		SEQ_UNCOMPRESSED_2,
220		SEQ_COMPRESSED_0,
221		SEQ_COMPRESSED_1,
222		SEQ_PROPERTIES,
223		SEQ_LZMA_PREPARE,
224		SEQ_LZMA_RUN,
225		SEQ_COPY
226	} sequence;
227
228	/* Next position after decoding the compressed size of the chunk. */
229	enum lzma2_seq next_sequence;
230
231	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
232	uint32_t uncompressed;
233
234	/*
235	 * Compressed size of LZMA chunk or compressed/uncompressed
236	 * size of uncompressed chunk (64 KiB at maximum)
237	 */
238	uint32_t compressed;
239
240	/*
241	 * True if dictionary reset is needed. This is false before
242	 * the first chunk (LZMA or uncompressed).
243	 */
244	bool need_dict_reset;
245
246	/*
247	 * True if new LZMA properties are needed. This is false
248	 * before the first LZMA chunk.
249	 */
250	bool need_props;
251};
252
253struct xz_dec_lzma2 {
254	/*
255	 * The order below is important on x86 to reduce code size and
256	 * it shouldn't hurt on other platforms. Everything up to and
257	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
258	 * which allows using smaller instructions to access those
259	 * variables. On x86-64, fewer variables fit into the first 128
260	 * bytes, but this is still the best order without sacrificing
261	 * the readability by splitting the structures.
262	 */
263	struct rc_dec rc;
264	struct dictionary dict;
265	struct lzma2_dec lzma2;
266	struct lzma_dec lzma;
267
268	/*
269	 * Temporary buffer which holds small number of input bytes between
270	 * decoder calls. See lzma2_lzma() for details.
271	 */
272	struct {
273		uint32_t size;
274		uint8_t buf[3 * LZMA_IN_REQUIRED];
275	} temp;
276};
277
278/**************
279 * Dictionary *
280 **************/
281
282/*
283 * Reset the dictionary state. When in single-call mode, set up the beginning
284 * of the dictionary to point to the actual output buffer.
285 */
286static void dict_reset(struct dictionary *dict, struct xz_buf *b)
287{
288	if (DEC_IS_SINGLE(dict->mode)) {
289		dict->buf = b->out + b->out_pos;
290		dict->end = b->out_size - b->out_pos;
291	}
292
293	dict->start = 0;
294	dict->pos = 0;
295	dict->limit = 0;
296	dict->full = 0;
297}
298
299/* Set dictionary write limit */
300static void dict_limit(struct dictionary *dict, size_t out_max)
301{
302	if (dict->end - dict->pos <= out_max)
303		dict->limit = dict->end;
304	else
305		dict->limit = dict->pos + out_max;
306}
307
308/* Return true if at least one byte can be written into the dictionary. */
309static inline bool dict_has_space(const struct dictionary *dict)
310{
311	return dict->pos < dict->limit;
312}
313
314/*
315 * Get a byte from the dictionary at the given distance. The distance is
316 * assumed to valid, or as a special case, zero when the dictionary is
317 * still empty. This special case is needed for single-call decoding to
318 * avoid writing a '\0' to the end of the destination buffer.
319 */
320static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
321{
322	size_t offset = dict->pos - dist - 1;
323
324	if (dist >= dict->pos)
325		offset += dict->end;
326
327	return dict->full > 0 ? dict->buf[offset] : 0;
328}
329
330/*
331 * Put one byte into the dictionary. It is assumed that there is space for it.
332 */
333static inline void dict_put(struct dictionary *dict, uint8_t byte)
334{
335	dict->buf[dict->pos++] = byte;
336
337	if (dict->full < dict->pos)
338		dict->full = dict->pos;
339}
340
341/*
342 * Repeat given number of bytes from the given distance. If the distance is
343 * invalid, false is returned. On success, true is returned and *len is
344 * updated to indicate how many bytes were left to be repeated.
345 */
346static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
347{
348	size_t back;
349	uint32_t left;
350
351	if (dist >= dict->full || dist >= dict->size)
352		return false;
353
354	left = min_t(size_t, dict->limit - dict->pos, *len);
355	*len -= left;
356
357	back = dict->pos - dist - 1;
358	if (dist >= dict->pos)
359		back += dict->end;
360
361	do {
362		dict->buf[dict->pos++] = dict->buf[back++];
363		if (back == dict->end)
364			back = 0;
365	} while (--left > 0);
366
367	if (dict->full < dict->pos)
368		dict->full = dict->pos;
369
370	return true;
371}
372
373/* Copy uncompressed data as is from input to dictionary and output buffers. */
374static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
375			      uint32_t *left)
376{
377	size_t copy_size;
378
379	while (*left > 0 && b->in_pos < b->in_size
380			&& b->out_pos < b->out_size) {
381		copy_size = min(b->in_size - b->in_pos,
382				b->out_size - b->out_pos);
383		if (copy_size > dict->end - dict->pos)
384			copy_size = dict->end - dict->pos;
385		if (copy_size > *left)
386			copy_size = *left;
387
388		*left -= copy_size;
389
390		/*
391		 * If doing in-place decompression in single-call mode and the
392		 * uncompressed size of the file is larger than the caller
393		 * thought (i.e. it is invalid input!), the buffers below may
394		 * overlap and cause undefined behavior with memcpy().
395		 * With valid inputs memcpy() would be fine here.
396		 */
397		memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
398		dict->pos += copy_size;
399
400		if (dict->full < dict->pos)
401			dict->full = dict->pos;
402
403		if (DEC_IS_MULTI(dict->mode)) {
404			if (dict->pos == dict->end)
405				dict->pos = 0;
406
407			/*
408			 * Like above but for multi-call mode: use memmove()
409			 * to avoid undefined behavior with invalid input.
410			 */
411			memmove(b->out + b->out_pos, b->in + b->in_pos,
412					copy_size);
413		}
414
415		dict->start = dict->pos;
416
417		b->out_pos += copy_size;
418		b->in_pos += copy_size;
419	}
420}
421
422/*
423 * Flush pending data from dictionary to b->out. It is assumed that there is
424 * enough space in b->out. This is guaranteed because caller uses dict_limit()
425 * before decoding data into the dictionary.
426 */
427static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
428{
429	size_t copy_size = dict->pos - dict->start;
430
431	if (DEC_IS_MULTI(dict->mode)) {
432		if (dict->pos == dict->end)
433			dict->pos = 0;
434
435		/*
436		 * These buffers cannot overlap even if doing in-place
437		 * decompression because in multi-call mode dict->buf
438		 * has been allocated by us in this file; it's not
439		 * provided by the caller like in single-call mode.
440		 */
441		memcpy(b->out + b->out_pos, dict->buf + dict->start,
442				copy_size);
443	}
444
445	dict->start = dict->pos;
446	b->out_pos += copy_size;
447	return copy_size;
448}
449
450/*****************
451 * Range decoder *
452 *****************/
453
454/* Reset the range decoder. */
455static void rc_reset(struct rc_dec *rc)
456{
457	rc->range = (uint32_t)-1;
458	rc->code = 0;
459	rc->init_bytes_left = RC_INIT_BYTES;
460}
461
462/*
463 * Read the first five initial bytes into rc->code if they haven't been
464 * read already. (Yes, the first byte gets completely ignored.)
465 */
466static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
467{
468	while (rc->init_bytes_left > 0) {
469		if (b->in_pos == b->in_size)
470			return false;
471
472		rc->code = (rc->code << 8) + b->in[b->in_pos++];
473		--rc->init_bytes_left;
474	}
475
476	return true;
477}
478
479/* Return true if there may not be enough input for the next decoding loop. */
480static inline bool rc_limit_exceeded(const struct rc_dec *rc)
481{
482	return rc->in_pos > rc->in_limit;
483}
484
485/*
486 * Return true if it is possible (from point of view of range decoder) that
487 * we have reached the end of the LZMA chunk.
488 */
489static inline bool rc_is_finished(const struct rc_dec *rc)
490{
491	return rc->code == 0;
492}
493
494/* Read the next input byte if needed. */
495static __always_inline void rc_normalize(struct rc_dec *rc)
496{
497	if (rc->range < RC_TOP_VALUE) {
498		rc->range <<= RC_SHIFT_BITS;
499		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
500	}
501}
502
503/*
504 * Decode one bit. In some versions, this function has been splitted in three
505 * functions so that the compiler is supposed to be able to more easily avoid
506 * an extra branch. In this particular version of the LZMA decoder, this
507 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
508 * on x86). Using a non-splitted version results in nicer looking code too.
509 *
510 * NOTE: This must return an int. Do not make it return a bool or the speed
511 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
512 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
513 */
514static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
515{
516	uint32_t bound;
517	int bit;
518
519	rc_normalize(rc);
520	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
521	if (rc->code < bound) {
522		rc->range = bound;
523		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
524		bit = 0;
525	} else {
526		rc->range -= bound;
527		rc->code -= bound;
528		*prob -= *prob >> RC_MOVE_BITS;
529		bit = 1;
530	}
531
532	return bit;
533}
534
535/* Decode a bittree starting from the most significant bit. */
536static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
537					   uint16_t *probs, uint32_t limit)
538{
539	uint32_t symbol = 1;
540
541	do {
542		if (rc_bit(rc, &probs[symbol]))
543			symbol = (symbol << 1) + 1;
544		else
545			symbol <<= 1;
546	} while (symbol < limit);
547
548	return symbol;
549}
550
551/* Decode a bittree starting from the least significant bit. */
552static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
553					       uint16_t *probs,
554					       uint32_t *dest, uint32_t limit)
555{
556	uint32_t symbol = 1;
557	uint32_t i = 0;
558
559	do {
560		if (rc_bit(rc, &probs[symbol])) {
561			symbol = (symbol << 1) + 1;
562			*dest += 1 << i;
563		} else {
564			symbol <<= 1;
565		}
566	} while (++i < limit);
567}
568
569/* Decode direct bits (fixed fifty-fifty probability) */
570static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
571{
572	uint32_t mask;
573
574	do {
575		rc_normalize(rc);
576		rc->range >>= 1;
577		rc->code -= rc->range;
578		mask = (uint32_t)0 - (rc->code >> 31);
579		rc->code += rc->range & mask;
580		*dest = (*dest << 1) + (mask + 1);
581	} while (--limit > 0);
582}
583
584/********
585 * LZMA *
586 ********/
587
588/* Get pointer to literal coder probability array. */
589static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
590{
591	uint32_t prev_byte = dict_get(&s->dict, 0);
592	uint32_t low = prev_byte >> (8 - s->lzma.lc);
593	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
594	return s->lzma.literal[low + high];
595}
596
597/* Decode a literal (one 8-bit byte) */
598static void lzma_literal(struct xz_dec_lzma2 *s)
599{
600	uint16_t *probs;
601	uint32_t symbol;
602	uint32_t match_byte;
603	uint32_t match_bit;
604	uint32_t offset;
605	uint32_t i;
606
607	probs = lzma_literal_probs(s);
608
609	if (lzma_state_is_literal(s->lzma.state)) {
610		symbol = rc_bittree(&s->rc, probs, 0x100);
611	} else {
612		symbol = 1;
613		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
614		offset = 0x100;
615
616		do {
617			match_bit = match_byte & offset;
618			match_byte <<= 1;
619			i = offset + match_bit + symbol;
620
621			if (rc_bit(&s->rc, &probs[i])) {
622				symbol = (symbol << 1) + 1;
623				offset &= match_bit;
624			} else {
625				symbol <<= 1;
626				offset &= ~match_bit;
627			}
628		} while (symbol < 0x100);
629	}
630
631	dict_put(&s->dict, (uint8_t)symbol);
632	lzma_state_literal(&s->lzma.state);
633}
634
635/* Decode the length of the match into s->lzma.len. */
636static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
637		     uint32_t pos_state)
638{
639	uint16_t *probs;
640	uint32_t limit;
641
642	if (!rc_bit(&s->rc, &l->choice)) {
643		probs = l->low[pos_state];
644		limit = LEN_LOW_SYMBOLS;
645		s->lzma.len = MATCH_LEN_MIN;
646	} else {
647		if (!rc_bit(&s->rc, &l->choice2)) {
648			probs = l->mid[pos_state];
649			limit = LEN_MID_SYMBOLS;
650			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
651		} else {
652			probs = l->high;
653			limit = LEN_HIGH_SYMBOLS;
654			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
655					+ LEN_MID_SYMBOLS;
656		}
657	}
658
659	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
660}
661
662/* Decode a match. The distance will be stored in s->lzma.rep0. */
663static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
664{
665	uint16_t *probs;
666	uint32_t dist_slot;
667	uint32_t limit;
668
669	lzma_state_match(&s->lzma.state);
670
671	s->lzma.rep3 = s->lzma.rep2;
672	s->lzma.rep2 = s->lzma.rep1;
673	s->lzma.rep1 = s->lzma.rep0;
674
675	lzma_len(s, &s->lzma.match_len_dec, pos_state);
676
677	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
678	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
679
680	if (dist_slot < DIST_MODEL_START) {
681		s->lzma.rep0 = dist_slot;
682	} else {
683		limit = (dist_slot >> 1) - 1;
684		s->lzma.rep0 = 2 + (dist_slot & 1);
685
686		if (dist_slot < DIST_MODEL_END) {
687			s->lzma.rep0 <<= limit;
688			probs = s->lzma.dist_special + s->lzma.rep0
689					- dist_slot - 1;
690			rc_bittree_reverse(&s->rc, probs,
691					&s->lzma.rep0, limit);
692		} else {
693			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
694			s->lzma.rep0 <<= ALIGN_BITS;
695			rc_bittree_reverse(&s->rc, s->lzma.dist_align,
696					&s->lzma.rep0, ALIGN_BITS);
697		}
698	}
699}
700
701/*
702 * Decode a repeated match. The distance is one of the four most recently
703 * seen matches. The distance will be stored in s->lzma.rep0.
704 */
705static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
706{
707	uint32_t tmp;
708
709	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
710		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
711				s->lzma.state][pos_state])) {
712			lzma_state_short_rep(&s->lzma.state);
713			s->lzma.len = 1;
714			return;
715		}
716	} else {
717		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
718			tmp = s->lzma.rep1;
719		} else {
720			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
721				tmp = s->lzma.rep2;
722			} else {
723				tmp = s->lzma.rep3;
724				s->lzma.rep3 = s->lzma.rep2;
725			}
726
727			s->lzma.rep2 = s->lzma.rep1;
728		}
729
730		s->lzma.rep1 = s->lzma.rep0;
731		s->lzma.rep0 = tmp;
732	}
733
734	lzma_state_long_rep(&s->lzma.state);
735	lzma_len(s, &s->lzma.rep_len_dec, pos_state);
736}
737
738/* LZMA decoder core */
739static bool lzma_main(struct xz_dec_lzma2 *s)
740{
741	uint32_t pos_state;
742
743	/*
744	 * If the dictionary was reached during the previous call, try to
745	 * finish the possibly pending repeat in the dictionary.
746	 */
747	if (dict_has_space(&s->dict) && s->lzma.len > 0)
748		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
749
750	/*
751	 * Decode more LZMA symbols. One iteration may consume up to
752	 * LZMA_IN_REQUIRED - 1 bytes.
753	 */
754	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
755		pos_state = s->dict.pos & s->lzma.pos_mask;
756
757		if (!rc_bit(&s->rc, &s->lzma.is_match[
758				s->lzma.state][pos_state])) {
759			lzma_literal(s);
760		} else {
761			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
762				lzma_rep_match(s, pos_state);
763			else
764				lzma_match(s, pos_state);
765
766			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
767				return false;
768		}
769	}
770
771	/*
772	 * Having the range decoder always normalized when we are outside
773	 * this function makes it easier to correctly handle end of the chunk.
774	 */
775	rc_normalize(&s->rc);
776
777	return true;
778}
779
780/*
781 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
782 * here, because LZMA state may be reset without resetting the dictionary.
783 */
784static void lzma_reset(struct xz_dec_lzma2 *s)
785{
786	uint16_t *probs;
787	size_t i;
788
789	s->lzma.state = STATE_LIT_LIT;
790	s->lzma.rep0 = 0;
791	s->lzma.rep1 = 0;
792	s->lzma.rep2 = 0;
793	s->lzma.rep3 = 0;
794
795	/*
796	 * All probabilities are initialized to the same value. This hack
797	 * makes the code smaller by avoiding a separate loop for each
798	 * probability array.
799	 *
800	 * This could be optimized so that only that part of literal
801	 * probabilities that are actually required. In the common case
802	 * we would write 12 KiB less.
803	 */
804	probs = s->lzma.is_match[0];
805	for (i = 0; i < PROBS_TOTAL; ++i)
806		probs[i] = RC_BIT_MODEL_TOTAL / 2;
807
808	rc_reset(&s->rc);
809}
810
811/*
812 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
813 * from the decoded lp and pb values. On success, the LZMA decoder state is
814 * reset and true is returned.
815 */
816static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
817{
818	if (props > (4 * 5 + 4) * 9 + 8)
819		return false;
820
821	s->lzma.pos_mask = 0;
822	while (props >= 9 * 5) {
823		props -= 9 * 5;
824		++s->lzma.pos_mask;
825	}
826
827	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
828
829	s->lzma.literal_pos_mask = 0;
830	while (props >= 9) {
831		props -= 9;
832		++s->lzma.literal_pos_mask;
833	}
834
835	s->lzma.lc = props;
836
837	if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
838		return false;
839
840	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
841
842	lzma_reset(s);
843
844	return true;
845}
846
847/*********
848 * LZMA2 *
849 *********/
850
851/*
852 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
853 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
854 * wrapper function takes care of making the LZMA decoder's assumption safe.
855 *
856 * As long as there is plenty of input left to be decoded in the current LZMA
857 * chunk, we decode directly from the caller-supplied input buffer until
858 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
859 * s->temp.buf, which (hopefully) gets filled on the next call to this
860 * function. We decode a few bytes from the temporary buffer so that we can
861 * continue decoding from the caller-supplied input buffer again.
862 */
863static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
864{
865	size_t in_avail;
866	uint32_t tmp;
867
868	in_avail = b->in_size - b->in_pos;
869	if (s->temp.size > 0 || s->lzma2.compressed == 0) {
870		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
871		if (tmp > s->lzma2.compressed - s->temp.size)
872			tmp = s->lzma2.compressed - s->temp.size;
873		if (tmp > in_avail)
874			tmp = in_avail;
875
876		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
877
878		if (s->temp.size + tmp == s->lzma2.compressed) {
879			memzero(s->temp.buf + s->temp.size + tmp,
880					sizeof(s->temp.buf)
881						- s->temp.size - tmp);
882			s->rc.in_limit = s->temp.size + tmp;
883		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
884			s->temp.size += tmp;
885			b->in_pos += tmp;
886			return true;
887		} else {
888			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
889		}
890
891		s->rc.in = s->temp.buf;
892		s->rc.in_pos = 0;
893
894		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
895			return false;
896
897		s->lzma2.compressed -= s->rc.in_pos;
898
899		if (s->rc.in_pos < s->temp.size) {
900			s->temp.size -= s->rc.in_pos;
901			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
902					s->temp.size);
903			return true;
904		}
905
906		b->in_pos += s->rc.in_pos - s->temp.size;
907		s->temp.size = 0;
908	}
909
910	in_avail = b->in_size - b->in_pos;
911	if (in_avail >= LZMA_IN_REQUIRED) {
912		s->rc.in = b->in;
913		s->rc.in_pos = b->in_pos;
914
915		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
916			s->rc.in_limit = b->in_pos + s->lzma2.compressed;
917		else
918			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
919
920		if (!lzma_main(s))
921			return false;
922
923		in_avail = s->rc.in_pos - b->in_pos;
924		if (in_avail > s->lzma2.compressed)
925			return false;
926
927		s->lzma2.compressed -= in_avail;
928		b->in_pos = s->rc.in_pos;
929	}
930
931	in_avail = b->in_size - b->in_pos;
932	if (in_avail < LZMA_IN_REQUIRED) {
933		if (in_avail > s->lzma2.compressed)
934			in_avail = s->lzma2.compressed;
935
936		memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
937		s->temp.size = in_avail;
938		b->in_pos += in_avail;
939	}
940
941	return true;
942}
943
944/*
945 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
946 * decoding or copying of uncompressed chunks to other functions.
947 */
948XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
949				       struct xz_buf *b)
950{
951	uint32_t tmp;
952
953	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
954		switch (s->lzma2.sequence) {
955		case SEQ_CONTROL:
956			/*
957			 * LZMA2 control byte
958			 *
959			 * Exact values:
960			 *   0x00   End marker
961			 *   0x01   Dictionary reset followed by
962			 *          an uncompressed chunk
963			 *   0x02   Uncompressed chunk (no dictionary reset)
964			 *
965			 * Highest three bits (s->control & 0xE0):
966			 *   0xE0   Dictionary reset, new properties and state
967			 *          reset, followed by LZMA compressed chunk
968			 *   0xC0   New properties and state reset, followed
969			 *          by LZMA compressed chunk (no dictionary
970			 *          reset)
971			 *   0xA0   State reset using old properties,
972			 *          followed by LZMA compressed chunk (no
973			 *          dictionary reset)
974			 *   0x80   LZMA chunk (no dictionary or state reset)
975			 *
976			 * For LZMA compressed chunks, the lowest five bits
977			 * (s->control & 1F) are the highest bits of the
978			 * uncompressed size (bits 16-20).
979			 *
980			 * A new LZMA2 stream must begin with a dictionary
981			 * reset. The first LZMA chunk must set new
982			 * properties and reset the LZMA state.
983			 *
984			 * Values that don't match anything described above
985			 * are invalid and we return XZ_DATA_ERROR.
986			 */
987			tmp = b->in[b->in_pos++];
988
989			if (tmp == 0x00)
990				return XZ_STREAM_END;
991
992			if (tmp >= 0xE0 || tmp == 0x01) {
993				s->lzma2.need_props = true;
994				s->lzma2.need_dict_reset = false;
995				dict_reset(&s->dict, b);
996			} else if (s->lzma2.need_dict_reset) {
997				return XZ_DATA_ERROR;
998			}
999
1000			if (tmp >= 0x80) {
1001				s->lzma2.uncompressed = (tmp & 0x1F) << 16;
1002				s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
1003
1004				if (tmp >= 0xC0) {
1005					/*
1006					 * When there are new properties,
1007					 * state reset is done at
1008					 * SEQ_PROPERTIES.
1009					 */
1010					s->lzma2.need_props = false;
1011					s->lzma2.next_sequence
1012							= SEQ_PROPERTIES;
1013
1014				} else if (s->lzma2.need_props) {
1015					return XZ_DATA_ERROR;
1016
1017				} else {
1018					s->lzma2.next_sequence
1019							= SEQ_LZMA_PREPARE;
1020					if (tmp >= 0xA0)
1021						lzma_reset(s);
1022				}
1023			} else {
1024				if (tmp > 0x02)
1025					return XZ_DATA_ERROR;
1026
1027				s->lzma2.sequence = SEQ_COMPRESSED_0;
1028				s->lzma2.next_sequence = SEQ_COPY;
1029			}
1030
1031			break;
1032
1033		case SEQ_UNCOMPRESSED_1:
1034			s->lzma2.uncompressed
1035					+= (uint32_t)b->in[b->in_pos++] << 8;
1036			s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1037			break;
1038
1039		case SEQ_UNCOMPRESSED_2:
1040			s->lzma2.uncompressed
1041					+= (uint32_t)b->in[b->in_pos++] + 1;
1042			s->lzma2.sequence = SEQ_COMPRESSED_0;
1043			break;
1044
1045		case SEQ_COMPRESSED_0:
1046			s->lzma2.compressed
1047					= (uint32_t)b->in[b->in_pos++] << 8;
1048			s->lzma2.sequence = SEQ_COMPRESSED_1;
1049			break;
1050
1051		case SEQ_COMPRESSED_1:
1052			s->lzma2.compressed
1053					+= (uint32_t)b->in[b->in_pos++] + 1;
1054			s->lzma2.sequence = s->lzma2.next_sequence;
1055			break;
1056
1057		case SEQ_PROPERTIES:
1058			if (!lzma_props(s, b->in[b->in_pos++]))
1059				return XZ_DATA_ERROR;
1060
1061			s->lzma2.sequence = SEQ_LZMA_PREPARE;
1062
1063			/* fall through */
1064
1065		case SEQ_LZMA_PREPARE:
1066			if (s->lzma2.compressed < RC_INIT_BYTES)
1067				return XZ_DATA_ERROR;
1068
1069			if (!rc_read_init(&s->rc, b))
1070				return XZ_OK;
1071
1072			s->lzma2.compressed -= RC_INIT_BYTES;
1073			s->lzma2.sequence = SEQ_LZMA_RUN;
1074
1075			/* fall through */
1076
1077		case SEQ_LZMA_RUN:
1078			/*
1079			 * Set dictionary limit to indicate how much we want
1080			 * to be encoded at maximum. Decode new data into the
1081			 * dictionary. Flush the new data from dictionary to
1082			 * b->out. Check if we finished decoding this chunk.
1083			 * In case the dictionary got full but we didn't fill
1084			 * the output buffer yet, we may run this loop
1085			 * multiple times without changing s->lzma2.sequence.
1086			 */
1087			dict_limit(&s->dict, min_t(size_t,
1088					b->out_size - b->out_pos,
1089					s->lzma2.uncompressed));
1090			if (!lzma2_lzma(s, b))
1091				return XZ_DATA_ERROR;
1092
1093			s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1094
1095			if (s->lzma2.uncompressed == 0) {
1096				if (s->lzma2.compressed > 0 || s->lzma.len > 0
1097						|| !rc_is_finished(&s->rc))
1098					return XZ_DATA_ERROR;
1099
1100				rc_reset(&s->rc);
1101				s->lzma2.sequence = SEQ_CONTROL;
1102
1103			} else if (b->out_pos == b->out_size
1104					|| (b->in_pos == b->in_size
1105						&& s->temp.size
1106						< s->lzma2.compressed)) {
1107				return XZ_OK;
1108			}
1109
1110			break;
1111
1112		case SEQ_COPY:
1113			dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1114			if (s->lzma2.compressed > 0)
1115				return XZ_OK;
1116
1117			s->lzma2.sequence = SEQ_CONTROL;
1118			break;
1119		}
1120	}
1121
1122	return XZ_OK;
1123}
1124
1125XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
1126						   uint32_t dict_max)
1127{
1128	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1129	if (s == NULL)
1130		return NULL;
1131
1132	s->dict.mode = mode;
1133	s->dict.size_max = dict_max;
1134
1135	if (DEC_IS_PREALLOC(mode)) {
1136		s->dict.buf = vmalloc(dict_max);
1137		if (s->dict.buf == NULL) {
1138			kfree(s);
1139			return NULL;
1140		}
1141	} else if (DEC_IS_DYNALLOC(mode)) {
1142		s->dict.buf = NULL;
1143		s->dict.allocated = 0;
1144	}
1145
1146	return s;
1147}
1148
1149XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
1150{
1151	/* This limits dictionary size to 3 GiB to keep parsing simpler. */
1152	if (props > 39)
1153		return XZ_OPTIONS_ERROR;
1154
1155	s->dict.size = 2 + (props & 1);
1156	s->dict.size <<= (props >> 1) + 11;
1157
1158	if (DEC_IS_MULTI(s->dict.mode)) {
1159		if (s->dict.size > s->dict.size_max)
1160			return XZ_MEMLIMIT_ERROR;
1161
1162		s->dict.end = s->dict.size;
1163
1164		if (DEC_IS_DYNALLOC(s->dict.mode)) {
1165			if (s->dict.allocated < s->dict.size) {
1166				s->dict.allocated = s->dict.size;
1167				vfree(s->dict.buf);
1168				s->dict.buf = vmalloc(s->dict.size);
1169				if (s->dict.buf == NULL) {
1170					s->dict.allocated = 0;
1171					return XZ_MEM_ERROR;
1172				}
1173			}
1174		}
1175	}
1176
1177	s->lzma.len = 0;
1178
1179	s->lzma2.sequence = SEQ_CONTROL;
1180	s->lzma2.need_dict_reset = true;
1181
1182	s->temp.size = 0;
1183
1184	return XZ_OK;
1185}
1186
1187XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1188{
1189	if (DEC_IS_MULTI(s->dict.mode))
1190		vfree(s->dict.buf);
1191
1192	kfree(s);
1193}
1194