xref: /kernel/linux/linux-5.10/lib/rhashtable.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Resizable, Scalable, Concurrent Hash Table
4 *
5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
8 *
9 * Code partially derived from nft_hash
10 * Rewritten with rehash code from br_multicast plus single list
11 * pointer as suggested by Josh Triplett
12 */
13
14#include <linux/atomic.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/log2.h>
18#include <linux/sched.h>
19#include <linux/rculist.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/mm.h>
23#include <linux/jhash.h>
24#include <linux/random.h>
25#include <linux/rhashtable.h>
26#include <linux/err.h>
27#include <linux/export.h>
28
29#define HASH_DEFAULT_SIZE	64UL
30#define HASH_MIN_SIZE		4U
31
32union nested_table {
33	union nested_table __rcu *table;
34	struct rhash_lock_head __rcu *bucket;
35};
36
37static u32 head_hashfn(struct rhashtable *ht,
38		       const struct bucket_table *tbl,
39		       const struct rhash_head *he)
40{
41	return rht_head_hashfn(ht, tbl, he, ht->p);
42}
43
44#ifdef CONFIG_PROVE_LOCKING
45#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
46
47int lockdep_rht_mutex_is_held(struct rhashtable *ht)
48{
49	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
50}
51EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
52
53int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
54{
55	if (!debug_locks)
56		return 1;
57	if (unlikely(tbl->nest))
58		return 1;
59	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
60}
61EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
62#else
63#define ASSERT_RHT_MUTEX(HT)
64#endif
65
66static inline union nested_table *nested_table_top(
67	const struct bucket_table *tbl)
68{
69	/* The top-level bucket entry does not need RCU protection
70	 * because it's set at the same time as tbl->nest.
71	 */
72	return (void *)rcu_dereference_protected(tbl->buckets[0], 1);
73}
74
75static void nested_table_free(union nested_table *ntbl, unsigned int size)
76{
77	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
78	const unsigned int len = 1 << shift;
79	unsigned int i;
80
81	ntbl = rcu_dereference_protected(ntbl->table, 1);
82	if (!ntbl)
83		return;
84
85	if (size > len) {
86		size >>= shift;
87		for (i = 0; i < len; i++)
88			nested_table_free(ntbl + i, size);
89	}
90
91	kfree(ntbl);
92}
93
94static void nested_bucket_table_free(const struct bucket_table *tbl)
95{
96	unsigned int size = tbl->size >> tbl->nest;
97	unsigned int len = 1 << tbl->nest;
98	union nested_table *ntbl;
99	unsigned int i;
100
101	ntbl = nested_table_top(tbl);
102
103	for (i = 0; i < len; i++)
104		nested_table_free(ntbl + i, size);
105
106	kfree(ntbl);
107}
108
109static void bucket_table_free(const struct bucket_table *tbl)
110{
111	if (tbl->nest)
112		nested_bucket_table_free(tbl);
113
114	kvfree(tbl);
115}
116
117static void bucket_table_free_rcu(struct rcu_head *head)
118{
119	bucket_table_free(container_of(head, struct bucket_table, rcu));
120}
121
122static union nested_table *nested_table_alloc(struct rhashtable *ht,
123					      union nested_table __rcu **prev,
124					      bool leaf)
125{
126	union nested_table *ntbl;
127	int i;
128
129	ntbl = rcu_dereference(*prev);
130	if (ntbl)
131		return ntbl;
132
133	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
134
135	if (ntbl && leaf) {
136		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
137			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
138	}
139
140	if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
141		return ntbl;
142	/* Raced with another thread. */
143	kfree(ntbl);
144	return rcu_dereference(*prev);
145}
146
147static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
148						      size_t nbuckets,
149						      gfp_t gfp)
150{
151	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
152	struct bucket_table *tbl;
153	size_t size;
154
155	if (nbuckets < (1 << (shift + 1)))
156		return NULL;
157
158	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
159
160	tbl = kzalloc(size, gfp);
161	if (!tbl)
162		return NULL;
163
164	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
165				false)) {
166		kfree(tbl);
167		return NULL;
168	}
169
170	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
171
172	return tbl;
173}
174
175static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
176					       size_t nbuckets,
177					       gfp_t gfp)
178{
179	struct bucket_table *tbl = NULL;
180	size_t size;
181	int i;
182	static struct lock_class_key __key;
183
184	tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
185
186	size = nbuckets;
187
188	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
189		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
190		nbuckets = 0;
191	}
192
193	if (tbl == NULL)
194		return NULL;
195
196	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
197
198	tbl->size = size;
199
200	rcu_head_init(&tbl->rcu);
201	INIT_LIST_HEAD(&tbl->walkers);
202
203	tbl->hash_rnd = get_random_u32();
204
205	for (i = 0; i < nbuckets; i++)
206		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
207
208	return tbl;
209}
210
211static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
212						  struct bucket_table *tbl)
213{
214	struct bucket_table *new_tbl;
215
216	do {
217		new_tbl = tbl;
218		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
219	} while (tbl);
220
221	return new_tbl;
222}
223
224static int rhashtable_rehash_one(struct rhashtable *ht,
225				 struct rhash_lock_head __rcu **bkt,
226				 unsigned int old_hash)
227{
228	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
229	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
230	int err = -EAGAIN;
231	struct rhash_head *head, *next, *entry;
232	struct rhash_head __rcu **pprev = NULL;
233	unsigned int new_hash;
234
235	if (new_tbl->nest)
236		goto out;
237
238	err = -ENOENT;
239
240	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
241			  old_tbl, old_hash) {
242		err = 0;
243		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
244
245		if (rht_is_a_nulls(next))
246			break;
247
248		pprev = &entry->next;
249	}
250
251	if (err)
252		goto out;
253
254	new_hash = head_hashfn(ht, new_tbl, entry);
255
256	rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING);
257
258	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
259
260	RCU_INIT_POINTER(entry->next, head);
261
262	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry);
263
264	if (pprev)
265		rcu_assign_pointer(*pprev, next);
266	else
267		/* Need to preserved the bit lock. */
268		rht_assign_locked(bkt, next);
269
270out:
271	return err;
272}
273
274static int rhashtable_rehash_chain(struct rhashtable *ht,
275				    unsigned int old_hash)
276{
277	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
278	struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
279	int err;
280
281	if (!bkt)
282		return 0;
283	rht_lock(old_tbl, bkt);
284
285	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
286		;
287
288	if (err == -ENOENT)
289		err = 0;
290	rht_unlock(old_tbl, bkt);
291
292	return err;
293}
294
295static int rhashtable_rehash_attach(struct rhashtable *ht,
296				    struct bucket_table *old_tbl,
297				    struct bucket_table *new_tbl)
298{
299	/* Make insertions go into the new, empty table right away. Deletions
300	 * and lookups will be attempted in both tables until we synchronize.
301	 * As cmpxchg() provides strong barriers, we do not need
302	 * rcu_assign_pointer().
303	 */
304
305	if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
306		    new_tbl) != NULL)
307		return -EEXIST;
308
309	return 0;
310}
311
312static int rhashtable_rehash_table(struct rhashtable *ht)
313{
314	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
315	struct bucket_table *new_tbl;
316	struct rhashtable_walker *walker;
317	unsigned int old_hash;
318	int err;
319
320	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
321	if (!new_tbl)
322		return 0;
323
324	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
325		err = rhashtable_rehash_chain(ht, old_hash);
326		if (err)
327			return err;
328		cond_resched();
329	}
330
331	/* Publish the new table pointer. */
332	rcu_assign_pointer(ht->tbl, new_tbl);
333
334	spin_lock(&ht->lock);
335	list_for_each_entry(walker, &old_tbl->walkers, list)
336		walker->tbl = NULL;
337
338	/* Wait for readers. All new readers will see the new
339	 * table, and thus no references to the old table will
340	 * remain.
341	 * We do this inside the locked region so that
342	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
343	 * to check if it should not re-link the table.
344	 */
345	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
346	spin_unlock(&ht->lock);
347
348	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
349}
350
351static int rhashtable_rehash_alloc(struct rhashtable *ht,
352				   struct bucket_table *old_tbl,
353				   unsigned int size)
354{
355	struct bucket_table *new_tbl;
356	int err;
357
358	ASSERT_RHT_MUTEX(ht);
359
360	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
361	if (new_tbl == NULL)
362		return -ENOMEM;
363
364	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
365	if (err)
366		bucket_table_free(new_tbl);
367
368	return err;
369}
370
371/**
372 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
373 * @ht:		the hash table to shrink
374 *
375 * This function shrinks the hash table to fit, i.e., the smallest
376 * size would not cause it to expand right away automatically.
377 *
378 * The caller must ensure that no concurrent resizing occurs by holding
379 * ht->mutex.
380 *
381 * The caller must ensure that no concurrent table mutations take place.
382 * It is however valid to have concurrent lookups if they are RCU protected.
383 *
384 * It is valid to have concurrent insertions and deletions protected by per
385 * bucket locks or concurrent RCU protected lookups and traversals.
386 */
387static int rhashtable_shrink(struct rhashtable *ht)
388{
389	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
390	unsigned int nelems = atomic_read(&ht->nelems);
391	unsigned int size = 0;
392
393	if (nelems)
394		size = roundup_pow_of_two(nelems * 3 / 2);
395	if (size < ht->p.min_size)
396		size = ht->p.min_size;
397
398	if (old_tbl->size <= size)
399		return 0;
400
401	if (rht_dereference(old_tbl->future_tbl, ht))
402		return -EEXIST;
403
404	return rhashtable_rehash_alloc(ht, old_tbl, size);
405}
406
407static void rht_deferred_worker(struct work_struct *work)
408{
409	struct rhashtable *ht;
410	struct bucket_table *tbl;
411	int err = 0;
412
413	ht = container_of(work, struct rhashtable, run_work);
414	mutex_lock(&ht->mutex);
415
416	tbl = rht_dereference(ht->tbl, ht);
417	tbl = rhashtable_last_table(ht, tbl);
418
419	if (rht_grow_above_75(ht, tbl))
420		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
421	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
422		err = rhashtable_shrink(ht);
423	else if (tbl->nest)
424		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
425
426	if (!err || err == -EEXIST) {
427		int nerr;
428
429		nerr = rhashtable_rehash_table(ht);
430		err = err ?: nerr;
431	}
432
433	mutex_unlock(&ht->mutex);
434
435	if (err)
436		schedule_work(&ht->run_work);
437}
438
439static int rhashtable_insert_rehash(struct rhashtable *ht,
440				    struct bucket_table *tbl)
441{
442	struct bucket_table *old_tbl;
443	struct bucket_table *new_tbl;
444	unsigned int size;
445	int err;
446
447	old_tbl = rht_dereference_rcu(ht->tbl, ht);
448
449	size = tbl->size;
450
451	err = -EBUSY;
452
453	if (rht_grow_above_75(ht, tbl))
454		size *= 2;
455	/* Do not schedule more than one rehash */
456	else if (old_tbl != tbl)
457		goto fail;
458
459	err = -ENOMEM;
460
461	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
462	if (new_tbl == NULL)
463		goto fail;
464
465	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
466	if (err) {
467		bucket_table_free(new_tbl);
468		if (err == -EEXIST)
469			err = 0;
470	} else
471		schedule_work(&ht->run_work);
472
473	return err;
474
475fail:
476	/* Do not fail the insert if someone else did a rehash. */
477	if (likely(rcu_access_pointer(tbl->future_tbl)))
478		return 0;
479
480	/* Schedule async rehash to retry allocation in process context. */
481	if (err == -ENOMEM)
482		schedule_work(&ht->run_work);
483
484	return err;
485}
486
487static void *rhashtable_lookup_one(struct rhashtable *ht,
488				   struct rhash_lock_head __rcu **bkt,
489				   struct bucket_table *tbl, unsigned int hash,
490				   const void *key, struct rhash_head *obj)
491{
492	struct rhashtable_compare_arg arg = {
493		.ht = ht,
494		.key = key,
495	};
496	struct rhash_head __rcu **pprev = NULL;
497	struct rhash_head *head;
498	int elasticity;
499
500	elasticity = RHT_ELASTICITY;
501	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
502		struct rhlist_head *list;
503		struct rhlist_head *plist;
504
505		elasticity--;
506		if (!key ||
507		    (ht->p.obj_cmpfn ?
508		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
509		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
510			pprev = &head->next;
511			continue;
512		}
513
514		if (!ht->rhlist)
515			return rht_obj(ht, head);
516
517		list = container_of(obj, struct rhlist_head, rhead);
518		plist = container_of(head, struct rhlist_head, rhead);
519
520		RCU_INIT_POINTER(list->next, plist);
521		head = rht_dereference_bucket(head->next, tbl, hash);
522		RCU_INIT_POINTER(list->rhead.next, head);
523		if (pprev)
524			rcu_assign_pointer(*pprev, obj);
525		else
526			/* Need to preserve the bit lock */
527			rht_assign_locked(bkt, obj);
528
529		return NULL;
530	}
531
532	if (elasticity <= 0)
533		return ERR_PTR(-EAGAIN);
534
535	return ERR_PTR(-ENOENT);
536}
537
538static struct bucket_table *rhashtable_insert_one(
539	struct rhashtable *ht, struct rhash_lock_head __rcu **bkt,
540	struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj,
541	void *data)
542{
543	struct bucket_table *new_tbl;
544	struct rhash_head *head;
545
546	if (!IS_ERR_OR_NULL(data))
547		return ERR_PTR(-EEXIST);
548
549	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
550		return ERR_CAST(data);
551
552	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
553	if (new_tbl)
554		return new_tbl;
555
556	if (PTR_ERR(data) != -ENOENT)
557		return ERR_CAST(data);
558
559	if (unlikely(rht_grow_above_max(ht, tbl)))
560		return ERR_PTR(-E2BIG);
561
562	if (unlikely(rht_grow_above_100(ht, tbl)))
563		return ERR_PTR(-EAGAIN);
564
565	head = rht_ptr(bkt, tbl, hash);
566
567	RCU_INIT_POINTER(obj->next, head);
568	if (ht->rhlist) {
569		struct rhlist_head *list;
570
571		list = container_of(obj, struct rhlist_head, rhead);
572		RCU_INIT_POINTER(list->next, NULL);
573	}
574
575	/* bkt is always the head of the list, so it holds
576	 * the lock, which we need to preserve
577	 */
578	rht_assign_locked(bkt, obj);
579
580	atomic_inc(&ht->nelems);
581	if (rht_grow_above_75(ht, tbl))
582		schedule_work(&ht->run_work);
583
584	return NULL;
585}
586
587static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
588				   struct rhash_head *obj)
589{
590	struct bucket_table *new_tbl;
591	struct bucket_table *tbl;
592	struct rhash_lock_head __rcu **bkt;
593	unsigned int hash;
594	void *data;
595
596	new_tbl = rcu_dereference(ht->tbl);
597
598	do {
599		tbl = new_tbl;
600		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
601		if (rcu_access_pointer(tbl->future_tbl))
602			/* Failure is OK */
603			bkt = rht_bucket_var(tbl, hash);
604		else
605			bkt = rht_bucket_insert(ht, tbl, hash);
606		if (bkt == NULL) {
607			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
608			data = ERR_PTR(-EAGAIN);
609		} else {
610			rht_lock(tbl, bkt);
611			data = rhashtable_lookup_one(ht, bkt, tbl,
612						     hash, key, obj);
613			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
614							hash, obj, data);
615			if (PTR_ERR(new_tbl) != -EEXIST)
616				data = ERR_CAST(new_tbl);
617
618			rht_unlock(tbl, bkt);
619		}
620	} while (!IS_ERR_OR_NULL(new_tbl));
621
622	if (PTR_ERR(data) == -EAGAIN)
623		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
624			       -EAGAIN);
625
626	return data;
627}
628
629void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
630			     struct rhash_head *obj)
631{
632	void *data;
633
634	do {
635		rcu_read_lock();
636		data = rhashtable_try_insert(ht, key, obj);
637		rcu_read_unlock();
638	} while (PTR_ERR(data) == -EAGAIN);
639
640	return data;
641}
642EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
643
644/**
645 * rhashtable_walk_enter - Initialise an iterator
646 * @ht:		Table to walk over
647 * @iter:	Hash table Iterator
648 *
649 * This function prepares a hash table walk.
650 *
651 * Note that if you restart a walk after rhashtable_walk_stop you
652 * may see the same object twice.  Also, you may miss objects if
653 * there are removals in between rhashtable_walk_stop and the next
654 * call to rhashtable_walk_start.
655 *
656 * For a completely stable walk you should construct your own data
657 * structure outside the hash table.
658 *
659 * This function may be called from any process context, including
660 * non-preemptable context, but cannot be called from softirq or
661 * hardirq context.
662 *
663 * You must call rhashtable_walk_exit after this function returns.
664 */
665void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
666{
667	iter->ht = ht;
668	iter->p = NULL;
669	iter->slot = 0;
670	iter->skip = 0;
671	iter->end_of_table = 0;
672
673	spin_lock(&ht->lock);
674	iter->walker.tbl =
675		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
676	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
677	spin_unlock(&ht->lock);
678}
679EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
680
681/**
682 * rhashtable_walk_exit - Free an iterator
683 * @iter:	Hash table Iterator
684 *
685 * This function frees resources allocated by rhashtable_walk_enter.
686 */
687void rhashtable_walk_exit(struct rhashtable_iter *iter)
688{
689	spin_lock(&iter->ht->lock);
690	if (iter->walker.tbl)
691		list_del(&iter->walker.list);
692	spin_unlock(&iter->ht->lock);
693}
694EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
695
696/**
697 * rhashtable_walk_start_check - Start a hash table walk
698 * @iter:	Hash table iterator
699 *
700 * Start a hash table walk at the current iterator position.  Note that we take
701 * the RCU lock in all cases including when we return an error.  So you must
702 * always call rhashtable_walk_stop to clean up.
703 *
704 * Returns zero if successful.
705 *
706 * Returns -EAGAIN if resize event occured.  Note that the iterator
707 * will rewind back to the beginning and you may use it immediately
708 * by calling rhashtable_walk_next.
709 *
710 * rhashtable_walk_start is defined as an inline variant that returns
711 * void. This is preferred in cases where the caller would ignore
712 * resize events and always continue.
713 */
714int rhashtable_walk_start_check(struct rhashtable_iter *iter)
715	__acquires(RCU)
716{
717	struct rhashtable *ht = iter->ht;
718	bool rhlist = ht->rhlist;
719
720	rcu_read_lock();
721
722	spin_lock(&ht->lock);
723	if (iter->walker.tbl)
724		list_del(&iter->walker.list);
725	spin_unlock(&ht->lock);
726
727	if (iter->end_of_table)
728		return 0;
729	if (!iter->walker.tbl) {
730		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
731		iter->slot = 0;
732		iter->skip = 0;
733		return -EAGAIN;
734	}
735
736	if (iter->p && !rhlist) {
737		/*
738		 * We need to validate that 'p' is still in the table, and
739		 * if so, update 'skip'
740		 */
741		struct rhash_head *p;
742		int skip = 0;
743		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
744			skip++;
745			if (p == iter->p) {
746				iter->skip = skip;
747				goto found;
748			}
749		}
750		iter->p = NULL;
751	} else if (iter->p && rhlist) {
752		/* Need to validate that 'list' is still in the table, and
753		 * if so, update 'skip' and 'p'.
754		 */
755		struct rhash_head *p;
756		struct rhlist_head *list;
757		int skip = 0;
758		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
759			for (list = container_of(p, struct rhlist_head, rhead);
760			     list;
761			     list = rcu_dereference(list->next)) {
762				skip++;
763				if (list == iter->list) {
764					iter->p = p;
765					iter->skip = skip;
766					goto found;
767				}
768			}
769		}
770		iter->p = NULL;
771	}
772found:
773	return 0;
774}
775EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
776
777/**
778 * __rhashtable_walk_find_next - Find the next element in a table (or the first
779 * one in case of a new walk).
780 *
781 * @iter:	Hash table iterator
782 *
783 * Returns the found object or NULL when the end of the table is reached.
784 *
785 * Returns -EAGAIN if resize event occurred.
786 */
787static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
788{
789	struct bucket_table *tbl = iter->walker.tbl;
790	struct rhlist_head *list = iter->list;
791	struct rhashtable *ht = iter->ht;
792	struct rhash_head *p = iter->p;
793	bool rhlist = ht->rhlist;
794
795	if (!tbl)
796		return NULL;
797
798	for (; iter->slot < tbl->size; iter->slot++) {
799		int skip = iter->skip;
800
801		rht_for_each_rcu(p, tbl, iter->slot) {
802			if (rhlist) {
803				list = container_of(p, struct rhlist_head,
804						    rhead);
805				do {
806					if (!skip)
807						goto next;
808					skip--;
809					list = rcu_dereference(list->next);
810				} while (list);
811
812				continue;
813			}
814			if (!skip)
815				break;
816			skip--;
817		}
818
819next:
820		if (!rht_is_a_nulls(p)) {
821			iter->skip++;
822			iter->p = p;
823			iter->list = list;
824			return rht_obj(ht, rhlist ? &list->rhead : p);
825		}
826
827		iter->skip = 0;
828	}
829
830	iter->p = NULL;
831
832	/* Ensure we see any new tables. */
833	smp_rmb();
834
835	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
836	if (iter->walker.tbl) {
837		iter->slot = 0;
838		iter->skip = 0;
839		return ERR_PTR(-EAGAIN);
840	} else {
841		iter->end_of_table = true;
842	}
843
844	return NULL;
845}
846
847/**
848 * rhashtable_walk_next - Return the next object and advance the iterator
849 * @iter:	Hash table iterator
850 *
851 * Note that you must call rhashtable_walk_stop when you are finished
852 * with the walk.
853 *
854 * Returns the next object or NULL when the end of the table is reached.
855 *
856 * Returns -EAGAIN if resize event occurred.  Note that the iterator
857 * will rewind back to the beginning and you may continue to use it.
858 */
859void *rhashtable_walk_next(struct rhashtable_iter *iter)
860{
861	struct rhlist_head *list = iter->list;
862	struct rhashtable *ht = iter->ht;
863	struct rhash_head *p = iter->p;
864	bool rhlist = ht->rhlist;
865
866	if (p) {
867		if (!rhlist || !(list = rcu_dereference(list->next))) {
868			p = rcu_dereference(p->next);
869			list = container_of(p, struct rhlist_head, rhead);
870		}
871		if (!rht_is_a_nulls(p)) {
872			iter->skip++;
873			iter->p = p;
874			iter->list = list;
875			return rht_obj(ht, rhlist ? &list->rhead : p);
876		}
877
878		/* At the end of this slot, switch to next one and then find
879		 * next entry from that point.
880		 */
881		iter->skip = 0;
882		iter->slot++;
883	}
884
885	return __rhashtable_walk_find_next(iter);
886}
887EXPORT_SYMBOL_GPL(rhashtable_walk_next);
888
889/**
890 * rhashtable_walk_peek - Return the next object but don't advance the iterator
891 * @iter:	Hash table iterator
892 *
893 * Returns the next object or NULL when the end of the table is reached.
894 *
895 * Returns -EAGAIN if resize event occurred.  Note that the iterator
896 * will rewind back to the beginning and you may continue to use it.
897 */
898void *rhashtable_walk_peek(struct rhashtable_iter *iter)
899{
900	struct rhlist_head *list = iter->list;
901	struct rhashtable *ht = iter->ht;
902	struct rhash_head *p = iter->p;
903
904	if (p)
905		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
906
907	/* No object found in current iter, find next one in the table. */
908
909	if (iter->skip) {
910		/* A nonzero skip value points to the next entry in the table
911		 * beyond that last one that was found. Decrement skip so
912		 * we find the current value. __rhashtable_walk_find_next
913		 * will restore the original value of skip assuming that
914		 * the table hasn't changed.
915		 */
916		iter->skip--;
917	}
918
919	return __rhashtable_walk_find_next(iter);
920}
921EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
922
923/**
924 * rhashtable_walk_stop - Finish a hash table walk
925 * @iter:	Hash table iterator
926 *
927 * Finish a hash table walk.  Does not reset the iterator to the start of the
928 * hash table.
929 */
930void rhashtable_walk_stop(struct rhashtable_iter *iter)
931	__releases(RCU)
932{
933	struct rhashtable *ht;
934	struct bucket_table *tbl = iter->walker.tbl;
935
936	if (!tbl)
937		goto out;
938
939	ht = iter->ht;
940
941	spin_lock(&ht->lock);
942	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
943		/* This bucket table is being freed, don't re-link it. */
944		iter->walker.tbl = NULL;
945	else
946		list_add(&iter->walker.list, &tbl->walkers);
947	spin_unlock(&ht->lock);
948
949out:
950	rcu_read_unlock();
951}
952EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
953
954static size_t rounded_hashtable_size(const struct rhashtable_params *params)
955{
956	size_t retsize;
957
958	if (params->nelem_hint)
959		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
960			      (unsigned long)params->min_size);
961	else
962		retsize = max(HASH_DEFAULT_SIZE,
963			      (unsigned long)params->min_size);
964
965	return retsize;
966}
967
968static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
969{
970	return jhash2(key, length, seed);
971}
972
973/**
974 * rhashtable_init - initialize a new hash table
975 * @ht:		hash table to be initialized
976 * @params:	configuration parameters
977 *
978 * Initializes a new hash table based on the provided configuration
979 * parameters. A table can be configured either with a variable or
980 * fixed length key:
981 *
982 * Configuration Example 1: Fixed length keys
983 * struct test_obj {
984 *	int			key;
985 *	void *			my_member;
986 *	struct rhash_head	node;
987 * };
988 *
989 * struct rhashtable_params params = {
990 *	.head_offset = offsetof(struct test_obj, node),
991 *	.key_offset = offsetof(struct test_obj, key),
992 *	.key_len = sizeof(int),
993 *	.hashfn = jhash,
994 * };
995 *
996 * Configuration Example 2: Variable length keys
997 * struct test_obj {
998 *	[...]
999 *	struct rhash_head	node;
1000 * };
1001 *
1002 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1003 * {
1004 *	struct test_obj *obj = data;
1005 *
1006 *	return [... hash ...];
1007 * }
1008 *
1009 * struct rhashtable_params params = {
1010 *	.head_offset = offsetof(struct test_obj, node),
1011 *	.hashfn = jhash,
1012 *	.obj_hashfn = my_hash_fn,
1013 * };
1014 */
1015int rhashtable_init(struct rhashtable *ht,
1016		    const struct rhashtable_params *params)
1017{
1018	struct bucket_table *tbl;
1019	size_t size;
1020
1021	if ((!params->key_len && !params->obj_hashfn) ||
1022	    (params->obj_hashfn && !params->obj_cmpfn))
1023		return -EINVAL;
1024
1025	memset(ht, 0, sizeof(*ht));
1026	mutex_init(&ht->mutex);
1027	spin_lock_init(&ht->lock);
1028	memcpy(&ht->p, params, sizeof(*params));
1029
1030	if (params->min_size)
1031		ht->p.min_size = roundup_pow_of_two(params->min_size);
1032
1033	/* Cap total entries at 2^31 to avoid nelems overflow. */
1034	ht->max_elems = 1u << 31;
1035
1036	if (params->max_size) {
1037		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1038		if (ht->p.max_size < ht->max_elems / 2)
1039			ht->max_elems = ht->p.max_size * 2;
1040	}
1041
1042	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1043
1044	size = rounded_hashtable_size(&ht->p);
1045
1046	ht->key_len = ht->p.key_len;
1047	if (!params->hashfn) {
1048		ht->p.hashfn = jhash;
1049
1050		if (!(ht->key_len & (sizeof(u32) - 1))) {
1051			ht->key_len /= sizeof(u32);
1052			ht->p.hashfn = rhashtable_jhash2;
1053		}
1054	}
1055
1056	/*
1057	 * This is api initialization and thus we need to guarantee the
1058	 * initial rhashtable allocation. Upon failure, retry with the
1059	 * smallest possible size with __GFP_NOFAIL semantics.
1060	 */
1061	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1062	if (unlikely(tbl == NULL)) {
1063		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1064		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1065	}
1066
1067	atomic_set(&ht->nelems, 0);
1068
1069	RCU_INIT_POINTER(ht->tbl, tbl);
1070
1071	INIT_WORK(&ht->run_work, rht_deferred_worker);
1072
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(rhashtable_init);
1076
1077/**
1078 * rhltable_init - initialize a new hash list table
1079 * @hlt:	hash list table to be initialized
1080 * @params:	configuration parameters
1081 *
1082 * Initializes a new hash list table.
1083 *
1084 * See documentation for rhashtable_init.
1085 */
1086int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1087{
1088	int err;
1089
1090	err = rhashtable_init(&hlt->ht, params);
1091	hlt->ht.rhlist = true;
1092	return err;
1093}
1094EXPORT_SYMBOL_GPL(rhltable_init);
1095
1096static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1097				void (*free_fn)(void *ptr, void *arg),
1098				void *arg)
1099{
1100	struct rhlist_head *list;
1101
1102	if (!ht->rhlist) {
1103		free_fn(rht_obj(ht, obj), arg);
1104		return;
1105	}
1106
1107	list = container_of(obj, struct rhlist_head, rhead);
1108	do {
1109		obj = &list->rhead;
1110		list = rht_dereference(list->next, ht);
1111		free_fn(rht_obj(ht, obj), arg);
1112	} while (list);
1113}
1114
1115/**
1116 * rhashtable_free_and_destroy - free elements and destroy hash table
1117 * @ht:		the hash table to destroy
1118 * @free_fn:	callback to release resources of element
1119 * @arg:	pointer passed to free_fn
1120 *
1121 * Stops an eventual async resize. If defined, invokes free_fn for each
1122 * element to releasal resources. Please note that RCU protected
1123 * readers may still be accessing the elements. Releasing of resources
1124 * must occur in a compatible manner. Then frees the bucket array.
1125 *
1126 * This function will eventually sleep to wait for an async resize
1127 * to complete. The caller is responsible that no further write operations
1128 * occurs in parallel.
1129 */
1130void rhashtable_free_and_destroy(struct rhashtable *ht,
1131				 void (*free_fn)(void *ptr, void *arg),
1132				 void *arg)
1133{
1134	struct bucket_table *tbl, *next_tbl;
1135	unsigned int i;
1136
1137	cancel_work_sync(&ht->run_work);
1138
1139	mutex_lock(&ht->mutex);
1140	tbl = rht_dereference(ht->tbl, ht);
1141restart:
1142	if (free_fn) {
1143		for (i = 0; i < tbl->size; i++) {
1144			struct rhash_head *pos, *next;
1145
1146			cond_resched();
1147			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1148			     next = !rht_is_a_nulls(pos) ?
1149					rht_dereference(pos->next, ht) : NULL;
1150			     !rht_is_a_nulls(pos);
1151			     pos = next,
1152			     next = !rht_is_a_nulls(pos) ?
1153					rht_dereference(pos->next, ht) : NULL)
1154				rhashtable_free_one(ht, pos, free_fn, arg);
1155		}
1156	}
1157
1158	next_tbl = rht_dereference(tbl->future_tbl, ht);
1159	bucket_table_free(tbl);
1160	if (next_tbl) {
1161		tbl = next_tbl;
1162		goto restart;
1163	}
1164	mutex_unlock(&ht->mutex);
1165}
1166EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1167
1168void rhashtable_destroy(struct rhashtable *ht)
1169{
1170	return rhashtable_free_and_destroy(ht, NULL, NULL);
1171}
1172EXPORT_SYMBOL_GPL(rhashtable_destroy);
1173
1174struct rhash_lock_head __rcu **__rht_bucket_nested(
1175	const struct bucket_table *tbl, unsigned int hash)
1176{
1177	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1178	unsigned int index = hash & ((1 << tbl->nest) - 1);
1179	unsigned int size = tbl->size >> tbl->nest;
1180	unsigned int subhash = hash;
1181	union nested_table *ntbl;
1182
1183	ntbl = nested_table_top(tbl);
1184	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1185	subhash >>= tbl->nest;
1186
1187	while (ntbl && size > (1 << shift)) {
1188		index = subhash & ((1 << shift) - 1);
1189		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1190						  tbl, hash);
1191		size >>= shift;
1192		subhash >>= shift;
1193	}
1194
1195	if (!ntbl)
1196		return NULL;
1197
1198	return &ntbl[subhash].bucket;
1199
1200}
1201EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1202
1203struct rhash_lock_head __rcu **rht_bucket_nested(
1204	const struct bucket_table *tbl, unsigned int hash)
1205{
1206	static struct rhash_lock_head __rcu *rhnull;
1207
1208	if (!rhnull)
1209		INIT_RHT_NULLS_HEAD(rhnull);
1210	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1211}
1212EXPORT_SYMBOL_GPL(rht_bucket_nested);
1213
1214struct rhash_lock_head __rcu **rht_bucket_nested_insert(
1215	struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash)
1216{
1217	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1218	unsigned int index = hash & ((1 << tbl->nest) - 1);
1219	unsigned int size = tbl->size >> tbl->nest;
1220	union nested_table *ntbl;
1221
1222	ntbl = nested_table_top(tbl);
1223	hash >>= tbl->nest;
1224	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1225				  size <= (1 << shift));
1226
1227	while (ntbl && size > (1 << shift)) {
1228		index = hash & ((1 << shift) - 1);
1229		size >>= shift;
1230		hash >>= shift;
1231		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1232					  size <= (1 << shift));
1233	}
1234
1235	if (!ntbl)
1236		return NULL;
1237
1238	return &ntbl[hash].bucket;
1239
1240}
1241EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1242