xref: /kernel/linux/linux-5.10/lib/random32.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This is a maximally equidistributed combined Tausworthe generator
4 * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
5 *
6 * lfsr113 version:
7 *
8 * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
9 *
10 * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
11 * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
12 * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
13 * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
14 *
15 * The period of this generator is about 2^113 (see erratum paper).
16 *
17 * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
18 * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
19 * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
20 * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
21 *
22 * There is an erratum in the paper "Tables of Maximally Equidistributed
23 * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
24 * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
25 *
26 *      ... the k_j most significant bits of z_j must be non-zero,
27 *      for each j. (Note: this restriction also applies to the
28 *      computer code given in [4], but was mistakenly not mentioned
29 *      in that paper.)
30 *
31 * This affects the seeding procedure by imposing the requirement
32 * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
33 */
34
35#include <linux/types.h>
36#include <linux/percpu.h>
37#include <linux/export.h>
38#include <linux/jiffies.h>
39#include <linux/random.h>
40#include <linux/sched.h>
41#include <linux/bitops.h>
42#include <linux/slab.h>
43#include <linux/notifier.h>
44#include <asm/unaligned.h>
45
46/**
47 *	prandom_u32_state - seeded pseudo-random number generator.
48 *	@state: pointer to state structure holding seeded state.
49 *
50 *	This is used for pseudo-randomness with no outside seeding.
51 *	For more random results, use prandom_u32().
52 */
53u32 prandom_u32_state(struct rnd_state *state)
54{
55#define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
56	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
57	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
58	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
59	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
60
61	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
62}
63EXPORT_SYMBOL(prandom_u32_state);
64
65/**
66 *	prandom_bytes_state - get the requested number of pseudo-random bytes
67 *
68 *	@state: pointer to state structure holding seeded state.
69 *	@buf: where to copy the pseudo-random bytes to
70 *	@bytes: the requested number of bytes
71 *
72 *	This is used for pseudo-randomness with no outside seeding.
73 *	For more random results, use prandom_bytes().
74 */
75void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
76{
77	u8 *ptr = buf;
78
79	while (bytes >= sizeof(u32)) {
80		put_unaligned(prandom_u32_state(state), (u32 *) ptr);
81		ptr += sizeof(u32);
82		bytes -= sizeof(u32);
83	}
84
85	if (bytes > 0) {
86		u32 rem = prandom_u32_state(state);
87		do {
88			*ptr++ = (u8) rem;
89			bytes--;
90			rem >>= BITS_PER_BYTE;
91		} while (bytes > 0);
92	}
93}
94EXPORT_SYMBOL(prandom_bytes_state);
95
96static void prandom_warmup(struct rnd_state *state)
97{
98	/* Calling RNG ten times to satisfy recurrence condition */
99	prandom_u32_state(state);
100	prandom_u32_state(state);
101	prandom_u32_state(state);
102	prandom_u32_state(state);
103	prandom_u32_state(state);
104	prandom_u32_state(state);
105	prandom_u32_state(state);
106	prandom_u32_state(state);
107	prandom_u32_state(state);
108	prandom_u32_state(state);
109}
110
111void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
112{
113	int i;
114
115	for_each_possible_cpu(i) {
116		struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
117		u32 seeds[4];
118
119		get_random_bytes(&seeds, sizeof(seeds));
120		state->s1 = __seed(seeds[0],   2U);
121		state->s2 = __seed(seeds[1],   8U);
122		state->s3 = __seed(seeds[2],  16U);
123		state->s4 = __seed(seeds[3], 128U);
124
125		prandom_warmup(state);
126	}
127}
128EXPORT_SYMBOL(prandom_seed_full_state);
129
130#ifdef CONFIG_RANDOM32_SELFTEST
131static struct prandom_test1 {
132	u32 seed;
133	u32 result;
134} test1[] = {
135	{ 1U, 3484351685U },
136	{ 2U, 2623130059U },
137	{ 3U, 3125133893U },
138	{ 4U,  984847254U },
139};
140
141static struct prandom_test2 {
142	u32 seed;
143	u32 iteration;
144	u32 result;
145} test2[] = {
146	/* Test cases against taus113 from GSL library. */
147	{  931557656U, 959U, 2975593782U },
148	{ 1339693295U, 876U, 3887776532U },
149	{ 1545556285U, 961U, 1615538833U },
150	{  601730776U, 723U, 1776162651U },
151	{ 1027516047U, 687U,  511983079U },
152	{  416526298U, 700U,  916156552U },
153	{ 1395522032U, 652U, 2222063676U },
154	{  366221443U, 617U, 2992857763U },
155	{ 1539836965U, 714U, 3783265725U },
156	{  556206671U, 994U,  799626459U },
157	{  684907218U, 799U,  367789491U },
158	{ 2121230701U, 931U, 2115467001U },
159	{ 1668516451U, 644U, 3620590685U },
160	{  768046066U, 883U, 2034077390U },
161	{ 1989159136U, 833U, 1195767305U },
162	{  536585145U, 996U, 3577259204U },
163	{ 1008129373U, 642U, 1478080776U },
164	{ 1740775604U, 939U, 1264980372U },
165	{ 1967883163U, 508U,   10734624U },
166	{ 1923019697U, 730U, 3821419629U },
167	{  442079932U, 560U, 3440032343U },
168	{ 1961302714U, 845U,  841962572U },
169	{ 2030205964U, 962U, 1325144227U },
170	{ 1160407529U, 507U,  240940858U },
171	{  635482502U, 779U, 4200489746U },
172	{ 1252788931U, 699U,  867195434U },
173	{ 1961817131U, 719U,  668237657U },
174	{ 1071468216U, 983U,  917876630U },
175	{ 1281848367U, 932U, 1003100039U },
176	{  582537119U, 780U, 1127273778U },
177	{ 1973672777U, 853U, 1071368872U },
178	{ 1896756996U, 762U, 1127851055U },
179	{  847917054U, 500U, 1717499075U },
180	{ 1240520510U, 951U, 2849576657U },
181	{ 1685071682U, 567U, 1961810396U },
182	{ 1516232129U, 557U,    3173877U },
183	{ 1208118903U, 612U, 1613145022U },
184	{ 1817269927U, 693U, 4279122573U },
185	{ 1510091701U, 717U,  638191229U },
186	{  365916850U, 807U,  600424314U },
187	{  399324359U, 702U, 1803598116U },
188	{ 1318480274U, 779U, 2074237022U },
189	{  697758115U, 840U, 1483639402U },
190	{ 1696507773U, 840U,  577415447U },
191	{ 2081979121U, 981U, 3041486449U },
192	{  955646687U, 742U, 3846494357U },
193	{ 1250683506U, 749U,  836419859U },
194	{  595003102U, 534U,  366794109U },
195	{   47485338U, 558U, 3521120834U },
196	{  619433479U, 610U, 3991783875U },
197	{  704096520U, 518U, 4139493852U },
198	{ 1712224984U, 606U, 2393312003U },
199	{ 1318233152U, 922U, 3880361134U },
200	{  855572992U, 761U, 1472974787U },
201	{   64721421U, 703U,  683860550U },
202	{  678931758U, 840U,  380616043U },
203	{  692711973U, 778U, 1382361947U },
204	{  677703619U, 530U, 2826914161U },
205	{   92393223U, 586U, 1522128471U },
206	{ 1222592920U, 743U, 3466726667U },
207	{  358288986U, 695U, 1091956998U },
208	{ 1935056945U, 958U,  514864477U },
209	{  735675993U, 990U, 1294239989U },
210	{ 1560089402U, 897U, 2238551287U },
211	{   70616361U, 829U,   22483098U },
212	{  368234700U, 731U, 2913875084U },
213	{   20221190U, 879U, 1564152970U },
214	{  539444654U, 682U, 1835141259U },
215	{ 1314987297U, 840U, 1801114136U },
216	{ 2019295544U, 645U, 3286438930U },
217	{  469023838U, 716U, 1637918202U },
218	{ 1843754496U, 653U, 2562092152U },
219	{  400672036U, 809U, 4264212785U },
220	{  404722249U, 965U, 2704116999U },
221	{  600702209U, 758U,  584979986U },
222	{  519953954U, 667U, 2574436237U },
223	{ 1658071126U, 694U, 2214569490U },
224	{  420480037U, 749U, 3430010866U },
225	{  690103647U, 969U, 3700758083U },
226	{ 1029424799U, 937U, 3787746841U },
227	{ 2012608669U, 506U, 3362628973U },
228	{ 1535432887U, 998U,   42610943U },
229	{ 1330635533U, 857U, 3040806504U },
230	{ 1223800550U, 539U, 3954229517U },
231	{ 1322411537U, 680U, 3223250324U },
232	{ 1877847898U, 945U, 2915147143U },
233	{ 1646356099U, 874U,  965988280U },
234	{  805687536U, 744U, 4032277920U },
235	{ 1948093210U, 633U, 1346597684U },
236	{  392609744U, 783U, 1636083295U },
237	{  690241304U, 770U, 1201031298U },
238	{ 1360302965U, 696U, 1665394461U },
239	{ 1220090946U, 780U, 1316922812U },
240	{  447092251U, 500U, 3438743375U },
241	{ 1613868791U, 592U,  828546883U },
242	{  523430951U, 548U, 2552392304U },
243	{  726692899U, 810U, 1656872867U },
244	{ 1364340021U, 836U, 3710513486U },
245	{ 1986257729U, 931U,  935013962U },
246	{  407983964U, 921U,  728767059U },
247};
248
249static u32 __extract_hwseed(void)
250{
251	unsigned int val = 0;
252
253	(void)(arch_get_random_seed_int(&val) ||
254	       arch_get_random_int(&val));
255
256	return val;
257}
258
259static void prandom_seed_early(struct rnd_state *state, u32 seed,
260			       bool mix_with_hwseed)
261{
262#define LCG(x)	 ((x) * 69069U)	/* super-duper LCG */
263#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
264	state->s1 = __seed(HWSEED() ^ LCG(seed),        2U);
265	state->s2 = __seed(HWSEED() ^ LCG(state->s1),   8U);
266	state->s3 = __seed(HWSEED() ^ LCG(state->s2),  16U);
267	state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
268}
269
270static int __init prandom_state_selftest(void)
271{
272	int i, j, errors = 0, runs = 0;
273	bool error = false;
274
275	for (i = 0; i < ARRAY_SIZE(test1); i++) {
276		struct rnd_state state;
277
278		prandom_seed_early(&state, test1[i].seed, false);
279		prandom_warmup(&state);
280
281		if (test1[i].result != prandom_u32_state(&state))
282			error = true;
283	}
284
285	if (error)
286		pr_warn("prandom: seed boundary self test failed\n");
287	else
288		pr_info("prandom: seed boundary self test passed\n");
289
290	for (i = 0; i < ARRAY_SIZE(test2); i++) {
291		struct rnd_state state;
292
293		prandom_seed_early(&state, test2[i].seed, false);
294		prandom_warmup(&state);
295
296		for (j = 0; j < test2[i].iteration - 1; j++)
297			prandom_u32_state(&state);
298
299		if (test2[i].result != prandom_u32_state(&state))
300			errors++;
301
302		runs++;
303		cond_resched();
304	}
305
306	if (errors)
307		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
308	else
309		pr_info("prandom: %d self tests passed\n", runs);
310	return 0;
311}
312core_initcall(prandom_state_selftest);
313#endif
314
315/*
316 * The prandom_u32() implementation is now completely separate from the
317 * prandom_state() functions, which are retained (for now) for compatibility.
318 *
319 * Because of (ab)use in the networking code for choosing random TCP/UDP port
320 * numbers, which open DoS possibilities if guessable, we want something
321 * stronger than a standard PRNG.  But the performance requirements of
322 * the network code do not allow robust crypto for this application.
323 *
324 * So this is a homebrew Junior Spaceman implementation, based on the
325 * lowest-latency trustworthy crypto primitive available, SipHash.
326 * (The authors of SipHash have not been consulted about this abuse of
327 * their work.)
328 *
329 * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
330 * one word of output.  This abbreviated version uses 2 rounds per word
331 * of output.
332 */
333
334struct siprand_state {
335	unsigned long v0;
336	unsigned long v1;
337	unsigned long v2;
338	unsigned long v3;
339};
340
341static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
342DEFINE_PER_CPU(unsigned long, net_rand_noise);
343EXPORT_PER_CPU_SYMBOL(net_rand_noise);
344
345/*
346 * This is the core CPRNG function.  As "pseudorandom", this is not used
347 * for truly valuable things, just intended to be a PITA to guess.
348 * For maximum speed, we do just two SipHash rounds per word.  This is
349 * the same rate as 4 rounds per 64 bits that SipHash normally uses,
350 * so hopefully it's reasonably secure.
351 *
352 * There are two changes from the official SipHash finalization:
353 * - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
354 *   they are there only to make the output rounds distinct from the input
355 *   rounds, and this application has no input rounds.
356 * - Rather than returning v0^v1^v2^v3, return v1+v3.
357 *   If you look at the SipHash round, the last operation on v3 is
358 *   "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
359 *   Likewise "v1 ^= v2".  (The rotate of v2 makes a difference, but
360 *   it still cancels out half of the bits in v2 for no benefit.)
361 *   Second, since the last combining operation was xor, continue the
362 *   pattern of alternating xor/add for a tiny bit of extra non-linearity.
363 */
364static inline u32 siprand_u32(struct siprand_state *s)
365{
366	unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
367	unsigned long n = raw_cpu_read(net_rand_noise);
368
369	v3 ^= n;
370	PRND_SIPROUND(v0, v1, v2, v3);
371	PRND_SIPROUND(v0, v1, v2, v3);
372	v0 ^= n;
373	s->v0 = v0;  s->v1 = v1;  s->v2 = v2;  s->v3 = v3;
374	return v1 + v3;
375}
376
377
378/**
379 *	prandom_u32 - pseudo random number generator
380 *
381 *	A 32 bit pseudo-random number is generated using a fast
382 *	algorithm suitable for simulation. This algorithm is NOT
383 *	considered safe for cryptographic use.
384 */
385u32 prandom_u32(void)
386{
387	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
388	u32 res = siprand_u32(state);
389
390	put_cpu_ptr(&net_rand_state);
391	return res;
392}
393EXPORT_SYMBOL(prandom_u32);
394
395/**
396 *	prandom_bytes - get the requested number of pseudo-random bytes
397 *	@buf: where to copy the pseudo-random bytes to
398 *	@bytes: the requested number of bytes
399 */
400void prandom_bytes(void *buf, size_t bytes)
401{
402	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
403	u8 *ptr = buf;
404
405	while (bytes >= sizeof(u32)) {
406		put_unaligned(siprand_u32(state), (u32 *)ptr);
407		ptr += sizeof(u32);
408		bytes -= sizeof(u32);
409	}
410
411	if (bytes > 0) {
412		u32 rem = siprand_u32(state);
413
414		do {
415			*ptr++ = (u8)rem;
416			rem >>= BITS_PER_BYTE;
417		} while (--bytes > 0);
418	}
419	put_cpu_ptr(&net_rand_state);
420}
421EXPORT_SYMBOL(prandom_bytes);
422
423/**
424 *	prandom_seed - add entropy to pseudo random number generator
425 *	@entropy: entropy value
426 *
427 *	Add some additional seed material to the prandom pool.
428 *	The "entropy" is actually our IP address (the only caller is
429 *	the network code), not for unpredictability, but to ensure that
430 *	different machines are initialized differently.
431 */
432void prandom_seed(u32 entropy)
433{
434	int i;
435
436	add_device_randomness(&entropy, sizeof(entropy));
437
438	for_each_possible_cpu(i) {
439		struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
440		unsigned long v0 = state->v0, v1 = state->v1;
441		unsigned long v2 = state->v2, v3 = state->v3;
442
443		do {
444			v3 ^= entropy;
445			PRND_SIPROUND(v0, v1, v2, v3);
446			PRND_SIPROUND(v0, v1, v2, v3);
447			v0 ^= entropy;
448		} while (unlikely(!v0 || !v1 || !v2 || !v3));
449
450		WRITE_ONCE(state->v0, v0);
451		WRITE_ONCE(state->v1, v1);
452		WRITE_ONCE(state->v2, v2);
453		WRITE_ONCE(state->v3, v3);
454	}
455}
456EXPORT_SYMBOL(prandom_seed);
457
458/*
459 *	Generate some initially weak seeding values to allow
460 *	the prandom_u32() engine to be started.
461 */
462static int __init prandom_init_early(void)
463{
464	int i;
465	unsigned long v0, v1, v2, v3;
466
467	if (!arch_get_random_long(&v0))
468		v0 = jiffies;
469	if (!arch_get_random_long(&v1))
470		v1 = random_get_entropy();
471	v2 = v0 ^ PRND_K0;
472	v3 = v1 ^ PRND_K1;
473
474	for_each_possible_cpu(i) {
475		struct siprand_state *state;
476
477		v3 ^= i;
478		PRND_SIPROUND(v0, v1, v2, v3);
479		PRND_SIPROUND(v0, v1, v2, v3);
480		v0 ^= i;
481
482		state = per_cpu_ptr(&net_rand_state, i);
483		state->v0 = v0;  state->v1 = v1;
484		state->v2 = v2;  state->v3 = v3;
485	}
486
487	return 0;
488}
489core_initcall(prandom_init_early);
490
491
492/* Stronger reseeding when available, and periodically thereafter. */
493static void prandom_reseed(struct timer_list *unused);
494
495static DEFINE_TIMER(seed_timer, prandom_reseed);
496
497static void prandom_reseed(struct timer_list *unused)
498{
499	unsigned long expires;
500	int i;
501
502	/*
503	 * Reinitialize each CPU's PRNG with 128 bits of key.
504	 * No locking on the CPUs, but then somewhat random results are,
505	 * well, expected.
506	 */
507	for_each_possible_cpu(i) {
508		struct siprand_state *state;
509		unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
510		unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
511#if BITS_PER_LONG == 32
512		int j;
513
514		/*
515		 * On 32-bit machines, hash in two extra words to
516		 * approximate 128-bit key length.  Not that the hash
517		 * has that much security, but this prevents a trivial
518		 * 64-bit brute force.
519		 */
520		for (j = 0; j < 2; j++) {
521			unsigned long m = get_random_long();
522
523			v3 ^= m;
524			PRND_SIPROUND(v0, v1, v2, v3);
525			PRND_SIPROUND(v0, v1, v2, v3);
526			v0 ^= m;
527		}
528#endif
529		/*
530		 * Probably impossible in practice, but there is a
531		 * theoretical risk that a race between this reseeding
532		 * and the target CPU writing its state back could
533		 * create the all-zero SipHash fixed point.
534		 *
535		 * To ensure that never happens, ensure the state
536		 * we write contains no zero words.
537		 */
538		state = per_cpu_ptr(&net_rand_state, i);
539		WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
540		WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
541		WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
542		WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
543	}
544
545	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
546	expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
547	mod_timer(&seed_timer, expires);
548}
549
550/*
551 * The random ready callback can be called from almost any interrupt.
552 * To avoid worrying about whether it's safe to delay that interrupt
553 * long enough to seed all CPUs, just schedule an immediate timer event.
554 */
555static int prandom_timer_start(struct notifier_block *nb,
556			       unsigned long action, void *data)
557{
558	mod_timer(&seed_timer, jiffies);
559	return 0;
560}
561
562#ifdef CONFIG_RANDOM32_SELFTEST
563/* Principle: True 32-bit random numbers will all have 16 differing bits on
564 * average. For each 32-bit number, there are 601M numbers differing by 16
565 * bits, and 89% of the numbers differ by at least 12 bits. Note that more
566 * than 16 differing bits also implies a correlation with inverted bits. Thus
567 * we take 1024 random numbers and compare each of them to the other ones,
568 * counting the deviation of correlated bits to 16. Constants report 32,
569 * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the
570 * u32 total, TEST_SIZE may be as large as 4096 samples.
571 */
572#define TEST_SIZE 1024
573static int __init prandom32_state_selftest(void)
574{
575	unsigned int x, y, bits, samples;
576	u32 xor, flip;
577	u32 total;
578	u32 *data;
579
580	data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL);
581	if (!data)
582		return 0;
583
584	for (samples = 0; samples < TEST_SIZE; samples++)
585		data[samples] = prandom_u32();
586
587	flip = total = 0;
588	for (x = 0; x < samples; x++) {
589		for (y = 0; y < samples; y++) {
590			if (x == y)
591				continue;
592			xor = data[x] ^ data[y];
593			flip |= xor;
594			bits = hweight32(xor);
595			total += (bits - 16) * (bits - 16);
596		}
597	}
598
599	/* We'll return the average deviation as 2*sqrt(corr/samples), which
600	 * is also sqrt(4*corr/samples) which provides a better resolution.
601	 */
602	bits = int_sqrt(total / (samples * (samples - 1)) * 4);
603	if (bits > 6)
604		pr_warn("prandom32: self test failed (at least %u bits"
605			" correlated, fixed_mask=%#x fixed_value=%#x\n",
606			bits, ~flip, data[0] & ~flip);
607	else
608		pr_info("prandom32: self test passed (less than %u bits"
609			" correlated)\n",
610			bits+1);
611	kfree(data);
612	return 0;
613}
614core_initcall(prandom32_state_selftest);
615#endif /*  CONFIG_RANDOM32_SELFTEST */
616
617/*
618 * Start periodic full reseeding as soon as strong
619 * random numbers are available.
620 */
621static int __init prandom_init_late(void)
622{
623	static struct notifier_block random_ready = {
624		.notifier_call = prandom_timer_start
625	};
626	int ret = register_random_ready_notifier(&random_ready);
627
628	if (ret == -EALREADY) {
629		prandom_timer_start(&random_ready, 0, NULL);
630		ret = 0;
631	}
632	return ret;
633}
634late_initcall(prandom_init_late);
635